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ABSTRACT 

 

In spite of generally poor student reports about science instruction in K-12 

classrooms and decreasing interest in STEM careers, some curricular programs have 

successfully motivated and engaged students. One such program is PlantingScience, an 

inquiry-based, computer-supported learning curriculum developed by the Botanical 

Society of America. PlantingScience uniquely utilizes professional scientists who serve 

as online mentors to K-12 students engaged in classroom inquiry projects. 

In an effort to determine why PlantingScience is successful, I began this 

dissertation with an extensive literature review discussing how technology and 

mentoring affect student motivation. Additionally, I conducted two original research 

studies using multiple data streams including classroom observations, teacher interviews, 

a focus group of teachers and scientists, and online dialogues between students and 

scientists.  

In the first study, I used Elliot Eisner’s Connoisseurship/Critique model of 

qualitative analysis to describe, interpret, and evaluate PlantingScience. More 

specifically, I created a grounded theory explaining how PlantingScience motivates and 

engages students. I subsequently compared these findings with self-determination theory 

to determine how the results could be explained in regard to autonomy, competence, and 

relatedness.  

In the second study, I used mixed methods to create a rubric measuring 

scientists’ online motivational support from the perspective of self-determination theory. 
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I also measured student inquiry engagement using a preexisting rubric specifically 

designed for the PlantingScience program. Using these two measures, I investigated the 

associations between scientist-mentors’ motivational support and student inquiry 

engagement.  

The findings in this dissertation provided evidence that students are motivated to 

engage in PlantingScience in part because of student empowerment, online mentor 

interaction, and authentic scientific experiences. In particular, the relationships 

developed between students and scientists in the online asynchronous environments 

were critical to the success of the program. As a general rule, students engaged in the 

inquiry projects more thoroughly as their scientist-mentors’ motivational support 

increased. Perhaps the online mentoring partnership model offered by PlantingScience 

can be used on a wider scale to address the challenges of students’ lack of interest in 

classroom science and STEM career fields. 
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CHAPTER I  

INTRODUCTION 

 

Mr. Potts’ voice slowly faded. Johnny gazed out the window in the direction of 

the familiar scraping sound. Biology class had lulled him into a stupor once again, and 

Johnny turned his attention toward the proud, green stalk just outside the window as it 

scratched gently against the glass. The sun was especially radiant today, and Johnny, as 

he had done on many occasions in biology class, stared intently at the sparkling plant. 

His mind began to ponder questions about the magnificent specimen: Why does the plant 

curve that way? Why does the plant curve so much more on sunny days? Does anyone 

know why?  

Well, maybe Mr. Potts knows, Johnny reasoned. But who could get a question in 

edgewise during biology lecture? Almost on cue, Johnny’s attention snapped back to the 

classroom as the sound of his name crashed through the daydream. Johnny’s gaze ripped 

from the window to the front of the class, and his eyes immediately locked on Mr. Potts’ 

stern glance. “Johnny, welcome back to planet earth! What is the definition of 

phototropism?” Mr. Potts asked impatiently. Well trained in the art of formal schooling, 

Johnny quickly swept his finger across the track pad on the laptop perched between his 

elbows, waking it from sleep mode. He quickly scanned the screen of the digital biology 

textbook. “Uh, the orientation of a plant or other organism in response to light.” Even  

Johnny was surprised by the mechanical sound of his own voice. Mr. Potts’ head swung 

back toward the screen as he simultaneously advanced the PowerPoint presentation to 
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the next slide. In a mechanical voice eerily similar to Johnny’s, Mr. Potts confirmed the 

answer by reading the exact same definition from the slide and blazed ahead to the next 

slide. As Johnny faded back into his own world, his eyes trickled back to the plant 

outside the window. He mumbled softly to himself, “I have no idea what I just said… 

and I really hate science class.” 

A thousand miles away, Dr. Janice Scott ripped open a new letter from the 

National Science Foundation (NSF). As she quickly scanned the page of the “Dear 

Colleague” letter, the phrase “broader impacts” grabbed her attention. Her shoulders 

sank as the familiar anxious feelings returned. “How in the world am I supposed to have 

a broader impact out here?” Janice asked aloud as she slumped back into her chair. 

While she presented at conferences and had more than a few peer-reviewed publications, 

Janice never had the feeling her influence reached anyone outside of her field. Society 

was not exactly beating her door down for information about plant phototropism, and her 

remote location was not really conducive for sharing with others. “My research is not 

much of a broader impact,” she muttered. Snapping out of the doldrums, Janice quickly 

checked her email and burst out the door to collect new samples before dark.  

While this scenario is fictitious, it raises important questions about how we “do 

school” and involve (or do not involve) scientists in the educative process. Are there 

better ways to support student engagement in science, increase the impact of scientists 

on society, and promote science learning? While technology has become an expectation 

in many educational settings, we often do not utilize it any differently than its 

predecessors. Is reading a slide on PowerPoint any different than reading words on a 
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chalkboard? From an educational perspective, is a digital textbook an upgrade from a 

paper copy? Are we really using technology in innovative ways? 

Oftentimes, it seems all the ingredients for learning are present, but the way we 

mix up the recipe does not achieve the desired outcomes. Eager, curious science learners 

like Johnny sit in classrooms, watching (or not watching) PowerPoint presentations or 

staring at computer screens and suffering from intense boredom. Professional scientists, 

like Janice, bang their head against the wall trying to figure out strategies to share their 

work and passion with the general public. Both have access to technology that could 

bring them together for learning, but even if it happened, would it make a difference?  

Student Motivation and Broader Impacts 

Declines in the number of students pursuing science-related degrees has brought 

new international focus on science education (Toplis, 2011). Ironically, students often 

see the value of learning science but have poor attitudes about learning it themselves 

(Toplis, 2011). This revelation says a lot about our teaching methods. We are boring kids 

in science classes, even though science is incredibly engaging subject matter. The 

problem is not necessarily limited to science, however, as research indicates students’ 

interests for many subjects, science notwithstanding, decrease with each advancing 

grade of formal schooling (Ryan & Deci, 2000a). In other words, Johnny’s fictitious 

experience of boredom and disdain for classroom science is not so fictitious. 

The National Research Council (NRC; 2012a) recently reported today’s typical 

K-12 science classrooms do not reflect national calls for engaging inquiry experiences 

and research-based science pedagogy. Instead, students describe their science classes as 
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fragmented, repetitive, and full of unfamiliar terms (Osborne & Collins, 2001). 

Additional school-wide issues such as classroom overcrowding and multicultural 

challenges only add to the problem of providing meaningful science learning 

environments for students (Sinatra & Taasoobshirazi, 2011). 

Fostering Motivation in School Science 

In their chapter in the Handbook of Research in Science Education, Koballa and 

Glynn (2007) argued for greater emphasis on motivational research in science education. 

They reasoned that past research on motivation and attitudes in science education has 

suffered because of a focus on the cognitive domain and prevailing views that cognition 

and feelings were separate entities. In these researchers’ estimations, policy makers now 

have a better understanding of the relationship between feelings and cognition. As a 

result, researchers are paying more attention to affective domains in an effort to increase 

science achievement.  

While focusing more on motivation is an important first-step, figuring out ways 

to foster motivation in students is quite a different challenge. In the foreword to A 

Framework for K-12 Science Education, the presidents of the National Academy of 

Sciences and the National Academy of Engineering stated, “The percentage of students 

who are motivated by their school and out-of-school experiences to pursue careers in 

these fields [science and engineering] is currently too low for the nation’s needs” (NRC, 

2012b, p. x). These comments suggest we either do not know how to motivate students 

in science, or we are not implementing strategies that promote motivation.  
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Researchers have identified some practices that make a positive impact on 

student motivation in general (see Hidi & Harackiewicz, 2000) and in science education 

in particular. For example, Sanfeliz and Stalzer (2003) reported students exhibited more 

enthusiasm toward learning science when they were empowered by teachers to pursue 

their own interests in the science classroom. Similarly, Patrick and Middleton (2002) 

noted students had greater learning experiences when curriculum included inherently 

interesting and meaningful content. Students with low academic expectations showed 

greater interest and increased performance when science material made real-life 

connections (Hulleman & Harackiewicz, 2009). As a general trend, student-generated 

open-ended questions raised the level of independent thinking and increased student 

motivation (Moos & Honkomp, 2011). These studies support positive relationships 

between independent thinking and higher student motivation, in contrast to controlling, 

passive learning environments stressing rote memorization of scientific facts so common 

in many science classrooms (Koballa & Glynn, 2007).  

In sum, “effective science instruction has the potential to improve attitudes 

toward science and heighten the motivation to learn science” (Koballa & Glynn, 2007, 

pp. 75-76). Motivation should be an important consideration for the development and 

delivery of science instruction for one simple reason –  “Motivation is highly valued 

because of its consequences: Motivation produces” (Ryan & Deci, 2000b, p. 69). 

Evidence suggests a relationship between student motivation in science classrooms and 

increased scientific literacy (Bryan, Glynn, & Kittleson, 2011), as well as with students’ 

perseverance in science learning (Patrick & Middleton, 2002). Systematically 
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investigating motivational supports allows researchers to identify ways to enhance the 

motivational conduciveness of learning environments. 

Having a Broader Impact 

The “Dear Colleague” letter referenced in the opening paragraphs of this 

introduction signifies an actual letter sent from the Director of the Division of 

Mathematical Sciences of the NSF to those interested in applying for NSF grants 

(March, 2007). The letter explicitly called for proposals stressing intellectual merit and 

broader impacts. The letter indicated most researchers understood intellectual merit but 

did not grasp the concept of broader impacts. In an effort to clarify the meaning of 

broader impacts, the letter specifically mentioned promoting teaching, training, and 

learning; increasing participation of under-represented groups; enhancing infrastructure 

for research and education; broadening dissemination to enhance understanding; and 

benefitting society as ways to have broader impacts. 

The NSF’s inclusion of broader impacts criteria into its funding requirements 

was controversial when it was introduced and remains that way. While broader impacts 

were “established to get scientists out of their ivory towers and connect them to society” 

(Lok, 2010, p. 416), scientists are confused by the requirements and often do not know if 

their ultimate efforts are really having an impact. Additionally, because scientists have 

been conditioned to value technical and scientific feedback from peer review systems, 

they often do not know how to assess broader impacts when stepping out of that highly 

selective system (Lok, 2010).  
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So, what would happen if the world of the science learner and the world of the 

scientist came together? If scientists partnered with students in the classroom, what 

impact, if any, might these unions have on student motivation? Would these partnerships 

provide scientists more accessible venues for making broader impacts? This dissertation 

speaks directly to these questions in an effort to increase our knowledge of motivation, 

scientist-student partnerships, and technology use in science education.  

Context of the Study 

The research studies included in this dissertation focused on students, teachers, 

and scientists engaged in PlantingScience (PS), an inquiry-based, computer-supported 

learning curriculum developed in 2005 by the Botanical Society of America (BSA). PS 

has been used internationally by over 11,000 students since its inception. Science 

learners, working in small teams in their school classrooms, design and carry out three- 

to ten-week long inquiry-based experiments related to plant biology. Professional 

scientists, over 900 to date, volunteer to assist students with their projects through the PS 

website. Students and scientists communicate asynchronously about the student-

generated inquiry projects as they partner together for the duration of the PS project.  

The research presented in this dissertation was part of a larger research agenda 

investigating the PS program since 2007. After joining the research initiative in 2011, I 

was involved in several precursor studies resulting in reports to the BSA (Scogin & 

Stuessy, 2013; Stuessy, Scogin, Ozturk, & Peterson, 2012) and the NSF (Stuessy et al., 

2013); and conference presentations (Scogin, 2012a; Scogin, 2012b; Scogin, Ozturk, & 

Stuessy, 2013; Scogin, Stuessy, Ozturk, & Peterson, 2013; Stuessy et al., 2014). The 
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Scogin, Stuessy, et al. (2013) study, referenced in Chapter III as the first grounded study 

identifying motivation as a central component of PS, was particularly informative to the 

design of this dissertation. 

Purpose of the Dissertation 

Does student motivation contribute to the success of PS? Are science learners 

excited and engaged when they partner with real scientists to perform practical inquiry 

experiments? Because I believe a dearth of information exists related to student 

motivation and online mentoring in science education, the purposes of this dissertation 

were to: (1) explain the success of PS in regard to factors contributing to student 

motivation, and (2) investigate and present specific evidence regarding the broader 

impacts scientists have had on student motivation by serving as online mentors in the PS 

program. I offer a comprehensive literature review (a) outlining current research on the 

topic, (b) underscoring how our understanding of mentoring, technology, and student 

motivation is incomplete, and (c) indicating we are in need of different techniques to 

investigate innovative learning programs like PS. Using one such qualitative technique, 

Eisner’s (1985) Connoisseurship/Critique model, I unpack the motivational factors of PS 

and link them to a grounded theory explaining how PS motivates and engages students 

in science. Finally, using self-determination theory as a framework, I associate the 

motivational contributions of scientist-mentors with student engagement. I provide 

specific examples of how online mentors can contribute to the motivational resources 

(i.e., autonomy, competence, and relatedness) of protégées in an asynchronous, text-

based environment. 
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Format of the Dissertation 

This dissertation contains five chapters, two of which explain independent 

research studies. The current chapter, Chapter I, provides relevant introductory 

information including outlining of the problem space, research questions, relevant 

definitions, and study delimitations/limitations. Chapter II offers an extensive literature 

review focusing on the intersections of mentoring, motivation, and technology. Chapter 

III, the first of two research-based studies, qualitatively describes, interprets, and 

evaluates PS implementation using the lens of student motivation. Chapter IV reports 

results of the second research study, which is a mixed methods investigation of the 

associations between scientist-mentor motivational support and student-team inquiry 

engagement. Chapter V summarizes results, considers implications of the research 

findings, and calls for new research initiatives related to practice and theory. 

Research Questions 

The following research questions framed the two independent studies included in 

this dissertation. Specifically, Chapter III, “Why Does It Work? A Qualitative 

Investigation of the Motivational Factors Associated With a Successful, Innovative 

Science Curriculum,” investigated the following research questions: 

1. What characteristics of motivated behavior are observed when students 

engage in PS in the classroom? What evidence exists that students’ 

motivation is affected by interacting with scientists in the online 

asynchronous forum? 
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2. What are the conditions, contexts, and strategies in PS that lead to student 

motivation/engagement? 

3. What are the strengths, weaknesses, opportunities, and threats associated with 

the PS program from a self-determination theory perspective? 

4. How does evidence from students' classroom and online experiences and the 

stakeholders’ focus group (from inductive grounded theory) compare with an 

analytic framework developed from the SWOT (Strengths/Weaknesses/ 

Opportunities/Threats) analysis (from deductive analysis) of the 

PlantingScience project? 

5. What are the main factors contributing to the success of PlantingScience? 

What is the role of motivation in evaluating the overall effectiveness of the 

program? 

Chapter IV, “Associations Between Student Engagement in Scientific Inquiry 

and Motivational Support: Do Online Scientist-Mentors Make a Difference?” considered 

these research questions: 

1. How did autonomy, competence, and relatedness support differ between 

scientist-mentors in the 10 cases? What specific methods did scientist-

mentors use to support motivation in student-teams? 

2. What specific ways (based on social presence theory) did scientist-mentors 

establish relatedness with the 10 student-teams? 

3. Did an association exist between the motivational support student-teams 

received from scientist-mentors and subsequent inquiry engagement in 



 

 11 

student-teams among the 10 cases? 

4. Using extreme group comparisons, what similarities and differences existed 

between highly engaged cases and less engaged cases? What similarities and 

differences existed between cases receiving high motivational support and 

cases receiving less motivational support? 

Definitions of Terms 

Terms in need of clarification are divided into four categories: (1) Eisner’s 

(1985) Connoisseurship/Critique qualitative model, (2) Self-determination theory (SDT), 

(3) SWOT analysis (Helms & Nixon, 2010), and (4) Rigor and validity in qualitative and 

mixed methods research. 

Connoisseurship/Critique Model (Eisner, 1985) 

Description. A part of criticism intending to “characterize or render the 

pervasive and sheerly descriptive aspects of the phenomena one attends to” (Eisner, 

1985, p. 94). 

Educational connoisseurship. Possessing an appreciation of educational 

phenomena through awareness and understanding of what one has experienced in the 

world of education (Eisner, 1985).  

Educational criticism. Comments providing disclosure of an educational 

phenomenon so that others can “experience the qualities and relationships” within the 

phenomenon (Eisner, 1985, p. 105). 
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Evaluation. A part of educational criticism intending “to make some value 

judgments about [a phenomenon] with respect to its educational significance” (Eisner, 

1985, p. 98). 

Interpretation. A part of educational criticism intending to bring “understanding 

of the significance that various forms of action” have on education (Eisner, 1985, p. 97). 

Self-Determination Theory (Deci & Ryan, 1985) 

Autonomy. The desire to regulate and control one’s own behavior (Deci & 

Ryan, 2000). 

Competence. The desire to engage in challenging tasks and experience some 

effectance (Deci & Ryan, 2000). 

Internalization. The process in which individuals begin to personally endorse 

(i.e., internalize) behaviors or activities that were once extrinsically motivated (Deci & 

Ryan, 2000). 

Relatedness. The desire to seek attachments and experience feelings of 

belonging and connection (Deci & Ryan, 2000). 

SWOT Analysis (Helms & Nixon, 2010)  

External factors. Factors outside of the PS program’s control (e.g., scientist-

mentor interaction). 

Internal factors. Factors inherent in the structure of the PS program (e.g., 

curricular modules). 

Opportunities. External factors that could be improved to strengthen PS’s 

motivational support of autonomy, competence, and/or relatedness. 
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Strengths. Internal characteristics of PS perceived to be strengths when related 

to principles of self-determination theory (i.e., autonomy, competence, and/or 

relatedness). 

Threats. External factors threatening to weaken PS’s motivational support of 

autonomy, competence, and/or relatedness. 

Weaknesses. Internal characteristics of PS perceived to be shortcomings when 

related to principles of self-determination theory (i.e., autonomy, competence, and/or 

relatedness). 

Rigor and Validity 

I recognize the debate regarding the use of terms such as rigor, validity, 

legitimization, and trustworthiness to describe the lengths to which researchers go to 

provide credibility for their work, particularly in qualitative studies. However, in most 

cases in this dissertation, I used the same terms as the sources I cited. For example, Yin 

(2009) often used the term validity when discussing case study research. Therefore, 

when I cited Yin, I also used the term validity. On the other hand, Wolcott (1994) 

preferred to not use that particular term in qualitative research, so I refrained from doing 

so when citing his sources. For general discussions in this dissertation, I chose the term 

“rigor” to describe the meticulous steps I employed to insure the soundness of the 

research. 

Delimitations and Limitations 

This dissertation used data collected over a three-year period as I participated in 

various PS research projects. The data include in-person and videoed observations of PS 
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implementation in classrooms; teacher interviews; conversations between teachers, 

scientists, and PS program developers at a focus group meeting; asynchronous text 

discussions of students and scientists; and field notes created by the research team during 

these events. The sample is small but presents a manageable amount of data in 

consideration of the time investment required for rigorous qualitative research (Miles, 

Huberman, & Saldaña, 2014) and mixed methods research involving intensive 

qualitative strands (Creswell & Plano Clark, 2011).  

The data selected for inclusion in this study represents the “best” of PS. The 

teachers whose classrooms were included in this study had professional development 

experience in PS and extended years of teaching experience. Members of the focus 

group, including both teachers and scientists, were chosen by BSA because of their 

experience in the program and understanding of the complexities involved in PS. In sum, 

all of the data used in this study was collected from those who had the necessary 

experience to understand the complexities of PS and could therefore shed light on the 

role of PS as a motivator of students. While these findings are not generalizable to a 

larger population, they are context-specific to the PS program and help us understand 

how the program motivates/engages students. 

Significance of the Research 

The worlds of the scientist and the science learner can and do intersect on a 

regular basis, thanks in part to technological advances nullifying geographical and 

logistical barriers. Partnerships between scientists and students represent a new era in 
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science education promoting broader impacts for scientists and increased motivation for 

science learners. This dissertation speaks to both of these areas. 

Chapter II divulges research supporting the design of partnerships involving 

online mentoring to meet the motivational needs of classroom science learners. Chapters 

III and IV go a step further, taking up the challenge of Sadler, Burgin, McKinney, and 

Ponjuan (2010) to provide “finer grain” analyses investigating why these types of 

partnerships work. “There is an increasing need for practitioners and researchers to study 

[online mentoring]…, and ultimately provide suggestions for ongoing improvement” 

(Ensher, Heun, & Blanchard, 2003, p. 283). In a systematic yet ecologically valid 

manner, these two chapters develop a grounded theory explaining how PS motivates 

students, corroborate the grounded theory with principles of SDT, and ultimately 

identify specific factors contributing to the success of this innovative, computer-

supported program from a motivational perspective.  

The results from this dissertation apprise researchers, curriculum developers, 

teachers, scientists, and policy makers of specific curricular factors associated with 

student motivation. In addition, the unique analytical frameworks combining 

inductive/deductive methodologies and qualitative/quantitative approaches equip 

educational researchers with additional tools to study complex learning environments 

like PS.  
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CHAPTER II 

THE INTERSECTION OF MENTORING, MOTIVATION, AND 

TECHNOLOGY: USING SCIENTISTS TO PROMOTE PRODUCTIVE 

PARTICIPATION IN SCIENCE CLASSROOMS 

 

Introduction 

While ostensibly novel, focusing on student motivation and interest is actually a 

return to the past. Pioneers of modern educational reform, like John Dewey, stressed the 

important role of interest in learning and inspired research in student attitude and 

motivation (Koballa & Glynn, 2007; Zimmerman & Schunk, 2008). In the modern day, 

many teachers believe one of their most important jobs is to motivate students and help 

them become responsible for their own learning (Bryan et al., 2011). When students are 

motivated, they “behave with the intentions of achieving some outcome” (Deci, Ryan, & 

Williams, 1996, p. 166). Because of declining enrollments in secondary and post-

secondary science classes and programs (Koballa & Glynn, 2007), science educators, 

researchers, and policymakers hope renewed interest in motivational research will 

ultimately lead to higher achievement in science and greater pursuit of STEM careers.  

In spite of desires to increase student motivation, many science teachers “take 

control” of their classrooms, perhaps thinking their assertiveness provides stability and 

creates the best climate for learning. However, research shows controlling actions are 

counterproductive to fostering motivation. For example, teachers trying to meet 

standardized testing requirements often exert greater control in the classroom, 
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simultaneously alienating their students in the process (Urdan & Turner, 2005). When 

students lose autonomy in their learning, they become less confident in their abilities to 

do science (Schunk & Pajares, 2005). Eventually, these conditions contribute to highly 

controlled school environments no longer resembling positive, motivating learning 

environments (Deci, Vallerand, Pelletier, & Ryan, 1991). Highly controlled, dry, passive 

lectures are not the way to promote engaged learning (Garrison, 2011).  

Self-Determined Motivation 

In a section of the Annual Review of Psychology, Eccles and Wigfield (2002) 

provided a comprehensive review of research focused on motivation, beliefs, values, and 

goals. In a more recent literature review of motivational theories, Kusurkar, Croiset, 

Mann, Custers, and Ten Cate (2012) documented many of the motivational theories 

related to education proposed since the start of the 20th century. Table 2.1 contains a 

sample but not exhaustive compilation of the motivational theories discussed in these 

two works. While each theory provides relevant insight into motivation in its own right, 

Pintrich and Schunk (2002) proclaimed self-determination theory (SDT; Deci & Ryan, 

1985) as “one of the most comprehensive and empirically supported theories of 

motivation available” (p. 257). In addition to its comprehensiveness, SDT provides a 

systematic way to evaluate both an individual’s motivational needs and an 

environment’s provision of those needs (Chen & Jang, 2010). 

History of SDT 

Self-determination theory was developed over a long period of time with many 

refinements and additions through the years. Early motivational theorists often proposed  
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Table 2.1 
 
Motivational Theories With Applications To Education 
 

Theory Author, Year Reference 

Need to achieve theory Murray, 1938 Franken (1988) 

Drive theory Hull, 1943 Weiner (1992) 

Hierarchy of needs theory Maslow, 1943 Maslow (1970) 

Expectancy-value theory Atkinson, 1966 Atkinson (1966) 

Motive to avoid success 
theory Horner, 1968 Horner (1973) 

Attribution theory Weiner, 1974 Weiner (1974) 

Social cognitive theory or 
Self-efficacy theory Bandura, 1977 Bandura (1986) 

Self-determination theory Deci & Ryan, 1985 Deci & Ryan (1985) 

Flow theory Csikszentmihalyi, 1988 Csikszentmihalyi (1988) 

Self-worth theory Covington, 1992 Covington (1992, 1998) 

Goal theory Pintrich, 2000 Pintrich (2000) 

Note. Compiled from Eccles and Wigfield (2002) and Kusurkar et al. (2012). 
 
 

theories focusing on singular aspects of motivation, leaving other researchers to “flesh 

out” the vague areas. For example, citing deficiencies in Clark Hull’s physiological drive 

theory (Hull, 1943), many psychologists searched for causes of behaviors that did not 

seem to fit Hull’s model (Deci & Ryan, 2000). Hull proposed animals pursued 

physiological needs such as food, water, and sex, but his drive theory did not account for 

commonly observed activities such as curiosity and play. Early on, psychologists such as 
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Robert White noted, “Something important is left out when we make drives the 

operating forces in animal and human behavior” (White, 1959, p. 297).  

In response to this shortcoming in Hull’s model, White (1959) proposed a 

psychological theory of motivation based on needs of the central nervous system. In 

addition to his theory being psychologically as opposed to physiologically based, 

White’s theory was novel because it focused on fulfillment instead of deficiency (Deci & 

Moller, 2005). In other words, humans, in particular, do not wait for a deficiency to be 

present before they act; instead, they proactively pursue basic psychological needs to 

avoid deficiency (Deci & Ryan, 2000). This concept of needs-based motivation was 

accepted in motivational research until a few years later in the 1960s when a shift to 

cognitive-based theory took place (Deci & Ryan, 2000). Cognitive studies emphasized 

choice, and motivational theorists began to embrace more goal-oriented approaches to 

explain motivation. In the face of growing opposition, proponents of needs-based 

motivation continued to advocate a position that goals provided little psychological 

benefit outside of how they helped fulfill the basic psychological needs (Deci & Ryan, 

2000).  

One of the leading needs-based motivational psychologists, Edward Deci, 

proposed in 1975 that autonomy and competence were the two primary needs necessary 

for self-determined motivation. Deci’s proclamation combined Robert White’s (1959) 

concept of effectance motivation (i.e., competence) and Richard De Charm’s (1968) 

work on personal causation (i.e., autonomy) into a comprehensive theory that served as 

the genesis of self-determination theory. After the introduction of the original concept in 
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the 1970s, further research led to the inclusion of relatedness as a third basic 

psychological need (Ryan & Deci, 2002). Many of the ideas about relatedness were 

drawn from the work of Harlow (1958). In 1985, Deci and fellow psychologist Richard 

Ryan published Intrinsic Motivation and Self-Determination in Human Behavior (Deci 

& Ryan, 1985), and SDT was officially born. Since that time, SDT has been empirically 

verified in well over 700 school-related studies (Rienties, Tempelaar, Van den Bossche, 

Gijselaers, & Segers, 2009).  

Self-Determination Theory Defined 

SDT is an organismic-dialectic theory proposing humans are active, growth-

oriented organisms who seek out supportive environments to fulfill their basic 

psychological needs (Ryan & Deci, 2002). The basic needs are autonomy, competence, 

and relatedness (Deci & Ryan, 2000). SDT proposes people will not need to be coerced 

into action in situations fulfilling these basic needs; they will act willingly out of a desire 

to fulfill their needs. According to Deci and Ryan (2000), the three basic needs are 

defined as follows: (1) autonomy is a desire to “self-organize and regulate one’s own 

behavior (and avoid heteronomous control)”; (2) competence is the desire to “engage 

optimal challenges and experience mastery or effectance in the physical and social 

worlds;” and (3) relatedness is the desire to “seek attachments and experience feelings of 

security, belongingness, and intimacy with others” (p. 252).  

According to SDT, motivation is not a simple either/or construct as advocated by 

some researchers such as Bandura (1977). Conversely, motivation varies in intensity and 

must be measured on a continuum scale (Deci & Ryan, 2000; Guay, Ratelle, & Chanal, 
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2008). Some motivations are intrinsic, meaning people engage in the behavior strictly 

for the satisfaction or pleasure of the activity itself (Deci et al., 1991; Ratelle, Guay, 

Vallerand, Larose, & Senecal, 2007; Ryan & Deci, 2000a). Other motivations, however, 

are extrinsic in nature, indicating a participatory cause existing outside of the self 

(Ratelle et al., 2007). However, SDT also suggests extrinsic motivation occurs on a 

continuum and can change based on how or if a person identifies with or internalizes the 

value of the activity. 

In order to illustrate intrinsic and extrinsic motivations, consider the context of 

education. Intrinsically motivated students like school because they enjoy going to class, 

doing the work, and generally being at school. Their love for school comes from a love 

of school activities. Conversely, extrinsically motivated students wanting to get accepted 

to prestigious colleges may try hard even though they do not like school. These students 

push hard in school for external reasons, not because they enjoy school activities. 

Research indicates formal schooling does not intrinsically motivate most students 

(Ratelle et al., 2007). In other words, few students find pleasure and enjoyment in the 

routine of going to school, doing homework, or listening to lectures. Most students 

remaining in school do so because they are extrinsically motivated when it comes to 

school-related activities. If extrinsically motivated, SDT posits students will be either 

externally or internally regulated (Figure 2.1; Ryan & Deci, 2002). Internally regulated 

students, for example, are motivated to do school work because they value the 

opportunity to go to college and know grades are important for that purpose. On the 

other hand, extrinsically regulated students work hard in school to avoid punishment for 
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poor grades or to gain praise from others. In both cases, students do the work and appear 

motivated, but the reasons why they complete the work are distinctly different.  

The process of internalization. How individuals regulate their motivation is 

related to the continuum model of motivation, which is part of Organismic Integration 

Theory (OIT), one of the four mini-theories of SDT. OIT proposes that a person’s values 

of an activity or behavior can change, thereby altering the reason why a person engages 

in an activity or behavior. As an example, let’s assume I do not find inherent pleasure in 

recreational jogging. However, I decide to impress my friends by losing a few pounds, 

so I begin a rigorous jogging routine. According to SDT, my motivation is currently 

extrinsic and externally regulated. If over time, however, I begin to personally endorse 

the value of being in good shape and relate the benefits of exercise to my overall health, 

my motivation has moved on the continuum toward a higher level of regulation, shown 

in Figure 2.1 to be either identified or integrated regulation. I still jog using the same 

regime as always, but my motivation and regulation for doing so have changed 

significantly. Based on SDT, I have undergone internalization.  

SDT defines internalization as a natural process of taking a value or action that is 

not intrinsically motivating and personally endorsing it over time (Deci & Ryan, 2000; 

Ryan & Deci, 2000a). Therefore, OIT suggests internalization, just like motivation as a 

whole, works on a continuum (Ryan & Deci, 2002). Internalization varies from 

externally controlled (i.e., introjected) to fully endorsed (i.e., integrated; see Figure 2.1; 

Ryan & Deci, 2002; Vallerand & Ratelle, 2002; Zimmerman, 2011). However, OIT does 

not imply or “require” people to move on the continuum in a linear fashion. At any given  
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Figure 2.1. Motivation continuum proposed by self-determination theory. Adapted from 
Ryan and Deci (2002). 
 
 

time, a person may begin to regulate a certain activity or behavior in a different way, 

either consciously or subconsciously (Ryan & Deci, 2000a; Vallerand & Ratelle, 2002).  

While internalization can occur for a variety of reasons, SDT proposes 

internalization typically occurs because people want to conform to socially acceptable 

practices (Deci & Moller, 2005). Even if a particular activity or behavior is 

uninteresting, people will internalize its value in an effort to function in and/or fit into 

society (Deci et al., 1991; Reeve, Deci, & Ryan, 2004). Because society plays such an 

important role in internalization, a person’s social context has a huge impact on 

internalization (Deci & Ryan, 2000). Herein lies an important link between OIT and 

basic needs theory. While all three basic needs (i.e., autonomy, competence, relatedness) 

are important for motivation in general and internalization specifically, relatedness 

seems especially integral to the internalization process (Deci & Moller, 2005; Ryan & 

Deci, 2002).  
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In several SDT studies, three primary conditions are reported to increase 

internalization toward a given activity. These conditions include: (1) providing a 

rationale for the activity, (2) establishing interpersonal relationships that emphasize 

choice over control, and (3) acknowledging negative affect (Deci, Eghrari, Patrick, & 

Leone, 1994; Deci & Moller, 2005; Reeve, 2002). As all three conditions require a third 

party, we now understand why relatedness (i.e., feelings of connection and belonging) is 

so important. Highly respected relationships are likely to provide the conditions 

necessary for internalization, thus causing a previously unmotivated person to identify 

with or integrate an activity or behavior on a personally autonomous level.   

In summary, SDT suggests people are motivated because a task is intrinsically 

motivating, external pressures or rewards prompt the activity or behavior, or the person 

has internalized the value of the task at some level (Koestner & Losier, 2002). If the task 

is pleasurable in and of itself, the motivation is intrinsic. If rewards or punishments 

promote participation, the motivation is extrinsic and externally regulated (Ryan & Deci, 

2002; Vallerand & Ratelle, 2002; Zimmerman, 2011). If the task is seen as beneficial 

and/or is accepted internally on some level, the motivation is extrinsic in nature but is 

regulated more autonomously (see Figure 2.1).  

Internalization in an education context. In a classroom, the motivation 

continuum explains why some students perform school tasks with resentment (i.e., 

externally regulated extrinsic motivation) or with an attitude of willingness and 

acceptance (i.e., internalization or intrinsic motivation; Ryan & Deci, 2000a). As a 

practical example of the motivation continuum at work in an educational context, 
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consider the contrast of motivations in the following scenario shared by Deci et al. 

(1996). Biology student #1 loves studying animals and finds them interesting. Student #1 

is intrinsically motivated by the subject matter and works hard in biology class every 

day, gaining pleasure from studying animals. Biology student #2 hopes to become a 

veterinarian and also works hard in biology class, but this student does not find the class 

itself particularly enjoyable. Student #2 is highly autonomous and internalized, 

exhibiting either identified or maybe even integrated regulation. Student #3 also works 

diligently in biology class. However, student #3 is motivated by parental threats to take 

away driving privileges if grades are not maintained at a certain level. Student #3 is 

controlled and, therefore, is extrinsically motivated and externally regulated (see Figure 

2.1). 

When uninformed observers, including educators, see students 1, 2, and 3 

working diligently in biology class, they may be tempted to think all three students are 

equally “motivated,” not realizing different types of motivation can lead to different 

outcomes. SDT researchers caution against this conclusion and cite the ill-effects of 

controlled motivation. For example, Deci and Ryan (2000) indicated autonomously 

motivated students (i.e., those who exhibited internalization) were characterized by joy 

and proactive coping strategies when challenged. In contrast, students who exhibited 

controlled motivation were characterized by anxiety and maladaptive coping strategies. 

Additional research shared by Ryan and Deci (2000a, 2000b) indicated autonomous 

motivation was associated with better engagement, higher performance, lower dropout 

rates, and deeper learning when compared to controlled forms of motivation. 
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When considering the motivation continuum and how differing forms of 

motivation affect students, it becomes evident that promoting internalization should be 

an important consideration for educators. If we aim to motivate students in science to 

have long-lasting interests and positive attitudes about science and perhaps pursue 

science-related careers, we must develop strategies for internalization. As previously 

mentioned, most students have extrinsic motivations for school as opposed to intrinsic 

motivation. Consequently, we must help students develop the necessary autonomous 

forms of motivation that come about as the result of internalization. “For students to be 

actively engaged in the educational endeavor, they must value learning, achievement, 

and accomplishment even with respect to topics and activities they do not find 

interesting” (Deci et al., 1991, p. 338). In other words, as Niemiec and Ryan (2009) 

declared,  “understanding how to facilitate internalization becomes a critical educational 

agenda” (p. 139). 

Promoting internalization in schools. While most SDT researchers agree 

autonomy and competence are the most crucial needs for supporting intrinsic motivation, 

relatedness has been shown to play a more critical role in internalization (Ryan & Deci, 

2002). Consider again the example of recreational jogging, but this time from a different 

perspective. If I am not intrinsically interested in jogging, I am probably not going to jog 

unless someone initially influences me to do so. If someone whom I respect talks me 

into jogging for the first time, I may begin to see the value of the activity after losing a 

few pounds. Over time, if I begin to identify with and internalize the activity, I have 

experienced internalization. When considering school-aged students, adults are typically 
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the agents who first influence children to participate in tasks that are not particularly 

interesting from the child’s perspective.  

There are, however, many things that adults consider important for children to 

learn and do, but that the children might not find interesting. Thus, adults must 

initially prompt such activities extrinsically while at the same time promoting the 

internalization and integration of these extrinsic regulations. (Deci et al., 1996, p. 

174)  

While parents are often thought of as the adults in this scenario, teachers also influence 

children’s behavior. 

Ryan, Stiller, and Lynch (1994) reported teachers, in addition to parents, 

promoted high levels of internalization in school-related behavior by students. This 

finding is critically important, as many school tasks are not intrinsically motivating for 

students. In these cases, it often falls upon the teacher to draw students into participatory 

roles. In these cases, as conveyed by Urdan and Turner (2005), “It may be the teacher’s 

interest in the task that helps students to see its value and relevance, rather than 

characteristics of the task itself” (p. 311). While teachers represent the most common 

internalizing agents in the schools, additional research has identified “significant others” 

such as coaches as important to internalization (Koestner & Losier, 2002). Furthermore, 

Ryan and Deci (2000a) found people are usually prompted to engage in externally 

prompted behaviors when the other person who initiates the behavior is valued as a 

significant other with whom the original people would like to be connected. 
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Supporting the basic needs. Central to SDT is the proposal that under the right 

social contexts supporting autonomy, competence, and relatedness, motivation can 

flourish (Deci et al., 1991). Motivation, as discussed previously, is not a static construct. 

Instead, motivation is fluid and can be positively influenced by needs-supporting 

environmental conditions (Jarvela, 2001). Environments supporting the three 

psychological needs promote expression of intrinsic motivation and/or foster developing 

internalized motivation. Environments thwarting the basic needs promote amotivation 

(Deci et al., 1996; Ryan & Deci, 2000b). 

While it may be tempting to adopt a behavioral view of motivation, providing the 

necessary conditions does not guarantee motivated behavior. People are not mindless 

robots who must obey environmental commands. Educators, for instance, cannot 

guarantee motivated behavior simply by environmental manipulation. They can, 

however, provide an environment promoting self-determined behavior by offering 

students purposeful choice and realistic options. Students typically respond to these 

environments. For example, Bryan et al. (2011) revealed high school students wanted 

conditions where they could make choices, be challenged, and collaborate with others. 

Even though the Bryan et al. study was conducted from a social cognitive perspective 

and not a self-determination theory perspective, the fact these areas match well with the 

three basic needs of SDT (i.e., autonomy, competence, and relatedness) is not surprising.  

As students mature, they naturally desire more autonomy, competence, and 

relatedness. Maybe teachers’ refusal to grant more autonomy in the classroom is a 

primary reason why students disconnect more from the school environment as they 
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progress through grades. Students want purposeful choice, and teachers are faced with a 

decision to grant more autonomy or take more control. Pajares (2008) suggested teachers 

respond with positive support for autonomy. Deci et al. (1991) carried it a step further, 

postulating that positive support for autonomy would provide fertile ground for 

internalization and integration of extrinsically motivated tasks typical of the school 

environment.  

As students grow in independence, they also grow in their desire for competence. 

In response to the need for competence, Bandura (1997) noted students seek out role 

models who are more competent and whose interests match their own. Described from 

an SDT perspective, one could say that students autonomously seek additional 

competence through relatedness. Ironically, and counterproductive to what SDT predicts 

about motivation, the formal school system oftentimes discourages group work and 

demands independent study (NRC, 2012a). When forced into a school situation 

depriving them of basic psychological need satisfaction, students react with apathy and 

disinterest toward learning. In opposition to this trend, we should provide students with 

collaborative opportunities within the learning environment involving people whom 

students respect. Under these conditions, SDT predicts students would feel more 

connected and respond with increased motivation (Roca & Gagne, 2008). 

Mentoring 

The term “mentor” has existed since Homer’s poem the Odyssey gave account of 

Mentor, the advisor to Odysseus’ son Telemachus. Since that time, mentoring has been 

used to describe almost every kind of relationship between an expert and a protégé 
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(O'Neill, Wagner, & Gomez, 1996). Mentoring strategies have been used in business, 

industry, and practically every level of education (Bierema & Merriam, 2002). 

Mentoring is defined as “an educational or professional relationship that supports 

developmental and mastery learning and fosters self-efficacy and self-actualization” 

(Mullen, 2011, p. 137). 

While students most often turn to teachers for help in traditional school contexts 

(Zimmerman & Schunk, 2008), students will also pursue help and enrichment 

opportunities from other sources (Newman, 2008). As Guay et al. (2008) noted, help 

from adults outside of school sometimes can make significant contributions to students’ 

motivational resources. Science educators can leverage this research by forming 

mentorships between scientists and classroom learners.   

Scientists as Mentors 

While many curricula offer hands-on science, few provide an authentic scientific 

experience in the classroom (Hickey & Granade, 2004). In addition, teachers are often 

ill-equipped to add authenticity to science lessons because most do not have the practical 

experiences in laboratory settings needed to duplicate a relevant context. Using 

professional scientists as mentors makes intuitive sense because they are experts. They 

can raise the level of expertise, increase the authenticity of the experience for students, 

and fulfill national calls for productive participation in science (NRC, 2007) and 

community-centered approaches to learning (Bransford, Brown, & Cocking, 2000). 

Mentors providing support within their area of expertise give a real-world context to 
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learning. For protégés, receiving mentoring from someone who “has been there and done 

that” raises the level of authenticity.  

Furthermore, mentors who share genuine science experiences can provide an 

authentic context and a motivational resource otherwise lacking in traditional 

classrooms. Learning contexts providing real-world applications tend to increase 

positive attitudes towards science (Koballa & Glynn, 2007). In their study of high school 

students, Bryan et al. (2011) found students’ motivation was most affected by 

instructional practices that made science relevant to students’ lives and showed them 

how science provided opportunities in life. Furthermore, Wijnia, Loyens, and Derous 

(2011) reported increased student motivation when tutors shared their own experiences 

with protégés during the mentoring experience.  

Professional mentors add authenticity and contribute to students’ self-efficacy 

(Mullen, 2011) by promoting active learning guided by experience (Pajares, 2008). As 

tasks get more difficult, mentors are able to glean from their own previous experiences 

and provide expertise to scaffold learners and offer support to keep students’ confidence 

high. These contributions are directly supportive of student competence. Reeve (2002) 

discovered that competence support, specifically providing structure and “clear 

expectations, optimal challenges, and timely and informative feedback” (p. 193), was an 

effective way to motivate students. If trained properly, mentors are especially qualified 

to accomplish this feat. 

Some researchers have called for additional mentoring interventions to promote 

classroom learning in science education. In particular, Bryan et al. (2011) suggested the 



 

 32 

recruitment of “women and men who are in science-related careers in the community to 

participate in school science activities and serve as science role models” (p. 1062). 

According to these authors, mentors could share experiences, discuss responsibilities, 

relay challenges, and generally build relationships with students. As a product of these 

relationships, students would respond with increased autonomy, self-efficacy, and 

motivation. 

Programs joining students and scientists together in project-related work have 

been around for many years. Many students have attended summer camps, weekend 

research events, and after-school science mentoring programs at local colleges and 

universities (e.g., Yale Science Outreach, Mentoring for Science at Harvard). 

Specifically, programs uniting students with scientists in research apprenticeships have 

become increasingly popular, and some programs have produced positive student 

outcomes (Sadler et al., 2010).  

Programs uniting students and scientists in partnerships are advantageous 

because they break down some of the stereotypical beliefs students have about scientists. 

Many students have misconceptions about who scientists are, what they do, and how 

science is practiced in authentic contexts. In a classic study of 35,000 high school 

students conducted by Mead and Meatraux (1957), students supposed scientists to be 

older males wearing white lab coats who worked long hours doing good work while 

neglecting their families. A more modern discussion of student misconceptions 

pertaining to scientists indicated perceptions have not changed much over the years 

(Welch & Huffman, 2011). Interestingly, teachers promote many misperceptions about 
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scientists (Welch & Huffman, 2011). However, Welch and Huffman (2011) revealed 

that misconceptions disappeared as students worked directly with scientists over time. In 

these cases, students also developed more accurate and positive impressions of scientists. 

For instance, in one particular robotics study, students who initially thought scientists 

were “geeks” and “nerds” saw them as “cool” and “hip” after working with them on 

extended projects.  

Mentoring Challenges 

Bringing scientists and students into mentoring relationships obviously has a 

promising upside, but lack of availability of qualified mentors and geographical barriers 

are prohibitive factors (Ensher et al., 2003). Many communities do not have access to 

non-parent adults who could mentor others in an effective manner (Rhodes, Spencer, 

Saito, & Sipe, 2006), much less qualified scientists. The NSF (2013) recently reported 

scientists are predominately clustered in a small number of states and selected major 

metropolitan areas. This report reiterates the challenge of uniting scientists with 

classroom learners in face-to-face mentoring arrangements. However, the discovery that 

authenticity of classroom experiences increases when students are able to share with 

others, even when the sharing is done through technology-based outlets, is encouraging 

(Blair, 2012).  

Bridging the Gap: Motivation, Mentoring, and Technology 

As a byproduct of recent STEM program initiatives, educators are finding new 

ways to unite technology and science (Kubasko, Jones, Tretter, & Andre, 2008). While 

these unions increase opportunities for science learning, they also promote some 
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misconceptions. Technology is not the magic bullet for solving education’s problems. 

Creating meaningful and effective learning environments requires more than “buying a 

set of computers, interactive whiteboards, and tablet computing devices. Technological 

devices provide tremendous benefits to students, but they are not the backbone of 21st 

century learning” (Wells, 2012, p. 12). According to Wells (2012), technology is best 

suited for enhancing “research, organization, analysis, and communication” (p. 12), but 

it is not the savior of education. Bachman and Stewart (2011) concurred, stating 

psychological and pedagogical strategies should garner more attention than the 

technology when considering online course development.  

Online Mentoring 

Educators and curriculum developers can, however, use technology to bring 

parties together that may otherwise be barred from interchange. While physically 

bringing scientists into classrooms for face-to-face interactions is logistically 

challenging, Internet connectivity can break the logistical and geographical barriers and 

foster new relationships between students and scientists in classrooms across the world. 

In other applications, such as at-risk youth counseling programs, online mentoring 

partnerships have become tangible ways to unite mentors with protégés (Rhodes et al., 

2006).  

Online mentoring has also been used in science education. O'Neill et al. (1996) 

discussed an online mentoring project linking a geology graduate student with students 

studying earthquakes in an Earth Science class. The students communicated with their 

mentor via e-mail over a seven-week period. The researchers reported the project was 
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successful because the online mentor helped students narrow down their ideas through 

focused intervention while raising student confidence during a difficult project. An 

additional discovery was the increased autonomy the teacher gave the students in the 

classroom due to the comfort level provided by the expertise of the scientist-mentor. The 

teacher also had more time to focus on other aspects of classroom orchestration because 

the mentor helped students with content and process questions.  

The Earth Science class mentoring experience was part of the Collaborative 

Visualization (CoVis) project at Northwestern University in Chicago, Illinois. 

Developers designed the project to “understand how science education could take broad 

advantage of [technological] capabilities, providing motivating experiences for students 

and teachers with contemporary science tools and topics” (Pea, 1993, p. 61). 

Discontinued in 1998, the CoVis project explored remote collaborations between high 

school students involved in inquiry-based activities and atmospheric and environmental 

scientists and graduate students. The CoVis project did not provide fixed curricular 

materials or standardized activities, only resources and technology (Edelson, 1998). 

While e-mail, an asynchronous mode of communication, was used in many of the 

mentorships, synchronous modes of communication were also used in CoVis (Edelson, 

1998).  

Overall, research indicated the CoVis project was successful. For example, 

students engaged in a global warming module showed significant gains from pre- to 

post-tests and self-reported greater learning as a result of the innovative mentorship 

(Gomez & Gordin, 1995). Additionally, Edelson (1998) reported CoVis projects 
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provided increased scientific authenticity for classroom learners as a result of connecting 

scientists and students with technology. 

The BSA’s PlantingScience program provides a more recent example of using 

scientists as online mentors (Hemingway, Dahl, Haufler, & Stuessy, 2011). Launched in 

2005, PS was awarded the American Association for the Advancement of Science 

SPORE (acronym for Science Prize for Online Resources in Education) award for its 

innovation and use of online scientists to mentor students involved in plant-related 

inquiry projects. Similar to CoVis, PS partners practicing scientists or graduate students 

with classroom science learners. While similar in principle, the two programs differ on 

many traits. PS, unlike CoVis, provides curricular materials and activities for its 

participants. Additionally, PS allows only asynchronous communication between 

scientist-mentors and classroom learners, whereas CoVis used both synchronous and 

asynchronous methods. Nevertheless, Hemingway et al. (2011) reported, “Talking online 

with a scientist is exciting and motivating to students. Teachers commonly relate that 

their students develop a new level of confidence and responsibility toward their 

experiments” (p. 1536). PS has experienced tremendous growth since its launch in 2005, 

with over 11,000 students and over 900 scientist-mentors participating in the program 

since its inception (Hemingway & Adams, 2013).  

Advantages of online mentoring. The CoVis and PS projects illustrate the 

potential for increasing productive participation between professional scientists and 

classroom learners through online mentoring. By rendering geographical barriers 

inconsequential, online mentoring provides additional opportunities for scientists and 
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students to work together (Ensher et al., 2003). Additionally, for many students, the 

opportunity to communicate online removes the awkwardness of face-to-face meetings 

(Rhodes et al., 2006). For those students, seeking help from others can be a daunting task 

(Zimmerman & Schunk, 2008), and the “safer” online environment lowers the anxiety 

threshold and eases tension, thereby promoting greater interaction.  

Not only does online mentoring provide advantages for mentors and students, it 

also can be beneficial for researchers. Researchers are rewarded with an abundance of 

archived data when the online mentorship is text-based. Without need for transcription, 

these dialogues provide excellent opportunities for researchers to study the relationships 

between scientists and students through content analysis (Ensher et al., 2003; Rhodes et 

al., 2006). 

Disadvantages of online mentoring. Online mentoring has many advantages, 

but it also has its challenges. For many schools, the cost of purchasing the needed 

equipment for conferencing and other forms of synchronous communication is 

prohibitive. Additionally, if synchronous communication is desired, scheduling becomes 

an issue, particularly with the inflexibility of most school schedules and the logistics of 

communicating across different time zones. Asynchronous methods may hold some 

advantages for schools in general, but they too have disadvantages.  

Ensher et al. (2003) reported many potential problems with asynchronous 

communication including: (1) likelihood of miscommunication due to absence of non-

verbal cues and lack of tone, (2) slower development of relationships, (3) potential lack 

of typing and written communication skills, (4) computer malfunctions, (5) non-
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response, and, (6) issues of privacy and confidentiality. Lin, Hsieh, and Chuang (2009) 

singled out the potential for long lag times between posts as particularly problematic for 

developing relationships online. When the pace of communication slows down, 

frustration builds, and the mentoring relationship suffers (Ensher et al., 2003). 

Supporting Student Motivation Through Online Mentoring 

In order to efficiently and productively develop and evaluate online learning 

environments and mentoring programs, we need established frameworks and models 

(Akyol, Garrison, & Ozden, 2009). While online mentoring interventions such as CoVis 

and PS have experienced some success, we do not know why. Much of the research in 

this area is atheoretical (Akyol & Garrison, 2008; Garrison, 2011), which makes it 

difficult to identify the underlying reasons behind many online programs’ success. SDT 

provides a useful theory-based framework through which we can gauge the need-

supporting capabilities of these online environments. Perhaps the lens of SDT can shed 

light on why these interventions are experiencing success and how we can continue to 

modify these programs to engage students and scientists in productive science.   

State of the research. While novel technological applications are introduced to 

education on a regular basis, many researchers point to a general lack of scholarly 

literature in some key areas. For example, Mayer (2011) lamented the neglect of 

research dealing with motivation in technology-supported environments. Ensher et al. 

(2003) noted a lack of scholarly articles published on online mentoring. More 

specifically, Xie, Debacker, and Ferguson (2006) commented, “There is little research 

that directly addresses students’ motivation related to their participation in online 
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discussion” (p. 68). Although general articles about educational technology are well 

represented in the literature, many are program descriptions as opposed to research-

based studies (Rhodes et al., 2006).  

While motivational research related to online contexts is lacking, research 

articles applying SDT in general are becoming more common. In 2012, over 350 articles 

using SDT applications were published, and over 7,000 references to SDT studies were 

cited in the literature at large (Ryan & Deci, 2013). SDT studies are gaining in 

popularity because the theory provides a well-researched framework for evaluating and 

answering the why questions associated with motivation. Highly popular in psychology, 

business, and health care applications, SDT provides a framework that can be easily 

applied to educational contexts such as online mentoring interventions.  

As mentioned previously, SDT has been regularly applied in educational contexts 

(see Deci et al., 1991; Guay et al., 2008; Niemiec & Ryan, 2009; Ratelle et al., 2007; 

Reeve, 2002; Reeve et al., 2004). Studies specific to online learning have historically 

been sporadic, although the volume has increased noticeably in recent years (see 

Bachman & Stewart, 2011; Chen & Jang, 2010; Hartnett, St. George, & Dron, 2011; 

Moos & Honkomp, 2011; Xie et al., 2006). SDT studies specific to science education are 

even more rare (Lavigne, Vallerand, & Miquelon, 2007). 

Positive indicators. In a SDT study of pre-service teachers involved in distance 

learning, Hartnett et al. (2011) discovered ultimate success of the online learning 

environment depended on learner characteristics, facilitator characteristics, and the 

online environmental conditions. Contrary to popular belief that online learners were 
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primarily intrinsically motivated, Hartnett et al. (2011) revealed learner motivation, even 

in online environments, was highly contingent upon situational conditions. Facilitators 

of the online environment, not just the learners, were extremely important actors in 

promoting learner motivation. 

This study’s findings are significant because they substantiate the claim that if 

online environments contribute to student autonomy, competence, and relatedness, 

students are more likely to respond with increased motivation. Based on the research 

linking relatedness to internalization shared earlier, mentors can add value to the student 

experience by fostering internalization and contributing to increased learning. The link 

between motivation and learning is unmistakable, as reiterated by the NRC (2012a) 

document Education for Life and Work: “Deep learning occurs when students are 

motivated to exert the effort to learn, so another way to promote deep learning is to 

prime student motivation” (p. 164).  

Providing online motivational support. However, we cannot assume student-

scientist online mentorships automatically produce motivated students and broader 

impacts for scientists. To the contrary, Chen and Jang (2010) suggested supports not 

directly related to students’ psychological needs are likely to “lead to adverse – even 

worse than ‘no effects’ – outcomes” (p. 750). Similarly, Bachman and Stewart (2011) 

implored online instructors to carefully consider SDT when constructing web-enhanced 

courses. Specifically, these authors called for curriculum designers and teachers to move 

away from false notions that online learning is primarily about content delivery and, 

instead, embrace the principle that online learning environments need to be 
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motivationally supportive. In Bachman and Stewart’s view, online learning 

environments need to enhance student autonomy, develop greater perceived competence, 

and create discussions that bring students “into a world in which they can safely share 

and engage in discussion and reflection” (p. 185).  

Autonomy support. Online mentors, just like face-to-face mentors, contribute to 

student autonomy in several different ways. Autonomy supportive actions include 

encouraging learners to pursue their own interests and providing them with meaningful 

choice (Reeve, 2002). Limiting controlling language is also autonomy supportive (Deci 

et al., 1996). Finally, providing rationales for why students should engage in a particular 

activity provides autonomy support (Deci et al., 1994).  

An additional “built-in” autonomy supportive feature of online environments is 

the increased distance between participants (i.e., transaction distance; Moore, 1993). As 

perceived transaction distance increases, feelings of autonomy increase. Also, if the 

online environment features asynchronous communication, autonomy is further 

supported; learners have the option to respond to mentor comments; and if they do 

choose to respond, learners control the timing of their feedback (Bachman & Stewart, 

2011). Conversely, when students are “forced” to respond to posts, students’ perceived 

autonomy is decreased (Xie et al., 2006). 

Competence support. In regard to competence, good online mentors provide 

feedback and reinforce the self-esteem of their protégés (Ensher et al., 2003). 

Competence supportive actions also include providing good explanations that do not 

imply incompetence on the part of the learner (Ryan & Deci, 2000a). Posing challenging 
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questions that stretch learners to think more deeply also promotes greater competence 

(Bachman & Stewart, 2011; Elliot, McGregor, & Thrash, 2002; NRC, 2012a). Finally, 

online asynchronous environments inherently provide competence support because 

students have time to reflect and revise their thinking before posting (Garrison, 2011). 

Relatedness support. Ensher et al. (2003) stated increased contact time between 

mentor and protégé, whether face-to-face or through technology, contributed to more 

positive experiences for protégés. Although increased contact time could correlate to 

increased relatedness, measuring relatedness support in an online context is somewhat 

difficult. Autonomy and competence supporting statements can be identified in 

asynchronous dialogues, for instance, but how do you know if mentors’ text-based 

comments are supportive of students’ relatedness? Social presence theory, a concept 

derived from the Community of Inquiry (CoI) framework (Garrison, 2011), has been 

used as a tool to measure connectedness in online contexts, and consequently provides a 

way to evaluate relatedness support in online contexts. 

Garrison (2011) defined social presence as “the ability of participants to identify 

with a group, communicate purposefully in a trusting environment, and develop personal 

and affective relationships progressively by way of projecting their individual 

personalities” (p. 23). According to Garrison, social presence is established by 

interpersonal communication, open communication, and cohesive communication. 

Interpersonal communication consists of self-disclosure statements, humorous 

statements, and affective expressions. Open communication is characterized by 

expressions of agreement and inviting further participation from other parties. Cohesive 
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communication includes referring to other parties by given names, making references to 

teamwork, and using phatic and social words and/or phrases. 

As online conversationalists establish social presence, they develop “a climate 

that supports and encourages probing questions, skepticism, and the contribution of 

explanatory ideas” (Garrison, 2011, p. 32). Ultimately, online participants form bonds as 

they build group identity and experience social adhesion (Akyol & Garrison, 2008). In 

online mentoring between a scientist and a group of students, perhaps the scientist’s 

greatest contribution as a mentor is developing an interpersonal relationship with 

students through online interaction and promoting greater student motivation.  

Although not well researched at present, students may perceive online scientist-

mentors as less threatening than teachers because scientists are not the primary grading 

and disciplinary agents. Because grading and disciplinary action are considered 

controlling by many students and therefore motivationally limiting (Deci et al., 1994), 

scientists’ participation can more easily promote motivation. As more research on online 

mentoring is conducted, studies should focus on how scientist-mentors’ motivational 

support enhances student outcomes. 

Research Paradigm 

Research on motivation is often based on self-report surveys, with few studies 

occurring in the natural context of the learning environment (Urdan & Turner, 2005). 

Self-report data, while useful and responsible for much of our knowledge on motivation, 

may not provide the information needed to address complex questions about the 

intersection of technology, motivation, and mentoring in the science classroom. While 
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we know some of these online programs are successful, we struggle to identify why. The 

ecological validity of a study becomes particularly important when investigating and 

drawing conclusions about why a certain program or intervention is successful.  

Ecological Validity 

A study has ecological validity if the conditions in which the research is 

conducted closely match the conditions in which the results will be applied (Bracht & 

Glass, 1968). Studies involving psychological concepts are often conducted in laboratory 

settings where conditions can be carefully monitored and standardized. However, some 

studies conducted in pure laboratory conditions do not generalize well for applications in 

genuine classroom contexts (Hacker, Bol, & Bahbahani, 2008; Hacker, Bol, & Keener, 

2008; Nietfeld, Cao, & Osborne, 2005). Many factors in the classroom, including student 

motivation, do not translate well to laboratory conditions (Hacker, Bol, & Bahbahani, 

2008). When the research context or methods are divorced from the practical context, 

any obtained results are of questionable value in answering the why questions and 

therefore are limited in application (Covington, 2004). 

Computer-supported collaborative learning (CSCL) environments are unique. 

Therefore, it stands to reason that researchers should carefully consider the ecological 

validity of their methodology and analysis techniques when studying these complex 

systems. Moreover, when studies involving online mentoring in text-based mediums are 

considered, it is appropriate to consider the actual “conversations” as part of the data as 

opposed to strictly relying on self-report data. Although most of the research on CSCL 

environments rely on self-report (Gress, Fior, Hadwin, & Winne, 2010), some computer-



 

 45 

mediated communication (CMC) studies have successfully incorporated content analysis 

as an evaluative method (Enriquez, 2009).  

Content Analysis 

Krippendorff (2013) referred to content analysis as potentially one of the most 

important research techniques in the social sciences. In particular, he pointed to its 

unobtrusive and contextually dependent nature as important qualifications of its value. 

One benefit of using content analysis in online mentoring studies is the accessibility of 

the archived dialogues between mentors and protégés (Ensher et al., 2003; Rhodes et al., 

2006). However, content analysis requires a huge time investment if done properly 

(Jyothi, McAvinia, & Keating, 2012). Nevertheless, content analysis of dialogues 

provides an unobtrusive and constructive way to evaluate mentoring relationships in 

online contexts. Particularly in mentorships reliant on asynchronous communication, 

dialogues provide key pieces of information revealing the motivationally supportive 

strategies employed by mentors. In these relationships, mentors and protégés are not 

privy to what the others are thinking or doing. Dialogues provide the sole link between 

the participants. While the analysis may be time consuming, the results from these 

content-based analyses are more ecologically valid.  

Mixed Methods 

The complexity of the motivation construct, according to some researchers, 

demands diverse research methods beyond the quantitative instruments common to 

motivational studies (Wolters, Benzon, & Arroyo-Giner, 2011). Also, utilizing multiple 

methods helps uncover more of the complex interactions that are characteristic of 
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educational settings (Butler, 2002). For some researchers, the limitations of a strictly 

quantitative or qualitative approach prevent sufficient investigation of complex 

problems. For example, Patrick and Middleton (2002) lauded the usefulness of 

quantitative methods to define the constructs involved in motivation, but lamented the 

shortfalls of quantitative methods in considering the context of the motivated behavior. 

Additionally, these authors recognized qualitative methods as great for addressing 

context, but subsequently pointed out the failures of qualitative research in identifying 

the specific constructs at work. As a result, they called for mixed methods approaches. 

Mixed methods approaches seem particularly useful when trying to understand the 

complexities involved when technology, mentoring, and motivation meet.  

By combining qualitative and quantitative paradigms, mixed methods utilize 

multiple data collection techniques and analytic measures (Creswell & Plano Clark, 

2011; Tashakkori & Teddlie, 2003). As Johnson, Onwuegbuzie, and Turner (2007) 

mentioned, mixed methods provide “breadth and depth of understanding” (p. 123) to 

research efforts, particularly efforts in complex educational contexts. Some researchers 

see the increased complexity of online contexts as further validation for mixed methods 

approaches (Akyol & Garrison, 2008). In one particular quantitative study involving 

SDT and student motivation, Liu, Wang, Tan, Koh, and Ee (2009) called for future 

mixed methods approaches that would “help to triangulate the quantitative data and 

would offer more insights into students’ perceptions, and changes in their perceptions 

over time” (p. 144). These researchers recognized the shortcomings of a one-sided 



 

 47 

analytic technique, particularly in the context of studies involving student motivation 

and online mentoring. 

The Next Step 

Ironically, even though little is known about the nature of relationships formed 

during online interactions, programs continue to be developed at an astounding rate 

(Rhodes et al., 2006). As sociologist Zygmunt Bauman (2007) wrote, society too often 

“lifts the value of novelty above that of lastingness” (p. 85). Education is too important 

to have a “flavor of the month” mentality when it comes to implementing new programs 

and interventions. The time has come to synthesize our understanding of what we know 

to be effective as opposed to blindly trying innovations for the sake of novelty (Koballa 

& Glynn, 2007).  

Online mentoring shows promise, and the success of programs like PS suggests 

hope for students like Johnny and scientists like Janice. Now, we need to use 

ecologically valid research techniques, mixed methods analyses, and strong theoretical 

foundations (e.g., SDT) to discover why online partnerships are effective and how we 

can make them more effective. If successful, the Johnnys of the world will begin to look 

forward to classroom science learning, see its relevance, and be motivated to learn more 

about the awe and wonder of science. At the same time, the Janices of the world will 

have opportunities to share their passion and make significant contributions through 

interacting with others, all the while building the inner motivational resources of learners 

in classrooms all over the world.  
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CHAPTER III 

WHY DOES IT WORK? A QUALITATIVE INVESTIGATION OF THE 

MOTIVATIONAL FACTORS ASSOCIATED WITH A SUCCESSFUL, 

INNOVATIVE SCIENCE CURRICULUM 

 

Introduction 

With declines in the number of students pursuing science-related degrees (Toplis, 

2011), “What’s wrong with science education?” is an in vogue question among educators 

and scientists. Students have offered their answer, claiming science class is fragmented, 

repetitious, and replete with unfamiliar terms (Osborne & Collins, 2001). School science 

learning is not fun, and students often have poor attitudes about taking science classes 

(Toplis, 2011). Many continue to speculate on the reasons why school science 

disconnects students from the field. Organizations such as the NRC (2012a), however, 

claim today’s typical K-12 science classrooms do not reflect national calls for engaging 

inquiry experiences and research-based science pedagogy.  

In spite of these international trends, some classroom practices have a positive 

impact on student motivation in science education. For example, Sanfeliz and Stalzer 

(2003) reported students who are empowered in the classroom show more enthusiasm 

toward learning science. Comparably, students had better learning experiences when 

lessons included inherently interesting and meaningful content (Patrick & Middleton, 

2002). In addition, student-generated questions increase independent thinking and 

improve student motivation (Moos & Honkomp, 2011). Results from these studies 
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support positive relationships between independent thinking and higher student 

motivation. Unfortunately, many science teachers still emphasize passive learning 

through rote memorization of scientific facts (Koballa & Glynn, 2007).  

 Investigating successful programs, however, presents an imposing challenge. 

Classroom environments are extremely complex, rarely if ever following a one-size-fits 

all “Betty Crocker” pattern (Eisner, 1985). “Consequently the evaluative task in this 

situation is not one of applying a common standard to the products produced but one of 

reflecting upon what has been produced in order to reveal its uniqueness and 

significance” (Eisner, 1985, p.55). Therefore, I chose qualitative research methods for 

this study because they offered more explanatory power for complex classroom 

dynamics (Meyer & Turner, 2002). During data collection, qualitative methods also 

provided ecologically valid methods focusing on “naturally occurring, ordinary events in 

natural settings” (Miles et al., 2014, p. 11). The data’s richness and the potential to 

provide deep, meaningful descriptions, interpretations, and evaluations made my 

selection of qualitative methods appropriate for this study. A successful, innovative 

science program, PlantingScience, provided the context for the study. 

What is PlantingScience? 

PlantingScience (PS), developed in 2005 by the BSA, is an award-winning 

program recognized for its complex design engaging classroom teachers, students, and 

scientist-mentors in an innovative, computer-supported science learning environment 

(Hemingway et al., 2011). Used internationally by over 11,000 students since its 

inception, PS provides advanced technology tools to mix scientific inquiry, classroom 



 

 50 

instruction, and online mentoring by practicing scientists and advanced science graduate 

students. Science learners, working in small teams of two to four students, design and 

carry out three- to ten-week long inquiry-based experiments related to plant biology. 

Students communicate asynchronously about their scientific inquiries with practicing 

plant scientist-mentors in an online forum open to the public. Scientist-mentors read 

students’ posts and provide their own comments and questions to enhance the quality of 

the students’ inquiry experiences. Specific topics for the inquiry units include seed 

germination (i.e., The Wonder of Seeds), photosynthesis (i.e., The Power of Sunlight), 

and sexual reproduction and alternation of generations in ferns (i.e., C-Ferns in the 

Open), among several others.  

Although labeled as highly successful, the specific factors contributing to the 

success of PS are largely unknown. To date, no publications exist using PS data to 

identify the factors associated with students' successful engagement in the processes of 

classroom-based scientific inquiry. The purpose of this study is to describe, interpret, 

and evaluate PS using multiple data streams and various qualitative research methods to 

identify specific factors contributing to the program’s success in engaging students in 

scientific inquiry. 

Research Questions 

More specifically, I used qualitative methods to consider the following research 

questions: 

1. What characteristics of motivated behavior are observed when students 

engage in PS in the classroom? What evidence exists that students’ 



 

 51 

motivation is affected by interacting with scientists in the online 

asynchronous forum? 

2. What are the conditions, contexts, and strategies in PS that lead to student 

motivation/engagement? 

3. What are the strengths, weaknesses, opportunities, and threats associated with 

the PS program from a self-determination theory perspective? 

4. How does evidence from students' classroom and online experiences and the 

stakeholders’ focus group (from inductive grounded theory) compare with an 

analytic framework developed from the SWOT analysis (from deductive 

analysis) of the PlantingScience project? 

5. What are the main factors contributing to the success of PlantingScience? 

What is the role of motivation in evaluating the overall effectiveness of the 

program? 

Methodology 

Data Sources  

Four data sources were consulted in this study (Table 3.1). They included one 

stakeholders’ focus group held in Columbus, OH; two high school classroom 

observations (one in the western U.S. and one in the midwestern U.S.) and follow-up 

interviews with the teachers observed; and 17 online scientist-student dialogues 

associated with "exemplary" projects identified by the BSA.  

Focus group. In an effort to formatively assess the PS program, the BSA’s PS 

Support Team spawned the idea of bringing teachers and scientists together in a focus  
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Table 3.1 
 
Data Sources and Characteristics 
 

Context Source/Informants Data 
 
Focus group 

 
Scientists, teachers, and science 
educators engaged in a 1-1/2 day 
stakeholders’ meeting (n = 19) 
 

 
Audio-recorded 
discussions, transcripts, 
field notes 

 
High school 
classrooms 
 

 
Student-teams from two different 
classrooms engaged in PS (n = 10) 

 
Video-recorded 
classrooms; online 
dialogues of scientists 
and student-teams  

 
High school teacher 
interviews 
 

 
Two teachers observed in two 
different PS classrooms (n = 2) 

 
Audio-recorded 
discussions, transcripts, 
field notes 

 
Online dialogues 

 
Asynchronous dialogues between 
scientist-mentors and student-teams 
from projects identified as 
"exemplary" by the BSA (n = 17) 
 

 
Scientists-students 
coded dialogues 

 
 
 
group to discuss the challenges, successes, and future direction of PS. The stakeholders’ 

focus group meeting occurred over a day-and-a-half period and included 19 participants 

(i.e., scientists, teachers, PS program developers, and education researchers). The PS 

Support Team selected participant teachers and scientists based on their experience and 

expertise in the PS learning environment.  

Due to the fact PS is an international program, getting teachers and scientist-

mentors together in one place for a focus group presented logistical challenges. As a 

result, the focus group was held in conjunction with a national botany conference. The 
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number of participants in the group was significantly larger than is customary for a focus 

group (Krueger & Casey, 2009). However, in a manner consistent with a Town Hall 

Focus Group (Zuckerman-Parker & Shank, 2008), smaller groups were formed during 

the session to facilitate intimate discussions. At times, scientists met together while 

teachers met separately. At other times, pairs or trios of teachers and scientists met in 

mixed small groups. Intermittently, the whole group met for debriefings. 

The PS Support Team facilitated discussions and kept proceedings on topic using 

an outline of semi-structured questions. I played a role in the focus group as a member of 

the PS research team. I remained, for the most part, a passive listener and note taker. I 

did ask participants for clarifying statements during the focus group sessions as needed. 

Also, I had personal conversations with participants during social events. Overall, the 

discussion environment was open and relaxed, providing everyone with comfort to have 

passionate yet productive exchanges about the strengths and challenges of the PS 

program. Throughout the meeting, the research team amassed audio recordings and field 

notes as participants discussed the successes, challenges, and future of the PS program.  

High school classrooms. Two classroom observations yielded field notes and 

video recordings of four lessons engaging students in inquiry activities associated with 

The Wonder of Seeds. After my classroom observations, I conducted exit interviews with 

each teacher while taking notes and audio recording the conversations for transcription. 

While this study was delimited to observations of one particular class section at each 

school, I was in each school for two full days and observed multiple class sections 

engaged in the PS program. 
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Online dialogues. Finally, I analyzed online dialogues between students and 

scientist-mentors. I chose two sources for dialogues. The first were dialogues from the 

10 student-teams associated with the two classroom observations. When completing the 

grounded theory, I added an additional 17 exemplary online dialogues to reach 

theoretical saturation (Strauss & Corbin, 1990; see grounded theory method section). In 

all, 27 student-team/scientist-mentor dialogues were included as data sources in this 

study.  

Analytical Strategies 

I framed this study using Eisner’s (1985) Connoisseurship/Critique evaluation 

model. According to Eisner, educational connoisseurs are experienced educators who 

appreciate education and have developed high levels of discernment and awareness, 

allowing them to serve as instruments of evaluation. Educational connoisseurship, 

therefore, is an “art of perception” that does not promote a liking or preference for what 

is observed, but rather “an awareness of its characteristics and quality” (Eisner, 1985, p. 

104). Due to their expertise, connoisseurs are qualified to critique educational programs 

by communicating and disclosing observed subtleties in a way that enlightens others and 

paints vivid images of the observations (Eisner, 1985). I became the instrument through 

which data flowed and was interpreted (Miles et al., 2014).  

My Positionality and Qualifications as a Connoisseur 

My role was to serve as both connoisseur and critic as defined by Eisner’s (1985) 

Connoisseurship/Critique model. I have 15 years combined experience as a teacher, 
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school administrator, and education researcher. In addition, I participated as a teacher in 

one of the PS Summer Institute professional development experiences.  

For the past three years, I have been a member of the internal PS research team. 

During this time, I participated in a number of research projects. I personally have 

observed multiple classrooms implementing PS and joined in various analyses using 

different lenses to interpret student-scientist dialogues. I was present at the focus group 

meeting of teachers, scientists, and program developers. I personally video recorded and 

observed the classrooms for the two observations referenced in this study. My role as the 

researcher in this study, therefore, was to serve as the evaluative instrument with the 

knowledge and experience to describe, interpret, and evaluate PS implementation using 

the included data. 

As a new member of the research team, I had a healthy skepticism of how an 

online program could garner support amongst so many different participants (i.e., 

teachers, scientists, students). During data collection, analysis, and write up, I attempted 

to remain neutral about my personal likes and dislikes of the PS program. I tried to 

remain as unobtrusive as possible, and I strictly adhered to rigorous qualitative standards 

as specifically outlined in future sections of this chapter. I used methods like SWOT 

analysis to provide outlets for both positive and negative data. I perceived my position as 

being neutral throughout the process, but I also fully recognize my extended 

involvement in the project and my study of SDT have affected my current views. 

Nevertheless, to my knowledge, none of the instruments or techniques I used during this 

study biased my observations, analyses, or conclusions. 
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Eisner’s Framework 

The Connoisseurship/Critique model (Eisner, 1985) includes three stages of 

qualitative investigation including description, interpretation, and evaluation. 

Description is defined as the part of criticism intending to “characterize or render the 

pervasive and sheerly descriptive aspects of the phenomena one attends to” (Eisner, 

1985, p. 94). Interpretation is the part intending to bring “understanding of the 

significance that various forms of action” have on education (Eisner, 1985, p. 97). 

Finally, evaluation seeks “to make some value judgments about [a phenomenon] with 

respect to its educational significance” (Eisner, 1985, p. 98). In this study, various 

qualitative techniques were used at each stage to uncover and communicate specific 

factors of the PS program responsible for its overall success (Table 3.2).  

I refer to PS as successful because of its overall popularity and its recognition as 

a SPORE award winner by AAAS. I chose the PS program as the context for this study 

because I wanted to focus on “health and resilience” as opposed to “pathology and 

disease” so common in social science research (Lawrence-Lightfoot & Davis, 1997, p. 

8). However, I wanted to avoid the mistake of searching for goodness with intentional 

blindness toward imperfections and weaknesses. While focusing on what worked and 

asking the questions, “What is happening here, what is working, and why?” 

imperfections and weaknesses were judiciously uncovered and illuminated (Lawrence-

Lightfoot & Davis, 1997). 

Since Eisner’s (1985) model does not require or even recommend separating out 

description, interpretation, and evaluation, readers will find all three elements in various  
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Table 3.2 
 
Data Sources, Analytical Methods, and Research Questions Framed by Eisner’s (1985) 
Connoisseurship/Critique Model 

  
Connoisseurship/Critique Process 

 
 

 
Description 

  
Interpretation 

  
Evaluation 

Research Strategy 
 

Narrative structure 
 

  
Analytical effort 
(Wolcott, 1994) 

 
SWOT analysis 

(Helms & Nixon, 
2010) 

 

 

 
SWOT analysis 

(Helms & Nixon, 
2010) 

 

Qualitative Methods 

 
Story-telling 

(Wolcott, 1994) 
 

Portraiture 
(Lawrence-Lightfoot 

& Davis, 1997) 
 

  
Grounded theory 

(Strauss & Corbin, 
1990) 

 
Deductive coding 

(Miles et al., 2014) 
 

  
Theoretical 
comparison 

(Wolcott, 1994) 
 

Deductive coding 
(Miles et al., 2014) 

 

Data Sources 

 
Classroom 

observations and 
teacher interviews; 

Focus group; 
Scientist-student 
online dialogues 

 

 
Classroom 

observations and 
teacher interviews; 

Focus group; 
Scientist-student 
online dialogues  

  
Classroom 

observations and 
teacher interviews; 

Focus group; 
Scientist-student 
online dialogues 

 

 
Research Question(s) 

Addressed and 
Expected Outcomes 

1 
Evidence of 

motivation in class 
and online 

 

2 
Conditions, contexts, 
and strategies leading 
to student motivation 

 
3 

Strengths, weaknesses, 
opportunities, and 

threats of PS from an 
SDT perspective 

  
4 

Comparison of 
inductive grounded 
theory to deductive 

SWOT 
 

5 
Factors contributing 
to PS success from 

motivational 
perspective 
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concentrations throughout the discussion. However, I employed different qualitative 

techniques at each stage of analysis to tease out relevant information and create 

understanding of the complex environment known as PS. While describing PS, I tried to 

bring the reader into the classrooms and focus group meetings, thereby providing a feel 

for the inner workings of the program and the stories of the students, teachers, and 

scientists involved in PS. For interpretation, I systematically examined the qualitative 

data to determine patterns and relationships. As student motivation emerged as a primary 

theme in the analysis, I proceeded with evaluation using a motivational lens.  

For evaluation, Eisner (1985) recommended comparing analytical results against 

an established standard. I chose SDT as the standard in an effort to shed more light on 

how the PS program contributed to student motivation. As part of the evaluation process, 

I conducted a SWOT analysis to explain how the various components of PS contributed 

to (or detracted from) student motivation. The following paragraphs further clarify the 

specific procedures I used while describing, interpreting, and evaluating.   

Description. My descriptions of the classroom observations and focus group 

meeting follow a narrative structure informed by Lawrence-Lightfoot and Davis’ (1997) 

portraiture framework and Wolcott’s (1994) story-telling method. I used mixtures of 

empirical descriptions and aesthetic expression to bring readers into the classrooms and 

meetings, thereby illuminating the intricacies of PS implementation to a broader 

audience (Lawrence-Lightfoot & Davis, 1997). Since description, like other forms of 

analysis, is an iterative process (Wolcott, 1994), I wrote descriptions early in the 
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research process and constantly revisited and revised as the qualitative analysis 

progressed into interpretation and evaluation.  

Interpretation. I began the interpretation process by systematically examining 

the descriptions, field notes, memos, and transcripts using a scientific and inductive 

process as per Wolcott (1994). In the early stages of this research, I considered the focus 

group meeting in isolation from the other data sources. This initial effort had significant, 

direct effects on the current study. For this reason, I will explain the analytical steps 

taken in this early stage. 

The first grounded theory. After the focus group meeting, the four PS research 

team members (including me) who collected data began the long process of coding the 

field notes generated from the discussions. Written field notes included records of 

participants' comments that may have been (a) transcribed word-for-word as they were 

being spoken, (b) recorded as heard from audio-recorded conversations, or (c) 

paraphrased as phrases or sentences drafted by the researcher to describe or recollect a 

particular event. Researchers independently transcribed and organized their own hand-

written field notes into electronic documents. They also copied their transcribed field 

notes on separate color-coded sheets so each researcher's notes could be identified and 

crosschecked.  

Using a basic grounded theory methodology (Glaser & Strauss, 1967), we 

inductively determined the major themes of the focus group discussions. Individual 

researchers segmented their transcribed field notes into smaller units, or "raw data bits" 

(Lincoln & Guba, 1985), representing discrete events that were apparently related to the 
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same content. Individual researchers used constant comparison to code and cluster their 

data bits to yield temporary categories (Goetz & LeCompte, 1981). Following Lincoln 

and Guba's process, research team members met together to discuss groupings and 

establish rules to describe categories and justify the inclusion of data bits. As researchers 

determined final placements of data bits, they adjusted and refined properties and 

dimensions of categories to provide more precision in their definitions and delimitations 

of categories. 

As we considered all the data and conclusions, the topic of motivation was seen 

as the thematic thread throughout the focus group discussions. Time and time again, 

teachers and scientists alike made reference to students’ interests in science, plants, 

and/or experimentation skyrocketing after PS engagement. As a research team, we 

identified student motivation as the core category and related the complementary 

categories to motivation (Scogin, Stuessy, et al., 2013). 

Theoretical sampling. While our initial use of grounded theory methodology 

revealed a central phenomenon (i.e., student motivation) and several contributing 

categories, our original interpretation lacked process. Strauss and Corbin (1990) defined 

process as “the linking of action/interactional sequences” (p. 143). In order to gain 

additional perspective, I extended the original study by incorporating other data streams 

as a form of theoretical sampling. As stated by Strauss and Corbin (1990), theoretical 

sampling is the inclusion of additional data in an effort to increase understanding of the 

properties and dimensions of categories as well as verify the relationships between 

categories. By investigating how categories and relationships changed under differing 
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conditions, I developed a more comprehensive and robust theory describing and 

outlining the reasons why PS successfully motivated students and how the other actors 

(i.e., teachers and scientist-mentors) facilitated motivation under differing contexts and 

conditions. 

My theoretical sample included data from two classroom observations, 

interviews with the teachers of those classrooms, the scientist-student dialogues 

generated from the 10 student-teams in the two classrooms, and the online dialogues of 

17 exemplary projects as identified by the BSA. I used open, axial, and selective coding 

(Strauss & Corbin, 1990) to systematically integrate this new data and reconstruct the 

grounded theory. Specifically, I expanded the original theory by identifying the factors 

affecting student engagement in PS.  

During this process, open codes were used to fracture the data and identify 

categories and ascertain their properties and dimensions. Axial coding followed, as I 

identified the central phenomenon, causal conditions, intervening conditions, strategies, 

contexts, and outcomes of successful PS implementation. Finally, I used selective coding 

to systematically relate the categories and conditions together, thereby creating an 

inductive grounded theory. Specifically, I used the paradigm model established by 

Strauss and Corbin (1990) to theoretically integrate all emerging categories. 

The paradigm model provides a framework to help ascertain relationships 

between the following categories: causal conditions, phenomenon (core category), 

actions/strategies, intervening conditions, and consequences. Using all data streams 

(Table 3.1), I collapsed new emerging categories, verified relationships between 
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categories, and established and validated the properties and dimensions of all categories. 

Ultimately, a theory emerged from the process to explain why PS is successful. This 

grounded theory represented the interpretation stage of Eisner’s (1985) 

Connoisseurship/Critique model.  

Evaluation.  Educational evaluation involves comparisons between what has 

been observed and an established standard (Eisner, 1985). Theory is often used as a 

standard of comparison to help connect the study to a bigger picture (Wolcott, 1994). In 

this study, I applied a comprehensive theory of motivation retrospectively to the initial 

findings, a practice common in qualitative research (Creswell, 2009).  

Self-determination theory. Self-determination theory (SDT) is a comprehensive 

theory of motivation positing that humans have basic psychological needs of autonomy, 

competence, and relatedness (Deci & Ryan, 2000). Deci and Ryan (2000) defined 

autonomy as the desire to regulate one’s own behavior and act volitionally; competence 

as the desire to experience mastery over certain behaviors and/or affect the surrounding 

world; and relatedness as belongingness, or the desire to experience attachment and 

connectedness with others. Used often in educational contexts, SDT has been verified in 

well over 700 school-related studies (Rienties et al., 2009). 

According to SDT, fulfilled basic needs contribute to healthy people who have a 

strong sense of well-being (Deci & Moller, 2005; Deci et al., 1996; Ryan & Deci, 

2000b). Unfortunately, research findings indicate most students’ basic psychological 

needs are not met in formal schooling environments (Ratelle et al., 2007). However, 

students can and do receive differing levels of support for autonomy, competence, and 
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relatedness, even at school. When receiving differing levels of support, SDT suggests 

people will experience varying levels of motivational energy (Deci & Moller, 2005; 

Ryan & Deci, 2002). Therefore, motivation is experienced on a continuum and can 

change based on several factors, including the social conditions surrounding the 

individual.  

In the school setting, SDT can be used to evaluate the motivational 

conduciveness of a particular learning environment. A look for supports of autonomy, 

competence, and relatedness can result in inferences about student motivation. In this 

study, evaluation included deductively coding (Miles et al., 2014) the data (Table 3.1) 

using predetermined categories of autonomy, competence, and relatedness. I then 

reported evaluation results using a SWOT (i.e., strengths/weaknesses/opportunities/ 

threats) analysis.  

SWOT analysis. SWOT analysis started in the 1950s and is often used in 

business contexts to identify internal and external factors affecting the present and future 

health of a company (Helms & Nixon, 2010). In this study, I used SWOT as a 

framework to compare the factors identified in the inductive grounded theory to 

principles of SDT. In other words, the emerging factors from the grounded theory were 

deductively categorized into the SWOT framework based on their relationships to 

autonomy, competence, and relatedness. The following definitions outline the 

parameters I used to differentiate between strengths, weaknesses, opportunities, and 

threats. 
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SWOT analysis considers both internal and external characteristics affecting an 

institution or program. In this study, internal factors were defined as those inherent in the 

structure of the PS program such as curricular modules, online interaction, and inquiry-

based learning, to name a few. Specifically, strengths were defined as the internal 

characteristics of PS contributing to the autonomy, competence, and/or relatedness of 

students. Weaknesses referred to the internal characteristics of PS perceived to be 

detrimental to student autonomy, competence, and/or relatedness. In other words, 

strengths and weaknesses were considered in light of factors that either contributed to or 

undermined students’ motivational resources. 

In addition to internal characteristics, a SWOT analysis considers external factors 

that could impact on a program. In this study, external factors were defined as the 

variables outside of the PS program’s control such as mentor interactions, teacher 

orchestration, and other characteristics related to actors’ participation in PS. More 

specifically, opportunities were defined as external factors that increased motivational 

support for students’ autonomy, competence, and/or relatedness. Threats were defined as 

external factors that lessened motivational support of students’ autonomy, competence, 

and/or relatedness. 

Limitations and Delimitations 

This study was delimited to data relevant to answering the question, “Why is 

PlantingScience successful?” Since qualitative research is labor-intensive, the data 

selected for inclusion in this study represented the “best” of PS. First, two veteran 

teachers with professional development experience in PS and extended teaching 
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experience were purposively selected for observation and interviews. Second, the 17 

scientist-student dialogues were part of studies recognized by BSA as “exemplary” 

because of the student-teams’ excellent research questions and methods, posted artifacts 

on the website, and in-depth dialogues with scientists. Third, focus group participants 

were chosen by BSA because of their experience in the program and understanding of 

the complexities involved in PS, either as teachers or scientists.  

In sum, the data used in this study was collected from those who had the 

necessary experience to understand the complexities of PS and could therefore help 

answer the big question of why PS is successful. These delimitations also fit well with 

my desire to focus on goodness in the spirit of portraiture (Lawrence-Lightfoot & Davis, 

1997). The sample is small but presents a manageable amount of data in consideration of 

the time investment required for rigorous qualitative research (Miles et al., 2014). While 

the findings will not generalize to a larger population, they are context-specific to the PS 

program and help us understand how the program successfully engages students in 

authentic science activities.  

Analytical Rigor 

Throughout data collection, description, interpretation, and evaluation, I used 

several strategies to promote rigorous and trustworthy research. Since Eisner’s (1985) 

Connoisseurship/Critique model was used as the framework for the study, we will first 

consider his recommendations.  

Eisner (1985) recommended two primary methods to insure trustworthiness when 

using his model. (1) He advocated structural corroboration, a process that “seeks to 
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validate…one’s conclusions about a set of phenomena by demonstrating how a variety 

of facts or conditions with the phenomena support the conclusions drawn” (Eisner, 1985, 

p. 100). (2) Eisner demanded researchers using the Connoisseurship/Critique model be 

able to communicate and describe specific phenomena in such detail that facts could 

easily be verified by looking at the data. Eisner called this method referential adequacy. 

Referential adequacy is an important complimentary strategy to structural corroboration, 

and together these two strategies establish analytical rigor.  

In order to provide a chain of evidence with which one can apply structural 

corroboration and referential adequacy, Eisner (1985) recommended archiving data, such 

as actual videos. “Disputes about the adequacy of the criticism can be resolved, at least 

in principle, by re-examining particular segments of the tape” (Eisner, 1985, p. 115). In 

the current study, archived data including video recordings, audio recordings, and textual 

discussions are available for reexamination by authorized individuals. 

In addition to Eisner’s recommendations, other qualitative researchers offered 

valuable insights on substantiating qualitative research. While Wolcott (1994) did not 

favor using terms like “validation” or “validity,” he conceded his qualitative studies 

were undergirded by practices serving as validation measures. These strategies included 

unobtrusive listening, accurate recording, early writing, full reporting, candor, seeking 

feedback, and accurate writing (Wolcott, 1994).  

I adopted many of Wolcott’s (1994) strategies in this study. (1) I conducted 

classroom observations in an inconspicuous fashion. I unobtrusively video recorded, 

took field notes of observations, and analyzed online communications. (2) The research 
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team archived all collected data including video and audio recordings, transcribed 

information, and field notes. (3) The research team prepared reports to the BSA and the 

NSF and authored conference presentations at all stages of the research process, thereby 

establishing a chain of evidence representative of Wolcott’s “early writing.” (4) All 

members of the research team, including me, made significant efforts to report results 

candidly, accurately, and with feedback from other researchers involved in various 

capacities with the project. 

In addition to the considerations offered by Wolcott (1994), Johnson (1997) 

provided additional strategies for rigorous qualitative analysis. Johnson suggested 

extended fieldwork, low inference descriptors, triangulation (including data, methods, 

and investigator), and peer review. (1) I collected the data used in this study from 

extended fieldwork including PS classroom observations, teacher interviews, focus 

group discussions, and scientist-student asynchronous dialogues. (2) I collected data in 

various ways, including direct observations, personal interviews, focus group 

conversations, and textual dialogues. (3) Methods triangulation occurred by my use of 

multiple qualitative methods, including narrative analysis, portraiture, story-telling, 

grounded theory, inductive and deductive coding, and SWOT analysis. (4) Other PS 

team members reviewed the work as a form of peer review. (5) In addition to the 

aforementioned strategies, I used a theoretical framework during evaluation, a technique 

recommended by Miles et al. (2014). While the use of theory is less common in 

qualitative research, the theory provided a diagnostic tool to evaluate PS and connect 

practice with theory (Eisner, 1985).  
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A Day in the Life: Describing PS Implementation 

Dan’s Classroom 

I first met Dan at the 2011 Summer PS Institute. Dan graduated from a large 

university and completed postgraduate work at a smaller regional university. Dan had 

taught life science, physical science, general science, and social studies over the course 

of his 10-year career. As a veteran teacher using PS, Dan was chosen to be a 

teacher/leader in the 10-day Institute workshop bringing teachers and scientists together 

to conduct inquiry experiments and discuss ways to implement them in the classroom.  

Dan seemed rather laid back, yet he often spoke about holding students to a 

higher standard. I was impressed with Dan’s vision for science education and knew 

immediately I wanted to visit his classroom when the opportunity arose. I got the 

opportunity during the ensuing fall semester and flew out to observe Dan’s freshman 

biology class as they began a new PS project. 

First impressions. Arriving at the school, I snaked my way through the well-lit 

hallways to the freshman wing in the back of the building. Dan’s classroom was not 

small, yet it was not overwhelmingly large either. Lab tables with slick, black tops 

formed tetrads across the tile floor of the room. On the front wall, a Smartboard hung 

grandly just in front of an old-fashioned green chalkboard, serving as a stark reminder of 

the contrast between what used to be and what had come in the world of technology. 

Science posters covered the walls, ranging from the traditional periodic chart of the 

elements to vividly illustrated posters heralding the advantages of inquiry learning. Cow 

skulls hanging from hooks flanked the green chalkboard at the head of the room, proudly 
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claiming the space for biology. Terrariums lined the periphery, adding to the biology 

flavor of the room. In the back left-hand corner perched on a table, the “light garden” 

shone brightly. This homemade contraption, constructed of portable 110-volt fluorescent 

shop lights, stood ready to bathe newly assembled PS projects in artificial light. In the 

opposite corner, bags of potting soil and Perlite sat adjacent to water bottles that were 

cut in half. I eventually figured out these supplies were for constructing “potting 

chambers.” The traditional amenities (e.g., chalkboards, posters), hands-on biology 

supplies (e.g., terrariums, light garden, potting supplies), and technology (e.g., 

Smartboard, laptops, Wifi hotspots) reminded me that the PS program was truly a unique 

mixture requiring diverse ingredients. 

Signs of life. Well before the starting 7:30 am tone sounded, four students quietly 

entered the classroom and purposefully headed to the terrariums. Dan entered the room a 

few moments later and casually conversed with the four, hardly seeming to recognize the 

huge snakes wrapped around the forearms of two students. In fact, Dan seemed amused 

with the conversation as he plugged up the computer cart and booted up his personal 

computer and Smartboard for the day’s activities. As the time for first period drew 

closer, the students gently deposited the snakes back into the terrariums and bid Dan 

goodbye. I got the distinct feeling that Dan’s classroom was going to be a comfortable 

place where students had the freedom to explore.  

As the tone for first period sounded, students barreled into the room and took 

their seats at the lab stations. They were dressed casually in shorts and jeans, and the 

group was proportionally split between males and females. As students took their seats, 
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some pulled out earbuds while others fished in their pockets to retrieve cell phones. 

Another tone sounded, and a male and female voice alternated over the loudspeaker, 

providing tidbits about activities ranging from service opportunities to recent 

accomplishments in athletic and academic endeavors.  

After announcements, Dan gave a mini-lecture about a quiz he had given in a 

previous meeting and some reading assignments students were supposed to have done 

before coming to class. I would learn later this instructional segment, commonly done at 

the beginning of all his classes, was Dan’s way of “covering the prescribed curriculum” 

when engaged in “alternative” activities like PS.  

A new frontier. After Dan’s introduction, he “turned the students loose” to work 

on their newly minted PS projects. Students scattered to different parts of the room like 

ants. Some grabbed laptops from the cart and began logging on to the PS website, while 

others started making potting chambers from the plastic water bottles. Others sat almost 

motionless, peering passively at their busy classmates.  

Although most were busy, it was obvious that many of Dan’s students were 

inquiry novices. I also got the distinct impression that most had never worked with live 

plants. Even under Dan’s skillful tutelage, some students lacked the ability to make 

potting chambers and plant seeds. Nevertheless, what they lacked in ability, many made 

up for in effort. The classroom was bursting with activity as students attempted to set up 

their projects. 

A new fount of knowledge. The phrase, “I am not your primary source of 

information,” resonates in my head to this day because I heard Dan repeat it so many 
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times. Students struggled to shake off the mantra that teachers are supposed to give 

information and students are supposed to passively receive it. When students asked Dan 

simple questions, he consistently replied, “I’m not the answer man” or “It is not about 

assuming I know everything. I’m not the scientist, you are.” I witnessed students leaving 

the nest of traditional classroom norms for the first time, and most struggled to fly on 

their own. However, Dan painstakingly persevered in his efforts to pass the torch of 

control to his students and inspire them to autonomous action. “You need to be the 

scientist. You need to be looking at these things [variables].” 

You don’t know the answer? In conjunction with students struggling to break 

free from reliance on Dan, they also had difficulty pursuing a question without a 

definitive, prescribed answer. Teams worked to refine their research questions, and I 

often heard Dan say, “We already know that,” or “What is the value of that?” Students 

wanted to design experiments that easily confirmed something they already knew. Dan 

playfully related how most of his students in the early stages of PS, wanted to “dump 

soda on a plant” and see what happens. He chuckled as he recalled his typical answer: 

“You already know what’s going to happen! It’s going to get sticky and stink!”  

When students eased out into uncharted research waters, Dan persistently 

encouraged them to record as much data as possible. “Keep as much data as you can. 

You don’t really know what is going to be important.” He explicitly told learners to 

consider variables like temperature, distance from the light source, and light intensity. 

Over time, I noticed an increasing number of students who sauntered by the thermostat 

at the front of the room to get a temperature reading or carried a ruler along with their 
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planting chamber to the light garden to get a quick distance measurement. The newfound 

responsibility of having their own projects seemed to slowly transform these students 

into conscientious, budding scientists! 

My thoughts are valid. Dan constantly encouraged students to take charge of 

their experiments. “It is your experiment, think about it.” When a student complained 

about not being able to upload his own pictures to the website since the class was 

sharing a camera, Dan immediately replied, “If you want to upload one now, use your 

computer to do that.” While this exchange seemed trivial at the time, it reflected how 

eager and ready Dan was for students to take charge, even if it meant changing the plan 

or using resources in slightly different ways. “We’ve trained them to believe that what 

they have to say has very little value. So, that’s the way they act.”  

During one exchange with a student-team, Dan asked, “Why are you doing this 

experiment?” A student responded, “So we can test how dry conditions affect plants.” 

Without hesitation, Dan affirmed this group’s choice of topic. “So this is a very valid 

experiment because of global warming, drought, etcetera, etcetera. It is something real 

scientists are really doing. So you want to talk about how this is related to that.” In a 

simple yet powerful statement, Dan validated the student-team’s decision and 

encouraged them to not only pursue that line of questioning, but be prepared to tell the 

world about it through the PS website. 

At the end of this particular class period, student-teams, albeit reluctantly, went 

to the front of the room and shared their fledgling research questions. Three girls 

explained how their research question about the effects of chlorine on plants was 
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spawned from one girl’s camping experiences. Her family added chlorine tablets to the 

natural water in order to disinfect it before drinking. As she relayed this experience to 

her team, they decided to investigate how chlorine affected plants. For this group, 

affirmation came from their scientist-mentor who posted, “So your question has great 

practical importance. If the city is adding chlorine to water, then how will it affect the 

plants we water it with?”  

Another student-team decided to investigate whether weeds grew faster than 

ornamental flowering plants. When asked by classmates why they chose this question, a 

team-member mused, “I was just wondering, and it had to do with this project.” Probing 

further, Dan asked, “Where does the wonder come from?” When the student replied, 

“Seeing it, observing it,” I realized afresh how PS enabled students, maybe for the first 

time in their school experiences, to pursue answers to their own questions and 

experience just a little taste of the joy and wonder of scientific pursuit and discovery. 

Taking it to a deeper level. When I spoke with Dan about why he chose to be 

involved in the PS program, he referred to his driving passion to take students deeper 

into scientific pursuits. With intensity gleaming in his eyes, he said,  

I know that there are examples of kids having done that [gone deeper], even 

within…PlantingScience, where kids made some discoveries where they [PS 

scientists and developers] had to say, “Wait a minute,” and then the scientific 

community had to look at that and say, “Wow, that’s a pretty interesting way to 

look at that.”  
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In addition to challenging students to go deeper in their projects, Dan 

intentionally tried to impress upon his students that their projects were bigger and more 

important than typical classroom work. “Remember your online journals!,” Dan 

bellowed out during the chaos. “You are not only communicating with your mentor, but 

with the world!” The sell to students proved challenging. “They [students] always think 

it is just another exercise that we do in class.”  

Building a relationship. According to Dan, scientist-mentors played a pivotal 

role in stimulating students to go deeper. However, Dan recognized several challenges 

associated with the unique online relationship between scientists and students. “Your 

mentor is a real, live person that you are talking to and who is talking to you about his 

project. You need to get deeper in these projects than you’ve gone so far,” Dan 

interjected loudly in the middle of one class. In an attempt to jump-start the relationship 

between his students and their mentors, Dan reached out to the scientists assigned to his 

students before beginning the PS unit.  

 “We tried to get some support out of them [mentors] on how to do the 

questioning, which is the weakest area we deal with in terms of creating a meaningful 

experiment.” During class, Dan constantly reminded students to communicate with their 

mentors for suggestions and guidance. “You need to talk to your mentor,” “Look and 

see if there are any suggestions that you might want to incorporate [from your mentor’s 

comments].” 

One of the challenges Dan faced was helping students overcome apprehensions 

about responding to scientists. Even though students had never met the scientist-
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mentors personally and more than likely never would, they were sometimes 

conscientious about how mentors perceived them online. One student-team argued 

about what to post, with one student demanding, “Don’t post that. He’ll think we are 

stupid!” The next day, this same group, the Fantastic Four (pseudonym), expressed 

frustration to Dan about their scientist-mentor. “He’s not talking back,” claimed one of 

the students. “I don’t think he understands us,” chimed in another. Putting the 

responsibility back on the students, Dan defused the situation by encouraging the team 

to consider how they could better express themselves to the scientist.  

It’s hard, but it’s worth it. Over the course of the PS project, Dan’s student-

teams developed their own research questions and methods to test those questions. It 

was not an easy process, as evidenced by student-teams who could not explain the 

purpose of their projects. Through intervention, Dan helped them understand, and over 

the term of the project, he had opportunities to share applicable science content and 

process. In the end, the students gained knowledge of some basic plant processes and 

principles of experimental design, although it was time consuming and labor intensive. 

Nevertheless, Dan resolved to break the mold of typical science teaching and help 

students reach new depths of understanding. 

We have issues in the way we do science as a country, younger kids just don't 

have these experiences and they don't get this idea that they could create 

scientific experiments that would give them knowledge that other people do not 

have or that would allow them to see the world in different ways and share that 

back with the world. 
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Do I have to do it? In the beginning stages of PS, many of Dan’s students were 

apathetic toward science. Some students wrote in their online dialogues, “Science isn’t 

one of my favorite subjects,” and “To tell you the truth, not many plants interest me, so 

I’m not looking forward to this project.” In response, a scientist-mentor responded, “I 

always disliked doing science projects in school, mostly because I did not like doing 

extra work.” However, the remainder of his post was quite enlightening. “What I realize 

now is that this is a chance to be creative and get to see something you imagine play out 

and tell you something.”  

As I read those comments, it hit me like a ton of bricks. This was just the 

beginning! What I was witnessing was not the end product, but the germinating seed of 

science being planted in the hearts and minds of novice inquirers. By Dan’s own 

admission, these students had not been exposed to anything remotely similar to PS. What 

many of us figured out only after working at the graduate-level in science, these students 

were learning in high school. In large part, the opportunity was theirs because of a 

supportive teacher willing to go against the grain and engage them in an innovative 

curriculum. With the support of scientists who had already undergone the 

metamorphosis, how could these learners fail?  

Kelly’s Classroom 

I met Kelly at the PS Summer Institute where she was returning for the second 

time to serve as a mentor for the program. Kelly was a nine-year educator, teaching 

science at a rural high school in the northwestern United States. She earned a B.A. in 

communications from a large Midwestern university and a M.S. in natural resources 
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from a different Midwestern university. While earning her degrees, Kelly accumulated 

45 hours in science and science pedagogy.  

Kelly was like the Energizer Bunny from the old battery commercials. Even in 

her leisure time, which some of the Institute participants were privy to through social 

media, she traveled around mountain biking and whitewater rafting. A few of the PS 

participants claimed they lived vicariously through her! In the classroom, Kelly 

described herself as an innovator, and she valued collaborative learning in her 

classrooms. She also wanted to develop a more authentic learning environment, so she 

looked for opportunities to introduce ambiguous activities and allow learners to “fail on 

a small scale.” PS was a natural fit to her teaching style. I was ecstatic when she made 

her classroom available for observations.  

First impressions. Upon arrival at the school, I wound my way through the 

corridors of the majestic building to a classroom in the back corner of the facility. As I 

entered, I was greeted by a huge space lined with glass-fronted wooden cabinets along 

the lateral walls. To the right, beakers, graduated cylinders, and various other pieces of 

glassware sat on shelves behind the glass panes. To the left, books, microscopes, and 

various teaching aids such as mitosis/meiosis manipulatives and disarticulated flower 

models crowded the shelves. The back of the room offered a generous amount of 

counter-top space sitting atop storage cabinets. A door in the right-hand corner led to an 

adjacent greenhouse where most students kept their PS projects. Stand up tables with 

black, shiny tops and metal stools with no backs dotted the interior of the classroom. A 

whiteboard and a projection screen hung in tandem on the front wall, and a permanently-
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mounted projector was suspended from the ceiling in the middle of the room. 

Whiteboard and bulletin boards covered every other available wall space around the 

room. Bulletin boards were neatly decorated with scientific sayings and other “sciency” 

things, effectively announcing this was a space reserved for scientific study. 

Did he say imbibe? Students in Kelly’s classes had been involved in their PS 

projects for several weeks prior to my visit, so they were much farther along than Dan’s 

class had been. In the weeks leading up to my visit, I had kept up with Kelly’s student 

projects through the PS website. Students were buzzing online, posting comments like, 

“I can’t wait to start our project,” “Biology is my strong subject,” and “I love science 

and plan on continuing science after high school and throughout college.” Not all 

comments were positive (I will share some of these later), but I was excited to see what 

was going on in the classroom and anxiously awaited the start of class. 

Well before the tone announcing the beginning of class sounded, a tall, curly-

headed young man with emerging facial hair bounced into the classroom. As he passed 

my position in the back corner of the classroom, he enthusiastically reported, “I need to 

imbibe!” and rushed off through the greenhouse door. “Did he just say imbibe?” I 

thought to myself. My thoughts were interrupted by a new flow of students through the 

door. As they entered, most immediately went to work on their projects. 

Kelly entered the room with several laptop computers, but the atmosphere 

remained unchanged as students busily got out their experiments and booted up the 

computers. Kelly announced that students needed to either set up their experiments or 

continue to collect data, depending on their particular stage. She projected a task list on 
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the front screen with reminders for the day, but students hardly seemed to notice as they 

purposefully went about their business.  

Saving the babies. Many of the cups and planters sported new growth, and 

students could not contain their excitement. One student pointed his finger at the 

emerging seedlings in the cup and shouted, “Boom!” Apparently, reactions such as this 

were not uncommon during PS experiments. Kelly shared,  

What I have been excited about is, boy, as soon as those seeds started to 

germinate, those kids are bought in….The kids whose seeds have not 

germinated, they are a little more disconnected...Two students who came up to 

me during class, their seeds have not germinated, and you can tell the 

disappointment. So they are not as engaged as the kids whose seeds have 

germinated. It's as if they feel a sense of responsibility towards the seeds. 

In most cases, students quickly communicated their excitement to their scientist-

mentors on the asynchronous blog. “We had crazy germination!” “[Scientist-mentor’s 

name]! Some of our seeds have started to germinate.” One girl was especially passionate 

about her new seedling, posting, “We have germination! We are saving our babies :)” 

Joy and wonder. Students were optimistic about most parts of the PS 

experience, even about little things like being able to use digital cameras and upload 

pictures to the PS website. “They love the cameras. They feel very independent with the 

cameras,” beamed Kelly. She also felt students voluntarily took on more responsibility 

than normal during a PS project. “Did you notice how they do cleanup? The cameras are 
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put back up where they are supposed to be. I’m not missing batteries or memory 

cards…I don’t have to get on anybody about cleaning up.” 

Although Kelly described herself as a teacher who was “all about content,” her 

goals with PS were somewhat different. Kelly used PS as a tool to develop students’ 

capacity to love and appreciate science in ways they had not experienced before in 

school settings. 

The real value with this [PlantingScience] is they are feeling empowered about 

science. They are curious, they're unabashedly asking questions. And even 

though some of their methodology is naive, to me, I'm ok with that because, if I 

slam them with a tight rein, I'm going to turn them off to science. And I'm not 

saying science should all be fun and games, but they've got to experience the joy 

and wonder. Otherwise, they are not going to have the tenacity to set up an 

experiment again or to count and measure. You've got to buoy them with some 

joy and wonder to get them to do the nitty-gritty stuff….I mean we are building 

joy and wonder and capacity in kids. 

Kelly’s students exhibited tremendous “nitty-gritty” determination. In one 

situation, a student-team’s project went awry, forcing the team to totally change course. 

Though they were disappointed, Kelly verbally encouraged the team.  

Why don’t you guys talk about what is going to work easiest and make the 

changes? And then let your mentor know. That happens all the time, where, you 

know what, the things we are doing are actually not working so we’ve got to go 

back to the drawing board. 
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These students fought through the disappointment, worked diligently over the next 

several days, and totally reconstructed their experiment. 

Another student-team struggled with how to measure their newly emerged, 

twisted seedlings. After collaborating with Kelly and another group in the class, they 

decided to use string as an intermediate, carefully converting the string lengths to 

accurate measurements and posting their results in a spreadsheet. To keep their mentor 

in the loop, they meticulously took pictures of their seed cups at every possible angle 

and posted them online. When they realized the weekend would prevent them from 

watering their plants, they discussed and conceptualized a plastic wrap tent to encircle 

the cups and reduce evaporation. Afterwards, they pipetted precise amounts of water into 

each cup with astute precision and erected the tent. When they finally left after staying 

late, Kelly commented, “I mean, those boys who stayed late that one hour, to make a 

little saran wrap tent around it, I mean they are so...they are pretty excited.” 

Science in the making. At times, Kelly’s classroom seemed chaotic. The 

consistent droning of voices, the “pinging” of glass beakers, and the clicking of planting 

pots on hardtop lab tables provided background noise indicative of busyness. While 

some may have associated the noise with undisciplined behavior, I referred to it as 

“science in the making.” 

As young scientists, Kelly’s students learned that things do not always go as 

planned. They learned to expect the unexpected. “Our water turned brown!” proclaimed 

one student in dismay as she saw her team’s experiment for the first time that day. Kelly 

smiled and responded, “So you’re surprised by what happened?” I actually think Kelly 
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was as surprised as her students on most occasions. In one instance, she walked over to a 

team with newly germinated plants and gleefully proclaimed, “Oh my gosh, what’s 

going on? Holy Smokes!” As she continued to walk around the room, Kelly exclaimed, 

“I see lots of people getting some interesting results!” After a few more steps, she came 

to another team and shouted, “Wow! I was not expecting that!” 

Maybe for the first time in their formal school experiences, students worked in 

situations where they and the teacher did not have the “right” answers. In addition, the 

right answers did not exist because the experiments were novel with many variables at 

work in the systems. Although the projects in Kelly’s class were not cutting edge plant 

science, they were cutting edge from the perspectives of students. They did not know 

what the results were supposed to be, and they were forced to grapple with ambiguity, 

especially when things did not go as planned. Phrases such as, “Our experiment did not 

turn out as we thought it would” and “How that happened, we do not know” were 

commonplace both in classroom discussions and in the online dialogues with scientists. 

“I don't think there is anybody asking a question that they necessarily know the answer 

to. They are surprised by some of their results,” Kelly confided. 

Across the board, student-teams eagerly shared their results with scientist-

mentors in the online forum, often seeking help and advice from the mentors. The team 

surprised about the brown water wrote, “The water in the salt water turned a gross 

orangish-brown color. Our tap water has a slight tint of brown…what are your 

thoughts?” Scientist-mentors, in this case and in many others, took the opportunity to 

share how unexpected results were part of the scientific process.  



 

 83 

“Part of the fun of science is finding things you never expected to find, and that 

may happen,” shared one scientist-mentor. Another wrote, “It’s pretty common for a 

scientist’s original prediction to not be supported by the data (that’s why we need to do 

the experiment in the first place), and it often leads to new hypotheses or ideas.” Under 

these circumstances, scientist-mentors encouraged student-teams to record as much data 

as possible related to the event. The mentor of the brown water team offered, “Don’t 

forget to record these observations when they happen (what had mold, when, etc.). These 

are important data, too…” Later, the same scientist-mentor wrote, “Keep recording data. 

Zero growth is still a result that you will want to talk about!” Students appreciated these 

exchanges with their scientist-mentors, and their interest was piqued by the responses 

they received. The classroom and online interactions in Kelly’s classroom were 

indicative of motivated students engaged in scientific activities. 

The Focus Group 

The magic of PS. As focus group discussions opened with thoughts of why PS 

was successful, teachers and scientists shared their perspectives on this important 

question. Teachers quickly pointed out how valuable the mentor component was to the 

success of the project. Some commented on how mentor input, particularly in the early 

stages of a project, helped their students develop better research questions that set the 

stage for better experiments. Another teacher stated that mentor feedback was much 

more important to students than her comments. Without a doubt, focus group teachers 

believed the mentor component was vital to the success of PS. 
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Teachers in the group underscored the significance of mentor-student 

communication: “Kids race to the classroom to see if their mentor posted.” “If the 

mentor does not talk to the team, the students feel bad. [If they do respond], the kids talk, 

enjoy studying.” “It is a huge deal when the students get a response.” Over the course of 

the PS experience, teachers claimed students began to see scientists as “cool,” shattering 

some entrenched stereotypes. 

On more than one occasion, participants in the focus group used the term 

“magic” to describe PS. “There is something so unique and almost magical about the 

interaction of that group [scientists and students],” stated one participant. One of the PS 

Support Team members reiterated this sentiment later in discussions: “It seems to me, 

that there is, on occasion, some real magic there. And, there are some students who get 

very motivated about it.” A long-time PS teacher added, “I had kids who continued to 

pursue their question because after the time was up, they were not done.” These 

discussions left little doubt about the value of the mentor component to the overall PS 

experience. When developed and nurtured, the bond between scientist-mentors and 

students seemed to push students to higher levels of engagement and excitement. 

It takes a scientist to make a scientist. The opportunity to have your own 

scientist as a mentor was a unique opportunity for students. In K-12 science, learners 

most often interact with their science teachers and maybe with classmates, but discussing 

science with “real” scientists is rare. This fact was not lost on focus group participants. 

One participant reflected: 
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When we see these incredible comments…where else can kids get that kind of 

support from someone who is not their parents? By middle school and high 

school, that [parental interaction] diminishes. And not from their teacher, I mean, 

by high school, kids are looking for other kinds of mentors and significant others. 

But they get mentoring from a scientist. It’s a legitimate interaction with another 

adult and it’s just very, very unique and it’s science-related, so that’s the 

uniqueness. 

The impact of this unique relationship was not lost on one scientist-mentor in the group 

who immediately responded, “That is what we have to preserve.” 

We got to choose the experiment. While the mentor piece was cited as a critical 

component of success, teachers also pointed to the ownership that students felt when 

engaged in PS projects. One teacher related how she always asked her classes what they 

liked most about PS, and they always exclaimed, “We got to choose the experiment!” 

Another teacher reiterated the importance of this feature by stating, “Having a class 

project is not as good as having students that have individual projects because they really 

take ownership.” As the discussion continued, participants alluded to how curiosity and 

the students’ ability to pursue questions of interest was an important feature of PS. 

Students, it seemed, felt they were doing more “real world” science than classroom 

science. The revelation was not lost on one scientist-mentor who claimed, “What I really 

like about the PlantingScience experience is they [students] are doing it to go through 

the project and do it for its own sake.” 
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Real science. A senior education researcher in the group commented, “What I 

love about it right now is…that PlantingScience provides students in the classroom with 

a real life experience working with a real life mentor.” Several teachers in the group 

agreed, reporting that for perhaps the first time in a school, students felt as if their ideas 

were valued and appreciated by others. Teachers, in particular, felt the authenticity of the 

experience and the public nature of the interactions provided students with an 

uncommon sense of success. Teachers also liked the long-term connection that PS 

provided for their students. Instead of having a scientist visit for the day, students 

engaged in discussions with scientists over several weeks and possibly months. 

It’s not all roses. Focus group participants identified lack of communication 

between students and mentors as a detrimental force in PS. “If the mentor does not reply, 

the mood is down,” a teacher reported. Teachers claimed lack of scientist-mentor input 

was one of the greatest amotivators for their students when doing PS. “When mentors 

don’t respond, kids get frustrated. Kids sometimes quit because of no mentor feedback.” 

Likewise, scientist-mentors expressed frustrations about “being left in the dark” when 

students failed to reveal enough information about the experiments. 

Teachers offered several explanations why students sometimes failed to post. 

One teacher confided, “The kids don’t want to look stupid, and they don’t always know 

what to post.” Many teachers were in agreement, adding that students stumped by a 

mentor’s comment or suggestion “do not know how to answer posts.” In other cases, 

students were reluctant to share their results online because experimental results did not 

come out the way they anticipated. Nevertheless, another teacher commented, “The 
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experiment may not work, but the teacher and mentor need to encourage the students to 

talk [online] about it.” 

In addition to embarrassment and lack of confidence, teachers disclosed that 

scheduling and lack of time in class were barriers preventing online discourse. “It can be 

hard to try to get the students to post...schedules get in the way…there are reasons why 

students do not reply to their mentor’s questions.” At other times, students got impatient 

waiting on responses. “Students want an immediate response. They don’t want to wait 

for a few days.” The asynchronous nature of the platform was not familiar to students 

used to real-time conversational speed. One mentor was particularly frustrated with this 

disclosure and retorted, “The messages are important, but students do not understand if I 

can’t message them right away.” 

We learn from each other. I believe both teachers and scientists gained new 

insights into the difficulties they each faced when implementing PS. Oftentimes, the 

perspectives shared by one group enlightened members of the other group and promoted 

mutual understanding. For example, a simple discussion about school schedules opened 

the scientists’ eyes to the fact that students did not always meet everyday for class and 

therefore were not able to check results daily. Scientists were also somewhat surprised to 

find out that even a 24-hour delay in response can make a huge difference in whether a 

student-team considers a scientist’s suggestions. Classroom time restraints are a unique 

reality in the science teacher’s everyday planning. On the contrary, these kinds of time 

restraints are not considered when a typical scientist develops a research schedule.  
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Likewise, teachers came to appreciate some of the difficulties scientist-mentors 

faced. Teachers were able to monitor students’ progress regularly and ask questions to 

get clarification in real time. Scientists, on the other hand, were limited to whatever 

students and/or teachers posted. Important details were often left out of these postings, 

leaving scientist-mentors in the dark and unsure of how to advise students.  

Evidences of Motivation 

One of the research questions pursued in this study considered whether motivated 

behavior was observed in students through classroom interactions and online dialogues 

with scientist-mentors. While the accounts of Dan’s and Kelly’s classrooms and the 

overview of the focus group unequivocally provide evidence to answer this question 

affirmatively, I wish to share one particularly powerful illustration of motivation and 

engaged behavior.  

Baird (pseudonym), a student in Kelly’s classroom, introduced himself on the 

online portal as a 16-year-old junior. Early on, he admitted to his mentor that, “I don’t 

know much about plants, and science is not my favorite subject.” I was drawn to Baird’s 

PS story and wondered if the PS experience worked for him since he was not “sold out” 

to the project from the beginning. 

Baird seemed to recognize his team’s ownership of the PS project. He often 

began his posts with the phrase, “We have decided…” This ritual suggested (not 

affirmed) Baird felt confident enough in his team’s decision-making to assertively 

inform their scientist-mentor about their project and its direction. Baird’s team 

developed a great relationship with their scientist-mentor, Mona (pseudonym), and she 



 

 89 

showed a personal interest in the team. For example, Mona posted, “I enjoyed reading 

your introductions” and “I see you won your first football game last week.” In response 

to some of Baird’s and his teammates’ negativism, Mona empathetically tried to explain 

the universality of scientific principles. 

I know that some of you are interested in fields that you feel may have nothing to 

do with science. But, being able to collect and analyze data is an important skill 

you can learn from projects like this and apply to many other fields.  

Along their journey together, Mona valued the student-team’s questions and 

showed interest in partnering with them for the duration of the PS experiment. When 

Baird’s team posted its research question, Mona responded, “Your question is very 

similar to the same kinds of questions environmental science consulting firms address 

when they look at levels of contaminants in water or soil.” Mona was not controlling in 

her comments, often insinuating ownership of the project belonged to the students. “I 

look forward to hearing about your ideas for designing your experiment.” While 

explicitly understanding of their ownership, Mona was quick to offer her help. “We can 

then work together to flesh out your experimental design.” 

Throughout the process, Baird reached out to Mona and often asked her for help. 

“We have decided to do intervals of 5 starting at no fertilizer and going to 25. Do you 

think that is an appropriate interval? Does it go high enough?” On another day, Baird 

posted, “My concern is that we have not imbibed our seeds until today, and we are not 

going to have enough time this week to observe much.” Mona provided suggestions and 

encouragement such as, “You are making great progress, and I will be checking back 
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soon.” In addition, Mona mentioned students by name when appropriate, writing things 

such as, “In regards to Baird: I would suggest recording how many seeds successfully 

germinated and then just determining growth rates for the individual plants. I look 

forward to seeing more of your results this coming week.”  

In spite of some apathy early on, Baird expressed excitement along the way, 

proudly proclaiming to the world on the online portal, “Our plants are growing really 

fast!” Baird also commented on other students’ projects, indicating interest extending 

past his own student-team’s project. He took interest in a team’s project from another 

section at his school who were studying the effects of green tea on plants. Baird posted 

the following on their page: “Great job!!!! I think that this was a cool experiment. It’s 

interesting to find out that green tea helped the growth.” The most telling bit of evidence 

indicating an increase in Baird’s motivation for the project was his last post. “We will be 

uploading our final project soon. It has been an interesting experiment. I’m sad to see 

this come to an end.” The story of Baird and Mona is just one of many success stories 

associated with PS.  

What Does It Mean? Interpretation Using Grounded Theory 

Classroom observations and focus group discussions suggested PS was a 

significant experience for many students and motivated them in ways not typical of 

classroom science. In the 2011 Science article announcing PlantingScience as a 

prestigious SPORE (Science Prize for Online Resources in Education) award winner, PS 

program developers noted, “Talking online with a scientist is exciting and motivating to 

students. Teachers commonly relate that their students develop a new level of confidence 
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and responsibility toward their experiments” (Hemingway et al., 2011, p. 1536). While 

evidence for motivation abounds, the question remains, “How does PS motivate 

students?” 

Eisner (1985) simply defined interpretation as an effort to understand what is 

going on. To that end, I systematically and carefully examined the data, looking for 

relationships and “discerning critical elements from casual ones” (Wolcott, 1994, p. 25). 

What precisely occurred during a PS project to prompt a student to write, “We are all 

very excited” in an asynchronous post to her scientist-mentor? What caused students 

who were sick at home to log into personal computers and report to their teammates and 

mentors that, “This is the first day I have been out of bed since Monday night. I am 

excited to read about the progress of our plants” or “I am sick and could not make it to 

school but I will be on the computer at the same time you will be so you can tell me 

what you are doing with the plant and stuff”? These statements are powerful indicators 

of the magic that sometimes occurred in PS, and I began my efforts to develop a 

grounded theory (Strauss & Corbin, 1990) to put the pieces of the story together to 

explain the magic. Table 3.3 details the categories that emerged from the grounded 

theory analysis. 

The Central Phenomenon: Student Motivation and Engagement in Science 

Motivation has been defined in several different ways. For example, some claim 

motivation is the reason why a person chooses to behave in a certain manner (Ratelle et 

al., 2007). Alternatively, others view motivation as the presence of an energy or 

persistence driving a behavior (Ryan & Deci, 2000b). Taken altogether, these definitions  
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Table 3.3 
 
Open and Axial Coding Categories With Corresponding Properties and Dimensions 

 
Category Properties Dimensions 

 
PS motivates and 
engages students in 
science 

 
Intensity 

 
Low – High 

Connection to project Superficial – Vested 

   
Student empowerment Ability to choose Low – High 

Attention to ideas Ignored – Valued 
Personal endorsement  Low – High 

   

Online mentor 
interaction 

Frequency and timing Delayed/Few – Prompt/Many 
Tone and demeanor Controlling – Partnering 
Style (subset of 
tone/demeanor) 

Declarative – Questioning 

   

Authenticity of 
experience 

Context of study Books –Living Plants 
Collaborative opportunities Low – High 

   

Curricular Module Ambiguity (# of variables) Low – High 
Novelty Low – High 
Freedom for creativity Scripted – Open-ended 

   

Orchestration Expectations of actors Unclear – Clear 
Scheduling Poor – Appropriate 
Experience of actors Novice – Experienced 
Communication between 
actors 

Low – High 

Scaffolding Poor – Adequate 
   

Student Characteristics 
 

Initial motivation level Low – High  
Inquiry experience 
 

Novice – Experienced 
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imply “to be motivated means to be moved to do something. A person who feels no 

impetus or inspiration to act is thus characterized as unmotivated, whereas someone who 

is energized or activated toward an end is considered motivated” (Ryan & Deci, 2000a, 

p. 54).  

While some may differ on their definitions of motivation, few would argue that 

motivated student behavior is highly desirable in school. The Science article, SPORE 

award, and popularity of the PS program at large indicate PS is a successful program. In 

this study, data collected from multiple sources indicate PS is successful because of its 

tendency to motivate and engage students. Many teachers who step out and use PS report 

back, “The level of engagement in the class is high. I have a few in the class that are not 

engaged, but it’s not for very long.” Figure 3.1 illustrates the theoretical framework I 

generated in this study to explain the central phenomenon of student motivation and 

engagement, as suggested by Strauss and Corbin (1990). Several causal conditions 

contributed to student motivation, and both teachers and scientist-mentors used various 

strategies and actions to facilitate motivation. These strategies and actions were 

influenced by changing contexts and intervening conditions, thereby leading to various 

student outcomes.  

Causal Conditions Related to Student Motivation in PS 

Three causal conditions influencing the phenomenon of increased student 

motivation were identified in this study: student empowerment, online mentor 

interaction, and authentic scientific experiences for students (Table 3.3; Figure 3.1).  
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Intervening Conditions: 
 

BSA PS curricular modules 
Orchestration 
Preexisting student characteristics 

Causal Conditions: 
 

Student empowerment 
Online mentor interaction 
Authentic scientific experiences 

Strategies & Actions: 
 

Scientist-mentors:  Teachers: 
Explaining   Fly-fishing 
Asking questions  Digging deeper 
Encouragement   Encouragement 
  Bigger picture   Scaffolding 
  Empathy 
Offering a hand 

Student Outcomes: 
 

Increased positivity 
Willingness to go deeper 
More respect for scientists and plants 
Better understanding of concepts/procedures 
Greater understanding of NOS 
Commitment to collaboration 
[Apathy] 

Context: 
 

Current student motivation  
and engagement levels 
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Figure 3.1. Overview of emergent categories arranged using Strauss and Corbin’s 
(1990) paradigm model. 
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Student empowerment. According to focus group participants, students reveled 

in the ability to choose the contexts for their experiments. Students had positive attitudes 

and took more responsibility in taking care of their projects. Students owned the 

experience because they were empowered to ask questions, design experiments to 

answer those questions, and ultimately evaluate their own projects. One teacher 

excitedly announced how her students always answered her question, “What do you like 

most about PlantingScience?” with the response, “We got to choose the experiment!” 

Classroom observations revealed that Dan and Kelly empowered students to 

follow their interests when choosing a PS project. Kelly specifically mentioned the 

significance of handing over control to students during a PS project. “They are 

empowered. Those kids are empowered. I mean those kids walked in and they had their 

seeds before the bell even rang. So I feel pretty good about that.” Teachers like Dan and 

Kelly worked hard to reverse the trend of didactic teaching by empowering kids to 

pursue their interests.  

In the online dialogues, student-teams often referred to their experiments in 

possessive terms, claiming this was “our experiment” and referring to scientist-mentor 

participation as supplemental to their own. “Thank you for mentoring us on our plant 

experiment. We are excited to work with you.” Interestingly (and contrary to intuition), 

the relationships between students and scientist-mentors seemed to enhance students’ 

feelings of ownership. 

Online mentor interaction. Many academic mentoring programs provide one-

time or short-term mentoring. However, PS mentors assisted students from the start of an 
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inquiry project to its completion. The online platform offered scientists the opportunity 

for prolonged engagement with their mentored students, affording time to develop 

familiarity not only with the experiment but also with student-team members. Over time, 

many scientist-mentors referred to individual students by name and engaged as partners 

in the inquiry process.  

Evidence of the motivational sway scientist-mentors had with students was 

tangible in many different ways. It was not uncommon to see students burst into the 

room before class started, boot up computers, and check for mentor feedback. If the 

scientist-mentor responded, students celebrated with “hallelujah” dances! Without a 

response, students dropped their shoulders and sighed. Some students lamented, “He 

didn’t respond again!” or “Our mentor doesn’t like us!” The “mentor effect” as I came to 

know it, signified the motivation scientist-mentors provided for student-teams through 

participation in the online dialogues. According to Kelly, 

It [the mentoring component] is huge. Huge. You saw those kids. Man, if their 

mentor doesn’t talk to them, it’s, “Our mentor doesn’t like us, they haven’t 

communicated with us.” The mentor thing is huge, huge, huge. They are so 

excited when the mentor says something to them. And you know, the level of 

excitement that is in the room would not be there if it was just me commenting 

on their experiments. In fact, they would be sabotaging their experiments. The 

behavior would be completely different. They [mentors] have elevated the 

seriousness of the experiments. 
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From the outset of many experiments, even unenthused students looked to their 

scientist-mentors for inspiration. “I’m not ready to do this project,” wrote one student, 

“but hopefully you can change my mind.” Another student on the same team echoed 

similar sentiments. “I am not looking forward to the project, but maybe you will get me 

excited to do it.” These comments and similar ones indicated students expected to be 

motivated by scientists. Perhaps knowing these mentors had dedicated their lives to 

science in one way or another made students realize there were potentially some 

interesting facets of science. Regardless, the data revealed mentor feedback had a strong 

influence on student motivation, so I began to inductively investigate the properties of 

scientist-mentors’ feedback to see how it affected students. The frequency and timing, 

tone, style, and demeanor of scientist-mentors’ responses proved important (Table 3.3). 

Frequency and timing. Without question, the frequency and timing of scientist-

mentors’ responses in the online dialogues were important properties. At times, students 

begged scientist-mentors for a response. “Will you at least give us some positive 

feedback…or some sign that you’re alive?” Kelly understood the importance of frequent 

and timely mentor feedback on her students’ motivation. “Our emphasis has been on 

their dialogue with the mentor…I have focused more on making sure they are 

communicating with their mentor. Unfortunately, some of the mentors are not 

communicating with them.” 

When mentors’ responses were frequent and timely, student motivation 

skyrocketed. In Kelly’s classroom, a student logged on to the PS website and exclaimed, 

“Holy cow! He gave us a really long reply!” Students from other teams immediately 
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clustered around the laptop, eager to get a view. As the student read the comments, Kelly 

offered encouragement. “I’m glad he replied! Yay!” When another student from the 

same team returned from the greenhouse and saw the crowd around his table, he asked, 

“Hey, what did [scientist’s name] say?” After reading the response and having some 

conversation with his team, he enthusiastically asked, “So, who is going to type the 

response? We all did it last time.” This scene illustrated the motivational value of 

scientist-mentors’ responses. 

In like manner, students were amotivated by lack of responses or delayed 

responses. Some student-teams implored their scientist-mentors to “reply back to us 

soon!” Other teams expressed their frustrations with scientist-mentors who did not 

respond. A student from another school commented on one of Kelly’s student-team’s 

page: “Your communication with your mentor is awesome. You’re lucky to have one 

that is interested in your project. Very creative! Congrats to your mentor for being so 

involved.” 

It also seemed some scientist-mentors recognized how important frequent and 

timely feedback was to students. For example, one scientist-mentor wrote, “I’ll make 

sure to check back here tonight, in case you get back right away.” When posting after a 

long delay, another scientist-mentor apologized to his team. “Sorry about not responding 

on Friday.” 

Tone and demeanor. Earlier, I introduced a student-team from Dan’s class, the 

Fantastic Four, who felt their scientist-mentor did not understand them. Examination of 

the dialogues between this student-team and the scientist-mentor revealed an impatient 
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and demanding mentor, two qualities that may have quenched student motivation. 

Comments such as, “Hurry up and come up with any ideas,” and “Why did you start 

with only six seeds? Wouldn’t it be better to have at least 10?” did not endear this 

mentor to his student-team. Kelly also relayed a similar experience in her class.  

One of the kids said, “Our mentor is not very nice to us.” And so I read her 

comments, and she is not very nice. She’s just like “Roar, roar, roar!” And I 

don’t want them [scientist-mentors] to be cheerleaders, but at the same time I 

think the kids are excited. And when they get nothing but, “Yeah, but” [from 

their mentors], I think it is hard for them to maintain their joy and wonder. 

Authentic scientific experiences for students. PS provided students with an 

authentic scientific experience because students had opportunities to participate in 

authentic scientific tasks such as developing research questions, devising analytical 

methods, performing analyses, and generating conclusions (Chinn & Malhotra, 2002) 

using real specimens. 

Use of living organisms. The authenticity associated with PS projects was a 

contributing factor to increased student motivation and engagement. In fact, the use of 

living plants in experiments was one of the most prominent contributors to authenticity 

for students. As mentioned previously, some students felt like they were “saving the 

babies” when their seeds germinated. Additionally, teachers in the focus group revealed 

how PS provided many students with a first-time, hands-on experience with plants. 

Many students did not know what plant science was before their PS experience. As 

students learned about plants and plant science, they often made connections between 
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humans and plants. Students also wrote in the online dialogues about the excitement 

generated by the inclusion of plants. “I am sooo happy because our seed actually 

sprouted over the weekend…I went out into the hall and said ‘I have not failed!’” 

Collaborative opportunities. The opportunities for collaboration also contributed 

to the authenticity of the experience for students. As Dan eloquently said, “Science is not 

done in a vacuum, and it’s certainly not done in secret.” Science is a collaborative 

endeavor (NRC, 2007), and unlike typical schoolwork, PS provided a collaborative 

context for scientific inquiry. Teachers in the focus group loved how PS enabled 

students to switch from individual activities to more collaborative and group-based 

scientific inquiry activities in which they communicated and exchanged ideas with other 

groups and with real scientists. In some cases, students got interested in other groups’ 

work and exchanged ideas in online discussions. Consider the following comment 

posted on an exemplary research project site by a student from a different school: 

I wish I would have caught on to your experiment earlier. It looks pretty 

awesome! I’m interesting in hearing what your results are. Just earlier today I 

was thinking about my own experiment and wondering if I should have used 

more phosphorus to stress my plants out in the “too much” group. Your 

experiment follows along with my thinking, only for all fertilizer and not just 

phosphorus….You guys have done an excellent job! I’ll be eagerly waiting for 

the results of your experiment. And thanks for commenting on my own team’s 

experiment! 
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Students in PS crossed classroom and school boundaries to not only 

communicate with scientists, but also share with other students involved in the same 

types of projects. In effect, they were participating in authentic scientific practices 

(Chinn & Malhotra, 2002) in a school classroom which led to increased engagement and 

motivation. 

The Context Most Affecting Teachers’ and Scientist-Mentors’ Strategies and 

Actions 

Context refers to the conditions within which participants take action and devise 

strategies (Strauss & Corbin, 1990). One of the main variables affecting teachers’ and 

scientist-mentors’ strategies was the motivational level of their students at a given time. 

Not only did students start PS with different levels of motivation, their motivations also 

fluctuated over the course of the experiment. The strategies and actions used by teachers 

and scientist-mentors, whether in person (i.e., teachers) or online (i.e., scientist-mentors), 

were dependent upon the engagement and motivation levels of their students at a given 

time. In other words, teachers and scientist-mentors tailored their strategies to fit the 

particular context. However, the end goal for both teachers and scientist-mentors was 

increased student engagement and motivation in the PS project.  

Strategies and Actions Affecting Student Motivation and Engagement in 

PlantingScience 

Teacher strategies. It is no surprise students most often turn to teachers for help 

in traditional school contexts (Zimmerman & Schunk, 2008). As a result, the strategies 

and actions teachers use to help students are of paramount importance. From a 
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motivational standpoint, teachers can play a huge role in how students feel about school. 

Perhaps the pressure on teachers to motivate students has grown, particularly in light of 

recent research revealing that many teachers believe one of their most important jobs is 

to motivate students and help them become responsible for their own learning (Bryan et 

al., 2011). While engaged in PS, teachers used several different strategies and actions to 

promote student motivation and engagement in the classroom (Figure 3.1).  

Fly-fishing. The pressures associated with standardized testing, for example, 

sometimes lead science teachers to “take control” of their classes and prepare students 

for upcoming tests through rote methods. Exerting greater control, however, can alienate 

students (Urdan & Turner, 2005). As students lose autonomy in learning, they become 

increasingly less confident in their abilities to do science (Schunk & Pajares, 2005), 

thereby explaining why motivation drops as students matriculate through grade levels. 

Eventually, these conditions contribute to highly controlled school environments that no 

longer resemble positive, motivating learning environments (Deci et al, 1991).  

In contrast to controlling environments, successful PS teachers incorporated 

strategies of “letting go.” By letting go, teachers turned the responsibility of learning 

over to students and allowed them to exert more independence and creativity. Kelly used 

the following analogy to explain what she meant by letting go.  

I kind of see it like fly-fishing. You let it out a little ways and maybe they are 

working on one or two parts of an inquiry. Then you pull it back in and debrief it. 

This [PlantingScience] is an example of where I have let my line out all the way, 

let them do what they need to do, then we will debrief it. 
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Similarly, Dan believed in letting students explore. He felt strongly that letting 

go was a necessary pedagogical strategy to develop students who were capable of going 

deeper in their learning.  

You have to let the kids do their thing. You have to let them pour dirt all over 

your floor, because that is what happens. …It’s not the end of the world. But 

you also need to teach them that you need to be accountable for that, you need to 

be more careful about that so it doesn’t happen more often. And then you have 

to let them come up with their dumb ideas and work them in to higher level 

thinking ideas. They are just so used to grabbing these low level thoughts and 

calling that education because that is what they have gotten away with for so 

long. 

According to Dan, meaningful learning was much more important than task completion, 

and teaching science as a process was critical if students were to understand scientific 

thinking. 

Digging deeper. Dan pushed students to go beyond the superficial and wrestle 

with larger ideas and explanations. “You need to explain why you think what is going to 

happen is going to happen. You need to do science.” He elaborated, “I always want their 

questions to be higher level questions. I always want them to look more deeply than they 

do.” Dan implemented PS to create an environment ripe for deeper engagement and less 

superficiality. Reflecting on this process, he mused,  

Most kids walk around with more content in their pocket than we can ever begin 

to teach...if you can Google it up, you don't need to memorize it...and we need to 
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allow that in the way that we educate. We need to teach kids to think. And 

PlantingScience is a way of thinking, a way of doing things that allows you, 

forces you to think, that causes you to be creative and that sort of thing. Those 

are the things, the benefits that we get from PlantingScience.  

In like manner, Kelly challenged her students, but in a slightly different way. Her 

style differences were more than likely the product of two factors: (1) different 

personality and, (2) the fact that her students were more experienced with inquiry and 

were further along in the inquiry cycle than Dan’s. Kelly was a masterful questioner, 

probing students on each team to take their analysis to another level, either by going 

deeper in their current direction or changing directions all together.  

From the beginning of PS implementation, Kelly established a culture of high 

expectations. She provided an immersion time before students started their experiments, 

effectively driving students to the literature, raising the levels of their research questions, 

and providing a solid foundation for subsequent research. 

I think that giving the first two to three weeks over to just letting them fish 

around has made all the difference in the world. At first they were coming up 

with real lame, basic questions, and they were not wedded to the questions. I just 

kept telling them, “Let's learn more about seeds and talk to your mentors.” And, 

I gave them some articles to read about gravitropism, phototropism, showed 

them some examples of experiments done by Darwin where he cut off the root 

tip and looked at the meristem growth. So then it piqued their interest more, and 

they've created questions they are more committed to. 
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While both Dan and Kelly expected more from their students, they also provided 

them with the necessary support to keep students engaged and not frustrated. In their 

own unique ways, both teachers used encouragement to keep motivation levels high and 

attitudes positive. 

Encouragement. Although intervening conditions will be discussed shortly, it is 

useful to interject that one intervening condition in particular, preexisting student 

characteristics, greatly influenced the specific encouragement strategies used by Dan and 

Kelly. Dan’s freshman biology students, by his own account and my observations, were 

not experienced with open-ended inquiry. As a result, Dan’s strategies in the classroom 

were somewhat different than those employed by Kelly, whose upper level high school 

students had more experience. 

Dan did not employ a “rah, rah” cheerleader-type of encouragement. Instead, he 

confidently challenged students to step up to new levels of responsibility and learning.  

I told them [students] very specifically at the outset [of the PS unit], “Now we 

are going to diverge, and we are going to be doing two things at one time. So 

we’re essentially doing what the other classes are doing [i.e., the standardized 

curriculum], but we are also doing this experiment. So that is going to be 

challenging for you all, but I think you are up to that challenge, and I think you 

will get it.” 

As mentioned previously, this was difficult for many students, and Dan constantly 

reminded them to be independent and quit using him as their primary source of 

information. Basically, Dan used a “heavy-handed independence” style of 
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encouragement. While he certainly did not dictate to students what to do and how to do 

it, he was demanding and persistent with his explicit reminders to “do science.”  

In contrast, Kelly used more traditional strategies of encouragement including 

positive reinforcement. Her students had enough experience with inquiry to be 

somewhat comfortable with the ambiguity, and they often needed just a positive 

comment to keep them going. Kelly did not use many heavy-handed independence 

tactics to push her students, an observation in stark contrast to Dan’s classroom.  

Scaffolding. Scaffolding is the term describing the assistance provided to 

learners by teachers as learners perform difficult tasks. Scaffolding helps students reach 

above their current proficiency level, but it is not a "permanent structure" within a 

learning environment. Instead, scaffolds are reduced over time to enable students to 

eventually learn and do things on their own (NRC, 2007). Effective scaffolding, 

therefore, is appropriate when it matches a learner’s current level of expertise. In novel 

and/or complex environments such as PS, scaffolding is particularly important. 

According to focus group teachers, scaffolding was necessary for effective PS 

implementation. New inquiry learners required more scaffolding, and the added 

complexity of online communication with scientists made the PS environment 

particularly challenging. One teacher commented, “The PS site is both novel and 

complex. Not only are students doing rigorous science, but they are also communicating 

with a new person. I do scaffolding so that the environment is not as novel or complex 

for my students.” Another teacher added, “For PS to work, scaffolding is critical. If 

students get frustrated, it is over.” Obviously, teachers employed scaffolding in an effort 
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to keep students engaged and motivated while participating in all of the nuances of PS. 

Specific scaffolding strategies varied by teacher. One teacher related, 

“Scaffolding can vary depending on the type of questions that are being asked. You 

make assumptions about what the students know and what they may not know.” These 

assumptions are dependent upon teachers’ knowledge of students’ preexisting 

characteristics and how students are progressing through the inquiry cycle. 

Kelly was great at scaffolding, always asking the right question at the right time. 

She also provided students with early supports for using the PS platform by 

incorporating innovative activities such as an online scavenger hunt.  

I had students conduct a scavenger hunt that was very successful. I had them look 

at the STAR [exemplary] projects and identify the dependent and independent 

variables, for example. Tell your students to familiarize themselves with other 

projects. Tell them to go see other projects. 

From all accounts, students became more independent in their learning over time 

through scaffolding efforts. This trend was reiterated by focus group teachers who 

shared how familiarity with the PS program reduced the complexity and increased the 

engagement of students over time. “When they do two grade-level projects in a row, 

there is an increase in their ability to do the experiments and use the platform,” one 

teacher commented.  

Mentor strategies. Without question, scientist-mentors are an integral and 

important part of the unique PS program. According to Ensher et al. (2003), good 

mentors provide informational support, encouragement, and positive examples for 
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mentees. In addition, mentors empower mentees to become self-sufficient through 

scaffolding. Ensher et al. (2003) also reported online mentoring provides additional 

benefits beyond traditional face-to-face interactions. For example, when online mentors 

communicate asynchronously through the Internet, limitations such as geography and 

time are neutralized.  

Many scientist-mentors involved in PS may have been unaware of their specific 

contributions to student motivation. However, several strategies were discovered that 

seemed to facilitate greater student motivation and engagement (Figure 3.1). 

Explaining complex concepts. Previous research involving the 17 exemplary 

scientist-mentor and student dialogues divulged that scientist-mentors explained and 

provided examples to students more often than they acted as authorities, confirmed 

student ideas, shared their own experiences, or offered advice (Scogin, Stuessy, et al., 

2013). Explanations varied, but scientist-mentors often used their time online to explain 

scientific processes and procedures to students. 

By four pots I mean 2 that have soil with barley seeds planted in them and 2 that 

[have] sand with barley seeds. This is what we call replicates. We replicate each 

treatment so we can determine whether or not our results are applicable in 

general. If we only had one pot of each treatment and something really weird 

happened like all the plants died or they never germinate, we wouldn't have 

another one just like it to look at and figure out if what happened is normal [or] if 

there was something weird going on with those particular seeds or soil. 

Replicates make your results more reliable. 
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In some situations, scientist-mentors were unsure how to follow up after 

students’ posts. For example, a focus group scientist-mentor relayed an experience when 

a student-team made the improper observation about seedlings growing faster when 

under stress. The scientist-mentor was in a quandary deciding whether to introduce the 

topic of stress: Were the students ready for that information? Had students covered the 

topic of stress in plants before? In these situations, the limitations of the online-only 

connection between scientists and the classroom were evident. As one teacher realized, 

“It must be difficult for the mentors to have disembodied information from the students 

and [not know the source of] some of the questions that students ask.” Nevertheless, 

scientist-mentors attempted to explain concepts regularly to their student-teams.  

Asking questions. Many scientist-mentors chose to engage students with 

questions instead of directives. Questions can be less threatening than direct comments, 

particularly when other social indicators such as body language and voice inflection are 

missing (like in asynchronous online textual dialogues). Questions such as, “What kind 

of data will you collect to determine which grows better?” and “What else do you think 

about this experimental design?,” did not infringe on student autonomy. In addition, 

questions required students to think carefully about their experiments and results.  

In one dialogue, a scientist-mentor, perhaps sensing students lacked relevant 

background knowledge, asked a provoking question to persuade students to think 

carefully about their interpretations of an outcome from their experiment. “Sugar is a 

good source of energy, but what do boron and calcium provide to the pollen tube? How 

do they help the pollen tube to grow, or do they?” In this example, the scientist-mentor 
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used a questioning strategy to provide some additional information but simultaneously 

challenged students to seek more information on their own. 

Encouraging students. Scientist-mentors also encouraged students often in the 

online dialogues. Exemplary project scientist-mentors frequently made comments such 

as, “I can’t wait to see what happens,” and “I look forward to seeing what you find out.” 

General encouragement was common, but scientist-mentors sometimes used more 

explicit strategies of encouragement, usually in response to students’ apathetic 

comments. 

Look at the bigger picture. When students posted disparaging comments, many 

scientist-mentors responded by providing connections between the science going on in 

the PS project with scientific endeavors occurring in the real world. For example, 

students on the Kitty Kats (pseudonym) student-team in Dan’s class wrote, “Personally 

I’m not a fan of science” and “I personally don’t like science. Science is kind of hard for 

me.” In response, their scientist-mentor offered a greater vision of scientific discovery 

and also outlined the historical and contemporary contributions of plants to the world.  

Just imagine all the questions you can ask and answer with science! And plants, 

oh the plants, they are so amazing! We wouldn’t be here without them! Early in 

our world’s history, small plants in the ocean converted carbon dioxide to 

oxygen, drastically changing the atmosphere and allowing animals to live and 

breathe. They are still today essential in converting carbon dioxide to oxygen, 

and without them we would all suffocate!...Besides just breathing, we depend on 

them for food and purifying our water….Take a minute and think about how 
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many different plants you eat everyday. Of course there are fruits, vegetables, but 

anything you eat with wheat, or corn is also made from plants! Even the meat 

you eat (if you eat meat) depends on plants!...So, plants in a word, are awesome. 

Do you believe me yet? I can go on and on if you are interested ;). 

Instead of berating the students for their short-sightedness and apathy, this scientist-

mentor tried to connect them to a bigger picture and see the relevance of plants and plant 

science. 

In other cases, scientist-mentors expanded students’ perspectives by making 

connections between what the students were doing in the classroom and what scientist 

were doing in the field. For example, one exemplary scientist-mentor explained to his 

student-team,  “I am a plant ecologist with a big interest in the effects of herbivores on 

plants, and your approach is very interesting to me because there are often times that 

herbivores can promote seed germination by munching through the seed coat.” Through 

this simple communication, the scientist was able to express how the students’ approach 

was similar to what she was doing as a professional scientist, thereby connecting 

students’ perspectives with a bigger picture. 

Showing empathy toward learners. In addition to painting a bigger picture, 

scientist-mentors also expressed empathy for students who disliked science. In response 

to derogatory remarks about science from his assigned student-team, a mentor posted, 

“I’m sorry to hear you ladies aren’t excited about science, but I understand. I know it can 

be hard and frustrating, but it can also be really fun.” 
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In another case, a student-team was unable to form a research question and 

posted their frustrations. Their scientist-mentor empathetically stated, “I know that 

getting started on a research project is the hardest part.” In a different dialogue, a 

student-team expressed annoyance regarding the unexpected demise of their fledgling 

plants. Instead of pointing out what they could have done better to keep the plants alive, 

the scientist-mentor responded with a gentle, “I am disappointed too, for you, but I am 

glad that you are carrying on!” Other scientist-mentors acknowledged difficulties with 

statements such as, “Science is always a challenge (even a small experiment)” and, 

“[Software program] is not easy to learn!” In most cases, scientist-mentors combated 

student-team frustrations with empathy and understanding as opposed to disgust and/or 

condemnation.  

Offering a hand. Few curricular programs offer K-12 students the opportunity to 

engage in regular and poignant conversations with professional scientists. These open 

and unique relationships do not form by happenstance, however. Scientist-mentors must 

be intentional and explicit in their efforts to build partnerships with their student-teams 

through the online portal. The online dialogues revealed several examples of scientist-

mentors extending their digital hands to students in partnership.   

 “I hope we will enjoy this together,” wrote one scientist-mentor from Dan’s 

class. When student-teams invariably came up against challenges, scientist-mentors 

emphasized how they were partners in the process and would help the team get through 

the difficulty. “Together we can determine whether the problem of drying out of plants is 
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a general problem or not, and just how to proceed to deal with it,” explained one 

scientist-mentor. 

When the inquiry project was drawing to a close, many scientist-mentors offered 

general statements about how much they enjoyed the experience of working together 

with student-teams: “I really enjoyed working with you, and wish you both the best of 

luck finishing the school year.” “It has been my pleasure working with all of you…Good 

luck in your future scientific endeavors!” All of these statements served as positive 

reflections of the relationships forged over several weeks of scientific partnership. 

Student Outcomes As a Result of Teacher and Scientist-Mentor Strategies 

Teachers and scientist-mentors used many applicable and diverse strategies and 

actions while doing PS. Think back to the examples of students who were not motivated 

about science at the beginning of their PS projects. When students struggled, scientist-

mentors explained, asked questions, encouraged, and offered a helping hand. Teachers 

provided more freedom, challenged students to go deeper, scaffolded, and encouraged. 

Student-teams’ responses to these actions and strategies were deemed student outcomes 

according to Strauss and Corbin’s (1990) paradigm model (Figure 3.1). The student 

outcomes as a result of PS participation formed a critical part of the grounded theory 

generated in this study. 

Sometimes, the actions and strategies of teachers and scientist-mentors made a 

difference in students’ motivation. For example, three weeks after their scientist-mentor 

made an empathetic post and tried to connect their work to a bigger picture, the Kitty 

Kats shared their changes in their experiment. “We changed our research question and 
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our research prediction. We decided to change it because of your [mentor’s] comments. 

We thought that we should change it after talking to you and our teacher.” In other 

words, the efforts of Dan and their scientist-mentor ultimately had an impact on how 

these students approached their project. The input of the scientist-mentor and teacher 

prompted students to put in extra effort to improve their project. This is only one general 

example of how the strategies and actions of teachers and scientist-mentors made a 

difference in student outcomes, but several additional student outcomes were uncovered 

including: (1) increased positivity, (2) willingness to take projects deeper, (3) more 

respect for scientists and plants, (4) better understanding of scientific concepts and 

procedures, (5) greater understanding of the nature of science (NOS), (6) commitment to 

collaboration and, unfortunately, (7) apathy toward science. 

Increased positivity. Baird’s journey exemplified how a student can become 

more positive after engaging in a PS project. Also, the Kitty Kats from Dan’s class 

exemplified increased positivity when they ended their online dialogue with, “Our 

experiment has ended, but it turned out very exciting.” The “saving our babies” team in 

Kelly’s class also expressed increased excitement as a result of participating in PS.  

Moreover, students often posted positively in response to mentor feedback. Many 

thanked their scientist-mentors with simple expressions like, “It was good to hear back 

from you. Thank you for giving us good advice.” Others expressed positive thoughts 

about the feedback itself. “I think that sounds like a good idea. I like it.” Some student-

teams used more affective expression than others when thanking scientists. One student-

team in Kelly’s class was especially affectionate toward their scientist-mentor, posting 
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“Thanks for complimenting our photos and giving us some suggestions…We greatly 

appreciate it! And we will also take you up on those suggestions to better our data. 

Thanks again [scientist-mentor’s name], you are so inspiring…;).” 

Willingness to go deeper. Dan spoke frequently about using PS as a way to 

motivate students to go deeper in research and knowledge-seeking. It was evident many 

student-teams went above and beyond basic engagement during their PS projects. For 

example, one student-team was surprised to find that green tea extract helped their plants 

grow faster. When asked by their scientist-mentor why they felt this was occurring, they 

responded, “Antioxidants could have been a factor helping the green tea [treatment]. 

Antioxidants help plants protect themselves from stress from intense sunlight and 

growing in harsh conditions.” These students had completed outside research to come to 

this conclusion, indicating a willingness to go deeper. 

Students were also willing to use new equipment to answer their research 

questions. One student-team had a long conversation with Kelly about how to measure 

the rhizoids of their tiny plants without damaging them. Ultimately, with direction from 

Kelly, they decided to use a special software program to analyze pictures of the plants 

and determine lengths of the rhizoids in an unobtrusive fashion. They gleefully reported 

to their scientist-mentor, “We are planning on taking pictures of the seeds, then with a 

certain software we have we will be able to measure the length of the rhizoids.”  

Through collaboration, another student-team in the class adopted this method and 

reported to their scientist-mentor: 
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We will be using Logger Pro and a camera to show the growth and direction of 

the seeds. By using a ruler in the pictures, we think we can scale it in the 

computer program so that we can see even the smallest change in the direction 

and growth. Logger Pro will also help us make graphs that show our data clearly. 

Please comment back and tell us what you think! 

The willingness of these students to learn a new software program signified their 

willingness to go deeper. The excitement with which they shared these ideas with their 

scientist-mentors was also indicative of the motivation and buy-in they had for their 

respective PS projects. 

A final piece of evidence indicative of deeper engagement on the part of students 

was how willing students were to question their procedures and collaborate within their 

student-teams and with their scientist-mentors on ways to improve the process. Students 

were extremely conscious of their work, often going to painstaking lengths to insure 

consistency and accuracy in both the care of the plants and in data collection. Instead of 

blowing through the procedures and having a “whatever” attitude, many student-teams 

systematically identified potential problems and were willing to redo things when 

necessary. For example, after imbibing seeds for almost half of a class period, one team 

member spontaneously threw up his hands and shouted, “We should have measured 

them before putting them in water!” After a quick collaboration, the team agreed to start 

over with new seeds, this time making sure to mass the seeds before starting imbibition. 

Similarly, other students were willing to go the extra mile during the PS project, often 
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coming in outside of their normal class hours to check results and take care of their 

plants. 

More respect for scientists and plants. Good communication between scientist-

mentors and student-teams helped students realize scientists were "real people with real 

jobs." Teachers reported students saw scientists as “cool” after a PS project. Also, 

several teachers remarked how PS changed learners’ attitudes about plants. Instead of 

“boring,” students came to view plants as “neat” and interesting.  

Better understanding of scientific concepts and procedures. In most cases, 

student-teams were eager for scientist-mentors’ help, whether it was related to content 

questions or procedural issues. General questions like, “Should we limit ourselves to two 

different seeds, or should we try to experiment with more than that? How many would 

you recommend?” and, “Do you have any suggestions for us this far?” were common. 

Students also looked for support on more specific questions. “Do you think that they 

need more sunlight because they were slightly covered with the paper towel while in the 

dish? We don’t know what to do…” 

In many instances, students acknowledged that scientists’ explanations helped 

them understand concepts and scientific procedures better. Common student feedback 

included comments like, “I learned a lot from your comments and will be sure to take the 

advice and the things I have learned into account in future experiments” and, “Your 

knowledge is a gift, and it was so helpful.”  

Greater understanding of NOS. Students also became familiar with the culture 

of authentic science through their participation in PS. Feedback emphasizing the nature 
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of science was commonly provided by scientist-mentors in the online dialogues. 

Learning about NOS issues was new for many students. One teacher expressed, “In class 

they [students] do not get what science is. PS provides opportunities for them.” Another 

focus group participant echoed the sentiment that PS offered more real-world experience 

than what students normally got in the science classroom. Although students were taught 

science process skills and scientific methods at school, PS gave them real variables 

within the context of scientific inquiry and allowed them to have conversations with 

scientists about their authentic projects. 

Dan emphatically heralded the way PS provided relevant experiences to 

supplement book knowledge.  

I like the fact we were able to take this experiment that we are doing and relate it 

back to what we studied. To remember that the scientific method that we studied 

first talks about observing, questioning, creating a hypothesis, then doing the 

experiment. So here are these steps that we just did in real life, based on what 

we were talking about. And this is one way we do science. Trying to directly 

connect what we are doing with the fact that science is a way of knowing, 

science is a collaborative effort. We are collaborating with scientists, we are 

showing our work to the world. 

Commitment to collaboration. Dan offered an insightful reflection on the value 

of teaching students about collaboration. “Science is not done in a vacuum, and it’s 

certainly not done in secret,” he mused after a day of PS activities. “Talk to the class 

about it [PS project]. Talk to the world about it!” he constantly encouraged his students. 
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Other teachers agreed that students needed to participate productively in science through 

collaboration, and, by all indications, students enjoyed doing so through their 

participation in PS.  

I was especially impressed with how Kelly’s students showed genuine interest in 

other student-teams’ projects. One particularly novel project in her class was an 

investigation of the effects of motion on seed germination rates and subsequent seedling 

growth. Students in other sections who saw the project began to actively communicate 

with this group via the asynchronous portal. One student posted, “I’m excited to find out 

why that is doing that [beans are losing mass].”  

Kelly’s students consistently cross-pollinated other online dialogues with 

relevant observations and questions. In most cases, it was evident students had taken 

time to familiarize themselves with the project before posting. Comments included, 

“You have good questions. I think the most interesting question is if seeds can still be 

planted and grown after they have been cooked.” Other students asked questions, such 

as, “What kind of seeds do you think you could use? Would anything depend on the size 

of the seed?” and “Saran wrap was probably the best way to go. Great job! Looking 

forward to your results (:.” 

Apathy. Although PS was and is an overtly successful program that has been 

called many superlatives such as “magical,” it is not a cure-all for student apathy. On 

occasion, in spite of the best strategies and efforts of PS curriculum developers, teachers, 

and scientist-mentors, students responded apathetically to the program.  
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For some of the learners in Dan’s classroom, the novelty of the project and the 

fact that it required a lot of independent action was too much to handle. Some of these 

students apathetically crawled along, constantly needing Dan’s prodding verbiage to get 

anything accomplished. These students included one girl who constantly complained and 

sat in her chair with her hoodie pulled over her head. Another was a boy who sat at the 

back of the room, directly in front of the observation video camera. He had to be 

awakened multiple times by his tablemates who enthusiastically kicked the table leg to 

disrupt his restful slumber.  

One entire student-team in Dan’s class never really engaged in their project. 

They introduced themselves to their scientist-mentor and began as any other team with 

their projects. Their scientist-mentor was responsive, consistently posting appropriately 

and trying to generate some enthusiasm. Dan even posted in the online forum, which 

was very uncommon. He wrote, “You are currently way behind…you need to show the 

world what’s up.” Instead, this student-team never posted again, leaving their scientist-

mentor to write, “I haven’t heard from you in a while, and I’m interested in knowing 

how your work is going.” 

It is interesting to note that halfway through the project, this student-team posted, 

“Our Canadian thistle hasn’t sprouted yet, there is something wrong.” The next day, they 

followed with, “The Canadian thistle still hasn’t sprouted, even though the book said it 

would in two days. We even put more in a Petri dish and they didn’t sprout either. We 

did some research and found out that they had been heat treated.” While it is beyond the 

scope of this study to ascertain what happened to this team, it stands to reason that they 
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may have lost their motivation due to their plant’s failed germination. As I discussed in 

previous parts of this manuscript, working with live plants motivated students, and the 

inability to successfully germinate a living plant may be demotivating. Without a plant, 

the students had nothing to share with their mentor. 

While these examples show PS is not perfect, I think it is appropriate to mention 

that in spite of these shortcomings, I witnessed a palpable difference in classroom 

climate when students worked on PS versus when they worked on other assignments. As 

mentioned previously, both Dan and Kelly used other activities at times to “keep up with 

the standardized curriculum.” When students were involved in these activities, 

conversations were more disparate, off-task behavior was more common, and student 

attention waned noticeably more than when students engaged in PS work. 

Intervening Conditions Influencing Teacher and Scientist-Mentor Engagement 

Strategies 

Strauss and Corbin (1990) defined intervening conditions as “structural 

conditions bearing on action/interactional strategies that pertain to a phenomenon” (p. 

96). Three intervening conditions emerged in this study that affected the strategies used 

by teachers and scientist-mentors. These intervening conditions included the curricular 

module, orchestration of the learning environment, and preexisting student 

characteristics. 

Curricular modules. PS curricular modules included the content and formed the 

basic structure of the botanical investigations. According to focus group teachers, well-

constructed modules provided scaffolding for learners, direction for the teacher, and 
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opportunities for the involvement of scientist-mentors. Successful modules, according to 

the focus group, allowed for maximum student creativity through open-ended inquiry. A 

successful module combined novelty, discrepant events, and multiple variables in such a 

way that students could “muck around” to learn how the variables affected each other.  

Both Kelly’s and Dan’s students were involved in The Wonder of Seeds 

germination module. Focus group participants noted how this module, in particular, met 

all of the necessary criteria for good inquiry. As a result, the module was a positive 

intervening condition in both sets of classroom observations performed in this study. 

Under differing circumstances, however, a module allowing less freedom or 

opportunities for students and scientists to communicate might contribute negatively to 

student motivation. 

Orchestration. While orchestration traditionally refers to the role of the 

classroom teacher in managing the science-learning environment (e.g., see NRC, 2007; 

Michaels, Shouse, & Schweingruber, 2008), the complexity of blended environments 

such as PS requires orchestration be shared amongst all participants. Focus group 

participants agreed that orchestration of the complex learning environment was an 

important condition related to the success of PS. Orchestration was easier when 

participants understood their roles, established clear channels of communication, and 

developed their own strategies for managing time. In contrast, breakdowns in 

communication and unclear expectations severely limited the effectiveness of PS and led 

to problems with teachers letting go and scientists having the opportunity and the 

foreknowledge to effectively mentor students. Consequently, student motivation suffered 
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when orchestration weakened. 

One of the most obvious ways Dan and Kelly orchestrated the PS project was by 

providing time on the computers for students to communicate with scientist-mentors. 

Both teachers were explicit in their instructions to keep scientist-mentors in the loop. 

Both classrooms had access to technology through laptops brought into the classroom on 

mobile carts or by hand. Keeping open lines of communication with scientists was an 

obvious priority for both teachers.  

Focus group teachers echoed the importance of orchestrating time and 

opportunity for students to communicate with scientists. One teacher said her role was 

“to encourage kids to interact with their mentors.” Another teacher stated, “I try to 

basically reinforce the idea that the mentor is the expert.” Another explained how she 

often gave students explicit directions to “complete their posters and speak to the mentor 

and post in their journal.” When all parties recognized the “need for deeper 

communication all around” and took steps to keep communication open and consistent, 

students seemed more engaged in the PS projects. 

Successful orchestration was also dependent on experience. For some teachers, 

particularly those who micromanage student behavior, PS is not a good fit. Even Kelly 

admitted having trouble adjusting in her early years of PS implementation. “You have to 

lower your expectations on control and management because this goes on longer than 

any other inquiry I have done with my students…I now view that as a positive, but I 

didn’t the first year.”  
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In general, PS seemed far less complex as participants became more familiar 

with the program. For teachers who chose to persevere, orchestration became simpler as 

they discovered and developed new strategies to reduce the overall complexity of the 

innovative PS learning environment. One teacher admitted, “It was difficult for my first 

classes, but I have persisted and it has gotten better.”  

The same can be said of the relationship between scientist-mentors and PS. 

Although mentors never physically entered the classroom, complexity decreased for 

them over time. Orchestration became simpler when they developed their own strategies 

and game plans to communicate with and support students through the online portal.  

Student characteristics. Two preexisting qualities of students served as 

intervening conditions affecting how teachers and scientist-mentors interacted with 

students and how students engaged in the PS project. The first was student experience 

with inquiry in general and perhaps PS in particular. When focus group teachers 

discussed this factor, they agreed that more experience typically associated with greater 

engagement and motivation. One veteran teacher shared, “When they do two grade-level 

projects in a row, there is an increase in their ability to do the experiments and use the 

platform.” These teachers also discussed how students built on previous year’s studies to 

create even better projects. “Students who talk to each other from year to year or repeat 

PS during the same school year increase project quality.” However, teachers were quick 

to point out that just because students were new to the project did not mean they could 

not produce quality projects and be excited about PS. “There is a steep learning curve, 

but you know when they get it,” offered one teacher. 
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The second property of preexisting student characteristics affecting strategies and 

engagement was students’ motivation level at the beginning of the project. When 

students were apathetic in the beginning, as evidenced by comments such as, “Botany 

isn’t my favorite subject in school,” and “Science is not my strongest class,” teachers 

and scientist-mentors used different strategies than when the students came into the 

project motivated and excited. For example, scientist-mentors facing apathetic students 

used strategies of encouragement such as looking at the bigger picture and empathy 

(Figure 3.1). Contrarily, when dealing with students who “love plants and am very 

excited to do this project!” scientist-mentors were more likely to ask questions and offer 

their partnership. 

Lots of Moving Pieces 

PS is a complex learning environment composed of sophisticated cogs that 

intricately fit together to form a complex system that, in the best cases, leads to student 

motivation and engagement (Figure 3.1). While several causal conditions were 

identified, they were not independent components. To the contrary, the causal conditions 

were influenced by the strategies and actions of teachers and scientist-mentors. The 

strategies and actions of teachers and scientist-mentors depended upon intervening 

conditions that were affected by context. Moreover, all components had properties and 

dimensions that changed in real-time and consequently affected all other variables in a 

slightly different way (Table 3.3). Nevertheless, the grounded theory outlined in this 

study provided a robust understanding of why PS was successful in many cases. 
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However, further insight was sought through evaluation of PS using a well-developed 

theory of motivation. 

Putting the Pieces Together: Evaluating PS With Self-Determination Theory 

Motivation should be an important consideration for the development and 

delivery of science instruction because evidence suggests a relationship between student 

motivation and better academic performance (Lepper, Iyengar, & Corpus, 2005; Pintrich 

& De Groot, 1990), increased conceptual learning and enhanced memory (Grolnick & 

Ryan, 1987), greater enjoyment of school (Ryan & Connell, 1989), and reduced anxiety 

(Deci et al., 1994; Deci et al., 1991). Systematically evaluating motivation allows 

researchers to study motivational supports and develop ways to enhance the motivational 

conduciveness of learning environments. By filtering the grounded theory developed in 

this study through SDT, the explanatory power of the model explaining PS’s success is 

increased, and the specific factors contributing to student motivation can be seen in light 

of their contribution to students’ motivational resources (i.e., autonomy, competence, 

and relatedness).  

However, I must note that some students’ motivation for engaging in PS may be 

intrinsic in nature. Intrinsically motivated people engage in a given behavior or activity 

strictly for the satisfaction or pleasure of the behavior or activity itself (Deci et al., 1991; 

Ratelle et al., 2007; Ryan & Deci, 2000a). In these situations, people may participate in 

an activity or behavior even in the absence of autonomy, competence, or relatedness 

supports (Deci & Ryan, 2000). I mention intrinsic motivation because many teachers 

reported students were engaged by the novelty and intrigue of working with live plants. 
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Since novelty usually wears off quickly (Ryan & Deci, 2000b), it is unlikely students 

sustained their motivation based strictly on the novelty of working with plants. However, 

the possibility exists that some students liked PS for reasons other than how it supported 

their psychological needs of autonomy, competence, and relatedness.  

In this evaluation stage using Eisner’s (1985) model, the strengths, weaknesses, 

opportunities, and threats to student motivation were evaluated using a deductive coding 

approach (Miles et al., 2014). I used the preexisting codes of autonomy, competence, 

and relatedness to analyze the data streams and determine how the various factors 

associated with PS contributed to students’ motivational resources. Internal factors were 

defined as those inherent in the structure of the PS program such as curricular modules, 

the online portal, etc. External factors were defined as the variables outside of the PS 

program’s immediate control such as teachers’ and scientist-mentors’ strategies. Results 

are reported using a SWOT analysis format (Helms & Nixon, 2010). 

Strengths and weaknesses were internal factors either contributing to or 

detracting from the support of students’ psychological needs according to principles of 

SDT. Each basic psychological need (i.e., autonomy, competence, relatedness) was 

considered separately.  

Autonomy 

Strengths. According to SDT, nothing promotes motivation like autonomy (Deci 

& Ryan, 2000). Focus group participants reported how students’ attitudes about their 

projects improved and their sense of responsibility increased through PS participation. 

Evaluation uncovered many autonomy-supporting strengths of the PS program (Table 
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3.4).  

Students owned the experience because they were empowered to ask questions, 

design experiments to answer those questions, and ultimately evaluate their own 

projects. The opportunity to do so was, in part, from the open-endedness of most PS 

curricular modules. The sense of freedom and empowerment satisfied the basic 

psychological need of autonomy. From an SDT perspective, there is little wonder that 

Student Empowerment was identified as one of the causal conditions leading to student 

motivation (Figure 3.1).  

Students’ responses to autonomy in a science class are not surprising because 

even professional scientists are influenced by autonomy. Many scientists choose to 

pursue questions of their own choosing. The autonomy scientific pursuit provides can be 

invigorating, and PS has managed to capture a little magic for students. Students 

engaged in tasks that were new and exciting from their perspectives, pursued answers to 

questions of their own making, and had the full partnership of professional scientists. 

Few science classroom activities provide the amount of autonomy students feel when 

engaged in authentic experiences like PS. 

Another autonomy-supportive strength of PS was related to online interactions. 

Online Mentor Interaction was identified in the grounded theory as a causal condition 

(Figure 3.1). Online Mentor Interaction obviously had a strong connection to 

relatedness, but the online part related directly to autonomy. Scientist-mentors 

communicated with students strictly through the online portal, and research suggests this 

type of interaction can be supportive of student autonomy because students are less  
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Table 3.4 
 
Results of SWOT Analysis 

 

   
Basic Psychological Needs 

  Autonomy Competence Relatedness 

Strengths 

 • Most modules open-
ended and provide 
student choice 

• Students empowered to 
own projects 

• Students experiencing 
authentic scientific 
pursuit 

• Online interaction with 
scientists can be less 
intimidating for 
students 

• Students develop sense 
of success 

• Most modules provide 
ideal challenge 

• Posting requires 
metacognitive thinking 
before responding 

• Students working in 
collaborative groups 

• Students partnering with 
scientists  

• Public sharing of student 
work on website 

 
    

Weaknesses 

 

• Some modules are less 
open-ended, providing 
reduced student choice 

• Online communication 
can be intimidating 

• Some modules have 
complicated setups and 
difficult analytical 
procedures 

• Some students unable to 
get accurate perceptions 
of online scientist-
mentors 

 
    

Opportunities 

 • Teachers relinquishing 
control and giving 
responsibility to 
students (fly-fishing) 

• Teachers valuing 
student ideas 

• Scientist-mentors 
partnering with 
students in autonomy-
supportive manner 

• Teachers challenging 
and scaffolding students 

• Scientist-mentors 
explaining and asking 
questions 

• Teachers and scientist-
mentors giving positive 
reinforcements to 
students 

• Teachers willing to start 
programs like PS 

• Teachers promoting 
collaboration 

• Scientist-mentors acting 
as significant others who 
foster internalization 

 
    

Threats 

 
• Teachers and/or 

scientist-mentors 
exerting too much 
control over students 

• Teacher and/or 
scientist-mentors 
“talking over heads” of 
students 

• Student misconceptions 
about “failure” 

• Communication 
breakdowns on the part 
of students, teachers, 
and/or scientist-mentors 
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likely to be intimidated by “experts” in online communication as opposed to face-to-face 

(Ensher et al., 2003). In the PS program, this fact could play a key role in students’ 

willingness to share openly with scientists. If scientists were present in the classrooms, 

students may be less engaging and conversant because they feel threatened or 

intimidated by scientists’ physical presence. 

In addition to physical absence, scientists do not participate in disciplinary 

correction and grading, two activities known to suppress feelings of autonomy (Deci et 

al., 1996). The roles of teachers and scientists may therefore be separate in the minds of 

students, a phenomenon allowing scientists to provide autonomy support for students in 

atypical ways. 

 Weaknesses. Few things about the internal workings of PS infringed on student 

autonomy. Most threats to autonomy were external factors and will be discussed in a 

forthcoming section. However, one factor mentioned by focus group participants as 

somewhat threatening to autonomy was how certain curricular modules provided less 

freedom for students to choose their own experimental path. Students were not as 

motivated when modules followed a more traditional, structured activity format. Since 

both Dan and Kelly’s students used an autonomy-supporting module, The Wonder of 

Seeds, I did not observe this weakness in classroom observations.   

Competence 

Strengths. According to SDT, participating in an activity with confidence 

supports competence and fosters motivation. Urdan and Turner (2005) wrote, “Students 

are more likely to engage in and persist in an activity, and they exert more effort during 
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the activity, when they believe they are able to succeed at the activity” (p. 301). In PS 

classrooms, learners gained competence over time, in part because of the 

accomplishment they felt from being successful “scientists.” A focus group teacher 

shared her personal evolutionary experience of watching a classroom of timid, unsure 

students transform into confident and excited learners. I also witnessed increasing 

competence in Dan and Kelly’s students.  

In addition to feelings of success, PS challenged students with its content and 

process requirements. Plant science is often left out of state curriculums, so many 

students do not have experiences working with living plants or direct knowledge about 

plants. For the most part, focus group teachers believed PS modules provided enough 

novelty and complexity to challenge students, yet were not so complicated that students 

got overwhelmed. Challenges that do not overwhelm support competence (Reeve, 2002). 

One final way PS supported student competence was by requiring students to 

consider online feedback carefully before responding through the asynchronous portal. 

Because students were required to read scientist-mentor comments before responding, 

most underwent a metacognitive process requiring them to reflect and revise their 

thinking before typing. According to Garrison (2011), this step is a unique feature of 

online asynchronous learning environments and promotes competence in students. 

Weaknesses. The student-team mentioned earlier, the Fantastic Four, was a team 

who felt inadequate at times during PS. Their comments during class like, “We don’t 

want to look stupid,” were indicative of a group who may have been intimidated by 

communicating with a scientist online. While some students see this arrangement as 
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autonomy-supportive (Table 3.4), others can be intimidated by a professional reading 

their comments. Teachers from the focus group verified that many students were 

sometimes afraid to post because they thought their responses might reflect poorly on 

them.  

Another potential weakness relative to competence was the claim by some 

teachers that certain PS modules required students to use complicated setup and 

analytical procedures. Under these conditions, students sometimes got overwhelmed, 

lost motivation, and quit. I did not observe this particular challenge with students 

engaged in The Wonder of Seeds module, but upon inspection of other modules, The 

Wonder of Seeds did appear to be one of the least setup-intensive modules offered by PS.  

Relatedness  

Strengths. Students enjoy working in groups (Patrick & Middleton, 2002), and 

PS allowed students to work in collaborative groups as they engaged in authentic science 

learning in the classroom. Students were not limited to interaction inside the classroom, 

however, because the online portal connected them to scientists working all over the 

world. Most students were excited about communicating with a mentor, and they 

relished the opportunity to connect with “scientist celebrities.”  

Evaluating from a SDT perspective, the feelings of inclusiveness fostered by PS 

helped explain its power to motivate and engage students. “Human beings are 

fundamentally and pervasively motivated by a need to belong…” (Baumeister & Leary, 

1995, p. 522). PS opened doors for multiple opportunities to interact both in the 

classroom and through the Internet, therefore fully supporting student needs of 
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relatedness.  

Students also enjoyed connecting with others through the public website. Focus 

group teachers reported how much students loved to see their projects online and 

expressed excitement about “going public” with their experiments. While visiting 

Kelly’s classroom, I witnessed boosted morale when two of her teams were featured in 

the exemplary (STAR) section of the PS website. When the student-teams heard they 

were featured, they immediately went to the PS website to see their pictures and project. 

These students were visibly excited by this unique taste of participative science.  

Weaknesses. While the text-only asynchronous communication associated with 

PS was both autonomy- and competence-supporting (Table 3.4), it sometimes limited 

students’ ability to connect with their scientist-mentors. Some students harbored 

misconceptions about scientists that were hard to overcome with text-only 

communication and no face-to-face interactions.  

For example, a teacher admitted, “Even with the mentor's picture online and a 

profile, the students do not connect their mentors with being real people.” Another 

commented, “It’s hard to get students to see mentors as real.” Dan was also challenged 

by the difficulties involved in getting students to realize their mentors were real people. 

“The connection between what they do online and real people, I don’t know if students 

ever make that connection completely....If we can make that transition with students, I’d 

be happy.” I must mention, however, that without the online communication offered by 

PS, many of the students in this study would not have had the chance to be mentored at 

all, much less by a professional scientist. 
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In addition to internal factors, external factors affecting students’ basic 

psychological needs were also considered. Opportunities and threats referred to external 

characteristics either contributing to or detracting from support of students’ 

psychological needs. More specifically, consideration of external factors was limited to 

variables outside of the PS program’s immediate control (e.g., frequency of scientist-

mentor comments, etc.) and directly related to teachers’ and scientist-mentors’ strategies 

and actions. Each psychological need (i.e., autonomy, competence, relatedness) was 

considered separately. 

Autonomy 

Opportunities. Teachers have a great opportunity to contribute to student 

autonomy by the fly-fishing method. Fly-fishing, remember, was the name given by 

Kelly to letting go in the classroom and turning responsibility for learning over to 

students. In most cases, PS provided opportunities for students to experience freedom in 

their selection of research questions, methods, and interpretations. However, teachers 

must respect students’ choices, and teachers must work hard to develop a classroom 

environment that is non-controlling and autonomy-supportive. When teachers value 

students’ ideas and opinions, a climate of cooperation is established, and the opportunity 

for students to take charge and flourish is realized.  

Scientist-mentors best supported autonomy when offering a hand in partnership 

to students over the course of the inquiry projects. By partnering and not exerting control 

or authority over the projects, scientist-mentors helped maintain and even enhance 

student feelings of autonomy.  
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Threats. From both teacher and scientist-mentor perspectives, controlling 

behavior was the greatest threat to student autonomy. Control alienates students, causing 

them to lose motivation (Urdan & Turner, 2005). In this study, controlling behavior on 

the part of the scientist-mentors was associated with at least some of the frustrations 

experienced by student-teams. While controlling behavior was not observed often in 

classrooms, the fact that so many teachers in the focus group admitted how letting go 

was difficult for them indicated control can be an issue, even for experienced PS 

teachers. 

Competence  

Opportunities. From the findings of this study, competence support comes 

naturally to educators. The vast number of strategies and actions used by teachers and 

scientist-mentors were associated with competence support. For example, teachers 

supported student competence by scaffolding, challenging students to go deeper, and 

providing encouragement. Similarly, scientist-mentors supported competence by 

explaining, asking questions, and encouraging (Table 3.4).  

Both teachers and scientist-mentors used encouragement as a strategy. According 

to SDT, positive reinforcement is the best competence-supporting form of 

encouragement (Reeve et al., 2004). According to Reeve et al. (2004), positive 

reinforcement is giving praise to another in a way that preserves a sense of autonomy 

and specifically refers to an action or skill on the part of the person receiving the 

compliment. For example, in PS, mentors sometimes posted comments like, “I’m 

impressed with your observations and the questions you have developed,” “Good 
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deductions on my question,” or “You have done a very nice job stating your research 

prediction and describing your independent and dependent variables…a very solid 

experimental design.” These comments illustrated positive feedback because they 

specifically identified something the student did well (e.g., developed a good research 

question). Comments linked to specific traits and actions are much more competence-

supportive than a general comment like, “Good job” (Deci & Ryan, 2000). Therefore, 

teachers and scientist-mentors should take the opportunity to use positive reinforcement 

because it increases motivation (Deci et al., 1996; Ryan & Deci, 2002).  

Threats. As mentioned earlier, some curricular modules may be too complex and 

overwhelm students, thus reducing feelings of competence. Teachers and scientist-

mentors can also overwhelm students by “talking over the heads” of students. This 

action on the part of teachers and scientist-mentors represents a legitimate threat to 

student competence.  

Another threat to student competence was related to students’ perceptions of 

failure. When students did not obtain results confirming their original scientific 

predictions, they sometimes thought the experiment was a failure and lost confidence. 

Scientists in the focus group were adamant about teaching students the benefits of 

failure, particularly emphasizing the difference between failing in an achievement 

context (i.e., tests) versus getting unpredicted results in a scientific investigation. So, 

while this misconception is a huge threat, there is also an enormous opportunity for 

teachers and scientists to correct it by intentionally addressing it with students. 
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Relatedness 

Opportunities. Teachers have opportunities to foster relatedness by 

orchestrating collaborative, open environments where students are free to engage each 

other while conducting PS experiments. Likewise, scientist-mentors have opportunities 

to speak into the lives of young people by establishing meaningful relationships with 

students.  Although the difficulties associated with online relationships have been noted 

in this study, the relationship between students and scientists is perhaps the greatest 

contributor to student motivation. Mentors can nourish the motivational resources of 

students, and the implications for the development of future learning environments is 

exciting. 

One of the enduring mysteries of education is how to engage learners. According 

to the SDT framework, motivation suffers in school environments because school is 

typically not intrinsically motivating, and the school environment does not usually 

support student autonomy, competence, or relatedness. However, if certain conditions 

changed, SDT predicts students could develop motivation for tasks that were not 

previously motivating (Ryan & Deci, 2002). This process, known as internalization, 

occurs in individuals when a value or action that is not intrinsically motivating becomes 

personally endorsed over time (Deci & Ryan, 2000; Ryan & Deci, 2000a). 

In several SDT studies, three primary conditions were reported to increase 

internalization. These conditions included: (1) providing a rationale for the activity or 

behavior, (2) establishing interpersonal relationships emphasizing choice over control, 

and (3) acknowledging negative affect (Deci et al., 1994; Deci & Moller, 2005; Reeve, 
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2002). Interestingly, all three conditions require input from a significant other. Someone 

provides a rationale to the unmotivated person, someone develops a relationship with the 

unmotivated person and provides choice, and someone acknowledges the negative 

feelings of the unmotivated person. Relatedness, therefore, plays a critical role in 

internalization (Ryan & Deci, 2002). In educational contexts, the significant other is 

often a parent, teacher, coach, or mentor (Koestner & Losier, 2002). 

The strategies and actions of scientist-mentors discovered in this study (Figure 

3.1) indicate that mentors used many internalizing strategies, whether conscious of the 

fact or not. For example, empathetic comments closely paralleled the principle of 

providing a rationale for an activity as defined by SDT. When scientist-mentors 

connected student-teams’ experiments with their own work or described how plants were 

important to all life on earth (i.e., providing a bigger picture; Figure 3.1), they provided a 

rationale by helping students understand the importance of that particular part about 

plants or plant biology.  

In like fashion, scientist-mentors who offered themselves as partners (not 

controlling authorities) to the student-teams were effectively establishing interpersonal 

relationships while protecting student autonomy. When students complained and 

scientist-mentors showed empathy, they were acknowledging the negative feelings of the 

students in a manner consistent with an internalizing strategy.    

Internalization is of primary importance in schools because, as mentioned 

earlier, school for many students is not intrinsically motivating (Ratelle et al., 2007). As 

a result, internalization facilitated by relatedness may be the pathway to self-determined 
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behavior. Since “the primary reason people are likely to be willing to do the behaviors 

[not interesting to them] is that they are valued by significant others to whom they feel 

(or would like to feel) connected” (Ryan & Deci, 2000a, p. 64), finding a significant 

other is paramount to promoting motivation in schools. Perhaps scientist-mentors filled 

this role as significant others. If so, the mentoring component used by PS provides a 

wonderful model to promote student motivation on a grander scale.  

Threats. Since communication is absolutely essential to relatedness, it is not 

surprising that the biggest threat to relatedness and, therefore, motivation is lack of 

communication. PS has many moving parts, so several pieces must fit together to keep 

lines of communication open. Students, teachers, and scientist-mentors are all 

responsible for keeping lines of communication open.  

For example, if student-teams do not post in the asynchronous forum, 

connections with scientist-mentors cannot be established. If teachers poorly orchestrate 

the learning environment and do not offer students either the time or the equipment to 

post online, communication ceases. If teachers do not allow students to collaborate in the 

classroom, relatedness suffers. Finally, when scientist-mentors fail to post, possibly due 

to busyness, forgetfulness, apathy, or lack of access to technology, they are directly 

responsible for communication breakdown. In all of these cases, communication falters 

and the connections and feelings of belongingness necessary for establishing relatedness 

are lost. Therefore, all threats to relatedness are potentially devastating to student 

motivation. 
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Final Thoughts 

Motivation should be an important consideration for the development of science 

curriculum and the delivery of science instruction for one simple reason: “Motivation is 

highly valued because of its consequences: Motivation produces” (Ryan & Deci, 2000b, 

p. 69). Evidence suggests a relationship between student motivation in science 

classrooms and increased scientific literacy (Bryan et al., 2011), as well as with students’ 

perseverance in science learning (Patrick & Middleton, 2002). Systematic and in-depth 

qualitative studies, like this one using Eisner’s (1985) Connoisseurship/Criticism model, 

allow researchers to unobtrusively study motivation in genuine contexts and uncover 

specific factors relating to the motivational conduciveness of unique learning 

environments like PS. 

Summary 

The driving question for this study was, “Why is PlantingScience successful?” I 

analyzed multiple data sources using inductive and deductive qualitative methods. This 

analysis allowed me to describe, interpret, and evaluate the PS program and its 

implementation. My examination revealed specific factors contributing to the success of 

this innovative program which were assembled into a comprehensive theory using 

Strauss and Corbin’s (1990) paradigm model (Figure 3.1). Specifically, I linked the 

conditions, contexts, strategies, and actions contributing to student motivation to develop 

a grounded theory for student motivation and engagement.  

I subsequently used deductive methods (Miles et al., 2014) and self-

determination theory (Deci & Ryan, 1985) to analyze the results from an established 
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theoretical perspective. The results of this step increased the power of the theory to 

explain why students experienced higher motivation levels when engaged in PS. Finally, 

I employed a SWOT analysis (Helms & Nixon, 2010) to connect the factors to 

autonomy, competence, and relatedness (Table 3.4).  

The descriptions of Dan and Kelly’s classrooms, in coordination with the focus 

group descriptions, revealed ample evidence suggesting most students were engaged and 

motivated when involved in PS. The grounded theory developed and used as an 

interpretation mechanism highlighted student empowerment, online mentor interaction, 

and authenticity of experience as causal conditions explaining why students were 

motivated to participate in PS (Figure 3.1). These causal conditions, along with the 

intervening conditions and strategies/actions, were evaluated in light of SDT and 

assessed based on their contributions to the basic psychological needs of autonomy, 

competence, and relatedness (Table 3.4). 

Mentors Make a Difference 

The findings in this study tell a story about three actors: teachers, students, and 

scientist-mentors. Teachers must let go and create environments where students feel free 

to engage in open-ended activities and pursue answers to their own questions. When 

teachers successfully accomplish this feat, students feel empowered and begin to take 

responsibility for their own learning. As students navigate the novelty and complexity of 

their new-found “free” world, scientist-mentors step in and become significant others 

who offer their hands in partnership with students as they go through the PS process 
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together. The scientist-mentors are perhaps the greatest value-added component in the 

PS program. 

Findings from this study and others (Scogin, Ozturk, & Stuessy, 2013) indicate 

scientists fill roles differently than those occupied by teachers. Teachers must direct and 

orchestrate the classroom, but scientists are free to connect to their mentored students in 

a manner quite unlike what classroom teachers can do. Without orchestration issues, 

scientists focus on mentoring and giving their student-teams undivided, individualized, 

and in-depth attention. Even within the constraints of the asynchronous environment, 

scientists are able to give formative feedback as problems arise, provided students 

communicate the problems to them on the website.  

The mentor effect was a powerful driver behind PS’s success. Students looked 

forward to working with mentors, enjoyed having mentors as a source of information, 

valued mentor feedback, and felt empowered through the partnerships that were forged 

over the course of their PS projects. Perhaps the most encouraging outcome of this study 

was the revelation that scientist-mentors may, through internalization, be able to help 

motivate students who are not intrinsically motivated about science.  

Research indicates motivation can sometimes work in a “bottom-up” manner. In 

other words, positive experiences with one experiment or one lesson (i.e., situation) can 

lead to increased motivation for a class or subject area (i.e., context; Vallerand & 

Ratelle, 2002). In the context of PS, this would be the equivalent of a student having a 

positive inquiry experience with their PS project (i.e., situational motivation) and 

consequently developing more motivation for science in general (i.e., contextual 
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motivation). Interestingly, it appears this scenario may have played out in the life of at 

least one mentor involved in this study. A scientist-mentor assigned to Dan’s class 

posted the following comment in the asynchronous forum to his student-team: 

I was not interested in this field [botany] till I got admitted to my M.S. program 

(about 10 years back). There I was fortunate to have a few great mentors. I can 

still remember their passion for plant science and the way they introduced it to 

students. I will try to continue my mentors’ efforts. 

While this study does not make the claim that mentoring programs involving 

scientists are the key to turning around science education, the concrete factors 

contributing to the success of PS uncovered in this study are germane to ongoing 

discussions about increasing student motivation in science education.  
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CHAPTER IV 

ASSOCIATIONS BETWEEN STUDENT ENGAGEMENT IN SCIENTIFIC 

INQUIRY AND MOTIVATIONAL SUPPORT: DO ONLINE SCIENTIST-

MENTORS MAKE A DIFFERENCE? 

 

Introduction 

The impact of motivationally supportive online mentoring on science education 

remains largely unexplored. In 2003, Ensher et al. lamented there were “virtually no 

published academic studies to date examining the feasibility or effectiveness of 

cyberspace” (p. 274), even with the growth of online mentoring.  In 2006, Xie et al. 

reiterated the void, claiming a lack of research addressing students’ motivation to 

participate in online discussions. In 2010, Chen and Jang published a study specifically 

addressing the lack of research pertaining to motivational support in online contexts. In 

2011, S.W.-Y. Lee et al. published a literature review of studies relating inquiry and 

technology, citing only one study (see Wang & Reeves, 2006) linking instructional 

design in Internet-based science learning environments to students’ motivation. With the 

publication of a special issue of Education Technology Research & Development (see 

Volume 59, Issue 2) and a few other studies beginning in 2011 (e.g., see Moos & 

Honkomp, 2011; Rienties et al., 2012), we do begin to see that the topic of motivation is 

receiving a bit more attention in the research literature on online learning. While still not 

a current “hot topic” for research in educational technology, I concur with Mayer (2011) 

that concerns about motivation in online learning environments must be addressed. 
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The paucity of studies linking online education with motivation could be partially 

related to education researchers' lack of access to e-learning environments, as 

researchers are often dependent on developers who have the time and money to design 

and launch these environments. Mayer (2011) called for current online providers to 

increase access to their successful technology-supported learning environments for use 

by education researchers. In this investigation, we accessed a successful “testbed” (i.e., 

PS) to determine associations between motivation, online mentoring, and student inquiry 

engagement. Using self-determination theory (SDT) as a framework (Deci & Ryan, 

1985), the purpose of this study was to investigate online scientist-mentors’ motivational 

support of junior high students and evaluate the potential impact of this support on 

students' inquiry engagement.  

Literature Review 

The importance of science literacy and critical thinking is recognized globally by 

many policy makers living in the 21st century, particularly those in modern societies 

with economies reliant on a well prepared citizenry and workforce to deal with the 

consequences of rapid advances in technology (Bryan et al., 2011). Organizations 

including the American Association of Colleges and Universities (AACU), the National 

Center for Educational Statistics (NCES), and the NRC have emphasized the need for 

increased scientific literacy and proficiencies in U.S. citizens (Sinatra & Taasoobshirazi, 

2011). "Science for all" and workforce development share center stage in the latest call 

for science education reform. The Next Generation Science Standards (NGSS; NGSS 

Lead States, 2013) in fact, were developed in response to the poor showings of U.S. 
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students in international studies examining student achievement in STEM-related 

subjects (NRC, 2013) and students’ interests in STEM career fields (Welch & Huffman, 

2011). Some experts attribute low interest and motivation toward STEM to an 

overemphasis in the U.S. on standardized testing (Koballa & Glynn, 2007), while others 

point to the lack of authentic contexts in learning classroom science (Hickey & Granade, 

2004). 

The Next Generation Science Standards (NGSS Lead States, 2013) proposed an 

integrated science and engineering framework for raising scientific literacy and 

encouraging students to seek STEM-related careers. The proposal also made calls for 

promoting active learning, developing authentic scientific communities of practice, and 

providing motivational support for science learners. Particularly, the NGSS called for 

students to work collaboratively and actively engage in authentic science investigations 

using empirical inquiry. In authentic science investigations, students ask their own 

scientific questions, derive their own hypotheses, develop methods for testing their 

hypotheses, and construct logical conclusions as evidence-based arguments to defend 

their conclusions (Chinn & Malhotra, 2002). This type of science learning allows 

learners to think and act like scientists; it is active, engaging, and provides opportunities 

for “communicating and critiquing ideas in a scientific community” (NRC, 2012a, p. 

127).  

Providing an authentic scientific learning community is not easy, however. Chinn 

and Malhotra (2002) established a comprehensive framework for evaluating authenticity 

in science classrooms. These researchers compared truly authentic science, such as that 



 

 147 

carried out by scientists in their laboratories, to classroom science. Due to the fact that 

space, time, finances, and expertise often limited classroom science, Chinn and Malhotra 

reasoned that science educators incorporated less complex tasks than those carried out 

by scientists. However, these researchers noted that science teachers can still emphasize 

authenticity by mimicking the cognitive tasks of real science, such as generating 

research questions, designing studies, explaining results, developing theories, and 

studying the research of others. Additionally, Chinn and Malhotra emphasized 

epistemological aspects of authentic science, including evidence-based reasoning, use of 

theory, discounting of anomalous data, heuristic reasoning, and social construction of 

knowledge through expert review and collaboration. Authenticity could be met, they 

concluded, in classrooms affording students opportunities to engage in tasks requiring 

authentic reasoning, providing frameworks to help students understand the strategies of 

scientists, and developing methods to teach students authentic reasoning.  

In an effort to address the challenges of promoting authenticity in science 

education, the NRC (2012a) placed special emphasis on transforming classrooms into 

contexts for scientific communities to reflect science as "a body of established 

knowledge and a social process through which individual scientists and communities of 

scientists continually create, revise, and elaborate scientific theories and ideas” (p. 73). 

Mentoring, especially when conducted by professionals, is one practical way to build 

communities and increase authenticity by raising the level of expertise and the 

opportunities for collaboration (Mullen, 2011). 
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Scientists as Mentors 

Programs uniting students with scientists in research apprenticeships have 

become increasingly popular. Sadler et al. (2010) identified 53 publications about 

scientist partnership programs designed for secondary students, undergraduate students, 

and teachers. Within programs designed for secondary students, student-scientist 

partnerships (SSP) were most often cited. Most of these programs involved students as 

collectors of data for use in scientific research. Technology was often used to facilitate 

collaboration between the students and scientists, but the involvement of the scientists 

ranged from “very limited (e.g., advisory role in the design of the project) to quite 

extensive (e.g., working with students as they learn data collection techniques)” (p. 240). 

While SSP models represent one way to implement scientist-student partnerships in the 

classroom, they sometimes lack comprehensive authenticity because participation is 

limited to one part of the scientific process (e.g., data collection). In contrast, Chinn and 

Malhotra (2002) called for a much broader scientific context in classroom environments 

to emphasize authenticity, both cognitively and epistemologically.   

Within SSPs limited to data collection, Sadler et al. (2010) pointed out that 

students often became frustrated with the tedium of data collection. At other times, 

however, students responded positively to SSPs because they believed their efforts were 

purposeful and useful. Other studies of scientist-student partnerships also reported 

positive outcomes. For example, Bryan et al. (2011) reported high school students' 

perceptions of science as more relevant and science careers as more interesting when 

scientists from the community shared their experiences and challenges. Edelson (1998) 
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also reported increased scientific authenticity in the classroom and significant learning 

gains in programs partnering high school students with atmospheric scientists in inquiry-

based activities. 

While connecting scientists with students can increase positive student outcomes 

in science, barriers of isolation often exist to prevent this practice from becoming 

widespread policy. A recent report from the NSF (2013) drew attention to the general 

lack of access of scientists for face-to-face mentoring of students learning science. While 

the report highlighted the economic ramifications of isolation, the NSF also discussed 

the logistical and geographical barriers limiting scientists' opportunities to work directly 

with students in face-to-face classroom learning environments. Capabilities do exist, 

however, for using the Internet to facilitate interactions and develop new relationships 

between students and scientists in classrooms across the world. 

Online Mentoring 

Online mentoring benefits students in many ways (Ensher et al., 2003). First, 

online mentoring provides access to scientists even when students are located in isolated 

environments. Garrison (2011), for example, stated an advantage of e-learning is 

increased access to others who can become members of a learning community. Second, 

Ensher et al. (2013) declared online mentoring “levels the playing field” by equalizing 

the status of all participants and preventing the unavoidable awkwardness students feel 

when third party experts enter the classroom. Reduced anxiety about partnering with 

scientists allows students the freedom to follow their natural desire “to feel connected to 

significant individuals” (Vallerand & Ratelle, 2002, p. 48). Third, online mentoring 
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extends contact between scientists and students past the “one-time visit” status that 

Pekar and Dolan (2012) reported was typical of scientist-student interactions. Through 

asynchronous venues, students and scientists can communicate on a regular and on-

going basis at their own conveniences, anytime and anywhere. Sustained contact affords 

students and scientists time to develop comfort with each other. Regardless of the nature 

of the project, time is a necessary commodity if online mentor-protégé relationships are 

to evolve into productive scientific partnerships (Sadler et al., 2010).  

While online mentoring has a powerful upside, challenges still exist. Ensher et al. 

(2003) reported many difficulties, including the absence of non-verbal cues and inability 

to gauge tone in text-only communications. In some situations, limitations such as these 

threaten to destroy online communication efforts. “Mentors and protégés who do not 

know each other well or communicate primarily via email may misunderstand attempts 

at humor, misread tone, or fail to clarify when they do not understand one another” 

(Ensher et al., 2003, p. 276). As a result of these delicate conditions, mentors need to 

employ specific strategies to establish a strong social presence while creating successful 

online relationships. 

Social Presence 

Social presence is a concept derived from the Community of Inquiry (CoI) 

framework (Garrison, 2011). Garrison (2011) defined a community of inquiry as “a 

group of individuals who collaboratively engage in purposeful critical discourse and 

reflection to construct personal meaning and confirm mutual understanding” (p. 15). 

Communities of inquiry include three interdependent parts: social presence, cognitive 
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presence, and teaching presence. Specifically, social presence is “the ability of 

participants to identify with a group, communicate purposefully in a trusting 

environment, and develop personal and affective relationships progressively by way of 

projecting their individual personalities” (Garrison, 2011, p. 23). According to Garrison, 

quality learning in e-learning environments is optimized only after students identify with 

the group and feel they are genuinely part of the learning community.  

In academic contexts, social presence is achieved by more than mere social 

interactions. Social presence is achieved within a “climate that supports and encourages 

probing questions, skepticism, and the contribution of explanatory ideas” (Garrison, 

2011, p. 32). Social presence implies a mix in interpersonal communication, cohesive 

communication, and open communication (Akyol & Garrison, 2008). Although these 

three types of communication occur throughout the duration of an online relationship, 

Garrison (2011) indicated interpersonal connections typically occur first and set the tone 

for future interactions. Open communication pushes and drives the purposeful 

“academic” conversations. Cohesive communication unifies the group and sustains the 

relationship. Together, these types of communication promote social adhesion, serve as 

ways to build group identity, and foster problem-solving interests among group 

participants (Akyol & Garrison, 2008). 

Motivating Students in Science 

Modern learning theories recognize affective constructs, including motivation, as 

central to learning and deserving much more than peripheral considerations. Science 

education researchers, however, often overlook motivation research in favor of cognitive 
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studies (Koballa & Glynn, 2007). Therefore, we have often turned to non-domain-

specific findings from education research related to motivation and have attempted to 

relate these findings to what we might expect if more studies had been conducted in the 

domain of science. 

Motivation deserves more than peripheral consideration because motivated 

students want to learn and believe they can learn, two critical factors contributing to the 

development of deeper learning outcomes (Patrick & Middleton, 2002). When students 

are motivated, regardless of the domain, they perform better, experience more positive 

emotions, and enjoy the school experience (Deci et al., 1991). Teachers successful in 

promoting student motivation in science, therefore, would lead their students to apply 

more effort in learning science, which would lead naturally to deeper understanding of 

essential science concepts (NRC, 2012a). While motivational practices are diverse, some 

specific applications in science classrooms are more effective than others in promoting 

positive student outcomes.  

Providing opportunities for students to collaborate with others, especially when 

combined with online technology integration, is a motivational practice that effectively 

enhances science education. For example, Patrick and Middleton (2002) observed that 

group work and hands-on cooperative experiments led to positive student outcomes and 

better attitudes in science classrooms. With the addition of technology, Garrison (2011) 

learned collaboration with others via asynchronous venues was beneficial for some 

students because they were less intimidated and felt more freedom than when in face-to-

face classrooms. Other research has confirmed online environments promote greater 
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autonomy, increase intimacy, and improve communication between participants (Ensher 

et al., 2003).  

Interestingly, asynchronous online communication contexts can promote greater 

engagement than face-to-face contexts (Ensher et al., 2003). According to Ensher et al. 

(2003), without the pressures of physical presence, many students became more 

comfortable with the online format (i.e., developed greater social presence) and engaged 

in more intellectual risk-taking. Additionally, the added wait time with asynchronous 

communication can lead to longer reflection on responses and recruitment of additional 

cognitive faculties (Garrison, 2011). These findings indicate online environments can be 

constructed to promote motivation leading to greater engagement and self-regulated 

learning.  

While measuring motivation is difficult, particularly in online contexts, self-

determination theory (SDT; Deci & Ryan, 1985) is a theoretical framework useful in 

explaining strong relationships between computer-supported collaborative learning 

(CSCL) and student motivation. SDT is an organismic-dialectic theory postulating 

people look for supportive social contexts in an effort to obtain the basic psychological 

needs of autonomy, competence, and relatedness (Ryan & Deci, 2002). SDT defines 

these needs as follows: (1) autonomy – desire to regulate and control their own behavior; 

(2) competence – desire to engage in challenging tasks and experience some effectance; 

and (3) relatedness – desire to seek attachments and experience feelings of belonging 

and connection (Deci & Ryan, 2000). When online environments fulfill the basic 

psychological needs, CSCL environments can become motivating to learners. A 
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successful CSCL environment, PS, was evaluated in this study using SDT. 

Context for the Current Study 

PS is an innovative, blended curriculum developed by the BSA. Used 

internationally by over 11,000 students since 2005, PS provides advanced technology 

tools and supports to mix scientific inquiry, classroom instruction, and online mentoring 

by practicing scientists as students learn plant biology concepts within the context of 

contemporary middle and high school science classrooms. Students working in teams of 

2-4 individuals design and carry out their own three- to ten-week long inquiry-based 

experiments related to plant biology. Specific topics include seed germination (i.e., The 

Wonder of Seeds), photosynthesis (i.e., The Power of Sunlight), and sexual reproduction 

and alternation of generations (i.e., C-Ferns in the Open), among several others.  

Many facets of PS mimic authentic scientific inquiry as outlined by Chinn and 

Malhotra (2002). For example, students generate unique research questions originating 

from introductory "immersion experiences" with complex systems of variables. They 

plan and implement their own analytical procedures and make observations leading to 

evidence-based conclusions. Furthermore, students often transform their observations to 

other data formats (e.g., graphs, presentations, drawings, spreadsheets, reports, etc.) and 

share them with others on the PS website.  

Perhaps one of the leading reasons why PS has achieved success as an authentic 

scientific inquiry is the incorporation of scientists as mentors who partner with student-

teams for the duration of the inquiry projects. Over 900 professional scientists and 

science graduate students worldwide have volunteered for the program. These 
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professionals provide key feedback to student-teams, often requiring students to clarify 

and defend their research questions, experimental designs, analytical methods, results, 

and conclusions. Using the language of Chinn and Malhotra (2002), PS can be viewed as 

a program providing scientist-mentors who help students engage in science more 

authentically by identifying potential flaws in student experiments and urging students to 

use evidence-based reasoning. 

The scientists never physically visit the classroom. Instead, the PS website serves 

as an extension of the classroom, allowing student-teams and scientist-mentors to 

communicate in an asynchronous blog. The dialogues are archived on the PS website 

and are publically available (http://www.plantingscience.org). Additionally, student-

teams communicate with scientists (and the public) by posting journals, photographs, 

spreadsheets, and other relevant inquiry-related data to their own website page. 

Scientists view students' uploaded products and communicate with their assigned student 

inquiry teams to get snapshots of what they are doing in the classroom in order to 

provide appropriate mentoring. In 2011, PS received the prestigious SPORE Award 

(acronym for Science Prize for Online Resources in Education) from the American 

Association for the Advancement of Science (AAAS) for its technology innovation and 

successful student engagement (Hemingway et al., 2011). PS combines student-scientist 

partnerships with online mentoring in an effort to improve scientific awareness, increase 

science classroom experience, and promote scientific proficiency (Hemingway et al., 

2011). In the Science article, PS developers noted: 
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Talking online with a scientist is exciting and motivating to students….The 

personal connection with an online mentor also holds promise for inspiring 

individual students. There is power in the collective commitment and expertise of 

scientist-school partnerships to efficiently raise engaging collaborative science 

learning to a national scale. (Hemingway et al., p. 1536) 

Technology innovation by itself does not inevitably bring about learner 

satisfaction and engagement (Rienties et al., 2012). However, opportunities can exist 

within the innovation to provide a context for increased motivation and engagement (Xie 

et al., 2006). Furthermore, a blending of online and face-to-face contexts can have 

several advantages for learners, including greater participation, stronger feelings of 

community, and increased reflection time (Garrison, 2011). In PS, online scientist-

mentors provide students with a component of authentic science rarely mimicked in K-

12 science classrooms.  

In the current study, seventh grade students in 10 student-teams partnered with 

scientists for six weeks to complete projects in The Wonder of Seeds module during a 

recent fall semester. I examined the interactions of scientists and students in each 

student-team as a separate case. Each student-team generated their own primary research 

question, which guided their scientific inquiries to investigate the effects of differing 

soils and watering regimines on seed germination, for example, or to investigate the 

effects of different light sources on phototropism or seedling growth rates. With 

scientist-mentor participation, students designed experiments to test their research 

predictions. They reported their progress to their scientist-mentors via the asynchronous 
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blog on the PS website. Most students posted to the website during class time, although 

they did not post every class period due to time constraints. Scientists responded at their 

conveniences, with wait times between students and scientists varying from the same 

day to over one month. Most students and scientists, however, responded to each other’s 

comments within three days. An example exchange between a scientist and student-team 

is included in Figure 4.1. 

Justification for the Current Study 

Over the last several years, the national push for greater science achievement has 

placed new emphasis on student motivation (Koballa & Glynn, 2007). With its emphasis 

on the social context, SDT is a powerful tool for evaluating the effectiveness of social 

environments in different formats. In particular, Chen and Jang (2010) stated online 

academic environments are especially suited to SDT studies, as online learning requires 

flexibility and choice (i.e., autonomy), technical skills (i.e., competence), and social 

interaction (i.e., relatedness). Within science learning contexts, online technology can 

afford scientists from all over the world the opportunity to partner with students in even 

the most geographically isolated classrooms. Practicing scientists interacting with 

students could promote higher scientific literacy, greater science engagement, and 

improved student motivation in science. When providing the proper motivational 

support, scientists can potentially add immense value to the classroom science 

experience. As PS integrates technology, mentoring, and collaborative science, this 

unique learning environment provides a rich context for studying motivational support. 
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October 10 8:37 PM (Scientist/Mentor)  
Hypothesis 
You have written a great hypothesis and I can't wait to find out what your results are. How will you measure growth rate? Are you sure that 
growth of your plants in different soils will be due only to the soil type? Do you [know] the terms we use for these different types of 
variables? 
Can't wait to hear more! [Scientist’s Name] 
 
October 11 11:11 AM (Student-Team Member)  
~Ms.[Scientist’s Name], 
Today we are starting our project!!!!! We will be measuring our plants growth by centimeters. We are positive that the plants in the soil will 
have a more rapid growth rate, because of the nutrients that are in it.  
~ [Student-team Name] :))) (:~ 
~ [Students’ Names](: ~  
Thanks for all of the advice [sic]!!!!!!!!!! 
 
October 13 10:22 AM (Scientist/Mentor)  
Starting Project 
Hey guys! 
I like your explanation of your hypothesis. Have you learned about what types of nutrients plants require? I bet you could do a quick google 
search to find out. 
How are your plants doing so far? Any cool observations? 
~[Scientist’s Name] 
 
October 13 11:05 AM (Student-Team Member)  
Ms. [Scientist’s Name]~ 
Hey well our project is kinda over, since ALL of our seeds have germinated!!!!!!!!!!!!!!! It didn’t take very long for the beans to grow a root 
and be classified in the germinating category!!!!! 
~[Student-team Name]:))~ 
~[Students’ Names]~ (: 
 
October 13 11:06 AM (Student-Team Member)  
all of our plants have grown since we have planted them! they all have a little root coming out of the bottom of them. 
~[Student Name] [Student-team Name]~ 
 
October 13 11:14 AM (Student-Team Member)  
nutrients 
Ms.[Scientist’s Name] ~ 
This is what we found on the internet about what nutrients mung beans need ... 
However, once the seed begins to sprout and deplete this small storage of nutrients, it requires suitable soil to encourage continued growth. 
Mung bean sprouts prefer soils with pH levels between 6.2 and 7.2, as well as adequate amounts of sulfur, magnesium phosphorus and 
potassium. Fertile soils that contain a rich blend of sand and loam provide essential nutrients for healthy growth. 
 
Sincerly [sic], 
~[Student-team Name] :)) ~ 
[Students’ Names] 
 
October 17 8:47 AM (Scientist/Mentor)  
Conclusions? 
Hi Team [Student-team Name]! 
I see you have uploaded a whole bunch of pictures and you tell me that your project is over. The last steps to every experiment is to draw 
conclusions and come up with future experiments. What sort of things did you learn from your experiment? Is there anything you would do 
differently next time? 
Happy Concluding. 
~[Scientist’s Name] 
 
October 19 11:32 AM (Student-Team Member)  
Our Conclusions ( So Far !!!) 
Howdy Ms. [Scientist’s Name] ~  
Well our hypotesis [sic] was true at least up to today. The soil has grown AMAZING, the shortest root is 7 in.! I guess you can say we know 
what nutrients the soil has and the others don't. We were really suprised [sic] to see that the saw dust has actually grown some leaves and 
steams [sic]. Some of the seeds in the silt have MOLD ON THEM, HOW GROSS IS THAT ? When we saw that we all said EWWW!!! Our 
seeds have really grown quite FAST [We] were really suprised [sic] that over the weekend with no water and light that our plants sproted [sic] 
right up.  
THANKS FOR ALL OF YOUR HELP!!!!!!!!!!!!!! 
![Student-team Name]:))  
~ [Students’ Names]~ 
 

Figure 4.1. Example of an asynchronous dialogue between scientist-mentor and student-
team (Case 10). 
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Purpose of the Study  

 The purpose of this multiple case study was to investigate the motivational 

aspects of the interactions between student-teams and their scientist-mentors within the 

PS online environment. This project was designed to address a void in our understanding 

of the relationship between motivational support provided in an online mentoring 

environment and student engagement in inquiry. The study is unique in that it centers 

specifically on motivational support as provided by scientists in an online context. I used 

SDT as the theoretical framework for guiding the design of the investigation, expecting 

that I might find evidence linking increased inquiry participation in students with 

increased motivational support from scientist-mentors. According to SDT, adults who 

play significant roles in students’ lives can promote increased student motivation (Deci 

et al., 1991). While significant adults in students’ lives are traditionally parents, teachers, 

or coaches, participation in PS brings new significant adults into the academic lives of 

students--scientist-mentors who join student-teams for collaborative inquiry projects, 

thus providing an ideal "test bed" for investigating relationships between online 

mentoring and students' inquiry engagement.  

The objectives of this study were to: (1) identify and describe the types of online 

motivational support provided by scientists as they mentored students' classroom inquiry 

projects, and (2) investigate potential associations of this support with the quality of 

students' engagement in scientific inquiry. According to Sadler et al. (2010), “finer 

grain” analyses, like the current study, can significantly improve science education by 

providing specific feedback on why certain partnership arrangements work as opposed to 
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more generalized studies that just determine if partnerships work. 

Methods 

Research Design 

I used a multiple-case replication design for this study (Yin, 2009). In specific 

parts of the analysis, I grouped cases using an extreme group comparison strategy 

(Chase, 1964). Preacher, Rucker, MacCallum, and Nicewander (2005) recommended 

extreme group analysis where “little knowledge exists” and to “detect general trends in 

the data” (p. 188). By reporting on both individual cases and replicate groupings, I was 

able to provide specific descriptions of cases and determine some associations between 

scientist-mentors’ motivational support and student-team inquiry engagement. The units 

of analysis (i.e., cases) for this study were 10 student-teams taught collectively by one 

science teacher in two classes. Each team was partnered with one scientist volunteer 

assigned by the BSA to mentor one or more student-teams. All students designed 

inquiries related to the PS seed germination unit, The Wonder of Seeds. 

SDT served as the theoretical framework for the study employing methods of 

quantifying qualitative data according to Chi (1997). I developed a motivational support 

rubric based on SDT, which was used for hypothesis testing (see Analysis section in this 

chapter for full description). 

Sample 

Student-teams. I purposively selected 10 student-teams (i.e., cases) composed of 

seventh graders enrolled in two different science sections in a rural public school located 

in the southwestern region of the United States. The rural school district enrolled 430 K-
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12 students. The teacher reported that approximately 65-70% of students in the district 

were from low socio-economic households and some students’ families lacked 

transportation and rarely, if ever, ventured out of the community. As few students had 

ever interacted with scientists face-to-face, this rural district provided an ideal setting for 

evaluating online scientist mentoring. 

While these 10 cases provided an intriguing geographical context for study, I pre-

screened the sample to ensure adequate student participation and inquiry engagement 

levels, essentials in addressing the research questions posed for the study. Student 

participation and inquiry engagement levels in the 10 cases were compared to 

engagement levels in a baseline study of 263 PS student-teams (Peterson, 2012). Table 

4.1 shows a comparison of participation levels (as indicated by number of posts in the 

dialogues) and inquiry engagement levels (as measured by the Online Elements of 

Inquiry Checklist – see Methods-Measures section in this chapter for description) 

between student-teams in the current study and the comparison group. Levels of 

participation and engagement in the current study were deemed adequate to proceed. 

All student-teams in the current study worked on the same PS module under the 

direction of the same experienced teacher. Student-team members were novice inquiry 

learners, having had no previous experiences with scientific inquiry and only one 

collaborative group experience in learning science. Before beginning the PS project, the 

teacher familiarized students with the PS website and allowed students to list several 

classmates with whom they would like to work. From students’ lists, the teacher chose 

the members for each student-team, assuring that at least one classmate in the group had 
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Table 4.1 
 
Comparison of Participation and Student Inquiry Engagement Levels Between Current 
Study and Peterson (2012) Study 
 

 
Current Study 

(n = 10) 
Peterson (2012) Study 

(n = 263) 
Student-Team Participation Measures   

Mean number of posts by student-teams 20.4 8.5 
SD of posts by student-teams 6.3 6.4 
Minimum number of posts by student-teams 15 0 

Maximum number of posts by student-teams 33 44 
   
Student-Team Inquiry Engagement Scores (%)   

Immersion 60 33 

Research Question 68 59 

Prediction 73 64 

Experimental Design and Procedures 30 34 

Observations 63 33 

Analysis and Results 45 45 

Conclusions and Explanations 44 24 

Future Research and Implications 50 14 
 
 
 

appeared on another team member's list. In her selection of students for group 

membership, the teacher also tried to balance the group's distribution with her 

knowledge about each student’s strengths and skills (PS Teacher, 2012). Five student-

teams with three to four students on each team were formed from each of two different 

class sections, making a total of 10 student-teams. 
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The two class sections met during consecutive class periods in the same lecture 

and laboratory classrooms. As a result of shared facilities and the culture of the small 

school, all 10 student-teams had opportunities to share ideas, methods, and results. In 

addition, the PS website design promoted productive participation between groups 

within and between the two class sections. 

Scientist-mentors. Nine research scientists from across the U.S. served as 

mentors for the 10 student-teams (by chance, the BSA program assigned one scientist-

mentor to two different teams in the study). Three scientists were professors, four were 

graduate students, and two worked in private industry. The scientists specialized in 

different botanical fields including plant genetics, plant ecology, plant physiology, and 

cellular biology. Additionally, the scientists had varying levels of experience with online 

mentoring, ranging from no experience to seven semesters of PS-specific mentoring. 

Information about each scientist's interests and background was available on the PS 

website for all to see, including students engaged in projects during any semester.  

Teacher. The teacher in the study had taught science in rural middle and high 

schools for 25 years. She earned a master’s degree in science education from a large 

state university five years before she received professional training specifically to assist 

her in implementing PS in her classroom. The BSA, with support from the NSF, 

provided the training. She attended three different PS summer workshops and followed 

each one with a PS implementation during the school year. The teacher’s expertise and 

previous experiences with inquiry-based learning from her graduate work and continued 

refinement in the classroom with PS made the choice of her classes for this study even 
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more appealing, as ongoing research studies examining teachers' implementation and 

orchestration of the PS inquiry environment have indicated great variability in teacher's 

abilities to handle the difficult and complex PS environment (Scogin, Stuessy, et al., 

2013). 

Measures 

Motivational support. In this study, motivational support was operationally 

defined as scientist-mentors’ words, phrases, thought segments, or textual expressions of 

emotions (e.g., capitalization, emoticons, exclamation points, etc.) appearing in the 

online dialogues and providing evidence of acknowledgement of and/or support for their 

student-team's autonomy, competence, and relatedness. Specifically for this study, I 

designed a motivational support rubric (Appendix A) using a two-stage process. First, I 

explored SDT and social presence theory literature to identify valid indicators applicable 

to text-only learning environments. Second, I pilot-tested the rubric on sample scientist-

mentor/student-team dialogues to assure that the indicators identified from the literature 

were relevant when applied to the context of the PS online dialogue. The research team 

negotiated a final motivational support rubric to include specific indicators of 

motivational support likely to be provided by scientist-mentors within the three SDT 

categories of autonomy, competence, and relatedness.  

Autonomy support. Autonomy support is defined as “the degree to which 

[socializing agents] encourage independent problem solving, choice, and participation in 

decisions” (Grolnick & Ryan, 1989, p. 144). While behaviors supportive of autonomy 

are well defined in SDT literature, identifying text-only supports for autonomy was 
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particularly challenging. After careful consideration, I chose five indicators as evidence 

of scientist-mentors’ autonomy support in online asynchronous dialogues. The five 

indicators included: (1) providing or acknowledging student-team choice (Deci et al., 

1996; Reeve, 2002); (2) acknowledging student-team ownership/control of the project 

(Reeve et al., 2004; Ryan & Deci, 2002); (3) using autonomy-supportive phraseology 

(i.e., non-controlling language; Deci et al., 1996); (4) acknowledging negative student-

team comments or outcomes (Deci & Moller, 2005; Reeve et al., 2004); and (5) 

providing a rationale for some aspect of science in general or the inquiry experiment in 

particular (Deci et al, 1994; Reeve, 2002; Reeve et al., 2004). Autonomy-supportive 

indicators with verbatim exemplary segments from the dialogues are included in Table 

4.2.  

Competence support. In educational contexts, instructional leaders provide 

competence support by giving attention to students and providing feedback/explanations 

that challenge students without offering definitive solutions (Newman, 2008). In the 

online PS context, I used three indicators of scientist-mentors’ competence support. The 

three indicators included: (1) asking content or process questions specifically relevant to 

the inquiry project that provided challenges for the students, thereby supporting 

competence (Elliot et al., 2002; NRC, 2012a; Reeve et al., 2004; also see Sinatra and 

Taasoobshirazi, 2011, who stated environments promoting reflection and critical 

thinking are also competence-supporting); (2) offering explanations, typically in 

response to student-team questions (Ryan & Deci, 2000a, 2002; as well as Reeve, 2002, 

who discovered timely feedback as contributing to competence); and (3) providing 
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Table 4.2 
 
Autonomy-Supportive Verbatim Statements From Scientist-Mentor/Student-Team 
Dialogues 

 
Indicator Example 

Providing or acknowledging student-team 
choice 
 

Let me know when you've chosen one 
question to focus on, and I can help 
you with experimental design. [Case 
8 Scientist-mentor] 
 

Acknowledging student-team ownership/control 
of the project 
 

I have a few ideas and questions that 
may help in running your experiment. 
[Case 9 Scientist-mentor] 
 

Autonomy-supportive phraseology (i.e., non- 
controlling) 
 

You might want to research some 
plants that you want to work with 
(e.g. corn, beans, peas) and what 
types of minerals and nutrients they 
need to grow. [Case 4 Scientist-
mentor] 
 

Acknowledging negative student-team 
comments or outcomes 
 

Unfortunately scientists deal with 
failed experiments all too often. [Case 
4 Scientist-mentor] 
 

Providing a rationale for some aspect of science 
or the project 
 

A lab notebook updated daily is an 
important part of a scientist's job. It is 
important to have accurate and 
detailed notes - of both things that 
work and things that don't work. This 
way you can look for patterns and try 
to figure out what is happening. [Case 
1 Scientist-mentor] 
 

 
 
 

positive feedback specifically related to student-teams’ actions or statements (Deci & 

Ryan, 2002; Ryan & Deci, 2002; and Reeve et al., 2004, who further differentiated 

feedback to be competence-enhancing when it was tied to students’ specific activities 
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rather than more general in nature). Table 4.3 contains verbatim examples of 

competence-supporting segments from the dialogues. 

 
 
Table 4.3 
 
Competence-Supportive Verbatim Statements From Scientist-Mentor/Student-Team 
Dialogues 

 
Indicator Example 

Asking content or process questions  
 

Why might one type of seed need a helicopter 
wing (maple seed) while another seed need to 
[be] really small (radish seed)? [Case 10 
Scientist-mentor] 
 

Offering explanations 
 

Hi everyone, I am not surprised to hear about 
your results with the coke and vinegar. Let's 
think a bit about the properties of those two 
liquids. The Coke is something you like to 
drink because it tastes sweet. If you look on the 
label, you see that the sweetness comes from a 
type of sugar. Lots of things want to eat that 
sugar - including the mold and mildew that is 
growing on your seeds. The seeds don't need 
the sugar from the Coke, because they pack 
their own as starch in the seed to tide them over 
until they begin to photosynthesize to make 
more sugar on their own. Now that the fungus is 
established, it can start to kill the seeds by 
growing into them. This isn't a problem with the 
water, because it doesn't provide a good media 
for the fungus and it can't get established in the 
seeds. [Case 1 Scientist-mentor] 
 

Providing positive feedback 
 

I just noticed that you have now posted your 
research question and that you want to focus on 
the effect of vinegar on plant growth and that 
you are predicting that vinegar will decrease 
plant growth. That is a great start. [Case 3 
Scientist-mentor] 
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Relatedness support. "Relatedness involves developing secure and satisfying 

connections with others in one's social milieu" (Deci et al., 1991, p. 327). In PS, the 

relationship between scientist-mentors and their student-teams evolved over the course 

of the students' inquiry project, thus providing an ongoing context supporting growth in 

relatedness.  

Social presence theory (Garrison, 2011) informed my framework to evaluate 

relatedness support. In particular, interpersonal, open, and cohesive communication 

categories were adopted from Garrison (2011) and used as indicators of relatedness 

support. According to Garrison, these categories of communication are used throughout 

online discourses and provide the foundational elements of online relationships. Garrison 

stated that interpersonal communication, including self-disclosure, humor, and affective 

expressions (e.g., exclamation points and emoticons), sets the tone for participation in 

virtual environments. In comparison, open communication establishes trust between the 

online participants and involves reciprocity, acceptance, and inclusiveness. Open 

communication is the most “academic” of the three kinds of social presence 

communication. Furthermore, open communication includes inviting further 

participation and elaboration, complimenting previous contributions, expressing 

agreement, and recognizing previous contributions to the online discussion. Finally, in 

Garrison's estimation, cohesive communication is the goal of an online community: “It is 

cohesion that sustains the commitment and purpose of a community of inquiry, 

particularly in an e-learning group separated by time and space” (Garrison, 2011, p. 29). 
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References by name and team, and phatic or social conversation characterize cohesive 

communication. 

In my construction of the motivational support rubric, I made several minor 

changes to Garrison’s (2011) framework to enhance applicability within the context of 

PS scientist-mentor/student-team dialogues. I settled on three indicators to evaluate 

interpersonal communication: (1) affective expression, (2) use of humor, and (3) self-

disclosure. I used three indicators to determine cohesive communication: (1) inclusive 

language, (2) use of salutations, greetings, or phatics, and (3) use of personal names. 

Finally, I decided on four indicators to determine open communication: (1) asking 

questions or inviting participation, (2) complimenting and expressing appreciation, (3) 

expressing agreement, and (4) making references to previous student-team posts. Table 

4.4 includes exemplary relatedness-supportive segments from the student-team/scientist-

mentor dialogues.  

Student inquiry engagement. I chose student inquiry engagement as the 

outcome variable in this study. With new standards (e.g., NGSS) calling for increased 

student engagement in authentic scientific practices, this outcome seemed applicable and 

useful to the goals of science education. Student inquiry engagement was measured 

using the Online Elements of Inquiry Checklist (OEIC; Table 4.5) developed by 

Peterson and Stuessy (2011) for assessing inquiry engagement in online environments 

and specifically for assessing engagement in PS. The OEIC is grounded in established 

inquiry literature and has been confirmed as a valid and reliable instrument for assessing 

online inquiry engagement (Peterson, 2012). Additionally, the items in the OEIC closely 
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Table 4.4 
 
Relatedness-Supportive Verbatim Statements From Scientist-Mentor/Student-Team 
Dialogues 
 

Type Indicator Example 
   

Interpersonal Affective expression I'm glad that you guys had fun working on your experiment! I hope you all learned a lot. 
Plants are really interesting systems to study. Good luck on your classes this year! :) [Case 
9 Scientist-mentor] 

  
Use of humor All scientists do this, even us old ones! [Case 8 Scientist-mentor] 
  
Self-disclosure Where do you live? I live in Nova Scotia which is on the east coast of Canada, just North 

east of Maine. Nova Scotia is like Maine in many respects. Fishing and forestry are 
important industries. In my area, the Annapolis Valley, agriculture is also important. We 
grow apples, grapes, blueberries, raspberries, strawberries, etc. Nova Scotia is in the 
Acadian Forest region. This is an area where the natural vegetation is a mixture of 
deciduous and evergreen trees. This time of year the leaves of the deciduous trees are 
turning color (red, orange, yellow) and the forest looks very pretty.2) What kind of music 
do you like? I like all kinds of music, but I especially like old rock and roll music from the 
50's and 60's. I am afraid I don't know any rap music, but I do listen to it sometimes as my 
youngest daughter is a fan. [Case 3 Scientist-mentor] 

   
   

Cohesive Inclusive language I'm glad that you're a part of the experiment as well! I can't wait to work with you more. 
[Case 9 Scientist-mentor] 

  
Salutations/greetings/ 
phatics 

It's been cool and rainy here lately. How is the weather in Texas? [Case 9 Scientist-mentor] 

  
Use of Names Hello Plant Rockers! Summer Rose, thanks for telling me which seeds you've looked at 

and how you sprouted the seeds last week. [Case 2 Scientist-mentor] 
   
   

Open Asking questions/ 
inviting participation 

Have you started your experiment yet? How is it going? Are all the seeds still alive? Have 
there been any surprises? [Case 8 Scientist-mentor] 

  
Complimenting and 
appreciation 

I appreciate you giving your project some thought and coming up with a question that 
intrigues you. [Case 8 Scientist-mentor] 

  
Expressing 
agreement 

The numbering sounds like a good way to keep track of your seeds! [Case 2 Scientist-
mentor] 

  
References to 
previous posts 

I just noticed that you have now posted your research question and that you want to focus 
on the effect of vinegar on plant growth and that you are predicting that vinegar will 
decrease plant growth. That is a great start. [Case 3 Scientist-mentor] 

 
 
 
mirror the eight desirable scientific practices outlined in the NGSS. 

The OEIC divides scientific inquiry into eight phases: Immersion, Research 

Question, Prediction, Experimental Design and Procedures, Observations, Analysis and 

Results, Conclusions and Explanations, and Future Research and Implications. Forty  
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Table 4.5 
 
Forty Items of the Online Elements of Inquiry Checklist (OEIC; Peterson & Stuessy, 
2011) 
 

Inquiry Stage Questions 
 

Immersion 
 

 
Is there mention of information-gathering efforts that occurred before students posed their research 

questions?	
  
Is there mention of prior knowledge or experiences that enabled the learners to question the 

relationship between variables?	
  
 

Research Question 
 

Is the research question appropriate for the context of the study?	
  
Are variables of interest observable and/or measureable?	
  
Is there explicit evidence that the research question is tied to prior knowledge or experience?	
  
Is there evidence that the students chose their own research question?	
  
Can the research question be answered within the scope and boundaries of the inquiry setting?	
  
Is the research question logically linked to a prediction, hypothesis, or expectation? 
If the question is causal in nature, is the research question testable through a scientific investigation?	
  
If the question is causal, is a relationship between the variables the focus of the research question?	
  
 

Prediction 
 

Is there evidence that the learners have considered possible or probable outcomes to their 
investigation?	
  

Is their evidence that a project outcome is based on prior knowledge or experience?	
  
Is the predicted outcome reasonable in light of the research question that is being asked?	
  
 

Experimental Design 
 

Did the research design enable the learners to answer the research question?	
  
Is there evidence that students themselves developed research methods?	
  
Is there a description of research methods in enough detail so that another research group could 

replicate them?	
  
Did the learners mention confounding variables?	
  
Are controls of variables mentioned?	
  
Is there mention that the learners controlled for possible sources of error in their observation 

methods?	
  
 

Observations 
 

Is there evidence that research events were recorded?	
  
Did the learners describe what they observed?	
  
Are data tables included in the inquiry project?	
  
Did the learners describe or discuss the data table(s)?	
  
Did the learners provide visual displays of their data such as graphs, charts, or pictures?	
  
Did the learners describe or discuss the visual displays?	
  
Do the visual displays follow accepted conventions?	
  
 

Analysis and Results 
 

Did the learners mention patterns or trends in the data?	
  
Did the learners compare data across multiple studies from other student groups?	
  
Did the learners mention unexpected results?	
  
Was the data used to answer the research question? 
 

Conclusions Are the conclusions of the experiment connected to the data that was collected?	
  
Are the conclusions consistent with the data that was collected?	
  
Did the learners support ideas about causality with data?	
  
Is there mention of alternative explanations?	
  
Did the learners compare their results to other studies’ results? 
Did the learners discuss the limitations of their research?	
  
Did the learners justify their conclusions using data?	
  
Is there evidence of an expressed model or knowledge claim that explains relationships among 

variables with the natural phenomenon under investigation?	
  
 

Future Research and 
Implications 

Did the learners discuss the implications of their study?	
  
Is there mention of possible study revisions? 
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elements distributed within each of the eight phases further characterize the extent to 

which students demonstrate successful engagement in the phase. The instrument was 

applied to all online evidence confirming that a student-team had successfully engaged 

in each of the single elements subsumed within each phase of the inquiry. Percentages of 

phase completion were calculated using number of elements successfully completed 

divided by the total possible number of elements within the phase. These completion 

percentages served as the outcome variables in this study.  

Data Sources and Collection 

The PS website contains many areas for collecting uploaded data. For example, 

the Research Information section contains student-teams’ research questions, research 

predictions, experimental design, and research conclusions (Figure 4.2). Additionally, 

journals (e.g., word processor files), data files (e.g., spreadsheet files), final presentation 

files (e.g., PowerPoint files), and images (e.g., photographs) are found in the Project 

Data section. I also consulted reflection memos completed by the teacher after the 

projects were completed to help describe the context of the study from the classroom 

perspective (PS Teacher, 2012). The PS website also archives the dialogues between 

student-teams and scientist-mentors via the asynchronous blog in the Conversations 

section. The dialogues contain typed comments made by students and scientist-mentors 

throughout the PS project. The dialogues were used as the data source for determining 

the motivation support provided by scientist-mentors. Data sources for determining 

student-teams' inquiry engagement included the dialogues as well, but also included  
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Figure 4.2. Screenshot of a PlantingScience student-team project page. All projects are 
available to the public through the PS website (www.plantingscience.org). 
 
 
 
evidence from student-teams' products (e.g., journals, charts, written reports) uploaded to 

the PS website. 

Validity 

Construct validity was established on several levels as recommended for case 

research by Yin (2009). First, both instruments used in this study (i.e., motivational 



 

 174 

support rubric and OEIC) were based on well-established research literature. Second, 

specific terms and concepts (e.g., autonomy support) were operationally defined using 

theoretical grounding. These definitions were supplemented with low inference 

descriptors (i.e., verbatim examples) as recommended by Johnson (1997; see Tables 4.2-

4.4). Third, multiple data sources generated independently by student-teams and 

scientist-mentors were used in the study. 

Internal validity was also established as recommended by Yin (2009) for case 

study research. First, SDT, an established motivation theory, served as the theoretical 

framework for the study. Second, mixed methods (i.e., multiple analytic techniques from 

both quantitative and qualitative paradigms) were used to evaluate the data and draw 

conclusions. Third, alternative explanations (i.e., rival hypotheses) for the final results 

were considered (see Discussion section in this chapter). Fourth, a predicted relationship 

between motivational support and student inquiry engagement was compared to 

empirical results from this study (i.e., pattern matching). Fifth, literal replicates (i.e., 

multiple cases) were included in each extreme grouping for specific parts of the analysis. 

Analysis 

I measured motivational support by quantifying the verbal dialogues (Chi, 1997) 

using an exploratory sequential mixed methods design (Creswell & Plano Clark, 2011). 

In the first phase, I qualitatively coded all scientist-mentor comments in the 10 case 

dialogues using the motivational support rubric (Appendix A). The dialogue for each 

case, as well as codes and indicators from the rubric, were entered into Dedoose 4.5.95, 
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an online mixed methods analytical software. I used a deductive coding approach (Miles 

et al., 2014) with pre-determined indicators from the motivational support rubric.  

Coding the scientists’ dialogues was particularly challenging for several of the 

reasons mentioned by Strijbos, Martens, Prins, and Jochems (2006). First, asynchronous 

discussions are typically more complex (i.e., contain compound sentences) and contain 

longer posts than do synchronous discussions. As a result, segmentation of the dialogues 

for coding is more difficult. Second, project-based collaborations, which served as the 

context for the current study, occur over a longer period of time and contain more 

fragmentation than topic-based discussions. This type of discourse makes segmentation 

of the data more difficult since certain themes may be spread across several entries over 

an extended period of time.  

In addition, the fact that PS students worked in teams yet had the ability to post 

as individuals on the PS website presented coding challenges. When multiple students 

from the same team posted questions from their individual profiles, scientists sometimes 

responded to each student’s particular question as a separate entry instead of addressing 

all the student-team’s questions in one large entry. These inconsistencies within and 

between scientist-mentors’ dialogue entries made it difficult to establish an a priori 

method of segmentation. 

According to Chi (1997), a “searching rather than segmenting” (p. 12) approach 

can be used in situations where spontaneous occurrences of the phenomena in question 

are typical (e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989). In the current study, 

scientist-mentors provided motivational support (i.e., autonomy, competence, and 
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relatedness support) in a variety of ways including keystrokes, words, thought segments, 

sentences, and paragraphs. For example, the keystrokes “:)” were coded as Affective 

Expression and therefore illustrated relatedness support. Similarly, reference to a 

student-team name (i.e., words) by a scientist-mentor was coded as Use of Names and 

considered a relatedness support. While these two specific examples did not pose 

particular coding challenges, other entries did. For example, multiple, independent 

entries by scientist-mentors and large, single entries that were self-segmented by the 

scientist-mentors (e.g., sections set off by multiple blank lines) made it difficult to 

establish inter-coder reliability as it was impossible to establish segmentation rules 

beforehand. This challenge was exacerbated because coders had differing levels of 

expertise, which is almost always the case in large-scale research projects. 

In an effort to address the challenges of these particular PS dialogues and present 

a robust and replicable coding framework, I utilized a coding procedure originally 

developed for semi-structured interviews by Campbell, Quincy, Osserman, and Pederson 

(2013). Like semi-structured interviews, the scientist-student dialogues used in the 

current study were much more diverse in their content when compared to transcripts 

generated from tight, structured interviews. The process developed by Campbell et al. 

(2013) was designed for these types of transcripts and provided a way to segment the 

transcripts using the expertise of the analyst as advocated by Krippendorf (2004). 

Campbell et al.’s coding process was developed to address the lack of standardized 

procedures for determining appropriate units of analysis for complex transcripts, as 

pointed out by Hruschka et al. (2004) and Kurasaki (2000). 
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As the most knowledgeable motivational researcher on the team, I identified 

meaningful units of analysis as I searched and coded the text using the motivational 

support rubric of prescribed codes. More specifically, I coded the smallest segments 

possible, or “raw data bits,” according to the procedure of Lincoln and Guba (1985). 

Simultaneous coding (i.e., co-occurring coding) was permissible, and only text 

corresponding to motivational support was coded. Next, I removed the codes and 

presented segments to two naïve coders in segmented form in order to establish 

reliability (see next section). While Campbell et al. (2013) acknowledged this method 

might inflate inter-coder reliability, they asserted this approach “eliminates a potential 

source of confusion when comparing the coding of two or more coders, especially when 

one is more knowledgeable than the rest” (p. 304). This method also provided a 

systematic way to address Krippendorff’s (2004) major concern that segmentation 

almost exclusively relies upon the qualifications of the coder. Figure 4.3 illustrates a 

coded excerpt from the current study using this methodology. After coding, I summed 

the numbers of codes for each motivational support category and calculated percentages. 

Reliability 

De Wever, Schellens, Valcke, and Van Keer (2006) consider inter-coder 

reliability as the primary indicator of objectivity in coding studies. As a result, these 

authors recommended calculating and reporting both a liberal index and a conservative 

index of agreement (De Wever et al., 2006). In the current study, both percent agreement 

(liberal index) and Fleiss’ kappa (conservative index) were used to indicate inter-coder 

reliability.  
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Wow! You guys have made so many good observations. Making observations and  
 
 
 
asking questions are the first parts of the scientific process.… Why might one type of  
 
 
 
seed need a helicopter wing (maple seed) while another seed is really small (radish 
seed)? 
 
Figure 4.3. Example coding segment from Case 10 scientist-mentor. 
 
 

Along with two naïve coders, I applied the motivational support rubric to a 

random sample of 50 excerpts generated from the 10 cases. Percent agreement values 

between the three coders were as follows: autonomy support – 85.3%; competence 

support – 88.9%; relatedness support – 85.3%. According to Lombard, Snyder-Duch, 

and Bracken (2002), over 80% agreement is acceptable.  

Inter-coder reliability was also calculated using Fleiss’ (1971) kappa, a statistic 

appropriate for establishing multi-coder reliability and used in other science education 

studies with categorical variables (see Lee, 2010). Fleiss’ kappa, unlike percent 

agreement, corrects for chance agreement. Fleiss’ kappa values were as follows: 

autonomy support – 0.62; competence support – 0.72; relatedness support – 0.68. 

According to Cicchetti (1994), kappa values over 0.60 indicate good agreement. 

Similarly, Landis and Koch (1977) declared kappa values over 0.61 indicative of 

substantial agreement in categorically coded data. Based on these two indices, reliability 

Affective Expression 

Positive reinforcement; 
Complimenting and 
appreciating 

Providing rationale 

Content/Process Question 
Asking Questions/Inviting Participation 
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of the motivational support rubric was established, and I coded the remaining dialogues 

from the 10 cases. 

Research Questions 

Using a mixed methods approach, I sought to answer the following four research 

questions: 

1.  How did autonomy, competence, and relatedness support differ between 

scientist-mentors in the 10 cases? What specific methods did scientist-

mentors use to support motivation in student-teams? 

2. What specific ways (based on social presence theory) did scientist-mentors 

establish relatedness with the 10 student-teams? 

3. Did an association exist between the motivational support student-teams 

received from scientist-mentors and subsequent student-team engagement in 

the inquiry cycle among the 10 cases? 

4. Using extreme group comparisons, what similarities and differences existed 

between highly engaged cases and less engaged cases? What similarities and 

differences existed between cases receiving high motivational support and 

cases receiving less motivational support?   

Results 

The purpose of this study was to evaluate online scientist-mentors’ motivational 

support of student-teams in a rural school district and investigate the potential 

associations of this support with students' inquiry engagement. Results are organized and 

reported according to the four research questions driving the study. 
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Research Question 1 

How did autonomy, competence, and relatedness support differ between 

scientist-mentors in the 10 cases? What specific methods did scientist-mentors use to 

support motivation in student-teams? 

Table 4.6 contains data about scientist-mentors’ motivational support for all 10 

cases. In most instances, cases 5 and 7 received the lowest amounts of motivational 

support while case 8 received the highest amount. Specifically, total motivational 

support varied from 31 total code segments in cases 5 and 7 to 132 code segments in 

case 8. On average, scientist-mentors provided 72 motivationally supportive assertions 

per project. Autonomy supportive code segments varied from 5 in cases 5 and 7 to 32 in 

case 8 with an average of 14. Similarly, competence supportive code segments varied 

from 7 in cases 5 and 7 to 37 in case 8 with an average of 18. Relatedness supportive 

code segments varied from 19 in cases 5 and 7 to 66 in case 2 (case 8 was a close second 

with 63) with an average of 40. These findings indicate a distinct “feast or famine” 

environment for student-teams in regard to the amount of motivational support they 

received from their scientist-mentors. 

Equipped with the knowledge that scientist-mentors provided vastly differing 

amounts of motivational support, I turned my attention to how motivational support 

strategies differed within the cases. Based on the results in Table 4.6, I discovered only 

slight differences in relative uses of autonomy, competence, and relatedness-supportive 

codes between cases. In other words, relatedness-supportive codes were most common 

and autonomy-supportive codes were least common within each case (with the exception 
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Table 4.6 
 
Scientist-Mentor Motivational Code Segment Counts 

 
 SDT Category  

Cases 
Autonomy 

Support 
Competence 

Support 
Relatedness 

Support 
Total 

Support 

1 12 21 30 63 

2 17 26 66 109 

3 14 18 34 66 

4 18 16 47 81 

5 5 7 19 31 

6 13 
 

13 34 60 

7 5 7 19 31 

8 32 37 63 132 

9 8 13 34 55 

10 12 26 52 90 

Total 136 184 398 718 
 

Mean 13.6 18.4 39.8 71.8 
 

SD 7.8 9.4 16.6 32.1 
 
 
 

of case 4), indicating scientist-mentors used similar patterns of motivational support but 

in vastly different quantities. 

Also, within a given category of support (i.e., autonomy, competence, and 

relatedness), scientist-mentors, regardless of their overall amounts of support, sometimes 

used similar language in their dialogues with student-teams. For example, the scientist-
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mentor for case 8 (who provided the most motivational support of all 10 cases) provided 

autonomy support by encouraging the student-team to investigate something of interest 

to them. This scientist-mentor asked, “What have you always wondered about plants? Is 

there something about plants that you've always thought was interesting? If so, this may 

be something that your team can investigate with this seed project.” Similarly, the 

scientist-mentor for case 7 (who tied for lowest overall motivational support) asked, 

“What have you studied so far in class about germination? Do you have any ideas about 

what you might like to focus on?” In both cases, the scientist-mentors tried to inspire 

students to autonomously select a topic for their projects. The case 8 scientist-mentor, 

however, was much more suggestive of interests, even those outside of the students’ 

classroom experiences. In contrast, the scientist-mentor for case 7 suggested that 

students stick to things they previously covered in class. It is also helpful to remember 

that the case 8 scientist-mentor provided autonomy support six times more often than the 

case 7 scientist-mentor (i.e., 32 instances versus 5 instances). 

Another difference with regard to autonomy support was the contrast between 

autonomy-supportive versus controlling language. For example, the scientist-mentor in 

case 8 often gave the student-team “space” to work through their own questions without 

providing prescriptive solutions. In the early stages of the project when students were 

possibly looking for the “right answer” as to which research question to pursue, the case 

8 scientist-mentor stated, “Let me know when you’ve chosen one question to focus on, 

and I can help you with experimental design.” Conversely, the case 5 scientist-mentor 

(who tied for lowest autonomy and overall motivational support) sometimes presented 
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ideas in a controlling fashion. “Set up some kind of air circulation near your potted 

seeds… Don’t point the fan directly towards the soil, point it horizontally across the 

surface of all your pots.”  

A qualitative examination of competence support also revealed some interesting 

trends in the dialogues. Some scientist-mentors went to great lengths to expound on 

information, while others used a facilitator approach, providing students with direction 

but encouraging the students to do the “leg work” themselves. An example of this 

contrast in competence support is in Table 4.7.  

In addition to offering explanations, scientist-mentors also supported student 

competence through content and process questions. As a matter of fact, content and 

process questions were the most common ways competence support was provided by the 

top three motivationally supportive scientist-mentors (cases 2, 8, and 10; Table 4.8).  

Specifically, scientist-mentors used these questions for a variety of reasons 

including: (1) ascertaining background knowledge of the student-teams, (2) requiring 

students to clarify statements, (3) asking students to justify decisions, and (4) 

encouraging students to draw conclusions. Examples of the questions scientist-mentors 

asked are found in Table 4.9.  

Scientist-mentors also differed in the ways they provided relatedness support in 

the dialogues. Since relatedness support was measured using indicators informed by 

social presence theory, these differences were investigated as part of a separate research 

question. 
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Table 4.7 
 
Examples of Explicit Versus Facilitator Approaches by Scientist-Mentors 
 

Approach Examples 
 

Explicit 
 
I have looked into the differences between light bulbs and found the following: regular incandescent bulbs 
(typical old light bulbs) produce light by sending electricity through a thin filament of metal. This causes the 
filament to radiate light and heat. Incandescent bulbs actually create more heat (infrared wavelengths) than light 
(visible wavelengths) which is why most people are switching to new compact fluorescent lights (CFLs) to save 
energy and reduce power costs. Heat lamps are almost identical to incandescent light bulbs except that more 
electricity flows through the filament so that additional heat is created. These bulbs may also use reflectors to 
focus the generated heat in one direction. Additionally some heat lamps have tinted glass which blocks certain 
wavelengths (mainly visible wavelengths) allowing only infrared wavelengths (heat) to escape the bulb. Plants 
absorb certain wavelengths of light during photosynthesis to create usable energy. Heat lamps and regular light 
bulbs may release different amounts of these wavelengths causing differences between plants grown under heat 
lamps and regular bulbs. [Case 6 Scientist-mentor] 
 

 
Facilitator 

 
Another option is to look at the components of various brands or types of fertilizers. Miracle Grow is one 
example and it comes in a variety of nutrient components.  
[Case 4 Scientist-mentor] 
 

 You might want to research some plants that you want to work with (e.g. corn, beans, peas) and what types of 
minerals and nutrients they need to grow. Then, you can look up with the nutritional components are of 
Gatorade. This can help aid in your hypothesis. [Case 4 Scientist-mentor] 
 

 
 

Table 4.8 
 
Scientist-Mentor Competence-Supportive Motivational Code Segment Counts 
 
       Competence-Supportive Code Segments  

Cases 
Content/Process  

Questions 
Offering  

Explanations 
Positive  

Feedback 
Total 

Competence 
Overall Motivational 

Support Ranking 
Case 1 12 8 1 21 6 
Case 2 21 2 3 26 2 
Case 3 8 7 3 18 5 
Case 4 3 11 2 16 4 
Case 5 3 4 0 7 9.5 
Case 6 6 5 2 13 7 
Case 7 6 0 1 7 9.5 
Case 8 21 11 5 37 1 
Case 9 7 4 2 13 8 
Case 10 20 2 4 26 3 
Total 107 54 23 184  
Mean 10.7 5.4 2.3 18.4  
SD 7.3 3.8 1.5 9.4  
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Table 4.9 
 
Example Content and Process Questions Asked by Scientist-Mentors in the Dialogues 
 

Purpose of Question Examples 
 

Background Knowledge 
 
Have you learned about what types of nutrients plants require? [Case 10 
Scientist-mentor] 
 

 What things or materials do you think seeds need to germinate and grow 
in the wild? [Case 8 Scientist-mentor] 
 

 Why might one type of seed need a helicopter wing (maple seed) while 
another seed need to really small (radish seed)? [Case 10 Scientist-
mentor] 
 
 

Clarify 
 

What are you going to measure to see if your hypothesis is supported or 
not? [Case 7 Scientist-mentor] 
 

 What size containers are you using to grow your plants?  
[Case 3 Scientist-mentor] 
 

 How much water was in the cup? (Was there a lot of water in the cup, so 
that the seeds were covered? Just tiny bit of water? Or something in 
between?) [Case 2 Scientist-mentor] 
 
 

Justify 
 

Why did you choose to compare potting soil and perlite? Why do you 
think the seeds will grow faster in potting soil? [Case 2 Scientist-mentor] 
 

 Why did you make your predictions the way you did (sunflower fastest, 
alfalfa next, radish slowest)? [Case 8 Scientist-mentor] 
 

 Are you sure that growth of your plants in different soils will be due only 
to the soil type? [Case 10 Scientist-mentor] 
 
 

Draw Conclusions 
 

Can you think of another reason why plants grown under a heat lamp may 
turn out different than those grown under regular light bulbs?  
[Case 6 Scientist-mentor] 
 

 What sort of things did you learn from your experiment? Is there anything 
you would do differently next time? [Case 10 Scientist-mentor] 
 

 Have you begun looking at your results and drawing any potential 
conclusions?  [Case 4 Scientist-mentor] 
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Research Question 2 

What specific ways (based on social presence theory) did scientist-mentors 

establish relatedness with the 10 student-teams? 

Table 4.10 contains raw counts, means, and standard deviations of interpersonal, 

cohesive, and open communication codes for all 10 cases. Overall, relatedness-

supportive codes ranged from 19 in cases 5 and 7 to 66 in case 2, with an average of 40 

codes. Specifically, interpersonal communication codes ranged from 3 in case 7 to 16 in 

case 8, with an average of 10. Cohesive communication codes ranged from 9 in case 5 to 

29 in case 2, with an average of 17. Open communication ranged from 4 in cases 5, 7, 

and 9 to 25 in case 2, with an average of 12. In 8 of 10 cases, cohesive communication 

was the most common form of relatedness support. Additionally, in 8 of 10 cases, 

scientist-mentors used open communication more often than interpersonal 

communication.  

Of the three forms of interpersonal communication, affective expression was 

used most often. This fact is not surprising as affective expression is the easiest of the 

three to share in a text-based medium. Inclusion of the keystrokes “:),” symbolic of a 

smiley face, is a simple affective expression. On the contrary, scientist-mentors rarely 

used humor, with only 5 occurrences in all 10 cases. Self-disclosure was much more 

common, with 19 instances occurring in the 10 cases. Only two scientist-mentors (cases 

5 and 7) failed to share any personal information through self-disclosure with their 

student-teams.  
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Table 4.10 
 
Scientist-Mentor Relatedness-Supportive Code Segment Counts  
 
 Relatedness-Supportive Code Segments  

Cases 
Interpersonal 

Communication 
Cohesive  

Communication 
Open  

Communication 
Total Relatedness 

1 9 10 11 30 
2 12 29 25 66 
3 10 12 12 34 
4 12 21 14 47 
5 6 9 4 19 
6 7 12 15 34 
7 3 12 4 19 
8 16 27 20 63 
9 14 16 4 34 

10 12 25 15 52 
Total 101 173 124 398 
Mean 10.1 17.3 12.4 39.8 
SD 3.9 7.5 7.0 16.6 

 
 
 
When self-disclosing, scientist-mentors often included information about their 

professional lives as scientists. Typically, these dialogues occurred at the beginning of 

the online relationship, although scientist-mentors sometimes disclosed additional 

information about themselves in response to specific student questions. In addition, 

scientist-mentors sometimes disclosed personal things unrelated to either their profession 

or the PS project. These “off topic” comments ranged from music preferences to 

information about where the scientist lived and worked. Examples of scientist-mentor 

comments related to self-disclosure are located in Table 4.11. 

In addition to interpersonal communication, all scientist-mentors used various 

forms of cohesive communication in their dialogues with student-teams. Not 

surprisingly, Use of Names was the most common form of cohesive communication, 
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Table 4.11 
 
Examples of Self-Disclosure by Scientist-Mentors in the Dialogues 
 

Type of Disclosure Examples 
 

Personal Information 
 
I like all kinds of music, but I especially like old rock and 
roll music from the 50's and 60's. I am afraid I don't know 
any rap music, but I do listen to it sometimes as my youngest 
daughter is a fan. [Case 3 Scientist-mentor] 

 
Professional Background 

 
We do experiments to research issues that are important to 
farming and the environment in the US. The site I work at 
focuses on plants and particularly on subjects like food 
safety and quality improvement, disease and pest 
management, control of invasive species, and energy 
applications. We have our own research projects, but usually 
work in groups and collaboration is highly encouraged. That 
way we can take advantage of the expertise of our coworkers 
and can apply what they know to better our own work. We 
also do a lot of talking to get many opinions and perspectives 
as we are planning research. I work on a small grass that is 
the "lab rat" for other grasses such as corn, wheat, rice, and 
switchgrass. These plants may seem different at first, but 
they all share a common ancestor and in the system that 
scientists use to classify groups of plants, they share similar 
appearance, growth characteristics, and genomes. For this 
reason, what you learn about one, can often be applied to all 
of them. [Case 1 Scientist-mentor] 

 
Past Experiences as a Student 

 
Although I don't think frog dissections will come into play 
with THIS experiment, I remember having fun when I finally 
got to do that in 7th grade biology class. My lab partner 
didn't like it at all, so I got to do all the dissecting!  
[Case 8 Scientist-mentor] 

 
Connections Between Students’ Work 

and Scientist’s Work 
 

 
My lab is going great. I'm mainly doing work with DNA this 
semester. I will start my fieldwork in the spring. I'm doing a 
much different experiment than your group, but I do perform 
seed germinations fairly frequently.  
[Case 9 Scientist-mentor] 
 

 
 
 
probably due to easy inclusion. Salutations/greetings/phatics was the next most 

common, with scientist-mentors’ comments ranging from, “Hi everyone!” to “How’s the 

weather?” Inclusive language was also found in the dialogues, with scientist-mentors 
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often referring to themselves as “part of the team” and expressing the idea of a shared 

partnership in PS inquiry project (e.g., “I’m glad that you’re part of the experiment as 

well! I can’t wait to work with you more.” – case 9 scientist-mentor). Again, many of 

these comments were made early in the online relationship, but others were made as 

student-teams and scientist-mentors engaged in discussions about the project itself. For 

example, the scientist-mentor in case 1 commented, “Let’s think [together] about the 

properties of those two liquids.”  

Scientist-mentors typically asked questions and invited participation when 

engaging in open communication (48% of all codes in the open communication category 

were related to asking/inviting participation). Scientist-mentors were sometimes general 

in their invitation, stating, “I can’t wait to hear more. Let me know if you have any 

questions” (case 10 scientist-mentor). In other instances, invitations were much more 

specific and probed for feedback about particular results from the experiment, such as 

the comment by the case 2 scientist-mentor: “Have you observed your plants this week? 

I’m curious about how they’re doing—but especially wondering if the perlite seeds have 

germinated or not.”  

Student response times to these questions and invitations varied. In both of the 

examples from the preceding paragraph, student-teams responded the next day. Other 

invitations, such as “Let me know what you think about these questions” (case 9 

scientist-mentor) were not answered until one full week later. In an extreme case, the 

scientist-mentor in case 7 never received a response related to a posed question. 
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Interestingly, the case 7 student-team had the lowest OEIC score of all 10 cases, 

indicating little engagement in the inquiry process.  

Research Question 3 

Did an association exist between the motivational support student-teams received 

from scientist-mentors and subsequent student-team engagement in the inquiry cycle 

among the 10 cases? 

Student-team engagement in the inquiry cycle was measured using the 40 

elements of the OEIC (see Table 4.5). OEIC scores were calculated for each of the 10 

cases by two researchers involved primarily in other aspects of PS research. Relative 

percentages of student engagement in the eight inquiry phases were calculated. See 

Table 4.12 for student-team OEIC scores by case. Overall OEIC scores ranged from 8 

(case 7) to 85 (case 10), with an average of 53. Student-teams averaged the highest 

OEIC score during the Prediction phase. The lowest mean scores were recorded during 

the Experimental Design and Procedures phase.  

Spearman’s rho was calculated to determine potential associations between 

scientist-mentor motivational support and student-team inquiry engagement for each 

element of inquiry (Table 4.13). Autonomy support showed no significant associations 

with student inquiry engagement in any phase, a finding contrary to SDT. A significant 

and moderate association was found between competence support and the Research 

Question phase. Moderate correlations were also found between competence support and 

Observations, Conclusions, and Future Research and Implications, but these 

correlations were not statistically significant. Relatedness support was highly associated 
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Table 4.12 
 
Percentages of Student-Team Inquiry Engagement By Inquiry Stage 
 
 Cases  

Inquiry stage 1 2 3 4 5 6 7 8 9 10 Mean 
Immersion 0 100 50 50 50 100 0 50 100 100 60 
Research Question 75 100 38 88 63 50 13 75 75 100 68 
Prediction 67 67 67 33 67 100 33 100 100 100 73 
Experimental Design 50 33 0 0 33 50 17 0 50 67 30 
Observations 57 86 71 71 57 57 0 57 71 100 63 
Analysis and Results 25 25 25 50 75 75 0 50 50 75 45 
Conclusions  63 63 13 50 25 63 0 50 50 63 44 
Future Research 50 50 50 50 50 50 0 50 50 100 50 

Mean 55 68 35 53 50 63 8 53 65 85 53 
Note. Numbers represent percentage of OEIC completion for the elements within each inquiry stage. The 
overall mean OEIC score was calculated on the basis of total number of elements within the entire 
checklist without reference to scores on individual stages.  
 
 
 
Table 4.13 
 
Spearman’s Rho Correlations Between Scientist-Mentor Motivational Support and 
Student-Team Inquiry Engagement 	
  
 
 Motivational Support Category 
Inquiry stage Autonomy Support Competence Support Relatedness Support 
Immersion .170 .204 .573 
Research Question .406 .685* .738* 
Prediction .098 .342 .362 
Experimental Design -.492 -.032 -.092 
Observations .331 .500 .679* 
Analysis and Results -.032 -.032 .121 
Conclusions  .293 .555 .508 
Future Research .235 .552 .514 

Note. *p < .05 
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with the Research Question phase and moderately associated with the Observations 

phase. While moderate correlations occurred between relatedness support and 

Immersion, Conclusions, and Future Research and Implications, these correlations were 

not statistically significant. 

Research Question 4 

Using extreme group comparison, what similarities and differences existed 

between highly engaged cases and less engaged cases? What similarities and differences 

existed between cases receiving high motivational support and cases receiving less 

motivational support?  

For this particular question, I used an extreme group comparison strategy (Chase, 

1964) to replicate cases and create disparate groupings for mixed methods comparison. 

According to Chase (1964), extreme group comparison is useful when comparing high 

and low scorers on a given characteristic on some other characteristic. As a form of 

triangulation, I formed two different extreme groupings based on two different criteria: 

scientist-mentor motivational support (as determined by the motivational support rubric) 

and student inquiry engagement (as determined by the OEIC).  

In the first grouping, I divided the 10 cases based on total scientist-mentor 

motivational support as determined by the number of motivationally supportive codes. 

The top three and bottom three cases in regard to total scientist-mentor motivational 

support were grouped together. Table 4.14 provides information about the specific cases 

(i.e., replicates) included in this first grouping. I identified these cases as highest 

motivational support (HMS) and lowest motivational support (LMS).  
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In the second grouping, I divided the 10 cases based on student inquiry 

engagement as determined by total OEIC scores. The top three and bottom three cases in 

regard to total OEIC scores were grouped together. Table 4.14 provides information 

about the specific cases (i.e., replicates) included in this second grouping. I identified 

these cases as highest engagement (HE) and lowest engagement (LE).  

 
 

Table 4.14 
 
Breakdown of Extreme Group Comparisons Based on Amount of Scientist-Mentor 
Motivational Support (First Grouping) and Student-Team Inquiry Engagement (Second 
Grouping) 
 
 First Grouping  Second Grouping 
 Highest Scientist 

Motivational Support 
(HMS) 

Lowest Scientist 
Motivational Support  

(LMS) 

 Highest Student 
Engagement  

(HE) 

Lowest Student 
Engagement 

(LE) 
      

Cases 
 Case 2	
  
 Case 8	
  
 Case 10	
  

 Case 5 

 Case 7 
 Case 9 

  Case 2 
 Case 9 
 Case 10 

 Case 3 
 Case 5 
 Case 7 

      
Mean 110.3 39.0  72.6 30.9 

      
SD 21.0 13.9  10.8 24.2 

 
Note. Mean and SD based on number of 
motivationally supportive code segments of 
each case in grouping 

 Note. Mean and SD based on total OEIC 
score of each case in grouping 

 
 

 
Quantitative results from extreme group comparisons. From the first 

grouping, I compared HMS and LMS cases in regard to student-team inquiry 

engagement in the eight phases of inquiry (Table 4.15). Overall, HMS cases scored 68 

on the OEIC compared to 41 in LMS cases. In other words, HMS student-teams showed 

evidence of engagement in 68% of the items on the OEIC compared to 41% for LMS 
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Table 4.15 
 
Percentages of Student-Team Inquiry Engagement (as Determined by OEIC) by Extreme 
Group 
 

 
Extreme Groups 

(based on motivational support) 

Inquiry stage 
HMS Cases 

(n = 3) 
LMS Cases 

(n = 3) 
Immersion 83 50 
Research Question 92 50 
Prediction 89 67 
Experimental Design and Procedures 33 33 
Observations 81 43 
Analysis and Results 50 42 
Conclusions and Explanations 59 25 
Future Research and Implications 67 33 
Mean Inquiry Engagement 68 41 
Note. Numbers represent percentage of OEIC completion for the elements within each 
inquiry stage. The mean OEIC score was calculated on the basis of total number of 
elements within the entire checklist without reference to scores on individual stages. 
	
  
 
 
student-teams. Specifically, with the exception of Experimental Design and Procedures, 

HMS case student-teams showed higher engagement in all phases of the inquiry cycle 

when compared to the LMS cases. The equal scores in Experimental Design and 

Procedures for the two groups were unexpected. The greatest differentiations (> 30 

percentage points) in engagement between the HMS cases and LMS cases were in 5 of 

the 8 inquiry phases (i.e., Immersion, Research Question, Observations, Conclusions 

and Explanations, and Future Research and Implications). HMS cases scored over 20 

percentage points higher in Prediction. I also found a small difference (< 10 percentage 

points) between the HMS cases and the LMS cases in Analysis and Results. The overall 

trend of HMS cases engaging in inquiry at higher levels was apparent. 
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One puzzling finding was the discovery that student-teams across the board did 

not engage well in the Experimental Design & Procedures phase of inquiry. However, 

this trend has been documented in other research about PS (Peterson, 2012). The 

Peterson (2012) study revealed that even though scientist-mentors emphasized 

experimental design more often than any other stage of inquiry, student-teams 

consistently showed less evidence of engagement in this phase. Also, in the current 

study, lack of engagement in Experimental Design & Procedures may be a limitation 

posed by the purpose of the OEIC to evaluate only information posted on the PS 

website, thereby providing no way of recording students' actual in-class engagement in 

inquiry. While engagement in this phase may be occurring at a much higher level in 

actual classroom practice, only student-teams who make online references to their 

classroom engagement receive credit on the OEIC. 

From the second grouping, I compared HE and LE cases in regard to the amount 

and type of motivational support they received from scientist-mentors (Table 4.16). 

Overall, HE cases received more motivational autonomy, competence, and relatedness 

support than LE cases. The greatest differentiations were found in competence and 

relatedness support. Overall, HE cases received almost twice as much motivational 

support as LE cases. The association between higher engagement and more motivational 

support was also apparent from this group comparison.  

Trends in the cases. The information in Table 4.14 revealed trends that formed 

the basis of subsequent qualitative comparisons. First, cases 2 and 10 were both HMS 

and HE cases, indicating they received the highest amounts of scientist-mentor 
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Table 4.16 
 
Number of Motivationally Supportive Coding Segments (as Determined by Motivational 
Support Rubric) and Amount of Scientist-Mentor Motivational Support by Case 
Grouping 
 

 
Extreme Groups 

(Based on OEIC Scores for Inquiry Engagement) 

Type of Motivational Support 
HE Cases 

(n = 3) 
LE Cases 

(n = 3) 
Autonomy Support 37 24 
Competence Support 65 32 
Relatedness Support 152 72 
Total Motivational Support 254 128 
 
 

motivational support and exhibited the highest inquiry engagement. I referred to these 

two cases as Exemplary. A professor of plant genetics with no PS mentoring experience 

mentored case 2. A graduate student in cellular biology with four semesters of PS 

mentoring experience mentored case 10. 

In contrast to the Exemplary cases, cases 5 and 7 were included as LMS and LE 

cases, indicative of the lowest amounts of scientist-mentor motivational support and 

least amount of inquiry engagement. I referred to these two cases as Unsatisfactory. 

Case 5 was mentored by a graduate student in plant physiology with no experience 

mentoring in PS. Case 7 was mentored by a graduate student in cellular biology with two 

semesters of PS mentoring experience.  

The Exemplary and Unsatisfactory cases followed an expected pattern. Figure 

4.4 illustrates the proposed relationship between scientist-mentors’ motivational support 

and student inquiry engagement. SDT postulates motivation occurs on a continuum 
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(Ryan & Deci, 2000a), and differing contextual support levels have effects on overall 

motivation (Ryan & Deci, 2002). Therefore, SDT predicts students who receive more 

motivational support will be more engaged (Deci & Ryan, 2000). Likewise, less 

motivational support can lead to less engagement. According to my hypothesis, when 

scientist-mentors’ motivational support increased (as measured by the motivational 

support rubric), I predicted an associated increase in student inquiry engagement (as 

measured by the OEIC). Both the Exemplary and Unsatisfactory cases supported this 

prediction.   

However, case 9 was unique because it was included in the LMS and HE groups. 

In other words, the student-team received low amounts of scientist-mentor motivational 

support yet exhibited high inquiry engagement. I referred to this case as Atypical. A 

graduate student in plant physiology with no PS mentoring experience mentored case 9. 

Qualitative comparison of Exemplary and Unsatisfactory cases. The scientist-

mentors in the Exemplary cases were similar in how they provided motivational support 

to their student-teams. Both scientist-mentors set the stage for building relationships 

with students from the first post. Table 4.17 contains verbatim first posts from both the 

Exemplary and Unsatisfactory cases. Both Exemplary scientist-mentors opened their 

posts with affective expressions. They also expressed excitement about partnering with 

students in the inquiry projects (an example of relatedness support) and tried to engage 

learners with questions. In addition, the scientist-mentor in case 2 provided specific 

information indicating knowledge about what the student-teams had already done in 

class. While this may seem trivial, this acknowledgement indicated the scientist-mentor 
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      Motivational Support Continuum 

 

Predicted Student Inquiry Engagement Continuum 

Figure 4.4. Proposed hypothetical framework based on SDT. 

 
 
communicated with the teacher before the project began (which shows special interest). 

Both Exemplary case mentors also showed a personal interest in their student-teams, 

with the case 2 mentor asking, “What were the most interesting things that you noticed 

about seeds?” and the case 10 mentor asking, “What is your favorite plant?” Both 

Exemplary mentors also shared personal information (i.e., self-disclosure) in this 

important first contact and signed off using their first names (i.e., cohesive 

communication). 

The mentors in the Unsatisfactory cases (5 and 7) also opened their first posts 

with affective expressions and closed their posts with first names. In addition, they 

expressed excitement about working with students. However, neither Unsatisfactory 

case scientist-mentor asked any questions to either support competence or promote 

future engagement (i.e., support relatedness). The case 7 scientist-mentor did little to 

support motivation (or anything else) in the first post.  
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Table 4.17 
 
Verbatim “First Posts” from Exemplary and Unsatisfactory Cases 

 
Case Type Case Examples 

 
Exemplary 

 

 
2 
 

 
Hello [Team Name]! 
 
Thanks for telling me a little bit about yourselves. I have never been in a band, but I 
do mostly listen to rock music. I even sometimes listen to rock music while I'm 
studying plants in my laboratory! I'm excited to be working with you, too. 
 
I work at [college], which is in [town]. Part of my job is to teach biology classes to 
college students. The other big part of my job is to work with college students to 
conduct experiments in my laboratory. Most of my research focuses on a part of the 
plant called the "shoot apical meristem" (SAM, for short). Have you heard of the 
SAM? 
 
[Teacher’s name] mentioned to me that last week you observed some germinating 
seeds. What were the most interesting things that you noticed about the seeds? 
[First name of scientist-mentor] 
 

  
10 

 
Hiya! 
My name is [first name of scientist-mentor] and I will be your mentor for the next 
few weeks. I am super excited to find out what questions you will have for me. 
 
Do you know what project you will be working on? What have you learned about 
plants? What is your favorite plant? Mine is the Sunflower. 
 
~[First name of scientist-mentor] 

   
 

Unsatisfactory 
 

5 
 
Hello All 
Hope you all are doing well. I'm excited to work with you on your experiment!  
 
@[student name]: Yes, all plants have structures in the seed. This link shows the 
major parts of the internal structure of 
seedshttp://www.landlearn.net.au/newsletter/2008term2/images/Seed-rotated.jpg. 
 
@[student name]: Yes seeds have an embryo inside, that's what the small plant comes 
from. 
 
@[student name]: The seeds form inside the watermelon. A watermelon is like a 
apple or an orange. The seeds are inside the fruit where the develop into mature 
seeds. The actual part of the watermelon that you eat is the plants ovary. In some of 
these types of plants the purpose of the fruit is to attract animals which eat the fruit 
and its seeds and excrete them in feces in another location. This carries seeds to other 
areas for the plant to grow.  
 
If you all have any other questions feel free to ask :) 
[First name of scientist-mentor] 
 

  
7 

 
Hello team! 
Greetings! I can't wait to hear from you. 
-[First name of scientist-mentor] 
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As the projects matured, further differences were noted between the Exemplary 

and Unsatisfactory cases. Student-teams in both of the Exemplary cases seemed to 

develop a comfortable relationship with their scientist-mentors. Student-teams in these 

cases included their scientist-mentors as part of the research team, often asking the 

scientist-mentors for help. For example, the students in case 2 asked, “We are not sure 

how much water to put in it, can you help us?” In these cases, students considered advice 

from the mentors and made some decisions based on the feedback. In another example, 

the case 10 students commented to their scientist-mentor, “Thank you for all the info, it 

really helped us come to the decision of comparing the rate of germination.” Over the 

course of the project, these Exemplary student-teams seemed to look forward to hearing 

from their mentors and seriously considered any advice they received. 

I also noticed that mentors of Exemplary student-teams treated students’ 

questions as important. When Exemplary student-teams asked questions, their scientist-

mentors spoke directly and relevantly to those questions. In one instance, the scientist-

mentor in case 2 responded to a student-team’s request with the following:  

A few of you said that you’re curious about whether seeds grow faster in soil or 

without. Can you tell me a little more about how you and [teacher’s name] grew 

the seeds that you looked at last week?....Some of you also wondered whether a 

seed could sprout or keep growing after you cut it in half. This made me wonder 

three things: (1) What kinds of seeds did you observe last week?, (2) Did 

you…cut open any of the seeds?..., (3) What do you all think might happen if 

you cut a seed in half? 
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This response exudes thought, concern, and a desire for continued discourse on 

the matter. In contrast, the response of the scientist-mentor from case 5 (see Table 4.17) 

were factual “answers” to questions posed by students and provided no connections to 

the project at hand, indicating little thought about the project. In another instance from 

the Unsatisfactory case dialogues, the case 7 student-team expressed interest in looking 

at the effects of varying sugar concentrations on seed germination and plant growth. In a 

response the next day, the case 7 scientist-mentor asked, “Do you have any ideas about 

what you might like to focus on?” and never indicated she read the students’ previous 

comments. This lack of relatedness support could have affected the students’ motivation 

to engage their scientist-mentor in future discussions. As a matter of fact, after this 

particular exchange, the student-team in case 7 did not post for nine days. When the 

team did post, it was to inform the scientist-mentor they had already started their 

experiment.  

Qualitative results for the Atypical case. The discourse for Case 9, the Atypical 

case, started out with both students and the scientist-mentor engaged in ongoing 

conversation. The scientist-mentor’s opening post was rich. The post contained a 

salutation, affective expression, self-disclosure, inclusive language, acknowledgment of 

ownership/interest, use of names, a rationale, and references to previous student posts. 

The scientist-mentor encouraged students and asked many questions to bolster both 

competence and relatedness. Early on, the student-team responded to comments by the 

scientist-mentor in positive ways such as, “Thank you very much for the 

recommendations. We are using the same water conditions for each. Oh yeah, and thank 
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you for reminding me about the lighting conditions,” and “Thank you for the 

suggestions. We do not have them in strong sunlight, but they are doing great.” 

One of the most interesting aspects of this conversation was the revelation by one 

member of the student-team that, “I have been working on the experiment at my house.”  

While it is impossible to ascertain from the dialogues if this was an accurate statement, 

its plausibility may help explain why student inquiry engagement levels for this case 

were high when scientist-mentor motivational support was low. Working on the project 

at home is indicative of intrinsic interest on the part of the student(s). As a result, 

perhaps the student(s) in this team were not affected by the overall lack of outside 

motivational support from the scientist-mentor.  

The puzzling results from this Atypical case may also point to a potential 

shortcoming of our measure of motivational support. Since the motivational support 

rubric is based on quantitative counts, it may sometimes fail to capture the essence of 

specific, targeted, high quality motivational support. While the amount of motivational 

support was low, qualitative analysis of the dialogue indicates members of the student-

team may have developed a sense of relatedness with the scientist-mentor anyway. For 

example, one of the last student-team comments for case 9 was as follows: 

Dear [Scientist-mentor name]. Hi, I am happy that I got a chance to work on here 

with you as my mentor. I just want to say THANK YOU!!! :) I really appreciate 

all of your suggestions. We were so happy to have you following us on our 

project. I’m sad that we aren’t doing our project any more, but once again I just 
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want to say thank you, thank you, thank you very much. Sincerely, your “science 

buddy” :) [Student name] <3 

In this particular case, the results were confounded but yet speak to the value of looking 

at the data from multiple perspectives and using different techniques and methodologies. 

Discussion 

This study was designed to evaluate associations between online scientist-mentor 

motivational support and student inquiry engagement. The hypothesis proposed at the 

beginning of this chapter (see Figure 4.4) stated increased motivational support from 

online scientist-mentors would associate with greater student-team inquiry engagement. 

While not claiming causality, this multiple-case replication study provides strong 

evidence supporting the existence of a relationship between the two variables. However, 

several interesting and unexpected aberrations were uncovered, providing valuable 

insight into the complex world of online mentoring. These findings can inform future 

strategies for supporting students’ motivational resources in online environments.  

Challenges and Benefits of Using Scientists as Online Mentors 

Analyses indicated scientists-mentors provided vastly different amounts of 

motivational support to their student-teams. While explicit reasons for this disparity in 

motivational support cannot be determined from this study, I carefully offer some 

insights. Scientists involved in PS are typically research scientists and not educators. 

They volunteer their time as mentors in classroom science projects. Other than some 

mentoring-related training resources on the PS website, most scientists are not trained to 

facilitate online learning and/or establish social presence in virtual environments. 
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Additionally, they are not trained in motivational theory or self-determination. This 

study indicates some scientists are quite adept at providing motivational support through 

online communication in spite of the circumstances. However, thoughts that student 

engagement will automatically increase with indiscriminate recruiting and placement of 

scientists in classrooms, whether virtual or face-to-face, are limited at best. 

In order to make online programs like PS more effective and equitable for all 

participants, preparing online mentors to deliver motivational support seems warranted. 

Previous research documents the challenges of facilitating online learning environments 

(Rovai, 2007). As previous PS-specific research shows, orchestrating the complexities of 

a blended environment incorporating inquiry with technology is extremely complex, 

even for seasoned educators (Scogin, Stuessy, et al., 2013). Scientists, and all other 

online mentors, need training in online-specific strategies to provide appreciable choice, 

engage students in challenging conversation, and establish connectedness between 

people through social presence. In the cases studied here, mentors who used these 

strategies made a difference. Based on the varying propensities of scientists to provide 

motivational support, the skills needed to support vibrant and engaging online 

environments are not necessarily intuitive. Therefore, we must give explicit attention to 

developing online mentors who will provide motivationally supportive assistance to 

science learners. 

Previous research on PS revealed training teachers to orchestrate the complex PS 

environment had positive impacts on student inquiry engagement (Peterson, 2012). If 

training had an impact on teachers, it stands to reason that additional training for 
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scientist-mentors would also increase student inquiry engagement. Research by Pekar 

and Dolan (2012) revealed that scientists operating in classroom partnerships typically 

occupy different roles from classroom teachers. In the Pekar and Dolan study, scientists 

provided conceptual and epistemological support, while teachers necessarily made sure 

students had access to the new knowledge. In other words, teachers were “better 

prepared and positioned” to offer pedagogical support, while scientists were more 

equipped to integrate scientific terminology, relate issues of the nature of science, and 

make real-world connections to science. These findings show the potential importance 

and value of using trained scientists as online mentors who, as Edelson (1998) might 

say, provide authenticity not often experienced in science classrooms. 

The Roles of Autonomy, Competence, and Relatedness Supports in Online 

Mentoring 

The correlational analysis (Table 4.13) revealed no significant associations of 

autonomy support with student engagement at any inquiry stage in this study. In 

addition, one of the HMS cases (case 10) actually had an autonomy support count less 

than the mean of all 10 cases (see Table 4.6). The lack of statistical evidence of a 

relationship between autonomy support and student engagement was unexpected. SDT 

research claims that autonomy is the most important factor in self-determined motivation 

(Deci & Ryan, 2000). Entering the study, we thought autonomy support by scientist-

mentors would be a critical component leading to increased student inquiry engagement. 

I offer a few thoughts on the lack of evidence supporting this hypothesis. 
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Online environments are naturally autonomous because of the transaction 

distance involved between participants (Moore, 1993). Perhaps autonomy-supportive 

statements by scientist-mentors made little difference to students as students already felt 

in control of the process. Students could ultimately decide whether to respond to 

scientists’ comments and, if so, when. Also, it is conceivable that autonomy support is 

not as important in online mentoring relationships such as PS. Students, knowing that 

online mentors are not in a position to enforce demands and/or change grades, may feel 

autonomous regardless of how an online mentor expresses autonomy support through 

text. Or, once scientists expressed autonomy support and students felt comfortable and in 

control, maybe future autonomy-supporting expressions had little additive effect. The 

role of autonomy support in online text-based contexts definitely needs more 

investigation to determine how or if autonomy support differs in online versus face-to-

face contexts. 

While a relationship between autonomy support and inquiry engagement was not 

discovered in this study, both competence and relatedness support showed some 

associations with student inquiry engagement, particularly during the Research Question 

phase of inquiry (see Table 4.13). The Research Question phase is the first opportunity 

in an inquiry cycle for students to think about their own independent projects, and it 

makes sense that support, either intellectually (i.e., competence) or relationally (i.e., 

relatedness) from scientist-mentors could influence students to engage in this initial 

process at a deeper level. We must remember these students were inquiry novices. 

Perhaps getting motivationally supportive feedback from scientist-mentors at this stage 
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was particularly encouraging and influenced engagement. Relatedness support also 

showed a strong association with the Observations phase of inquiry. We will discuss the 

relationship between these elements in the following section. 

Importance of Relatedness Support in Online Mentoring 

With the aid of online technology, students and scientists involved in programs 

like PS develop relationships that could play a significant role in the future success of 

online/blended science education initiatives. Although SDT posits autonomy and 

competence as the two most important factors in promoting self-determined motivation 

(Deci & Ryan, 2000), relatedness can play a special role in school environments. Since 

students rarely feel autonomous at school and are often either overwhelmed or 

unchallenged by the curriculum, school-related activities are typically not intrinsically 

motivating (Ratelle et al., 2007). Under these conditions, a strong relationship (i.e., 

established relatedness) with a significant other has been shown to stimulate student 

motivation (Koestner & Losier, 2002). Referred to as Organismic Integration Theory 

(OIT), this applicable SDT sub-theory states, “Whereas relatedness is less central than 

the other two needs for maintaining intrinsic motivation, it is very much central for 

promoting internalization” (Ryan & Deci, 2002, p. 19).  

Internalization occurs when individuals begin to personally endorse behaviors or 

activities that were once extrinsically motivated (Deci & Ryan, 2000). In PS, scientists 

may serve as the significant other for students. Maybe the motivational support they 

provided is the critical factor explaining why PS engages students. Other research in 

SDT supports this conclusion (Ryan & Deci, 2000a). Also, research showing students 
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develop stronger identities as science learners through forged relationships with 

scientists seems relevant to this line of thinking (Bryan et al., 2011).  

Although not explicitly part of this study, I could not help but notice how many 

student-teams responded to their scientist-mentors in ways indicative of relatedness. In 

many of the dialogues, students began by self-disclosing in friendly and conversant 

manners. Statements such as “I love rock and roll and country music” (case 2), “I love 

baseball” (case 4), and “I love horses and rodeo” (case 10) were fairly common among 

student-teams. Other disclosures were more personal, such as this revelation by case 1, 

“I also have a very good lab partner. Her name is [student’s name]. I didn’t think that we 

would get along but we do very well.” Other students talked about botany preferences, 

such as, “My [favorite tree] is the pecan tree because I love eating the pecans!” (case 

10).  

In other instances, student-teams expressed desires to know more about the 

scientists. “We are curious to know what you look like. Could you please post a 

picture?” (case 2). After the scientist-mentor posted the picture, the student-team 

responded, “Thank you. :D Now we know who we are talking to.” In another case, 

students asked about the scientist’s work environment: “Do you work with other people? 

About how many?” (case 1). These comments indicated students had a desire to connect 

with scientists on a level beyond simply partnering together to complete a school project. 

Once projects got into full swing, I also noted comments indicating student-

teams wanted feedback from their scientist-mentors. A case 1 student, in the midst of a 

week-long online discussion with classmates and the scientist-mentor about a potential 
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research question, wrote to the scientist-mentor, “What I really want to know is what 

you think, and why? I can’t wait to hear back from you.” Another student in the same 

case commented to the scientist-mentor, “Hey, it’s nice to hear back from you. How are 

you doing?” These types of comments characterized student-teams eager for support 

from scientists and equally eager for conversation beyond simple project dialogue. 

As projects came to a close, several student-teams expressed appreciation to the 

scientist-mentors and indicated the experience was worthwhile. “Thank you so much for 

all of your hard work and time!! It means so much to us! I’m so glad that we got the 

chance to do this exciting experiment!!” (case 8). “Thank you for all of your help. If it 

wasn’t for you, we wouldn’t know what to do” (case 4). In one instance, a student from 

case 1 expressed how much he/she related to the scientist-mentor’s personality. “You are 

a good guide. You like to get into things and ask a lot of things. I am a person who likes 

to ask questions myself.” These comments, along with the associations of relatedness-

supportive comments with student inquiry engagement, provide evidence that students 

valued the relationships they forged with scientists. 

As mentioned previously, a high association was found between relatedness 

support and student engagement during the Observations phase of inquiry (Table 4.13). 

Based on the OEIC (Table 4.5), Observations include students sharing their data and 

research on the online platform. The dialogues indicated this was a particularly 

important part of the process as students and scientists exchanged information back and 

forth regarding observations. Scientist-mentors used open communication strategies (see 

Table 4.4) most often to get students to share observations. For example, sometimes 
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scientist-mentors asked questions and invited participation from student-teams: 

“Looking forward to hearing more about your observations!” (case 2 scientist-mentor). 

“Any cool observations?” (case 10 scientist-mentor). Scientist-mentors also expressed 

appreciation for student-teams when they shared observations, with comments such as, 

“Thanks for all your updates and posting the pictures of your measurements and 

observations” (case 8 scientist-mentor), “Thanks for posting the pictures” (case 3 

scientist-mentor), “Thanks for the photos – they look great!” (case 6 scientist-mentor), 

and “I see that you’ve added a new picture! Thanks!” (case 2 scientist-mentor). Student-

teams were also eager to share observations, often telling scientist-mentors they were 

about to post updated pictures, data charts, or other observational data. “Look at our 

pictures sometimes and hopefully today I will be able to post new pictures” (case 9 

student-team).  

Relatedness between scientists and students may be a key factor in the success of 

PS. We need more research investigating educative online relationships. Simply 

communicating with students over the Internet is not enough. Social presence is a 

delicate dynamic, and while many scientist-mentors successfully engaged students, 

others struggled to create a strong social presence. For example, the student-team in case 

3 (an LE case) became frustrated with what they perceived as lagging responses and 

asked their scientist-mentor, “Will you put up a picture of you and reply?” 

Evidence Against Behaviorism 

Adopting a behavioral view of motivation is tempting. As educators, we may 

think providing the proper environmental conditions guarantees motivated behavior. On 



 

 211 

the contrary, SDT postulates that internalized motivation is fully autonomous and self-

directed (Ryan & Deci, 2002). The results of this study provided unexpected evidence 

that motivational support should not be viewed as a "reward" or "necessary factor" 

assuring students' engagement in inquiry.  

As mentioned in the Methods section of this chapter, by chance the BSA 

assigned the same scientist-mentor to two different cases in our study (cases 5 and 9). 

The amount of motivational support provided by this mentor was similar in both cases. 

Each case was part of the LMS grouping, indicating this scientist-mentor provided 

motivational support in the lower tertile for this study. However, the student outcomes 

for these two cases were very different. Case 5 was part of the Unsatisfactory cases, 

while case 9 was the Atypical case. In other words, case 5 students did not engage in 

inquiry at high levels, while case 9 scored in the upper tertile of the OEIC, indicative of 

high student inquiry engagement.  

These two cases provide evidence that, in education, students ultimately make 

the decision to participate and engage. As educators and mentors, we are obliged to 

provide the most supportive environments possible, and we should be willing and 

equipped to provide autonomy, competence, and motivational support. However, what 

students choose to do under these conditions is ultimately their decision. After all, the 

ultimate expression of autonomy (i.e., self-determination) is the decision of whether to 

engage in a given activity or walk away. We should provide all students with 

motivational support while realizing that an amotivated response is still possible. This 

realization makes research on internalization (i.e., increased motivation in previously 
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amotivating situations) through increased relatedness that much more critical to the 

future of education in general, and online educational initiatives in particular. 

Alternative Explanations and Limitations  

In case study research, considering alternative explanations for the observed 

phenomena is critical for establishing validity (Yin, 2009). While the associations found 

in this study were evident, the aforementioned differences in cases 5 and 9 reiterate the 

fact that scientist-mentor motivational support is not the only possible factor contributing 

to differences in student-team inquiry engagement. Research diligence demands 

alternative explorations. 

Typically in a study such as this one, differences in teacher quality would be 

explored as teachers have a great impact on learning. Without a doubt, teachers influence 

the depth at which students engage in an inquiry project. However, all 10 student-teams 

in this study had the same teacher, thereby eliminating teacher quality as a primary 

reason for observed differences in student inquiry engagement. 

Another alternative explanation I explored was dialogue quantity. Perhaps 

specific motivationally supportive statements by scientist-mentors did not have as much 

impact on students as general voluminous online conversation. While scientist-mentors 

in the HMS cases did post more often than LMS cases (10 posts versus 5 posts per case), 

concurrent research on the social discourse patterns in the student-scientist dialogues in 

these same 10 cases did not find any association between student inquiry engagement 

levels and dialogue quantity (Stuessy et al., 2013). Additionally, the calculation of 

Spearman’s rho (p = .147) showed no significant correlation between number of 
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scientists’ posts and student OEIC scores.  

Yet another potential alternative explanation deals with the members within each 

of the student-groups. The teacher determined group membership. She acknowledged 

students' choices with whom to work as a major determinant of group membership while 

also making some efforts to populate groups with students of diverse abilities. She made 

no efforts to randomly select members for groups. Inequalities in group membership 

could be a viable limitation to the study. This alternative hypothesis warrants 

consideration when designing future online motivational support studies. 

An additional alternative explanation relates to the importance of immersion in 

the inquiry process. HMS cases provided more evidence of engagement in the 

Immersion phase of inquiry (see Table 4.15). Perhaps these teams were better grounded 

in the inquiry. Grounding may have sustained teams’ interests in their inquiry projects 

over the course of the project, without regard to the amount of motivational support they 

received. Findings in the Peterson (2012) study support this alternative explanation. In 

that study, “exemplary” student-teams in PS engaged at higher levels in immersion than 

“average” student-teams. Although all student-teams in this study were provided with 

the same opportunities for immersion in the classroom (e.g., they had the same teacher 

and resources), online evidence of students’ engagement varied considerably. The 

current study design and small number of cases precludes differentiating between the 

effects of high immersion engagement and online scientist-mentor motivational support. 

One additional limitation of this study concerns the material posted on the 

website by the student-teams. The teacher noted in her personal reflections that students 
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often struggled in their attempts to elaborate their ideas online (PS Teacher, 2012). Also, 

students sometimes failed to remember their online audience and assumed their activities 

and conversations in class, even if not posted, were somehow accessible to their online 

scientist-mentors (and ultimately to the researchers). Ensuring students participate fully 

in the online component represents another orchestration challenge for teachers inherent 

in complex blended learning environments. In the context of this research, students’ 

failures to post certain products could have led to underestimations of student-team 

inquiry engagement, particularly as OEIC scores were dependent on student-team 

products/dialogues uploaded and archived on the PS website.  

Implications and Future Direction 

As online/blended learning grows in popularity and practice, research leading to 

the development of engaging learning environments under online conditions becomes 

more critical. The challenges faced by educators and learners, especially in text-only 

environments, are fundamentally different than in face-to-face formats. Establishing 

relationships and motivating learners is not as intuitive in text-only dialogues. The 

research in this study provides a first step in establishing a connection between 

motivational aspects of online scientist-mentoring and student inquiry engagement. 

While association does not imply causality, this study at least confirms a typical co-

occurrence between two fundamental components of the PS blended learning 

environment: mentor motivational support and student inquiry engagement.  

SDT provides a time-tested theoretical framework for evaluating motivation in 

learning environments. Techniques to support learner autonomy, competence, and 
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relatedness (through the establishment of social presence) can be important to the future 

success or failure of online learning. For many nontraditional and/or rural students, 

online or blended learning environments provide access to high quality educational 

experiences without the constraints of accessibility and time. As new online programs 

are developed, the results of this investigation provide theory-driven information on 

ways to promote student motivation and engagement through online technology.  

The findings in this study represent the “tip of the iceberg” when it comes to 

investigating motivationally supportive online mentoring environments. Future 

experimental studies in which groups of online mentors receiving training in 

motivational support are compared to control groups with no training would provide 

critical follow-up research. Furthermore, determining how student-teams’ needs change 

over the inquiry cycle and how scientist-mentors’ motivational support best meets these 

changing needs would be a fruitful next step for online mentoring research. 

Conclusion 

The current study provides evidence of a general positive association between 

online motivational support and student inquiry engagement. As scientist-mentors’ 

support of student-teams’ motivational support increased (especially relatedness 

support), a general pattern of greater student-team inquiry engagement occurred. 

However, scientist-mentors differed in the amounts of motivational support they 

provided and in the ways they provided support. This finding reinforces the notion that 

online mentors need training in motivational support and establishing social presence. 
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Moreover, this study demonstrates how students’ engagement in scientific 

inquiry can be enhanced through participation in innovative programs such as PS. Seeing 

student comments such as “I love this experiment,” “We are excited!,” and “I’m glad 

that we got the chance to do this experiment!” are encouraging, particularly in science, a 

subject that has been associated with student apathy and disinterest in recent years. As 

existing online learning programs are modified and new online opportunities are created, 

effective curriculum developers will consider and integrate motivationally supportive 

principles into their designs of innovative learning environments. This study supports 

employment of concerted efforts to support student autonomy, competence, and 

relatedness through social presence to provide nurturing online environments leading to 

higher engagement. Finally, but no less important, this study provides evidence that 

scientists have the potential to make greater impacts on society through direct 

involvement in educational endeavors. 
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CHAPTER V 

CONCLUSIONS 

 

How often does the account of Johnny and Janice play out in reality across the 

U.S. and internationally? It’s impossible to know for sure, but we can be sure students 

deserve science instruction far superior to dry PowerPoint lectures and canned dissection 

labs. Similarly, scientists should have avenues available for sharing their passions with 

others and communicating their understanding of science to students in relevant and 

practical ways. School-based science education can deliver so much more than detached 

lists of vocabulary terms void of context and real-life meaning. With the plethora of 

technology and research-based pedagogy at our disposal, we no longer have excuses to 

formally educate in the same, lifeless ways and relegate Johnny to monotonous 

classroom experiences and Janice to a life of isolation in her laboratory. How do we 

stem the tide? 

The purpose of this dissertation was to investigate PS in order to: (1) explain its 

success in terms of factors contributing to student motivation, and (2) present specific 

evidence regarding the impact scientists have on student motivation when serving as 

online mentors.  

Summary of Findings 

In Chapter III, using Eisner’s (1985) Connoisseurship/Critique model, I 

described two classrooms using PS, showing evidence of student motivation as they 

engaged in mentored inquiry projects. I systematically analyzed the data using grounded 
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theory (Strauss & Corbin, 1990) and constructed a model explaining student motivation 

(Figure 3.1). The model elucidated how motivation was associated with student 

empowerment, online scientist-mentor communication, and authenticity of the PS 

experience. Furthermore, I identified intervening conditions and specific strategies used 

by teachers and scientists to foster student motivation. Finally, I evaluated the data with 

SWOT analysis (Table 3.4), linking principles of self-determination theory to the 

inductive discoveries in order to increase the explanatory power of the model. PS was 

supportive of students’ autonomy, competence, and relatedness in tangible ways, thus 

contributing to student motivation. These results were consistent with other research 

indicating independent student thinking leads to higher motivation (Moos & Honkomp, 

2011), building relationships with significant others promotes motivation (Reeve et al., 

2004), and authenticity of experience increases positive attitudes toward science 

(Koballa & Glynn, 2007).  

A specifically important outcome of Chapter III was the realization that scientist-

mentors are vital contributors to students’ inner motivational resources. This discovery 

was consistent with other research showing professional mentors can increase students’ 

self-efficacy (Mullen, 2011). In order to further investigate the link between scientists 

and student motivation, I purposely investigated the contributions of scientist-mentors to 

student motivation in a follow-up study presented in Chapter IV. 

Chapter IV included results from a multiple-case study of junior high student-

teams from a remote, rural school district who, for the first time, partnered with 

scientists in an inquiry experiment through PS. Using self-determination theory as a 
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framework, I developed a rubric to assess scientist-mentors’ motivational support 

through their textual comments in asynchronous dialogues with students. I measured 

student-team engagement levels using the OEIC (Peterson & Stuessy, 2011). Although 

scientist-mentors’ support of student motivation varied widely (both quantitatively and 

qualitatively), evidence linked higher scientist motivational support with higher student-

team inquiry engagement. In particular, relatedness support by scientist-mentors, as 

measured by social presence theory, was identified as an important component 

contributing to student engagement. 

Overall, these findings substantiated the claims made in the Science 2011 

SPORE award article (Hemingway et al., 2011) that PS has a positive influence on the 

motivation of students as they engage in self-developed inquiry projects. Furthermore, 

these studies identified several conditions and factors contributing to increased student 

motivation and engagement. These conditions and factors included but were not limited 

to increased student empowerment/autonomy, relational support provided by scientist-

mentors, and authentic plant-based inquiry investigations. 

Implications and Future Research 

The greatest consequence that could come from the findings of this dissertation 

study is successfully increasing student motivation in science classrooms. Self-

determined motivation has been associated with better academic performance (Lepper et 

al., 2005; Pintrich & De Groot, 1990), increased conceptual learning and enhanced 

memory (Grolnick & Ryan, 1987), greater enjoyment of school (Ryan & Connell, 1989), 

and reduced anxiety (Deci et al, 1994; Deci et al., 1991). Consequently, motivation is 
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one of the most significant factors determining students’ success or failure in the 

classroom (Welch & Huffman, 2011). If motivation can be cultivated, our efforts to 

promote deeper learning are much more likely to be met with success (NRC, 2012a). 

The findings of this study contribute to the ongoing conversation about motivation, and 

they inform greater understanding of this complex construct in both practical and 

theoretical ways.  

Practical Considerations 

I considered practical implications from the perspectives of three actors who 

have the incredible challenge of nurturing motivation in students: teachers, scientist-

mentors, and curriculum developers. 

Teachers. Teachers set the stage for learning in school settings. Even when 

supplementing their own instruction with online discussions, research findings indicate 

teachers must place value on involvement in the online activity or students will neither 

value the experience nor persist in their participation (Xie et al., 2006). This dissertation 

study confirms the importance of teachers in motivating students. I concur with the 

insight of Hartnett et al. (2011) whose research led them to conclude that, “Practitioners 

need to be cognizant of the important role they play in influencing learner motivation…” 

(p. 33).  

Teachers start the ball rolling when they sign their students up to participate in 

PS. This is no small task, in part because PS is not officially listed as part of any state 

curriculum. “The biggest withhold most teachers have [in starting PS] is making it fit the 

curriculum. Teachers think they need to have a spot in their curriculum that says, ‘Now 
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do PlantingScience!’ The reality is, that will never happen,” Dan admitted. Even after 

signing up, teachers often meet resistance as they begin to implement PS. Ironically, 

teachers report the resistance usually comes from co-teachers. I appreciated Dan’s 

response to this challenge when he said, “I don’t recognize barriers.” After witnessing 

Dan’s and Kelly’s classrooms, I believe this “no barriers” attitude is necessary for any 

teacher who wishes to successfully implement PS in today’s educational climate. 

Once teachers take the plunge and sign up, they face the challenges of 

orchestrating a complex learning environment blending the use of computers, hands-on 

laboratory, and scientist-mentors. However, this dissertation bears witness that teachers 

can successfully orchestrate the complexities of PS in ways fostering student motivation. 

The teachers in this study provided their students with collaborative opportunities unlike 

many others in classroom science learning. By letting go, these teachers empowered 

their students. The teachers also challenged their students to dig deeper, encouraged 

through the use of positive reinforcement, and provided appropriate scaffolding. In turn, 

their students engaged in amazing participatory projects with professional scientists, all 

within the familiarity of their own classrooms. While the road to success is extremely 

challenging, the evidence presented in this dissertation implies PS is working, and now 

we know a little more about the reasons why.  

Scientist-mentors. Perhaps the most important discovery in this study was 

evidence that scientists serving as online mentors can influence student motivation. The 

grounded theory developed in Chapter III indicated scientist-mentor interaction was one 

of the causal conditions leading to student motivation and engagement. When considered 
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in tandem with the findings in Chapter IV that scientists’ motivational support was 

associated with higher student engagement, we see evidence of a relationship between 

motivational support and engagement. The realization of scientists’ impacts on student 

inquiry engagement is profound. 

SDT provides a potential explanation for the relationship between scientist-

mentors’ motivational support and student engagement. According to SDT, people of 

high expertise or esteem (e.g., scientists) can motivate others of lesser expertise or 

esteem (e.g., students) by building relationships that foster internalization (Reeve et al., 

2004). Remember from Chapter II that internalization is the process of taking a value or 

action that is not intrinsically motivating and personally endorsing it over time (Figure 

2.1; Deci & Ryan, 2000; Ryan & Deci, 2000a). Internalization is catalyzed by 

relatedness (Deci & Moller, 2005; Ryan & Deci, 2002), which speaks volumes to the 

importance of online mentors establishing strong, interpersonal relationships with 

students. When students feel connected to people whom they respect (e.g., scientists), 

they often respond with increased motivation (Roca & Gagne, 2008).  

Scientist-mentors used several strategies to promote positive student outcomes 

(Figure 3.1). Other mentors hoping to impact their protégés can likewise learn from 

these strategies. Of particular interest is how the scientist-mentors in this study navigated 

the unique asynchronous dialogues with their student-teams. The particular ways they 

spoke with students can provide insight for any educators interacting with students 

through a text-based medium. 
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As online dialogue uses only text-based communication, words are the only 

touch points between parties involved. Evidence from this study authenticates our 

knowledge that the ways in which educators respond to learners can have an impact on 

students’ responses. If words are perceived as threatening or controlling, student 

motivation and engagement stands to suffer. To the contrary, if the words nurture the 

inner motivational resources of the learner, student motivation and engagement can be 

affected. The rubric developed in this study (see Chapter IV; Appendix A) provides 

concrete ways to support learner autonomy, competence, and relatedness (through the 

establishment of social presence) in online learning contexts. All online instructors and 

mentors could potentially enhance the online experiences of their students by 

familiarizing themselves with these specific techniques and implementing them in online 

conversations with learners. 

Online curriculum developers. The BSA hit a home run with PlantingScience. 

From all indications, the program is engaging students and creating excitement for plant 

science and discovery. One of the loudest messages from this research is that curriculum 

developers need to provide learners with autonomy. PS modules culture student 

autonomy in most cases, particularly in The Wonder of Seeds unit I observed. 

Curriculum developers should consider the contributions of purposeful choice toward 

the motivation of learners when they design science curriculum and activities.  

In addition, curriculum developers should note that authenticity was an additional 

causal condition identified through the grounded theory. The use of living plants was a 

huge factor in motivating students, and the power of being able to pursue questions 
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without known answers was invigorating for most students in this study. However, 

remember that SDT predicts too much complexity can overwhelm students, a condition 

that occurred on occasion with certain modules of PS requiring complicated setups and 

analytical procedures. In order to nurture the need of competence in learners, tasks 

should be challenging, not overwhelming; novel, but not boring. 

In addition to autonomy and competence, this dissertation provided evidence that 

relatedness can be established in online settings. Shen, Liu, and Wang (2013) also 

reported that all three psychological needs can increase through online interactions. 

Particularly in light of the boon of online education opportunities, curriculum developers 

should consider including components in their curricula that promote relatedness in 

online contexts. Overcoming geographical barriers to unite parties that otherwise would 

not be able to communicate seems like an effective use of technology that potentially 

benefits all involved parties. 

Motivational training for teachers and mentors. If we intend to use the 

Internet to educate learners and unite them with professionals, we cannot assume striking 

up conversations online is enough. Establishing social presence can be difficult, and 

while many scientist-mentors in this study successfully engaged students, others 

struggled to create meaningful conversation. The struggles of online mentors are 

documented, with some studies noting how the facilitation of quality online discussions 

requires skill and training (Ensher et al., 2003; Rovai, 2007). Facilitators, whether 

teachers or mentors, set the tone for online inquiry and must be both sensitive and 

responsive to students’ online needs (Garrison, 2011).  
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The success of an online intervention is directly related to the ability of the 

facilitator to get students to communicate online (Rovai & Jordan, 2004). Since online 

scientist-mentors played such a significant role in PS’s success, it stands to reason that 

training for mentors could contribute to increased student motivation and engagement. 

Since professional development opportunities for teachers made a significant impact on 

how well students engaged in PS projects (Peterson, 2012), we need to initiate new 

research to develop training programs for mentors and other online educators in hopes of 

developing more conducive online learning environments. 

Theoretical Considerations 

While the practical implications of this study are numerous and important in 

advancing understanding of online learning and student motivation, this dissertation also 

contributes to our knowledge of SDT. The overall findings of this dissertation support 

the premise of SDT that autonomy, competence, and relatedness contribute to student 

motivation. My findings concur with Hartnett et al. (2011), who suggested situational 

conditions (specifically supports for autonomy, competence, and relatedness) positively 

influence student motivation in online contexts.  

However, my results also suggest a lack of understanding of how SDT 

specifically differs between online and face-to-face contexts. While SDT has predicted 

autonomy as the most important contributor to self-determined behavior (Deci & Ryan, 

1985), the results I reported in Chapter IV reveal that autonomy support from scientist-

mentors was not significantly correlated with student engagement. Perhaps transaction 

distance (Moore, 1993) provided so much autonomy for distance learners that autonomy 
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support from mentors was not as important in the online context. Or, maybe students 

embraced having a choice in their experiments and did not need as much autonomy 

support from scientists as they might have in a face-to-face setting. Results from Chapter 

III lend credence to the latter explanation as student empowerment was identified as a 

causal condition for motivation and engagement. Nevertheless, I do not have a definitive 

answer explaining why autonomy support was not significant. However, this 

discrepancy and others raised in this study provide ripe grounds for future research 

initiatives. 

A more interesting line of future research, in my opinion, is pursuing the question 

of how internalization works in online contexts. Once again, results from this study 

suggested possible internalization, but the design of this study prohibited making more 

definitive assertions on the matter. Some questions related to internalization specifically 

and SDT generally that could be pursued include: (1) How do the empirically derived 

conditions for internalization identified in face-to-face settings (Deci et al., 1994; Deci & 

Moller, 2005; Reeve, 2002) differ in online contexts? (2) In addition to the factors 

identified by social presence theory, what other factors promote relatedness in online 

environments? (3) Do learners’ motivational needs change over the course of an inquiry 

project? In other words, do learners need more autonomy support in the beginning, 

competence support in the middle, etc.? (4) Are intrinsically motivated learners 

distracted or encouraged by numerous posts from online mentors?  

In addition, I will continue to research and refine the motivational support rubric 

created in Chapter IV. Refinement may include adding or removing some of the 
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indicators. Also, a major shortcoming of the current instrument is its reliance on 

quantities of motivationally supportive comments. Perhaps I can develop a subjective 

measure capable of detecting differences in the quality of motivationally supportive 

comments. Regardless, as text-based communication is a widespread phenomenon in 

education and in society, I believe the rubric promises to be a useful contribution to 

online learning efforts. 

The results of this dissertation are both encouraging and humbling. On the 

encouraging side, the findings revealed new understandings about a program (i.e., PS) 

that is positively influencing student motivation and engagement in science education. In 

addition, this study uncovered concrete factors contributing to student motivation, 

specifically revealing how teachers and scientists play a role in the process. The 

potential impact scientists can have on science learners’ motivation through online 

partnerships is exciting. Perhaps the partnerships facilitated by PS can help solve the 

aforementioned problems of declines in students’ interests in STEM fields (Toplis, 

2011) and scientists’ struggles to find tangible ways to make broader impacts on society 

(Lok, 2010). 

On the humbling side, we still have huge gaps in our understanding. How do we 

best utilize technology to create mentorships leading to increased student motivation and 

engagement? How do we use technology to effectively broaden impact opportunities for 

scientists? In many ways, our current standardized testing system continues to drive 

students toward poor attitudes about science (Koballa & Glynn, 2007). On the other 

hand, intense investigations of successful programs like PS provide relevant information 
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on how to develop curriculum, use technology, and train practitioners to deliver 

motivating instruction that improves learners’ attitudes about science.  

In the introduction to this manuscript, I shared how motivation research has 

received renewed interest as a result of declines in STEM career aspirations (NRC, 

2012b). I used the word renewed because some researchers, like Elliot Eisner, 

highlighted the importance of motivation and engagement for decades. What we 

emphasize in research might really be a question of what we value. What should we 

value? Eisner thought teachers should know – teachers like Dan and Kelly, who 

diligently labor to make differences in the lives of students, in part by integrating 

innovative programs like PS. Eisner asked, and I leave you with his answer:   

Engagement, I believe, is a fundamental criterion used by teachers to select 

learning activities and to appraise their consequences. The reason for using this 

criterion rather than instructional objectives is because, as I view the situation, 

teachers believe that engagement, intellectual and emotional immersion, is a 

better indicator of educational value than achievement test scores. (Eisner, 1985, 

p. 70) 
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APPENDIX A 

MOTIVATIONAL SUPPORT RUBRIC AND TRAINING GUIDE FOR 

SCIENTIST CONTRIBUTIONS TO DIALOGUES IN PLANTINGSCIENCE 

 

Category: Autonomy Support 
  Code: Providing or acknowledging choice 
  Code: Providing or acknowledging ownership/interest 
  Code: Autonomy supportive phraseology 
  Code: Providing rationale 
  Code: Acknowledging negatives 
 
Category: Competence Support 
  Code: Asking content or process questions 
  Code: Offering explanations 
  Code: Providing positive feedback 
 
Category: Relatedness Support (based on Social Presence Theory) 
 Subcategory: Interpersonal Communication 
  Code: Affective expression 
  Code: Humor 
  Code: Self-disclosure 
 Subcategory: Cohesive Communication 
  Code: Inclusive language 
  Code: Salutations/greetings/phatics 
  Code: Use of names 
 Subcategory: Open Communication 
  Code: Asking questions/inviting participation 
  Code: Complimenting and appreciation 
  Code: Expressing agreement 
  Code: Reference to previous posts 
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Category: Autonomy Support 
 
Code: 
Providing or acknowledging choice 
 
Definition: 
Statements implying students exercised 
choice; implying students have a future choice 

Key things to look for in statement: 
Asking questions acknowledging students can 
make a decision; “Have you decided”; “What 
are you going to do?” 
“choice”;  
“What are you thinking about?” 

Examples in context: 
Lastly, I posted a question earlier, but no one in your group has given an answer yet. You don't 
have to answer, but I'll post it here again just in case you missed it... 
 
Let me know when you've chosen one question to focus on, and I can help you with 
experimental design. 
 
Is there anything you would do differently next time? 
 
Code: 
Providing or acknowledging 
ownership/interest 
 
Definition: 
Scientist makes reference that project is 
students’ and they are ultimately responsible 
for decisions about the project; Scientist 
makes refer to students’ interests 

Key things to look for in statement: 
“Your” 
“working with you” 

Examples in context: 
I have a few ideas and questions that may help in running your experiment. 
 
Your change in your research question seems like a good idea. 
 
I am excited about working with you on your project this term. 
 
Code: 
Autonomy supportive words/phrases 
 
Definition: 
Suggestive words/phrases that do not 
implicitly demand student action 

Key things to look for in statement:  
“might” or “may”        “if you wish” 
“could” or “can”          “please consider” 
 “have you tried?”        “option” 
“probably”                    “you may want” 
 

Examples in context: 
Below are some examples of the type of data you might want to collect: number of days 
required for seed germination, number of seeds that germinate, height of the seedlings, dry 
weight of seedlings. 
 
If you wish to test how fast different seeds grow it might be useful to measure how much 
energy is packed into the seed before it is planted. 
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Autonomy support, cont. 
Code: 
Providing rationale 
 
Definition: 
Providing a reason for doing a certain action; 
giving relevance to a certain task or practice 

Key things to look for in statement: 
Explanations for why something is important 

Examples in context: 
Centimeters do make your plant sound bigger, but I don't think that's why you use them! Just 
about all scientists (including me!) measure using the metric system with meters for lengths and 
liters for volumes. Once you get used to it, it's much easier to work with centimeters than inches. 
 
I know this may seem like a lot to think about, but a good scientist tries to think about all the 
crazy outcomes that may happen in his experiment, and then tries to adjust the experiment to 
handle those crazy outcomes fairly and without bias. Thinking ahead to consider how you will 
measure your plants and how you will use those measurements to evaluate which seed is fastest 
will be of great help in the long run! All scientists do this. 
 
Code: 
Acknowledging negatives 
 
Definition: 
Recognizing students’ negative comments or 
disappointments as opposed to ignoring them 
or dismissing them as invalid 

Key things to look for in statement: Empathy 
towards or validation of the way students are 
feeling as opposed to condemnation of their 
attitudes 

Examples in context: 
Sometimes this does not even help, especially if there are other environmental factors involved. 
 
I'm sorry that your seeds grew mold. 
 
Unfortunately scientists deal with failed experiments all too often. 
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Category: Competence Support 

 
Code: 
Asking content or process questions 
 
Definition: 
Questions sparking deeper thought about 
botanical content; questions requiring students 
to elaborate on their experimental process 

Keys things to look for in statement:  
“Why?” 
“How?”  
“What?” 

Examples in context: 
Why might one type of seed need a helicopter wing (maple seed) while another seed need to 
really small (radish seed)? 
 
How are you going to apply the liquids and how are you going to grow the plants? 
 
Code: 
Offering explanations 
 
Definition: 
Scientists explains a phenomenon, process, or 
answers a student question 

Key things to look for in statement: 
Explanatory prose 

Examples in context:  
So long as there is sufficient light, water, and carbon dioxide, plants will carry out 
photosynthesis. However, if you are asking how long it takes to measure photosynthesis, that 
depends on the sensitivity of the method you use. If you are measuring the uptake of carbon 
dioxide by the leaf using a gas analyser, you can detect photosynthesis over a time span of 
seconds. On the other hand, if you are trying to measure photosynthesis by looking at the change 
in weight of the plant over time, this will take a number of days. 
 
I am not surprised to hear about your results with the coke and vinegar. Let's think a bit about the 
properties of those two liquids. The Coke is something you like to drink because it tastes sweet. 
If you look on the label, you see that the sweetness comes from a type of sugar. Lots of things 
want to eat that sugar - including the mold and mildew that is growing on your seeds. The seeds 
don't need the sugar from the Coke, because they pack their own as starch in the seed to tide 
them over until they begin to photosynthesize to make more sugar on their own. Now that the 
fungus is established, it can start to kill the seeds by growing into them. This isn't a problem with 
the water, because it doesn't provide a good media for the fungus and it can't get established in 
the seeds 
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Competence support, cont. 
Code: 
Providing positive feedback 

Key things to look for in statement:  
Praise or positive statements tied to a specific 
action or statement.  
Ex. Not just “good job!”, but “Good job on 
your experimental design!” 

Examples in context: 
Wow! You guys have made so many good observations and have asked a ton of great questions!  
 
I just noticed that you have now posted your research question and that you want to focus on the 
effect of vinegar on plant growth and that you are predicting that vinegar will decrease plant 
growth. That is a great start.  
 

 
 

Category: Relatedness Support 
 

Subcategory: 
Interpersonal Communication 

Code: 
Affective expression 
 
Definition: 
Indications of feelings or emotions 

Keys to look for in statement: 
Emoticons, exclamation points, etc. 

Examples in context: 
I'm glad that you guys had fun working on your experiment! I hope you all learned a lot. Plants 
are really interesting systems to study. Good luck on your classes this year! :) 
 
I love science too! There's always something new to discover :) 
 
Code: 
Humor 
 
Definition: 
Interjecting statements to lighten the mood. 

Keys to look for in statement: 
See below 

Examples in context: 
"The most exciting phrase to hear in science, the one that heralds the new discoveries, is not 
'Eureka!' (I found it) but 'That's funny...'" -Isaac Asimov 
 
All scientists do this, even us old ones! 
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Relatedness support, cont. 
Code: 
Self-disclosure 
 
Definition: 
Discussion of personal information not 
directly related to project. 

Keys to look for in statement: 
See below 

Examples in context: 
My lab is going great. I'm mainly doing work with DNA this semester. I will start my fieldwork 
in the spring. I'm doing a much different experiment than your group, but I do perform seed 
germinations fairly frequently. 
 
Where do you live? I live in Nova Scotia which is on the east coast of Canada, just North east of 
Maine. Nova Scotia is like Maine in many respects. Fishing and forestry are important 
industries. In my area, the Annapolis Valley, agriculture is also important. We grow apples, 
grapes, blueberries, raspberries, strawberries, etc. Nova Scotia is in the Acadian Forest region. 
This is an area where the natural vegetation is a mixture of deciduous and evergreen trees. This 
time of year the leaves of the deciduous trees are turning color (red, orange, yellow) and the 
forest looks very pretty.2) What kind of music do you like? I like all kinds of music, but I 
especially like old rock and roll music from the 50's and 60's. I am afraid I don't know any rap 
music, but I do listen to it sometimes as my youngest daughter is a fan. 
 

Subcategory: 
Cohesive Communication 

Code: 
Inclusive language 
 
Definition: 
Language referring to teamwork, working 
together, etc. 

Keys to look for in statement: 
“part of a team” 
“work with you” 

Examples in context: 
I'm glad that you're a part of the experiment as well! I can't wait to work with you more. 
 
I am looking forward to working with you and am excited to hear your ideas on your experiment.  
 
 
Code: 
Salutations/Greetings/Phatics 
 
Definition: 
Phatics – social conversation not related to 
project or personal disclosure 

Keys to look for in statement: 
“Hello” 
“The weather here is great!” 

Examples in context: 
It's been cool and rainy here lately. How is the weather in Texas? 
 
Hello team! Greetings! I can't wait to hear from you. 
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Relatedness support, cont. 
Code: 
Use of names 
 
Definition: 
Calling students by personal name or screen 
i.d. (does not refer to collective references 
using team name); scientists using their own 
names in posts 

Keys to look for in statement: 
Names (not team related) 

Examples in context: 
Summer Rose, thanks for telling me which seeds you've looked at and how you sprouted the 
seeds last week. 
 
Robin, I would love to hear about your pigment chromatography experiment when you have the 
time. Chromatography is a really neat scientific tool! Have a great week! 

 
Subcategory: 

Open Communication 
Code:  
Asking questions/inviting participation 
 
Definition: 
Scientist asks questions to induce response or 
invites students to respond with other phrases 

Keys to look for in statement: 
Questions requiring a response; 
“I can’t wait to hear back from you” 
“Let me know what you think” 

Examples in context: 
Looking forward to hearing more about your observations! 
 
,Have you started your experiment yet? How is it going? Are all the seeds still alive? Have there 
been any surprises? 
 
Code: 
Complimenting and appreciation 
 
Definition: 
Scientist making statements to compliment 
students.  

Keys to look for in statement: 
“Thank you” 
“Congratulations!” 
 

Examples in context: 
I appreciate you giving your project some thought and coming up with a question that intrigues 
you. 
 
Thanks for all your updates and posting the pictures of your measurements and observations. 
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Relatedness support, cont. 
Code: 
Expressing agreement 
 
Definition: 
Scientist agrees with previous suggestion of 
students 

Keys to look for in statement: 
“Sounds good” 
“That’s a good idea” 

Examples in context: 
The numbering sounds like a good way to keep track of your seeds! 
 
Your change in your research question seems like a good idea. 
 
Code: 
Reference to previous posts 
 
Definitions: 
Explicit reference to previously posted 
material 

Keys to look for in statement: 
“Your last statement” 
“I saw your post” 

Examples in context: 
Last week, you told me that you were defining growth as "which plant gets farther along in 
limited time" 
 
I just noticed that you have now posted your research question and that you want to focus on the 
effect of vinegar on plant growth.   
 

 

 




