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ABSTRACT

In hypersonic flows, turbulence critically influences mass and momentum trans-

port, mixing, heat transfer and acoustic noise generation. In contrast to incompress-

ible flow, in high speed flows pressure is a true thermodynamic variable and flow-

thermodynamic interactions render the investigations extremely challenging. Most

studies to date have been performed on steady, uniform or homogeneous shear flows

leading to important insight on the flow physics. In most real world applications,

flows of practical importance will exhibit unsteadiness and strong inhomogeneity. To

date, investigations of unsteadiness and inhomogeneity in high-speed flows are rare.

The goal of this dissertation is to study and understand these non-ideal effects when

pertinent to shear flows. Towards this goal, we perform three distinct studies: (a) ex-

amination of time reversal characteristics of linear inviscid mass, momentum, energy

and state equation in compressible flows; (b) Linear analysis (RDT) of compress-

ibility effects on instabilities in temporally periodic (unsteady) homogeneous shear

flow; and (c) Numerical investigation of small perturbation evolution in compressible

Kolmogorov (inhomogeneous) shear flow.

The first study shows that even with the additional governing equations required

in the high-speed regime, the inviscid flow field is still reversible. This justifies the

use of temporal periodicity to investigate the effect of unsteadiness. The second

study presents a detailed analysis of the pressure equation in temporally periodic

homogeneous shear flow. The analysis and numerical results show unsteady uni-

form shear exhibits two stages of evolution due to the changing behavior of pressure.
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These stages are analogous to the first two stages of evolution established in steady

shear. The third stage seen in steady shear is not achieved by periodic shear flow.

The final study shows that the evolution of small perturbations in spatially periodic

Kolmogorov flow is influenced by: i) the initial compressibility parameter, Mg0, ii)

the initial perturbation orientation, and iii) the stream normal location. Ultimately,

the final study supports the postulate that all shear flows exhibit perturbation sta-

bility boundary classifications seen in homogeneous shear flows. The findings of this

research further our understanding of the effects of unsteadiness and inhomogeneity

in realistic flows, which will aid in the development of improved computational tools.
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CHAPTER I

INTRODUCTION

Ever since the Wright brothers made the first powered, controlled human flight

over a century ago, mankind has sought to fly faster and higher. In recent decades,

hypersonic flight is being considered for space access as well as atmospheric trans-

port. Hypersonic flight presents many challenges and opportunities to scientists and

engineers. Turbulence is crucial in several aspects of hypersonic flight - mass flow

at the intake, heating in the boundary layer, mixing in the combustor and acoustic

noise generation are all critically influenced by turbulence. The quintessential ele-

ment that makes hypersonic flow, and more specifically compressible turbulence, so

complex is the change in the nature of pressure. Over the past several years, several

investigations have been performed to examine the influence of compressibility in a

variety of flows. The goal of these studies is to develop improved closure models

and control strategies to predict and control transition and turbulence in different

high-speed applications.

In incompressible flows, pressure can be considered a Lagrangian multiplier with

the sole purpose of imposing the divergence-free condition. Under these conditions

the velocity field is purely solenoidal. However, in high-speed flows pressure is a full-

fledged thermodynamic variable evolving according to a wave equation. As a result,

the dilatational mode of velocity fluctuations becomes more prominent in high-speed

flows. This introduces new energy exchange mechanisms such as pressure dilatation,

which is responsible for energy exchange between dilatational and pressure fields.

Understanding these thermodynamic-velocity interactions will help develop improved
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computational tools for design and development of high-speed flight vehicles.

Studies of high-speed shear flows show that compressibility has a stabilizing ef-

fect on the evolution of turbulence. Experiments of high-speed mixing layers observed

reduced production rates [1–3]. Computational studies of high-speed homogeneous

shear flow performed by Sarkar [4] and Simone et Al. [5] conclude that compress-

ibility has a ‘stabilizing’ effect on the growth rate of turbulent kinetic energy. This

stabilizing effect is found to increase with the gradient Mach number, Mg. More re-

cent studies have identified multiple stages of turbulent kinetic energy evolution [6–8]

in compressible homogeneous shear flows and analysis of the pressure equation has

pinpointed the onset times of each stage which are functions of Mg [9]. The extensive

investigations performed on high-speed homogeneous shear flows and mixing layers

has led to the hypothesis that all shear flows exhibit similar qualitative behavior in

the compressible regime.

Most of the fundamental analysis and investigations to date address homoge-

neous and steady shear effects in high-speed flows [9–11]. Practical applications

often involve spatial and temporal variations in shear. It is therefore critical to un-

derstand the consequences of these ‘non-ideal conditions on transition and turbulence

in high-speed shear flows. Even in incompressible flows, the effect of unsteady shear

is complicated. Girimaji et al [13] and Yu and Girimaji [12] demonstrate that un-

steady shear leads to a phase lag between the frequency of the shearing rate and the

evolution of the shear anisotropy, b12. The precise degree of phase lag depends on the

timescales of perturbation and shear unsteadiness. Some combinations of timescales

lead to out-of-phase oscillations between stress and strain resulting in suppression
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Figure I.1. A schematic of previous studies that paved the way for the
studies presented in this dissertation.

of the perturbations. Figure I.1 shows a research roadmap of previous studies and

highlights where the studies in this dissertation will improve current understanding

of high-speed shear flows by examining combinations of effects.

The objective of this thesis is to examine the effects of shear unsteadiness and

inhomogeneity on transition and turbulence in high-speed flows. We perform DNS

and RDT studies of spatially and temporally periodic shear flows to build upon our

comprehension of the stabilizing effects of compressibility on transition to turbulence.

Our main goals are to (a) provide extended validation of the qualitative behavior of

all compressible shear flows in respect to pressure evolution and classification of

stability boundaries and (b) investigate the effects of inhomogeneity (implemented

through a spatially periodic mean flow) and unsteadiness (implemented through a

temporally periodic mean flow field) on compressible high-speed shear flows. The
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thesis is comprised of three studies:

1. Investigation of the reversibility characteristics of compressible mass, momen-

tum and energy equations.

2. Analysis of implied periodic unsteadiness in the rapid distortion limit of high-

speed homogeneous shear flow.

3. Direct numerical simulations (DNS) of the compressible Kolmogorov flow.

A brief introduction to each of the studies is presented next.

I.A. Study 1: Time Reversibility of Compressible Flow Equations

The property of the governing flow equations under time-reversibility transfor-

mation is important for inferring the behavior of the system when subject to unsteady

forcing. It is well known that incompressible Navier Stokes equations are irreversible

solely due to the action of viscosity. However, investigation of the low-speed invis-

cid Euler equations [14] has shown flow reversal is theoretically permissible under

certain conditions. Some studies have attempted to utilize this analysis in order to

improve existing modeling approaches [15]. The first short study of this dissertation

will apply the time-reversal transformation to high-speed flow equations. The time-

reversibility analysis in compressible flow is rendered much more complicated than

in incompressible flow due involvement of additional equations - mass conservation,

energy balance and thermodynamic state equation.
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I.B. Study 2: Rapid Distortion Analysis of Turbulence Subject to High-

speed Periodic Shear

The combined effects of compressibility and unsteady (periodic) shear on a high-

speed homogeneous turbulence flow field are investigated in the linear rapid distortion

limit. In particular, the effect of unsteady shear on flow-thermodynamics interac-

tions is examined. Simplified linear analysis of the perturbation pressure equation

reveals crucial differences between steady and unsteady shear effects. The differences

are confirmed by numerical simulations of the governing equations at the inviscid

rapid distortion theory (RDT) limit. Unlike steadily sheared compressible flows,

the unsteady case does not exhibit a final perturbation growth stage. Further, the

parametric resonance phenomenon found in incompressible unsteady shear turbu-

lence is absent in the compressible case. Overall, the stabilizing influence of both

unsteadiness and compressibility are compounded. The underlying flow mechanisms

are investigated and a simple physical explanation is developed.

I.C. Study 3: Direct Numerical Simulations of Compressible Kolmogorov

Flow

By construction, Kolmogorov flow features a spatially periodic mean flow. Thus,

it incorporates a range of velocity gradients and hence is the archetypal inhomoge-

neous flow. This flow is of simple geometry and yet provides an ideal test-bed for

examining the inhomogeneity effects in low and high-speed applications. In this

study, direct numerical simulations of the Kolmogorov flow were performed to inves-

tigate the flow physics of individual perturbation modes as well as that of a collection
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of isotropically distributed modes. It is demonstrated that the behavior of pressure,

and consequently the evolution of the flow field, is dependent on three factors: (i) the

initial Mach number at the maximum shear plane, (ii) the initial orientation of the

perturbation wave in the shear plane, and (iii) the magnitude of effective Mach num-

ber at different vertical planes. The degree of stabilization, if any, compared to an

equivalent homogeneous shear flow is quantified. The difference between streamwise

and spanwise perturbations is examined. The evolution of dilatational fluctuations

as a function of initial orientation is examined. The stability characteristics as a

function of initial orientation are established. Comparing the stability characteris-

tics at different locations of shear levels isolates the inhomogeneity effect. Overall,

this study presents a clear analysis that shows the stabilizing influence of compress-

ibility is somewhat modified by mean shear inhomogeneity, but the fundamental

characteristics remain.

In summary, the different studies performed in this dissertation seek to clearly

isolate the influences of unsteadiness and inhomogeneity in high-speed shear flows.

In the subsequent chapters each of the three studies are presented in detail. The

summary of the dissertation findings is presented in the Conclusion section.
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CHAPTER II

TIME REVERSIBILITY IN LINEAR, INVISCID FLOWS:

LOW-SPEED VS HIGH-SPEED

This chapter will serve as a prelude to the extensive analysis in Chapter III that

will examine the influence of forced periodic unsteadiness on a compressible uniform

shear flow. The time reversibility characteristics of the low speed Euler equations

have been established and studied [14,15] for its implications in modeling. However,

analysis of time reversibility in high-speed flows, where pressure is governed by state

and energy equations instead of Poisson’s equation, needs to be performed. In this

chapter, full analysis of time reversibility in the inviscid, Navier-Stokes equations will

be presented for both low-speed and high-speed flows highlighting the key differences.

The final section of this chapter will discuss implications of the effects of unsteadiness

in high-speed shear flows.

II.A. Low-speed Governing Equations

The analysis for the low-speed or incompressible regime begins with the instan-

taneous mass, momentum, Poisson and wave vector evolution equations:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 → ∇ · ~u = 0 (2.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(2.2)

∇2p = −ρ
(
∂ui
∂xj

∂uj
∂xi

)
(2.3)

We commence the derivation with a decomposition of the flow field variables.
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The variables are decomposed into their mean/background component (denoted by

f) and their fluctuation/perturbation component (denoted by (f
′
)):

ρ = ρ+ ρ
′
, Ui = Ui + ui

′
, p = p+ p

′
. (2.4)

Substituting the expansion into the equations leads to:

∂(U i + u′i)

∂t
+ (U j + u′j)

∂(U i + u′i)

∂xj
= − 1

(ρ+ ρ′)

∂(p+ p′)

∂xi
, (2.5)

∇2(p+ p′) = −(ρ+ ρ′)
∂(U i + u′i)

∂xj

∂(U j + u′j)

∂xi
. (2.6)

We subject the instantaneous equations (2.5 and 2.6) to averaging to construct the

mean/background field governing equations:

∂U i

∂t
+ U j

∂U i

∂xj
= −1

ρ

∂p

∂xi
+

ρ′

(ρ)2

∂p′

∂xi
− u′j

∂u′i
∂xj

, (2.7)

∇2p = −ρ

(
∂U i

∂xj

∂U j

∂xi
+
∂u′i
∂xj

∂u′j
∂xi

)
− 2ρ′

∂u′i
∂xj

∂U j

∂xi
. (2.8)

The mean field equations (2.7 and 2.8) are subtracted from the instantaneous de-

composed field equations (2.5 and 2.6) to reveal the governing equations for the

perturbation/fluctuation field:

∂u′i
∂t

+ U j
∂u′i
∂xj

= − 1

ρ

∂p′

∂xi
+

ρ′

(ρ)2

∂p

∂xi
+

ρ′

(ρ)2

∂p′

∂xi
− ρ′

(ρ)2

∂p′

∂xi
(2.9)

− u′j
∂U i

∂xj
− u′j

∂u′i
∂xj

+ u′j
∂u′i
∂xj

,

∇2p′ = − ρ

(
∂U i

∂xj

∂u′j
∂xi

+
∂u′i
∂xj

∂U j

∂xi
−+

∂u′i
∂xj

∂u′j
∂xi
− ∂u′i
∂xj

∂u′j
∂xi

)
(2.10)

− ρ′

(
∂U i

∂xj

∂U j

∂xi
+
∂U i

∂xj

∂u′j
∂xi
− ∂u′i
∂xj

∂U j

∂xi
− ∂u′i
∂xj

∂u′j
∂xi

+
∂u′i
∂xj

∂u′j
∂xi

)

+ 2ρ′
∂u′i
∂xj

∂U j

∂xi
+H.O.T.

8



Now we reduce the governing equations to their linearized form. All terms that are

higher than first order in perturbation/fluctuation variables are neglected:

∂u′i
∂t

+ U j
∂u′i
∂xj

= −1

ρ

∂p′

∂xi
+

ρ′

(ρ)2

∂p

∂xi
− u′j

∂U i

∂xj
(2.11)

∇2p′ = −2ρ
∂U i

∂xj

∂u′j
∂xi
− ρ′∂U i

∂xj

∂U j

∂xi
(2.12)

Next, we restrict our attention to a homogeneous mean flow field. The homogeneous

condition implies that the mean velocity gradient and thermodynamic variables are

uniform throughout the spatial domain leading to:

∂P

∂xi
=

∂ρ

∂xi
= 0, (2.13)

∂U i

∂xj
(~x, t) =

∂U i

∂xj
(t), (2.14)

where i 6= j. Applying these assumptions the linear fluctuating equations become:

∂u′i
∂t

+ U j
∂u′i
∂xj

=
du′i
dt

= −1

ρ

∂p′

∂xi
− u′j

∂U i

∂xj
(2.15)

∇2p′ = −2ρ
∂U i

∂xj

∂u′j
∂xi

(2.16)

Using the homogeneity assumption permits us to transform the governing equations

into spectral space via Fourier transforms of the flow field variable:

−→u ′(−→x , t) =
∑ −̂→u (t)ei

−→κ (t)·−→x , ρ′(−→x , t) =
∑

ρ̂(t)ei
−→κ (t)·−→x , p′(−→x , t) =

∑
p̂(t)ei

−→κ (t)·−→x ,

(2.17)

where ~κ is the wave number vector. This step transforms the set of partial differential

equations (PDEs) in physical space to a set of ordinary differential equations (ODEs)

in spectral space:

dûi
dt

= − i
ρ
κip̂− ûjSij, (2.18)
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p̂ = −2ρ
iκi
κ2
ûjSij. (2.19)

In this linearized, spectral form, equation (2.19) can be plugged into equation (2.18)

to get reduce the set of equations that govern the flow field:

dûi
dt

= − i
ρ
κi(−2ρ

iκl
κ2
ûjSlj)− ûjSij. (2.20)

dκi
dt

= −κj
∂Ui
∂xj

(2.21)

With the governing equations in this form, we perform the following transfor-

mations [44]:

t = t̃; uj = −ũj; Sij = −S̃ij. (2.22)

Applying these transformations to (2.25) and the wave-vector evolution equation

(2.24):

d(−˜̂ui)

dt
= − i

ρ
κi(−2ρ

iκl
κ2

(−˜̂uj)(−S̃lj))− (−˜̂uj)(−S̃ij), (2.23)

dκi
dt

= −κj(−S̃ji), (2.24)

which reduces to:

d˜̂ui
dt

= −
(
− i
ρ
κi(−2ρ

iκl
κ2

˜̂ujS̃lj)− ˜̂ujS̃ij

)
= −dûi

dt
, (2.25)

dκ̃i
dt

= −
(
−κjS̃ji

)
= −dκi

dt
. (2.26)

Thus, we recover the well known result that the inviscid perturbation equations are

fully reversible in incompressible flows. Several studies have examined the implica-

tions of time reversibility of the Euler equations for developing closure models. The

purpose of the low-speed derivation here is to set up the ground work for comparison

with the high-speed derivation that follows.
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II.B. High-speed Governing Equations

For high-speed flows, we begin with the conservation equations for mass mo-

mentum, and energy along with the ideal gas law:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.27)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

, (2.28)

∂(ρT )

∂t
+
∂(ρTuj)

∂xj
= − p

cv

∂uj
∂xj

, (2.29)

p = ρRT. (2.30)

Once again, we restrict our consideration to inviscid ideal gas flow. The momentum

equation can be written as:

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ∂uj

∂xj
, (2.31)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
, (2.32)

∂p

∂t
+ uj

∂p

∂xj
= −γp∂uj

∂xj
. (2.33)

We decompose the field into the mean/background and fluctuation/perturbation

parts in the same manner as the low-speed case:

∂(ρ+ ρ′)

∂t
+ (uj + u′j)

∂(ρ+ ρ′)

∂xj
= −(ρ+ ρ′)

∂(uj + u′j)

∂xj
, (2.34)

∂(U i + u′i)

∂t
+ (U j + u′j)

∂(U i + u′i)

∂xj
= − 1

(ρ+ ρ′)

∂(p+ p′)

∂xi
, (2.35)

∂(p+ p′)

∂t
+ (U j + u′j)

∂(p+ p′)

∂xj
= −γ(p+ p′)

∂(U j + u′j)

∂xj
. (2.36)
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Reynolds averaging applied to the high-speed field equations leading to the mean/background

governing equations:

∂ρ

∂t
+ U j

∂ρ

∂xj
= −ρ∂U j

∂xj
− u′j

∂ρ′

∂xj
− ρ′

∂u′j
∂xj

, (2.37)

∂U i

∂t
+ U j

∂U i

∂xj
= −1

ρ

∂p

∂xi
+

ρ′

(ρ)2

∂p′

∂xi
− u′j

∂u′i
∂xj

, (2.38)

∂p

∂t
+ U j

∂p

∂xj
= −γp∂U j

∂xj
− γp′

∂u′j
∂xj
− u′j

∂p′

∂xj
. (2.39)

Subtracting the mean field equations (2.37-2.39) from the instantaneous field equa-

tions (2.34-2.36) reveals the fluctuating field equations:

∂ρ′

∂t
+U j

∂ρ′

∂xj
= −u′j

∂ρ

∂xj
− ρ′∂U j

∂xj
− ρ

∂u′j
∂xj
− u′j

∂ρ′

∂xj
− ρ′

∂u′j
∂xj

+ u′j
∂ρ′

∂xj
+ ρ′

∂u′j
∂xj

, (2.40)

∂u′i
∂t

+ U j
∂u′i
∂xj

= − 1

ρ

∂p′

∂xi
+

ρ′

(ρ)2

∂p

∂xi
+

ρ′

(ρ)2

∂p′

∂xi
− ρ′

(ρ)2

∂p′

∂xi
(2.41)

− u′j
∂U i

∂xj
− u′j

∂u′i
∂xj

+ u′j
∂u′i
∂xj

,

∂p′

∂t
+U j

∂p′

∂xj
= −γp

∂u′j
∂xj
−γp′

∂U
′
j

∂xj
−u′j

∂p

∂xj
−γp′

∂u′j
∂xj

+γp′
∂u′j
∂xj
−u′j

∂p′

∂xj
+u′j

∂p′

∂xj
. (2.42)

The linearized fluctuation equations are:

∂ρ′

∂t
+ U j

∂ρ′

∂xj
= −ρ′∂U j

∂xj
−+u′j

∂ρ

∂xj
− ρ

∂u′j
∂xj

, (2.43)

∂u′i
∂t

+ U j
∂u′i
∂xj

= −1

ρ

∂p′

∂xi
+

ρ′

(ρ)2

∂p

∂xi
− u′j

∂U i

∂xj
, (2.44)

∂p′

∂t
+ U j

∂(p′)

∂xj
= −γp′∂U j

∂xj
− γp

∂u′j
∂xj
− u′j

∂p

∂xj
. (2.45)

For a homogeneous shear flow this reduces to:

∂ρ′

∂t
+ U j

∂ρ′

∂xj
=

dρ′

dt
= −ρ

∂u′j
∂xj

, (2.46)

∂u′i
∂t

+ U j
∂u′i
∂xj

=
du′i
dt

= −1

ρ

∂p′

∂xi
− u′j

∂U i

∂xj
, (2.47)

∂p′

∂t
+ U j

∂p′

∂xj
=

dp′

dt
= −γp

∂u′j
∂xj

. (2.48)
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Transforming the linear, fluctuating field equations to spectral space, the set of PDEs

become ODEs:

dρ̂

dt
= −iρκjûj, (2.49)

dûi
dt

= − i
ρ
κip̂− ûjSij, (2.50)

dp̂

dt
= −iγpκjûj. (2.51)

This is the final form of the high-speed inviscid governing equations. The wave vector

evolution equation remains unaltered from the low-speed limit (2.24). It is important

to note that unlike the low-speed case where the momentum equation is independent

of the mass and energy equations, here all the equations are interconnected.

Applying the time reversibility transformations (2.22) to the high-speed equa-

tions:

dρ̂

dt
= −iρκj(−˜̂uj), (2.52)

d(−˜̂ui)

dt
= − i

ρ
κip̂− (−˜̂uj)(−S̃ij), (2.53)

dp̂

dt
= −iγpκj(−˜̂uj), (2.54)

which reduces to:

d ˜̂ρ

dt
= −(−iρκj ˜̂uj) = −dρ̂

dt
, (2.55)

d˜̂ui
dt

= −(− i
ρ
κip̂− ˜̂ujS̃ij) = −dûi

dt
, (2.56)

d ˜̂p

dt
= −(−iγpκj ˜̂uj) = −dp̂

dt
. (2.57)

Evidently, the high-speed inviscid linear equations are time reversible, even with the

added complexity of compressibility, which has a strong influence on the behavior of

pressure.
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II.C. Implications for Unsteady Flows

With the knowledge that the linear inviscid equations for both low-speed and

high-speed flows analytically show flow field reversibility is possible, we deduce what

this will imply for studies examining unsteady flow. Since time reversibility of a flow

requires the flow field variables return to their initial state, this concept can be con-

sidered highly stabilizing when considering transition to turbulence. Most real world

applications will never actually exhibit an instant reversal of all flow field veloci-

ties like that theorized in time reversal. However, almost all flow types experience

some level of unsteadiness. To gain insight on the overall effects of unsteadiness,

it is possible to implement rapid velocity changes in flow fields through use of un-

steady forcing in numerical methods or experiments. This concept has been tested

in low speed shear flows [12, 13] where a strong suppression of the initial perturba-

tions was witnessed. In the chapter that follows, we will utilize this knowledge of

time reversibility in high-speed shear flows to simulate a temporally periodic forcing

mechanism on a compressible homogeneous shear flow hypothesizing that a similar

form of flow field stabilizing action will occur.
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CHAPTER III

RAPID DISTORTION ANALYSIS OF HIGH SPEED HOMOGENOUS

TURBULENCE SUBJECT TO PERIODIC SHEAR

III.A. Rapid Distortion Theory of Periodic Compressible Flows

To derive the inviscid RDT equations for an ideal gas, we begin with the instan-

taneous conservation of mass, momentum and energy equations [16].

∂ρ

∂t
+ Uj

∂ρ

∂xj
= −ρ∂Uj

∂xj
, (3.1)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
, (3.2)

∂T

∂t
+ Uj

∂T

∂xj
= −(γ − 1)T

∂Uj
∂xj

, (3.3)

P = ρRT. (3.4)

Here ρ, U , T , P and γ represent the instantaneous density, velocity, temperature,

pressure and the ratio of specific heats. The variables t and x denote temporal and

spatial coordinates.

The instantaneous variables are expanded into their Reynolds-averaged (denoted

by (.)) and fluctuating parts (denoted by (.
′
)): ρ = ρ+ ρ

′
, Ui = Ui + ui

′
, T = T + T

′

and P = P + p
′
. By subjecting the instantaneous equations to Reynolds averaging,

the governing equations of the mean field quantities are obtained:

∂ρ

∂t
+ Uj

∂ρ

∂xj
= −ρ∂Uj

∂xj
− ∂ρ′uj ′

∂xj
, (3.5)

∂Uj
∂t

+ Uj
∂Ui
∂xj

+ uj ′
∂ui′

∂xj
= −1

ρ

∂P

∂xi
+

1

(ρ)2
ρ′
∂P ′

∂xi
− (ρ′)2

(ρ)3

∂P

∂xi
, (3.6)
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∂T

∂t
+ Uj

∂T

∂xj
+ uj ′

∂T ′

∂xj
= −(γ − 1)T

∂Uj
∂xj
− (γ − 1)T ′

∂uj ′

∂xj
, (3.7)

P = RρT +Rρ′T ′. (3.8)

The mean field set of equations (3.5 -3.8) are subtracted from the instantaneous

set (3.1-3.4) to obtain the fluctuating field equations, which results in the following

system of equations:

∂ρ′

∂t
+ Uk

∂ρ′

∂xk
= − uk

′ ∂ρ

∂xk
− uk ′

∂ρ′

∂xk
+ uk ′

∂ρ′

∂xk
− ρ∂uk

′

∂xk

− ρ′
∂Uk
∂xk
− ρ′∂uk

′

∂xk
+ ρ′

∂uk ′

∂xk
, (3.9)

∂ui
′

∂t
+ Uk

∂ui
′

∂xk
= − uk

′ ∂Ui
∂xk
− uk ′

∂ui
′

∂xk
+ uk ′

∂ui′

∂xk

+
ρ′

(ρ)2

∂P

∂xi
− (ρ′)2

(ρ)3

∂P

∂xi
+

(ρ′)2

(ρ)3

∂P

∂xi

− R

(ρ)2
ρ′(
∂ρT ′

∂xi
+
∂ρ′T

∂xi
)

− R

ρ

∂

∂xi
(ρT ′ + ρ′T + ρ′T ′ − ρ′T ′)

+
Rρ′

(ρ)2

∂

∂xi
(ρT ′ + ρ′T ), (3.10)

∂T ′

∂t
+ Uk

∂T ′

∂xk
= −uk ′

∂T

∂xk
− uk ′

∂T ′

∂xk
+ uk ′

∂T ′

∂xk

− (γ − 1)T
∂uk

′

∂xk
− (γ − 1)T ′

∂Uk
∂xk

− (γ − 1)T ′
∂uk

′

∂xk
+ (γ − 1)T ′

∂uk ′

∂xk
. (3.11)

At the RDT limit, which focuses on the linear interaction between mean and

fluctuating fields, the terms nonlinear in perturbation quantities are neglected. In
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this work, we examine a temporally periodic homogeneous shear flow:

∂Ui
∂xj

=


0 S0cos(ωt) 0

0 0 0

0 0 0

 . (3.12)

In such a flow, it can be shown that:

ρ(t) = ρ(0); T (t) = T (0); p(t) = p(0), (3.13)

at the linear limit, which infers that the mean field variables do not evolve beyond

their initial values. The fluctuating field equations simplify to [6, 7, 9, 16]:

dρ′

dt
= −ρ∂uk

′

∂xk
, (3.14)

dui
′

dt
= −uk ′

∂Ui
∂xk
−R∂T

′

∂xi
− RT

ρ

∂ρ′

∂xi
, (3.15)

dp′

dt
= −γp∂uk

′

∂xk
. (3.16)

Fourier transforms are applied to the fluctuating governing equations as in the

uniform RDT approach:

ui
′(−→x , t) =

∑
ûi(t)e

i−→κ (t)·−→x ,

ρ′(−→x , t) =
∑

ρ̂(t)ei
−→κ (t)·−→x ,

p′(−→x , t) =
∑

p̂(t)ei
−→κ (t)·−→x (3.17)

where −→κ is the wavenumber vector and ûi, ρ̂, and p̂ are the Fourier amplitudes of

velocity, density and pressure fluctuations. The RDT equations in spectral space are
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given by [10]:

dρ̂

dt
= −iρ ûjκj, (3.18)

dûi
dt

= − i
ρ
p̂κi − ûjSij, (3.19)

dp̂

dt
= −iγpûjκk. (3.20)

The components of a wavenumber vector evolve as:

dκi
dt

+ κk
∂Uk
∂xi

= 0. (3.21)

Equations (3.18-3.21) are now solved numerically employing the particle representa-

tion method of Kassinos and Reynolds [17]. This method of solution constructs the

governing equations of the required Fourier covariances directly. These covariances

represent the moments conditioned upon given wavenumber vectors. Similar equa-

tions for steady high-speed homogeneous shear flow were presented in detail by Yu

& Girimaji [16] and Lavin [18]. The final set of equations for the simulations consist

of 26 ordinary differential equations (ODE).

The initial gradient Mach number, based on an integral length scale, has been

recognized as a relevant compressibility parameter in DNS [4] and RDT [9] studies

of steady homogeneous shear flows:

Mg ≡
S0L

a
, (3.22)

where S0 is the initial mean velocity gradient (S ≡ ∂U1

∂x2
) and L is an integral length-

scale. The quantity a represents speed of sound based on mean temperature. The

relevant length scale in an RDT analysis is one that is distinctive of the mode under

consideration. This length scale is inversely proportional to the magnitude of modal
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wavenumber, so a relevant Mach number for RDT analysis is given by [10]:

Mm ≡
S0

a‖κ‖
, (3.23)

where ‖κ‖ represents a norm of the wavenumbers under consideration. The modal

Mach number (Mm) is a direct measure of the relative significance of pressure effects

to inertial effects in the Fourier-transformed fluctuating momentum equation.

III.A.1. Numerical approach

We employed a high-fidelity fourth-order Runge-Kutta scheme to solve the RDT

equations. Each simulation is implemented with an incompressible and statistically

isotropic initial velocity field. Initial conditions for the wavenumber vector and 25

covariances are specified in Fourier space. More details of the initial field setup can

be found in Yu et al. [16], Lavin et al. [10] and Girimaji et al. [19]. The wavenumber

−→κ (t = 0) and corresponding velocity covariance < ûiû
∗
j |−→κ > are chosen by first dis-

tributing the wavenumber vectors uniformly on a unit sphere to render a statistically

isotropic initial field. Next, the velocity vectors are selected to be perpendicular to

their respective wavenumber vector to ensure an initially incompressible field. The

mean temperature and density are 300K and 1 kg/m3. Finally, the RMS (root mean

square) of density and temperature fluctuations are specified as percentages of the

mean density and temperature, respectively. All wavenumbers are distributed on a

unit sphere, initially ‖κ‖ = 1. The magnitude of initial shear strength (S0), sound

speed and initial length-scale of perturbation determine the initial modal Mach num-

ber (3.23).
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III.A.1.a. Validation of numerical method

Grid (modal) resolution and time-step studies, along with several other valida-

tion investigations of the present RDT scheme, have been presented in Yu et. al [16]

and Lavin et al. [10]. The RDT computations recover the analytical Burgers results

at the very high Mach number limit when the periodicity of shear is zero. The low

Mach number incompressible limit behavior is also confirmed. Inviscid and viscous

RDT lead to nearly similar findings – specifically the so-called three-stage behavior

is seen for small enough viscosities. Yu et al. [16] show that the present RDT code

captures the results of Simone et. al [5] very precisely. Most significantly, Lavin et

al. [10] compare RDT anisotropy evolution of steady high-speed homogeneous shear

with the DNS data of Sarkar [4] leading to reassuring support of this approach.

Detailed convergence studies have been performed in Bertsch et al. [9]

III.B. Individual Effects of Compressibility and Unsteadiness

Before we present our analysis and results, which combine the effects of com-

pressibility and unsteadiness, we summarize what is currently understood about the

individual effects. Low-speed or incompressible steady homogeneous shear flow will

be used as a base flow to compare the individual effects. Figure III.1 shows the

evolution of turbulent kinetic energy for an incompressible uniform shear flow. The

evolution at the incompressible limit is deemed unstable because the turbulent ki-

netic energy continues to grow in magnitude. The unstable growth is caused by the

evolution of the turbulent shear stress, 〈u′
1u

′
2〉, which evolves to a large (in magni-

tude) negative value in the incompressible limit, seen in Figure III.2, leading to large
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Figure III.1. Evolution of turbulent kinetic energy for incompressible
(Mm = 0.1) homogeneous shear flow.

Figure III.2. Evolution of turbulent Reynolds shear stress, 〈u′
1u

′
2〉, for

incompressible homogeneous shear flow.
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turbulent production. We will use Figures III.1 and III.2 to compare and contrast

the evolutions of the turbulent kinetic energy and shear stress for flows subject to

compressibility and unsteadiness individually.

In previous studies of compressible steady homogeneous shear flows [9–11, 16],

the turbulence field was shown to undergo three stages of evolution due to the chang-

ing nature of pressure. This pressure behavior ultimately has a stabilizing influence

on the growth of turbulent kinetic energy, as seen in Figure III.3. The three dis-

tinct regimes of pressure evolution are summarized. Regime 1: When the pressure

timescale is significantly large in comparison with shear time scale, pressure exhibits

no influence and turbulent kinetic energy evolves along Burgers (or pressure-released)

limit. Regime 2: The timescales of pressure and shear are of the same order so di-

latational waves are created in the flow normal direction and as a result, pressure

works to counteract growth in 〈u′
1u

′
2〉, as seen in Figure III.4. Regime 3; The small

pressure timescale (or the acoustic frequency) can quickly respond to any change in

the velocity field due to the shear magnitude and the Reynolds stresses evolve analo-

gous to the incompressible limit. Clearly, pressure action is the stabilizing influence

in high-speed/compressible homogeneous shear flows. Based on the aforementioned

studies, the physics of compressible homogeneous flows with zero shearing periodicity

seem reasonably well understood.

Studies of nonzero periodic [12] and rotational [13] shearing rates have been

conducted at the incompressible limit. Both of these studies examine the influence

of temporally varying shearing effects. In Yu and Girimaji [12], a DNS study of

a periodically varying homogeneous shear flow, examined the effect of an unsteady
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Figure III.3. Evolution of turbulent kinetic energy for various initial
modal Mach numbers(Mm). Thin (−) Mm = 0.1:Incompressible limit; (−−)
Mm = 1; (− · −) Mm = 5; (· · · ) Mm = 10; Thick(−) Burger’s limit.

Figure III.4. Evolution of turbulent Reynolds shear stress, 〈u′
1u

′
2〉, for

various initial modal Mach numbers(Mm). (−−) Mm = 1; (− · −) Mm = 5;
(· · · ) Mm = 10.
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shearing rate. In Figure III.5, we utilize our RDT approach to simulate the same

shearing rate frequencies as Yu and Girimaji at a low Mach number. Our com-

parison of RDT to DNS results do not show quantitative agreement since the DNS

approach encompasses dissipation and turbulent transport terms whereas RDT does

not. However, qualitative agreement between Yu & Girimaji’s DNS results and our

RDT simulation can be seen as the influence of increasing periodic frequency ap-

pears to stabilize the growth of turbulent kinetic energy. Upon examination of the

turbulent shear stress in Figure III.6, it is clear the rapidly oscillating shear rate

is responsible for the reduction in 〈u′
1u

′
2〉. For higher periodic frequencies, the sup-

pression of the turbulent shear stress evolution is stronger. The stabilizing influence

of increased unsteadiness is illustrated and evaluated against a constant (or steady)

shearing rate.

Figure III.5. Evolution of shear magnitude (S) and stress (u1u2) for steady,
incompressible (Mm = 0.1) shear.
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Figure III.6. Evolution of shear magnitude (S) and stress (u1u2) for incom-
pressible (Mm = 0.1) shear flow with an intermediate periodic frequency,
ω/Smax = 1.0.

Sufficient studies, like the ones summarized, have clearly established the sta-

bilizing influence of unsteadiness on incompressible flow. This paper will provide

evidence the stabilizing effect continues well into the compressible regime. In the

study that follows, a broad range of forcing frequencies (Table III.1) were chosen to

fully examine the influence of periodicity on a high-speed homogeneous shear flow.
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Table III.1. Forcing Frequencies

Regime ω/S

Zero frequency 0.00

0.10

Low frequency 0.33

0.5

Intermediate frequency 1.00

2.00

High frequency 3.00

10.00

III.C. Combined Effects: Analysis of Pressure Fluctuations in Com-

pressible Unsteady Shear Flows

In incompressible flows, the nature of pressure imposes the divergence free con-

dition throughout the field. For compressible flows, the role of pressure is more

complex due to its evolution as a thermodynamic variable governed by the wave

equation. The nature of pressure at high-speeds is further complicated when the

mean flow field becomes time dependent. Following a similar approach to Bertsch et

al. [9] and Kumar & Girimaji [11], an analysis of the wave equation for pressure in

the compressible unsteady RDT limit will be presented.

Before we begin the pressure equation analysis, we will present the differences in

the evolution of the wave-vector in steady and unsteady shear flows. In steady homo-
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geneous shear flow, the wavenumber-dependent length scale and the corresponding

instantaneous modal Mach number decrease with time as seen in Lavin et al. [10]

and Bertsch et al. [9]. The approximate evolution of the modal Mach number for

steady homogeneous shear is:

Mm(t) ≈ Mm

St
, (3.24)

which clearly decays with time.

For the temporally periodic homogeneous shear case, the instantaneous modal

Mach number is distinctly different. From (3.21) and (3.12), we can write:

κ1(t) = κ1(0); κ3(t) = κ3(0), (3.25)

dκ2

dt
= −S0 cos(ωt)κ1(t). (3.26)

The solution to equation (3.26) can be written as:

κ2(t) = κ2(0)− S0κ1(0) cos(ωt). (3.27)

Based on this evolution of the wave vector components for the periodic shear case,

the instantaneous modal Mach number evolves according to:

Mm(t) ≈ Mm√
1 +

S2
0

ω2 sin2(ωt)
. (3.28)

The normalized modal Mach number can never exceed the limits of:

1 ≤ Mm(t)

Mm(0)
≤ 1/

√
1 + S2

0/ω
2. (3.29)

Figure III.7 shows the evolution of the modal Mach number for steady and

unsteady shear flows. The steady case decays to incompressible values quickly due

to the rapid growth of the wavenumber vectors. As suspected, the modal Mach
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numbers of the unsteady cases get trapped in a periodic growth/decay state that

never quite reaches low speed values. The significance of the wavenumber and modal

Mach number evolutions will be presented later. In this paper we will use the symbol

Mm to denote the initial value of modal Mach number in a simulation and the symbol

Mm(t) to denote its instantaneous value (3.28) at a later time t.

Figure III.7. Evolution of the modal Mach number for zero and nonzero
periodic shear. (−),ω = 0S : Steady; (−−),ω = 0.1S; (· · · );ω = 1S.

We begin with the linearized equation of pressure fluctuation in a homogeneous

shear flow derived by Livescu et al. [20] for the steady case:

d3p̂

dt3
= −γρRT

(
κ2dp̂

dt
− 4κ1κ2Sp̂

)
. (3.30)

We differentiate equation (3.20) twice to obtain the equation of pressure fluctuations
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in an unsteady periodic homogeneous shear flow:

d3p̂

dt3
= −γρRT [κ2dp̂

dt
− 4κ1κ2S0 cos(ωt)p̂

+ 2
κ1û2ρ

i
S0ω sin(ωt)]. (3.31)

Even with the added complexity of unsteadiness, (3.31) is still similar in form to the

constant shear pressure equation (3.30).

Despite the linearization, equation (3.31) is still too complicated for any analyt-

ical treatment. To draw meaningful insight into the pressure evolution process for

periodic shear flows, we subject this equation to further simplifying assumptions. In

a periodic homogeneously sheared flow field, the wavenumber vector evolves as:

κ1(t) = κ1(0);

κ2(t) = κ2(0)− κ1(0)S0

ω
sin(ωt);

κ3(t) = κ3(0). (3.32)

It is evident that the pressure fluctuation behavior will depend on the magnitude of

the ratio of the initial shear rate to periodic frequency S0/ω.

III.C.1. High frequency regime

In the high frequency limit, S0

ω
< 1, equation (3.32) reveals that the wave-number

vector remains nearly constant in time. The second term in the evolution expression

for κ2, which is solely responsible for the growth of the wave-number vector in steady

shear flows, is restricted by the periodic shear rate. At high frequencies this term

is small and oscillates rapidly. As a result, the magnitude of κ remains close to

it’s initial value. The production and pressure-strain terms of the Reynolds stress
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evolutions do not have adequate time to evolve through the three stages found in

steady high-speed homogeneous shear flows. The turbulent quantities of the high

frequency cases will oscillate about their initial values, similar to the high frequency

cases in the incompressible study of Girimaji et al. [13]

III.C.2. Low frequency regime

In the low frequency limit, S0

ω
> 1, we can adapt the analysis outlined in Bertsch

et al. [9]. It is clear that κ2 is the dominant term in equation (3.32) which permits

the simplification:

|κ(t)| ≈ |κ2(t)| ≈ |κ1|
S0

ω
sin(ωt). (3.33)

With this approximation, equation (3.31) can be written as:

d3p̂

dt3
≈ −c4

0 [ sin2(ωt)
dp̂

dt
− 4ω cos(ωt) sin(ωt)p̂

+ 2
û2S0κ1(0)ωρ

i
sin(ωt)], (3.34)

where c0 =
√

(a0k1(0)S0/ω). This quantity can be recognized as the geometric mean

of the imposed mean strain and initial acoustic frequency. Following the analysis in

Bertsch et al., equation (3.34) can be rewritten as:

d3p̂

dt3
+ q

dp̂

dt
+ rp̂+m ≈ 0, (3.35)

where:

q = c4
0 sin2(ωt)

r = −4c4
0ω sin(ωt) cos(ωt)

m =
2û2c

4
0ω

3

κ1(0)S0

sin(ωt). (3.36)
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Equation (3.35) is a third order inhomogeneous ordinary differential equation with

time-dependent coefficients. For the purposes of this study, we will focus on finding

the general solution of the associated homogeneous equation:

d3p̂

dt3
+ q

dp̂

dt
+ rp̂ ≈ 0. (3.37)

Deriving an analytical general solution of the homogeneous part of equation

(3.37) is still not straightforward. We assume the coefficients (q and r) of equation

(3.37) are locally constant in order to attain qualitative analysis into the interaction

between acoustic and shear timescales. This method allows us to predict the general

solution of equation (3.37) as:

p̂(t) ∼ p̂0e
yt. (3.38)

Substituting (3.38) into (3.37), we obtain a cubic equation for the unknown exponent

y:

y3 + qy + r = 0. (3.39)

Continuing with the analysis outlined in Bertsch et al. [9], we define two intermediate

variables s1 and s2 for a periodic shear case as:

s1 = [−2c4
0ω sin(ωt) cos(ωt)

+ (
c12

0 sin6(ωt)

27
+ 4c8

0ω
2 sin2(ωt) cos2(ωt))

1
2 ]

1
3 ,

s2 = [−2c4
0ω sin(ωt) cos(ωt)

− (
c12

0 sin6(ωt)

27
+ 4c8

0ω
2 sin2(ωt) cos2(ωt))

1
2 ]

1
3 . (3.40)
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The three possible roots for the exponent equation (3.39) are written as:

y1 = (s1 + s2),

y2 = −1

2
(s1 + s2) +

i
√

3

2
(s1 − s2),

y3 = −1

2
(s1 + s2)− i

√
3

2
(s1 − s2). (3.41)

The real parts of the equation (3.41) represent the growth rate of pressure fluctuations

and the imaginary parts represent the frequency of oscillations. Equations (3.40) and

(3.41) demonstrate that although forced periodic unsteadiness adds complexity to the

intermediate variable expressions, the overall analytical estimate remains virtually

identical to the steady homogeneous shear case found in Bertsch et al. [9].

Figure III.8. Evolution of |s1 − s2| for compressible initial modal Mach
numbers(Mm = 5) and various frequencies(ω).
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Figure III.9. Evolution of |s1 + s2| for compressible initial modal Mach
numbers(Mm = 5) and various frequencies(ω).

For the constant shear case, Bertsch et al. [9] have shown the frequency of

pressure fluctuations monotonically increases with time. For the periodic shear case,

Figure III.8 shows that the frequency of oscillations (imaginary part of (3.41)) no

longer grows monotonically but instead departs from of the evolutionary path for

the constant shear case and exhibits a cyclic behavior dependent on the frequency

of periodicity, ω. The relative magnitude of the acoustic frequencies with respect to

the time scale of mean fluid motion (S) limits the range of values in the periodic

shear cases. Figure III.9 also demonstrates the growth rates of the periodic shear

cases behave in a different manner than the steady case. Whereas the real part of

the exponential roots in the constant shear case appears to have a large growth rate
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initially that slowly tends to an asymptotic value, the real parts of the unsteady

cases exhibit oscillatory behavior about a mean value of zero.

III.C.2.a. Early time behavior

Similar to the analysis in Bertsch et al. [9], we consider the limiting behavior of

s1 and s2 at very early times:

lim
t→0
|s1 − s2| = lim

t→0
|[(−2c4

0ω sin(ωt) cos(ωt) (3.42)

+ (
c12

0 sin6(ωt)

27
+ 4c8

0ω
2 sin2(ωt) cos2(ωt))

1
2 ]

1
3

− [−2c4
0ω sin(ωt) cos(ωt)

− (
c12

0 sin6(ωt)

27
+ 4c8

0ω
2 sin2(ωt) cos2(ωt))

1
2 ]

1
3 |.

In this limit, we utilize the small angle approximation (sin(ωt) ≈ ωt and cos(ωt) ≈

1− (ωt)2

2
). Neglecting terms with higher orders of t reduces the approximation to:

|s1 − s2| ≈
(
4c4

0ω
2t
)1/3

, (3.43)

which is very similar to the expression for the early time behavior of this quantity

in the constant shear case. Thus the pressure field frequency evolves in time as:

1

|s1 − s2|
≈ 1

41/3c
4/3
0 ω2/3t1/3

. (3.44)

For times that are small compared to the pressure frequency:

t <
1

41/3c
4/3
0 ω2/3t1/3

, (3.45)

the pressure field can be taken to be nearly stationary. During this time, the pressure

field will not exert any influence on the velocity field. This is called the pressure-

release turbulence limit wherein the velocity field evolves solely driven by inertial
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effects. As pointed out in Cambon [21] and Bertsch et al. [9], this situation is akin

to Burgers turbulence. This time period is what Bertsch et al. refer to as the first

regime of kinetic energy evolution. Using the definition c0 =
√

(a0k1(0)S0/ω), (3.45)

can be expressed as:

t <
1

41/3
(
a0k1(0)S0

ω

)2/3

ω2/3t1/3
. (3.46)

Further simplification and using the definition of modal Mach number (3.23), the

duration of the first regime can be expressed as:

S0t√
Mm(t)

<
1

41/4
≈ 1√

2
. (3.47)

Referring to Figure III.5, St ≈
√
Mm/2 is the time at which the kinetic energy

evolution transitions from stage 1 to stage 2. Therefore, the analysis of the pressure

equation suggests the presence of a regime in periodically sheared turbulence wherein

pressure evolution is too slow to influence the velocity field (and thus the kinetic

energy). In this regime the velocity field grows solely by the effects of inertia. This

hypothesis will be investigated in the next section by performing RDT computations.

III.C.2.b. Beyond early time behavior

Next we consider the acoustic frequencies in equation (3.39) at later times. Since

all the terms in equation (3.40) are periodic in time, it stands to reason that beyond
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the early time limit, the frequency of acoustic oscillations can be written as:

lim
t→∞
|s1 − s2| = lim

t→∞
|[(−2c4

0ω sin(ωt) cos(ωt) (3.48)

+ (
c12

0 sin6(ωt)

27
+ 4c8

0ω
2 sin2(ωt) cos2(ωt))

1
2 ]

1
3

− [−2c4
0ω sin(ωt) cos(ωt)

− (
c12

0 sin6(ωt)

27
+ 4c8

0ω
2 sin2(ωt) cos2(ωt))

1
2 ]

1
3 |.

The amplitude of the pressure field frequency is then bounded by:

lim
t→∞
|s1 − s2| ≤ 2|(−2c4

0ω)
1
3 |+ 2|(c

12
0

27
+ 4c8

0ω
2)

1
6 | (3.49)

If we plug in our expression for c0, utilize equation (3.23), and note that the frequency

ω is a scalar multiple of the shear magnitude, S0, we can find the limits in terms of

the periodic frequency and initial Mach number:

|(2c4
0ω)

1
3 | ≈ 2

(
S0

ω

) 2
3
(

1

Mg,0

) 2
3

S0 (3.50)

|
(
c12

0

27
+ 4c8

0ω
2

) 1
6

| ≈
(
S0

ω

)(
1

Mg,0

)
S0

+ 4

(
S0

ω

) 2
3
(

1

Mg,0

) 2
3

S0

In the hypersonic, low frequency case, we further have:

S0

ω
≥ 1 and Mg,0 > 1. (3.51)

Therefore,

(2c4
0ω)

1
3

S0

≤ O(1) (3.52)

1

S0

(
c12

0

27
+ 4c8

0ω
2

) 1
6

≤ O(1)
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Finally we obtain:

lim
t→∞

|s1 − s2|
S0

≈ O(1). (3.53)

The ratio of pressure to shear frequency is of order unity or smaller. This corresponds

to Regime 2 in Bertsch et al. [9] In the periodic shear case transition to Regime 3

does not occur. The pressure evolution is frozen in what Bertsch et al. refer to as

Regime 2 where the flow field and pressure timescales are of the same magnitude.

In summary, the analysis of the pressure equation leads to three vital inferences:

1. The early flow field evolution in the periodic shear flow is similar to the steady

shear counterpart.

2. At later times, the pressure and flow field exhibit Regime 2 behavior.

3. Due to the boundaries of the pressure-field frequency, Regime 3 (in Bertsch et

al. [9]) is inaccessible to periodically forced turbulence.

We will now perform RDT computations to verify the above inferences.

III.D. RDT Velocity Field Behavior

In this section, we discuss our observations from the results of the periodic shear

RDT simulations. We focus on three distinct flow field quantities: turbulent kinetic

energy, anisotropy and the equi-partition function. We also examine the evolution

of shear versus stress for compressible periodic shear. Each of these quantities are

reasonably well understood in steady compressible homogeneous shear flows, which

make them ideal for comparison with our periodic shear cases.
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III.D.1. Turbulent kinetic energy

Since inviscid RDT entails assumptions and simplifications that result in a linear

analysis approach, the Reynolds stress evolution equation reduces to:

dui′uj ′

dt
= Pij − Πij. (3.54)

In the linear regime, the Reynolds stresses are only influenced by production, Pij, of

velocity fluctuations and the rapid pressure strain correlation, Πij. In the compress-

ible regime, the production can be quite large since it is directly dependent on the

shearing rate:

Pij = −ui′uk ′
∂Uj
∂xk
− uj ′uk ′

∂Ui
∂xk

. (3.55)

To counteract this rapid growth, the pressure-strain correlation must redistribute the

additional energy along the other coordinates via pressure:

Πij = p′(
∂ui′

∂xj
+
∂uj ′

∂xi
). (3.56)

Utilizing equations (3.12, 3.55, and 3.56), it is clear the evolution of kinetic energy

is governed by:

dk

dt
=
du′iu

′
i

dt
= P11 + Πii = −2S0 cos(ωt)u′1u

′
2 + Πii. (3.57)

It is evident that the periodic shear rate influences the growth rate of kinetic energy.

Figure III.10 presents the effect of periodic frequency on three modal Mach numbers,

Mm = 1, 5, 10. Since the shear periodicity is dependent on the initial Mach number,

all three figures look qualitatively similar. In these figures, all the periodic shear

cases depart from the constant shear evolutionary path in a similar manner to the

different modal Mach number cases peeling off of the Burger’s limit evolution path in
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Figure III.3. Bertsch et al. [9] explain that this departure marks the transition into

the second stage of pressure evolution where Mm(t) ≈
√
Mm(0). Based on equation

(3.28), the higher the periodic frequency, ω, the earlier the transition into the sec-

ond regime occurs. As seen in the analysis section (III.C), the periodic shear cases

get trapped in the second regime due to the oscillations in the velocity field. The

rapidly changing shear rate prevents the modal Mach number from achieving the

incompressible limit and therefore prevents the pressure field from reaching the third

evolution regime. Figure III.10 shows intermediate and high periodic shear frequen-

cies exhibiting kinetic energy growth that is less than 20% of the constant or steady

shear case. For really large frequencies (ω > 3S0), the energy has insufficient time

to evolve and remains nearly constant. Based on these observations, forced periodic

shearing appears to be a stabilizing influence on laminar transition to turbulence.
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Figure III.10. Evolution of turbulent kinetic energy for varying frequen-
cies for initial modal Mach numbers a)Mm = 1, b)Mm = 5, and c)Mm = 10.
Legend: (−) ω = 0S : Steady; (◦) ω = 0.1S; (X) ω = 0.33S; (�) ω = 1S; (+)
ω = 3S; (�) ω = 10S.
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III.D.2. Anisotropy

Other flow field quantities of interest are the components of the Reynolds stress

anisotropy tensor, defined as:

bij =
u′iu
′
j

2k
− 1

3
δij. (3.58)

The components of the anisotropy tensor measure the amount of energy contained

along each flow direction.

We analyze these components in a similar manner to Girimaji et al. [13] by

examining the low frequency and high frequency cases separately. Figure III.11 shows

the low frequency (a) and high frequency (b) cases of b11. For the incompressible

case, Girimaji et al. observed that the steady case of b11 asymptotes to the maximum

possible value, given adequate time to evolve. This indicates all the turbulent kinetic

energy ends up in b11. They observed that low frequency forcing caused this term to

tend to the lowest possible value, suggesting that all the kinetic energy was contained

along the other flow directions. For our compressible study, the steady or zero forcing

case b11 value appears to asymptote around a value of 0.45, indicating that some of

the kinetic energy is aligned along one or both of the other flow field directions.

In Figure III.11a, the low frequency periodicity cases tend to near zero or negative

values similar to the incompressible case. This suggests low frequency forcing causes

the kinetic energy to redistribute along the other directions.

For high frequency forcing, Figure III.11b shows b11 transitioning from a negative

valued asymptote to a near zero value. For higher frequencies of periodic shearing,

the value of b11 does not have adequate to evolve as the shear rate is oscillating so

rapidly and as a result, remains close to its initial value. The near zero value for the

41



(a)

(b)

Figure III.11. Evolution of b11 for initial modal Mach numbers(Mm = 5)
for a) a range of low frequency ω and b) a range of high frequency ω.
Legend: (−) ω = 0S : Steady; (◦) ω = 0.1S; (X) ω = 0.33S; (�) ω = 1S; (+)
ω = 3S; (�) ω = 10S.
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highest frequencies suggest that either the kinetic energy is distributed among each

of the 〈u′
iu

′
i〉 components equally or the shear rate is oscillating so quickly, the flow

field does not have adequate time to evolve beyond the initial conditions. To verify

this theory, an examination of the other components is required. We also note the

decreased amplitude of oscillations for higher frequencies which qualitatively agrees

with the incompressible study in Girimaji et al. [13].

Figure III.12 presents the low frequency (a) and high frequency (b) evolutions

of b12. Yu and Girimaji [12] refer to this component as the shear anisotropy because

it plays a crucial role in the production of turbulent kinetic energy. In Figure III.12,

the constant shear case of b12 (and production by association) experiences a sudden

increase in the initial stage. After reaching a peak value, this component eventually

settles at a small positive value due to the action of pressure, which is consistent with

Bertsch et. al [9]. For all periodic shear cases, a departure or transition from the

zero frequency path occurs at times directly dependent on the magnitude of shear

frequency. This agrees with the kinetic energy evolution in Figure III.10 as well as

the pressure equation analysis in the previous section. The low frequency (Figure

III.12a) cases show the departure off the steady path is followed by large amplitude

oscillations that appear to develop multiple timescales of evolution. This complex

evolution could be explained by the development of a phase lag between the shear

anisotropy b12 and the instantaneous shear rate, S, introduced by Yu and Girimaji.

Showing consistency with b11, the low frequency cases at late times approach a small

negative value. The high frequency cases, seen in figure III.12b, see a reduction in

the oscillation amplitudes for higher frequencies. At late times, the highest frequency
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(a)

(b)

Figure III.12. Evolution of b12 for initial modal Mach numbers(Mm = 5)
for a) a range of low frequency ω and b) a range of high frequency ω.
Legend: (−) ω = 0S : Steady; (◦) ω = 0.1S; (X) ω = 0.33S; (�) ω = 1S; (+)
ω = 3S; (�) ω = 10S.
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(a)

(b)

Figure III.13. Evolution of b22 for initial modal Mach numbers(Mm = 5)
for a) a range of low frequency ω and b) a range of high frequency ω.
Legend: (−) ω = 0S : Steady; (◦) ω = 0.1S; (X) ω = 0.33S; (�) ω = 1S; (+)
ω = 3S; (�) ω = 10S.
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(a)

(b)

Figure III.14. Evolution of b33 for initial modal Mach numbers(Mm = 5)
for a) a range of low frequency ω and b) a range of high frequency ω.
Legend: (−) ω = 0S : Steady; (◦) ω = 0.1S; (X) ω = 0.33S; (�) ω = 1S; (+)
ω = 3S; (�) ω = 10S.
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cases rapidly oscillate about a mean value of zero.

The evolutions of b22 and b33 for constant and periodic shear cases are presented

in Figures III.13 and III.14. The steady or zero frequency case for b22 qualitatively

agrees with the evolution of b22 found in Kumar and Girimaji [11]. Our steady

simulation does not asymptote near a value of −1/3 like the case found in Kumar and

Girimaji, but their study was a DNS simulation and we utilized several linearization

assumptions. Low periodic frequency cases, seen in Figure III.13a and III.14a, display

transitions off the steady case that tend to more positive values of b22 and b33. The

intermediate frequency, ω = 1S, starts to exhibit a decrease in oscillatory amplitudes.

Figures III.13b and III.14b show the high frequency cases tend toward zero beyond

the intermediate frequency. Again, we see oscillations of the highest frequency cases

exhibit the smallest amplitudes. Like the b11 evolution, this trend towards zero

suggests that either the kinetic energy is contained in all three components equally

or none of the anisotropy components evolve beyond their initial values.

III.D.3. Shear versus stress

In Figure III.15, the instantaneous shear magnitude and Reynolds shear stress

are presented for the compressible constant shear case. Once again, the turbulent

shear stress tends to a lower asymptotic value than the incompressible case due to

the action of pressure. With the addition of periodicity to the compressible uniform

shear flow, the behavior of the Reynolds stress is dramatically altered in Figure III.16.

A clear phase shift between the two evolutions exists which agrees with the phase lag

found in the low-speed case of Yu & Girimaji [12]. What is most intriguing about
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Figure III.16 is how the evolution of the shear stress, 〈u′
1u

′
2〉, appears to develop

multiple frequencies or periods at later times. This behavior has not been seen in

incompressible cases suggesting this could be an effect of compressibility.

Figure III.15. Evolution of shear magnitude (S) and stress (u1u2) for
steady, compressible (Mm = 5) shear.

Plotting the two flow quantities against each other allows for further examination

of the evolutionary differences between the shear rate and the shear stress. In a

steady homogeneous shear case plotting shear magnitude versus stress results in a

simple horizontal line since the shearing rate remains constant. For an ideal unsteady

periodic case where both quantities maintain the same period of evolution, the result

would produce an elliptical plot. In Figure III.17, the shear rate versus Reynolds

stress for an intermediate periodic frequency is presented at earlier times (a) St =
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Figure III.16. Evolution of shear magnitude (S) and stress (u1u2) for
compressible (Mm = 5) shear flow with an intermediate periodic frequency,
ω/Smax = 1.0.

0 − 10, and later times (b) St = 10 − 20. At early times, an elliptical behavior of

shear versus stress is observed implying that the phase lag between them is nearly

constant during the first cycle (St ≈ 2π) and both quantities evolve as the stress

is evolving at the same frequency as the forced shear rate. However, Figure III.17b

shows the turbulent Reynolds stress develops multiple evolutionary frequencies at

later times (also seen in Figure III.16) producing a departure from the ideal elliptical

path. Plotting the evolutions in this manner shows that although the shear rate

maintains its periodicity, the period of the Reynolds stress changes with time. Figure

III.17 provides concrete evidence that both phase lag and period differences emerge

between the shear magnitude and the shear Reynolds stress when subject to high-

speed periodic mean shear.
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(a)

(b)

Figure III.17. Shear magnitude evolution versus stress evolution (u1u2) for
compressible (Mm = 5) shear flow with an intermediate periodic frequency,
ω/Smax = 1.0 for (a)St = 0− 10 and (b)St = 10− 20.

50



III.D.4. Equipartition between pressure and dilatational kinetic energy

To complete this study we look at the relationship between pressure and di-

latational kinetic energy in the compressible periodic shear case to determine how it

compares with the constant shear case. We begin with the linearized equations of

pressure and spanwise velocity fluctuations:

∂p
′

∂t
+ Uk

∂p
′

∂xk
= −γp∂ui

∂xi
(3.59)

and

∂u
′
2

∂t
+ Uk

∂u
′
2

∂xk
= −γ 1

ρ

∂p
′

∂x2

(3.60)

The second order moments of these two quantities, the derivations for which are

detailed in Lavin [18] and Bertsch [22], are governed by the following equations:

dp′p′

dt
= −2γpp′ ∂u

′
i

∂xi
(3.61)

and

du
′
2u

′
2

dt
= −2γ

1

ρ
p′ ∂u

′
2

∂x2

. (3.62)

Using equation (3.62) to replace the left hand side of equation (3.61), the two equa-

tions can be combined as:

du
′
2u

′
2

dt
=

1

ρ

(
− 1

γp

dp′p′

dt
− 2p′ ∂u1

∂x1

− 2p′ ∂u3

∂x3

)
(3.63)

Integrating equation (3.63) up to time t, we acquire:∫ t

0

d

dt
ρu

′
2u

′
2dt = −

∫ t

0

1

γp

d

dt
p′p′dt− 2

∫ t

0

p′ ∂u1

∂x1

− 2

∫ t

0

p′ ∂u3

∂x3

. (3.64)
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The time-integrated behavior of the pressure strain correlation tensor has been inves-

tigated by Lavin et al. [10]. One key discovery was the magnitudes of time integrated

values of Π33 and Π22 for different initial modal Mach numbers tend toward the same

asymptotic values at late times when evaluated against the time integrated behavior

of Π11: ∫ t
0

Π22dt∫ t
0

Π11dt
≈ −1

2
and

∫ t
0

Π33dt∫ t
0

Π11dt
≈ 0. (3.65)

Based on these findings, the late time behavior of Π11 and Π33 are expressed as:∫ t

0

d

dt
ρu

′
2u

′
2dt = −

∫ t

0

1

γp

d

dt
p′p′dt+ 4

∫ t

0

p′ ∂u2

∂x2

′

. (3.66)

Utilizing (3.62), equation (3.66) reduces to:∫ t

0

d

dt
ρu

′
2u

′
2dt = −

∫ t

0

1

γp

d

dt
p′p′ + 2ρ

∫ t

0

du
′
2u

′
2

dt
dt (3.67)

Integrating and neglecting the initial values of the pressure and velocity moments

and change in p, we obtain:

ρu′2u
′
2 ≈

1

γp
p′p′ ⇒ p′p′

u
′
2u

′
2γpρ

≈ 1. (3.68)

This implies, given adequate time, compressible homogeneous shear flows will achieve

a balance between the pressure fluctuations and dilatational kinetic energy. In Figure

III.18 we present the computational results of the periodic shear cases against the

constant shear case and equi-partition is achieved. The steady shear case shows

a clear evolution towards the pressure-dilatational energy balance. However, the

unsteadiness in the periodic shear cases seems to require more time to reach equi-

partition for higher frequencies.
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Figure III.18. Equi-partition between dilatational kinetic energy, u2u2/2,
and pressure fluctuations, p′p′, for initial modal Mach number Mm = 5and
various frequencies. φp ≡ u2u2/cp(T−T0). (ω = 0S) : −, ω = S/10 : · · · ,ω = 1S
: (− · −), ω = 10S : (−−).

III.E. Conclusions

The effect of unsteady-shear forcing on a compressible homogeneous turbulence

flow field is examined at the rapid distortion limit. The objective is to investigate the

stability characteristics of such flows and distinguish the combined effects of unsteady

forcing and compressibility from the individual influences. The study focuses on

flow-thermodynamics interactions under unsteady-shear forcing and the consequent

influence on velocity field.

The study commences with a simplified inviscid linear analysis of the perturba-

tion pressure equation. Two regimes of pressure behavior are identified in the case

unsteady shear in contrast to three in the steady case. The first regime corresponds to
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shear timescale being much smaller than the acoustic timescale. This regime charac-

terized by very little flow-thermodynamics interactions leading to monotonic growth

of the perturbation velocity unencumbered by pressure field. In the second regime,

the pressure and shear timescales are of the same order of magnitude. This leads to

a strong coupling between pressure and velocity fields. It is important to recognize

that this pressure-velocity coupling is very different from that in incompressible flow

which is characterized by the acoustic timescale being much more rapid than that of

the flow field leading to the Poisson equation for pressure. In the second compress-

ible regime, the shear-normal velocity perturbation and pressure are coupled as in a

harmonic oscillator. This leads to oscillations in shear stress, which yields nearly net

zero production over a cycle, thus stabilizing the flow. Beyond the second regime,

the unsteady and steady shear cases differ. In the steady case, the pressure-field

frequency keeps increasing to magnitudes much larger than the shear frequency. At

this stage, the steady case transitions to a third incompressible-like regime, wherein

the perturbations grow. In the unsteady case it can be shown that the pressure-field

frequency is confined to smaller values and the second regime persists even at long

times.

In summary, the compressible homogeneous turbulence field subject to unsteady

shear forcing appears to be stabilized unconditionally. Such a field experiences nei-

ther the third-regime growth of the steady compressible case, nor the resonant growth

of unsteady incompressible field.
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CHAPTER IV

DIRECT NUMERICAL SIMULATION OF SMALL PERTURBATION

GROWTH IN COMPRESSIBLE KOLMOGOROV FLOW

Investigation on the effects of inhomogeneity in high-speed shear flows is an

area of research demanding attention. Kolmogorov flow, a spatially periodic mean

flow, is ideal for investigating inhomogeneity in a flow field. Early Kolmogorov flow

studies focused on analysis of the governing equations [23], simulations of linearized

equations [24–27] and direct numerical simulation [28–30]. In these studies, authors

considered both bounded and unbounded flows [24], the effect of unsteadiness [23]

and viscosity [25, 28]. A majority of Kolmogorov flow studies have investigated

the incompressible regime and although conclusions vary depending on the focus of

the study, they agree that the normal modes exhibit nonoscillatory growth [23–25].

Several of the studies suggest that the inhomogeneity in the flow can have a stabilizing

effect even at low speeds [25,26,28]. To date, only one study exists that investigates

the effect of compressibility on Kolmogorov flow [31]. The study presented in this

chapter will focus on high-speed Kolmogorov flow to examine the combined effects

of compressibility and inhomogeneity on stability.
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IV.A. Governing Equations

The compressible, ideal-gas Navier-Stokes equations form the basis of the DNS

study:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (4.1)

∂(ρui)

∂t
+
∂(ρuiuj + pδij)

∂xj
=

∂σij
∂xj

, (4.2)

∂E

∂t
+
∂[(E + p)ui]

∂xi
=

∂(σijuj)

∂xi
− ∂

∂xi

(
κt
∂T

∂xi

)
. (4.3)

The viscous stress tensor σij is given by a constitutive relation:

σij = µ

[
∂ui
∂xj

+
∂uj
∂xi

+ λδij
∂uk
∂xk

]
, (4.4)

and the thermodynamic pressure p is given by the ideal gas law:

p = ρRT, (4.5)

where µ is the coefficient of dynamic viscosity, κt is the thermal conductivity, λ =

−(2/3)µ is the second viscosity coefficient and R is the gas constant.

IV.A.1. Reynolds stresses

For the purpose of analyzing important turbulent quantities, the instantaneous

fields are decomposed into mean/background and fluctuation/perturbation compo-

nents:

q = q̄ + q′. (4.6)

Some key quantities analyzed in turbulent flows are the Reynolds stresses and tur-

bulent kinetic energy. The Reynolds Stress evolution equation (RSEE) stems from
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the Navier-Stokes equations with the familiar form:

du′iu
′
j

dt
= Pij +Rij − εij −

∂

∂xk
Tkij, (4.7)

where Pij is the production tensor defined as:

Pij = −u′iu′k
∂Uj
∂xk
− u′ju′k

∂Ui
∂xk

, (4.8)

Rij is the pressure-rate-of-strain tensor:

Rij =
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
, (4.9)

εij is the dissipation tensor:

εij = 2ν
∂u′i
∂xk

∂u′j
∂xk

, (4.10)

and Tkij is the Reynolds-stress flux tensor which has three components:

Tkij = T
(u)
kij + T

(p)
kij + T

(ν)
kij (4.11)

= u′iu
′
ju
′
k +

1

ρ
u′ip
′δjk +

1

ρ
u′jp
′δik − ν

∂u′iu
′
j

∂xk
.

The evolution of turbulent kinetic energy is also governed by a reduced form of (4.7)

since k = 1
2
u′iu
′
i:

dk

dt
=
du′iu

′
i

dt
= Pii +Rii − εii −

∂

∂xk
Tkii. (4.12)

Each term in the RSEE equation encompasses different physical processes in the

evolution of turbulence in the flow field. Investigations of individual terms and

analysis of (4.7) is crucial to understanding the effect of compressibility.

IV.A.2. Linear analysis

To begin an in depth analysis of the governing equations (4.1-4.3) and (4.7), the

mean/background and perturbation/fluctuation field equations must be established.
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After applying basic averaging rules to equations (4.1-4.3), the mean flow field evolves

according to the following equations:

∂ρ

∂t
+ Uj

∂ρ

∂xj
= −ρ∂Uj

∂xj
− ∂ρ′uj ′

∂xj
, (4.13)

∂Uj
∂t

+ Uj
∂Ui
∂xj

= −uj ′
∂ui′

∂xj
− 1

ρ

∂p

∂xi
+

1

(ρ)2
ρ′
∂p′

∂xi
− (ρ′)2

(ρ)3

∂p

∂xi
, (4.14)

∂p

∂t
+ Uj

∂p

∂xj
= −uj ′

∂p′

∂xj
− γp∂Uj

∂xj
− γp′∂uj

′

∂xj
, (4.15)

Note that we utilized the ideal gas law in the energy equation (4.15) to reduce the

number of thermodynamic properties and ignored the viscous terms. To obtain the

governing equations for the perturbation field, the mean/background field equations,

(4.13-4.15), are subtracted from the instantaneous field, (4.1-4.3). Before we present

the fluctuating field equations for analysis, we will introduce some flow field assump-

tions that are common when examining unbounded shear flows.

For Kolmogorov flow, we impose a mean or background spatially periodic ve-

locity gradient in the flow normal direction (seen in figure IV.1):

∂Ui
∂xj

=


0 S0 cos(x2) 0

0 0 0

0 0 0

 . (4.16)

In a similar fashion to homogeneous shear flow, this mean flow field infers that ∂p̄
∂xi

= 0

and ∂Ūi

∂xi
= 0. In the linear limit, we ignore any terms with higher than first order

fluctuation/perturbation variables. This implies:

ρ ≈ ρ(0); T (t) ≈ T (0) and p(t) ≈ p(0). (4.17)

Applying the above assumptions to the fluctuation/perturbation field equations,
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yields:

dρ′

dt
= −ρ∂uk

′

∂xk
, (4.18)

dui
′

dt
= −uk ′

∂Ui
∂xk
− 1

ρ̄

∂p′

∂xi
, (4.19)

dp′

dt
= −γp∂uk

′

∂xk
. (4.20)

Through application of the previous assumptions to equations (4.7) and (4.12), the

evolution equations for Reynolds stresses and turbulent kinetic energy for linearized,

inviscid shear flows is given by:

du′iu
′
j

dt
= Pij +Rij, (4.21)

dk

dt
= P11 +Rii, . (4.22)

IV.B. Numerical Simulation and Validation

For this study, direct numerical simulations were performed using the gas-kinetic

method (GKM). The GKM is a finite volume based numerical scheme that exploits

the Bhatnagar-Gross-Krook collision operator to solve the Boltzmann equation. The

kinetic Boltzmann equation describes the evolution of a fluid particle distribution

function. The conservative flow variables, such as density, velocity and energy, are

calculated integrating the distribution function. The gas-kinetic equation is a first

order integro-partial differential equation with a linear advection term. Details of

the numerical solution for the gas kinetic equations can be found in [32–36].
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Figure IV.1. Schematic of the mean/background field setup.

Figure IV.2. A typical oblique mode in modal simulations.
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IV.B.1. Initial field setup

The computational domain utilized for the majority of the simulations is a cubic

box of dimension l = 2π. The box is discretized into N1 × N2 × N3 cells with

N1 = N2 = N3 = 256 along the x1, x2 and, x3 directions respectively. We apply a

spatially periodic shear in u1 along the x2 direction such that the gradient of the mean

flow field is Ūi,j = S0 cos(x2)δi1δ2j where S0 is the maximum shear rate. The mean

field setup is presented in figure IV.1. Since the shear rate is periodic along the flow

normal direction, we can apply periodic boundary conditions along all directions.

In DNS and RDT studies of homogeneous shear flows, the initial gradient Mach

number is identified as the main compressibility parameter:

Mg,0 =
S`0

a0

, (4.23)

where S is the shear magnitude(initial mean velocity gradient), `0 is an integral length

scale and a0 is the speed of sound based on mean temperature. For Kolmogorov

flow, the shear magnitude at the inflection points in the mean flow will be used to

determine this compressibility parameter.

The simulations presented in this paper consist of two different initial field se-

tups. One set of initial conditions imposes a single wave mode perturbation oriented

within the streamwise (x1) and spanwise (x3) plane to study the influence of oblique-

ness angle. A schematic of this initial setup can be seen in figure IV.2. The reason

for choosing to orient the wave vectors is the x1 − x3 plane is described in detail in

Kumar et al. [11] and is evident upon examination of the wave number evolution
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equation:

dκi
dt

= −κj
dU j

dxi
. (4.24)

From equations (4.16) and (4.24), the individual components of the wave vector

evolve according to:

κ1(t) = κ1(0) ≡ κ0
1; κ2(t) = κ2(0)−κ1(0)S0 cos(x2)t; κ3(t) = κ3(0) ≡ κ0

3. (4.25)

The angle β seen in figure IV.2, measures the obliqueness to the streamwise direction.

For oblique modes, the effective shearing rate experienced by individual perturbations

at different vertical planes is defined as:

S∗ = S0 cos(x2) cos(β), (4.26)

and the corresponding effective gradient Mach number:

M∗
g ≡

S∗`

a
= Mg0 cos(x2) cos(β) =

S∗

a0|κ(0)|
. (4.27)

For modal analysis, the evolution of the perturbation is directly dependent on the

wave vector orientation and vertical location of each plane.

The second type of initial condition is constructed from a collection of three

dimensional, random, isotropic and solenoidal (∇ ·u = 0) wave mode perturbations.

The initial energy spectra is restricted to wavenumbers in the range κ ∈ [κmin, κmax].

The velocity field is periodic and satisfies a one-dimensional energy spectra [37–39]:

E(κ, 0) =
ûiû
∗
i

4πκ2
= Aκ4e−Bκ

2

, κ

(
=
√
κ2

1 + κ2
2 + κ2

3

)
∈ [κmin, κmax], (4.28)

where B = 0.54, ûi is the Fourier amplitude and û∗i is its complex conjugate and

κ1, κ2 and κ3 are the components of the wave number vector. The detailed steps
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for generating such a field are given in [36, 38–40]. The value of A is calculated to

obtain the prescribed initial fluctuation intensity or equivalently the initial turbulent

Mach number Mt0. The kinematic viscosity ν is chosen to achieve an initial Taylor

microscale Reynolds number Reλ0. The initial temperature and density fields are

chosen to be uniform instead of the isentropic state proposed by [41]. This choice

of initial thermodynamic flow field variables has been utilized in a recent study [11]

and validated against previous DNS studies.

Recent studies have utilized this DNS approach with the same GKM scheme

for other types of shear flow [11, 42]. For compressible homogenous shear flow, [11]

validated this numerical approach against a previous DNS study by Sarkar [4]. Ex-

cellent agreement was seen between the two DNS approaches when examining the

components of the anisotropy tensor and the correlation coefficient. In another study,

bounded shear flows were also examined using this DNS approach by Xie & Giri-

maji [42]. In their study, Xie & Girimaji [42] prove that the DNS approach being

utilized in this study, is valid for both low-speed and infinite Mach-number Poiseuille

flow. Based on these previous studies, this approach is sufficiently validated for this

Kolmogorov flow investigation.

As a first verification step of the applicability of the numerical scheme to Kol-

mogorov flow, we examine the budget of the Reynolds stress evolution equation

(4.7). Both sides of equation (4.7) are computed directly from the simulation data

and compared at specific time instances and presented in figure IV.3. By comparing

both sides of the equation, we seek to exhibit the numerical precision. Nearly perfect

agreement is seen at all time instances, thus showing that the numerical scheme is
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Figure IV.3. Validation of our DNS method where the right and left
hand sides of the Reynolds Stress Evolution show near perfect agreement
at several specific times for gradient Mach numbers(Mg = 5).

appropriate for this inhomogeneous study.

IV.B.2. Relevant previous studies and preliminary results

Before we present our results of single mode perturbations for Kolmogorov flow,

we summarize recent studies of single-mode instability in different high-speed shear

flows. The importance of investigating the evolution of individual small perturbations

in high-speed shear flow was first shown in [11]. Upon examination of the wave

equation for pressure in homogeneous shear flows [9, 11] , it is evident that the

evolution of the pressure field is heavily influenced by the orientation of the initial

wave number vector in the streamwise-spanwise plane (x1x3 plane in figure IV.2).
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The single mode study [11] showed a large increase in dilatational energy when the

initial perturbation is oriented close to the streamwise direction. When oriented along

or closer to the spanwise direction, insignificant dilatational energy was observed and

the perturbation evolved nearly independent of the initial gradient Mach number (or

shearing magnitude). In a similar study of individual perturbations in high-speed

channel flow, [42] found similar results. These studies present a new parameter,

βcrit, which demarcates the orientation in the streamwise-spanwise plane where the

effective gradient Mach number transitions from a supersonic to a subsonic value.βcrit

is defined as:

βcrit = cos−1

(
1

Mg,0

)
. (4.29)

In these studies [11, 42], this parameter demarcates two regions of the evolution of

perturbations. At β < βcrit, the modes appear to be stable since they experience

suppression of the growth rate of perturbation evolution due to the effective gradient

Mach number being above unity . For β > βcrit, which are considered the subsonic

modes, the growth rate suppression disappears and the evolution becomes nearly

independent of the initial gradient/modal Mach number indicating these modes are

unstable. As these two studies both examine different types of shear flows, it is

reasonable to anticipate a similar behavior in Kolmogorov flows.

Simulation of Kolmogorov flow permits the study of ideal flow field inhomogene-

ity by forcing a range of shear rates within the same grid. Each individual plane in

the flow normal direction can be conceptualized as a uniform/homogeneous shear

flow with a unique shear magnitude. Using DNS for this study allows us to gain in-

sight on turbulent transport and dissipation effects in non-ideal inhomogeneous flows.
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In figures IV.4 and IV.5, the evolution of turbulent kinetic energy in compressible

homogenous shear and compressible Kolmogorov flow subject to a collection of initial

perturbation modes are presented. The stabilizing nature of compressibility due to

the change in nature of pressure [9, 11] is clearly demonstrated in figure IV.4. Even

with the addition of non-local instabilities found in Kolmogorov flow, compressibility

still exhibits a stabilizing influence on flow field evolution (figure IV.5). Further, it

can be seen that inhomogeneity is stabilizing even in compressible flows [25, 26, 28].

Since we already established that the effective gradient Mach number and shear rate

for Kolmogorov flow have an additional factor of being dependent on the flow normal

location, βcrit for individual planes in this study is defined as:

βcrit = cos−1

(
1

Mg,0 cos(x2)

)
. (4.30)

The remainder of this chapter will be dedicated to examining single mode pertur-

bation evolution in compressible Kolmogorov flow to improve understanding of the

overall effect of inhomogeneity in free shear flows.
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Figure IV.4. Evolution of turbulent kinetic energy for a collection
of modes in homogeneous shear flow for various initial gradient Mach
numbers(Mg). Figure previously seen in the doctoral dissertation of Gau-
rav Kumar [43].

Figure IV.5. Evolution of turbulent kinetic energy for a collection of
modes in Kolmogorov flow for various initial gradient Mach numbers(Mg).
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IV.C. Single Mode Simulations

To fully comprehend the effect of inhomogeneity on the flow field hysics, individ-

ual perturbation modes will be examined. Volume averaged quantities will be used to

determine the influence of perturbation mode orientation in the streamwise-spanwise

plane. Volume averaged quantities will also be used to investigate the influence of

initial gradient Mach number at fixed obliqueness angles to determine if a stability

boundary classification , similar to that found in [11], is present. Finally, streamwise-

spanwise planar averages will be taken in the flow normal direction to investigate

the inhomogeneity effects on different perturbations.

IV.C.1. Influence of perturbation obliqueness, β

As in the compressible homogeneous shear study, the obliqueness angle, β, de-

termines the effective Mach number experienced by a perturbation oriented in the

streamwise-spanwise plane. Consequently, β also strongly influences the evolution of

the turbulent kinetic energy within the flow field. Figures IV.6 and IV.7 demonstrate

the influence of the obliqueness angle on two different Mach numbers. In both figures

the solid line represents the streamwise (β = 0) mode, along which the perturbation

experiences the maximum influence of initial gradient Mach number. Perturbations

oriented closer to the streamwise direction, have a smaller growth rate implying there

is a stronger stabilization effect in that region. As β increases, and the effective Mach

number acting on the single perturbation decreases, a destabilization of the turbulent

growth rate is exhibited. As anticipated, βcrit demarcates the boundary between the

stable (or supersonic) and unstable (subsonic) regions of the plane. For obliqueness
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Figure IV.6. Evolution of volume averaged turbulent kinetic energy for a
range of obliqueness angles,β, with an initial gradient Mach number(Mg =
5).

angles greater than βcrit, all perturbations evolve along a nearly identical path. This

supports the notion of a stability boundary classification similar to the homogeneous

shear case but further investigation is required.

IV.C.2. Influence of Mach number

The previous subsection examined the influence of the perturbation orientation

for fixed initial modal Mach numbers. Now we investigate the influence of initial

modal Mach number, which acts as a measure of the amount of compressibility, at

fixed perturbation orientations. Keep in mind the definition of effective shear rate

and Mach number (4.26, 4.27) as we interpret the results.
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Figure IV.7. Evolution of volume averaged turbulent kinetic energy for a
range of obliqueness angles,β, with an initial gradient Mach number(Mg =
10).
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IV.C.2.a. 2D or Streamwise mode: β = 0

When oriented along the streamwise direction, a perturbation experiences the

full effect of the shear rate and initial Mach number. This mode is known to generate

a significant amount of dilatational kinetic energy in homogeneous shear flow [11]

due to the steady increase in the wavenumber vector magnitude. Figure IV.8 shows

the volume-averaged evolutions of a perturbation along the streamwise direction for

several initial modal Mach numbers. Since Kolmogorov flow encompasses a range

of shear rates, the influence of low and zero shear planes is reflected strongly in the

lowest modal Mach number case. As expected, we observe that higher compressibil-

ity (Mm) leads to higher energy levels. However, it is important to note that the

perturbation evolution is asymptotically stable.

IV.C.2.b. Oblique mode: β = 45

As the perturbation orientation ventures toward the spanwise direction, no-

ticeable differences in the evolutions are displayed. For simplicity we examine an

oblique mode along the center of the streamwise-spanwise plane. Figure IV.9 shows

the volume-averaged evolutions of a perturbation along β = 45 for different Mach

numbers. Once again, we see increased energetics for larger Mg, but we notice that

the least compressible case (Mg = 1) exhibits growth instead of decay as in the

streamwise orientation. This can be explained by the equation for the effective Mach

number (4.27). Along this orientation, a perturbation is only experiencing around

70% of the Mach number or shear strength. For the Mg = 1 case, the effective Mach

number is in subsonic values. Therefore, we are starting to see the destabilization in
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Figure IV.8. Evolution of volume averaged turbulent kinetic energy from
a streamwise mode (β = 0) instability for various initial gradient Mach
numbers(Mg).

growth of the perturbation for this case. The destabilization for the other cases will

occur at orientations closer to the spanwise direction.

IV.C.2.c. Spanwise mode: β = 90

A perturbation oriented along or near the spanwise direction experiences a small

effective shear rate and Mach number. In this thin region of the streamwise-spanwise

plane, all initial gradient Mach number cases are beyond their βcrit values and the

effective shear acting on the perturbation is well within the incompressible regime.

Based on previous studies and analysis, any perturbations should evolve along the

same path, regardless of initial gradient Mach number or shear rate. Figure IV.10
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Figure IV.9. Evolution of volume averaged turbulent kinetic energy
from an oblique instability (β = 45) for various initial gradient Mach
numbers(Mg).

supports this claim as the perturbation oriented along the spanwise direction shows

unstable growth independent of the initial Mach number value. This observation is

explained by equation (4.27) which shows the effective Mach number experienced by

perturbations along the spanwise mode is nearly zero.

IV.C.3. Influence of inhomogeneity

From the previous subsections, the effect of obliqueness angle, β, and initial

Mach number have been established and show reasonable agreement with high-speed

homogeneous shear [11] and channel flow [42] studies. Kolmogorov flow, considered

an archetypal inhomogeneous shear flow, presents a unique opportunity to examine
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Figure IV.10. Evolution of volume averaged turbulent kinetic energy from
a spanwise mode (β = 90) instability for various initial gradient Mach
numbers(Mg).

the evolutions of a perturbation subject to different shear magnitudes. For the

investigation that follows, we examine plane-averaged values to gain a clearer picture

of the influence of inhomogeneity on individual perturbations. We will focus on three

particular planes of interest shown in figure IV.11. Since DNS was used to produce

these results, the behavior of the turbulent transport and dissipation terms found in

the RSEE (4.7) could be deduced, especially at the low to zero shear planes.

IV.C.3.a. Maximum shear rate plane

At planes of maximum shear rate (x2 = 0, L/2, L; where L is the length of

the domain in the stream-normal direction) in Kolmogorov flow a perturbation is

74



Figure IV.11. A schematic of the stream normal profile pinpointing the
planes of interest: 1) the maximum shear rate location, 2) a medium shear
rate location, 3) a zero shear rate location.

essentially subjected to a homogeneous shear flow. For this reason, the influence of

β on a perturbation should closely resemble results from [11]. Figure IV.12 shows

the evolutions of a perturbation for different Mach numbers at different obliqueness

angles in the maximum shear plane. In figure IV.12a, the perturbation is oriented

along the streamwise direction and the results are presented in non-dimensionalized

mixed time to align the oscillations in the kinetic energy evolution of the different

Mach numbers. The streamwise perturbation evolution shows strong agreement with

homogeneous shear results for this mode [11], supporting the claim that the maximum

shear plane is analogous to homogeneous shear flow. Any differences between this

maximum shear plane perturbation evolution and that of the streamwise mode for

the homogeneous study is due to the turbulent transport and dissipation among

neighboring stream normal planes in Kolmogorov flow. The mixed timescale also

displays evidence of the three-stage evolution common to compressible shear flows.
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Figure IV.12. Evolution of planar averaged turbulent kinetic energy from
(a) astreamwise mode instability; (b) oblique mode instability; and (c)
spanwise mode instability, for various initial gradient Mach numbers(Mg)
at the maximum shear location.
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Figure IV.12b presents the evolutions for a perturbation oriented in the middle of

the streamwise-spanwise max shear plane. Once again, we see the lowest initial Mach

number case shows some destabilization similar to the volume-averaged evolution in

figure IV.9. Close comparison between the streamwise and oblique mode shows a

slight decrease in kinetic energy at later times. As expected from both previous

studies and previous sections of this paper, the evolutions of the spanwise mode

perturbation are independent of initial Mach number, seen in figure IV.12c.

IV.C.3.b. Medium shear rate plane

Medium shear plane (x2 = (2n− 1)L/8 for n = 1, 2, 3, 4) perturbation evolution

give a glimpse at what most of the stream normal planes are experiencing. In these

simulations where the mean/background flow is a single period sinusoidal function,

there are a finite number of planes subject to the maximum shear and zero shear

extremes. Figures IV.13a and IV.13b show the three-stage behavior agreement with

other shear flows as well as the alignment of the evolution oscillations in the mixed

timescale. The oblique mode evolutions (IV.13b) again show the slight destabiliza-

tion of the low Mach number case and the decrease in energetics of the higher Mach

number cases. Figure IV.13c continues the trend of showing the Mach number in-

dependence of the spanwise mode evolutions. However, we note that the spanwise

evolution for the medium shear plane is at a lower growth rate than the maximum

shear plane (IV.12c).
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Figure IV.13. Evolution of planar averaged turbulent kinetic energy
from (a) a streamwise mode instability; (b) oblique mode instability;
and (c) spanwise mode instability, for various initial gradient Mach
numbers(Mg)at a medium shear location.
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Figure IV.14. Evolution of planar averaged turbulent kinetic energy (a) a
streamwise mode instability; (b) oblique mode instability; and (c) span-
wise mode instability, for various initial gradient Mach numbers(Mg)at
the zero shear location.
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IV.C.3.c. Zero shear rate plane

Planes within Kolmogorov flow with zero shear (x2 = L/4, 3L/4) allow inves-

tigations of terms in the RSEE (4.7) that are not directly dependent on the shear

magnitude, such as turbulent transport and dissipation. The evolutions of a pertur-

bation in these planes are purely determined by their interactions with their closest

neighbors with nonzero shear rates. Figure IV.14 shows the evolutions of a pertur-

bation at three distinct obliqueness angles. Both figures IV.14a and IV.14b display

zero growth at early times followed by oscillatory growth and decay cycles at later

times. This indicates that significant amounts of turbulent transport take time to

develop in higher shear regions and the redistribution of energy by pressure and other

effects will not occur immediately. In the zero shear case, figure IV.14c shows that

a spanwise perturbation’s growth is strongly inhibited.

Examining individual shear planes in Kolmogorov flow shows the influence of

inhomogeneity is most prevalent near the zero shear region where the perturbation

growth is mainly due to turbulent transport between neighboring planes. From these

results, inferences can be made about the magnitude of transport at specific shear

plane locations. However, to complete the investigation, we look at the evolution of

the stream normal profile for key components of the RSEE (4.7).

IV.D. Reynolds Stress Evolution and Budget: Evolution of Planar Av-

eraged Quantities

For the investigation that follows, the focus will examine different time instances

of the stream normal profiles of the RSEE terms responsible for the evolution of the
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turbulent shear stress, u
′
1u

′
2. The reason for this choice is seen in equations (4.8) and

(4.12) where the u
′
1u

′
2 Reynolds stress is the main contributor to the production of

turbulent kinetic energy.

IV.D.1. Kinetic energy profile

Before an investigation of the RSEE terms is performed, it is critical to compare

the general evolution of the stream normal profile of turbulent kinetic energy for

different perturbation modes. Figure IV.15 shows the turbulent kinetic energy profile

for several time instances with an initial perturbation a) streamwise mode, b) oblique

mode, and c) spanwise mode. Noting that the spanwise mode horizontal axis is

nearly an order larger than the streamwise or oblique modes, all three modes present

kinetic energy profiles of the same magnitude at the St = 2 instance. From there,

the profile evolutions begin to diverge. The streamwise (a) and oblique (b) profiles

develop more detail in their profiles but their maxima growth appears stable. This is

likely due to all (or almost all) stream normal planes experiencing supersonic shear

or Mach number values, which have already proven to exhibit stable growth. The

spanwise mode (c) exhibits much larger growth rates, especially along the maximum

shear planes. Understanding how the kinetic energy profiles evolve for individual

perturbations can help deduce the influence of obliqueness on different terms of the

RSEE.

81



(a)

(b)

(c)

Figure IV.15. Planar averaged turbulent kinetic energy profiles for(a) a
streamwise mode instability; (b) an oblique mode instability; and(c) a
spanwise mode instability. Mg = 5.
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(a)

(b)

(c)

Figure IV.16. Planar averaged production (P12) profiles for (a) a stream-
wise mode instability; (b) an oblique mode instability; and (c) a spanwise
mode instability. Mg = 5.
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(a)

(b)

(c)

Figure IV.17. Planar averaged pressure-strain (Π12) profiles for (a) a
streamwise mode instability; (b) an oblique mode instability; and (c) a
spanwise mode instability. Mg = 5.
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IV.D.2. Individual terms of RSEE

IV.D.2.a. Production

The production term in the RSEE is responsible for the increase in magnitude

of the perturbation and consequently the Reynolds stresses. This term transfers

energy from the mean/background field to the perturbation, so in locations with

large magnitudes of production, the growth of a perturbation will be large. Figure

IV.16 shows the production turbulent shear production (P12) for different modes. The

streamwise (a) and oblique (b) modes continue to display similar profiles for early

time instances. What is really of interest is figure IV.16c which shows a constant

production rate inferring the growth rate of a perturbation is constant, or nearly so,

along the spanwise direction. This explains the Mach number independent behavior

along this mode. With the knowledge of how the obliqueness influences production,

we next examine how the energy is distributed among different components.

IV.D.2.b. Pressure-Strain Correlation (Π12)

The role of the pressure-strain correlation is to redistribute the energy among

different components to impose the divergence-free constraint on the velocity field.

Figure IV.17 shows the pressure-strain stream normal profiles for several time in-

stances at fixed obliqueness angles. Again, the streamwise (a) and oblique (b) modes

are similar in features. The spanwise mode (c) for this term shows a gradual increase

in strength of the redistribution term at locations of maximum shear. At zero shear

locations, this term is nearly zero for all modes. In linear theory, production and

pressure-strain encompass almost all the details of the kinetic energy evolution. In
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this DNS study, there are still terms that need to be investigated.

IV.D.2.c. Turbulent Transport

The Reynolds stress flux is better known as the turbulent transport term as it

can exchange energy between neighboring planes in Kolmogorov flow. We already

mentioned turbulent transport in the previous sections, which examined the influence

of inhomogeneity. Figure IV.18 shows the Reynolds stress flux profiles at different

times. The streamwise (a) and oblique (b) mode show complex profiles form, but

the large magnitude flux values that are found between the zero and maximum shear

planes are clearly visible. It is also important to note that the magnitudes of this

flux or turbulent transport profile is near zero for early times and only the St = 10

profile has significant values. This supports earlier results when we examined the

zero shear case that suggested the turbulent transport term is insignificant at early

times. There is one final term of the RSEE that must be examined to complete the

investigation.

IV.D.2.d. Dissipation

In the RSEE equation, dissipation behaves like a sink term which uses viscous

action to transforms kinetic energy into internal energy. In comparisons of DNS [11]

versus linear methods [9] of high-speed homogeneous shear, dissipation is responsible

for the reduced kinetic energy growth rates at later times. Figure IV.19 shows stream

normal dissipation profiles for specified perturbation orientations. This is the only

term in the RSEE (4.7) that shows a distinction in the profile evolution between
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(a)

(b)

(c)

Figure IV.18. Planar averaged turbulent transport profiles for (a) a
streamwise mode instability; (b) an oblique mode instability; and (c) a
spanwise mode instability. Mg = 5.
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(a)

(b)

(c)

Figure IV.19. Planar averaged turbulent transport profiles for (a) a
streamwise mode instability; (b) an oblique mode instability; and (c) a
spanwise mode instability. Mg = 5.
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the streamwise (a) and oblique (b) modes. The oblique mode also showed signifi-

cant magnitudes for all components of the dissipation tensor whereas the streamwise

and spanwise only displayed significant values for components along the streamwise

and stream normal directions. The spanwise mode shows strong dissipation at the

maximum shear locations.

The evolution of stream normal profiles for all terms of the RSEE have been

investigated to complete this study on the influence of inhomogeneity in high-speed

shear flows. The spanwise mode profiles exhibit a large constant energy production

at regions of high shear and small magnitudes of pressure-strain and Reynolds stress

flux. The streamwise and oblique modes present a gradual increase in their energy

production profiles along with high magnitudes of pressure-strain redistribution and

turbulent transport which aid in suppressing the perturbation growth. This final

investigation provides explanation for the collective mode behavior shown in figure

IV.5 where the high-speed Kolmogorov cases exhibit energies slightly higher than

homogeneous shear flow, but still show the stabilizing influence of compressibility.

IV.E. Conclusions

The main objective of the present work is twofold i) provide supporting evi-

dence that the modal stability boundaries seen in high-speed homogeneous shear

and channel flows also exist in Kolmogorov flow, and ii) investigate and identify the

qualitative influence of inhomogeneity on high-speed shear flows. The modal behav-

ior in Kolmogorov flow is consistent with the previous studies. The subsonic modes,

β > βcrit, are independent of initial Mach number and exhibit unstable growth. The
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supersonic modes, β < βcrit, have stable growth and have strong dependence on the

effective Mach numbers they experience. These results provide further credence to

the hypothesis that all shear flows exhibit the same qualitative modal characteristics.

A comprehensive investigation on the evolution of individual stream normal

planes is conducted to identify the effect of inhomogeneity in high-speed shear flows.

The profile evolutions of the RSEE terms are studied to see determine the strength

of interactions between stream normal planes with varying shear rates. The spanwise

mode profiles displayed constant high production but small pressure redistribution

and turbulent transport explaining the unstable growth of perturbations oriented

along this direction. The streamwise and oblique modes exhibit varying production

rates along with larger magnitude redistribution and transport terms, which leads

to the perturbation growth suppression seen in the stable modal boundaries. These

investigations explain the stabilizing influence of compressibility on Kolmogorov flow.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

We perform three studies examining different effects on high-speed shear flows:

(1) time-reversal properties of inviscid linear equations in incompressible and com-

pressible flows; (2) a linear analysis investigation using rapid distortion theory to

determine the influence of unsteadiness on a compressible periodic homogeneous

shear flow field; and (3) a modal investigation on the effects of inhomogeneity in

highly compressible shear flows. The contributions from each study are summarized:

V.A. Study 1

The concept of temporal flow reversal of the linearized invisicid equations is

already established for incompressible flows. Using the same criteria, we examine

time-reversal in compressible flows.

1 At the low-speed limit, the flow is governed by the Euler equation for momentum

and the Poisson equation for pressure.

(a) In spectral space the Poisson equation becomes algebraic in form and can be

substituted into the momentum equation to form a single governing equation of

the flow field.

(b) Applying the time reversal transformation produces a sign change in the time

derivative of the momentum equation exhibiting that low-speed linear, inviscid

flow fields can be reversed.
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2 At the high-speed or compressible limit, the governing equations include the mass,

momentum and energy balance equations along with a state equation, here the

ideal gas law, to properly capture the flow field. Applying time reversal trans-

formation produces sign change of all ODE’s in system proving high-speed linear,

inviscid flow fields also are reversible.

V.B. Study 2

The characteristics of transition and turbulence in high-speed compressible pe-

riodic shear flows are remarkably different than constant shear flows. This is due to

the vastly different pressure evolution in the periodic case compared to the constant

shear case. In the constant shear case, the velocity field evolves through three distinct

regimes where pressure’s ability to counteract production changes in character. In

the periodic shear case, the evolution of pressure becomes dependent on the periodic

frequency.

1 For high frequency shear flows, the wave number vector remains almost constant

in time preventing the pressure field - and simultaneously the velocity field - from

evolving beyond its initial state.

2 For low frequency cases, the general solution of the inhomogeneous pressure equa-

tion obtains a form similar to the constant shear case but with coefficients and

intermediate variables that are sinusoidal in nature. As a result, the early and late

time limiting behavior can be surmised.

(a) The early time behavior produced the same result as the constant shear case:

the transition between the first and second regime occurs at S0t/
√
Mm(t) ≈ 1.

92



(b) At later times a coupling between the pressure and shear normal perturbation

cause a drastic reduction in kinetic energy production similar to the second

regime in steady flow.

(c) There is no point at which pressure evolves into the third regime found in the

steady case.

The findings of this study have the potential to be used in unsteady compressible

pressure strain correlation and Reynolds stress models. Since the majority of flow

types experience some amount of time dependence, the inferences derived from this

study could lead to possible control strategies to delay the onset of transition to

turbulence. Further investigation of compressible unsteady flow fields need to be

conducted.

V.C. Study 3

In this study we use DNS of Kolmogorov flow to i) examine the effects of inho-

mogeneity in a compressible shear flow and ii) exhibit the qualitative modal behavior

seen in other shear flows is also present in a spatially periodic mean shear flow. In-

vestigations of different modes lead to the following conclusions on the growth of

fluctuations in high-speed inhomogeneous shear flows:

1 The modal behavior present in Kolmogorov flow is similar to the behavior identified

in previous shear flow studies.

(a) Modes with β > βcrit exhibit unstable growth that is independent of initial

gradient Mach number which is consistent with subsonic flow.
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(b) Modes with β < βcrit exhibit dependence on their effective Mach number and

smaller perturbation growth rates.

2 Examination of plane averaged turbulent quantities exposed a strong perturbation

growth rate dependence on stream normal location illustrating that inhomogeneity

in shear flows has a strong influence.

(a) Stream normal planes near maximum shear planes resemble homogeneous shear

flow evolutions

(b) Planes in the vicinity of zero-shear display no growth at early times due to

absence of production. Eventually perturbation growth occurs but only due to

transport of energy from non-zero shear planes through turbulent transport and

dissipation.

3 Evolutions of stream normal profiles of RSEE terms highlight the mechanisms

responsible for varying perturbation evolution of the different modes.

(a) Modes with larger streamwise components develop time dependent production

rates along the majority of the planes in the stream normal direction which

has an influence on the evolution of the other RSEE terms, overall leading to a

reduced perturbation growth rate.

(b) Modes with larger spanwise components maintain constant production rates cou-

pled with pressure-strain and Reynolds flux terms that are an order smaller than

the magnitudes of their streamwise counterparts.
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