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ABSTRACT 

 

This project is an investigation of the viability of preservation techniques for use 

in developing phantoms for use in Dual Energy X-ray Absorptiometry (DXA) and 

Computed Tomography (CT) imaging. Two rats were preserved in PEG (polyethylene 

glycol) or MTMS (methyltrimethoxysilane) following naval archeology preservation 

techniques and plastination. These subjects were imaged before and after preservation 

using Computed Tomography (CT) imaging and Dual X-ray Absorptiometry (DXA) 

body composition techniques.  

The initial scanning of each of the rats used DXA and CT to provide a standard 

for results to compare the specimens after preservation.  The rat used for MTMS 

preservation was larger and provided better CT imaging both before and after 

preservation, while the rat used for PEG impregnation was smaller and the contrast for 

organ identification was limited both before and after PEG preservation. However, 

MTMS preservation still affected the Hounsfield values and many internal organs such 

as the liver and brain shrank after the completion of the plastination process. The PEG 

preservation appeared to have homogenized HU numbers when compared to the initial 

scans and produced air pockets in the final CT scans of the specimen.  

The tissue composition measurements from the PEG impregnation as calculated 

by DXA were much more accurate when compared to the original tissue composition 

values. The bone mineral content was fairly accurate and unchanged for both MTMS 

and PEG preservation procedures, but DXA greatly overestimated the lean tissue 
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measurements after MTMS plastination and calculated them to be much greater than the 

total mass. The DXA also greatly underestimated the fat content, calculating an 

impossible negative mass.  

The MTMS plastination lasted longer than the PEG impregnation. It is possible 

the PEG preservation did not penetrate into the internal organs and tissues and the 

specimen continued to decompose in the weeks following the experiment. The MTMS 

preservation specimen is still well preserved three years later.  
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM 

 

Not long after Roentgen discovered the x-ray, doctors have used radiographic 

imaging as a non-invasive way to look inside the human body.  As technology has 

developed, so has the interest in calibrating these radiation imaging machines to get the 

best image for the lowest amount of radiation exposure.   

A representation of the human body is used for calibration and quality assurance 

of radiation imaging machines. This representation is called a phantom.  Many models 

use averaged data from the human population to develop the numbers used for a 

phantom and use materials that are designed to mimic the radiological properties of the 

sample, representing different organs in the body as “compartments.”  The disadvantage 

with this approach is no actual sample to be imaged will be as statistically accurate as 

this phantom, and may necessitate additional phantoms to represent members of the 

population that are outliers. In addition, these tissue-equivalent materials are costly to 

produce and develop, leading to a very high cost of these phantoms. This often leads to 

multi-compartment models to only include tissue and bone, or bone, tissue, and lungs, 

both of which are much less than is expected to see in imaging a human torso.  

 The main problem with any average is that the standard deviation may be large.  

If the standard deviation were small, there would be little difference between any two 

samples, but that is often not the case with a human population.  Human adult sizes 

range from 4 feet to 7 feet, almost twice the smaller height.  Weight difference can be 

even more dramatic, as an athletic male can have 7% body fat while a sedentary male 
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may have upwards of 30, 40, or even 50%.  The trend towards obesity in modern society 

is increasing and shows no sign of reverting to healthier levels.   

Programmatic phantoms like Voxel-Man and the work of the Visible Human 

Project can have a large impact on the ability to create a personalized dose shaping 

regimen for medicinal purposes, but they cannot be used on their own.  Every computer 

simulation must be verified by a real-life analogue, or else the user would never know if 

they were receiving reliable results.  A relatable phantom is necessary.   

There are further problems with getting a proper analogue.  The perfect model 

would be the target subject, alive but with dosimeters stuck in key positions, in the 

location and stance they would be in when irradiated.  For obvious reasons, this is not 

practical.  Instead, a substitute subject is used. In order to test these plastination 

processes, an animal model such as a mouse or rat is an acceptable substitute, as it has 

been extensively studied in laboratory settings.  It would be unconscionable to irradiate a 

living thing for no reason but diagnostics for someone else, so a dead animal is 

preferable.  In addition living animals tend to move around if they’re not restrained.  

This creates the need for preservation techniques for dead laboratory animals that 

maintain the original specimen’s biological characteristics.   

This project is an investigation of the viability of preservation methods and 

chemicals for preserving a specimen using naval archeology techniques.  Many options 

were considered in determining which type of animal would be used as the specimen for 

investigating this preservation technique.  The rat was selected due to its aforementioned 

frequent and standard use in laboratory research as well as its well-documented anatomy 



 

3 

 

and the ability to order a specimen meeting the weight requirements set by the imaging 

lab director in order to create a good contrast image with Computed Tomography (CT) 

scanners and Dual Energy X-ray Absorptiometry (DXA) devices.  Large weight also 

means the subject will have a high body fat percentage.  The imaging techniques used to 

evaluate these specimens were selected for their ability to image and identify different 

types of body tissue and their current use as investigative radiographic imaging tools.   

This study is meant to illustrate the benefits and pitfalls of two chemicals and 

their associated methods: Polyethylene Glycol (PEG) and Methyltrimethoxysilane 

(MTMS).  Both are meant to replace water in a dead specimen to stop the decomposition 

process.  Bacteria and other living things that enable decomposition cannot survive in a 

corpse easily without water.  Section 2 is the chemical composition of these 

preservatives, the scanning techniques used, and an overview of rat anatomy. Section 3 

describes the exact materials and methods used in this study.  Section 4 is a summary of 

the results and what they imply.  Section 5 outlines what was discovered and the impact 

on future preservation techniques.    
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2. LITERATURE REVIEW 

 

According to recent data from the Center for Disease Control (CDC), nearly 1/3 

of all Americans are affected by obesity.  Extreme weight gain negatively impacts nearly 

all systems of the human body with consequences including increased risk of coronary 

heart disease and high blood pressure, stroke, Type II diabetes, dyslipidemia, sleep 

apnea and other respiratory problems, osteoarthritis, liver and gallbladder disease, and 

even some cancers (endometrial, breast, colon). Because of the higher risk for health 

complications, it is no wonder that improving diagnostic capabilities for accurate 

imaging of patients with obesity is desired. (CDC 2014) 

Obesity is officially defined as having a body mass index (BMI) of greater than 

30.  It is calculated by dividing the weight in kilograms by the height squared in meters.  

This number is then compared to a range of BMI values to determine weight status.  

Other BMI values include 18.5 as underweight, 18.5-24.9 as normal, 25.0-29.9 as 

overweight. However, there are many problems with using BMI as a reasonable 

indicator of obesity because it does not take into account fat percentage differences due 

to age, race, or sex. In addition, use of BMI alone may cause highly trained athletes to be 

diagnosed as obese due to a high BMI from increased muscle mass, not fat content. 

(Harp 2005, CDC 2014) 

An alternative measure of obesity is looking at the fat tissue component of the 

body known as the body fat percentage.  This is defined as the total fat mass divided by 

the total body mass and includes essential and non-essential body fat.(Siri 1956)  
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Adipose tissue provides important functions since a certain percentage of body fat is 

required for protection of internal organs and regulating hormone function. The 

recommended body fat percentage is higher for women than men due to childbearing 

requirements, and body fat percentage is seen as a much more reliable indicator of 

obesity than BMI. (Jackson et al. 2002) 

There are a number of methods used to determine body fat percentage including 

measuring subcutaneous fat with calipers, bioelectrical impedance analysis, and the gold 

standard of hydrostatic weighing (Siri 1956, Jackson and Pollock 1978, Jackson et al. 

1980).  DXA is a new technique that has demonstrated much promise for accurately 

measuring bone mineral content, also has the capability to measure body composition, 

and is recently gaining acceptance in the medical and exercise physiology field. (Kohrt 

1995, Pietrobelli et al. 2001) 

Developing a technique that has the capability to economically preserve 

specimens in a range of sizes and shapes will allow for the study of a variety of 

phantoms displaying normal and pathological anatomy.  

2.1 PRESERVATION CHEMICALS 

 Plastination refers to a process used for preserving biological specimens 

including whole bodies or parts.  This technique was first developed by Gunther von 

Hagen and works by replacing the water and fat content with plastic materials. The 

resultant specimens do not decay and can be used for their original intended purpose for 

longer periods of time.  Ideal plastination techniques do not sacrifice the structure or 

functionality of the original tissues in the specimen and can therefore be used as a long 
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term instructional tool. Improving on a plastination technique means maintaining the 

maximum number of properties of the original sample.   

 Standard plastination processes follow four steps. The first stage of plastination 

is fixation. The sample is set in the position desired for the final product. If this stage is 

expected to take a long time or if extra support structures are needed, a preservation 

material may be added to the specimen at this stage.  Water is then removed from tissues 

using acetone during the next stage: dehydration. This is accomplished by the freezing 

temperatures that this step utilizes which allows the acetone to replace the water that is 

drawn out of the cells.  The specimen is then placed in a bath of plastic solvent such as a 

silicone or epoxy, and the acetone is removed from the cells by vaporization in a 

vacuum. Performing this step in a vacuum is called “forced impregnation”. The 

vaporization process draws in the plastic solvent into the cells where the fat and water 

was originally. The speed of impregnation depends on many factors including the 

density and thickness of the specimen as well as the viscosity of the plastic solution. 

Increasing each of these factors will slow the impregnation process. The final stage is 

curation where the plastic material may be exposed to heat or UV light to be hardened 

(Hagens 1986).  

 Another application of chemical preservation is preserving naval archeology 

artifacts.  These artifacts are initially waterlogged and preserved in the aquatic 

environment and once the artifacts have been salvaged, a conservation technology must 

be applied.  The Archeological Research Laboratory has been researching techniques for 

preserving these artifacts. These artifacts are comprised of a number of materials 
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including wood, rope, leather, and animal tissues. PEG or polyethylene glycol has been 

traditionally used to preserve these artifacts because of its potential for reversibility.    

 The common materials for plastination promoted by Gunther von Hagens are 

proprietary chemicals using silicone rubber, epoxy resin, or polyester resin as base 

depending on the purpose or specimen type to be plastinated. (Hagens 1987) Naval 

archeological preservation techniques traditionally use PEG impregnation and other 

preservation techniques using silicone and MTMS (methyltrimethoxysilane) (Smith 

1997, Smith and Hamilton 1998). This investigation uses these archeological 

preservation chemicals that more closely mimic biological tissue and are expected to 

preserve the specimens radiological properties.  

2.1.1 Methyltrimethoxysilane (MTMS) 

 MTMS, also known as Trimethoxy(methyl)silane, reacts with water and 

dehydrates biological tissue releasing methanol as a byproduct. This process preserves 

the biological tissue allowing the subject to be studied for an extended amount of time. 

MTMS mimics water density closely, with a specific density of 0.955 making it a good 

candidate for tissue preservation (Sigma-Aldrich 2012). The chemical formula is 

CH3Si(OCH3)3. When MTMS reacts with water, it strips away a hydrogen atom from a 

water molecule and methanol gas is released. This reaction incorporates a silicon atom 

into the tissue and is expected to change the density of the tissue.  
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Figure 2-1. Structural formula of MTMS. (Sigma-Aldrich 2012) 

 
 

After the specimen has been plasticized, the specimen becomes rigid and 

inflexible.  Muscle and soft tissues become hard and no longer solely rely on the skeletal 

system for their structure.  Specimens must be plasticized in the position required for the 

imaging techniques because they cannot be adjusted once the process is completed. 

(König et al. 2013) 

2.1.2 Polyethylene Glycol (PEG) 

 PEG can refer to a wide range of chemicals that are produced by polymerizing 

ethylene glycol. It will be appended by a number, such as PEG 400 or PEG 3000, 

referring to the average molecular weight of each polymer chain (ScienceLab.com 

2005). It has a variety of applications in a number of areas including medicine and 

industry. In combination with acetone, it has been used with some success in preserving 

naval artifacts and helps prevent warping or shrinking as the artifacts dry out. It acts as a 

stabilizer in wooden objects by replacing water that was taken out by the acetone bath. 

PEG has also been used to preserve waterlogged leather artifacts by first soaking the 

material in acetone for 3 days to dehydrate the leather and then adding PEG to 

impregnate the leather. Specimens impregnated with PEG retain the pliability and 
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flexibility of soft tissues and joints and rely on the skeletal system of the specimen to 

retain its shape.  After impregnation the specimen may be moved and adjusted for better 

imaging. (König et al. 2013) 

 Acetone is used to help the PEG impregnate the biological tissue by increasing 

the permeability of the cell membranes displacing the water in the tissues and allowing 

the PEG to penetrate.  The PEG then reacts with the acetone in the tissue rebulking the 

specimen. Acetone is miscible in water and is commonly used as a solvent in organic 

chemistry to help mix polar and non-polar reactants. It is a ketone that is present 

naturally in humans and animals.  (Casazza et al. 1984) It has a very low melting point, 

(<-95°C) and can therefore be used in experiments at low temperatures.  It is very 

volatile with a very low boiling point and high vapor pressure causing a low flash point 

(1°F) and making it a combustion hazard.  The chemical formula for acetone is 

(CH3)2CO.   

 PEG 200 refers to its molecular weight of 200 g/mol and has a specific gravity of 

1.124 making it an appropriate investigation candidate for tissue preservation.  The 

specific gravity is slightly higher than water, which may impact the final weight of the 

specimen. Along with acetone, PEG has a very low melting point (-85°F) which allows 

for the impregnation to occur in freezing temperatures.  The chemical formula is 

H(OCH2CH2)nOH and the structural formula is depicted in Figure 2-2. 
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Figure 2-2. Structural formula of PEG. (ScienceLab.com 2005) 

 

 

2.2 RADIOGRAPHIC IMAGING AND ANALYSIS TECHNIQUES  

 Two radiographic imaging techniques were used to analyze preservation 

techniques: Dual Energy X-ray Absorptiometry (DXA) and Computed Tomography 

(CT). The benefit of using each of these imaging modalities is that DXA allows for a 

qualitative analysis of the change in body composition, and CT allows identification of 

gross changes to anatomy and structure of the specimen after each preservation 

procedure. 

2.2.1 Dual Energy X-ray Absorptiometry (DXA) 

 DXA, also known as “dual x-ray absorptiometry,” works by having photons of a 

lower and a higher energy (generally 40 keV and 70 keV, respectively) passing through 

the same medium and comparing the changes in the intensity of the photon beam. The 

DXA apparatus used in this experiment utilizes an initial x-ray energy of 70 keV and is 

filtered using a cerium filter that contains a k-edge of 40 keV, providing the two energy 

peaks necessary for DXA calculations (GEHealthcare 2012). The mass attenuation 

coefficient for the tissues is constant, allowing for the calculation of the mass of the 

tissue (Genton et al. 2002).  These energies interact with the same tissues differently and 
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can be used to identify different types of body composition, with a particular application 

in the area of bone mineral density measurement (Tothill et al. 1999, Lochmüller et al. 

2001).  Please see Figure 2-3 for a comparison of mass attenuation coefficients for soft 

tissue and bone at DXA and CT energies.   

 

 

Figure 2-3. Comparison of Attenuation and Mass Attenuation Coefficients for Soft 
Tissue and Bone for use in DXA and CT. Adapted from ICRU-44.(ICRU 1989)  
 
 

 The contribution of the body mass that is comprised of bone mineral content 

(BMC) is separated out from soft tissue.  The remaining mass is then further divided into 
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fat mass and lean soft tissue (fat-free) mass. By comparing the two different systems, the 

results are combined into total body composition analysis.  

 The difference in intensity in areas containing only soft tissue or soft tissue and 

bone is measured for both DXA x-ray energies.  Likewise, the change in intensity is 

independently measured for both DXA x-ray energies in areas containing bone and soft 

tissue.  The ratio of the known mass attenuation coefficients for the low to the high 

energy are calculated into the R-value for fat (RF), lean tissue (RLM) and BMC (RB). The 

mass attenuation ratio for soft tissue is experimentally determined by DXA results for 

each subject and varies linearly with the amount of fat in a subject. The general 

relationship is described in Equation 1. (Pietrobelli et al. 2001) 

 ܴ ൌ
∑ஜ೔,ಽ௫೔
∑ஜ೔,ಹ௫೔

ൌ
ି ୪୬ቆ

಺ಽ

಺బ
ಽ ቇ

ି୪୬ቆ
಺ಹ

಺బ
ಹቇ

 (1) 

Where R is the R-value, I0 is the intensity of the radiation at the source, and I is the 

intensity of radiation after it has passed through tissue.  A superscript of H denotes that 

the higher energy is used and a superscript of L denotes the lower energy.  The linear 

attenuation factor, µx, where µ is the linear attenuation coefficient and x is thickness, is 

computed for each of i tissue types.  Since x will be the same for both numerator and 

denominator, and all other factors are either known experimentally (µ) or discovered by 

the DXA machine (intensities), this becomes a single formula with i unknown values.  It 

is solvable for i < 2.   
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It is practical to simplify the math for the computer and have R-values pre-

computed in a table.  This way, the computer gets the R-value from the ratio of 

intensities and then easily looks up what the x values should be for that R-value.   

 The percent of lean tissue (L) is then calculated using Equation 2. 

ܯܮ%  ൌ 100 ൈ ቀோೄ೅ିோಷ
ோಽିோಷ

ቁ (2) 

Because lean tissue is all of the tissue minus the fat content (F), the rest of the soft tissue 

component (ST) is considered to lean. Therefore the percentage of fat tissue can be 

calculated by subtracting the lean tissue percentage from 100.   

 So far, there have been two unknowns: amount of fat and amount of lean tissue.  

The two measurements taken at high and low energies are adequate to determine them.  

When the scanner passes over bone, however, a third unknown is encountered.  

Transmission through bone is significantly different from soft tissue, so it is a simple 

matter for the machine to determine when it is or is not over bone.  Over a pixel 

containing bone, the scanner will assume that the composition of non-bone tissue is the 

same as nearby pixels, reducing the equations again to two unknowns: bone and tissue.  

BMC can then be calculated by taking the mass of bone found through the attenuation of 

the beams and dividing it by the approximate volume of the bone.   

 Because DXA is sensitive enough to identify the percentage of the lean muscle 

mass, fat, and bone density percentages, this data can be used for body composition 

analysis in obesity studies (Slosman et al. 1992).  These measurements used to be made 

by hydrostatic weighing or caliper measurements, but DXA is now an accepted standard 

as well.  Though DXA is less accurate than some destructive analyses like dry ash 
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sampling, it is still precise (Rose et al. 1998). The benefit of using DXA to evaluate the 

viability of these preservation techniques is that it can evaluate deviation of the mass of 

these individual types of tissues from the original natural state.   

2.2.2 Computed Tomography 

 A CT machine uses the difference in linear attenuation coefficients of different 

body tissues to create images of the anatomy and produces these images as two-

dimensional slices to create a 3-D model of the animal or human body.  A photon beam 

and a detector work in tandem and rotate around a subject. An image is then 

reconstructed from the change in intensity of the beam and the linear attenuation 

coefficient is converted into a Hounsfield unit (HU).  Please see Figure 2-4 for data of 

linear attenuation for biological tissues and preservation chemicals used in this 

experiment. 

 Hounsfield Units are the standard for CT scanners that are calibrated to water 

phantoms.  They measure the relative difference in linear attenuation between an object 

and the equivalent volume of water.  Since it is computed on a voxel basis, thickness of 

the subject is irrelevant (Seco and Evans 2006). 

 Attenuation at the energies of interest for CT scanners is largely dependent on 

Compton scattering.  This is more directly a measurement of electron density than mass 

density.  As such, introducing a medium that includes more hydrogen than an equivalent 

mass of water could lower the measurement in Hounsfield Units.  The difference is more 

pronounced with bone, which contains little to no hydrogen.  Since the CT scanner does 

not know the exact material being investigated, it cannot determine density directly.  The 
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scale defines water as 0 HU, air as -1000 HU and bone reaching as high as 3000 HU. 

The HU values are energy dependent, but air and water HU values are same at any x-ray 

energy (Herman 2009). 

ܷܪ  ൌ 1000 ∗
ሺఓೣିఓಹమబሻ

ఓಹమబ
 (3) 

 The Texas A&M Institute for Preclinical Studies (TIPS) has provided the use of a 

128-slice CT machine to observe the anatomical structure of each of the two rats before 

and after they have been preserved.  A user can step through the image at each slice, 

generating a truly 3-D model of the interior of the specimen. This is useful for 

determining volume or conformation of organs. Information from these scans can be 

used to reconstruct a computer-generated model that could be utilized for phantoms. It is 

common in medical practices to introduce a contrast agent to further sharpen the image 

of specific organs or structures without the use of additional radiation.  

 The dose from a CT scan is much higher than DXA. According to the American 

Nuclear Society, a patient in a whole body scan can receive 1000 mrem, meaning a dose 

of 10 mGy per scan.  This is because a CT scan uses higher energies, more beam 

intensity and exposure time, all of which contribute to the increase in the dose to the 

subject.  
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Figure 2-4. Mass attenuation coefficients for Cortical bone, Soft tissue, MTMS, and 
PEG. Data generated from NIST and includes total attenuation, and contributions from 
photoelectric and incoherent scattering for each material of interest. (Berger and Hubbell 
2009) 
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2.3 RAT ANATOMY 

The anatomy of a rat has been well characterized in previous research and was 

therefore chosen as the biological specimen for investigation of these preservation 

techniques. There are a few major anatomical differences in the internal organs when 

compared to humans such as a lack of tonsils and gall bladder, as well as inclusion of 

other glands not found in humans.  However, much of the anatomy of the rat is of 

interest because it is similar to humans and can be easily identified by radiographic 

imaging such as the CT machine used in this investigation (Starks and Cutter 1931). 

The brain of the rat is similar to the human brain in composition. It contains a left 

and a right cerebral hemisphere, as well as a cerebellum and medulla oblongata attached 

to top of the spinal cord, all of which are a part of the anatomy of the human brain.  

These regions of the brain are identified in Figure 2-5. The brain to body size ratio is 10 

times larger in humans and is more elongated in shape for rats (Serendip 1994). 

The lungs are an organ of interest and are unique as the left lung has only one 

lobe, but the right contains four. These lobes of the lung and surrounding tissues and 

organs are identified below in Figure 2-6. Humans have only one lobe in each lung. The 

anatomy of the heart is more similar to humans as it is a four chamber heart and is 

functionally similar (Hasenfuss 1998). Two kidneys are also indentified in a rat 

specimen and are located more anterior in the body when compared to a human. (Greene 

1935, Silverthorn 2007) 
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Figure 2-5. Rat brain anatomy image. Top view of the anatomy of a rat brain with 
important features labeled as follows:  Olfactory lobe (1), Median fissure (2), Cerebral 
hemisphere (3), Cerebellum (4), Medulla oblongata (5). Figure adapted from Olds. (Olds 
and Olds 1979) 

 
 

 
Figure 2-6. Rat lung anatomy image. The anatomy of the lung with important features 
identified as follows: Trachea (1); Lobes of the right lung (2-5) anterior, median, 
posterior, and post-caval, respectively; Heart (6), and Left lung (7). Figure adapted from 
Olds. (Olds and Olds 1979) 
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In the digestive tract labeled below in Figure 2-7, the first organ of interest is the 

stomach, close to which the liver can be identified.  A rat liver contains 4 lobes:  a large 

left lobe, median lobe, right lobe, and the small caudate lobe situated around the 

esophagus. See Figure 2-8 for identification of the liver anatomy and surrounding 

organs. A human liver contains 2 lobes, a left and right lobe, and is protected by the rib 

cage.  In a rat, the small intestine is connected to the colon at the caecum, and the 

caecum not found in humans.  It can be identified visually as a curved pouch, the large 

relative size of which is specific to rodents.  The rest of the colon can be divided up in a 

similar way to the human colon, including ascending, transcending, and descending 

colon divisions. (Olds and Olds 1979) 

 

  
Figure 2-7. Rat intestinal anatomy image. The intestinal anatomy of a rat with important 
organs identified as follows: Liver (1), Stomach (2), Small intestine (3), Caecum (4), 
Colon (5). Figure adapted from Olds. (Olds and Olds 1979) 
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Figure 2-8. Rat liver anatomy image. A photograph of a rat liver and important features 
nearby organs identified as follows: Left lobe (1), Median lobe (2), Right lobe (3), 
Caudate lobe (4), Stomach (5). Adapted from Olds. (Olds and Olds 1979) 

 
 

Skeletal imaging has always been an easy favorite for radiographers.  It is readily 

visible on radiographs due to the large density difference between the calcium-rich bone 

and every other part of the body.  The skeleton of the rat is similar to the skeleton of the 

human, possessing many bones with commensurate purposes.  There are 206 bones in 

the adult human skeleton and 223 in the rat.  The difference is mostly due to the rat’s tail 

(Greene 1935).  Anatomically, there are some other differences.  Mainly, rats’ epiphyses 

do not always fuse, allowing for longitudinal growth at much later comparative ages to 

humans.  They do not employ Haversian remodeling like primates, but are still similar 

enough for studies on osteoporosis (Lelovas et al. 2008). 

Other identifiable differences can be seen  in the skin. Observationally, rats have 

much thicker fur, and it grows in patches versus a mosaic pattern for humans. 
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Structurally the skin is similar; both humans and rats have a dermal and epidermal layer, 

and thermoregulate in the same way. The integumentary system is not as tightly attached 

to the underlying tissues in rats as it is in humans and is also more elastic.  (Starks and 

Cutter 1931)  
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3. MATERIALS AND METHODS 

 

 The project will be investigated in two parts: two different preservation 

chemicals will be used for plasticization of the rats.  They will be compared using the 

before and after images from the two different radiographic imaging techniques 

described above: DXA and CT.   

 The phantoms were prepared by using an organic specimen using preservation 

techniques developed in the Nautical Archaeology Preservation Laboratory at Texas 

A&M University and based on prior plastination research. The specimen species 

selection and preservation process followed is discussed below. The process is to take a 

whole organism and preserve it by dehydrating the tissues and uploading polymers into 

the cellular matrix.  

3.1 SPECIMEN SELECTION 

 Two rats were chosen as the specimens to investigate the viability of these 

preservation techniques due to their well-studied anatomy and common use in research 

protocols (Greene 1935).  Because these animals are smaller than the human subjects 

most often imaged by the CT machine, the largest size available (greater than 500 

grams) were obtained as the appropriate option to maximize the contrast of the 

radiographic image and provide a higher probability of useful imaging results. Rats were 

procured from a company that produces deceased frozen animals for the purpose of 

feeding reptiles to satisfy Institutional Animal Care and Use Committee (IACUC) 

requirements.  No animals were specifically killed for the purpose of this study. 
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 The rat specimen with a higher mass was chosen to investigate the MTMS 

plastination procedure because it was predicted that it would have the least change in the 

anatomic structure and would have a better chance of a higher resolution of images 

during the CT scans.  This rat was named “Ratigan” for identification purposes 

throughout this study.  The other rat was named “Splinter” and was used to investigate 

the PEG impregnation procedure.  

3.2 RADIOGRAPHIC IMAGING 

 The specimens were kept frozen and placed in plastic bags for sanitary reasons 

before the initial imaging procedures described in Sections 3.2.1 and 3.2.2  were 

performed. After the completion of the radiographic imaging, the respective preservation 

processes described in Section 3.3 were performed. After preservation, the plastic bags 

were no longer necessary and were discarded.  

3.2.1 CT Scan Equipment and Protocols 

The 128-slice CT located at the Texas A&M Institute for Preclinical Studies 

(TIPS) is a Siemens Biograph PET/CT primarily used for larger specimens. A large 

current was therefore used (292 mAs) to increase the resolution and contrast. The CT 

protocol used an energy setting of 80 keV and an initial pitch of 1.4 mm and final pitch 

of 1.5 mm. Each slice was 0.6 mm thick and had a 1.0 second rotation time for 20 slices.  

The images were analyzed using DICOM data processing software using a two 

dimensional (2D) analysis that measures the distance of a particular organ of interest and 

measures the average HU value and the range of HU values of the tissue of interest.  

Further analysis was performed using a three dimensional (3D) analysis volumetric 
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measurement that can identify the organ of interest by using a threshold minimum and 

maximum value to isolate the HU range of the organ tissue. These threshold values were 

visually set based on the best border definition and isolation of the tissue of interest. The 

volume, HU values, and distance were then calculated by the software for both the initial 

and post preservation scans and compared.  

Because of the small size of the animals in the study, the CT was unable to image 

every organ distinctly, and the subsequent preservation procedure made certain organs 

unidentifiable. Therefore, the organs of interest for Ratigan and identified by the CT 

were limited to HU measurements of the skin, bone, brain, lung, and liver; volume 

measurements of the liver, lungs, and brain; and distance measurements of the brain 

width and kidney length. The original weight of Splinter was less than Ratigan and after 

preservation even less, so the ability to identify the organs of interest was reduced 

further. Therefore organs of interest for Splinter were then limited to HU measurements 

of skin, lungs, kidney, brain, and bone; and volume measurements of brain, and kidneys. 

The initial scans were performed in the afternoon of November 16, 2011, two 

weeks prior to the start of the plastination process.  The specimens were allowed to rest 

after the completion of both preservation processes to encourage further curating before 

the final CT scans were performed on January 30, 2012. 

3.2.2 DXA Scan Equipment and Protocols 

The DXA machine used for the qualitative analysis of the tissue content was a 

GE Lunar Prodigy Advance provided by the Netum Steed Laboratory.  This DXA model 

produces the two energies of x-rays using a cerium filter that produces both x-ray 
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energies (40 keV and 70 keV) simultaneously. A small animal scan protocol provided by 

the operating software of the machine was used to measure the change in tissue content 

before and after the specimen’s respective plastination process. Here the animals were 

weighed before performing the DXA scan to ensure the most accurate total mass used to 

calculate individual tissue content and masses. The DXA calculated the masses of the 

BMC, fat, and lean muscle mass of both of the specimens before and after their 

respective preservation procedures. These three mass determinations along with the total 

mass were used to calculate the percent composition of each of the three components 

and the difference in the percent composition from each preservation procedure was 

compared.  

 The initial scans were performed in the afternoon of November 23, 2011, 1 week 

prior to the start of the plastination process.  The specimens were allowed to rest after 

the completion of both preservation processes to encourage further curation before the 

final DXA scans were performed on January 30, 2012.  

3.3 SPECIMEN PRESERVATION  

 The specimens were shipped frozen and kept frozen until after the initial scans 

were performed and until the start of the plastination portion of the project. The 

specimens were washed with soap and water to remove all debris and patted dry.  They 

were allowed to finish drying and defrosting in the refrigerator for two days after the 

initial DXA and CT scans were performed. 
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3.3.1 MTMS  

The specimen identified as RATIGAN was placed in a stainless steel tray and a 

solution of MTMS was poured over the specimen.  One liter of Sigma-Aldrich MTMS, 

assay grade 95 percent, (product No. 440175) was used for this procedure. 

The MTMS solution was allowed to diffuse through the tissue at room 

temperature in a hood for 48 hours.  After 48 hours, RATIGAN was removed from the 

tray and cleaned by rinsing the residual MTMS.  The specimen was then allowed to rest 

at room temperature and the plasticization process was completed as the sample rested 

over the next three days.  No catalyst was used in this process.  

3.3.2 PEG 

 The PEG used in this investigation was PEG 200 produced by Sigma-Aldrich 

(product No. P3015). The advantage in using this product is its low molecular weight 

and closeness to human tissue density.  Laboratory grade acetone was used for the 

dehydration stage. 

 The specimen designated as SPLINTER was placed in a stainless steel tray and 

submerged in a bath of acetone. The tray was placed into a freezer and allowed to 

dehydrate at -20 C for 1 week. Then acetone was replaced with a mix of 50/50 acetone 

and PEG and replaced in the freezer for 48 hrs. The solution was then removed and 

replaced with 100% PEG and rebulked into the tissue for 48 hrs under the freezing 

conditions. The specimen was allowed to come to room temperature and left in a hood 

for three days to finish off-gassing the rest of the PEG and acetone and finish the 

curating process.  No catalyst was used in this process.  
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4. RESULTS AND ANALYSIS 

 

The results were collected in the manner described in the procedure section. 

Visual and physical observations were taken before and after the MTMS and PEG 

procedures. Validation measurements of the change from the initial and post 

preservation state were taken at the same date and time for both preservation procedures 

and and both used the DXA and CT protocols and equipment.  

4.1 MTMS  

As expected, Ratigan, the rat preserved in MTMS was hard to the touch and 

firmly set in position following the completion of the plastination process.  The skin 

color tone became much darker and developed a bluish hue. After the plastination 

process, the total mass of Ratigan decreased from an initial weight of 0.609 kg to 0.578 

kg, for a loss of 5.1%.  

The MTMS preservation process has proven very effective for preserving a long 

term biological specimen. Today the specimen is able to be handled and the hair and 

whiskers are still attached. This specimen is still in the same condition as it was in the 

days following the MTMS preservation procedure in December 2011. Please see Figure 

4-1 for a present day image of Ratigan after three years.  
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Figure 4-1. 2014 Image of Ratigan after preservation with MTMS. Please note the 
bluish color of the skin tone and preserved whiskers and fur. 

 

4.1.1 DXA Results 

Measurements of the tissue composition of Ratigan were taken using the DXA 

scanner. The scans were performed before and after the MTMS preservation procedure 

and the results found in the tissue composition are reported in Table 4-1. 

 

Table 4-1. DXA measurements of pre- and post-MTMS preservation of Ratigan.  The 
tissue compartment masses for bone mineral content (BMC), fat, and lean tissues are 
included and calculated using the total mass and DXA measurements. Specimen was 
scanned twice after preservation for further validation of tissue compartment values. 

 
 Total Mass (kg) BMC (g) Fat (g) Lean Tissue(g) 
Initial  0.609 21.3 57 531 
Final1 0.578 26.9 -474 1025 
Final2 0.578 27.1 -459 1009 
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The tissue composition percentage was calculated using the average of the two 

DXA tissue mass measurements. The change in the tissue composition percentage of the 

BMC was an increase of 5.7 percent and resulted in the least change when compared to 

lean tissue and fat tissue. 

The lean tissue was significantly overestimated in the post preservation and 

calculated to be almost twice the original lean tissue mass and significantly greater than 

the total mass. The difference in the tissue composition percentage of lean tissue is a 

very large increase of 88.8 percent. The fat tissue mass was greatly underestimated.  A 

negative mass was calculated, resulting in a decrease of 90.1 percent in the tissue 

composition percentage. The reported 90 percent decrease between the initial and final 

fat tissue composition measurements is due to the DXA scanner’s miscalculation of the 

mass density of the tissue in question. This shows the MTMS preservation method 

drastically alters the radiological properties of the tissue likely in the form of the mass 

attenuation coefficient. This is likely from the incorporation of silicon from the MTMS 

chemical structure into the tissue; however, this cannot be definitely concluded from the 

current study. 

4.1.2 CT Analysis 

Total body images and images of important organs before and after the MTMS 

preservation procedure were obtained and described here. Measurements of the change 

in the HU values, size, and shape of these organs from before and after the preservation 

were made using the CT imaging processing software. Ratigan was larger than the PEG 

rat (Splinter) and more detail in the organs was able to be imaged. The MTMS 
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preservation process shrunk several organs in size and increased the HU values of some 

of the tissues, and therefore more details were able to be imaged and identified before 

the preservation process. The measurements described below include volumetric 

analysis of the brain, liver, and lungs; linear distance measurements of the lungs, brain, 

and kidneys; and changes to the HU values for the brain, skin, bone, liver, and lungs.  

Total body CT images are presented in Figure 4-2 and Figure 4-3.   

The brain is an important organ of interest that demonstrated a notable change in 

size after plastination. The volume decreased significantly and was measured using a 3 

dimensional volumetric measurement described above. The initial volume was 1.08 cm3 

but it decreased to 0.42 cm3 after the MTMS process for a change of 61.1 percent. This 

decrease is likely due to the MTMS not penetrating into the tissue, and not maintaining 

the structure of the organ during the dehydration of the tissue.  The initial volumetric 

measurement of the brain can be identified on Figure 4-4, and the final volumetric 

analysis of the brain can be identified in Figure 4-5.  

The change in width of the brain is also significant and further displays the 

shrinkage of the brain from the dehydration and preservation process. Visual inspection 

of the slices was used to determine the widest section of the brain and the software was 

used to measure this distance. The initial width was 1.45 cm and after preservation 

shrank to 1.34 cm, resulting in a decrease of 7.59 percent. The smaller diameter of the 

brain can be clearly seen in the comparison of the initial and final slice of the brain 

located in Figure 4-6.  
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Figure 4-2. Pre MTMS plastination total body CT image. This is a longitudal slice of the 
bottom view of Ratigan. 
 

 

 
Figure 4-3. Post MTMS plastination total body CT image. This is a longitudal slice of 
the top view of Ratigan. 
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Figure 4-4. Pre MTMS preservation brain and liver CT image and analysis. Volumetric, 
maximum distance, and HU measurements of the brain (2) and liver (3) of Ratigan were 
analyzed using 3-D modeling image processing.  

 
 
 

  
Figure 4-5. Post MTMS preservation brain CT image and analysis. Volumetric and HU 
measurements of the brain of Ratigan were analyzed using 3-D modeling image 
processing. 
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Figure 4-6. Comparison CT image of brain width before and after MTMS plastination. 
Width measurements of the brain before (A) and after (B) MTMS preservation of 
Ratigan were taken using 2D image processing software using the visually identified 
slice with the greatest width.  
 
 

The HU measurement in the brain was also altered after preservation. The initial 

HU values of the brain as reported in Figure 4-4 are maximum value of 21 HU to a 

minimum value of -20 HU, averaging 4 HU. The HU values in the brain after 

preservation with MTMS range from -100 to 100 HU with an average of 7 HU, and are 

reported in Figure 4-5. 

The HU value of the skin tissue was increased significantly. The initial HU 

values of the skin are reported in Figure 4-7 and range from -40 to 23 HU with an 

average of 6.3±19 HU. The final HU values after Ratigan was preserved with MTMS are 

reported in Figure 4-8 and range from -190 to 424 HU and average 309.6±161.4 HU. In 

the final total body image located in Figure 4-3 and the cross-section image in Figure 

4-8, the skin appears thicker when compared to the initial images located in Figure 4-2 

and Figure 4-7. This may be from a layer of MTMS forming subdermally, suggesting 

either MTMS passed slower into the organs than skin, or that skin still allowed MTMS 

to pass through after the tissues were saturated. 
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The bone HU measurements also appeared to increase from an initial range of 

101 to 952 HU as depicted in with an average of 631.1±208.6 HU as reported in Figure 

4-9 to a range of 1241 to 1568 HU with an average of 1432.6±86.2 after preservation in 

MTMS. The final HU measurements are, together with skin HU values, in Figure 4-8.  

 

 
Figure 4-7. Pre MTMS plastination analysis of skin.  Initial skin average and range of 
HU values for Ratigan were measured using 2D image processing software. 
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Figure 4-8. Post MTMS plastination analysis of skin and bone. Final HU analysis of 
skin (1) and bone (5) average and range of HU values for Ratigan were measured using 
2D image processing software.  

 
 

 

 
Figure 4-9. Pre MTMS plastination analysis of bone. Initial bone average and range of 
HU values for Ratigan were measured using 2D image processing software. 
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The volumetric measurements of the liver were calculated before and after 

MTMS preservation using the 3D model previously described. The initial volume of the 

liver is reported in Fig. 4-3 and was calculated to be 10.44 cm3. The liver after the 

MTMS preservation shrank significantly to 1.23 cm3. This decrease is likely due to the 

MTMS not penetrating into the tissue, and not maintaining the structure of the organ 

during the dehydration and preservation of the tissue.   

 

 
Figure 4-10. Post MTMS preservation liver CT image and analysis. Volumetric and HU 
measurements of the brain of Ratigan were analyzed using 3-D modeling image 
processing.  

 
 

The initial range of the liver tissue was -30 to 109 HU with an average of 13 HU. 

The HU measurements did not appear to change greatly after preservation and ranges 

from -101 to 124 HU with an average value of 14 HU.  

 



 

37 

 

 
Figure 4-11. Initial kidney distance measurements. Measurements of the length of the 
kidney before MTMS plastination were taken using 2D image processing software. 

 
 

The longitudinal measurement of the kidney was taken before and after MTMS 

preservation. The initial distance was 1.95 cm and after preservation was found to be 

1.93 cm. This is a decrease of 1.0 percent and did not appear to radically alter the 

structure and size of the organ during the dehydration and MTMS preservation 

procedure. See Figure 4-11 for initial measurement and Figure 4-12 for the final 

measurement. 
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Figure 4-12. Final kidney distance measurements. Measurements of the length of the 
kidney after MTMS plastination were taken using 2D image processing software. 
 

 
 
The initial HU values of Ratigan in the lungs range from -102 to 50 HU and 

average -17 HU. After MTMS preservation, the HU values in the lungs decreased 

significantly to -931 to -351 HU with an average value of -748 HU. This suggests an 

increase in the air component of the composition of the lung tissue after preservation in 

MTMS. The volume of the lungs changes significantly from an initial volume of 1.32 

cm3 to a final volume of 2.43 cm3 as reported in Figure 4-13 and Figure 4-14. This 

increase in volume is likely due to the changes in HU values described previously. The 

maximum distance measurement was constant at 3.0 cm before and after the MTMS 

preservation. 

 



 

39 

 

 
Figure 4-13. Pre MTMS preservation lung CT image and analysis. Volumetric, 
maximum distance, and HU measurements of the lung of Ratigan before MTMS 
plastination were analyzed using 3-D modeling image processing. 

 
 

 
Figure 4-14. Post MTMS preservation lung CT image and analysis. Volumetric, 
maximum distance, and HU measurements of the lung of Ratigan after MTMS 
plastination were analyzed using 3-D modeling image processing. 
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4.2 POLYETHYLENE GLYCOL (PEG) 

As expected, the rat preserved in PEG (Splinter) was soft to the touch and 

pliable. The outgassing of the PEG preservation chemicals was quite strong and 

persisted for over two weeks. The specimen became oily and greasy after the completion 

of the impregnation process. The skin tone did not change noticeably from its original 

state. The weight change from the preservation process was a decrease from 0.535 kg to 

0.411 kg.   

In the weeks after the PEG impregnation process was completed, the specimen 

developed black spots on its abdomen and yielded a foul stench. Prior to the preservation 

process, the animal was externally rinsed, but the internal organs were not emptied and 

washed.  The PEG and acetone mixture was not injected into the tissue but allowed to 

diffuse into the cellular matrix from an external bath, and the entire process was 

performed at standard pressure. Therefore it is apparent that the PEG impregnation 

procedure was not complete. This is noted for future studies. 

4.2.1 DXA Results  

The tissue composition measurements of Splinter were analyzed using DXA on 

the same date and time as Ratigan before and after their respective preservation 

procedures and are reported in Table 4-2.  

 

Table 4-2. DXA Measurements of pre and post PEG preservation of Splinter. The tissue 
compartment masses for bone mineral content (BMC), fat, and lean tissues are included 
and calculated using the total mass and DXA measurements. 

 Total Mass (kg) BMC (g) Fat (g) Lean Tissue (g) 
Initial 0.535 14.6 41 479 
Final 0.411 13.5 51 347 
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The initial tissue composition percentage is 2.7 percent for bone mineral content 

and 3.2 percent for the final, resulting in an increase of 0.6 percent. The preservation 

procedure did not significantly change the mass of the bones. The lean muscle mass 

tissue composition percentage decreased 5.1 percent, which is a much less significant 

change when compared to the MTMS results. Likewise, the tissue composition change 

for fat tissue is 4.7 percent. This small change is likely due to the density changes arising 

from dehydration of the fat tissues and uptake of the PEG material and supports the 

hypothesis that PEG is a good tissue analog for density because of its similar chemical 

structure to human tissue. 

4.2.2 CT Results and Analysis 

Total body images and images of important organs before and after the PEG 

preservation procedure were taken and reported in this section. The pre-preservation 

scan is shown in Figure 4-15. Measurements of the change in the HU values, size, and 

shape of these organs from before and after the preservation were made using the CT 

imaging processing software. Splinter was smaller than Ratigan and less anatomic detail 

was able to be identified. The measurements described include volumetric analysis of the 

brain, kidney, and lungs and changes to the HU values for the brain, skin, bone, kidney, 

and lungs. 
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Figure 4-15. Initial total body image of Splinter before PEG impregnation. 
 
 

The PEG preservation process appeared to decrease the contrast between the 

internal organs and homogenized the HU values of some of the tissues, and therefore 

more detail in organs was able to be imaged and identified before the preservation 

process. Air bubbles in the post PEG preservation total body image in Figure 4-16 

suggest that the PEG preservation did not fully penetrate the tissues and that the tissues 

were undergoing decomposition.   

The initial range of the brain tissue was -130 to 290 HU with an average of 86 

HU. The HU measurements lowered significantly after preservation, ranging from -708 

to -44 HU with an average value of -249 HU. This is likely due to the preservation 

chemicals not penetrating through the skull and means an increase in the air composition 

component of the tissue.  
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Volumetric analysis of the brain tissue performed on the initial scan of Splinter 

was 0.67 cm3 and appeared to increase to 1.09 cm3. This is likely related to the very low 

final HU values calculated for the brain tissue. Before and after photos are in Figure 

4-17 and Figure 4-18.   

 
 

 
Figure 4-16. Total body image after PEG impregnation of Splinter. 
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Figure 4-17. Pre PEG impregnation brain, lungs and kidney CT image and analysis. 
Initial HU values and volume measurements of the brain(6), lungs (5) and kidney (4) of 
Splinter before PEG impregnation were analyzed using 3-D modeling image processing. 

 
 

 
Figure 4-18. Pre PEG impregnation brain, lungs, kidney, skin, and bone CT image and 
analysis. Final HU values and volume measurements of the brain (6), lungs (2) and 
kidney (4) and HU measurements of skin (3) and bone (2) of Splinter before PEG 
impregnation were analyzed using 3-D modeling image processing 
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The initial skin HU values range from -80 to 6 HU with an average value of -45 

HU and are reported in Figure 4-19. The final skin HU values range from -117 to 78 HU 

with an average of 0 HU. The initial bone HU measurements ranged from 220 to 1417 

HU and averaged 588 HU. The final HU measurements ranged from 178 to 1152 and 

averaged 586 HU and are reported in Figure 4-20.  

 

 
Figure 4-19. Pre PEG impregnation analysis of skin.  Initial skin average and range of 
HU values for Splinter before PEG impregnation were measured using 3D image 
processing software. 
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Figure 4-20. Pre PEG impregnation analysis of bone.  Initial bone average and range of 
HU values for Splinter before PEG impregnation were measured using 3D image 
processing software. 

 
 

 
The lung volume in Splinter calculated before PEG preservation was 7.94 cm3 

and the final volume appeared to increase to 10.59 cm3. This is likely due to the 

significant increase in HU values calculated for the lung tissue. Initially the HU values 

ranged from -751 to -7 HU with an average of -116. After preservation the average HU 

value was found to be 21 HU and ranged from -6 to 354 HU. The final HU values for the 

lungs are similar to the HU values calculated for the surrounding tissue, which is not 

expected. If the radiological properties were unchanged or even proportional to the 

original there should be a clear difference between the surrounding tissues and the lung 

tissue.  
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The HU values for the kidney ranged from -27 to 30 HU with an average of 6 

HU and after PEG impregnation increased to a range of -6 to 354 HU and an average of 

56. This is likely related to the PEG impregnation appearing to homogenize HU values 

of the soft tissues, as seen previously in the final HU values of the lung tissue. The initial 

volume of the kidney was 3.11cm3 and shrank to 2.7 cm3 after the PEG plastination 

process, also likely related to the HU discrimination problems resulting from the 

addition of PEG to the tissues.  
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5. CONCLUSIONS AND FUTURE WORK 

 

The uses of both DXA and CT proved to be valuable tools in assessing the 

viability of the preservation techniques for use in developing phantoms. Additionally, 

the selection of MTMS and PEG provided an insightful assessment of two very different 

preservatives. 

The initial scanning of each of the rats using DXA and CT was successful and 

provided a standard for results to compare the specimens after preservation.  Ratigan 

was larger and provided better CT imaging both before and after preservation when 

compared to Splinter and the PEG preservation. However, MTMS preservation still 

affected the HU values and many internal organs such as the liver and brain shrank after 

the completion of the plastination process. The PEG preservation appeared to have air 

pockets and homogenized HU numbers in the final CT scans of the specimen.  

The PEG preservation had much more accurate tissue composition measurements 

when compared to the original tissue composition values that were calculated by DXA. 

The BMC was fairly accurate and unchanged for both MTMS and PEG preservation 

procedures, but DXA greatly overestimated the lean tissue measurements after MTMS 

preservation and calculated them to be much greater than the total mass. The DXA also 

greatly underestimated the fat content, calculating an impossible negative mass.  

The MTMS process outlasted the PEG preservation procedure. The PEG 

preservation likely did not penetrate the tissues and continued to decompose in the 
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weeks following the experiment. Ratigan, after the completion of the MTMS 

preservation, is still preserved 3 years later.  

In future study, the specimen should be injected with the PEG solution to allow 

better access to the internal organs and tissues and the dehydration and bulking 

procedures should be performed under a vacuum to determine if this improves the 

success of the PEG impregnation for a whole body organism. Improving uptake of the 

PEG into the tissues would also validate the contribution of the PEG preservation to the 

change in HU values for the organs seen in this investigation. Increasing the size of the 

specimen may also improve CT imaging ability.  

For future investigations of the MTMS preservation processes, two approaches 

should be considered: initial dehydration of the tissue in acetone to promote bulking of 

the MTMS into the tissue or the injection of MTMS into the specimen instead of relying 

on diffusion as the primary means of penetration. Direct injections would also determine 

whether subdermal accumulation of MTMS is a result of diffusion and may better 

preserve the tissues that are protected by skeletal structures like the brain.  

Further study of the imaging quality provided by these preservation techniques to 

analyze differences in the structure and anatomy of the specimens may be better 

demonstrated using a Micro-CT scanner. Micro-CT provides much finer resolution than 

the CT scanner used in this investigation and would be useful in capturing increasingly 

detailed anatomical images of small animals and monitoring the progression of changes. 
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