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ABSTRACT 

 

A widely used tool for testing measurement invariance is multi-group 

confirmatory factor analysis (MCFA). Identification of MCFA models is usually done 

by imposing invariance constraints on parameters of chosen reference variables (RV). If 

the chosen RVs were not actually invariant, one could draw invalid conclusions 

regarding the source of noninvariance. How can an invariant RV be selected accurately? 

To our knowledge, no method is yet available, yet two approaches have been suggested 

to detect non-invariant (or invariant) items without choosing specific RVs. One is the 

factor-ratio test (FR-T), and the other is the use of the largest modification index (Max-

Mod). These two approaches have yet to be directly compared under the same 

conditions. To address unsolved problems in partial measurement invariance testing, two 

studies were conducted. The first aimed to identify a truly invariant RV using the 

smallest modification index. The second aimed to directly compare the performances of 

FR-T and the backward approach using the Max-Mod in correctly specifying the source 

of noninvariance. The second study also proposes a new method—the forward approach 

facilitated by the bias-corrected bootstrapping confidence intervals. The performances of 

the three methods was compared in terms of perfect recovery rates, model-level Type I 

error rates, and model-level Type II error rates. The results of the first study indicated 

that the Min-Mod successfully identify a truly invariant RV across all conditions. In the 

second study, overall, the backward approach also showed best performance under 99% 

confidence level (α = 0.01) in both partial metric invariance (PMI) and partial scalar 
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invariance (PSI) conditions. The performance of the forward approach was comparable 

with that of the backward approach only in PMI conditions. The factor-ratio test had the 

poorest performance. Limitations and future directions are also discussed.  
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CHAPTER I  

INTRODUCTION  

 

Educational researchers are often interested in comparing educational outcomes 

across different demographic groups. In order to make meaningful comparisons in doing 

so one should establish what is known as measurement invariance (Vandenberg & 

Lance, 2000; Steenkamp & Baumgartner, 1998; Schmitt & Kuljanin, 2008). 

Measurement invariance broadly refers to the condition in which the measured variables 

are related to the construct(s) being measured in the same way across different groups of 

interest (Vandenberg & Lance, 2000).  Measurement invariance can be examined using 

various statistical approaches such as multi-group confirmatory factor analysis 

(Vandenberg & Lance, 2000; Meade & Lautenschlager, 2004; Schmitt & Kuljanin, 

2008), multiple-indicator multiple-cause modeling (Woods, 2009b; Kim, Yoon & Lee, 

2012), and item response theory models (Stark, Chernyshenko, & Drasgow, 2006). 

Of these, one that is widely used to test measurement invariance is the multi-

group confirmatory factor analysis (MCFA). Using MCFA method, factorial invariance 

is examined as a special case of measurement invariance.  One can specify different 

levels of factorial invariance models to test invariance of parameters of special interest 

including factor loadings, intercepts, and unique variance. Typically, four nested 

invariance models are tested hierarchically (Vandenberg & Lance, 2000): (1) configural 

(same factor model), (2) metric (invariance of factor loadings), (3) scalar (invariance of 

factor loadings and intercepts), and (4) strict invariance (invariance of loadings, 
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intercepts, and unique variances). Upon established configural invariance, we 

sequentially conduct tests of metric, scalar, and strict invariance. When any level of full 

invariance is rejected, the next possible step is examining the source of noninvariance 

(Cheung & Rensvold, 1999). Here we can pursue a partial metric invariance model in 

which some factor loadings are fixed to be invariant while the others are freely estimated 

(Byrne, Shavelson, & Muthen, 1989; Steenkamp; Schimitt & Kuljanin, 2008). We also 

investigate a partial scalar invariance model by allowing some intercepts to be different 

across groups. When studying partial factorial invariance (PFI) models, we must 

exercise caution in choosing the identification method. The reference variable 

identification method (RV-IM) is preferred to the standardization identification method 

(ST-IM) (Yoon & Millsap, 2007; Cheung & Rensvold, 1999) because ST-IM might 

distort the true status of measurement invariance in both full and partial invariance 

levels. Jung and Yoon (2012) showed the problem of ST-IM using empirical and 

generated data conditions in addition to mathematical illustrations. In the empirical data 

analyses, the conclusions drawn from RV-IM and ST-IM were not consistent. In the 

generated data examples, ST-IM leads to inaccurate results while RV-IM performed 

adequately. For example, when ST-IM was employed, the truly strictly invariant data 

were rejected at the metric invariance level given different factor variances across group. 

However, RV-IM supported strict invariance, which is the true status of the data. In 

addition, they mathematically illustrated how the truly invariant factor loadings or 

intercepts can be estimated not to be invariant with ST-IM. Yet RV-IM has also its 

weakness. If we choose a non-invariant RV, the true status of PFI model might be 
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compromised (Yoon & Millsap, 2007; Johnson, Meade, & DuVernet, 2009).  However, 

information regarding which variable is invariant is not readily available in most studies, 

and one congruent theme for identifying an invariant RV is letting researchers rely on 

theories—which may not always exist (Millsap & Olivera-Aguilar, 2012). In addition, it 

is possible that the chosen RV is not invariant for the given samples although the RV is 

selected based on theories. Therefore, it is important to select an RV based on both 

theories (if available) and reliable empirical guidelines. To our knowledge, however, a 

methodological approach that correctly identifies an invariant RV has yet to be 

developed (Raykov, Marcoulides, & Li, 2012).  

With the recognition of the problem of selecting a non-invariant RV, two 

approaches have been suggested for identifying non-invariant (or invariant) parameters 

without selecting a specific RV: (1) the factor-ratio test (FR-T) and (2) the sequential use 

of modification index (Mod) under a fully constrained invariance model. First, Cheung 

and Rensvold (1999) suggested the FR-T in which every set of an RV and an argument 

(i.e., a variable being tested for invariance) is tested. French and Finch’s (2008) 

simulation study showed that the performance of the FR-T is promising with nominal 

false positive rates and high true positive rates across conditions except for complex 

model and/or high contamination conditions. Yet, the labor-intensive feature of the FR-T 

discourages researchers from using it. Even though Cheung and Lau (2011) recently 

simplified the FR-T using bias-corrected bootstrapping confidence intervals (BCBS-

CIs), it has not yet been evaluated under known data conditions. In addition, the 

subsequent procedures that supplement the FR-T (e.g. triangular heuristics, step-wise 
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partitioning procedure, and list-and-delete method) do not provide a clear solution. 

Second, Yoon and Millsap (2007) suggested the sequential use of the largest 

modification index (Max-Mod) with a full metric invariance model as a baseline model. 

They found that using Max-Mod performs well under the conditions with low 

contaminations, large loading differences, and large samples. The sequence of the model 

specification using Max-Mod is backward—from the most restricted model to the least 

restricted model. As a result, it is prone to inflated type I error rates due to possible 

misspecifications in the baseline model (Kim & Yoon, 2011; Whittaker, 2012). 

Additionally, large sample size also inflates the size of modification index (Chou & 

Bentler, 1990). Although this method is relatively simple to be used, it has been noted 

that data driven model modification should be done with cautions (Yoon & Millsap, 

2007). 

In factorial invariance research, two problems remain to be solved.  The first is to 

develop a method to correctly identify an invariant RV. The second is comparing 

performance of FR-T and the Max-Mod in partial invariance models.  This dissertation 

aims to address both problems. In addition, I propose a new method less susceptible to 

respective weaknesses of the FR-T and the Max-Mod. The following section reviews the 

factorial invariance literature related to these problems and then presents this paper’s 

purpose. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter reviews the following important issues in measurement invariance 

literature: (1) definition of measurement invariance, (2) importance of measurement 

invariance, (2) factorial invariance, (3) evaluating factorial invariance, (4) partial 

factorial invariance, and (5) identification problems in factorial invariance testing as an 

unresolved issue. The research purposes of the two proposed studies are then introduced.  

Definition of Measurement Invariance 

Research often involves comparing scores from competitive conditions. Such 

conditions could include different socio-demographic groups, assessments in different 

languages, and scores from different time points. When comparing such scores, 

researchers usually utilize the same instrument.  Doing so though is no guarantee that the 

differences in the observed scores are mainly the function of the different standings on 

the construct(s). To draw valid conclusions about differences in observed scores, we 

have to establish in advance measurement invariance.  

In a seminal work, Mellenbergh (1989) formally defined measurement invariance 

as: 

 

P (X|W, G) = P (X|W)                                             (1) 
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Here, P (.) denotes the probability function related to X, W, and G. X represents 

observed score (s) from an instrument. W indicates an individual’s actual standing on the 

latent construct underlying the observed scores. G stands for group membership. In 

Equation 1, the conditional probability of attaining a specific observed score is 

unaffected by group membership after taking into account the variances explained by the 

latent construct. By contrast, measurement invariance is violated if the differences in the 

observed scores are not only the function of the latent construct but also unequal 

operation of the measurement.  In other words, when measurement invariance does not 

hold, observed scores can be biased.  

Importance of Measurement Invariance 

When educational or psychological measurements are used for deciding 

admission or employment or assigning resources (e.g., services related to psychiatric 

disorders), measurement bias may lead to poor decisions. To avoid adverse 

consequences of measurement bias, researchers have made both preventive and remedial 

efforts in educational and psychological testing situations. Regarding preventive efforts, 

Zieky (2013) showed how to minimize measurement bias through fairness reviews. 

Fairness reviews concern identifying and excluding items at risk of measurement bias. 

Zeiky (2013) also noted that the fairness of a test should be ensured by conducting 

empirical measurement invariance testing when sufficient data are available after the test 

administration. Based on the invariance testing results, the item posing measurement 

bias can be removed or revised as remedial efforts.  



 

7 

 

Various simulation studies have looked at the impact of measurement bias so as 

to address different empirical situations. Millsap and Kwok (2004) demonstrated how 

partially violated measurement invariance could affect selecting people using simulated 

data. In addition, violating measurement invariance prevents the accurate tracing of the 

development of individuals on latent construct. For example, Wirth (2009) examined the 

effects of violation of measurement invariance on the parameter estimates of the latent 

growth model under simulated data conditions. He found that measurement bias 

distorted the growth trajectory in latent growth modeling. Recently, Whittaker (2013) 

demonstrated how non-invariant intercepts affected on the test for latent means under 

various multi-group confirmatory factor analysis (MCFA) models and multiple-indicator 

multiple-cause (MIMIC) models using a Monte Carlo study. She found that the Type I 

error rates for testing latent means increases as the degree of noninvariance in intercepts 

increases. Therefore, measurement invariance should be established, prior to making 

decisions or comparisons based on either observed scores or latent scores.   

Factorial Invariance 

The most widely used empirical method for testing measurement invariance is 

confirmatory factor analysis (CFA). CFA is well known for its flexibility in testing 

measurement invariance. Using CFA to test measurement invariance is usually called 

“factorial invariance”—a special case of measurement invariance. In a CFA model, 

observed variables are linearly related to fewer latent variable(s) as in the following 

equation:  
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X =   +  Λξ + δ                                                 (2) 

 

Here, X is a p × 1 vector of the observed scores,   denotes a p × 1 vector of intercepts, 

𝛬 represents a p × 𝑚 factor loading matrix,  ξ indicates an m × 1 vector of the latent 

variables (𝑝 > 𝑚), and δ stands for a p × 1 vector of unique factor scores.  Equation 2 

can be extended to a multi-group CFA (MCFA) model with the group indicator g as in 

Equation 3:  

 

Xg = g + Λgξg + δg                                            (3) 

 

Depending on the group membership, the parameters are allowed to vary in Equation 3. 

The assumption of uncorrelated latent variables and unique factor scores (i.e., COV (ξ,δ) 

=0)1 leads to the following variance-covariance structure of Xg:  

 

g =  ΛggΛg
′ + Θg                                               (4) 

 

In Equation 4,  Σg represents a 𝑝 × 𝑝 variance-covariance matrix of observed scores (Xg) 

of the group g while g denotes an 𝑚 × 𝑚 variance-covariance matrix of latent factor 

scores (ξg). The final notation “Θg”indicates a 𝑝 × 𝑝 variance-covariance matrix of 

unique factor scores (δg). However, it is typically a diagonal matrix of the variance of 

                                                 

1 COV (a, b) = Covariance between a and b 
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unique factor scores because unique factor scores are assumed to be uncorrelated one 

another (i.e. COV(δig, δjg) = 0)2.). The mean structure of Equation 3 can be written as 

below:  

 

E(Xg) =  g + Λgκg                                                         (5) 

 

Here, E(Xg) refers to the mean vector of Xg while κg denotes the mean vector of ξg.The 

mean vector of δg does not appear in Equation 5 since the unique factor scores (δg) are, 

in the long run, expected to cancel out.  

Equations 4 and 5 allow us to test every aspect of factorial invariance: configural 

invariance (i.e., equal form of the model), metric invariance (i.e., g = g'), scalar 

invariance (i.e., g = g'; g = g'), and strict invariance (i.e., g = g'; g = g'; 𝛩g = 𝛩g'). 

Given the condition of strict measurement invariance, the group indicator g for Λ, ,  and 

Θ can be eliminated in Equations 4 and 5 as shown below:  

 

g =   ΛgΛ
′ + 𝛩                                                      (6) 

E(Xg) =  +  Λκg                                                     (7) 

 

In Equation 6, the differences in the variance-covariance structure of observed scores 

originate from the differences in the variance-covariance structure of latent factor scores 

                                                 

2 δig and δjg stand for the unique factor score of ith and jth variables, respectively 
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when strict invariance is established. Based on Equation 7, we can infer that the 

differences in the observed mean scores can be accounted for by the difference in the 

means of the latent factor scores between groups. Equation 7 also implies that scalar 

invariance is a necessary condition for valid cross-group mean comparisons (Steenkamp 

& Baumgartner, 1998; Schmitt & Kuljanin, 2008).  

A Closer Look at Each Level of Factorial Invariance 

Vandenberg and Lance (2000) summarized the ideal steps for testing 

measurement invariance. Although they include testing the equality of the variance-

covariance matrices across groups, empirical studies seldom test this too-strict condition. 

Researchers usually try to first fit a common factor model that works well for either 

group. Then, four levels of factorial invariance are tested sequentially: configural 

invariance, metric invariance, scalar invariance, and strict invariance.  

Configural Invariance 

 Configural invariance refers to a MCFA model that stipulates the same number 

of factors and the same pattern of salient and non-salient factor loadings across groups 

(Vandenberg & Lance, 2000). Let’s say that we have six variables that have two factors 

underlying them. The first three items are loaded on the first factor and the last three are 

loaded on the second factor. If the same structure holds across two groups, configural 

invariance is established as the following matrices:   
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[
 
 
 
 
 
 
𝜆1

𝑎 0

𝜆2
𝑎 0

𝜆3
𝑎 0

0 𝜆4
𝑎

0 𝜆5
𝑎

0 𝜆6
𝑎]
 
 
 
 
 
 

      =      

[
 
 
 
 
 
 
𝜆1

𝑏 0

𝜆2
𝑏 0

𝜆3
𝑏 0

0 𝜆4
𝑏

0 𝜆5
𝑏

0 𝜆6
𝑏]
 
 
 
 
 
 

                                                               (8) 

 

Here, 𝜆𝑖
𝑎 indicates the salient factor loading of the ith item of Group a loaded on 

either the first or second factor. For Group b, the corresponding factor loading is 

expressed as 𝜆𝑖
𝑏, and the different group indicator b allows the value of the factor loading 

to differ from that of Group a. All zeros represent non-salient factor loadings. 

Establishing configural invariance is critical since it serves as the baseline model for the 

remaining higher-order factorial invariance models (Vandenberg & Lance, 2000).  

Metric Invariance 

After establishing configural invariance, we can test metric invariance by posing 

equality constraints on each set of corresponding factor loadings across groups. In the 

matrices, we can express metric invariance by removing the group indicators (i.e., a and 

b in Equation 8), as below:  

 

[
 
 
 
 
 
𝜆1 0
𝜆2 0
𝜆3 0
0 𝜆4

0 𝜆5

0 𝜆6]
 
 
 
 
 

      =     

[
 
 
 
 
 
𝜆1 0
𝜆2 0
𝜆3 0
0 𝜆4

0 𝜆5

0 𝜆6]
 
 
 
 
 

                                                    (9) 
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In Equation 9, each set of factor loadings no longer varies across groups. Implied in its 

name, metric invariance refers to the comparability of the metrics or scale intervals 

across groups, according to Rock, Werts, and Flaugher (1978; as cited in Steenkamp & 

Baumgartner, 1998). In other words, when metric invariance holds, one unit change in 

the latent factor score results in the same unit change in the observed scores across 

groups.  If metric invariance is not established, the strength of the relation between the 

latent construct to the observed variables is deemed to differ across groups (Vandenberg 

& Lance, 2000; Schmitt & Kuljanin, 2008).  

Scalar Invariance 

Under the condition of metric invariance, unless scalar invariance holds, 

observed scores can still be mathematically biased positively or negatively (Steenkamp 

& Baumgartner, 1998). In a scalar invariance model, more equality constraints on each 

set of corresponding intercepts are added to the metric invariance model, as shown 

below:  

 

[
 
 
 
 
 
𝜏1

𝜏2

𝜏3

𝜏4

𝜏5

𝜏6]
 
 
 
 
 

     =     

[
 
 
 
 
 
𝜏1

𝜏2

𝜏3

𝜏4

𝜏5

𝜏6]
 
 
 
 
 

                                                          (10) 

 

Here, 𝜏𝑖 denotes the intercept of the ith variable. Scalar invariance is established across 

groups when every set of intercepts is equivalent. As implied in Equation 7, scalar 
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invariance is a critical condition for comparing cross-group means (Vandenberg & 

Lance, 2000; Schmitt & Kuljanin, 2008). 

Strict Invariance 

The most restricted form of factorial invariance is strict invariance (i.e., g = g'; 

g = g'; 𝛩g = 𝛩g'). Strict invariance tests are conducted by adding equality constraints on 

the corresponding unique factor variances on the scalar invariance model, as illustrated 

below:  

 

  

[
 
 
 
 
 
𝜃1 0 0 0 0 0
0 𝜃2 0 0 0 0
0 0 𝜃3 0 0 0
0 0 0 𝜃4 0 0
0 0 0 0 𝜃5 0
0 0 0 0 0 𝜃6]

 
 
 
 
 

     =       

[
 
 
 
 
 
𝜃1 0 0 0 0 0
0 𝜃2 0 0 0 0
0 0 𝜃3 0 0 0
0 0 0 𝜃4 0 0
0 0 0 0 𝜃5 0
0 0 0 0 0 𝜃6]

 
 
 
 
 

            (11) 

 

Here, 𝜃𝑖  stands for the unique factor variance of the ith variable. Strict invariance 

represents that, after taking into account the latent factor score(s), the uncertainty related 

to observed scores is equivalent across groups (Vandenberg & Lance, 2000; Schmitt & 

Kuljanin, 2008). Strict invariance is of course the preferred condition, yet in reality it is 

very difficult to be achieved (Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 

2000).  

Identification Method 

 One model that relates observed variables to latent variables whose metric is 

unknown is confirmatory factor analysis (CFA) model. A CFA model cannot be 
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evaluated before identifying the metric of the latent variable(s). For a single-group CFA 

model, the scale of the latent variable can be constrained by fixing the factor variance to 

be a constant—usually 1. If the mean structure is considered, we can also fix the latent 

mean to 0 (or another constant). Second, we can assign the scale of the latent variable by 

fixing one of the factor loadings to a constant—usually 1. The metric of the chosen 

factor loading serves as the metric for the latent variable, and it is called a reference 

variable (RV). We can also assign the scale of the latent mean by constraining one of the 

intercepts to be 0 (or another constant). Conventionally, the same item serves as an RV 

for both variance-covariance structure and mean structure in a single analysis.  

In a multi-group confirmatory factor analysis (MCFA), the identification method 

should be able to assign the unknown metric of latent variables as well as link the 

parameters of different groups. Therefore, in selecting our identification method for a 

MCFA, we need to be cautious. Measurement invariance literature puts forward three 

identification methods: (1) standardization identification method, (2) reference variable 

identification method, and (3) variation of the reference variable identification method.  

Standardization Identification Method (ST-IM) 

 In an MCFA model, the model identification can be achieved by standardizing 

the structural parameters of each group, such as factor variances and factor means. 

Except for the case in which two (or more) groups are drawn from one population, it 

might be unreasonable to assume that the factor variances or means are identical across 

groups. If the factor variances or means are substantially different across groups, 

standardization will result in erroneous conclusions regarding the actual status of 
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factorial invariance (Cheung & Rensvold, 1999; Yoon & Millsap, 2007). For example, 

we are at risk of rejecting a truly invariant full metric invariance due to fallible 

standardization. For partial measurement invariance, the parameter estimates of factor 

loadings are also affected by the falsifying standardization, and as a result, the sources of 

noninvariance cannot be accurately detected. Those problems can affect the results of 

scalar invariance testing as well.  In testing scalar invariance using ST-IM, factor means 

of both groups are fixed to zero. If the factor means are significantly different across 

groups, it is very likely to reject a model that is actually invariant. Therefore, 

standardizing factor variances or factor means should not be chosen to identify an 

MCFA model in testing factorial invariance (Cheung & Rensvold, 1999; Yoon & 

Millsap, 2007). When the default identification method is the ST-IM in the chosen latent 

variable modeling program, we need to override the default. For example, AMOS 

graphics uses the ST-IM to identify a scalar invariance model, and we need to change 

the identification method to specify a correct partial scalar invariance model.   

Reference Variable Identification Method (RV-IM) 

Using the RV-IM, an MCFA model is identified by fixing the parameters of a 

chosen variable to a specific value. For example, the factor loadings of the selected like-

items are fixed to one to identify the model’s variance-covariance structure. We identify 

the mean structure of the MCFA model by constraining to zero the intercepts of the 

chosen items. In the measurement invariance literature, RV-IM stands as the dominant 

identification method (Johnson et al., 2009). Nonetheless, it is hard to say that RV-IM is 

a safe method when the chosen reference variable (RV) is actually non-invariant. 
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Johnson et al. (2009) demonstrated how a non-invariant RV could distort the results of 

item-level measurement invariance tests. A good mathematical illustration is also 

available for the problem of choosing a non-invariant factor loading as an RV in 

detecting the source of noninvariance (Yoon & Millsap, 2007). However, researchers 

have yet to explain how to empirically choose a truly invariant RV (Raykov, 

Marcoulides, & Li, 2012). While many have emphasized the role of theory in choosing 

an invariant RV, in reality doing so is not always an option (Millsap and Olivera-Aguilar, 

2012) 

Variation of the Reference Variable Identification Method (VRV-IM) 

As a variation of the RV-IM (VRV-IM), Reise, Widaman, and Pugh (1993) 

suggested another identification method. Using the VRV-IM, the variance-covariance 

structure of an MCFA model is identified by fixing to one the factor variances of a 

reference group while constraining as equal one set of corresponding factor loadings.  

The factor variance of the other group is freely estimated. To identify the mean structure, 

the factor mean of the reference group is fixed to zero with one set of equally 

constrained intercepts. For both cases, the equally constrained parameters need no 

specific value. There are two benefits to using the VRV-IM. First, we can be free of a 

priori invariance assumption for an RV when this identification method serves for a fully 

constrained factorial invariance model as in Yoon and Millsap (2007). Second, this 

method allows clear interpretations of the differences in the factor variances and factor 

means (Yoon & Millsap, 2007).  



 

17 

 

Identification Method in Empirical Studies 

Since Rensvold and Cheung (1998; 2001) questioned the identification problems 

in testing factorial invariance, little attention has been paid to the identification issue in 

substantive areas. For example, the ST-IM can be frequently encountered in 

contemporary studies. We reviewed measurement invariance studies in 2000 through 

2010 to identify the usage of each identification method.  For keywords, we used 

“measurement invariance” or “measurement equivalence” and “confirmatory factor 

analysis.” In the PsychInfo database, 232 studies were identified as eligible studies—

testing measurement invariance under a MCFA. Among them, 29 studies (13%) used 

ST-IM while 59 (25%) offer no clue about the identification method.  The remaining 

studies (62%) used RV-IM.  

However, neither has much effort been made to select an invariant RV when 

using RV-IM. Johnson et al. (2009) reviewed studies testing, from 2005 and 2007, 

factorial invariance. They found that among the 153 eligible studies only 17 heeded the 

problem of non-invariant RVs.  

In sum, it is obvious that in testing factorial invariance the substantive studies 

have seldom attended to the problem of identification methods. Nevertheless, we cannot 

overstate the importance of choosing an appropriate identification method; in testing 

both full and partial measurement invariance, the RV-M is preferred to the ST-IM 

(Cheung & Rensvold; 1999). When using the RV-IM, we need to select an invariant RV 

to correctly detect non-invariant items (Johnson et al., 2009). However, it is widely 



 

18 

 

accepted that there is no existing method to correctly identify an invariant RV (Raykov, 

Marcoulides, & Li, 2012).   

Detecting Noninvariance without a Specific Reference Variable 

Factor-ratio Test 

Cheung and Rensvold (1998) suggested the factor-ratio test (FR-T) as the first 

method without a specific reference variable (RV).  When using FR-T, every variable in 

a factor model serves as an RV while one of the remaining variables is tested for 

invariance. Once full metric or scalar invariance is rejected, we can employ FR-T. If 

more than two factors in the model are being tested, the researcher conducts the omnibus 

test of factor loadings separately for each factor. Once a factor is identified as the source 

of noninvariance, the FR-T test is administered to identify the non-invariant items. The 

following illustrates how to conduct FR-T with four variables under one factor:  

 

1. When the first variable serves as an RV, we test three sets of combinations: 
(1, 2), (1, 3), and (1, 4).   

2. When the second variable is an RV, we need to test only two pairs of 
variables (2, 3) and (2, 4) because the fit statistics of the pair (2, 1) is exactly 
same with that of (1, 2) the first step.  

3. Similarly, we need to test only one pair, (3, 4), when the third variable is 
selected as an RV.   
 
 

The total number of FR-Ts necessary for the case above is six. Generally, we need 

𝑝 (𝑝−1)

2
  FR-Ts to test every pair of an RV and an argument with p variables under one 

factor. In an FR-T, each model is compared to the unconstrained model (i.e., the model 

with one equal constraint for identification purposes) using chi-square difference testing. 
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A significant chi-square difference fit statistic indicates that the tested set may have non-

invariant item(s).  

French and Finch (2008) tested the performance of the factor-ratio test (FR-T) 

using simulated data. They found that the FR-T maintained nominal false positive rates 

while having good power across various conditions.  Despite the FR-T’s value being 

recognized, researchers have realized that with more indicators and factors, the process 

is labor-intensive. Recently, Cheung and Lau (2011) simplified FR-T by incorporating 

bias-corrected bootstrap confidence intervals (BCBS-CIs), a process still waiting to be 

investigated under known data conditions. 

However, the FR-T informs only whether the tested pair is significant or not. 

Hence, a subsequent procedure should be conducted to distinguish the invariant variable 

from the non-invariant ones. Up to now, researchers have put forward three approaches: 

(1) trianglular heuristic (Cheung & Rensvold, 1998), (2) list-and-delete method 

(Rensvold & Cheung, 2001; Cheung & Lau, 2011), and (3) stepwise partitioning 

procedures (Rensvold & Cheung, 2001; French & Finch, 2008).  In some data conditions, 

however, all three methods result in more than one invariant variable set in some data 

conditions (e.g., Cheung & Rensvold, 1999; Rensvold & Cheung, 2001; French & Finch, 

2008; Cheung & Lau, 2011). When multiple invariant sets are identified, researchers 

should rely once again on theory (Rensvold & Cheung, 2001; Cheung & Lau, 2011). 

Such ambiguity might dishearten researchers from conducting the FR-T and its 

subsequent procedures. 
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Backward Approach Using the Largest Modification Index 

The size of a modification index (Mod) indicates the amount of expected drop in 

the chi-square statistics (df =1) when one parameter constraint in the given model is 

released.  Even though the literature has been cautious about making this kind of post-

hoc model modification, it is appropriate in some cases to employ the sequential use of 

the largest modification index (Max-Mod; Yoon & Millsap, 2007). Yoon and Millsap 

(2007) utilized the Max-Mod of each factor loading to detect non-invariant items under a 

full metric invariance model. The chosen identification method was the variation of the 

reference variable identification method (VRV-IM). As mentioned above, this method 

allows us to avoid the a priori assumption that the chosen reference variable is invariant. 

If there is any Mod which exceeds a pre-specified significance level, the equality 

constraints having the Max-Mod were relaxed until no more significant Mod was left. 

The method performed well under the conditions of low contamination, large sample, a 

large loading difference condition, and mixed pattern of noninvariance condition. In 

some conditions, however, there were present high Type I error rates.  

Forward Approach Using BCBS-CIs 

The baseline model of the forward approach is the configural invariance model 

which does not have any invariant constraints on either factor loadings or intercepts 

except for the constraints for the reference variable. Therefore, the forward approach is 

less susceptible to the inflated Type I error rate due to the misspecification as of the 

baseline model of the backward approach. In the study of comparing the forward and 

backward approaches to detect measurement bias of categorical data, Khalid (2011) 



 

21 

 

found that the forward approach performed better than the backward approach in terms 

of the Type I error rates, yet he pointed out that the forward approach is only useful 

when we can correctly specify a truly invariant reference variable (RV).   

In the newly proposed forward approach, the reference variable (RV) will be a 

truly invariant parameter. Then we will use BCBS-CIs for testing invariance instead of 

conducting separate likelihood ratio test for each tested variable, combined with the 

“MODEL CONSTRAINT” command in MPlus7.0. Here, we will only examine the 

BCBS-CI of each tested variable except for the reference variable by adopting the idea 

of Cheung and Lau (2011). For example, the BCBS-CIs of X2 through X6 will be 

examined when we choose X1 as an RV. Each confidence interval represents the 

confidence interval of the difference between corresponding parameters (e.g., 𝜆2
𝑎 − 𝜆2

𝑏).  

If the BCBS-CI does not include zero, we will conclude that the tested parameter is not 

invariant across groups. 

We expect this method to perform better in terms of both simplicity and accuracy. 

First, this new method needs only one data analysis to make all possible comparisons. 

Second, this method is expected not to have the problem of the inflated Type I error rates 

due to the misspecification in the baseline model.  

Purpose of the Studies 

Study I 

The purpose of the study is to evaluate the performance of the smallest 

modification index (Min-Mod) in identifying a truly invariant reference variable (RV) in 

fully constrained factorial invariance models (e.g., full metric/ factor loading invariance 
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model, intercept invariance model, or scalar invariance model). This method is very 

similar to the “all others as anchors” (AOAA) identification method in the item response 

theory literature (Woods, 2009a; Mead & Wright, 2012), though using Min-Mod is a 

much simpler process.  

Study II 

The second study aims to evaluate the performances of (a) the forward approach, 

(b) the backward approach, and (c) the factor-ratio test in terms of perfect recovery rates, 

model-level Type I error rates, model-levelType II error rates, item-level power, and 

item-level Type I error rates. For both of the forward approach and factor-ratio test, we 

utilized the bias-corrected bootstrapping confidence intervals in detecting non-invariant 

item parameters (forward approach) or non-invariant pair of reference and argument 

(factor-ratio test).  We referred to both 95% and 99% BCBS-CIs for the forward 

approach and factor-ratio test while, for the backward approach,  we employed two 

significant  modification index (Mod) values with one degrees of freedom , Mod = 3.841 

at α = 0.05 and Mode = 6.635 at α = 0.01 .   
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CHAPTER III 

METHOD 

 

Simulation Conditions 

Study I 

Using the Monte Carlo feature of MPlus7.0 (Muthen & Muthen, 1998-2012), 

data were generated considering both fixed and manipulated design elements. First, the 

fixed conditions were the number of factors and number of variables (one factor under 

six variables) and the proportion of noninvariance variables (33% across all conditions). 

Next, the manipulated conditions were: (1) location of noninvariance (either factor 

loadings or intercepts and both factor loadings or intercepts), (2) size/pattern of 

noninvariance (small- , large-, mixed-size-, and nonuniform-difference), and (3) sample 

size (N = 100, 250, 500, and 1000). The number of replications was set to 1000 for each 

condition. Table 1 summarizes the data conditions of the current study according to the 

manipulated design factors. 

Location of Noninvariance 

Many studies have pointed out that a necessary condition for cross-group latent 

mean comparison is establishing scalar invariance in which factor loadings and 

intercepts are invariant across groups (Vandenberg & Lance, 2000; Steenkamp & 

Baumgartner, 1998). A great deal of literature has discussed metric invariance (i.e., 

factor loading invariance) to evaluate the performance of a multi-group confirmatory 

factor analysis (MCFA) models in testing measurement invariance (Meade & 
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Lautenschlager, 2004; French & Finch, 2006; Meade & Bauer, 2007). Nonetheless, only 

recently have researchers begun to include scalar invariance in their simulation studies 

(Kim & Yoon, 2011; Kim, Yoon, & Lee, 2012).  Neither study examined scalar 

invariance to evaluate the performance of the factor-ratio test (French & Finch, 2008) or 

the use of modification indices (Yoon & Millsap, 2007). In this dissertation, the location 

of noninvariance was chosen as one important design condition. We created four 

different scenarios: (1) partial metric invariance (PMI) in which noninvariance was only 

in factor loadings (λx2
g1 ≠ λx2

g2; λx4
g1 ≠ λx4

g2), (2) partial scalar invariance (PSI) in which 

noninvariance was only in intercepts (τx2
g1 ≠ τx2

g2; τx4
g1 ≠ τx4

g2), (3) partial metric and 

scalar invariance of the same variables (PMSI-S) in which noninvariance was in both 

factor loadings and intercepts in the same variables (λx2
g1 ≠ λx2

g2; λx4
g1 ≠ λx4

g2; τx2
g1 ≠ 

τx2
g2 ; τx4

g1 ≠ τx4
g2), and (4) partial metric and scalar invariance of different variables 

(PMSI-D) in which noninvariance was in both factor loadings and intercepts in different 

variables (λx2
g1 ≠ λx2

g2; λx4
g1 ≠ λx4

g2; τx1
g1 ≠ τx1

g2; τx3
g1 ≠ τx3

g2).  

Size/Pattern of Noninvariance 

In the literature an important data condition has also been the degree of 

differences between groups (Yoon & Millsap, 2007). Previous studies showed that 

power is higher when the difference is larger (Meade & Lautenschlager, 2004; French & 

Finch, 2006; Yoon & Millsap, 2007). In addition, the power increased when non-

invariant variables had a nonuniform pattern, which means that some loadings are higher 

in the reference group while some loadings are higher in the focal group (Meade and 

Lautenschlager,2004; Yoon and Millsap, 2007).  Therefore, we generated four levels of 
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the size/pattern of noninvariance depending on the magnitude differences and the 

direction of differences. In the small-difference condition, we manipulated two 

parameters to be noninvariant across groups with the same degree of small difference in 

the same direction. For example, the second and fourth factor loadings of Group 1 were 

0.2 higher than those of Group 2 in the small-difference partial metric invariance (PMI) 

condition. In the small-difference partial scalar invariance (PSI) condition, the second 

and fourth intercepts of Group 1 was 0.3 lower than that of Group 2.  In the large-

difference conditions, the two noninvariant parameters had a large difference in the same 

direction. In the large-difference PMI condition, the second and fourth noninvariant 

factor loadings of Group 1 were 0.4 higher than those of Group 2 while in large-

difference PSI condition the second and fourth intercepts of Group 1 were 0.6 lower than 

those of Group 2.  Additionally, we simulated two types of mixed pattern conditions 

which are plausible in real settings: mixed-size-difference condition and nonuniform-

difference condition. In the mixed-size-difference condition, two noninvariant 

parameters had varying degree of differences in the same direction. For example, in the 

mixed-size-difference PMI condition, the second and fourth factor loadings of Group 1 

were 0.3 and 0.5 higher, respectively, than those of Group 2. In the nonuniform-

difference condition, two noninvariant parameters were in different directions. For 

instance, the second factor loading of Group 1 was 0.3 higher than that of Group 2 while 

the fourth factor loading of Group 1 was 0.3 lower than that of Group2.  
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Table 1. Simulation Conditions 
      Group 1  Group 2 

    
 Small-difference  Large-difference 

  
Mixed-size-difference 

 
Nonuniform-difference 

  
 

     33%   33% 33%   33% 
Factor Loading  

  
 

       
 

λx1 
 

0.7  0.7 
 

0.7 
 

0.7 
 

0.7 

 
λx2 

 
0.7  0.5 

 
0.3 

 
0.4 

 
0.4 

 
λx3 

 
0.7  0.7 

 
0.7 

 
0.7 

 
0.7 

 
λx4 

 
0.7  0.5 

 
0.3 

 
0.2 

 
1.0 

 
λx5 

 
0.7  0.7 

 
0.7 

 
0.7 

 
0.7 

 
λx6 

 
0.7  0.7 

 
0.7 

 
0.7 

 
0.7 

Intercept  
  

 
       

 
τx1 

 
0.1  0.1 

 
0.1 

 
0.1 

 
0.1 

 
τx2 

 
0.1  0.4 

 
0.7 

 
0.5 

 
0.5 

 
τx3 

 
0.1  0.1 

 
0.1 

 
0.1 

 
0.1 

 
τx4 

 
0.1  0.4 

 
0.7 

 
0.7 

 
-0.3 

 
τx5 

 
0.1  0.1 

 
0.1 

 
0.1 

 
0.1 

 
τx6 

 
0.1  0.1 

 
0.1 

 
0.1 

 
0.1 

Unique variances  
       

 
εx1 - εx6 

 
0.3  0.3 

Factor variance 
 

 
       

 
φ 

 
1  1.3 

Factor Mean 
  

 
         κ   0  0.5 

Note. All conditions presented in the table have four levels of sample size (N =100, 250, 500, and 1000 per group). ; In Study 
I, λx2, λx4, τx1, and τx3 were noninvariant when the location of noninvariance existed in both factor loadings and intercepts of 
different items; In Study II, we also created baseline conditions in which every set of factor loadings, intercepts, and unique 
variances were invariant across groups. 
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Sample Size 

We simulated four sample size conditions: N = 100, 250, 500, and 1000 per 

group. This was done to include a wide range of sample sizes in real settings. Only 

balanced sample sizes between the two groups were considered.  

In sum, we manipulated four locations of noninvariance, four size/patterns of 

noninvariance, and four sample sizes. Thus, the resulting number of simulated 

conditions was 4 * 4 * 4 = 64 in Study I.   

Study II 

In Study II, we only tested two partial factorial invariance conditions among the 

four levels of locations of noninvariance in Study I: (1) noninvariance only in factor 

loadings (λx2
g1 ≠ λx2

g2; λx4
g1 ≠ λx4

g2) and (2) noninvariance only in intercepts (τx2
g1 ≠ τx2

g2; 

τx4
g1 ≠ τx4

g2). We also simulated the baseline condition in which all parameters except for 

the structural parameters (i.e., factor variance and factor means) are equal across groups 

in order to evaluate basal Type I error rates. All the other conditions (i.e., size/pattern of 

noninvariance, sample sizes, and number of replications) were same with Study I. 

Therefore, the total number of conditions simulated in Study II was 40 (2 locations of 

noninvariance * 4 size/pattern of noninvariance * 4 sample sizes + 2 baseline condition * 

4 sample sizes).  

Data Analysis Procedure 

Study I 

The value of a modification index indicates the amount of decrement in the chi-

square statistics when the indicated constrained parameter is released with all other 
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parameters fixed. Thus, we hypothesized that the smallest modification index (Min-Mod) 

would represent the smallest difference within the set of parameters to be constrained 

invariant. For example, we fixed all sets of corresponding factor loadings to be equal 

across groups to test metric invariance. We considered that the factor-loading set having 

the Min-Mod had the smallest difference across groups among the all sets of equally 

constrained factor loadings. We identified the models using the variation of the reference 

variable identification method (VRV-IM), which does not require any invariant 

assumption under a full factorial invariance model. We score the result that the Min-

Mod performed accurately when the factor loading or intercept indicated by the Min-

Mod belonged to the group of truly invariant parameters.  

There are two possible invariance models which can serve the process of 

searching an RV. For example, to search for an invariant factor loading set, we can refer 

to the Min-Mod under a metric invariance model in which every set of factor loadings is 

fixed to be invariant, or a scalar invariance model in which every set of factor loadings 

and intercepts is constrained to be equal across groups. To select an invariant set of 

intercepts, we can refer to the Min-Mod under a scalar invariance model or an intercept 

invariance model in which only every set of intercepts is equally constrained over groups. 

Study II 

Presented here first is the detailed analytic procedure of each of the three 

methods: the forward approach using the bias-corrected bootstrapping confidence 

intervals (BCBS-CIs), the backward approach using the largest modification index 

(Max-Mod), and the factor-ratio test. The process of the factor-ratio test was also 
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simplified by the BCBS-CIs. Second, we described how to evaluate the performance of 

each approach and defined perfect recovery rate, model-level Type I error rate, model-

level Type II error rate, item-level power, and item-level Type I error rate. Third, we 

explained how to analyze the effects of chosen approach and manipulated design factors 

on the perfect recovery rate, model-level Type I error rate, and model-level Type II error 

rate.  

Analytic Procedure 

First, for the forward approach using BCBS-CIs the baseline model was either a 

configural invariance model in testing partial metric invariance or a metric invariance 

model in testing partial scalar invariance. The parameter with the smallest modification 

index served as an RV for this method from the Study I. We also retrieved the BCBS-

CIs of the differences of the tested parameter pairs and referred to both 95% and 99% 

confidence intervals.  If the confidence interval did not include “zero,” the parameter 

was categorized as noninvariant. The MPlus syntaxes for the proposed forward method 

are provided in Appendix C and D for testing factor loadings and intercepts, respectively.  

Second, the baseline model for the backward approach using the Max-Mod was 

either a full metric invariance model (i.e., all factor loadings are equally constrained) or 

full scalar invariance model (i.e., all factor loadings and all intercepts are equally 

constrained). Both models were identified using the variation of the reference variable 

identification method (VRV-IM). The VRV-IM also requires one set of equally 

constrained parameters (i.e., reference variable) without a specific value for the 

identification of a configural invariance model. We did not need to choose, though, a 
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specific variable for the identification purpose because the baseline model was a full 

metric or scalar invariance model. As in Yoon and Millsap (2007), we sequentially 

relaxed the equality constraint of the parameters with the largest modification index 

(Max-Mod) until there were left no more significant modification indices for either 

factor loadings or intercepts (Mod = 3.841 at α=0.05; Yoon & Millsap, 2007). To make 

more comprehensive comparisons, we also investigated the performance of the 

backward approach at the alpha level of 0.01 (Mod=6.635) which has not yet been 

examined.   

Third, to conduct the factor-ratio test we used the bias-corrected bootstrapping 

confidence intervals (BCBS-CIs) as Cheung and Lau (2011) suggested. The baseline 

model for this analysis was a configural invariance model, and the tested parameters 

were the cross-group difference for the ratio of a reference variable (RV) and an 

argument. The equality of each set of corresponding parameters was tested using a 

“MODEL CONSTRAINT.” We retrieved a bias-corrected bootstrapping confidence 

interval by asking “CINTERVAL(BCBOOTSTRAP)” under the “OUTPUT” command. 

The MPlus syntaxes used in testing factor loadings and intercepts are available in 

Appendixes A and B, respectively.  As with the forward approach, we considered both 

95% and 99% confidential intervals. If the confidence interval of a pair of an RV and an 

argument did not include zero, the pair was considered to be noninvariant.  

Outcome Variables 

The performances of the forward approach using BCBS-CIs, the backward 

approach using the Max-Mod, and the factor-ratio test were primarily evaluated in terms 
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of perfect recovery rates, model-level Type I error rates, and model-level Type II error 

rates. Additionally, we also looked at the item-level power and Type I error rate.   

First, the most interesting outcome of the study ought to be how well each 

method perfectly recovered the true partial factorial invariance (PFI) model because 

perfect recovery rate can be deemed to be the most rigorous forms of power without any 

errors. To achieve a perfect recovery, all noninvariant items should be detected as such 

while no invariant items get so detected. The perfect recovery rate was calculated within 

the 1000 replications of each condition, by the size/pattern of noninvariance, and by the 

sample size with respect to the location of noninvariance.   

Second, we also examined model-level Type I and II errors to see the sources of 

inaccuracy in specifying true PFI models. In this study, model-level Type I error was 

defined as detecting any invariant parameter as noninvariant in the finally recovered PFI 

model. Similarly, model-level Type II error was defined as any failure to detect 

noninvariant parameters as such in the finally specified PFI model. Both model-level 

Type I and II error rates were calculated within the 1000 replication of each PFI 

condition by the size/pattern of noninvariance, by the sample size.  

Finally, we also examined item-level power and Type I error rate which are often 

reported in simulation studies. Item-level power is defined as the proportion of the 

detected noninvariant items (pairs) over the number of tested noninvariant items (pairs) 

*1000 replications.  Similarly, item-level Type I error rates were calculated by dividing 

the total occurrence of Type I errors by the number of tested invariant items (pairs)* 

1000 replications.  
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Effects of Design Factors 

We conducted the analysis of variance (ANOVA) to determine the effects of the 

methods (e.g., forward approach, backward approach, and factor-ratio test), the 

size/pattern of noninvariance (e.g., small-, large-, mixed-size-, and nonuniform-

difference), and the sample size (e.g., N = 100, 250, 500, and 1000) on the perfect 

recovery rate, model-level Type I error rate, and model-level Type II error rate with 

respect to the location of noninvariance (factor loadings or intercepts). In the ANOVA 

model, we also added all two- and three- way interaction effects among the main factors. 

The variance in each outcome variable (i.e., perfect recovery rate, Type I error rate, and 

Type II error rate) was partitioned with accordance to the three main factors and their 

interactions. The chosen effect size was eta-squared (η2) which is the proportion of the 

variance explained by each factor in the total variance in the perfect recovery rates, 

model-level Type I error rates, or model-level Type II error rates of each approach.   
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CHAPTER IV 

RESULTS 

 

Study I. Searching for a Truly Invariant Reference Variable Using the Smallest 

Modification Index 

The purpose of this study was to evaluate the performance of the smallest 

modification index (Min-Mod) within the limited set of equally constrained parameters 

(e.g., factor loadings or intercepts) in the model. As a value of a modification index 

indicates the amount of decrease in the chi-square statistic (with one degrees of freedom), 

the Min-Mod within the set of invariant constraints was assumed to indicate the 

parameter having the smallest difference between groups. Thus, we selected the factor 

loading set with the Min-Mod as a reference variable (RV) in either a fully constrained 

metric invariance model or scalar invariance model while we selected the intercept with 

the Min-Mod as an RV in either a fully constrained scalar invariance model or a fully 

constrained intercept invariance model. When the chosen factor loading or intercept 

belongs to the truly invariant parameter group, it was coded as “accurate.” The mean 

accuracy (%) was reported across 1000 replications within each partial factorial 

invariance (PFI) condition by the sample size. We simulated four possible PFI scenarios: 

(1) noninvariance only in factor loadings (partial metric invariance: PMI), (2) 

noninvariance only in intercepts (partial scalar invariance: PSI), (3) noninvariance in 

both factor loadings and intercepts of the same items (partial metric & scalar invariance 

of the same items: PMSI-S), and (4) noninvariance in both factor loadings and intercepts 
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of different items (partial metric & scalar invariance of different items: PMSI-D), and 

thus, the results are presented by each PFI scenario. In each scenario, 16 different PFI 

conditions were simulated depending on the size/pattern of noninvariance (small-, large-, 

mixed-size-, and nonuniform-difference) and the sample sizes (N = 100, 250, 500, and 

1000). 

Partial Metric Invariance Scenario 

In the partial metric invariance scenario, two factor loadings were manipulated to 

be noninvariant across groups. Here, our focus was to identify a truly invariant factor 

loading, and we investigated the modification index of factor loadings under the two 

fully constrained invariant models in which every set of factor loadings was equally 

constrained: (1) metric invariance model and (2) scalar invariance model. As presented 

in Table 2, the accuracy rates of identifying a truly invariant factor loading were almost 

perfect across all PMI conditions except in the small-difference with N =100, regardless 

of the type of fully constrained model (i.e., metric invariance model or scalar invariance 

model). Although the accuracy rates were not perfect for all conditions with N = 100, the 

error rates were negligible or very low. The highest error rates were found when a small 

difference was combined with small sample size, however, the error rates were still very 

low under both metric invariance model and scalar invariance model (≤ 7.3% across 

1000 replications).   
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Table 2. Accuracy of Identifying a Truly Invariant Factor Loading under PMI Scenario 
Condition N Metric Invariance Model Scalar  Invariance Model 
Small-difference 100 92.7 93.0 

250 99.8 99.5 
500 100.0 100.0 

1000 100.0 100.0 
    
Large-difference 100 100.0 100.0 

250 100.0 100.0 
500 100.0 100.0 

1000 100.0 100.0 
    
Mixed-size-difference 100 99.4 99.4 

250 100.0 100.0 
500 100.0 100.0 

1000 100.0 100.0 
    
Nonuniform-difference 100 99.9 99.9 

250 100.0 100.0 
500 100.0 100.0 

1000 100.0 100.0 
Note. N = sample size per group; The baseline accuracy rate is 66.7% given four 
invariant factor loadings among the six variables.  
 
 
 

Partial Scalar Invariance Scenario 

In the partial scalar invariance scenario, two intercepts were manipulated to be 

noninvariant across groups. In order to identify a truly invariant intercept we examined 

the modification index of intercepts under the two full invariance models in which every 

set of intercepts was fixed to be equal across groups: (1) intercept invariance model and 

(2) scalar invariance model. In Table 3, the accuracy rates of identifying a truly invariant 

intercepts using the Min-Mod were presented according to the invariance model. 

Similarly in the partial metric invariance scenario, the Min-Mod identified a truly 

invariant intercept with very high accuracy rates. Under both invariance models, the 

accuracy rates in the small-difference condition with N =100 and in the mixed-size 
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difference conditions with N = 100, 250, and 500 were lower than the other conditions. 

The accuracy rates of those conditions were higher under a scalar invariance model than 

those under an intercept invariance model. For instance, the lowest accuracy rate was 

found in the mixed-size-difference conditions with N =100 under an intercept invariance 

model (92.5%), but the accuracy rate increased under a scalar invariance model (96.7%).  

It seemed that examining the Min-Mod of intercepts under a scalar invariance model 

yielded to higher accuracy rates than under an intercept invariance model when 

noninvariance existed only in intercepts. But, the maximum difference of the accuracy 

rates between the models was only 4.2%.  

 
 
 
Table 3. Accuracy of Identifying a Truly Invariant Intercept under PSI Scenario 
Condition N Intercept Invariance Model Scalar Invariance Model 
Small-difference 100 96.5 97.1 

250 99.9 99.8 
500 100.0 100.0 

1000 100.0 100.0 
    
Large-difference 100 99.7 100.0 

250 100.0 100.0 
500 100.0 100.0 

1000 100.0 100.0 
    
Mixed-size-difference 100 92.5 96.7 

250 96.2 99.3 
500 97.5 99.8 

1000 99.5 99.9 
    
Nonuniform-difference 100 100.0 100.0 

250 100.0 100.0 
500 100.0 100.0 

1000 100.0 100.0 
Note. N = sample size per group; the baseline accuracy rate is 66.7% given four 
invariant factor loadings among the six variables.  
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Partial Scalar and Metric Invariance of the Same Items Scenario 

In the partial scalar and metric invariance of the same variable scenario (PMSI-S), 

two factor loadings and two intercepts of the same items were manipulated to be 

noninvariant across groups. In selecting an invariant factor loading, we examined the 

modification indices of factor loadings under either a full metric invariance model or a 

full scalar invariance model. The factor loading with the Min-Mod was selected as a 

reference variable (RV). To search a truly invariant intercept, we looked at the 

modification indices of intercepts under either a full intercept invariance model or a full 

scalar invariance model, and selected the intercept with the Min-Mod as an RV.  

Accuracy of Identifying a Truly Invariant Factor Loading 

Under both full metric and full scalar invariance models, the Min-Mod worked 

perfectly well to identify a truly invariant factor loading except for some conditions with 

small-difference or small sample size (see Table 4). For example, the accuracy rates 

were lower in all conditions with N = 100 and the small-difference condition with N 

=250. In those conditions, the Min-Mod had higher accuracy rates under a metric 

invariance model than under a scalar invariance model with the maximum difference of 

10.6% in the small-difference condition with N =100.  

Accuracy of Identifying a Truly Invariant Intercept 

The Min-Mod performed very accurately across all conditions except for the 

small-difference conditions with N =100 regardless of the invariance models in which 

the Min-Mod of intercepts were examined. Even in the small-difference conditions with 

N =100, the accuracy rates were 98.7 % and 97.0%, respectively, under a full intercept 
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invariance model and under a full scalar invariance model. Although the accuracy rates 

in that condition were slightly higher under the intercept invariance model than the 

scalar invariance model, the difference was negligible (1.7%).  

 
 
 

Table 4. Accuracy of Identifying a Truly Invariant Factor Loading or Intercept under 
PMSI-S Scenario 

  
Condition 

  Factor Loading 
 

Intercept 

N 
Metric 

Invariance 
Model 

Scalar 
Invariance 

Model  

Intercept 
Invariance 

Model 

Scalar 
Invariance 

Model 
Small-difference 100 92.7 81.1  98.7 97.0 

250 99.8 92.2  100.0 99.7 
500 100.0 98.8  100.0 100.0 

1000 100.0 99.9  100.0 100.0 
       
Large-difference 100 100.0 94.4  100.0 100.0 

250 100.0 99.7  100.0 100.0 
500 100.0 100.0  100.0 100.0 

1000 100.0 100.0  100.0 100.0 
       
Mixed-size-
difference 

100 99.4 94.3  99.9 99.8 
250 100.0 99.0  100.0 100.0 
500 100.0 100.0  100.0 100.0 

1000 100.0 100.0  100.0 100.0 
       
Nonuniform-
difference 

100 99.8 98.3  100.0 100.0 
250 100.0 100.0  100.0 100.0 
500 100.0 100.0  100.0 100.0 

1000 100.0 100.0   100.0 100.0 
Note. N = sample size per group; The baseline accuracy rate is 66.7% given four 
invariant factor loadings among the six variables.  
 
 
 

Overall, the Min-Mod almost perfectly identify either a truly invariance factor 

loading or a truly invariant intercept except for some conditions with small sample size 

and small difference in the PMSI-S scenario. It seems that a truly invariant factor 
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loading was better identified by the Min-Mod under a metric invariance model than 

under a scalar invariance model in the conditions with lower accuracy rates. In selecting 

a truly invariant intercept, the accuracy rates were almost perfect no matter which 

invariance model was used except for the small-difference with N =100. Although the 

accuracy rate was slightly higher in the intercept invariance model than in the scalar 

invariance model, the pattern was not clear as in searching for an invariant factor loading.  

Partial Scalar and Metric Invariance of the Different Items Scenario 

In the partial scalar and metric invariance of different variables scenario (PMSI-

D), two factor loadings and two intercepts were manipulated to be noninvariant in 

different variables across groups. That is, the factor loadings of the second and fourth 

variable were set to be noninvariant while the intercepts of the first and third variables 

were chosen to be noninvariant. Similar in the PMSI-S scenario, the Min-Mod of factor 

loadings were observed under both metric invariance model and scalar invariance model. 

In selecting a truly invariant intercept, we referred to the Min-Mod under either a full 

intercept invariance model or a full scalar invariance model.  

Accuracy of Identifying a Truly Invariant Factor Loading 

The Min-Mod correctly identified a truly invariant factor loading except in the 

small-difference condition with N = 100 regardless of the invariance models (see Table 

5). In the small-difference condition with N =100, the Min-Mod worked better under a 

scalar invariance model than under a metric invariance model.  
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Accuracy of Identifying a Truly Invariant Intercept 

In the PMSI-D scenario, we could observe that the pattern of the accuracy rates 

was not inconsistent depending on the size/ pattern of noninvariance and the sample size 

under different invariance model. In the small-difference conditions, the accuracy rates 

were lower with N =100 than with the other sample sizes. In that condition, the accuracy 

rates were higher under a scalar invariance model than under intercept invariance model.  

In the large-difference condition, the accuracy rates were slightly lower with N = 100 

than the other sample size conditions. Similarly in the small-difference with N =100 

condition, the Min-Mod performed better under a scalar invariance model than an 

intercept invariance model. In the mixed-size-difference condition, the accuracy rate was 

higher under a scalar invariance model than the intercept invariance model. However, in 

the remaining conditions with large sample sizes, higher accuracy rates observed under 

an intercept invariance model than a scalar invariance model. In the nonuniform-

difference condition, the Min-Mod achieved perfect accuracies across all sample sizes.  

In the PMSI-D scenario, the pattern of accuracy rates was not very clear although 

the Min-Mod maintained very high accuracy rates across all conditions with some 

exceptions. To search for a truly invariant factor loading, the Min-Mod achieved almost 

perfect accuracy rates across all conditions except for one condition (i.e., small-

difference condition with N =100) under both metric and scalar invariance models. 

However, the performance of the Min-Mod was not consistent in selecting a truly 

invariant intercept. If we can consider that larger sample sizes are more important than N 
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= 100, choosing an intercept under an intercept invariance model might be a better 

option.  

 
 
 

Table 5. Accuracy of Identifying a Truly Invariant Factor Loading and Intercept under 
PMSI-D Scenario 
    Factor Loading 

 
Intercept 

Condition N 
Metric 

Invariance 
Model 

Scalar 
Invariance 

Model  

Intercept 
Invariance 

Model 

Scalar 
Invariance 

Model 
Small-difference 100 92.7 96.3  91.7 95.4 

250 99.8 100.0  99.0 99.8 
500 100.0 100.0  99.8 100.0 

1000 100.0 100.0  100.0 100.0 
       
Large-difference 100 100.0 100.0  97.1 98.9 

250 100.0 100.0  100.0 99.9 
500 100.0 100.0  100.0 100.0 

1000 100.0 100.0  100.0 100.0 
       
Mixed-size-difference 100 99.4 100.0  83.5 88.9 

250 100.0 100.0  92.3 88.2 
500 100.0 100.0  97.8 88.4 

1000 100.0 100.0  99.9 92.4 
       
Nonuniform-
difference 

100 99.8 99.8  100.0 100.0 
250 100.0 100.0  100.0 100.0 
500 100.0 100.0  100.0 100.0 

1000 100.0 100.0   100.0 100.0 
Note. N = sample size per group; The baseline accuracy rate is 66.7% given four 
invariant factor loadings among the six variables.  
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Study II. Specifying a True Partial Invariance Model 

In Study II, we compared the performances of the forward approach using the 

BCBS-CIs (BCBS-CIs), the backward approach using the largest modification index 

(Max-Mod), and the factor-ratio test (FR) in specifying either a true partial metric 

invariance (PMI) or a partial scalar invariance (PSI) model. The performance of each 

method was evaluated in two ways. First, we examined the basal Type I error rates of 

each approach under the conditions without any type of measurement noninvariance to 

determine the adequacy of each approach. Then, under either PMI or PSI conditions, we 

examined the perfect recovery rates, model-level Type I error rates, and model-level 

Type II error rates across 1000 replications in the finally specified partial factorial 

invariance model. In Study II, perfect recovery rate is defined as the percentage of 

specifying the original partial factorial invariance (PFI) model across the 1000 

replications within each PFI condition by sample size. Model-level Type I error was the 

proportion of any occurrence of Type I error in the finally specified PFI model across 

1000 replications. Similarly, model-level Type II error was also calculated by dividing 

the number of PFI models with any Type II error by 1000.  Additionally, we examined 

the item-level power and the Type I error rates.  The item-level power was calculated by 

dividing the number of items (or pairs) which were to be detected as noninvariant by the 

number of truly noninvariant items (or pairs) tested * 1000. The item-level Type I error 

rates were attained by dividing the number of items which were detected as noninvariant 

by the number of truly invariant items/pairs * 1000.  Although the main interest of the 

study was the perfect recovery rates, the model-level Type I and Type II error rates, and 
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item-level power and Type II error rate were also important to informing about the 

source of errors in the perfect recovery rates.   

Simulation Baseline Check 

With respect to the location of the measurement parameter (i.e., factor loadings 

and intercept), the basal Type I error rate was examined for each approach with the data 

condition in which all factor loadings and intercepts were invariant over groups.  

According to Bradley’s (1978) formula (α±
𝛼

2
), an acceptable Type I error rate is 

between 0.025 and 0.75 or between 0.005 and 0.015 when the chosen α is 0.05 or 0.01, 

respectively.  As the width of BCBS-CIs and cut-off values of the modification index 

was set for each tested item (for the forward and backward approaches) or pair (for the 

factor-ratio test), we needed to consider the total number of tested items and pairs in 

each approach to calculate the model-level nominal Type I error rates in both full 

factorial invariance conditions and partial factorial invariance conditions.  

Forward Approach 

Using the forward approach, we conducted a total of five tests given six variables 

since one of the variables served as a reference variable. When all measurement 

parameters are invariant, the nominal model-level Type I error rate equal to five times 

the chosen item-level significance or confidence level. Therefore, the nominal model-

level Type I error rate is 0.05 and 0.25 with 99% and 95% confidence levels, 

respectively.  Based on Bradley’s generous criteria, an acceptable model-level Type I 

error rate is between 0.025 and 0.075 (99% confidence level) or between 0.125 and 
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0.375 (95% confidence level) if the given data do not have noninvariance in the tested 

parameters.  

As shown in Table 6, the model-level Type I error rates of the forward approach 

were far below the nominal Type I error rates in testing factor loadings. However, in 

testing intercepts, we observed much higher model-level Type I error rates, and the Type 

I error rates were inflated as the sample size grew. Even though the model-level Type I 

errors for intercepts were within Bradley’s criteria with a sample size equal to or less 

than 500, it exceeded the criteria given a sample size of 1000 with both 99% and 95% 

BCBS-CIs.  

Backward Approach 

Using the backward approach, it is not very clear when the model specification 

stops. However, the model-level α level can be calculated by multiplying the item-level 

significance level by six given six variables in the model. Thus, the nominal model-level 

Type I error rate is 0.06 at α = 0.01 while the nominal model-level Type I error rate is 

0.30 at α = 0.05. Based on Bradley’s formula, an acceptable model-level Type I error 

rate can be found between 0.03 and 0.09 (α = 0.01) or between 0.15 and 0.45 (α = 0.05).  

Table 6 presents the basal Type I error rates of the backward approach in either 

testing factor loadings or intercepts when all variables are invariant. Although our 

expectation was that the backward approach would have higher Type I error rates as 

sample size grew, it showed homogeneous level of Type I error rates across the sample 

sizes regardless of the tested parameters (factor loadings or intercepts). Across all 

conditions, the basal Type I error rates were beyond the nominal model-level Type I 
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error rate. In testing factor loadings, it had higher model-level basal Type I error rates, 

however, in testing intercepts, it showed lower error rates than the forward approach. 

Factor-ratio Test 

In testing factorial invariance using the factor-ratio test, the number of tests to be 

conducted is 15 given six variables. Thus, the nominal model-level Type I error rate is 

15* the chosen α level (0.15 with 99% confidence level; 0.45 with 95% confidence 

level). If we employ Bradley’s criteria, an acceptable model-level Type I error rate lies 

between 0.075 and 0.225 (99% confidence level) or between 0.225 and 0.675 (95% 

confidence level).  

Table 6 presents the basal model-level Type I error rates of the factor-ratio test in 

testing either factor loadings or intercepts given an invariant model condition. In testing 

factor loadings, the factor-ratio test maintained basal Type I error rates around the 

nominal level. Similar with the forward approach, its Type I error rates were inflated in 

testing intercepts, and the inflation increased given a larger sample size. However, the 

basal model-level Type I error rates were within Bradley’s criteria.  

In sum, only the backward approach showed acceptable Type I error rates in 

testing both factor loadings and intercepts. Although the forward approach maintained 

the lowest basal Type I error rates in testing factor loadings, unexpectedly, it had much 

higher error rates in testing intercepts. The factor-ratio test presented similar pattern with 

the forward approach since both approaches used BCBS-CIs. However, the model-level 

Type I error rates of the factor-ratio test were too high under both 99% and 95% 

confidence levels since the number of tests to be conducted increases given a larger 
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number of variables. To avoid too high model-level Type I error rates, the factor-ratio 

test may need critical value adjustment which is allowed in LISREL not in MPlus. 

 
 

 
Table 6. Type I Error Rates in the Baseline Conditions 
  
  

N Forward    Backward    Factor-ratio Test 
99% 95%   99% 95%   99% 95% 

Factor 
Loading  

100 0.001 0.032 
 

0.059 0.244 
 

0.117 0.344 
250 0.003 0.029 

 
0.062 0.249 

 
0.119 0.390 

500 0.001 0.023 
 

0.050 0.241 
 

0.097 0.373 
1000 0.002 0.033 

 
0.060 0.256 

 
0.115 0.406 

          Intercept  100 0.078 0.246 
 

0.049 0.240 
 

0.130 0.386 
250 0.082 0.266 

 
0.058 0.289 

 
0.155 0.437 

500 0.138 0.321 
 

0.072 0.275 
 

0.202 0.486 
1000 0.159 0.406   0.061 0.260   0.269 0.580 

 
 
 

Partial Metric Invariance Conditions 

Forward Approach 

In all partial metric invariance conditions (PMI) conditions, we had two 

noninvariant factor loadings among the six variables under one factor. Table 7 shows the 

performance of the forward approach in terms of perfect recovery rates, model-level 

Type I error rates, model-level Type II error rates, item-level power, and item-level Type 

I error rates by the width of bias-corrected bootstrapping confidence intervals (BCBS-

CIs) in specifying the true PMI model.  

The forward approach maintained very high perfect recovery rates across the 

except for all PMI conditions with the small sample size (N =100) and the small-

difference condition with N=250. Particularly, in those conditions, 95% BCBS-CIs 
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showed higher perfect recovery rates than those with 99% BCBS-CIs.  For the remaining 

conditions, 99% BCBS-CIs outperformed 95% BCBS-CIs.  

The nominal model-level Type I error rate is .03 and .15 given 99% and 95% 

BCBS-CIs, respectively, because there are three invariant factor loadings to be tested 

under the forward approach. The forward approach showed very low model-level and 

item-level Type I error rates below the nominal level regardless of the width of the 

BCBS-CIs.  Model-level Type II error rates were found to be higher as the sample size 

was smaller using 99% BCBS-CIs. The same pattern was presented using 95% BCBS-

CIs although model-level Type II error rates slightly lower than using 99% BCBS-CIs.  

Particularly, the highest model-level Type I error rates were observed in the small-

difference condition with N =100 under both CIs. For both BCBS-CIs, the item-level 

power remained perfect (1.00) except for all small sample size conditions (N=100) and 

small-difference condition with N = 250 and 500. Item-level power also showed the 

consistent pattern with the model-level Type II error rates. In such conditions, 95% 

BCBS-CIs could detect more noninvariant items than 99% BCBS-CIs.  

In sum, given that the forward approach exhibited very low Type I error rates 

across all conditions, the main source of the low perfect recovery rates appeared to be 

related to the high Type II error rates (low power) in the conditions with small sample 

size or small sample size combined with small-difference of noninvariance. However, 

we can expect that we can successfully differentiate noninvariant variables from 

invariant variables using the forward approach given a substantially large sample size (N 

≥ 250) using 99% CIs.
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Table 7. Performance of the Forward Approach in PMI Conditions 
    99% BCBS-CIs   95% BCBS-CIs 

Condition N Perfect  
recovery 

Type I 
Error 

Type II 
Error  

Power/  
# of 

items 

Type I  
error/  
# of 

items 
 

Perfect  
recovery 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
Small-
difference 

100 0.116 0.003 0.884 0.558 0.001  0.290 0.025 0.703 0.649 0.008 
250 0.495 0.009 0.501 0.750 0.003  0.722 0.055 0.243 0.879 0.018 
500 0.913 0.011 0.078 0.961 0.004  0.927 0.055 0.020 0.990 0.018 

1000 0.988 0.011 0.001 1.000 0.004  0.938 0.062 0.000 1.000 0.021 
             
Large- 
difference 

100 0.837 0.018 0.151 0.925 0.006  0.912 0.056 0.034 0.983 0.019 
250 0.986 0.014 0.000 1.000 0.005  0.927 0.073 0.000 1.000 0.024 
500 0.990 0.010 0.000 1.000 0.003  0.943 0.057 0.000 1.000 0.019 

1000 0.988 0.012 0.000 1.000 0.004  0.934 0.066 0.000 1.000 0.022 
             
Mixed-size- 
difference 

100 0.412 0.011 0.585 0.708 0.004  0.647 0.047 0.322 0.839 0.016 
250 0.947 0.016 0.038 0.981 0.005  0.925 0.069 0.007 0.997 0.023 
500 0.986 0.014 0.000 1.000 0.005  0.944 0.056 0.000 1.000 0.019 

1000 0.986 0.014 0.000 1.000 0.005  0.936 0.064 0.000 1.000 0.021 
             
Nonuniform- 
difference 

100 0.766 0.000 0.234 0.883 0.000  0.932 0.006 0.062 0.969 0.002 
250 1.000 0.000 0.000 1.000 0.000  0.991 0.009 0.000 1.000 0.003 
500 0.999 0.001 0.000 1.000 0.000  0.981 0.019 0.000 1.000 0.006 

1000 0.992 0.008 0.000 1.000 0.003   0.960 0.040 0.000 1.000 0.013 
Note. Perfect recovery rates and item-level power greater than or equal to 0.90 were underlined.
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Backward Approach Using the Max-Mod 

The performance of the backward approach in which the factor loading indicated 

by the largest modification index (Max-Mod) was sequentially relaxed until no more 

significant modification index (Mod) remained in the model. To decide the size of the 

significant Mod, we employed two criteria:  Mod = 3.841 α = .05 and 6.635 at α = .01. 

The values of modification index are corresponding to the χ2 statistic value with df = 1 at 

the chose alpha levels. Depending on the significance values for the modification index, 

the backward approach showed very different performances. That is, it yielded more 

promising results for α = 0.01 than α = 0.05.  Table 8 shows the performance of the 

backward approach in specify a PMI model.   

In correctly recovering the original PMI model with two noninvariant factor 

loading, the backward approach  showed very high perfect recovery rates (greater 

than .95) using the modification index value (6.635) at α = .01 except for the conditions 

with small difference and small sample size. However, it could not achieve perfect 

recovery rates above .85 using the cut-off value at α = .05 (Mod = 3.841). Although it 

showed higher perfect recovery rates at α = .05 than at α = .01 in the small-difference 

conditions with N =100 and 250 and in the nonuniform-difference condition with N=100, 

none of them was very high (below .80).  

Given four invariant factor loading among the six variables, the model-level 

nominal Type I error rate is .04 at α = .01 while it is .20 at .05. Based on Bradley’s 

formula, acceptable Type I error rates are between .02 and .06 (α = .01) or between .10 

and .30 (α = .05).  Although Type I error rates were below Bradley’s criteria across all 
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PMI conditions, Type I error rates at α = .05 were too high while diminishing the perfect 

recovery rates. However, the Type I error rates decreased substantially when we 

employed the significant value at α = .01 (Mod = 6.635). Similar to the forward 

approach, the backward approach showed high Type II error rates all conditions with N 

=100 and the small-difference condition with N = 250 at α = .01. In the same conditions, 

we observed smaller Type II error rates given α = .05.  However, the model-level Type 

II error rates were very low or zero in the remaining conditions regardless of the 

significance values. Item-level power also exhibited a consistent pattern; lower power 

with lower sample size and smaller difference of noninvariance.  

In sum, the backward approach maintained very low Type I error rates when we 

applied more conservative α level (=.01), and thus, it showed very high perfect recovery 

rates. In the previous study on the backward approach used only the modification index 

value at α = .05, and it reported high Type I error rates and low perfect recovery rates 

except for some ideal conditions with large difference and large sample sizes (Yoon & 

Millsap, 2007). However, the results of the current study indicate that adjusting the 

critical value with more conservative alpha level improved the perfect recovery rates in 

the simulated PMI condition  by critically reducing the model-level Type I error rates 

with maintaining similar high powers with the powers at α = .05. 
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Table 8. Performance of the Backward Approach in PMI Conditions 
    Mod = 6.635 (α = 0.01)   Mod = 3.841 (α = 0.05) 

 Condition N Perfect  
recovery 

Type I 
error 

Type 
II 

error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
 

Perfect  
recovery 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
Small- 
difference 

100 0.128 0.092 0.856 0.293 0.026  0.324 0.236 0.533 0.532 0.073 
250 0.714 0.074 0.236 0.833 0.021  0.754 0.189 0.066 0.931 0.056 
500 0.965 0.029 0.006 0.995 0.008  0.850 0.150 0.000 0.999 0.039 

1000 0.962 0.038 0.000 1.000 0.010  0.825 0.175 0.000 1.000 0.047 
             
Large- 
difference 

100 0.921 0.042 0.038 0.975 0.011  0.832 0.164 0.004 0.996 0.044 
250 0.965 0.035 0.000 1.000 0.009  0.822 0.178 0.000 1.000 0.046 
500 0.969 0.031 0.000 1.000 0.008  0.843 0.157 0.000 1.000 0.040 

1000 0.957 0.043 0.000 1.000 0.011  0.810 0.190 0.000 1.000 0.051 
             
Mixed-size- 
difference 

100 0.779 0.047 0.174 0.905 0.012  0.777 0.173 0.050 0.965 0.046 
250 0.962 0.035 0.003 0.998 0.009  0.831 0.169 0.000 1.000 0.044 
500 0.973 0.027 0.000 1.000 0.007  0.847 0.153 0.000 1.000 0.039 

1000 0.959 0.041 0.000 1.000 0.011  0.810 0.190 0.000 1.000 0.051 
             
Nonuniform- 
difference 

100 0.586 0.056 0.359 0.795 0.014  0.702 0.179 0.119 0.906 0.047 
250 0.959 0.036 0.005 0.997 0.009  0.832 0.168 0.000 0.999 0.044 
500 0.969 0.031 0.000 1.000 0.008  0.849 0.151 0.000 1.000 0.038 

1000 0.965 0.035 0.000 1.000 0.009   0.818 0.182 0.000 1.000 0.049 
Note. Perfect recovery rates and item-level power greater than or equal to 0.90 were underlined.
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Factor-ratio Test  

When using the factor-ratio test, the ratios of 15 factor-loading pairs were tested 

using either 99%% or 95% bias-corrected bootstrapping confidence intervals (BCBS-

CIs). Among the tested pairs, each of the nine noninvariant factor-loading pairs was 

expected to have a non-zero value in its BCBS-CIs while each of the six invariant pairs 

was expected to include zero in its BCBS-CIs. The performance of the factor-ratio test is 

shown in Table 9.  

Interestingly, the perfect recovery rates of the factor-ratio test were extremely 

low in the small- and large-difference conditions across all sample sizes regardless of the 

width of BCBS-CIs. Among those conditions, the highest perfect recovery rate (PR 

= .047) was found in the large-difference condition with N = 250 using 95% BCBS-CIs. 

That is only 47 cases out of 1000 replications were perfectly recovered when the focal 

group’s noninvariant factor loadings had the same magnitude of difference in the same 

direction. However, the factor-ratio test performed much better in the mixed-size-

difference condition and nonuniform-difference condition, especially, referring to 99% 

BCBS-CIs. With 95% BCBS-CIs, the factor-ratio test could achieve the highest perfect 

recovery rates (PR = .785) in the nonuniform-difference condition with N = 1000.  

For the factor-ratio test, the model-level nominal Type I error rate is nine times 

the chosen alpha level (.09 with 99% BCBS-CIs; .45 with 95% BCBS-CIs). Using 99% 

BCBS-CIs, the model-level Type I error rates were very low (below the nominal level) 

across all PMI conditions. However, using 95% BCBS-CIs, the model-level Type I error 

rates were too high although all of them were below the nominal level (.45). Type II 
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error rates were very high in the small- and large-difference conditions across all sample 

sizes. However, the item-level power rates were high with much lower Type II error 

rates in the same conditions. It seemed that in those conditions, the ratio of the two 

noninvariant factor loadings with the same difference in the same direction were not 

likely to be detected. Except for that pair, the other noninvariant pairs appeared to be 

detected well.  

In sum, the factor-ratio test had strikingly low perfect recovery rates in the small- 

and large-difference conditions in which the two noninvariant factor loadings had the 

same difference in the same direction.  In both levels of BCBS-CIs it could not detect 

that pair no matter which sample size was given. However, the factor-ratio test could 

successfully detect noninvariant pairs in the mixed-size-difference and nonuniform-

difference with larger sample sizes (N = 500 and 100) using 99% BCBS-CIs. But, 95% 

BCBS-CIs were not effective to perfectly recover the original PMI model in the mixed-

size-and nonuniform-difference conditions due to the high model-level Type I error rates. 

Overall, the results from the current study showed that the factor-ratio test might not be 

an optimal method to specify the original PMI model, particularly, when the size and 

direction of noninvariance was same for the noninvariant factor loadings. 
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Table 9. Performance of the Factor-ratio Test in PMI Conditions 
    99% BCBS-CIs   95% BCBS-CIs 

Condition N Perfect  
recovery 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
 

Perfect  
recovery Type I Type II 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
Small-
difference 

100 0.000 0.052 1.000 0.231 0.011  0.000 0.198 1.000 0.427 0.048 
250 0.000 0.055 1.000 0.642 0.012  0.005 0.207 0.994 0.790 0.052 
500 0.004 0.041 0.996 0.868 0.008  0.032 0.208 0.962 0.890 0.048 

1000 0.007 0.060 0.992 0.890 0.014  0.050 0.223 0.940 0.896 0.058 
             
Large-
difference 

100 0.006 0.055 0.994 0.831 0.012  0.026 0.203 0.970 0.880 0.050 
250 0.011 0.057 0.989 0.890 0.012  0.047 0.219 0.948 0.895 0.054 
500 0.010 0.045 0.988 0.890 0.009  0.041 0.213 0.946 0.895 0.048 

1000 0.011 0.067 0.988 0.890 0.015  0.041 0.225 0.948 0.895 0.058 
             
Mixed-size-
difference 

100 0.092 0.057 0.905 0.766 0.011  0.338 0.201 0.606 0.897 0.049 
250 0.833 0.060 0.118 0.985 0.013  0.768 0.210 0.027 0.997 0.053 
500 0.959 0.040 0.001 1.000 0.009  0.784 0.216 0.000 1.000 0.050 

1000 0.937 0.063 0.000 1.000 0.015  0.773 0.227 0.000 1.000 0.060 
             
Nonuniform-
difference 

100 0.041 0.061 0.959 0.604 0.012  0.202 0.200 0.776 0.793 0.048 
250 0.615 0.057 0.373 0.941 0.000  0.720 0.210 0.135 0.982 0.053 
500 0.946 0.042 0.015 0.998 0.008  0.783 0.215 0.004 1.000 0.050 

1000 0.938 0.062 0.000 1.000 0.014   0.785 0.215 0.000 1.000 0.058 
Note. Perfect recovery rates and item-level power greater than or equal to 0.90 were underlined. 
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Comparisons of the Performances of the Three Approaches: PMI Conditions 

Perfect Recovery Rates 

In order to clearly compare the performance of the three methods, we located 

their perfect recovery rates on a graph based on both criteria: 99% and 95% BCBS-CIs 

for the forward approach and factor-ratio test or the critical value of modification index 

at α = .01 and at α = .05 (Mod = 3.841 and Mod = 6.635 with df = 1, respectively) for the 

backward approach.  However, we will use the terms 99% confidence level (or α = .01) 

and 95% confidence level (or α = .05) in order to refer to the chosen confidence (or 

significance) level when comparing the three approaches on the same page.  

Figure 1 shows the perfect recovery rates of the three approaches by the sample 

size. The factor-ratio test had strikingly low perfect recovery rates across all sample size 

conditions regardless of the chosen criteria. The factor-ratio test exhibited extremely low 

perfect recovery rates across all sample sizes regardless of the confidence (significance) 

levels. Under 99% confidence level (or α = .01), both the forward and backward 

approaches showed very low perfect recovery rates with N =100. Although the perfect 

recovery rates got higher with N = 200, they were still low for both approaches. 

However, both approach presented very high perfect recovery rates with larger sample 

sizes (N  ≥ 500). The backward approach had higher perfect recovery rate than the 

forward approach with N = 500 whereas the forward approach showed better 

performance than the backward approach with N = 1000. Under 95% confidence level 

(or α = .05), both forward and backward approach had very low perfect recovery rates 

(PR = .290 and .324, respectively) with N =100.  With N = 250, the perfect recovery 
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rates increase for both approach but seemed not to be acceptable. With N ≥ 500, the 

forward approach showed higher perfect recovery rates than the backward approach.  

Overall, both forward and backward approach worked well given larger sample sizes (N 

≥ 500) when using 99% confidence level (or α = .01). However, none of the three 

approaches could detect noninvariance successfully when the size of noninvariance was 

combined with the small sample size (N = 100) regardless of which criteria was used.  

 
 
 

 
Figure 1. Perfect Recovery Rates in the Small-difference PMI Conditions 
 
 
 

Figure 2 shows the perfect recovery rates of the three approaches in the large-

difference PMI conditions. At 99% confidence level (or α = .01), the forward approach 

achieved very high perfect recovery rates (PR ≥ .986) with N ≥ 250 while having 

relatively lower perfect recovery rate (PR = .837) with N =100. The backward approach 

also performed very well across all sample sizes at α = .01. With larger samples (N ≥ 

0.116

0.495

0.913

0.988

0.290

0.722

0.927 0.938

0.128

0.714

0.965 0.962

0.324

0.754 0.850 0.825

0.000 0.000 0.004 0.007 0.000 0.005 0.032 0.050
0.000

0.200

0.400

0.600

0.800

1.000

N= 100 N= 250 N= 500 N= 1000 N= 100 N= 250 N= 500 N= 1000

99% 95%

P
e

rf
e

ct
 R

e
co

ve
ry

 R
at

e

Small-difference PMI 

Forward

Backward

Factor-ratio



 

57 

  

250), the forward approach outperformed the backward approach whereas the backward 

approach had higher perfect recovery rate with N =100. Across all sample size 

conditions, the factor-ratio test exhibited extremely low perfect recovery rates as in the 

small-difference PMI conditions (PR ≤ .011). When we referred to the results under 95% 

confidence level (or α = .05), the factor-ratio still showed very poor performance (PR 

≤ .047). With the same criterion, the forward approach maintained high perfect recovery 

rates (PR ≥ .912) across all sample sizes while the perfect recovery rates of the backward 

approach got to be approximately 10% (or more) lower than those under 95% confidence 

level (or α = .05). Overall, the forward and backward approach presented very promising 

perfect recovery rates with more conservative criterion when there are two noninvariant 

factor loadings with same magnitude of large difference in the same direction.  

 
 
 

 
Figure 2. Perfect Recovery Rates in the Large Difference PMI Conditions 
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Figure 3 shows the perfect recovery rates of the three approaches in the mixed-

size-difference PMI conditions. Under more conservative criterion (99% confidence 

level or α = .01), the backward approach had the highest perfect recovery rates (PR 

= .779) with N = 100. With the same sample size, the forward approach showed much 

lower perfect recovery rate (PR = .412) than that of the backward approach while the 

factor-ratio test presented extremely low perfect recovery rate (PR = .092). With N = 

250, the backward approach performed best (PR = .962) while the forward approach also 

showed a high perfect recovery rates (PR = .947). The perfect recovery rates of the 

factor-ratio test (PR = .833) also improved with N = 250, but it is still much lower than 

those of the other methods. With larger sample sizes (N ≥ 500), all three approaches 

presented very high perfect recovery rates while the forward approach performed best.  

When we using the less conservative criterion (95% confidence level or α = .01), the 

forward approach maintained the highest perfect recovery rates with N ≥ 250.The 

backward approach outperformed the others with N = 100. The perfect recovery rates of 

the backward approach decreased more at α = .05 than at α = .01. Among the three 

approaches, the factor-ratio test performed worst under 95% confidence level as under 

99% confidence level. 
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Figure 3. Perfect Recovery Rates in the Mixed-size-difference PMI Conditions 
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the forward approach. Here, the factor-ratio showed the lowest perfect recovery rates 

(Range: .202 – .785).  

 
 
 

 
Figure 4. Perfect Recovery Rates in the Nonuniform-difference PMI Conditions 
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most conditions. Generally, all approaches had higher Type I error rates with less 

conservative alpha level and larger sample sizes. In sum, the forward approach 

outperformed the other two approaches in terms of the model-level Type I error rates 

across all PMI conditions.  

 
 
 

 
Figure 5. Model-level Type I Error Rates across PMI Conditions 
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patterns of noninvariance, and the sample sizes. Both forward and backward approaches 

maintained very low model-level Type II error rates except for some conditions with 

small sample sizes and small difference under both confidence (significance) levels. The 

factor-ratio test presented extremely high Type II error rates in both small- and large-

difference conditions while it still had higher Type II error rates in the remaining 

conditions that the other two approaches. To summarize, the backward approach 

performed best in terms of Type II error rates across all PMI conditions.  

 
 
 

 
Figure 6. Model-level Type II Error Rates across PMI Conditions 
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Partial Scalar Invariance Conditions 

Across all partial scalar invariance (PSI) conditions, we had two noninvariant 

intercepts among the six variables under one factor. As in the partial metric invariance 

conditions, we evaluated the performances of the forward approach, backward approach, 

and factor-ratio test in terms of perfect recovery rates, model-level Type I error rates, 

model-level Type II error rates, item-level power, and item-level Type I error rates in 

specifying the original PSI model. In addition, all results were presented based on both 

99% and 95% confidence (significance) levels.  

Forward Approach  

The performance of the forward approach is presented in Table 10. The perfect 

recovery rates of the forward approach were lower in the PSI conditions compared to 

those in the PMI conditions. One major difference was observed in the conditions with 

larger sample size (≥ 500). In the large-, mixed-size-, and nonuniform-difference 

conditions, the highest perfect recovery rates were found with N = 250 while the perfect 

recovery rates were lower given larger samples. Additionally, the perfect recovery rates 

in all conditions with N = 100 were slightly higher than those in the PMI conditions. 

Among the all PSI conditions, the maximum perfect recovery rate was found in the 

nonuniform condition with N = 250 while the minimum perfect recovery rate was found 

in the small-difference conditions with N =100.   

The nominal model-level Type I error rate is .03 and .15 given 99% and 95% 

BCBS-CIs, respectively, because there are three invariant intercepts to be tested using 

the forward approach. Under Bradley’s criteria an acceptable model-level Type I error 
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rate is between .015 and .045 (99% confidence level) or between .075 and .225 (95% 

confidence level). However, the forward approach showed very high model-level Type I 

error rates across all sample size conditions as sample size grew as we saw the similar 

pattern in the basal Type I error rates in specifying intercepts.  Only 50% of the 

conditions achieved acceptable model-level Type I error rates based on the Bradley’s 

criteria (≤ .045) under both 99% and 95% levels. Particularly, the forward approach 

presented the lowest Type I error rates in the nonuniform-difference condition. We also 

observed inflated item-level Type I error rates, especially with larger sample sizes (≥ 

500).  The main reason of the lower perfect recovery rates with larger samples appeared 

to be the inflated Type I error rates in the PSI conditions. Overall, the forward approach 

maintained very low model-level Type II error rates while having very high or perfect 

item-level power except for the conditions with a small sample size (N =100) or with 

small difference regardless of the significance level. Compared to the PMI conditions, 

however, the forward approach showed higher power (or lower Type II error rate) in 

those conditions.  

Unexpectedly, the perfect recovery rates in the PSI conditions were relatively 

low compared to the PMI conditions mainly due to inflated Type I error rates. However, 

it maintained both model-level and item-level Type I error rates lower or close to 

Bradley’s criteria in the nonuniform difference condition. In terms of confidence levels, 

higher perfect recovery rates were found with 99% level than with 95% level.  
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Table 10. Performance of the Forward Approach in PSI Conditions 
    99% BCBS-CIs   95% BCBS-CIs 

Condition N Perfect  
recovery 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
 

Perfect  
recovery 
 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
Small- 
difference 

100 0.201 0.023 0.795 0.603 0.008  0.385 0.099 0.583 0.709 0.030 
250 0.698 0.040 0.280 0.860 0.013  0.766 0.174 0.093 0.954 0.060 
500 0.895 0.094 0.017 0.992 0.031  0.759 0.239 0.002 0.999 0.080 

1000 0.866 0.134 0.000 1.000 0.045  0.641 0.359 0.000 1.000 0.120 
             
Large- 
difference 

100 0.945 0.028 0.031 0.985 0.009  0.902 0.096 0.004 0.998 0.030 
250 0.958 0.042 0.000 1.000 0.014  0.825 0.175 0.000 1.000 0.060 
500 0.907 0.093 0.000 1.000 0.031  0.762 0.238 0.000 1.000 0.080 

1000 0.869 0.131 0.000 1.000 0.044  0.641 0.359 0.000 1.000 0.120 
             
Mixed-size- 
difference 

100 0.544 0.041 0.435 0.782 0.014  0.709 0.120 0.204 0.898 0.040 
250 0.933 0.049 0.021 0.990 0.016  0.817 0.182 0.004 0.998 0.060 
500 0.904 0.096 0.000 1.000 0.032  0.760 0.240 0.000 1.000 0.080 

1000 0.865 0.135 0.000 1.000 0.045  0.641 0.359 0.000 1.000 0.120 
             
Nonuniform- 
difference 

100 0.790 0.002 0.208 0.896 0.001  0.930 0.022 0.053 0.974 0.010 
250 0.992 0.008 0.000 1.000 0.003  0.956 0.044 0.000 1.000 0.010 
500 0.972 0.028 0.000 1.000 0.009  0.905 0.095 0.000 1.000 0.030 

1000 0.950 0.050 0.000 1.000 0.017  0.782 0.218 0.000 1.000 0.070 
Note. Perfect recovery rates and item-level power greater than or equal to 0.90 were underlined. 
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Backward Approach Using the Max-Mod 

The performance of the backward approach in which the intercept indicated by 

the largest modification index (Max-Mod) was sequentially relaxed until no more 

significant modification index (Mod = 3.841 at α = .05 and 6.635 at α = .01) was left in 

the model. Table 11 shows the performance of the backward approach in specifying a 

PSI model in terms of perfect recovery rates, model-level Type I error rates, model-level 

Type II error rates, item-level power, and item-level Type I error rates depending on the 

significance criteria.  

The backward approach showed very high perfect recovery rates (greater 

than .916) using the modification-index value of 6.635 (at α = .01) except for two 

conditions (small-difference PSI condition with N =100; nonuniform-difference PSI 

condition with N =100). However, it achieved higher perfect recovery rates in such 

conditions compared to the same PMI conditions.  However, similarly in the PMI 

conditions, the perfect recovery rates (PRs ≤ .835) decreased much using the lower cut-

off value (Mod = 3.841).  

As explained before, the model-level nominal Type I error rate of the backward 

approach is 0.04 at α = .01 while it is .20 at .05 in the PSI conditions. If we use 

Bradley’s formula, acceptable model-level Type I error rate is located between .02 

and .06 (α = .01) or between .10 and .30 (α = .05). Across all PSI conditions, model-

level Type I error rates were very close to the acceptable level of Bradley’s criteria when 

using Mod = 6.635 (α = .01). However, similar to the PMI conditions, Type I error rates  
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Table 11. Performance of the Backward Approach in PSI Conditions 
    Mod = 6.635 (α = 0.01)   Mod = 3.841 (α = 0.05) 

 Condition N Perfect 
recovery  Type I Type II 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
 

Perfect 
recovery  Type I Type II 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
Small- 
difference 

100 0.508 0.131 0.448 0.623 0.040  0.634 0.230 0.176 0.803 0.079 
250 0.937 0.054 0.010 0.988 0.016  0.828 0.172 0.000 0.995 0.047 
500 0.935 0.065 0.000 0.998 0.018  0.810 0.190 0.000 0.998 0.052 

1000 0.968 0.032 0.000 1.000 0.008  0.831 0.169 0.000 1.000 0.043 
             
Large- 
difference 

100 0.958 0.042 0.000 0.995 0.014  0.835 0.165 0.000 0.995 0.047 
250 0.960 0.040 0.000 1.000 0.010  0.829 0.171 0.000 1.000 0.044 
500 0.935 0.065 0.000 1.000 0.017  0.810 0.190 0.000 1.000 0.050 

1000 0.968 0.032 0.000 1.000 0.008  0.832 0.168 0.000 1.000 0.043 
             
Mixed-size- 
difference 

100 0.916 0.049 0.035 0.974 0.013  0.825 0.166 0.009 0.989 0.045 
250 0.960 0.040 0.000 1.000 0.010  0.829 0.171 0.000 1.000 0.044 
500 0.935 0.065 0.000 1.000 0.017  0.810 0.190 0.000 1.000 0.050 

1000 0.968 0.032 0.000 1.000 0.008  0.832 0.168 0.000 1.000 0.043 
             
Nonunifor
m- 
difference 

100 0.883 0.045 0.072 0.955 0.012  0.817 0.167 0.016 0.984 0.045 
250 0.960 0.040 0.000 1.000 0.010  0.829 0.171 0.000 1.000 0.044 
500 0.935 0.065 0.000 1.000 0.017  0.810 0.190 0.000 1.000 0.050 

1000 0.968 0.032 0.000 1.000 0.008   0.831 0.169 0.000 1.000 0.043 
Note. Perfect recovery rates and item-level power greater than or equal to 0.90 were underlined. 
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with Mod = 3.841 (α = .05) were too high while leading to low perfect recovery rates 

although the item-level Type I error rates appeared not to be very high (below the  

nominal level). Under both criteria (Mod = 6.635 and 3.841), the backward approach 

maintained very low Type II error rates except for the small-difference condition with N 

=100. Compared to the forward approach, it showed lower model-level Type I error rates. 

The item-level Type I error rates of the backward approach were within Bradley’s 

criteria in most cases except for the small-difference condition with N =100.  

In sum, the backward approach performed ideally with higher significance value 

(Mod = 6.635) in the PSI conditions. As in the PMI conditions, the major source low 

perfect recovery rates was the high model-level Type I error rates when Mod = 3.841 

was applied. Except for the conditions with a small sample size, the backward approach 

did not show much difference in the perfect recovery rates no matter which significance 

values was used. Generally, the backward approach showed promising performance in 

specifying the original PSI models when using the significance value at α = .01.  

Factor-ratio Test  

Table 12 presents the performance of the factor-ratio test in specifying the 

original partial scalar invariance (PSI) model: the perfect recovery rates, model-level 

Type I error rates, model-level Type II error rates, item-level power, and item-level Type 

I error rates using both 99% and 95% BCBS-CIs.  

Similar to the PMI condition, the perfect recovery rates of the factor-ratio test 

were extremely low in small- and large-difference PSI conditions across all sample sizes. 

In the mixed-size- and nonuniform-difference conditions, it showed improved perfect 
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recovery rates, particularly, when using 99% BCBS-CIs. Among those conditions, the 

highest perfect recovery rate (PR = .874) was found in the nonuniform-difference 

condition with N = 250. Overall, the perfect recovery rates of the factor-ratio test in the 

PSI conditions appeared to be lower than in the same PMI conditions.  

As we observed the inflated Type I error rates of the forward approach in the PSI 

conditions, the factor-ratio test showed higher model-level and item-level Type I error 

rates in the PSI conditions than the PMI conditions. Especially, the inflation of the Type 

I error rates seemed to be related to increase in sample sizes. The patterns of the model-

level Type II error rates and item-level power were very similar to those in the PMI 

conditions. In the small- and large-difference conditions, it had high item-level power 

while showing extremely poor perfect recovery rates. In the mixed-size- and 

nonuniform-difference conditions, it showed very high item-level power with larger 

samples (≥ 250) while demonstrating lower perfect recovery rates which were not that 

extreme as in the small- and large-difference conditions.  

In sum, the factor-ratio test seems not to perform adequately in the PSI 

conditions. Particularly, its performance was extremely poor when there are two 

noninvariant intercepts with the same size of difference in the same direction. Although 

it showed improved performance in the other conditions (i.e., mixed-size- and 

nonuniform-difference condition), it was not still ideal in the PSI conditions.  
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Table 12. Performance of the Factor-ratio Test in PSI Conditions 
    99% BCBS-CIs   95% BCBS-CIs 

Condition N 
Perfect  
recover

y 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
 

Perfect  
recovery 

Type I 
error 

Type II 
error 

Power/  
# of 

items 

Type I  
error/  
# of 

items 
Small- 
difference 

100 0.000 0.065 1.000 0.381 0.013  0.004 0.222 0.996 0.596 0.056 
250 0.004 0.081 0.996 0.794 0.016  0.031 0.275 0.968 0.867 0.069 
500 0.005 0.128 0.994 0.886 0.027  0.029 0.331 0.950 0.894 0.093 

1000 0.008 0.172 0.988 0.890 0.039  0.024 0.444 0.948 0.895 0.127 
             
Large- 
difference 

100 0.008 0.065 0.992 0.874 0.013  0.037 0.221 0.954 0.892 0.056 
250 0.016 0.081 0.983 0.891 0.016  0.043 0.274 0.939 0.896 0.069 
500 0.004 0.126 0.995 0.889 0.027  0.032 0.330 0.951 0.894 0.093 

1000 0.006 0.173 0.990 0.890 0.039  0.032 0.444 0.943 0.895 0.126 
             
Mixed-size- 
difference 

100 0.023 0.065 0.977 0.773 0.013  0.144 0.221 0.837 0.875 0.056 
250 0.422 0.083 0.538 0.939 0.016  0.491 0.274 0.319 0.964 0.069 
500 0.728 0.127 0.165 0.982 0.027  0.631 0.330 0.059 0.993 0.093 

1000 0.825 0.170 0.006 0.999 0.039  0.555 0.444 0.002 1.000 0.127 
             
Nonuniform- 
difference 

100 0.196 0.065 0.804 0.774 0.013  0.466 0.221 0.466 0.908 0.056 
250 0.874 0.081 0.061 0.992 0.016  0.724 0.274 0.006 0.999 0.069 
500 0.873 0.127 0.000 1.000 0.027  0.669 0.331 0.000 1.000 0.093 

1000 0.828 0.172 0.000 1.000 0.039   0.556 0.444 0.000 1.000 0.126 
Note. Perfect recovery rates and item-level power greater than or equal to 0.90 were underlined. 
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Comparisons of the Performances of the Three Approaches: PSI Conditions 

Perfect Recovery Rates 

 We also examined, in a graph of each PSI condition, the perfect recovery rates 

of the forward approach, backward approach, and factor-ratio test. As in the PMI 

conditions, we located the perfect recovery rates were displayed under both significance 

(confidence) levels: α = .01 and at α = .05 for the backward approach and 99% and 95% 

BCBS-CIs for the forward approach and factor-ratio test. For convenience, we will use 

the terms 99% confidence level (or α = .01) and 95% confidence level (or α = .05) to 

represent the significant (confidence) level for the three approaches.   

The perfect recovery rates of the three approaches in the small-difference PSI 

condition are demonstrated in Figure 7.  In all sample size conditions, the backward 

approach performed best based on 99% confidence level (or α = .01).  It maintained very 

high perfect recovery rates (PRs ≥ .935) given larger sample sizes (N ≥ 250). Differently 

from the PMI conditions, the forward approach presented lower perfect recovery rates 

even with larger sample (N ≥ 500) than the backward approach mainly due to the 

inflated Type I error rates. The factor-ratio test exhibited extremely poor performance 

across all sample sizes as it did in the small-difference PMI conditions. Under 95% 

confidence level (or α = .01), the backward approach outperformed the forward approach 

while the factor-ratio almost failed to recover the original PSI model. Overall, among the 

three approach, the backward approach performed best across all conditions, and it 

showed ideal perfect recovery rates with a larger sample size (N ≥ 250) when using the 

more conservative significance level (α = .01).  
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Figure 7. Perfect Recovery Rates in the Small-difference PSI Conditions 
 
 
 

As illustrated in Figure 8, the backward approach showed the highest perfect 

recovery rates regardless of the sample sizes under 99% confidence level (or α = 0.01). 

Although the forward approach could not beat the backward approach, it also presented 

very high perfect recovery rates with N ≤ 500. It had the lowest perfect recovery rate 

with N =1000 because of high Type I error rate. The factor-ratio test demonstrated 

extremely poor performance across all sample sizes as well. Under 95% confidence level 

(or α = 0.01), the forward approach had the highest perfect recovery rates with N = 100. 

However, its perfect recovery rates decreased as the sample size grew. The backward 

approach maintained very similar perfect recovery rates across all sample sizes, however, 

they are much lower than those under the more conservative significance level (α = .01).   

In sum, the performance of the backward approach was most promising among the three 

approaches when we use 99% confidence level (or α = .01).  
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Figure 8. Perfect Recovery Rates in the Large-difference PSI Conditions 

 
 
 
Figure 9 displays the perfect recovery rates of the three approaches in the mixed-

size-difference condition. As in the small- and large-difference PSI conditions, the 

backward approach most successfully recovered the original mixed-size-difference PSI 

model under 99% confidence level (or α = .01). Although the forward approach achieved 

high perfect recovery rates with N =250 and 500, it could not outperform the backward 

approach.  The factor-ratio test showed improved perfect recovery rates compared to the 

small- and large-difference PSI conditions, but, it still performed worst among the three 

approaches. Under 95% confidence level (or α = .05), the backward approach had the 

highest perfect recovery rates across all sample sizes, but its performance was not as 

good as under 99% confidence level (or α = .01). The next well-performing approach 

was the forward approach while the factor-ratio test demonstrated the poorest 

performance.  
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Figure 9.  Perfect Recovery Rates in the Mixed-size-difference PSI Conditions 
 
 
 

Figure 10 illustrates the perfect recovery rates of the three approaches in 

specifying the original nonuniform-difference PSI model. Under 99% confidence level 

(or α = .01), the backward approach had the highest perfect recovery rates with N = 100 

and N = 1000 while the forward approach presented the highest perfect recovery rates 

with N =250 and 500. The factor-ratio test showed the poorest performance. When we 

referred to 95% confidence level (or α = .05), the forward approach outperformed the 

other approaches except for with N =1000. The backward approach had the highest 

perfect recovery rate with N =1000. The factor-ratio test still presented the lowest 

perfect recovery rates.  
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Figure 10. Perfect Recovery Rates in the Nonuniform-difference PSI Conditions 
 
 
 
Model-level Type I Error Rate 

As defined before, model-level Type I error rate indicates any occurrence of 

falsely specifying invariant intercept as noninvariant in the final PSI model. Interestingly, 

we observed inflated Type I error rates for both the forward approach and factor-ratio 

test with larger samples (see Figure 11). The Type I error inflation got severe under 95% 

confidence level (or α = .05).  Different from our expectation, model-level Type I error 

rates of the backward approach did not seem to be associated with larger sample sizes. 

Instead, it presented the highest model-level Type I error rates in the condition with 

small-difference combined the small sample size (N =100). In sum, the backward 

approach performed best in terms of model-level Type I error rate when using the more 

conservative significance level (α = .01).   
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Figure 11. Model-level Type I Error Rates across PSI Conditions
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Model-Level Type II Error Rate 

Model-level Type II error is defined as the failure of detecting any truly 

noninvariant intercept in the finally specified PSI model. Hence, the error rate was 

calculated by dividing any occurrence of Type II error in the final PSI model by the 

number of replications (= 1000). Regardless of the chosen confidence (significance) 

levels, the backward approach maintained very low model-level Type II error rates 

except for some conditions in which either the same size is small or the size of 

noninvariance was small (see Figure 12). The forward approach showed the similar 

pattern with the backward approach, but it had higher Type II error rates in the 

conditions with small sample sizes and/or small difference. The factor-ratio test showed 

extremely high Type II error rates in both small- and large-difference PSI conditions 

while its Type II error rates were lower in the remaining PSI conditions with larger 

samples. All three approaches presented lower error rates under 95% confidence level 

(or α = .05) than under 99% confidence level (or α = .01) in the conditions exhibiting 

high model-level Type II error rates. In sum, the backward approach was least prone to 

model-level Type II error no matter which significance level was given.  
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Figure 12. Model-level Type II Error Rates across PSI Conditions 

 
 

 
Design Effects on the Performance of the Three Approaches 

The effects of the methods and simulation conditions on the perfect recovery 

rates, model-level Type I error rates, and model-level Type II error rates were examined 

through the analysis of variance (ANOVA) with respect to the location of nonivaraince. 

Because the sample size was very large for each analysis (N = 32000), all p-values 

yielded to a significant value. Hence, only the effect size (η2) were reported to see the 

contributing variance of each factor in the total variance of the outcome variables (i.e., 

perfect recovery rates, Type I error rates, and Type II error rates).  The design factors 

were the specification methods (e.g., forward approach, backward approach, and factor-

ratio test), the size/patterns of noninvariance (e.g., small-, large-, mixed-size-, and 

nonuniform-difference), and the sample size per group (e.g., 100, 250, 500, and 1000). 
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With respect to the location of noninvariance (factor loadings or intercepts) we 

conducted ANOVA for each outcome only under 99% confidence level (or α = .01) 

since the results of all three approaches yielded , generally, better performance under the 

confidence (or significance) level.  

Partial Metric Invariance Conditions 

 Table 13 shows the proportion of the variance explained by each method and 

design factor and the two-way and three-way interactions among them in the perfect 

recovery rates, model-level Type I error rates, and model-level Type II error rates 

separately in specifying a true partial metric invariance (PMI) model in various PMI 

conditions.  

First, the perfect recovery rates of the PMI conditions across the three methods 

were mainly accounted for by the method, the sample size, the size/pattern of 

noninvariance, and the two-way interaction between the method and the size/pattern of 

noninvariance. The method explained 37.4% of the variance in the perfect recovery rates. 

The next influencing factor was the sample size which explained 18.9% of variance in 

the perfect recovery rates. Then, the size/pattern and the two-way interaction between 

the method and the size/pattern accounted for 15.6% and 14.1% variance in the perfect 

recovery rates.  Second, the model-level Type I error rates of the simulated PMI 

conditions across the three methods were mainly explained by the method (η2 = .743) 

among the three factors and their interactions. Although the remaining variance in the 

model-level Type I error explained by the remaining factors and all types of interactions, 

their effects were not very large (η2 ≤ .061).  Third, the variance in the model-level Type 
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II error was explained by the method (η2 = .364), the sample size (η2 = .187), the 

size/pattern of noninvariance (η2 = .158), and the two-way interaction between the 

method and the size/pattern of noninvariance (η2 = .147). The pattern of the effect on the 

model-level Type II error rate was very similar with that on the perfect recovery rates.  

 
 

 
Table 13. Effect Size (η2) of Each Method and Design Factor in PMI conditions 
Design Factor Perfect recovery Type I error  Type II error 
Method 0.374 0.743 0.364 
Size/Pattern 0.156 0.013 0.158 
Sample size 0.189 0.059 0.187 
Method* Size/Pattern 0.141 0.054 0.147 
Method*Sample size 0.002 0.061 0.003 
Size/Pattern*Sample size 0.050 0.016 0.049 
Method*Size/Pattern*Sample size 0.088 0.054 0.092 

 
 
 
Partial Scalar Invariance Conditions 

Table 14 presents the effects of the design factors on the performance of the three 

methods in specifying the true partial scalar invariance (PSI) models.  In the table, the 

proportion of the variance in the perfect recovery rates, model-level Type I error rates, 

and model-level Type II error rates are shown by the method, the size/pattern of 

noninvariance, the sample size, and all two- and three-way interactions among them.  

First, the perfect recovery rate was mainly explained by the method (η2 = .544), 

the size/pattern of noninvariance (η2 = .126), and their two-way interaction (η2 = .130). 

Second, the majority of the variance in the model-level Type I error rates was explained 

by the method (η2 = .398), the sample size (η2 = .338), and their interaction (η2 = .158). 
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Third, a total of 86.9% of the variance in the Type II error rates was explained by the 

method (η2 = .487), the size/pattern of noninvariance (η2 = .125), the sample size (η2 

= .104), and the two-way interaction between the method and the size/pattern of 

noninvariance (η2 = .153).  

 
 
 
Table 14. Effect Size (η2) of Each Method and Design Factor in PSI Conditions 
Design Factor Perfect recovery Type I error Type II error 
Method 0.544 0.398 0.487 
Size/Pattern 0.126 0.030 0.125 
Sample size 0.085 0.338 0.104 
Method* Size/Pattern 0.130 0.056 0.153 
Method*Sample size 0.011 0.158 0.017 
Size/Pattern*Sample size 0.035 0.007 0.035 
Method*Size/Pattern*Sample size 0.068 0.013 0.078 
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CHAPTER V 

SUMMARY AND CONCLUSION 

 

Summary 

The motivation for the two studies in this dissertation was to address unanswered 

problems in measurement invariance literature, particularly, related to partial 

measurement invariance. Once full measurement invariance is rejected, investigating the 

source of noninvariance might be the most commonly chosen next step no matter how 

the information is used later. To identify the source of noninvariance accurately, 

according to Johnson et al. (2009), identification of a multi-group confirmatory factor 

analysis model should be achieved through a truly invariant reference variable (RV). 

However, it has been recognized that a well-performing methodological approach has 

yet to accurately identify a truly invariant reference variable (Raykov & Marcoulides, 

2012). At best, the most common recommendation is turning to theories. To avoid 

erroneously selecting a noninvariant RV, two approaches have been suggested: the 

factor-ratio test (Cheung & Rensvold, 1998) and backward approach using the largest 

modification index (Yoon & Millsap, 2007). Those approaches do not require a specific 

reference variable. However, they have not yet been directly compared. Given the 

limitations of each method, it was also imperative to come up with a new method that 

could address the problems of both methods. Thus, two simulation studies were 

conducted to address the unresolved problems in the partial measurement invariance 

literature. Study I investigated the accuracy of the smallest modification index (Min-
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Mod) in identifying a truly invariant RV within the equally constrained parameter sets 

under various partial factorial invariance (PFI) conditions.  Study II compared the three 

approaches in specifying a true PFI models. The summaries of findings and discussions 

for each study follow.  

Study I 

In Study I, we examined the performance of the smallest modification index 

(Min-Mod) to identify a truly invariant set of factor loadings or intercepts. In the four 

partial factorial invariance scenarios, a fully constrained metric or scalar invariance 

model served as a baseline model in identifying a truly invariant factor loading while a 

fully constrained intercept or scalar invariance model was used for selecting an invariant 

intercept. The chosen identification method was the variation of reference variable 

identification method (VRV-IM). Within the tested set of equally constrained parameters 

(factor loadings or intercepts), the smallest modification index (Min-Mod) was 

hypothesized to indicate the smallest difference in the parameters between the two 

groups.  

In Study I, we could observe only little variation in the accuracy of the Min-Mod 

to detect a truly invariant RV with very high accuracy levels. The results indicated that 

the accuracy of the Min-Mod was almost perfect across all PFI scenarios except for 

some conditions. For example, all conditions with N = 100 presented slightly lower 

accuracy rates compared to the conditions with ≥ 250 in all PFI scenarios. In addition, 

we observed the lowest accuracy rates in the mixed-size-difference condition of the 

partial metric and scalar invariance of the same variable (PMSI-S). In such condition, if 
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we focus on larger sample sizes (≥ 250), the Min-Mod showed slightly higher accuracy 

rates in the model in which only the targeted parameters were constrained to be invariant 

(i.e., metric invariance model for selecting a factor loading; intercept invariance model 

for selecting an intercept).  

In this study, we focused on identifying a set of parameters which was supposed 

to have the least difference across two groups rather than searching for all possible 

invariant factor loadings or intercepts. The results of the study supported the idea that the 

Min-Mod was able to identify, almost perfectly, a truly invariant RV. The findings of 

this study are very promising to guide researchers who lack a theoretical guideline in 

selecting an appropriate RV in testing measuring invariance under a multi-group 

confirmatory factor analysis model. Even for those who already have a theoretical 

guideline to select an RV, they can also, through this empirical guideline (Min-Mod), be 

provided evidence of the adequacy of the chosen RV. As commonly pointed out, this 

Monte Carlo study simulated only limited partial metric or partial scalar invariance 

conditions. Therefore, the results can be generalized to only similar situations 

investigated in this study.  

Study II 

Study II aimed to evaluate the performances of the forward approach using 

BCBS-CIs, the backward approach using the largest modification index (Max-Mod), and 

the factor-ratio test (FR-T) in correctly specifying various partial metric or scalar 

invariance models. As the most interesting outcome, we examined the perfect recovery 
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rates of each method. We also looked at the model-level Type I error, model-level Type 

II error, item-level power, and item-level Type I error.  

Forward Approach 

The forward approach was newly proposed in this dissertation. Actually, this 

approach had been thought to be unrealistic since no empirical method was available to 

search for a truly invariant reference variable (RV).  Although the issue of selecting a 

truly invariant RV (Raykov & Marcoulides, 2012) is known to be an unresolved one, the 

results of Study I indicated that the smallest modification index (Min-Mod) within the 

constrained parameter set could accurately identify a truly invariant pair of parameters. 

Hence, the chosen variable from Study I served as an RV in Study II.  

The results indicate that the forward approach using the BCBS-CIs performed 

well with very high perfect recovery rates in most partial metric invariance conditions. If 

the size of noninvariance and the sample size were small, however, it was not able to 

correctly detect existing noninvariance. For those conditions, the main source of errors 

was Type II errors, which means failing to detect truly noninvariant parameters as so 

they were. In previous studies related to the power to detect noninvariance in full 

measurement invariance levels, noninvariance could not be detected successfully with 

small difference and small sample size. Therefore, it might not constitute such a large 

problem having low perfect recovery rates of the forward approach in the small sample 

size and small difference condition might not be a big problem. To put it into another 

way, it is very unlikely to reject full measurement invariance given small difference and 

small sample sizes, and thus, it is unlikely to require the further step to investigating 
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partial measurement invariance. More importantly, the performance of the forward 

approach was almost perfect in most conditions with substantially larger sample sizes 

with larger differences. In those conditions, it had negligible Type I and Type II errors.  

However, the forward approached showed inflated Type I error rates as the 

sample size grew in specifying a true partial scalar invariance model. As a result, the 

perfect recovery rates got to be lower than those in the PMI conditions while it was 

outperformed by the backward approach. Future study may be necessary to investigate 

why such inflated Type I error rates happened.   

Overall, the newly proposed forward approach looked very promising if our 

targeted parameters are factor loadings using 99% confidence intervals. The researchers 

can accurately determine the source of noninvariance when metric invariance is rejected 

using the forward approach. If the samples sizes are not too large (≤ 500), the forward 

approach also can serve as the method to identify noninvariant intercepts. In addition to 

its high perfect recovery rates, the forward approach can be conducted very simply. 

When a full factorial invariance model is rejected, we need only two data analysis 

procedures. One is to select an RV using the Min-Mod as in Study I. The other is to 

specify a partial factorial invariance model with the chosen RV using the forward 

approach which needs only one data analysis phase.  

Backward Approach 

For the backward approach, the baseline model was either a fully constrained 

metric or scalar invariance model with the variation of the reference variable 

identification method (VRV-IM).  From the baseline model, a set of equally constrained 
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parameters (factor loadings or intercepts) with the largest modification index (Max-Mod) 

greater than 3.84 (a significant modification index for one parameter given α = .05) was 

relaxed once at a time until no significant modification index left in the model. In 

addition, we also tried the model modification using the significant value of the 

modification index at α = .01. Although it showed high Type I error rates consistent with 

the previous study (Yoon & Millsap) when using the modification-index value at α = .05 

(Mod = 3.841), the Type I error rates substantially decreased with the larger value (Mod 

= 6.635 at α = .01). Different from our expectation, the backward approach was not 

prone to inflated Type I error rates when we adjusted the significance value, particularly, 

when there is no misspecification left in the model (see Appendix E and Appendix F). 

The finding from Study II indicates that we can confidently use the backward approach 

(iterative process) in identifying the source of noninvariance for both factor loadings and 

intercepts, but, the significance value should be Mod = 6.635 rather than Mod = 3.841.  

Factor-ratio Test 

The factor-ratio test was to test to test every pair of a reference variable (RV) and 

the other variable, and thus, we need  𝑝 (𝑃−1)

2
 (p = number of parameters to be tested for 

invariance) tests. In Study II, the procedure was simplified using the BCBS-CIs as in the 

forward approach. Since we simulated only one factor model with six variables, the 

number of retrieved BCBS-CIs was 15. The results of Study II indicate the factor-ratio 

test performed extremely poorly when the size of noninvariance was the same across 

groups, as in the small and large difference PMI or PSI conditions.  Regardless of the 

sample sizes, it could detect almost none of the noninvariant parameters, and the high 
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Type II error rates directly affected the low perfect recovery rates. However, its perfect 

recovery rates were even higher than the backward approach in most mixed-difference 

and nonuniform-difference conditions with N =500 and 1000, but it could not 

outperform the forward approach. In terms of Type I error rates, it performed ideally in 

all PMI conditions. However, it had higher Type I error rates in the PSI conditions. The 

factor-ratio can perform well only in the conditions with the different degree of 

noninvariance. In addition, the factor-ratio test requires subsequent procedures to 

discriminate noninvariant sets from invariant sets. Yet in some cases the subsequent 

procedures produced more than one (Cheung & Rensvold, 1999; Rensvold & Cheung, 

2001; French & Finch, 2008; Cheung & Lau, 2011). The inconsistent performances and 

ambiguity of the factor-ratio test discourage its possibility as a specification search 

approach for partial factorial invariance.  

Limitations and Future Directions 

Similar to any simulation studies, we only examined limited conditions. 

Therefore, the results can be generalized to only the data conditions similar to those in 

this dissertation study. For example, we examined only partial factorial invariance of one 

factor model with six indicators. Although we expect the results found in these studies to 

be generalized to simpler or more complex models, it is hard to say they will before 

testing with those conditions. Next, we simulated only balanced sample size conditions, 

and therefore, we cannot be sure that the results can be applied to the cases with 

substantially imbalanced sample sizes across groups. In addition, we examined only the 

conditions with continuous indicators, and it is unclear whether the results can be 
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generalized to cases with categorical indicators (e.g., dichotomous or polytomous). To 

address the limitations mentioned above, future studies are necessary with more various 

factor models, imbalanced sample sizes, and categorical variables.  Finally, we simulated 

noninvariance in the models without any type of misspecifications. However, in reality, 

the confirmatory factor analysis model might have a certain degree of misfit from the 

beginning. Thus, another possible future study will be investigating the performance of 

the three approaches in the models with misspecification in other parts.  

Conclusion 

In this dissertation, we explored two unanswered problems in partial factorial 

invariance literature. The first study examined the accuracy of the smallest modification 

index (Min-Mod) to identify a truly invariant reference variable (RV) in a fully 

constrained factorial invariance model. The Min-Mod almost perfectly selected a truly 

invariant set of factor loadings or intercepts which can serve as an RV for either metric 

invariance or scalar invariance test. If the data condition is similar to one of the 

conditions simulated in the first study, a researcher can confidently choose an invariant 

RV using the Min-Mod and expect the error rates to be very low. The second study 

indicated that the forward approach using the 99% BCBS-CIs could specify a true partial 

metric invariance (PMI) with very high perfect recovery rates. However, inflated Type I 

error rates might be concern in specifying a partial scalar invariance (PSI) model. 

Overall, the backward approach performed very adequately in both PMI and PSI 

conditions when we used the significance values at α = .01.  
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APPENDIX A 

 

MPlus Syntax of the FR-T Using the BCBS-CIs: Metric Invariance 

TITLE: Factor-Ratio Tests for Factor Loadings using BCBS-CIs 
DATA: File is ABC.dat;  
VARIABLE: 
Names are x1-x6 group; 
Usev =x1-x6;  
Grouping = group (1=g1 2=g2);  
 
MODEL: 
f1 by x1@1; f1 by x2 (LA2); 
f1 by x3 (LA3); f1 by x4 (LA4); 
f1 by x5 (LA5); f1 by x6 (LA6); 
f1*; 
 
MODEL g2: 
f1 by x1@1; f1 by x2 (LB2); 
f1 by x3 (LB3); f1 by x4 (LB4); 
f1 by x5 (LB5); f1 by x6 (LB6);;  
f1*; 
 
MODEL CONSTRAINT: 
NEW (FL12 FL13 FL14 FL15 FL16 FL23 FL24 FL25 FL26 FL34 FL35 FL36 FL45 FL46 FL56);  
 
FL12=LA2 - LB2; 
FL13=LA3 - LB3; 
FL14=LA4 - LB4; 
FL15=LA5 - LB5; 
FL16=LA6 - LB6; 
FL23=LA3/LA2 - LB3/LB2;  
FL24=LA4/LA2 - LB4/LB2; 
FL25=LA5/LA2 - LB5/LB2; 
FL26=LA6/LA2 - LB6/LB2; 
FL34=LA4/LA3 - LB4/LB3; 
FL35=LA5/LA3 - LB5/LB3; 
FL36=LA6/LA3 - LB6/LB3; 
FL45=LA5/LA4 - LB5/LB4; 
FL46=LA6/LA4 - LB6/LB4; 
FL56=LA6/LA5 - LB6/LB5; 
 
ANALYSIS: Bootstrap =1000;  
 
OUTPUT: Cinterval (BCBootstrap);  

 “MODEL 
CONSTRAINT’ command 
allows us to create new 
parameters for testing 
every pair of an RV and 
argument for factor 
loadings. 

 The parameter “FL12” is 
defined as the difference of 
the second factor loadings 
across groups when the 
first factor loading serves 
as a RV.  

Entering “Bootstrap 
=1000” results in 1000 
bootstrapping samples.  

Bias-corrected confidence intervals are 
retrieved into the output file by putting 
“Cinterval (BCBootstrap)” 
subcommand.   
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APPENDIX B 

 

MPlus Syntax of the FR-T Using BCBS-CIs: Scalar Invariance 

TITLE: Factor-Ratio Tests for Intercepts using BCBS-CIs 
DATA: File is ABC.dat;  
VARIABLE: 
Names are x1-x6 group; 
Usev =x1-x6;  
Grouping = group (1=g1 2=g2);  
 
MODEL: 
f1 by x1@1; f1 by x2 (LA2); 
f1 by x3 (LA3); f1 by x4 (LA4); 
f1 by x5 (LA5); f1 by x6 (LA6); 
f1*; [f1*];  
[x1@0]; [x2] (IA2);  
[x3] (IA3); [x4] (IA4);  
[x5] (IA5); [x6] (IA6);  
MODEL g2: 
f1 by x1@1;f1 by x2 (LB2);  
f1 by x3 (LB3); f1 by x4 (LB4); 
f1 by x5 (LB5); f1 by x6 (LB6);  
f1*; [f1*];  
[x1@0]; [x2] (IB2);  
[x3] (IB3); [x4] (IB4);  
[x5] (IB5); [x6] (IB6);  
 
MODEL CONSTRAINT:  
NEW (IT12 IT13 IT14 IT15 IT16 IT23 IT24 IT25 IT26 IT34 IT35 IT36 IT45 IT46 IT56);  
 
IT12 = IA2-IB2;  
IT13 = IA3-IB3;  
IT14 = IA4-IB4;  
IT15 = IA5-IB5;  
IT16 = IA6-IB6;  
IT23= IT13-LA3/LA2*IT12;  
IT24= IT14-LA4/LA2*IT12;  
IT25= IT15-LA5/LA2*IT12;  
IT26= IT16-LA6/LA2*IT12;  
IT34= IT14-LA4/LA3*IT13;  
IT35= IT15-LA5/LA3*IT13;  
IT36= IT16-LA6/LA3*IT13;  
IT45= IT15-LA5/LA4*IT14;  
IT46= IT16-LA6/LA4*IT14;  
IT56= IT16-LA6/LA5*IT15;  
 
ANALYSIS: Bootstrap =1000;  
OUTPUT: Cinterval (BCBootstrap); 

 “MODEL 
CONSTRAINT’ command 
allows us to create new 
parameters for testing 
every pair an RV and 
argument for intercepts.  

 The parameter “IT12” is 
defined as the difference of 
the second intercepts 
between groups when the 
first intercept serves as a 
RV.  
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APPENDIX C 

 

MPlus Syntax of the Forward Approach: Metric Invariance 

TITLE: Forward Approach using BCBS-CIs (Factor loadings) 
DATA: File is ABC.dat;  
VARIABLE: 
Names are x1-x6 group; 
Usev =x1-x6;  
Grouping = group (1=g1 2=g2);  
 
MODEL: 
f1 by x1@1; ! Reference Variable 
f1 by x2 (LA2); 
f1 by x3 (LA3);  
f1 by x4 (LA4); 
f1 by x5 (LA5);  
f1 by x6 (LA6); 
f1*; 
 
MODEL g2: 
f1 by x1@1; ! Reference Variable 
f1 by x2 (LB2); 
f1 by x3 (LB3);  
f1 by x4 (LB4); 
f1 by x5 (LB5);  
f1 by x6 (LB6); 
f1*; 
 
MODEL CONSTRAINT: 
NEW (FL2 FL3 FL4 FL5 FL6);  
 
FL2=LA2 - LB2; 
FL3=LA3 - LB3; 
FL4=LA4 - LB4; 
FL5=LA5 - LB5; 
FL6=LA6 - LB6; 
 
ANALYSIS: Bootstrap =1000;  
 
OUTPUT: Cinterval (BCBootstrap);  

 “MODEL 
CONSTRAINT’ command 
allows us to create new 
parameters for testing 
every pair of corresponding 
factor loadings. 

 The parameter “FL2” is 
defined as the difference of 
the second factor loadings 
across groups.  

Bias-corrected confidence intervals are 
retrieved into the output file by putting 
“Cinterval (BCBootstrap)” 
subcommand.   
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APPENDIX D 

 

MPlus Syntax of the Forward Approach: Scalar Invariance 

TITLE: Forward approach using BCBS-CIs (Intercepts) 
 
DATA: File is ABC.dat;  
 
VARIABLE: 
Names are x1-x6 group; 
Usev =x1-x6;  
Grouping = group (1=g1 2=g2);  
 
MODEL: 
f1 by  x1-x6* (L1-L6);  
f1*; [f1*];  
[x1@0]; ! Reference Variable 
[x2] (IA2);  
[x3] (IA3);  
[x4] (IA4);  
[x5] (IA5);  
[x6] (IA6);  
MODEL g2: 
f1 by  x1-x6* (L1-L6);  
f1*; [f1*]; 
[x1@0]; ! Reference Variable 
[x2] (IB2);  
[x3] (IB3);  
[x4] (IB4);  
[x5] (IB5);  
[x6] (IB6);  
 
MODEL CONSTRAINT:  
NEW (IT2 IT3 IT4 IT5 IT6);  
 
IT12 = IA2-IB2;  
IT13 = IA3-IB3;  
IT14 = IA4-IB4;  
IT15 = IA5-IB5;  
IT16 = IA6-IB6;  
 
ANALYSIS: Bootstrap =1000;  
 
OUTPUT: Cinterval (BCBootstrap); 
 
 

 “MODEL 
CONSTRAINT’ command 
allows us to create new 
parameters for testing 
every set of corresponding 
intercepts.  

 The parameter “IT2” is 
defined as the difference of 
the intercepts for X2 
between groups.  
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APPENDIX E 

 

Decrement of the Size of Modification Index: Partial Metric Invariance Conditions 

Condition N Max1 Max2 Max3 Max4 Max5 
Small-difference 100 7.63 4.20 1.61 0.48 0.04 

250 15.14 10.83 2.23 0.70 0.19 
500 26.96 23.23 2.18 0.64 0.05 

1000 48.94 47.59 2.35 0.71 0.05 
Large-difference 100 21.85 16.85 2.31 0.66 0.05 

250 51.25 45.96 2.31 0.70 0.06 
500 98.45 95.80 2.19 0.64 0.05 

1000 188.61 194.84 2.35 0.72 0.05 
Mixed-size-
difference 

100 28.11 12.58 2.23 0.64 0.05 
250 71.17 31.05 2.31 0.71 0.06 
500 143.25 61.34 2.19 0.63 0.05 

1000 282.84 121.07 2.35 0.72 0.05 
Nonuniform-
difference 

100 19.64 8.50 2.05 0.62 0.11 
250 44.60 22.33 2.30 0.71 0.06 
500 84.99 46.88 2.18 0.65 0.32 

1000 165.67 98.80 2.33 0.70 0.05 
Note. The bold values indicates the largest modification index values when there is no 
more noninvariant factor loading left in the model.  

  



 

100 

  

APPENDIX F 

 

Decrement of the Size of Modification Index: Partial Scalar Invariance Conditions 

Condition N Max1 Max2 Max3 Max4 Max5 
Small-difference 100 11.50 8.43 2.06 0.61 0.04 

250 24.00 22.81 2.43 0.72 0.06 
500 42.70 47.50 2.61 0.75 0.06 

1000 81.11 99.55 2.24 0.66 0.05 
Large-difference 100 30.75 33.43 2.43 0.69 0.06 

250 71.81 88.08 2.30 0.71 0.06 
500 135.93 179.54 2.49 0.72 0.06 

1000 265.38 367.34 2.24 0.66 0.05 
Mixed-size-
difference 

100 29.96 19.37 2.26 0.65 0.06 
250 74.79 47.45 2.30 0.71 0.06 
500 147.45 93.07 2.49 0.72 0.06 

1000 295.44 186.91 2.24 0.66 0.05 
Nonuniform-
difference 

100 30.70 14.56 2.21 0.65 0.06 
250 70.70 39.39 2.30 0.71 0.06 
500 136.72 81.98 2.49 0.72 0.06 

1000 267.65 169.29 2.24 0.66 0.05 
Note. The bold values indicates the largest modification index values when there is no 
more noninvariant intercept left in the model.  
 




