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ABSTRACT

This dissertation examines two questions of consumers’ motor vehicle purchase

and utilization. Both are related to policy variation induced by the U.S. Car Al-

lowance Rebate System, better known as “Cash for Clunkers.”

First, we directly investigate the impact of Cash for Clunkers, which was an

economic stimulus program aimed at increasing new vehicle spending by subsidizing

the replacement of older vehicles. Using a regression discontinuity design, we show

the increase in sales during the two month program was completely offset during

the following seven to nine months, consistent with previous research. However,

we also find the program’s fuel efficiency restrictions induced the purchase of more

fuel efficient but less expensive vehicles, thereby reducing industry revenues by three

billion dollars over the entire nine to eleven month period. This highlights the conflict

between the stimulus and environmental objectives of the policy.

Second, we investigate a related topic. Due to the high political costs of raising

the tax rate on gasoline, the United States government combats the negative exter-

nalities associated with gasoline consumption by regulating the fuel efficiency of new

cars sold. However, the success of these Corporate Average Fuel Economy restric-

tions depends crucially on whether inducing households to drive more fuel efficient

cars causes them to drive more miles, which would offset some or all of the reduction

in gasoline consumption. We examine this question by applying a regression discon-

tinuity design to exploit the increase in vehicle fuel efficiency induced among new car

buyers in Texas during the Cash for Clunkers program in 2009. While new car buyers

whose “clunker” was barely eligible for the subsidy drove a similar number of miles

per year prior to the policy and are similar in other ways to barely ineligible new car
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buyers, they bought significantly more fuel efficient vehicles. However, they did not

respond by driving more miles following the program. As a result, the increased fuel

economy reduced gasoline consumption proportionally. This suggests that behavioral

responses do not undermine the effectiveness of fuel efficiency standards.
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1. INTRODUCTION

The two major sections of this dissertation encompass two articles that I coau-

thored (Hoekstra, Puller, and West, 2014; West, Hoekstra, Meer, and Puller, 2014).

In both articles we study consumer behavior in the transportation sector, particu-

larly in personal motor vehicles. Both are related to policy variation induced by the

U.S. Car Allowance Rebate System (CARS), better known as “Cash for Clunkers.”

Section 2 quantifies the economic stimulus from the U.S. Cash for Clunkers pro-

gram, which was aimed at increasing new vehicle spending by subsidizing the replace-

ment of older vehicles. Using administrative data on the population of household

vehicle fleets in Texas, we estimate discontinuities for vehicle purchase timing and

show that the increase in sales during the two month program was completely offset

during the following seven to nine months, consistent with previous research (e.g.

Mian and Sufi, 2012). However, the program successfully induced consumers to

purchase alternate – higher fuel economy – vehicles relative to the counterfactual.

These more fuel efficient vehicles were also less expensive vehicles, thereby reducing

industry revenues by three billion dollars over the entire nine to eleven month period.

This highlights the conflict between the stimulus and environmental objectives of the

policy.

Section 3 evaluates the extent to which consumer utilization of fuel efficient ve-

hicles (due to a lower price-per-mile of gasoline) undermines policies that promote

energy efficiency. Due to the high political costs of raising the tax rate on gasoline,

the United States government combats the negative externalities associated with

gasoline consumption by regulating the fuel efficiency of new cars sold. However, the

success of these Corporate Average Fuel Economy (CAFE) restrictions depends cru-
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cially on whether inducing households to drive more fuel efficient cars causes them to

drive more miles, which would offset some or all of the reduction in driving and gaso-

line consumption externalities. We examine this question by applying a regression

discontinuity design to exploit the increase in vehicle fuel efficiency induced among

new car buyers in Texas during the Cash for Clunkers program in 2009. While new

car buyers whose “clunker” was barely eligible for the subsidy drove a similar num-

ber of miles per year prior to the policy and are similar to barely ineligible new car

buyers, they bought significantly more fuel efficient vehicles. However, despite hav-

ing a more fuel efficient vehicle fleet, the barely eligible households did not respond

by driving more miles following the program. As a result, the barely eligible house-

holds reduced fuel consumption. We argue that if fuel economy standards such as

CAFE are the relevant policy to evaluate, then our empirical strategy has decided

advantages over other approaches used in the literature.
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2. CASH FOR COROLLAS: WHEN STIMULUS REDUCES SPENDING

In efforts to boost economic activity via higher consumer and government spend-

ing, the U.S. government implemented several fiscal stimulus programs during the

last two recessions. These policies typically operate either by reducing tax rates and

providing tax rebates, as in the Economic Growth and Tax Relief Reconciliation Act

of 2001, or by directly increasing government spending, as in the American Recovery

and Reinvestment Act of 2009. The Car Allowance Rebate System (CARS), better

known as “Cash for Clunkers,” differs from these other stimulus programs in that it

aimed to increase consumer spending on a particular durable good – new vehicles –

that had experienced a precipitous drop in sales during the 2009 recession.

A major objective of the program – and arguably the primary one – was to provide

economic stimulus to U.S. vehicle and parts manufacturers (and therefore to the

U.S. economy) by shifting expenditures “...from future periods when the economy is

likely to be stronger, to the present...” [Romer and Carroll, 2010]. However, another

priority for President Obama and the administration at that time was to improve

the fuel efficiency of the U.S. vehicle fleet. Thus, the CARS policy was written to

achieve multiple goals: the program attempted not just to accelerate the purchase

of new vehicles to increase revenues to the auto industry, but also to induce those

households to purchase more fuel efficient vehicles.

The fuel efficiency restrictions imposed by the program have potentially impor-

tant implications for the stimulus effect. On the one hand, lowering the relative price

of fuel efficient vehicles might induce buyers to increase spending by selecting vehicles

with more expensive fuel-saving technologies, such as hybrids. On the other hand,

the restrictions could induce households to purchase smaller, less expensive vehicles

3



in order to meet the fuel efficiency criteria, which would decrease overall new vehicle

spending. The net impact of these restrictions on the stimulus effect of the program

is an empirical question. The key contribution of this paper is to estimate not only

how Cash for Clunkers impacted the timing of consumers’ purchases, but also how

the program affected total new vehicle spending.

The primary challenge to identifying the impact of any stimulus policy on spend-

ing is finding a valid counterfactual: what would have occurred in the absence of

the policy. In the case of Cash for Clunkers, this requires determining both the tim-

ing and the type of vehicles that would have been purchased absent the policy. A

major strength of our study is that we are able to apply a regression discontinuity

design that uses the behavior of barely ineligible households as a counterfactual for

barely eligible households. Specifically, we exploit the fact that households owning

“clunker” vehicles rated at eighteen miles per gallon (MPG) or less were eligible for

the program, whereas households with clunker vehicles rated nineteen MPG or higher

were not. Although this strategy precludes examining the impact of the program on

regional economic outcomes, given how the program was implemented it is difficult

for us to think of a more compelling counterfactual.1

We apply this regression discontinuity design to administrative data on all house-

holds in Texas. Intuitively, we compare the purchasing behavior of all households

barely eligible for the program to that of all barely ineligible households. The iden-

tifying assumption of this approach is that all other determinants of purchasing

behavior are continuous across the eligibility threshold. There is little reason to

doubt this assumption: eligibility for the program was based on the EPA combined

fuel economy rating and applied only to consumers who had owned their clunker for

1We focus only on identifying the stimulus impact for the U.S. auto industry. Though we believe
that this policy likely had important consequences for the broader U.S. economy, we do not attempt
to quantify the impact of the program on overall economic growth.
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at least one year. As a result, there was little scope for the type of manipulation

that would invalidate the research design. In addition, we know of no other pro-

grams that affected households discontinuously at this cutoff. Thus, it is difficult to

construct a plausible mechanism that would undermine the identifying assumption

of our research design.

Using this method, we find that although Cash for Clunkers significantly in-

creased new car purchases during the two months of the program, all of this increase

represented a shift forward from the subsequent seven to nine months. Specifically,

during the two months of the program, the frequency of purchasing a new vehicle

was around fifty percent higher for the barely eligible households as compared to the

barely ineligible ones, confirming that the program induced households to purchase

new vehicles. By seven to nine months after Cash for Clunkers had ended, the barely

eligible and barely ineligible households were equally likely to have purchased a new

vehicle since the beginning of the program. On net, the program did not result in

any more vehicle purchases than otherwise would have occurred over the nine to

eleven month period that includes the two program months. This finding represents

a slightly longer time to reversal than the six and seven month time horizons found

by Li, Linn, and Spiller [2013] and Copeland and Kahn [2013], respectively, and is

similar to that found by Mian and Sufi [2012]. As noted in Mian and Sufi [2012], this

reversal occurred much more quickly than the five years assumed by the CEA or the

three years assumed by the NHTSA (Council of Economic Advisers, 2009; National

Highway Traffic Safety Administration, 2009).

However, as discussed earlier, the program’s fuel efficiency restrictions could have

shifted both the type and price of vehicles purchased, which would have important

implications for the program’s effect on auto industry revenues. The primary contri-

bution of this paper is that it is to our knowledge the first to use quasi-experimental
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methods to examine the impact of Cash for Clunkers on overall new vehicle spend-

ing.2 To do so, we apply the same regression discontinuity design. Here, however,

we focus only on new car buyers who purchased a vehicle either during the program

or in the eight months that followed. This time horizon is constructed such that the

probability of purchase is held constant across the cutoff, meaning that the only fac-

tor that affects overall spending is the amount spent conditional on purchase. This

approach enables us to focus on new car buyers and avoid averaging across all Texas

households, more than ninety-five percent of whom did not purchase a new vehicle

within this ten month time horizon.3

Strikingly, we find that Cash for Clunkers actually reduced overall spending on

new vehicles during the period beginning with the first month of the program and

ending eight months after the program. Estimates indicate that each household

purchasing under the program spent an average of $4,600 less on a new vehicle

than they otherwise would have. Thus, we estimate that this stimulus program –

which dispensed three billion dollars in subsidies toward the purchase of 677,000 new

vehicles nationally – actually reduced revenues to the auto industry by around three

billion dollars over the course of less than one year. This highlights how – even over

a relatively short period of time – a conflicting policy objective can cause a stimulus

program to instead have a contractionary net effect on the targeted industry.

2Our study joins a broader literature examining the economic stimulus of policies such as tax
rebates (e.g. Shapiro and Slemrod, 2003; Johnson, Parker, and Souleles, 2006; Agarwal, Liu, and
Souleles, 2007; Parker, Souleles, Johnson, and McClelland, 2013), income tax reductions (House and
Shapiro, 2008), and direct government spending on health, education, and infrastructure (Feyrer
and Sacerdote, 2011; Wilson, 2012). The most closely related paper is Li and Wei [2013], who use
a dynamic discrete choice model to examine the tradeoff between the environmental and stimulus
components of the CARS program.

3Put differently, the potential concern with focusing on buyers, rather than all households, is
that the policy could induce different types of households to purchase. While this could certainly
be true if one were to focus on the two months of the program, it is no longer true over the longer
time frame. That is because this longer time period is constructed such that there was no selection
of households toward or away from buying a car based on the policy. As a result, the only impact
was on the timing and type of purchase made, not the type of household who purchased.
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2.1 Background and Empirical Strategy

2.1.1 The Cash for Clunkers Program

The Cash for Clunkers program, formally known as the Consumer Assistance to

Recycle and Save (CARS) Act, was a nationwide vehicle scrappage program.4 Signed

into law on June 24, 2009, the program incentivized households to replace used, fuel

inefficient vehicles with new, fuel efficient vehicles. Specifically, the program offered

consumers a rebate of $3,500 or $4,500 towards the purchase of a new fuel efficient

car provided they scrapped a used vehicle. Transactions became eligible for rebates

on July 1, 2009 and ended on August 24, 2009. Over the eight weeks of the program,

Congress allocated a total of $3 billion toward the subsidies. More than 677,000

vehicles were purchased under the program, 43,000 of which were in Texas.

As with most vehicle scrappage programs, the subsidy could only be used toward

the purchase of a new vehicle; used vehicles did not qualify for the rebate. This

requirement was driven by the major goal of the program: to accelerate the sale

of new vehicles and provide fiscal stimulus to the auto industry and the broader

economy. The program was largely motivated by the precipitous drop in vehicle

sales during the 2008-2009 recession. This drop is depicted in Figure B.1, which

shows that the seasonally-adjusted annualized number of sales fell from more than

sixteen million in 2007 to around ten million in 2009.

However, the program also aimed to reduce the environmental costs imposed by

the national vehicle fleet. It did this by placing restrictions on both the vehicle being

traded in and the vehicle being purchased. The restriction on the trade-in vehicle

4Scrappage policies have been implemented around the world, and studies of these programs
include Hahn [1995], Alberini, Harrington, and Virginia [1996], Adda and Cooper [2000], Miravete
and Moral [2011], Sandler [2012], and Busse, Knittel, Silva-Risso, and Zettelmeyer [2012]. More
generally, the literature has investigated the determinants of scrappage decisions, including the
effect of gasoline prices and used car resale value (Li, Timmins, and von Haefen, 2009; Jacobsen
and van Bentham, 2013).
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is critical to our research design: the subsidy was only available to consumers who

could trade in a vehicle rated by the EPA at a combined eighteen miles per gallon

or less. This feature of the program enables us to use the purchasing behavior of

barely ineligible households as a counterfactual for the barely eligible households.5

The program required that this traded-in vehicle be taken off the road and scrapped,

meaning that the program attracted primarily older, low value vehicles.

If this restriction on the fuel efficiency rating of the trade-in vehicle were the only

environmental component of the program, the theoretical impact of the program on

new vehicle spending would be straightforward. The subsidy would lower the price

of vehicles purchased during the program relative to those purchased in the future,

which would accelerate the timing of sales. In addition, assuming that new vehicle

characteristics such as vehicle size, performance, and interior amenities are normal

goods, the income effect of the subsidy would result in purchases of somewhat more

expensive vehicles.6 As a result, we would expect to see higher new vehicle spending

during the program, and an increase in total revenues to the auto industry during

the medium- to long-run.

However, the program also had a second environmental feature aimed at induc-

ing households to purchase more fuel efficient vehicles than they otherwise would

have. It did this by offering subsidies that lowered the relative price of fuel efficient

vehicles compared to other vehicles. Specifically, if the new vehicle purchased were a

passenger vehicle, it was required to have a combined EPA fuel economy rating of at

5There were additional requirements that the clunker be in drivable condition, no more than 25
years old, and continuously insured and registered in the same owner’s name for one year prior to
the transaction. These criteria appear to have been strictly enforced. The National Highway Traffic
Safety Administration (the agency that administered the program) required legal documentation of
registration histories and operated the computer system which determined vehicle-specific eligibility.

6The extent of the income effect would be moderated by imperfect pass-through, but the litera-
ture generally finds that dealerships passed on nearly 100% of the rebates to customers (e.g. Busse,
Knittel, Silva-Risso, and Zettelmeyer, 2012).
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least twenty-two miles per gallon. If the difference in fuel economy between the new

passenger car and clunker was between four and nine MPG, the rebate was $3500,

and if the difference was ten MPG or more, the rebate was $4500. If the new vehicle

was a Category 1 Truck (e.g. SUV or small to medium pickup truck), a two to four

MPG difference between the new truck and clunker generated a $3500 rebate while

an improvement of five or more MPG provided a $4500 rebate.7

Although it is clear that the net effect of these restrictions on the vehicle pur-

chased was to lower the relative price of fuel efficient vehicles, the effect of these

restrictions on the composition of vehicles purchased is ambiguous a priori. One

possibility is that these restrictions would induce consumers to spend more money

on relatively expensive fuel-saving technologies, such as hybrid electric vehicles. On

the other hand, there is a negative overall relationship between MPG and vehicle

price among the set of vehicles offered to U.S. consumers, as shown in Figure B.2.

Therefore, it is possible that consumers could respond by purchasing smaller, less ex-

pensive vehicles. We focus both on how the program shifted the timing of consumer

purchases and on how it affected overall spending by changing the composition of

vehicles purchased.

2.1.2 Empirical Strategy

Our empirical strategy consists of two steps, both of which make use of household-

level data to estimate the effect of the Cash for Clunkers program on purchase behav-

ior. First, we estimate the “pull forward” period induced by the stimulus program.

Beginning with the first month of the program, we estimate the time window for

7Separate criteria applied to Category 2 (large pickups or large vans) and Category 3 trucks
(work trucks), but we do not discuss those here because there were comparatively few of these
vehicles purchased. For a complete set of eligibility criteria, see the NHTSA rules in the Federal
Register available at:
www.nhtsa.gov/CARS-archive/official-information/day-one.pdf
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which the frequency of household purchases of new vehicles is equal for the barely

eligible and barely ineligible households. Second, having identified this pull forward

window, we focus on all purchases during this time window and analyze differences

in the fuel economy and prices paid for households that were barely eligible versus

barely ineligible.

To estimate the effect of the Cash for Clunkers program, we use a regression dis-

continuity design that compares households that were barely eligible for the program

to those that were barely ineligible. That is, we compare households whose clunkers

were barely above the CARS eligibility cutoff of eighteen miles per gallon to those

who barely qualified. We use this regression discontinuity strategy both to identify

the pull forward window and to analyze the effect of the program on the types of

vehicles purchased.

To formally estimate the reduced-form discontinuities at the eligibility threshold,

we use the following equation:

Outcomei =β0 + β1 ∗ f(distance-to-cutoffi) ∗ eligiblei +

β2 ∗ f(distance-to-cutoffi) ∗ (1 − eligiblei) + β3 ∗ eligiblei + εi

(2.1)

where the outcomes include indicators for whether the household received the subsidy

and whether the household purchased a new vehicle, the log of the price of the vehicle

purchased, and the characteristics of the new vehicles purchased. These outcomes

are defined both during the two months of the program, as well as during broader

time spans including months afterward.

Eligiblei is an indicator equal to one if the household is classified as being eligible

for the program (i.e., the most trade-in-likely vehicle had an MPG rating of eighteen

or less). We describe how our data identify a household’s eligibility status in Sec-
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tion 2.2. We allow for separate relationships between the running variable and the

outcome on each side of the eligibility threshold. We estimate equation (2.1) with

least squares and standard errors are clustered at the level of the running variable

[Lee and Card, 2008]. The coefficient of interest is β3, which measures the jump in

the outcome when going from just-ineligible to just-eligible for the Cash for Clunkers

program.

2.1.2.1 Identifying the “Pull Forward” Window

First, we estimate the number of months after the beginning of the two month

program for which the probability of purchasing a new vehicle is equalized across the

eligibility threshold. We estimate Equation (2.1) for a dependent variable indicating

whether the household purchased a new vehicle during the time window. Impor-

tantly, when examining the impact of the program on vehicle purchasing behavior,

we use data on all Texas households. Thus, the identifying assumption is that all

other determinants of car purchasing behavior among the population of Texas house-

holds is smooth across the cutoff. Under that assumption, any discontinuity in the

fraction of households purchasing a new vehicle can properly be interpreted as the

causal effect of the program.

We view this assumption as likely to hold for several reasons. First, vehicle owners

were required to show proof of ownership of their eligible vehicles for one year prior

to the start of the program, which is before the policy was being discussed. In

addition, the eligibility cutoff was based on the EPA combined fuel economy rating,

as opposed to some other, more subjective, rating. As a result, it is difficult to

imagine how households could have manipulated where they were relative to the

eligibility cutoff. In addition, we know of no other policies that had discontinuous

impacts across this eighteen MPG threshold. Collectively, these factors imply that
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because we focus on all households, there is little ex ante reason to believe that those

with vehicles rated at or just below eighteen MPG are different from those just above

the cutoff. We also show empirical evidence consistent with this assumption. For

example, we use survey data from the National Household Travel Survey to show

that household characteristics such as income and demographics were similar across

this threshold. Thus, there is little evidence that policymakers deliberately chose

this cutoff because of a discontinuous change in some household characteristic.

2.1.2.2 Estimating Effect of Program on New Vehicle Spending

Our analysis of the impact of the program on new vehicle spending is somewhat

different. Rather than using data on all households, we focus only on households that

purchased a new vehicle. Crucially, we do this for a time period constructed such

that the program did not have an impact on the probability of purchase. Because the

net effect on spending depends on both the probability of purchase and the amount

spent conditional on purchase, once we hold the probability of purchase constant,

the only factor driving the impact on overall spending is the amount spent on the

new vehicle. In addition, by focusing on the new car buyers we can avoid averaging

spending across all Texas households, over 95 percent of whom did not purchase a

new vehicle during the program or in the eight months that followed.

Our identifying assumption for this analysis requires that for households pur-

chasing a vehicle over a period of time during which there was no discontinuity in

the probability of purchase, all household-level determinants of new vehicle spend-

ing were continuous across the eligibility threshold. We find it difficult to construct

a story that would violate this assumption. For example, while it is possible to

imagine why barely eligible buyers would be different from ineligible households who

bought during the program, it is hard to think why this would be true over this longer
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time horizon. By construction this longer time horizon contains a similar number

of new vehicle buyers across the cutoff – the only difference is that some of those

with clunkers rated at eighteen MPG or below were incentivized to purchase earlier

during that time window than the other households.8 Consistent with this identify-

ing assumption, we show that there is no compelling evidence of discontinuities with

respect to the purchasing choices made by households above and below the cutoff a

year before Cash for Clunkers. Similarly, households that purchased vehicles during

the program or in the months that followed look similar across the cutoff with respect

to the characteristics of their non-clunker vehicles, as we show in section 2.3.3.

We emphasize that this research design is a “fuzzy” regression discontinuity de-

sign. That is, while the likelihood of receiving a subsidy changes sharply and discon-

tinuously at the eligibility cutoff, it is less than one. This is due to several factors.

The first relates to the way in which we classify each household’s so-called clunker.

Consider a household whose oldest vehicle is rated at nineteen MPG. As described

below, this will lead us to designate that vehicle as the household’s clunker, even

though that household may also have owned and traded in a newer car rated at

eighteen MPG or less. In addition, households with vehicles rated eighteen MPG

or less could choose to purchase vehicles without trading in that vehicle under the

program. This could be because they wished to keep that vehicle, or because they

wanted to buy a less fuel efficient vehicle that did not qualify under the program. Fi-

nally and perhaps more importantly, because we examine time windows that extend

beyond the two months of the program, many households purchased vehicles after

the program had ended and thus were not eligible for the subsidy at all, regardless

8An example which would violate the identifying assumption is if the program were to acceler-
ate some purchases by (say) two years, while simultaneously causing a similar number of eligible
households to delay their purchases by more than a year. If that were the case – and it does seem
far-fetched – the rate at which households bought vehicles over the ten month window might be
similar across the cutoff, even though household characteristics would be different.
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of the fuel economy rating of their trade-in.

The fuzzy nature of our regression discontinuity design can be seen in Figure B.3,

which shows the discontinuity in the likelihood of receiving the subsidy during the

two months of the program, as well as during the ten month window that also includes

the eight months following the program. As expected, while the discontinuity in the

likelihood of receiving the subsidy was around 75 percentage points during the two

months of the program, it is considerably smaller (though still visually clear) over

the ten month period. This is consistent with what one would expect; the majority

of households purchasing over the ten month period did so after the program had

ended, and thus could not use the subsidy regardless of the fuel economy of their

clunker.

In order to estimate the impact of the program on new vehicle spending, we es-

timate equation (2.1) where the dependent variable is either fuel economy or new

vehicle price. Formally, this is the reduced-form estimate of the impact of the pro-

gram, or the intent-to-treat effect. Given the fuzziness of the regression discontinuity

design discussed above, in order to recover the local average treatment effect (LATE)

measuring the impact of receiving the subsidy, this estimate must be rescaled by the

discontinuity in the likelihood of treatment (Angrist, Imbens, and Rubin, 1996; Im-

bens and Lemieux, 2008). Thus, as shown in Figure B.3, reduced-form estimates for

longer time windows will be scaled up more than estimates for shorter time windows.9

9To adjust for the fact that we were unable to match all 42,354 CARS trades in Texas to
households in our data, we rescaled the fraction of sales accordingly. This implicitly assumes a
take-up rate for households we could not match similar to those whose clunker was rated the same
and whom we could match. This aspect of the data precludes rescaling via two-stage least squares,
so we instead manually rescale intent-to-treat estimates to recover the local average treatment effect.
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2.2 Data

Our data include all households in Texas. We use confidential administrative

records maintained by the Texas Department of Motor Vehicles to determine house-

hold level vehicle fleets and changes in the composition of the fleet. For each house-

hold, we have information on cars in the household fleet and when the household pur-

chased each vehicle. Following Knittel and Sandler [2011], we restrict our analysis to

households that owned no more than seven vehicles in June 2009. For further details

on the construction of the database for household vehicle fleets, see Appendix A.1.

Transaction prices for all vehicles sold (new or used) in Texas are reported to the

Texas DMV for tax purposes, and we use transaction prices to measure revenue to

the auto industry. These prices include any amount of subsidy if the transaction fell

under the Cash for Clunkers program, so we are accurately quantifying the revenue

received by the industry. Importantly, the DMV administrative records also include

the unique vehicle identification number (VIN) for each registered vehicle. We decode

each VIN using a database obtained from DataOne Software to determine vehicles’

fuel economy and other vehicle characteristics.

We use a simple approach to classify each household’s distance from the CARS

eligibility cutoff – the running variable in our regression discontinuity design. Our

goal in doing so is to determine which vehicle in a household’s fleet is most likely to

be removed from the fleet when a new car is purchased, and use the fuel economy of

that “clunker” to classify the household relative to the eligibility cutoff. We expect

these vehicles to be older, lower-value vehicles given the requirement that they be

scrapped under the program. We define the clunker for each household as the oldest

vehicle that the household owns, measured by the vehicle model year, as of June 30,

2009. In the rare case that a household owns two vehicles with the same model year,
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we use the vehicle that the household has owned for the most days.10 Because the

household was required to scrap the clunker and the maximum subsidy was $4500,

we require that the household’s clunker be at least five (model) years old to exclude

higher value vehicles that were unlikely to be scrapped. We restrict our sample

to households that owned, as of June 2009, a potential clunker obtaining an EPA

combined rating of between ten and twenty-seven miles per gallon (inclusive), which

spans the largest bandwidth used in our regression discontinuity specifications.

In some specifications, we use demographic data from the Census. These data

include Census tract-level economic and demographic characteristics from the 2000

decennial Census, which we link using address information in the administrative

database. Finally, in tests of the identification strategy, we use a separate dataset

from the spring 2009 National Household Travel Survey [U.S. Department of Trans-

portation, 2009]. Although the NHTS does not include information that allows us

to match to our data at the household-level, we can use the rich demographic infor-

mation in NHTS to support our identifying assumption, as we show in section 2.3.3.

To facilitate our first-stage, we are able to identify transactions that occurred

under the Cash for Clunkers program by matching our administrative data to the

NHTSA database archive of all program transactions. There were 42,354 official

CARS transactions in Texas, of which we match most by VIN to Texas households

in the DMV data. The match rate is imperfect, however, due to typos and related

database errors. For our empirical first-stage, we scale up the matched set to equate

to the full set of CARS transactions.

Summary statistics for vehicle and household fleet characteristics in 2010 are

presented in Table B.1. The average fuel economy rating of vehicles purchased by

10This simple method of defining clunkers yields remarkably similar predictions as that using
a more complex propensity score method, while requiring less completeness of data on vehicle
characteristics.
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households in our sample was 21.7 MPG, while the average transaction price was

$27,600. Table B.1 also shows Census Tract characteristics such as demographics

and income, which we use as control variables.

2.3 Results

2.3.1 Cash for Clunkers and the Timing of Purchase

First, we examine the impact of the program on the likelihood that a household

purchased a new vehicle. Graphical results are shown in Figure B.4, plotting the

probability that the household purchased a new vehicle during the time window

against the fuel economy of the household’s clunker. Markers show the local average

for each level of clunker MPG, and marker sizes are proportional to the number of

households in the MPG bin. Households just to the left of the vertical line are the

eligible households who owned a clunker with a fuel economy below eighteen MPG,

while the households to the right of the vertical line are the ineligible households.

Because a household has a low probability of purchasing a new car in any given

month, the baseline fraction of households purchasing is small over any short time

horizon.

Panel (a) of Figure B.4 shows the probability that the household purchased a

new vehicle during the two months of the Cash for Clunkers program. There is a

compelling discontinuity at the cutoff, suggesting that the program increased the

likelihood of purchasing a new vehicle by more than one half of a percentage point.

This increase is economically significant, and translates to more than a 50 percent

increase in the likelihood of purchase during the program. Thus, it is clear that Cash

for Clunkers accelerated the timing of new car purchasing by the eligible households.

Importantly, this increase in sales during the program appears to have been offset

entirely in the following seven to nine months. Panels (b) through (f) of Figure B.4
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show the cumulative likelihood of new vehicle purchase over seven to eleven month

time frames, including the two months of the program. These panels show com-

pelling evidence that Cash for Clunkers “pulled forward” purchases from the months

immediately following the program. While it is clear from panels (b) and (c) that

there was still a visually compelling discontinuity in likelihood of purchase after 7 to

8 months, this no longer is the case after 9 to 11 months. The purchase probability

is higher for eligible households when focusing only on the program months of July-

August 2009, but the ineligible households have “caught up” by March, April, and

May of 2010. Put differently, panels (d) through (f) of Figure B.4 suggest that the

increase in sales during the program represented an acceleration of sales that would

have happened anyway in the seven to nine months after the program ended. This is

similar to findings reported by Mian and Sufi [2012], Li et al. [2013], and Copeland

and Kahn [2013].11

2.3.2 Effect on New Vehicle Spending

As discussed earlier, however, the Cash for Clunkers program also changed the

relative prices that consumers faced by offering subsidies that could be used only for

the purchase of relatively fuel efficient vehicles. Thus, we now ask whether this envi-

ronmental component of the program resulted in a lasting change in the composition

of vehicles purchased, which has potentially important implications for the stimulus

effect on the industry.

As shown in Figure B.5, vehicles purchased by eligible households during the

two months of the program were both more fuel efficient and less expensive than

11In principle, we could create time windows that are even more refined than months (e.g. weeks
or days) in order to explore equalization of purchase probability. However, our goal is not to define
the exact time window for Texas, as other states could have slightly longer or shorter time windows.
Rather, our goal is to show that we find results very similar to other studies, and show that our
results on stimulus spending are robust to slightly longer and shorter monthly time windows, as we
do in section 2.3.3.
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vehicles purchased by ineligible households. Corresponding regression estimates are

shown in Panel A of Table B.2, which shows estimates for bandwidths of 9, 7, and

5 MPG, and for polynomial fits ranging from cubic to linear. Estimates in Panel A

indicate that vehicles purchased by eligible households were rated 1.3 to 1.7 MPG

higher than vehicles purchased by ineligible households. All estimates are statistically

significant (p<.001). Estimates also indicate that the transacted price of vehicles

purchased by eligible households was an average of $2,500 to $3,000 less than for

vehicles purchased by ineligible households during the program. Thus, it is clear

that vehicles purchased under the program were both less expensive and more fuel

efficient than those purchased by ineligible households during the program.

There are two potential explanations for this finding. On the one hand, the pro-

gram could have induced households to purchase vehicles that were less expensive

and more fuel efficient than they otherwise would have. On the other hand, the dif-

ferences shown in Figure B.5 could be driven entirely by the acceleration of purchases

by households who otherwise would have purchased the same fuel efficient and less

expensive vehicles in the months following the program.

To assess these explanations, we examine the characteristics of vehicles purchased

over the entire ten month window, during which there was no net impact on the

likelihood of purchase. Thus, while there is reason to believe that the composition

of new car buyers may be different across the cutoff during the two months of the

program, there is little reason to believe so over the ten month window. That is

because at the start of the program, all of these buyers were going to buy a new vehicle

in the next ten months. The only difference is that the barely eligible households

were incentivized to purchase more fuel efficient vehicles (and to do so sooner) than

barely ineligible households.

Results are shown in Figure B.6, which shows that even over the ten month period
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during which there was no net effect on the likelihood of purchase, there are visu-

ally compelling discontinuities indicating that barely eligible households purchased

vehicles that were more fuel efficient, but less expensive. Corresponding regression

discontinuity estimates are shown in Panel B of Table B.2. Estimates are shown for

bandwidths of 9, 7, and 5 MPG, and for fits ranging from cubic to linear. Estimates

indicate that over this ten month period, eligible households were induced to pur-

chase vehicles rated between 0.6 and 1.0 MPG higher than vehicles they would have

purchased absent the program.

Importantly, these estimates show that in order to purchase more fuel efficient

vehicles, the barely eligible households spent between $1,400 and $2,200 less per

vehicle than barely ineligible households. All estimates are statistically significant at

conventional levels. This is consistent with West, Hoekstra, Meer, and Puller [2014],

who show that vehicles purchased by the barely eligible tend to be smaller and have

less horsepower per pound of vehicle weight. To confirm that the types of vehicles

purchased did change, we show estimates of the effect on vehicle MSRP. The RD

estimates using MSRP show that the barely eligible households purchased different,

cheaper vehicles over the ten month period.

As discussed earlier, these estimates represent intent-to-treat estimates. Given

the discontinuity in the likelihood of receiving the subsidy of around 37 percentage

points shown in Panel (b) of Figure B.3, this suggests that each buyer under the

program spent on average between $3,800 and $5,900 less on a new vehicle than they

otherwise would have.

We can provide some perspective for this estimate of reduced spending in terms of

specific vehicles. Our estimated average treatment effect represents averaging across

some households for whom the fuel efficiency restriction was binding and some for

whom it was not. Thus, it is likely that some households treated with the subsidy
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“downsized” while others purchased the same vehicle that they would have purchased

absent the subsidy. For illustration purposes, suppose that our estimated average

spending reduction represents half of households downsizing and half not changing

the vehicle purchased. Under this scenario, the downsizing households purchase a

vehicle that is around $9200 cheaper with a fuel economy that is 4.3 MPG higher

(the estimated treatment effects divided by 0.5). This difference represents roughly

a downsize from a Chevrolet Equinox SUV to a high trim line Toyota Corolla.

In summary, our analysis yields two primary results. The first is that consistent

with previous research, we show that the increase in purchases during the two month

Cash for Clunkers program was entirely offset by a reduction in purchases over the

following seven to nine months. Second, and more importantly, the fuel efficiency re-

strictions of the program led to a substantial change in the type of vehicles purchased.

We show that during the two month program and in the 8 months that followed,

eligible households purchased vehicles that were an average of $1,700 less expensive,

which translates to around $4,600 less per vehicle purchased under the program.

Thus, the fuel efficiency restrictions of the program appeared to significantly reduce

new vehicle spending over a period of less than a year.12

2.3.3 Robustness and Threats to Identification

2.3.3.1 Sensitivity to Time Window

One potential limitation of the analysis presented above is that while we believe

there is strong evidence in Figure B.4 that Cash for Clunkers had no net effect

12This finding is even more stark that the results of Li and Wei [2013], who estimate structural
parameters from a dynamic discrete choice model of vehicle ownership to quantify the tradeoffs
between objectives of “green stimulus” programs. Their model parameters imply that more vehicles
would have been sold under an alternative policy that subsidized scrappage but did not attach fuel
economy restrictions on the new vehicles. In contrast to Li and Wei, our paper finds that the
stimulus effect was not only smaller but actually negative under the Cash for Clunkers policy with
fuel economy restrictions.
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on the likelihood of purchase over some time period around ten months, the exact

time window is somewhat ambiguous. Consequently, we test the robustness of our

main results on both fuel economy and new vehicle spending (i.e. price) to various

windows. In doing so, we focus primarily on the local average treatment effect, which

represents how much less each household that was subsidized by the program spent

as a result of the fuel efficiency restrictions. We find that the LATE estimate of

reduced vehicle spending is very robust to the time window.

Robustness results are shown in Table B.3. This table reports estimates for time

windows ranging from 9 months to 14 months. We use a bandwidth of 9 MPG

and a cubic fit with controls. As one would expect, the reduced-form estimate

decreases as the time window expands because we are adding months in which the

program was not in effect. For the same reason, the first-stage estimate falls as the

window is lengthened. However, estimates remain both statistically significant and

economically meaningful, and indicate that eligibility induced households to purchase

vehicles that were rated 0.6 to 1 MPG higher than the vehicles they otherwise would

have purchased.

Perhaps more importantly, column 3 shows that the local average treatment

effect (i.e., the reduced-form estimate reweighted by the magnitude of the first stage)

remains remarkably consistent, varying only from 2.6 to 2.7 MPG. Thus, even if one

were to believe that it took 14 months rather than 9 months for the sales effect of the

program to be completely offset, it does not change the conclusion that the policy

induced households to buy significantly more fuel efficient vehicles.

Results for both transaction price and MSRP are similarly robust. While we

observe that as expected both reduced-form and first-stage estimates decline as the

window is lengthened from 9 to 14 months, the local average treatment estimates

remain stable at around -$5,000. This demonstrates that regardless of the exact time
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period during which one thinks the sales effect of the program was offset, there is ro-

bust evidence that the program significantly shifted purchases toward less expensive

vehicles.

2.3.3.2 Identifying Assumption of the Regression Discontinuity Design

Another potential concern with the above analysis is whether the identifying as-

sumption of the regression discontinuity design is valid. For example, while it is

difficult for us to construct a plausible story as to how households could have manip-

ulated where they were relative to the eligibility threshold, one might be concerned

that policymakers endogenously selected the cutoff based on household characteris-

tics such as income.

We address this issue in two ways. First, we use the spring 2009 National House-

hold Travel Survey to ask whether there are discontinuities in potentially important

household characteristics that determine vehicle purchasing behavior.13 Assessed

characteristics include the number of adults living in the home, the number of weekly

travel days, the log of household income, the proportion living in an urban area, the

proportion living in a house, and proportion white. As shown in Figure B.7, there is

no evidence of visually compelling discontinuities in any of these variables, consistent

with the identifying assumption.

In addition, we examine whether the vehicle purchasing behavior was different

for barely eligible households than barely ineligible ones in the year before Cash for

Clunkers. Specifically, we analyze the households that purchased during July and

August 2008, including the same calendar months in the year prior to the program.

Figure B.8 shows results for the probability of purchasing a new vehicle, the fuel

economy rating of those purchases, and the transaction price of those purchases.

13The National Household Travel Survey includes information on household demographic charac-
teristics, vehicle ownership, and travel information for a representative sample of U.S. households.
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Panel (a) of the Figure shows no evidence of a visually compelling discontinuity,

suggesting that households on either side of the cutoff do not differ meaningfully in

their underlying propensity to purchase a new vehicle.14 Likewise, households on

either side of the cutoff purchased vehicles in 2008 that were similarly priced and

had similar fuel economy, as shows in panels (b) and (c). Importantly, these three

graphs for 2008 – the year prior to the program – are distinctly different from the

corresponding figures for the two months of the Cash for Clunkers program in 2009

(Figure B.4(a) and Figure B.5(a) and (b)).

Lastly, we examine the characteristics of households who bought during Cash for

Clunkers or in the eight months that followed. Our identifying assumption requires

that these households be similar across the cutoff. Our administrative data allow us

to compare characteristics of household vehicle fleets for households whose clunker

is just above and below the eligibility cutoff. Results are shown in Figure B.9. As

shown in panel (a), there is little evidence of a difference in the number of vehicles

owned by these households. Also, we compare the fuel economy of the other vehicles

– the non-clunker vehicles – in the households’ fleets (we exclude the clunker because

it is by definition smooth through the eligibility threshold). As shown in panel (b),

if anything, barely eligible households owned vehicles that were slightly less fuel

efficient. Assuming this represents a persistent difference in household preferences,

it suggests that our main estimates may slightly understate the increase in fuel

efficiency induced by the program. Importantly, there is little evidence that barely

eligible households purchase less expensive vehicles generally than barely ineligible

14We note, however, that due to the large sample size, even discontinuities of small economic
magnitude such as those shown in Figure B.8 are statistically significant. For example, using a
cubic fit and a bandwidth of 9 MPG, the estimated discontinuity in panel (a) of Figure B.8 is two-
tenths of a percentage point. This estimate is significant at conventional levels and of approximately
the same magnitude as the discontinuity in the probability of purchase for the eleven month post
period from July 2009 - May 2010.
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households, as shown by the lack of a discontinuity in the MSRP of non-clunker

vehicles in panel (c).

2.4 Interpretation and Discussion

As described above, the main finding of our paper is that while Cash for Clunkers

did accelerate the timing of purchases, it also reduced new vehicle spending. Specif-

ically, we find that over a period of less than one year, eligibility for the program

is associated with a reduction in spending of between $1,400 and $2,200 per new-

car-buying household. This scales to a $3,800 to $5,900 reduction in spending per

household that purchased a vehicle with the subsidy.

To translate these estimates into the effect of the program on the national auto

industry, we perform a straightforward back-of-the-envelope calculation. There were

a total of 677,238 clunker trades in the U.S. Under the assumption that our local

average treatment effect also represents the average treatment effect for all Cash for

Clunker purchases nationally, this suggests that the CARS program reduced new

vehicle spending by $2.6 billion to $4.0 billion. Thus, our estimates indicate that the

Cash for Clunkers program – while designed to provide stimulus to the auto industry

– actually reduced industry revenues by around $3 billion over a period of less than

a year.

One could argue that this decline in industry revenue over the medium run could

be justified to the extent the program offered a cost-effective environmental bene-

fit. Unfortunately, the existing evidence overwhelmingly indicates that this program

was a costly way of reducing environmental damage. For example, Knittel [2009]

estimates that the most optimistic implied cost of carbon reduced by the program

is $237 per ton, while Li et al. [2013] estimate the cost per ton as between $92 and

$288. These implied cost of carbon figures are much larger than the social costs of
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carbon of $33 per ton (in 2007 dollars) estimated by the IWG on the Social Cost of

Carbon [Interagency Working Group, 2013].

2.5 Conclusions

In this paper, we examine the stimulus impact of the Cash for Clunkers program

on new vehicle purchases and overall new vehicle spending. We do so by using

a regression discontinuity design that compares households barely eligible for the

program to barely ineligible households.

Consistent with the existing literature, we show that while the program signifi-

cantly increased the number of vehicles sold during the two months of the program,

this entire increase represented a shift from sales that would have occurred in the

following seven to nine months. Thus, over a 9 to 11 month period, the program had

no impact on the number of vehicles sold.

Strikingly, however, we show that over a 9 to 11 month period, including the 2

months of the program, Cash for Clunkers actually reduced the amount of money

spent on new cars by 2 to 4 billion dollars. We attribute this to the fuel efficiency

restrictions imposed on new vehicles that could be purchased with the subsidy, which

induced households to buy smaller and less expensive vehicles. In short, by lowering

the relative price of smaller, more fuel efficient vehicles, the program induced house-

holds to purchase vehicles that cost between $4,000 and $6,000 less than the vehicles

they otherwise would have purchased.

Thus, while the stimulus program did increase revenues to the auto industry in

the short run, the environmental component of the bill actually lowered new vehicle

spending over the medium run by inducing people to buy more fuel efficient but less

expensive cars. More generally, our findings highlight the difficulty of designing poli-

cies to achieve multiple goals, and suggest that in this particular case, environmental
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objectives undermined and even reversed the stimulus impact of the program.

27



3. HOW DO HOUSEHOLDS RESPOND TO INCREASES IN FUEL

ECONOMY? REGRESSION DISCONTINUITY EVIDENCE

The negative externalities associated with gasoline consumption have been well-

documented, and range from the effects of vehicle emissions on health (e.g. Currie

and Walker [2011] and Knittel et al. [2011]) to national security concerns (e.g. Na-

tional Research Council [2013]) to the impact of carbon emissions on climate change

(e.g. Interagency Working Group [2013]). The current level of gasoline taxes in the

U.S. is generally thought to be insufficient to correct for these externalities (Mc-

Connell [2013]).

However, one possible policy to address these externalities - increasing Pigouvian

taxes - is widely considered to be politically infeasible.1

As a result, United States transportation policy primarily targets the fuel effi-

ciency of vehicles sold by imposing Corporate Average Fuel Economy (CAFE) re-

quirements.2

While these fuel economy standards have largely remained constant for last two

decades, the federal government recently set ambitious new standards for the fuel

economy of new cars. It is projected that the new standards will increase the average

fleet-wide fuel economy of new vehicles to over 50 miles per gallon by 2025, compared

to 29 miles per gallon in 2011.

However, increasing the fuel economy of the vehicle fleet will not necessarily

lead to a proportionate reduction in fuel consumption. An increase in fuel economy

1See Knittel [2013] for a history of the (lack of) political support for increasing the gasoline tax
dating back to the Nixon administration.

2Extensive research has studied the inefficiencies associated with using fuel economy standards
rather than a gasoline tax; see for example Jacobsen [2013], Fischer et al. [2007] and Portney et al.
[2003].
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reduces the price per mile of driving, which is the price per gallon of fuel divided by

the miles per gallon fuel economy. If households respond to the lower marginal cost

of driving by increasing vehicle miles traveled, then the effectiveness of this policy in

reducing fuel consumption is undermined.3

This problem, originally called the Jevons paradox, is a more general shortcoming

of energy efficiency standards. In the case of transportation, this “rebound” or

“take-back” effect implies that an increase in fuel efficiency will cause a less-than-

proportional decrease in fuel consumption.4

Unfortunately, the existing empirical literature on the rebound effect, while speak-

ing to the effects of gasoline taxes, is not well-positioned to assess the impact of

increases in fuel economy on driving behavior. Much of this literature uses variation

in the price of gasoline to estimate changes in vehicle miles traveled, with the goal

of understanding the effect of changing the price per mile of driving while holding

characteristics of a household’s vehicles constant. The policy analog of this effect is

raising the price of gasoline, perhaps via a tax, while keeping drivers in cars with the

same vehicle characteristics.

Understanding the effects of policies that increase fuel economy standards re-

quires one to estimate something different. Requiring that vehicle manufacturers

3Estimates of rebound that receive considerable policy attention are from recent papers by Small
and van Dender [2007] and Hymel and Small [2013]. These papers use a representative consumer
model that is aggregated to match state-level panel data and simultaneously model the choice of
vehicles, vehicle miles traveled (VMT), and fuel economy. Surveys of research on the rebound
effect include Gillingham, Rapson, and Wagner [2013b], Austin [2008] and Greening, Greene, and
Difiglio [2000]. In addition, a rich literature has modeled the choice and utilization of vehicles in
the process of addressing a host of other policy questions; for example see Mannering and Winston
[1985], Goldberg [1998], West [2004], Fullerton and Gan [2005], Bento, Goulder, Jacobsen, and von
Haefen [2009], Gillingham [2012], and Allcott and Wozny [Forthcoming].

4The rebound effect that we address is often referred to as the “direct rebound effect”, addressing
the use of the energy-utilizing good that has become more energy efficient. Other income and
substitution responses could lead to indirect effects, and macroeconomic effects could exist as well.
See Borenstein [2013] for a detailed theoretical discussion and Gillingham et al. [2013b] for a review
of the empirical literature.
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sell more fuel efficient vehicles is also likely to change the other characteristics of

the vehicles that are offered. Improvements in the energy efficiency likely leads to

reductions in power, weight, and size.5 Thus, an understanding of the likely effects

of CAFE standards necessitates estimating how households respond to vehicles that

are both more fuel efficient and smaller and less powerful, as dictated by the tech-

nological tradeoffs of vehicle manufacturing. This is a different form of “rebound”

that addresses a different policy question than the rebound effect estimated in much

of the existing literature. Gillingham et al. [2013b] refer to this form of rebound as a

“policy-induced improvement” and argue that the size of this effect is more relevant

for understanding the effects of energy efficiency policy such as CAFE.6

Estimating the driving response to fuel economy standards is a challenge without

credibly exogenous variation in fuel economy of the vehicle fleet. Absent such vari-

ation, researchers must turn to data on purchase decisions and driving behavior to

estimate the driving response to fuel economy. But credibly estimating this effect is

difficult because of the selection problems inherent in individuals’ choice of vehicle.

If, for example, drivers with (unobservably) longer commutes choose to drive vehi-

cles with higher fuel economy compared to owners of less-efficient vehicles, rebound

estimates from this comparison will be overstated. On the other hand, if low-income

buyers choose to drive smaller, less expensive vehicles with higher fuel economy com-

pared to high-income buyers who both drive more and own less-efficient vehicles, then

5See Knittel [2011] and Klier and Linn [2012] for an analysis of the technological tradeoffs of
fuel economy standards.

6Put slightly differently, an MPG-induced change in the price per mile of driving is likely to cre-
ate both ‘movement along’ and ‘shifting in’ of the derived demand curve for VMT. See Gillingham
et al. [2013b] for a thorough discussion of the definitions, estimation, and caveats of interpreting
rebound effects. They note that many caveats are necessary when interpreting results from the ex-
isting literature, including that estimates do not capture changes in characteristics that accompany
efficiency improvements. With those caveats in mind, they summarize estimates of the (direct)
rebound effect ranging from 5 percent to 40 percent with most estimates in the range of 5 to 25
percent.
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rebound may be understated. In addition, within-household substitution of driving

across vehicles can also lead to biased estimates when using vehicle-level data not

linked at the household level. For example, if a household replaces a medium-MPG

minivan with a high-MPG small sedan, it may well substitute miles toward its other

vehicle – say, a low-MPG SUV – which would cause the researcher with vehicle-level

data, unable to observe this shift, to overstate the fuel savings. On the other hand,

the household may instead substitute miles from the low-MPG SUV to the high-

MPG sedan, which would yield larger fuel savings than expected. As a result, it is

clear that any attempt to estimate the rebound effect must overcome both of these

problems.7

Ideally, identification would be based upon plausibly exogenous variation in fuel

economy. But given the absence of such variation, researchers have relied instead

on another empirical strategy. In a theoretical model of driving, households choose

the number of miles driven in response to the price per mile of transport – the price

of gasoline divided by fuel economy. Given the absence of exogenous variation in

fuel economy, much of the existing literature has exploited variation in the price of

gasoline.

This approach using gasoline price variation is limited in its ability to evaluate

the effects of fuel economy standards. First, as stated above, it is more suited to

addressing gasoline taxes than fuel economy standards because it does not account for

changes in vehicle characteristics that accompany increases in fuel economy. Second,

setting aside the issue of other vehicle characteristics, households may not respond

symmetrically to increases in fuel economy as to decreases in gasoline price. Indeed,

there are several reasons to believe that households will respond differently to changes

7Knittel and Sandler [2013] show evidence of within-household substitution of miles between
vehicles.
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in fuel economy and gasoline prices. For example, changes in fuel economy are more

certain than changes in gasoline prices, and may therefore induce larger behavioral

adjustments.8 On the other hand, households may respond more to changes in

gasoline prices than to equivalent changes in fuel economy because gasoline prices

are more salient [Gillingham et al., 2013a].9 For these two reasons, rebound effects

derived in part from using variation in gasoline prices may not be informative as to

the effect of CAFE standards, the primary way the U.S. attempts to reduce gasoline

consumption.

In this study, we estimate the effects of fuel economy on driving behavior using

quasi-random variation in the fuel economy of a household’s vehicle fleet. To mo-

tivate our source of quasi-random variation, it is useful to begin by considering the

ideal experiment. We would identify a set of households who were definitely going

to purchase a new car in the next so many months. Then we would randomly as-

sign a subsidy to purchase a high-MPG car, and compare the subsequent driving in

households who were treated and untreated.

We identify the rebound effect by exploiting a discrete cutoff in eligibility for

the 2009 Cash for Clunkers program that subsidized the purchase of new fuel effi-

cient vehicles when households scrapped fuel inefficient “clunkers”. Households that

owned clunkers with a fuel economy of 18 MPG or less were eligible for the subsidy,

while households owning clunkers with an MPG of 19 or more were ineligible. This

program could have two effects, both of which are discontinuous at the cutoff. First,

8For example, Linn [2013] illustrates this possibility with a model of adjustment costs to changing
VMT over time.

9In fact, Li, Linn, and Muelegger [2012] show that even when restricting attention to gasoline
price variation, households respond differently to the tax versus the non-tax component of gasoline
price. They find that this differential response affects gasoline consumption but not VMT, which
suggests even more nuanced heterogeneity in household behavior. More generally, a broader litera-
ture suggests that consumers may not respond symmetrically to all components of a price [Chetty,
Looney, and Kroft, 2009].
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the program could change the fuel of economy of new cars that are purchased. Sec-

ond, the program could change the set of households who purchase new vehicles by

inducing some households to purchase who otherwise would not be in the market for

a new car. The ideal experiment measures the first effect.

If the second effect is present and the set of households induced to purchase by

the program differs in driving behavior from those who were already in the market

for a car, then this approach could create bias. Therefore, as we describe below, we

perform a number of placebo tests to show that any bias is likely to be minimal.

We do so by using data on vehicle registrations in Texas matched to data on

annual odometer readings taken during state emissions tests. We focus on households

that purchased a new vehicle in 2009, including those who purchased under the

program and those who did not. We show that new car buyers whose “clunker” was

barely eligible for the subsidy purchased substantially more fuel efficient vehicles than

new car buyers whose “clunker” barely exceeded the 18 miles per gallon maximum

fuel economy allowed to qualify for the program. Importantly, given the nature of

the program, we have every reason to believe that this difference in household fuel

efficiency arose as a direct result of the restrictions imposed by the Cash for Clunkers

program, rather than from differences in unobserved driving habits or preferences. As

a result, we find this approach to be considerably more compelling than one based

on panel data, where one might worry that a change in household fuel economy

over time is caused by changes in unobserved income or commute distance, which

themselves would affect vehicle miles traveled.

The identifying assumption of our study is that all other determinants of vehicle

miles traveled in 2010 are continuous across the eligibility cutoff. Under that assump-

tion, any discontinuity in vehicle miles traveled at the cutoff is properly interpreted

as the causal effect of the change in household fuel economy. Several factors give us

33



confidence that this identifying assumption holds. First, Mian and Sufi [2012] and

Hoekstra, Puller, and West [2014], among others, show that Cash for Clunkers did

not fundamentally alter the total number of car purchases but rather led to a in-

tertemporal shift ahead of purchases by about ten months. As a result, there is little

reason to believe that those who were replacing vehicles barely eligible for the Cash

for Clunkers program were meaningfully different types of consumers from those re-

placing vehicles that were barely ineligible for the program. Second, we show that in

the year prior to the program, new car buyers barely eligible for the program drove a

similar number of miles as those barely ineligible for the program. This implies that

the two groups of households were similar with respect to their underlying driving

behavior, consistent with the identifying assumption. Third, we find no evidence that

new car buyers barely eligible for the program experienced worse negative income

shocks - as proxied by the level or change in the likelihood of financing the new car -

than the other new car buyers. Similarly, we show that there was no discontinuity in

the likelihood of moving to a new residence after 2008 across the eligibility threshold,

which indicates there is no evidence of time-varying changes in commutes. In short,

we find that new car buyers on either side of the threshold were similar with respect

to both time-invariant and time-varying determinants of vehicle miles traveled.

Our results show that despite the significant increase in fuel economy, households

do not respond by driving more miles. Point estimates are small, negative, and not

statistically different from zero. As we show below, the households increasing fuel

economy purchased vehicles that were smaller, lighter, and had less horsepower. This

suggests that the net effect of households owning more fuel efficient (but smaller

and less powerful) cars is no change in the amount of total driving. Importantly,

our estimates are sufficiently precise as to rule out large responses in vehicle miles

traveled.
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This paper makes two contributions to the literature. First, to our knowledge, this

is the first paper to exploit credibly exogenous variation in household fuel economy

to identify the effect on driving behavior. As a result, we are able to obtain estimates

that are causal under reasonable assumptions, without the need to impose stronger

assumptions required to model vehicle purchase and driving decisions.

Second, our estimate better captures the policy-relevant parameter for policy-

makers who target fuel economy standards, rather than gasoline prices, in their

attempt to reduce consumption. We identify the rebound effect using variation from

a program that mirrors the policies imposed by CAFE. That is, just as the CAFE

requirements are intended to reduce fuel consumption by changing the composition

of vehicles purchased, Cash for Clunkers similarly restricted the choice set of vehi-

cles for eligible buyers. As a result, we view our estimates as more informative as

to the impact of CAFE on driving relative to approaches that rely on other types of

variation in driving cost.

We emphasize that the driving response we identify is different from the rebound

effect measured in much of the existing literature. Our measured effect includes

both changes in the price per mile and other characteristics, as both are affected if

households choose more fuel efficient cars. In contrast, the rebound effect in much

of the existing literature imagines a change in fuel economy without sacrificing size,

power, comfort and safety. This suggests that at the very least, using rebound

estimates that hold vehicle characteristics constant can overstate the VMT response

to fuel economy standards. This has important policy implications, as the National

Highway Traffic Safety Administration (NHTSA) explicitly accounted for a rebound

effect when it was designing the 2012 Corporate Average Fuel Economy (CAFE)

standards.10

10NHTSA assumed a rebound effect of 10% – that is a 10% increase in fuel economy causes

35



Our findings suggest that, while there are plausible reasons why fuel consump-

tion may not fall as much as predicted in response to changes in fuel economy, the

empirical evidence suggests this is not the case. Rather, our results indicate that

when households are induced to buy more fuel efficient vehicles, they do not respond

by driving more miles in the year after improving fuel economy.

These findings have two important implications for energy efficiency policy. First,

we quantify a parameter of considerable policy interest – the effect of downsizing the

vehicle fleet on vehicle utilization. We argue that our estimate is a more policy-

relevant metric than many estimates in the existing literature for understanding

how the downsizing of an individual household’s fleet affects vehicle miles traveled.

Inducing households to choose more fuel efficient cars among the current set of vehicle

offerings is not likely to increase a household’s total driving and exacerbate driving-

related externalities. This should give policymakers some cause for optimism, as

it suggests that second-best strategies such as CAFE used to combat the negative

externalities associated with gasoline consumption are more effective than previously

thought.

Second, our results have implications for evaluating the welfare comparisons that

are frequently made between first-best policies such as a gasoline tax and actual en-

ergy efficiency policies such as CAFE. A standard view is that gasoline taxes induce

households to purchase vehicles with the optimal level of fuel economy and then to

drive the fleet the optimal number of miles. Fuel economy standards have been crit-

icized as inefficient on the intensive margin by distorting vehicle utilization relative

to first-best. This paper makes an important point – extensive margin policies can

have countervailing effects on intensive marginal utilization decisions. One effect of

households to drive 1% more, thus “taking back” some of the potential fuel savings. See U.S.
Department of Transportation [2010].
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increasing fuel economy is captured by a price elasticity of driving – altering the

fuel efficiency of the fleet reduces the price per mile of driving. A second effect is a

vehicle elasticity of driving – shifting households to fuel efficient cars with different

characteristics can reduce the utility per mile of driving and thus the amount of

driving. Both of these effects must be captured by a complete welfare analysis to

compare a particular policy to first-best.

Our empirical approach places strong emphasis on identifying causal impacts of

fuel economy by exploiting quasi-random variation in fuel economy, which to our

knowledge is new to the literature. A limitation of this approach is that we are

not in a position to estimate the relative magnitudes of these two elasticities or to

calculate welfare measures. However, our analysis does suggest that that the joint

effect of these two elasticities is zero in the short-run.

3.1 Background and Empirical Strategy

3.1.1 The Cash for Clunkers Program

We exploit the Cash for Clunkers program as a quasi-random source of variation

in the fuel economy of a household’s vehicle fleet. The program, formally known as

the Consumer Assistance to Recycle and Save (CARS) Program, created incentives

for households to replace used, fuel inefficient vehicles with new, fuel efficient vehicles.

The program lasted for eight weeks during the summer of 2009 and offered households

a rebate of $3,500 or $4,500 towards the purchase of the new fuel efficient car when

they scrapped their “clunker.” A requirement of the program was that the clunker

had to be taken off the road and scrapped; thus the rebate could be viewed as

the trade-in value of the old car from the perspective of the household. Due to the

scrappage requirement, the program attracted relatively older and low value vehicles.

The average age of scrapped clunkers was 13.8 years.
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The CARS Act was signed into law on June 24, 2009 and transactions first

became eligible for rebates on July 1, 2009. Initial take-up of the program was

substantial, and the $1 billion that was allocated under the law quickly ran out.

Congress allocated an additional $2 billion on August 7, and those funds quickly

were exhausted as well. The program ended on August 24 with over 677,000 vehicles

purchased, 44,000 of which were in Texas.

The criteria for eligibility provide us with cutoffs for our regression discontinuity

research design. The clunker must have had a combined EPA fuel economy of 18

MPG or less.11 The vehicle purchased must have been a new vehicle; used vehicles

did not qualify for the rebate. If the new vehicle was a passenger vehicle, it must have

a combined fuel economy of at least 22 MPG. In the case of passenger vehicles, if the

difference in fuel economy between the new passenger car and clunker was between

4 and 9 MPG, the rebate was $3500, and if the difference was 10 MPG or more, the

rebate was $4500. If the new vehicle was a Category 1 Truck (e.g. SUV or small

to medium pickup truck), a 2-5 MPG difference between the new truck and clunker

generated a $3500 rebate while an improvement of 5 or more MPG generated a $4500

rebate.12 Busse, Knittel, Silva-Risso, and Zettelmeyer [2012] find that dealerships

passed on nearly 100% of the rebates to customers.

These criteria create a discontinuous eligibility threshold – households who owned

clunkers that had fuel economy of 18 MPG or less were eligible for CARS rebates

whereas households with 19 or more MPG clunkers were not eligible. Below, we

describe how we use our data to classify each household’s eligibility status.

11There were additional requirements that the clunker be in drivable condition, no more than 25
years old, and continuously insured and registered in the same owner’s name for one year prior to
the transaction.

12Separate criteria applied to Category 2 (large pickups or large vans) and Category 3 trucks
(work trucks), but we do not discuss those here because there were so few of these vehicles. For
a complete set of eligibility criteria, see the NHTSA rules in the Federal Register available at:
http://www.nhtsa.gov/CARS-archive/official-information/day-one.pdf
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CARS transactions resulted in an increase in the fuel economy of the vehicle fleet

for those households that purchased under the program. The average fuel economy

of the scrapped clunker was 15.8 MPG while the average fuel economy of new cars

purchased under the program was 24.9 MPG.13 We should note that we do not

evaluate the CARS program directly; rather we use the program design as a source

of quasi-random variation in fuel economy. A separate literature has evaluated how

well CARS achieved program objectives (for example, see Knittel [2009], Copeland

and Kahn [2013], Busse et al. [2012], Mian and Sufi [2012], Li, Linn, and Spiller

[2013], and Hoekstra, Puller, and West [2014]).

3.1.2 Empirical Strategy

We use a regression discontinuity design to estimate the impact of an exogenous

increase in fuel economy on vehicle miles traveled. Intuitively, we compare households

whose “clunkers” were barely above the CARS eligibility cutoff of 18 miles per gallon

to those whose barely qualified. Importantly, we focus our analysis on new car buyers,

rather than all car owners. We do this because we otherwise cannot disentangle the

effect of driving a more fuel efficient car from the effect of driving a newer car.14 In

section 3.3.1, we present evidence that this does not confound our estimates.

Formally, we estimate the following equation:

Outcomei =β0 + β1 ∗ f(distance-to-cutoffi) ∗ eligiblei +

β2 ∗ f(distance-to-cutoffi) ∗ (1 − eligiblei) + β3 ∗ eligiblei + εi

where the outcomes are the logarithms of MPG, VMT, and gallons of fuel consump-

tion by household i in the year after the program (2010).

13C.A.R.S. Program Statistics, 2009, are available from the NHTSA.
14In addition, the number of new cars purchased under the Cash for Clunkers program is small

relative to the total stock of vehicles in Texas, making the increase in fuel efficiency across all
households at the eligibility cutoff statistically and economically undetectable.
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Eligiblei is an indicator equal to 1 if the household is classified as being eligible

for the program (i.e., the most trade-in-likely vehicle had an MPG rating of 18 or

less). We control for a different quadratic relationship between the running variable

and the outcome on each side of the eligibility threshold, though we show results of

linear specifications as well.

The coefficient of interest is β3, which measures the jump in the outcome when

going from just-ineligible to just-eligible for the Cash for Clunkers program.

To be sure, this analysis is not sufficient to estimate the complete set of effects of

future CAFE standards on driving for several reasons. First, our approach estimates

the treatment effect for households with “clunker” fuel economy around 18 MPG

and does not speak to how other households respond to increases in fuel economy.

We should note however that 18 is not far below the average fuel economy for older

vehicles in the fleet and that the potential fuel savings from efficiency improvements

is larger for lower fuel economy cars. Second, we capture changes in driving behav-

ior in the year after fuel economy improvements occur. Other behavioral changes

such as work or residential location that may take longer to occur are not captured.

And third, our analysis measures household response given the current technological

tradeoffs between fuel economy and other vehicle characteristics. Future techno-

logical innovation by automakers could change the vehicle features that must be

sacrificed to improve fuel efficiency.

The identifying assumption of this approach is that all other determinants of

VMT in 2010 varied smoothly across the Cash for Clunkers eligibility cutoff. There

are several potential threats to identification, however as we show below in sec-

tion 3.3.1, we do not find evidence of these identification problems.

First, one might be concerned that the 18 MPG cutoff was chosen by the gov-

ernment in a strategic manner, such that households who were barely eligible were
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different from those barely ineligible. For example, the government could have cho-

sen the cutoff to target certain types of vehicles or certain vehicle manufacturers,

which might lead to vehicle owners have different characteristics on either side of

the eligibility threshold. However, we find no evidence of this form of manipulation

– we show that households vary smoothly through the discontinuity across a large

number of demographic characteristics.15

A second, and potentially more serious, concern is that the program changed

the set of households who purchase a car, and that the households induced to buy

a car are different in a dimension that affects driving behavior. Specifically, our

sample includes all households who purchased a car during the months when the

Cash for Clunkers Program was underway. The “barely ineligible” set consists of

households who purchased a car without any program inducement. However, the

“barely eligible” set consists of some households who would have purchased a car

anyway (but chose a more efficient car due to the program incentive), and possibly

a set of households who only chose to buy a new vehicle because of the program.

Are the households induced to purchase cars different from those households who

would have purchased in absent the program? Because we find that the barely

eligible households did not drive more in the year after the program, one might be

concerned that the set of households induced to purchase were households who either

drove less on average or were subject to more negative economic shocks that affect

driving.

However, as we show below, the empirical evidence suggests that these concerns

are not warranted. In the year prior to the program, the barely eligible households

were very similar in the fuel economy of their fleets, and if anything drove slightly

15Manipulation by the households was even less plausible. Because households were required to
own the “clunker” for one year prior to trade-in, there was little scope for households to manipulate
where they were relative to the cutoff.
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more prior to the program, which would bias against our findings. Moreover, we find

that the barely eligible households are not more likely to have faced time-varying eco-

nomic shocks that impact driving such as moving to a different residence or financing

the new vehicle.

These findings suggest that selection into our sample does not bias us towards

finding that households do not drive more miles in response to owning more fuel

efficient vehicles. This is not surprising given recent research that evaluated the Cash

for Clunkers Program. Mian and Sufi [2012] show that new vehicles purchased under

Cash for Clunkers represented an intertemporal shift ahead of total purchases by less

than a year. As a robustness test, we expand our sample to include all households

that purchased a vehicle from the beginning of the Cash for Clunkers program for

the next 12 months. We show that this definition of a purchase window implies that

among all households in Texas, the barely eligible are just as likely to buy a new

car as the barely ineligible, consistent with Cash for Clunkers causing merely an

intertemporal shift ahead of purchases. When we use this 12 month sample window,

we obtain estimates that are quantitatively similar to our primary findings. These

identification tests, taken together, suggests that many of the households induced to

purchase under Cash for Clunkers may have been in the market for a new car in the

near year anyway, and thus were not meaningfully different from the households who

purchased without program inducement.

In summary, while we cannot be absolutely certain that the identifying assump-

tion of our research design is valid, we note that we find little evidence to refute it,

and considerable evidence to support it.

42



3.2 Data

Our empirical setting is Texas, the second largest U.S. state as measured by ei-

ther population or consumption of gasoline for transportation.16 We use several large

administrative databases in Texas for our study. First, to determine household-level

vehicle fleets and ownership spans, we use confidential vehicle registration records

maintained by the Texas Department of Motor Vehicles (DMV). In addition to pro-

viding a measure of a household’s vehicle fleet, these records include the unique

vehicle identification number (VIN) for each registered vehicle.

Our measure of vehicle-level miles traveled (VMT) is computed from odometer

readings recorded during annual vehicle emissions tests, which we link by VIN. An

important institutional feature for our study is that emissions tests are required

annually for each vehicle older than two years in seventeen EPA non-attainment

counties, a more stringent requirement than that mandated in many states. These

counties include the areas surrounding Houston, Dallas-Fort Worth, Austin, and El

Paso.17 Although Texas is sometimes stereotyped as having more trucks and heavy

vehicles than other states, the mix of vehicles in these four urban areas is very similar

in terms of fuel economy to that in many urban areas across the U.S. (see, e.g.,

Busse, Knittel, Silva-Risso, and Zettelmeyer [2012]’s Figure 9 on fuel economy for

each Census tract in the country). From these two databases, we calculate household

vehicle ownership, VMT, and annual fuel consumption. We provide details on this

process in Appendix A.

16Measures of state-level gasoline consumption by end use are available for 2011 from the U.S.
Energy Information Administration at http://www.eia.gov/state/seds/sep_fuel/html/pdf/

fuel_mg.pdf. Combined, California and Texas account for approximately twenty percent of U.S.
population and gasoline consumption.

17The Texas Commission on Environmental Quality (TCEQ) provided us with emissions test
records for vehicles in the seventeen EPA non-attainment counties in Texas, which are shown in
Figure B.10. While these counties comprise only 7% of the 254 counties in Texas, they include four
of the largest metropolitan areas and nearly 60% of the state’s population.
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To determine vehicles’ fuel economy and other vehicle characteristics, we decode

each VIN using a database obtained from DataOne Software. We compute a house-

hold’s annual fuel economy by averaging the EPA combined miles per gallon of its

vehicle fleet, weighted by the days within the year that the household owned each

vehicle.18 Importantly, we do not weight by VMT of the different vehicles because

the treatment that we want to evaluate is the effect of making a household’s fleet

comparatively more efficient. In addition, since the focus of our study is on house-

hold drivers, rather than institutional fleets, we follow Knittel and Sandler [2011]

in restricting our analysis to households that owned no more than seven vehicles in

2010.

We classify each household’s distance from the CARS eligibility cutoff – the run-

ning variable in our regression discontinuity design – via a propensity score estima-

tion. Intuitively, we want to know which vehicle in a household’s fleet is most likely

to be removed from the fleet when a new car is purchased, and use the MPG of

that “clunker” to classify the household relative to the eligibility cutoff. Because the

CARS program required that the clunker be scrapped in return for the subsidy of

$3500-$4500, we would expect the scrapped vehicles to be older, lower value vehicles

that the household has owned for a longer period of time.

To classify each household, we begin by merging VINs that were actually scrapped

under the CARS program in 2009 to the CARS database available from the National

18It is not a priori obvious which metric of average household fuel economy is most suitable.
If a multi-vehicle household drives each vehicle the same number of miles, then the harmonic
mean may be appropriate. However, experimental research has shown that consumers do not
properly understand the non-linear relationship between fuel expenditures and MPG (Larrick and
Soll [2008]), so households may mentally calculate the average MPG across vehicles in a manner
than differs from the harmonic mean. Other possible metrics that could capture actual decision
making include the log of the arithmetic average and average of the log MPG. Given the literature
on ‘MPG illusion’, it is not obvious which metric is most appropriate. Therefore, we estimate our
models separately using each metric, and find that the estimates do not meaningfully differ across
definitions. In this paper, we report estimates using the log of the arithmetic average, but results
with the two other metrics are available upon request.
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Highway Transportation Safety Administration.19 Then, similar to Busse, Knittel,

Silva-Risso, and Zettelmeyer [2012], we use the stock of vehicles as of 2008 for house-

holds we match to actual CARS trades to estimate which vehicle characteristics

increase the likelihood of a vehicle being a CARS trade. We regress an indicator

equal to one for a CARS-traded vehicle on dummies for vehicle type, body style,

number of doors, and all- or four-wheel drive, along with the linear, square, and cu-

bic of manufacturer suggested retail price (MSRP), curb weight, horsepower, vehicle

age as of 2009, latest odometer reading prior to 2009, and the number of days that

the household owned the vehicle as of December 31, 2008. Importantly, we do not

include MPG in this propensity model.

Based on the results from this estimation, we predict the likelihood of each vehicle

in our sample being scrapped. Then we use the vehicle in each household’s fleet that

has the largest p-score – i.e. the car most likely to be scrapped – to classify the

household’s distance from the CARS eligibility cutoff. Consider a specific example

– a household with a relatively new Ford F150 (MPG of 16) and a relatively old

Toyota Corolla (MPG of 28). Under a scrappage program providing subsidies of

$3500-$4500, the household would only consider parting with the low value Corolla;

it would not make sense to scrap a high value F150 for a mere $4500 subsidy. Thus,

we want to classify this household as ineligible based upon the high fuel economy of

the Corolla. Any vehicle with a value substantially higher than the maximum subsidy

does not realistically make the household eligible. We have confirmed that our p-

score approach successfully excludes newer and high value cars from the eligibility

criteria of households and instead classifies households by the old/low value cars in

each household’s fleet. These vehicles appear to match quite well the actual vehicles

19Transaction data from the Car Allowance Rebate System (CARS) program are available from
the NHTSA and include the full seventeen-digit VIN for traded vehicles and the eleven-digit VIN
for purchased vehicles.
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scrapped under CARS.

Because we leverage the fuel economy shock provided by the 2009 CARS program,

the time frame of our study is 2010. Our empirical sample is restricted to households

that: (1) owned, as of December 2008, a potential “clunker” obtaining an EPA

combined rating of between ten and twenty-seven miles per gallon (inclusive); and (2)

purchased a new vehicle during the CARS time period in 2009.20 Finally, to provide

additional control variables in several of our specifications, we link households to

tract-level economic and demographic characteristics in the 2000 decennial Census.

Summary statistics for vehicle and household fleet characteristics in 2010, along with

Census 2000 tract-level covariates, are presented in Table B.4.

3.3 Results

3.3.1 Tests of the Identification Strategy

The identifying assumption of our study is that all other determinants of VMT

in 2010 varied smoothly across the Cash for Clunkers eligibility cutoff. This assump-

tion may be violated if, for example, politicians endogenously selected the eligibility

threshold based on the types of vehicles or owners who would qualify. Therefore, we

test this assumption in several ways, first focusing on the entire population of vehicle

owners. Specifically, we use data from the 2009 National Household Travel Survey to

test whether there are discontinuities in household characteristics or demographics

across the eligibility cutoff. Results are shown in Figures B.11 and B.12, which take

the same form as figures following them. The x-axis shows the running variable of

the MPG of the most-likely “clunker” owned by the household, and the y-axis shows

20We classify as new any vehicle that was not previously registered in Texas, was purchased for
more than $4000, and had fewer than 500 miles on its odometer at the time of sale. The Texas DMV
registration database records the date on which the title was officially transferred rather than the
date of a vehicle’s sale, and there is often a lag time of 30-60 days between these dates. To better
correspond to the timing of CARS, our sample includes new vehicles for which the title transferred
between August 1st and October 31st, 2009.
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the outcome variable. Households at 18 MPG and below are “barely eligible”, and

households just to the right of the vertical line are “barely ineligible”. The circles and

triangles represent local averages, where size corresponds to the number of observa-

tions in that cell. We also show fitted lines corresponding to a regression in which we

allow for separate fits of the running variable on either side of the eligibility cutoff.

As shown in Figures B.11 and B.12, there is little compelling visual evidence

of discontinuities in vehicle owner characteristics such as household income, weekly

travel days, or the number of adults, consistent with the identifying assumption.

Corresponding regression results are shown in Table B.5; consistent evidence of a

statistically significant discontinuity is found for only 1 of 12 measures.21,22

As described earlier, our analysis focuses on new car buyers, rather than on

all car owners. We do this because we otherwise cannot disentangle the effect of

driving a more fuel efficient car from the effect of driving a newer car. As a result,

our identifying assumption requires that, for those who bought new cars in 2009, all

other determinants of VMT in 2010 varied smoothly across the eligibility cutoff. Our

first test of this is to examine whether barely eligible buyers had different driving

behavior prior to the program in 2008.

These estimates are shown in Table B.6, with the graphs in Figure B.13 providing

visual evidence. The first row of Table B.6 shows the discontinuity in the log of MPG,

while the second and third rows show estimates for total VMT and total gallons of

fuel consumed, respectively. Estimates are shown for bandwidths of 9 MPG, 8 MPG,

7 MPG, 6 MPG, and 5 MPG.23 Column 1 shows estimates using a bandwidth of 9

21Households with vehicles that barely qualify for the program are 2 percentage points more likely
to be Hispanic.

22We note that in Figure B.11(f) owners of vehicles rated at 19 MPG appear to have idiosyn-
cratically high income. As a result, we have estimated our main results excluding this group of
individuals, and find similar results.

23We do not examine bandwidths larger than 9 MPG because there were only 3 so-called “clunker”
cars in our data with ratings of 9 mpg; all 3 were Ferrari Enzos.

47



MPG, allowing for a quadratic function that is allowed to differ on either side of the

cutoff. Column 2 is the same, except that it includes controls including county of

residence fixed effects and the 2000 tract-level covariates from Table B.4 measuring

population density, income, and other demographics. Columns 3 and 4 are similar

to Columns 1 and 2, except they allow for linear functions of the running variable.

Estimates of the differences in household fuel economy shown in Table B.6 are

statistically significant but economically very small. Estimates are close to 1 per-

cent, which translates to a difference of only 0.19 miles per gallon. Estimates of the

discontinuity in total VMT in 2008 are around 5 percent and are marginally signif-

icant. As a result, estimates are consistent with the visual evidence in Figure B.13

that households that later bought new cars in 2009 and were barely eligible for the

program were, if anything, possibly predisposed toward driving more miles. This

implies that our estimates may overstate the rebound effect somewhat.

The overall similarity in driving patterns across these two groups of new car

buyers in 2008 indicates that for a confounding factor to lead us to understate a

rebound effect in 2010, there must have been a time-varying shock that led barely-

eligible new car buyers to drive less than they would have otherwise. We test for

such a shock in two ways. First, we examine whether there was a discontinuity in

the likelihood of moving to a new residence since 2008. For example, if those barely

eligible for the program were more likely to move closer to work than those barely

ineligible, our rebound estimates may be biased downward. Figure B.14(a) shows

the results, with corresponding regression estimates in Row 1 of Table B.7. In short,

there is little visual or statistical evidence of a discontinuity in the likelihood of

moving, consistent with our identifying assumption.

In addition, to proxy for income shocks over time, we ask whether there is a

discontinuity in the likelihood of financing the new car, relative to the household’s
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historical likelihood of financing new car purchases. Estimates are shown in Row

3 of Table B.7. Consistent with the raw data shown in Figure B.14(c), results

indicate that those barely eligible for the program were actually somewhat less likely

to finance a car in 2009 than they were earlier. While this is not a perfect test, given

the potential for the program to directly affect financing through both the subsidy as

well as the MSRP of the eligible car,24 it does provide evidence that barely-eligible

households were no more likely to suffer a negative income shock between 2008 and

2010 than barely-ineligible households.

3.3.2 Driving Outcomes

We next turn to whether those barely eligible for the Cash for Clunkers program

– that is, those whose “clunkers” had ratings of 18 MPG or less – were more likely

to buy a more fuel efficient new car than those buyers who were barely ineligible for

the program. Results are shown in Figure B.16(a), and indicate that buyers who

were barely eligible for the program bought significantly more fuel efficient vehicles

relative to those barely ineligible for the program. This suggests that the subsidy

and restrictions of the program did have their intended effect, in that they induced

individuals to buy more efficient vehicles than they otherwise would have. However,

as shown in Figure B.16(b), there is no evidence that those barely eligible for the

program responded by driving more miles; if anything, it appears that they drove

fewer miles. As a result, Figure B.16(c) shows that fuel consumption fell.

Corresponding regression estimates are shown in Table B.8. Consistent with the

raw data shown in Figure B.16(a), estimates in Column 1 of Table B.8 indicate that

Cash for Clunkers eligibility induced buyers to purchase vehicles that were between

24As shown in Figure B.15 in the appendix, vehicles purchases by households eligible for the
subsidy were on average smaller, less powerful, and lower-priced than those purchased by households
barely ineligible for the subsidy.
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4 and 6 percent more fuel efficient, with all estimates statistically significant at the 1

percent level. These estimates provide evidence that as intended, program eligibility

did induce drivers to buy more efficient vehicles than they otherwise would have

purchased. Importantly, the magnitude of the estimates is unaffected by the inclu-

sion of controls, which is consistent with our identifying assumption. For example,

the estimate in Column 1 is 0.0618, while adding controls in Column 2 leaves the

coefficient nearly unchanged at 0.0587.

The second row of Table B.8 shows regression discontinuity estimates of the

impact of Cash for Clunkers eligibility on vehicle miles traveled. Estimates are small

and statistically indistinguishable from zero across all specifications, ranging from

-0.0062 to 0.0006. As with MPG, estimates are similar across specifications with and

without controls, as well as across bandwidths and polynomials. In short, consistent

with Figure B.16(b), there is no evidence that inducing drivers to buy more fuel

efficient vehicles causes them to drive more miles one year later.

While this finding may seem counterintuitive, it is plausible given that the more

efficient vehicles selected by consumers had less desirable vehicle attributes. The

new vehicles purchased by the barely eligible households were both smaller and less

powerful than the new cars purchased by the barely ineligible. Figure B.15 in Ap-

pendix B illustrates that the more fuel efficient cars purchased by the barely eligible

had discretely less horsepower and a smaller cubic volume. Put differently, given

available fuel-saving technologies and their costs, policy-induced consumers chose to

purchase cars that likely gave them lower utility than the vehicles purchased by the

barely ineligible. As a result, the rational response to drive less may have offset any

rebound effect arising from the lower marginal cost of driving.

We also examine the effect of program eligibility on the log of gallons of gasoline

consumed. Our measure of gallons consumed is calculated based upon each vehi-
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cle’s VMT and EPA-rated fuel economy; it does not reflect any heterogeneities in a

household’s realized fuel economy. Given the mechanical relationship between MPG,

VMT, and fuel consumption, there is little surprise that estimates in row 3 are neg-

ative, ranging from -0.043 to -0.0675. Estimates corresponding to specifications that

control for quadratic functions of the running variable are statistically significant at

the 1 percent level, while the others are not quite significant at the 10 percent level.

3.3.3 Household-Level Outcomes

As noted earlier, however, the purchase of a more fuel efficient vehicle could lead

to substitution across vehicles within households. On one hand, a household may

have an incentive to shift miles to the more efficient vehicles in its fleet. However,

the vehicles with higher fuel economy also have product characteristics that may

lower the utility of driving (horsepower and size). To directly test for the presence of

substitution in either direction, we estimate the impact of program eligibility on the

fraction of household VMT driven by the new car. Results are shown in the fourth

row of Table B.8. Estimates are economically small and statistically insignificant,

and range from -0.0016 to 0.0144. In short, there is little evidence that households

shifted driving toward or away from the more fuel efficient new vehicle.

We also examine the impact of program eligibility on driving outcomes at the

household level. Figure B.17 shows the raw data, and corresponding estimates are

in the last three rows of Table B.8. Unsurprisingly given the lack of evidence of

within-household substitution, results are overwhelmingly similar to those at the new

vehicle level. Regression discontinuity estimates for household MPG range from 3 to

5 percent, all of which are statistically significant at the 1 percent level. As before,

however, there is no evidence of an increase in total household VMT: estimates

are negative and statistically indistinguishable from zero, and range from 0 to 3
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percent. Thus, our findings suggest that potential increases in driving due to the

lower marginal cost are offset by the effect of driving a car that is smaller and less

powerful than less fuel efficient cars.

Ideally, we would be able to decompose household response into the response

to the lowered marginal cost of driving and the response to driving a vehicle with

different characteristics. However, there is no significant variation in household fuel

economy that is orthogonal to vehicle characteristics. For example, while there is

a clear discontinuity in unconditional household miles per gallon at the eligibility

threshold as shown in Figure B.17(a), the discontinuity disappears if one conditions

on new vehicle characteristics such as size and performance. This reflects the set of

vehicles that manufacturers offer and consumers purchase – there are not (enough)

vehicles purchased that are the same size with the same horsepower that also have

substantial differences in fuel economy. Thus, we are unable to separately identify

these two effects, though it appears that they largely offset each other.

In summary, we find that new car buyers barely eligible for the Cash for Clunkers

program were significantly more likely to purchase more fuel efficient vehicles. How-

ever, despite the fact that these drivers face lower marginal costs of driving, house-

holds do not respond by driving more miles, and thus consume less gasoline.

3.4 Conclusions

The question of whether increases in fuel economy will increase miles driven and

thus the externalities that are associated with driving and gasoline consumption is

crucial for policy. To our knowledge, this is the first paper to address this ques-

tion using quasi-random variation in a household’s fuel economy. Specifically, we

show that while households who were barely eligible for the subsidy under Cash for

Clunkers purchased significantly more fuel efficient vehicles, they did not respond by
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driving more miles. As a result, we find that there is no evidence of a “rebound”

effect that would offset some or all of the reduction in fuel consumption that would

arise when households are induced to drive more efficient vehicles.

This contrasts significantly with the existing literature, which has generally found

larger rebound effects. While we cannot rule out the possibility of heterogeneous

treatment effects across the different populations studied as a potential explanation,

we believe there are two more likely explanations. First, the existing literature

has primarily estimated the elasticity of driving with respect to the cost per mile,

where much or all of the variation in cost per mile is due to variation in gasoline

prices. It may well be that drivers respond less to changes in fuel economy than

to changes in gasoline prices, as the latter are much more salient. In addition,

estimates exploiting gasoline price variation hold vehicle characteristics constant.

As we discuss above, the existing literature is better-suited to address the effects

of gasoline taxes. In this paper, we identify effects solely off of variation in fuel

economy induced by eligibility for the Cash for Clunkers program. Our measured

effect includes both changes in the price per mile and other characteristics, as both

are affected if households choose more fuel efficient cars. Our estimated driving

response captures the tradeoffs that consumers face when choosing among product

choices offered by vehicle manufacturers. One interpretation of our findings is that

any increase in driving caused by the reduction in the price of driving is offset on

average by a reduction in driving due to reduced consumer utility associated with

driving a smaller vehicle with worse performance. If one is concerned with the effects

of fuel economy standards such as CAFE, then estimating a rebound effect that holds

vehicle characteristics constant can overstate the VMT response.

Our findings suggest that some optimism is in order regarding the effectiveness

of fuel economy standards at reducing the externalities associated with gasoline con-
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sumption. That is, even though the policy of choice by politicians is the second-best

solution of increasing fuel economy standards through CAFE rather than increasing

Pigouvian taxes on gasoline, there is little evidence to suggest that the reduction in

gasoline consumption is offset by increased driving. One of the major shortcomings

of fuel economy standards – the possibility of rebound – is negligible when accounting

for changes in both the price of driving and vehicle characteristics that accompany

fuel economy improvements.
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4. SUMMARY AND CONCLUSIONS

This manuscript reflects two primary findings of importance for energy policy

and for the automobile and transportation fuels sectors.

First, we find that the Cash for Clunkers stimulus program did increase revenues

to the auto industry in the short run, but that the environmental component of the

bill actually lowered new vehicle spending over the medium run by inducing people to

buy more fuel efficient but less expensive cars. More generally, our findings suggest

that in this particular case, environmental objectives undermined and even reversed

the stimulus impact of the program.

Second, we show some optimism is in order regarding the effectiveness of fuel

economy standards at reducing the externalities associated with gasoline consump-

tion. That is, even though the policy of choice by politicians is the second-best

solution of increasing fuel economy standards through CAFE rather than increasing

Pigouvian taxes on gasoline, there is little evidence to suggest that the reduction in

gasoline consumption is offset by increased driving. One of the major shortcomings

of fuel economy standards – the possibility of rebound – is negligible when accounting

for changes in both the price of driving and vehicle characteristics that accompany

fuel economy improvements.

Taken together, the findings hold mixed implications for transportation energy

policy. One the one hand, we find that fuel economy policy may conflict with other

policy objectives, such as economic stimulus. However, we find that a common

concern related to fuel economy standards – the so-called rebound effect – appears

to be of minimal importance and seems unlikely to significantly undermine this type

of energy policy.
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APPENDIX A

DATA APPENDIX

A.1 Defining a Household’s Fleet

The Texas Department of Motor Vehicles (DMV) provided us with confidential

access to all Texas vehicle registrations for the years spanning our study. From these

records, we attribute individual vehicles to households as follows. First, we used

ESRI’s ArcMAP software to geocode the population of entered registration addresses

to the North American Address Locator database. Of importance, this process addi-

tionally returns the standardized postal address for each specific matched location,

thereby correcting for database entry errors. For these standardized addresses, we

drop records at any address to which more than 700 unique vehicles (VIN17) were

registered within a single calendar year, as these are almost exclusively commercial or

institutional registrants. For similar reasons, we drop records for which the last name

consists of some variation of a commercial, industrial, or other non-household regis-

trant (e.g. corporation, association, dealer, school, etc.). We drop another roughly

one percent of DMV records for the following reasons: (1) we could not match the

record to a standardized postal address; (2) the record is missing a sale date; or (3)

the record is missing a last name in both last name fields. Finally, we drop records

for non-consumer vehicle identification numbers that are not included in EPA fuel

economy data.

We attribute a pair of vehicles to the same household if either of the following sets

of conditions are met: (1) the pair of vehicles is sequentially and jointly registered at

multiple locations (i.e. a household moves to a new address); or (2) the pair of vehicles
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is registered at the same address to the same “fuzzy” last name.1 After determining

pairs of vehicles belonging to the same household, we chain these connections to

allocate the population of vehicles to households for each date included in our data.

Because DMV registrations are better suited for tracking vehicle purchases than

exits from a household’s fleet, we make two additional adjustments to households’

duration of vehicle ownership. We remove a vehicle from a household’s fleet if the

latest observed registration (in Texas) has lapsed by six months. And, because car

dealerships often do not appear in the same DMV registration database as house-

holds, we backdate a vehicle’s end date for a household if: (1) the vehicle is later sold

by a used car dealership, and (2) the former registered household purchased a new

vehicle within six months preceding this sale date. This treats the former registrant’s

new vehicle purchase transaction date as a trade-in date for the used vehicle.

A.2 Calculating Household VMT

We calculate vehicle miles traveled for each unique vehicle (VIN17) using three

sources of odometer readings. Primarily, we use data from vehicle emissions tests

conducted in the seventeen EPA non-attainment counties in Texas, which were pro-

vided to us by the Texas Commission on Environmental Quality (TCEQ) for January

1, 2004 through August 20, 2012. In these counties, Texas law requires personal ve-

hicles to undergo emissions testing annually beginning at the vehicle’s second year.2

New residents are allowed thirty days to obtain a vehicle emissions test. We augment

1We use a dynamic Levenshtein distance metric to match last names. First, we trim each of the
two last name fields to fifteen letters. Then, we match them pairwise using a Levenshtein critical
value of 0.34. The most common entry errors for names in the database are omitted letters (an
L-distance of one) and transposed letters (an L-distance of two). For a six letter last name, an
L-distance of two requires a critical value of 0.34 to correct. A nine letter last name is allowed three
transformations under this critical value.

2The annual emissions inspection requirement is waived for vehicles older than twenty-four years.
More information on Texas emissions testing requirements is provided by the Texas Department of
Public Safety at http://www.txdps.state.tx.us/InternetForms/Forms/VI-51.pdf
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these odometer readings with data from the Texas DMV database, which reports the

odometer value for each vehicle transaction involving a Texas buyer. Finally, for a

fairly small set of vehicles we append odometer readings reported to the U.S. DOT

for vehicles scrapped in the Car Allowance Rebate System.3

We determine the temporal duration and total VMT between each sequential

pair of odometer readings for each VIN. As many of the odometer readings were

at some point manually entered into a database, we attempt to correct for entry

errors using several types of adjustments: (1) multiply the reported odometer value

by ten; (2) divide the reported odometer value by ten; (3) drop the leading digit of

the reported odometer value; (4) subtract one from the leading digit of the reported

odometer value; or (5) leave the reported odometer unadjusted. We allow for the

adjustment to be made to either the first or the second reading in every sequential

pair of odometer values. As a selection metric, for each possible transformation

we iteratively compute the equally-weighted average of the absolute value differences

between the previous and current, and the current and following readings. In essence,

this metric seeks the smoothest path within each set of consecutive three readings.

Following this, we drop approximately three percent of remaining readings that imply

negative VMT or a daily VMT of less than one or greater than 700. Additionally, at

this point we drop readings of fewer than fifty miles apart (which are likely retests of

failed inspections) and vehicles for which we observe only a single odometer reading.

Matching on VIN to the DMV registration database, we aggregate vehicle-level

VMT to an annual household-level based on vehicle ownership. Within each calendar

year, we sum total observed miles driven by the household as well as total days of

observed VMT. From these, we compute the average daily VMT per-vehicle for each

household for each calendar year. Then, we multiply this value by the total number

3The CARS data are available from the National Highway Safety Traffic Safety Administration.
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of “vehicle ownership days” for the household over the calendar year, thus measuring

total household-level annual VMT.4

Similarly, we calculate the quantity of gasoline consumed by each household

within each calendar year. For each vehicle owned by a household, we divide the

total observed miles driven in that vehicle within a year by the vehicle’s EPA rating

for combined fuel economy. Then, we divide this value by the number of observed

days of VMT within the year to obtain the gallons consumed per day for each vehicle.

We multiply this by the number of days in the year for which the household owned

the vehicle, and sum across the household’s set of vehicles to determine total gallons

consumed per year.

4This approach does extrapolate VMT for some vehicles, but the nature of this calculation
restricts extrapolation to within a calendar year. In light of non-compliance, households moving
out of emissions testing counties, and other factors precluding odometer observations, we view this
as a reasonable trade-off. The overall fraction of VMT determined using such extrapolation is
relatively small and is mostly concentrated in the book-ending years of our data, which are not
included in our empirical study.
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APPENDIX B

FIGURES AND TABLES

B.1 Figures and Tables for Section 2

Figure B.1: Monthly new vehicle sales, annual rate (source: NADA)
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Figure B.2: Relationship between fuel economy and vehicle price (MSRP)
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(a) During July 2009 - August 2009 (Cash for Clunkers)

(b) During July 2009 - April 2010 (10 months)

Figure B.3: First-stage: Probability of purchase being subsidized by CfC
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(a) July 2009 - August 2009 (Cash for Clunkers) (b) July 2009 - January 2010 (7 months)

(c) July 2009 - February 2010 (8 months) (d) July 2009 - March 2010 (9 months)

(e) July 2009 - April 2010 (10 months) (f) July 2009 - May 2010 (11 months)

Figure B.4: Cumulative fraction of households purchasing a new vehicle by period
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(a) New vehicle fuel economy (MPG)

(b) New vehicle price (transaction)

Figure B.5: Purchases during July 2009 - August 2009 (Cash for Clunkers)
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(a) New vehicle fuel economy (MPG)

(b) New vehicle price (transaction)

Figure B.6: Purchases during July 2009 - April 2010 (10 months)
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(a) Number of adults in home (b) Weekly travel days

(c) Log of annual household income (d) Live in an urban area (%)

(e) Live in a house (%) (f) White (%)

Figure B.7: Identification checks: National Household Travel Survey (spring 2009)
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(a) Purchased any new vehicle (July-Aug. 2008) (b) Fuel economy of purchases (July-Aug. 2008)

(c) Price of purchases (July-Aug. 2008)

Figure B.8: Identification checks: Households purchasing vehicles prior to CfC
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(a) Non-clunker fleet fuel economy (June 2009) (b) Non-clunker fleet MSRP (June 2009)

(c) Number of vehicles owned (June 2009)

Figure B.9: Identification checks: Fleet characteristics for households purchasing
during July 2009 - April 2010 (10 months)
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Table B.1: Summary statistics for new vehicle purchases July 2009 - April 2010

Median Mean Std. Dev.

Total number of households 5,523,973

Sample: purchased new vehicle

Number of households 239,559

Fraction of households 0.041

Characteristics of new vehicles

Fuel economy (MPG) 21 21.7 5.887

Transaction price ($ ’000s) 25.5 27.6 11.01

MSRP ($ ’000s) 25.6 27.5 10.33

Census Tract characteristics

Population 5820 6390.7 3089.9

Median age 34.1 34.5 5.071

White (%) 82.3 77.6 16.59

Black (%) 3.80 7.99 12.57

Asian (%) 1.40 3.12 4.670

Hispanic (%) 14.0 24.6 25.24

Household size 2.85 2.83 0.423

Housing units 2214 2404.9 1099.7

Owner-occupied (%) 79.2 74.3 17.82

Median Income ($ ’000s) 48.7 54.2 24.77

Median Home value ($ ’000s) 93.2 112.2 74.29

Notes: Statistics reported for Texas households that purchased a new vehicle

either during Cash for Clunkers or during the subsequent eight months (from

July 2009 through April 2010 in total). The Census Tract-level characteristics

are from the 2000 Decennial Census.
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Table B.3: Robustness of estimated discontinuities to alternate time windows

Reduced-form First-stage LATE Observations

Fuel economy (MPG)

9 months 1.061 0.398 2.666 217,548

10 months (main) 0.973 0.373 2.609 239,559

11 months 0.912 0.347 2.628 264,152

12 months 0.831 0.325 2.557 287,887

13 months 0.795 0.307 2.590 311,172

14 months 0.748 0.288 2.597 337,918

Price (transacted)

9 months -2058.4 0.398 -5171.9 217,548

10 months (main) -1874.5 0.373 -5025.5 239,559

11 months -1728.6 0.347 -4981.6 264,152

12 months -1591.3 0.325 -4896.3 287,887

13 months -1580.8 0.307 -5149.2 311,172

14 months -1453.4 0.288 -5046.5 337,918

Price (MSRP)

9 months -1882.7 0.398 -4730.4 217,548

10 months (main) -1710.7 0.373 -4586.3 239,559

11 months -1588.1 0.347 -4576.7 264,152

12 months -1472.9 0.325 -4532.0 287,887

13 months -1461.5 0.307 -4760.6 311,172

14 months -1359.4 0.288 -4720.1 337,918

Bandwidth (MPG) 9 9 9 9

Polynomial Cubic Cubic Cubic Cubic

Controls Yes Yes Yes Yes

Notes: See Hoekstra et al. [2014] for table notes.
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B.2 Figures and Tables for Section 3

Figure B.10: Texas counties included in this study (EPA non-attainment)
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(a) Number of vehicles (b) Number of drivers

(c) Number of working members (d) Weekly travel days

(e) Number of adults (f) Log of household income

Figure B.11: Test of identification strategy:
Household covariates reported in the National Household Travel Survey 2009
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(a) Live in house (b) Live in urban area

(c) Percent White (d) Percent Black

(e) Percent Asian (f) Percent Hispanic

Figure B.12: Test of identification strategy:
Additional household covariates in the National Household Travel Survey 2009
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(a) Log of MPG (b) Log of VMT

(c) Log of gallons used

Figure B.13: Falsification test: Household-level results in 2008
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(a) Recently moved (b) Financed CfC-time purchase

(c) Change in new vehicle financing from 2008

stock

Figure B.14: Falsification test: Indicators of possible economic shocks in 2009
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(a) Horsepower (b) Horsepower/Lb.-1000s

(c) Cubic volume (d) MSRP ($000s)

Figure B.15: Selected characteristics of vehicles that were purchased new during CfC
in 2009
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(a) Log of MPG (b) Log of VMT

(c) Log of gallons used (d) Fraction of household’s VMT

Figure B.16: Main results: 2010 outcomes for the new vehicles purchased
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(a) Log of MPG (b) Log of VMT

(c) Log of gallons used

Figure B.17: Main results: 2010 outcomes at the household-level
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Table B.4: Summary statistics in 2010: Contrasting vehicle owners to purchasers

All vehicle owners Empirical sample

Mean Std. Dev. Mean Std. Dev.

Vehicles purchased during CfC

Miles per gallon 22.4 6.077

VMT (’000s) 13.8 8.365

Gasoline consumed (gal) 667.9 480.4

All of household’s vehicles

Vehicle count 1.74 1.054 2.66 1.235

Average MPG 19.6 4.273 20.9 4.114

VMT (’000s) 18.5 18.66 30.5 20.71

Gasoline consumed (gal) 1008.0 1096.1 1573.4 1149.9

Census 2000 Tract-level

Total population 6415.2 3133.8 6752.2 3326.4

Population per km2 1115.8 1134.5 997.5 941.0

Number of housing units 2393.7 1134.1 2480.3 1173.2

Average household size 2.85 0.463 2.87 0.411

Median income ($000s) 54.4 23.72 62.3 25.35

Median home value ($000s) 114.1 73.48 130.4 81.61

Owner-occupied (%) 69.8 22.19 75.1 19.51

Married (%) 59.4 11.78 62.7 10.85

Older than 62 (%) 9.87 5.840 9.49 5.788

Bachelor’s degree (%) 29.0 19.14 33.9 19.47

White (%) 72.3 20.57 76.4 18.08

Black (%) 11.3 16.87 8.82 13.66

Asian (%) 3.80 5.023 4.34 5.448

Hispanic (%) 24.1 23.13 20.1 20.80

Below poverty line (%) 8.35 8.457 6.24 6.846

Receive public assistance (%) 2.19 2.524 1.70 2.058

Household observations 4,620,943 67,824

Notes: See West et al. [2014] for table notes.
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Table B.5: Test of identification strategy:
Regression discontinuity estimates for households in NHTS-2009

Bandwidth 9 MPG 8 MPG 7 MPG 6 MPG 5 MPG

Vehicle count 0.0510 0.0382 0.0148 0.00579 -0.0267

(0.0697) (0.0684) (0.0622) (0.0646) (0.0598)

Driver count 0.0155 0.00965 0.00508 -0.00753 -0.0217

(0.0380) (0.0377) (0.0347) (0.0321) (0.0295)

Worker count 0.00983 0.0128 0.0122 0.0158 -0.0319

(0.0773) (0.0806) (0.0847) (0.0895) (0.0782)

Weekly travel days 0.0198 0.00182 -0.0599 -0.0983 -0.136***

(0.0881) (0.0855) (0.0666) (0.0619) (0.0411)

Number of adults 0.0259 0.0191 0.0153 -0.00173 -0.0228

(0.0374) (0.0369) (0.0375) (0.0342) (0.0287)

Log of income -0.0888 -0.0727 -0.0699 -0.0787 -0.123

(0.0787) (0.0852) (0.0908) (0.0990) (0.0931)

Live in house (%) -0.0231 -0.0172 -0.00893 -0.0167 -0.0108

(0.0139) (0.0148) (0.0116) (0.0104) (0.0104)

Live in urban area (%) -0.00264 -0.000640 -0.000193 -0.000623 0.00103

(0.0180) (0.0166) (0.0175) (0.0196) (0.0250)

White (%) -0.0191 -0.0214 -0.0229 -0.0356* -0.0419

(0.0153) (0.0157) (0.0170) (0.0188) (0.0235)

Black (%) 0.00404 0.00565 0.00562 0.0128 0.0228**

(0.0134) (0.0128) (0.0132) (0.0124) (0.00710)

Asian (%) 0.00646 0.00662 0.00910 0.0160 0.0174

(0.00875) (0.00901) (0.0102) (0.0128) (0.0165)

Hispanic (%) 0.0172** 0.0191*** 0.0200*** 0.0219*** 0.0189**

(0.00639) (0.00646) (0.00633) (0.00697) (0.00740)

Polynomial Linear Linear Linear Linear Linear

Observations 6335 6252 6060 5763 5303

Notes: * p < 0.1 ** p < 0.05 *** p < 0.01 See West et al. [2014] for table notes.
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