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ABSTRACT

The objective of this investigation is to develop a single point model for the global

effects of pressure in turbulence, while striking a judicious balance between mathe-

matical rigor and empiricism. In this vein, we perform a linear stability analysis of

planar quadratic flows to isolate and identify the action of pressure herein. This leads

to the identification of the statistically most likely behavior engendered by modal

ensembles. Thence, we develop a framework to augment the classical realizability

constraints. Herein, we ensure that not only is the statistical state physically per-

missible, but the stochastic process is realizable as well. These process realizability

conditions are applied a posteriori, to evaluate the dynamics predicted by established

models and a priori, to develop illustrative models that maximize realizability adher-

ence. This serves to identify the range of possible dynamics of the system. Thence, a

set of studied compromises are introduced in the scope and framework of the classi-

cal modeling procedure to develop a modeling framework that ensures a high degree

of fidelity along with adherence to process realizability. An illustrative model using

this paradigm is constructed and its predictions are compared against numerical and

experimental data, while being contrasted against established closures. The robust-

ness of the linear analysis is tested via stochastic modeling using a Langevin equation

based model. Finally, to extend this paradigm to all homogeneous flows, we carry

out a linear stability analysis of general three-dimensional homogeneous flows.
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1. INTRODUCTION

The flow of fluids represents the driving physics in a multitude of occurrences all

round us. These range from flows over aircraft and inside turbomachinery, atmo-

spheric flows for weather prediction and through the heart for cardiac auscultation,

from biological cases such as the flow of plasma inside a cell to galactic instances such

as the Giant Red Spot over Jupiter. It is a fact that most such flows of scientific and

engineering interest are turbulent. As stated in Moin and Kim (1997) “turbulence

is the rule, not the exception in fluid dynamics". In this regard, the phenomenon of

turbulence is omnipresent around us, as is suggested in figure 1.1.

The modern appellation of “turbulence" is derived from the Latin term turbulentia

used in the Middle Ages colloquially, to mean “trouble". In its scientific incarnation,

this term refers to a particular complex, unpredictable motion of fluids. In lieu of

a definition, we state that turbulence is the manifestation of the spatio-temporal

chaotic behavior of certain fluid flows at large values of destabilizing parameters.

However, a categorical and unequivocal definition of this phenomenon is neither

extant nor accepted. Rather, this phenomenon is defined by certain characteristics

common to turbulent flows. These include, for instance,

1. Irregularity and randomness: Turbulent flows are irregular and chaotic. This

complexity is present, both as erratic patterns in space and irregular fluctua-

tions in time.

2. Unpredictability: The chaotic nature of turbulence, leads to a loss of pre-

dictability, wherein nearly identical flows soon evolve to become unrecognizably

different.
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Figure 1.1: Diverse manifestations of turbulence. (a)a rising plume of smoke, (b)the
Giant Red Spot on the surface of Jupiter.

3. Diffusivity: The most important aspect of turbulence as far as applications are

concerned is its associated strong mixing and high rates of momentum, heat

and mass transfer.

4. Dissipation: In a turbulent flow, the energy of the fluid motion is rapidly

dissipated. If no energy is supplied turbulence will decay rapidly. It needs to

acquire energy from its environment.

Having addressed the pertinent questions regarding the nature of turbulence and

its relevance, we discuss its importance. Turbulence represents a central problem

in diverse and manifold disciplines such as engineering, biomedical sciences, astro-

physics, mathematics, geophysics, ad infinitum. A thorough understanding of the

properties of turbulence is expected to lead to important advances in all these fields.

For instance, the turbulent flow of blood in the human heart causes sclerosis leading

to cardiovascular complications such as strokes and heart attacks. A resolution of

the problem of turbulence would enable the Biomedical community to understand,

treat and cure such disorders associated with malfunctioning heart valves. In Mete-
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orology, improved prediction of turbulence occurring in the atmosphere and oceans

would lead to superior forecasts of the weather and of climate change. Recently, it

has been proposed that turbulence during the early stages following the Big Bang

is responsible for the present form of the Universe. In this regard, an improved un-

derstanding of the phenomenon of turbulence would lead to answers involving the

question of life, the universe and everything. In this vein, Richard Feynman had

described turbulence as “the most important unsolved problem of classical physics".

A resolution of the question of turbulence would be a momentous development in the

state of human knowledge. However, in spite of over a century of focused research,

no such resolution exists. The key hurdles in this are:

1. Nonlinearity: The mathematical equations governing the evolution of turbu-

lence are nonlinear. This nonlinearity is ultimately responsible for the chaotic

nature of turbulence. Additionally, the multiplicative character of this nonlin-

eaity with respect to the velocity field leads to the so called Closure Problem

in statistical approaches to turbulence.

2. Nonlocality: This addresses the presence of the long-rage interactions in tur-

bulence, embodied in the pressure term in the governing equations. Thus, the

velocity at any one point in the flow is affected by the dynamics at all other

points in the domain.

In addition to these two major impediments, there are other complications such as

the nonintegrability of the equations, the manifestation of intermittency, etc that

further aggravate this difficulty. Thus, in spite of the focused analysis, at present

there is no analytical theory explaining turbulence. Furthermore, with the present

state of computational resources, a purely numerical resolution of the turbulent flows

encountered in engineering problems is not viable in the near future. Consequently,
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Figure 1.2: Depiction of a turbulent flow in the artwork of Leonardo Da Vinci. The
different scales of motion can be correlated to the brushstrokes in the depiction,
wherein the large scales have long strokes and the smaller scales have short strokes.

at present all engineering recourses to turbulence involve some degree of modeling.

In this context, the fundamental challenge to such modeling attempts lies in the

inherent nature of turbulence itself. A turbulent flow can be envisaged as an amal-

gamation of "method" and "madness", as is suggested in the depiction in figure 1.2.

Herein, the sobriquet method, refers to the large scale structures in a turbulent flow.

These are highly dependent on the details of the specific flow under consideration.

These structures are not amenable to modeling and should, ideally, be resolved via

explicit computation. On the other hand, we have the epithet madness, referring to

the small scale structures in the turbulent flow. These are apparently random and

chaotic, ergo, the moniker. In spite of the appearance of complexity, these can be

modeled, judiciously. A computational procedure must take both these facets into

account.
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The classical engineering approaches to turbulence can be broadly classified into

three groups, viz.

1. Reynolds Averaged Navier Stokes models;

2. Spectral closures and multi-point models;

3. Large Eddy Simulations.

Reynolds proposed an averaging method wherein the turbulent field is decomposed

into a mean and a fluctuating part. On the application of this decomposition to

the governing equations, we get the Reynolds Averaged Navier Stokes equations.

Models derived from this equation, attempt to predict the single-point statistics

of turbulent flows up till the second order. Such RANS models include popular

nominations like the mixing-length model of Prandtl and the k − ε model. On the

other hand, multi-point models such as the Direct Interaction Approximation of

Kraichnan, are statistical recourses that still subscribe to the concepts of ensemble

averaging and the Reynolds decomposition. In this regard, they may be considered as

advanced RANS models. However, most closures of this variety are akin to theories

of turbulence. Based on some reasonable assumptions, these engender self-consistent

systems that are bereft of any parameters or constants that might require empirical

determination. Large Eddy Simulations involve the explicit computation for the

large, energy containing scales of turbulence and utilize sub-grid-scale models to

account for the dynamics of the smaller scales of motion.

Each of these methods has its respective advantages and disadvantages, along

with the proponents and doubters. Due to the disparate character of turbulent

flows, predictive methods must be robust, so as to be easily applicable for most of

these cases, yet possessing a high degree of accuracy in each. Furthermore, as the
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processes of analysis and design involve repeated iterations, the predictive method

must be computationally economical. Thus, the broad criteria of evaluation can be

codified as:

1. robustness of application and predictive fidelity;

2. computational costs;

3. simplicity and tractability.

Analysis of turbulent flows in inherently problematic, primarily due to two rea-

sons:

1. the multi-scale nature of turbulent flows, arising due to the non-linearity therein;

2. the non-locality of the turbulence phenomenon, engendered by the action of

pressure.

Considering the energy spectrum of turbulence, exhibited in figure 1.3, it is observed

that the larger scales of motion are dominated by the linear interactions and the

smaller scales are dominated by the non-linear physics. In this vein, turbulence can

be described as an amalgamation of "method" (referring to the linear dynamics of

the larger scales) and "madness" (referring to the chaotic dynamics of the smaller

scales). Approaches such as Direct Numerical Simulation (DNS) and Large Eddy

Simulation (LES) are computationally intensive. For instance, as shown in the figure,

DNS attempts to compute for and resolve all the scales of turbulence. LES takes

a more conservative recourse, wherein the larger scales of turbulence are explicitly

computed, while the smaller scales are modeled. However, with the present state of

computational resources, these are limited to very simple turbulent flows.

Spectral approaches have the potential to account for the nonlinear and, more im-

portantly, the non-local nature of turbulence. For homogeneous turbulent flows, these
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Figure 1.3: The energy spectrum of turbulence with the dominant physics therein.

have been successful in their applications to some cases. However, their extension

to general problems, especially to inhomogeneous flows, represents an overwhelming

hurdle. Most cases of engineering interest involve complex flows with inhomogeneity,

solid boundaries and complex geometries. Thus, the robustness of this approach is

very limited.

Reynolds stress models are based on the Reynolds Averaged Navier-Stokes equa-

tions and are referred to as the RANS methods. These can be broadly divided into

two categories:

1. one-, or two-equation models that resort to the concept of turbulent or eddy-

viscosity to provide a simple closure;

2. Second Moment Closure based models, based on the Reynolds Stress Transport
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equation, that can obtain, for instance, the turbulent stresses by solving closed

forms of the exact Reynolds stress equations.

Herein, Eddy-Viscosity Models (EVMs) represent the approach with the lowest com-

putational needs. Additionally, the invocation of the eddy-viscosity hypothesis makes

them relatively simple. Thus, such models, especially the two-equation models, are

the norm in Computational Fluid Dynamics applications in the industry. Com-

mercial CFD software apply such approaches to a variety of problems with high

degrees of complexity, often with dubitable accuracy. While such simple relation-

ships between the mean rate of strain and the turbulent stresses are often adequate

for two-dimensional, quasi-parallel flows; in flows with streamline curvature, recir-

culation, impinging and three-dimensionality, these austere analogies are insufficient

and more importantly, inaccurate. In the last few years, there has been a percepti-

ble shift in modeling research, from Reynolds Averaged Navier-Stokes equations to

the LES recourse. This approach proffers a significantly more detailed amount of

information than the RANS paradigm and LES can potentially tackle turbulence

problems beyond the other approaches. It is evident that RANS based approaches

are unable to resolve the structures in a turbulent flow. However, one of the major

reasons motivating this shift has been the shortcomings of the eddy viscosity based

approaches.

Considering a single point closure, to overcome the shortcomings of the eddy-

viscosity approach, it is completely unnecessary to resort to a method as computa-

tionally expensive as LES. Instead of applying an algebraic relationship linking stress

and strain, the Reynolds stresses (and other such fluxes) can be obtained by explicit

solution of closed forms of the Reynolds Stress Transport equations. This method,

that seeks to close the RST equations at the level of the second moment, is aptly re-
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ferred to as Second Moment Closure. Herein, the effects of the body forces, the strain

field and the convective transport on the Reynolds stresses manifest explicitly in the

second-moment equations. Thus, the Second Moment Closure recourse can account

for these complex effects naturally, and much better than eddy-viscosity models.

Additionally, the second moment level enables and aids both analysis and modeling

by actualizing compliance with limiting states of turbulence. In this light, effects

such as streamline curvature, swirl and recirculation, insurmountable for EVMs, are

within the scope of SMC approach, in principle. The computational demands of such

a scheme are typically twice that of a corresponding eddy-viscosity model. This is a

small investment to ensure that the model can be applied in complex flows of engi-

neering interest. Moreover, the computational cost of this approach is usually a few

orders of magnitude less than that of the application of LES to the same scenario.

For flows with large coherent structures, approaches like LES are the only recourse.

However, in the context of simulation of many flows of engineering interest, single

point closures are more practical and remain the norm in industrial applications.

Thus, it is argued that Second Moment Closures are tailored for many prac-

tical applications, providing a considerably higher degree of physical fidelity than

two-equation closures, at a computational expense substantially lesser than those of

Large Eddy Simulation. However, Second Moment Closure based approaches are

not as widespread as other recourses. It has been suggested that this is because in

spite of all its potential, the second moment recourse is not able to deliver upon its

promises. For instance, in theory the Second Moment Closure approach is better

than two-equation models as it can account for the effects of streamline curvature.

However, none of the available models adhering to this paradigm are able to provide

accurate predictions for closed streamline flows. Thus, there is a chasm between the

capabilities of the Second Moment Closure approach and the abilities of the models
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subscribing to this framework. The extant Second Moment Closure models have

met with limited and qualified success. There are many important regimes of flows,

wherein their performance is unsatisfactory. Two primary examples of flows where

prevalent one-point closures perform inadequately are elliptic flows and, to a lesser

extent, flows subject to strong system rotation. For elliptic stream-line flows, the

predicted behavior is, even qualitatively, contrary to observed behavior, as exhibited

in the Direct Numerical Simulations of Blaisdell and Shariff (1996). For instance,

while the DNS results indicate the exponential growth of turbulent kinetic energy,

the models predict that the state of turbulence decays.

This investigation seeks to address this chasm by charting a novel modeling

paradigm that is precise and yet, pragmatic. In our opinion, some of the estab-

lished models are quiet empirical and hence valid only over flows in which they have

been calibrated. In addition to conforming to science, turbulence modeling has an

artistic facet as well. As stated by Dr. Box, "All models are wrong, some are use-

ful." In the absence of a singleton universally correct solution, different investigators

espouse different approaches to the problem. The lack of any existence or unique-

ness theorems engenders creative solutions to the problems therein. In this light,

empiricism is an important aspect of this process, but should be minimized. The

methodology developed in this investigation aims to do thus by focusing on resolving

the inherent schism between the demands obligated by physics and mathematics,

and the limitations of the framework.

Herein, we address one of the key hurdles in modeling under the SMC approach,

that of representing the global dynamics of pressure in a local closure. The cardi-

nal issues forestalling a better understanding of the turbulence phenomenon are the

non-linearity of the inertial cascade physics and the non-local nature of the action of

pressure (Tsinober 2009). In this regard, the "pressure-released" Burgers turbulence
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embodies much of the non-linear character of turbulence but has been understood

better (Sagaut and Cambon 2008), in contrast to its Navier-Stokes analogue. Con-

sequently, the action of pressure may be the key challenge toward understanding

turbulent flows and their subsequent closure modeling.

The Second Moment Closure methodology is based on the Reynolds Stress Trans-

port (RST) equations:

dRij

dt
= Pij −

∂

∂xk
Tijk + πij − εij,

where, Rij =
∑
κ

〈uiuj〉,

πij =
〈
p(∂ui
∂xj

+ ∂uj
∂xi

)
〉
,

εij = −2ν
〈
∂ui
∂xk

∂uj
∂xk

〉
,

andPij = −Rjk
∂Ui
∂xk
−Rik

∂Uj
∂xk

.

(1.1)

The terms are arranged in groups, representing turbulent processes. Of these

expressions, only the production term is closed, at the second moment level and the

other terms require closure modeling. Amongst these unclosed terms, the pressure

strain correlation is accepted to be the most important. At the level of the second

moment, the state of turbulence is best characterized by the turbulent kinetic energy.

If we analyze the evolution of the turbulent kinetic energy over a domain, the relative

import of the terms comes into sharp focus. The transport term just moves energy

from a spatial location to another. In the same vein, the viscous term is fairly uni-

versal in its behavior as a sink for the turbulent kinetic energy. The pressure strain

correlation can have radically divergent behavior dependent on the flow regime and

the initial conditions. Besides the trend of this behavior, the magnitude of the pres-

sure effects is large enough to change the evolution of turbulence completely. Pressure
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is an inherently global variable. To model it in a single-point engineering model, we

have to attempt to express its global dynamics in terms of local variables. In addi-

tion to its importance, this encumbrance makes pressure strain correlation modeling

a continued challenge. Linear versus nonlinear dynamics: Based on the Poisson equa-

tion governing fluctuating pressure in the incompressible flow case, pressure can be

decomposed into a linear (rapid) and a non-linear (slow) part. The rapid terms refer

to interaction between the mean and the fluctuating fields, and the slow terms refer

to the interactions amongst the fluctuating components. Turbulence is often viewed

as a sum of linear and nonlinear effects, "method" and "madness" in layperson terms.

An undue modicum of import is attributed to the nonlinear dynamics in turbulence.

However, in the statistical modeling recourse, it is the linear terms that are more

difficult to model. In a statistical sense, the dynamics of the nonlinear terms is uni-

versal and predictable. Irrespective of the regime of flow, the slow pressure terms

attempt to return the state of turbulence to an isotropic state. In this vein, bridging

models have tried to model the effects of the nonlinear terms with via a white noise

term and have achieved reasonable success therein. On the other hand, the effects

of the linear terms are strongly dependent on the regime of mean flow and on the

detailed initial conditions of the fluctuating flow field. Dependent on the regime of

flow, the rapid pressure effects might stabilize the flow or destabilize it (or even do

both, albeit over a cycle). In doing so, these effects can cause the decay or the growth

of turbulence, dependent on the flow regime. For instance, in planar open streamline

flows, rapid pressure effects mitigate the hyperbolic flow instability. However, in a

planar closed streamline flow, the same terms engender the elliptic flow instability.

(The dynamics of the nonlinear pressure terms is the same for both these flows, vide

return to isotropy.)

At this juncture, we have established the importance of the linear pressure dy-
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namics and the challenge in their modeling. Models for the pressure strain correla-

tion should adhere to the dynamics engendered by these terms, wherever applicable.

Extant nominations for the pressure strain correlation have had limited success in

conforming to the behavior predicated by the linear theory, even for the simplified

case of planar flows. Objectives: One of the key objectives of this research is to at-

tempt better agreement between linear theory and pressure strain correlation models.

This entails understanding the governing dynamics underlying linear physics and, at

the same time, recognizing the limitations of the extant modeling framework. This

research attempts to resolve the schism between the guidelines of linear theory and

the inherent limitations of closure models, with a satisfactory measure of engineering

utility. This is achieved by incorporating a set of studied and deliberate compromises

in the structure and scope of current models. In addition to predictive fidelity, an-

other obligation enjoined upon models is that of realizability. Herein, the predictions

of the model are constrained so as to yield a Reynolds stress tensor that is positive

semi-definite. However, the classical approach to realizability, in spite of its great

utility, is insufficient. In this work, the realizability condition for statistical models of

turbulence is enhanced and reformulated to ensure not only that the Reynolds stress

tensor is positive semi-definite, but the process of its evolution is physically attainable

as well. This has manifold advantages that are exhibited and discussed. This inves-

tigation consists of five sequential and systematic individual investigations. These

constitute the succeeding chapters of this thesis. After an introduction in Chapter I,

we address the linear physics that the model has to reproduce, for planar quadratic

flows, in Chapter II. Herein one of the key phenomena to be analyzed is the Intercom-

ponent Energy Transfer induced by pressure. This action of pressure is inherently

non-local and consequently, its modeling must address multi-point physics. Yet, in

Second Moment Closures, pragmatism mandates a single-point closure model for the
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pressure-strain correlation that is the source of IET. We characterize the dynamics

and dependence of IET and this characterization is used to examine the validity and

limitations of current one point closures and propose directions for improving the

fidelity of future models. Additionally, in light of this investigation into linear stabil-

ity, the limitations of the single point modeling paradigm are discussed and analyzed.

Chapter III develops the process realizability framework that ensures that the pre-

dicted Reynolds stress dynamics are physically permissible. Thus, the realizability

condition for statistical models of turbulence is augmented to ensure not only that

the Reynolds stress tensor is positive semi-definite, but the process of its evolution

is physically attainable as well. The mathematical constraints due to this process

realizability requirement on rapid pressure strain correlation are derived. The result-

ing constraints reveal important limits in the IET and the consequent flow stability

characteristics as a function of the mean flow. These are applied to established mod-

els and thence, a methodology to ensure optimal process realizability adherence is

outlined. Chapter IV heeds the limitations outlined earlier, along with the process

realizability constraints to develop a modeling methodology. Herein, we outline a de-

tailed recourse toward formulating a pressure strain correlation model that possesses

improved agreement within the purview of single point closures. Thence, this frame-

work is utilized to formulate an illustrative model. The predictions of this model are

compared to numerical and experimental data while being contrasted against other

popular modeling paradigms. Finally, as a caveat emptor, the zones of applicability

of this model are clearly delineated for different mean flows.

At this juncture, in Chapter V, we investigate the robustness of the phenomena

engendered by linear physics, in the presence of non-linear effects. To this end,

a Langevin equation based model is utilized in lieu of DNS simulations. Having

developed a satisfactory model for planar flows, in Chapter VI, we investigate the
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linear stability of general three-dimensional flows. This serves as a precursor for an

attempt to extend the methodology, developed earlier, to all homogeneous turbulent

flows. The respective chapters along with their succinct outlines are introduced

henceforth, followed by the body of the work.
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2. INTERCOMPONENT ENERGY TRANSFER IN INCOMPRESSIBLE

HOMOGENEOUS TURBULENCE*

2.1 Overview

Intercomponent Energy Transfer (IET) is a direct consequence of the incompressibility-

preserving action of pressure. This action of pressure is inherently non-local and con-

sequently, its modeling must address multi-point physics. Yet, in Second Moment

Closures, pragmatism mandates a single-point closure model for the pressure-strain

correlation, that is the source of IET. In this study, we perform a rapid distor-

tion analysis to demonstrate that for a given mean-flow gradient, IET is strongly

fluctuation-mode dependent and critically influences the flow stability, asymptotic

states and their bifurcations. The inference is that multi-point physics must be char-

acterized and appropriately incorporated into pressure-strain correlation closures.

To this end, we analyze and categorize various multi-point characteristics such as:

(i) the fluctuation mode wavevector dynamics, (ii) the spectral space topology of

dominant modes, and (iii) the range of IET behavior and statistically most likely

outcomes. Thence, this characterization is used to examine the validity and limita-

tions of current one-point closures and propose directions for improving the fidelity

of future models.

2.2 Introduction

The cardinal issues forestalling a better understanding of the turbulence phe-

nomenon are the non-linearity of the inertial cascade physics and the non-local na-

*Reprinted with permission from Mishra, Aashwin A., and Sharath S. Girimaji. “Intercompo-
nent energy transfer in incompressible homogeneous turbulence: multi-point physics and amenabil-
ity to one-point closures." Journal of Fluid Mechanics 731 (2013): 639-681. Copyright [2013] by
Cambridge University Press.
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ture of the action of pressure (Tsinober, 2009). In this regard, the “pressure-released”

Burgers turbulence embodies much of the non-linear character of turbulence but has

been understood better (Sagaut & Cambon, 2008), in contrast to its Navier-Stokes

analogue. Consequently, the action of pressure may be the key toward understanding

turbulent flows and their subsequent closure modeling. In incompressible flows, the

role of pressure is the enforcement of the continuity condition. To achieve this, pres-

sure reorients the fluctuating velocity vector field leading to a redistribution of the

turbulent kinetic energy amongst the spatial components. This process is referred

to as Intercomponent Energy Transfer (IET). Thus, IET is the action of pressure

through which it fulfills its role of maintaining continuity. To preserve incompress-

ibility, pressure responds instantaneously to any changes in the entire velocity field.

The global nature of the action of pressure is reflected in the fact that it is governed

by a Poisson equation. This multi-point character is evident in a spectral represen-

tation. In the Fourier space representation, the fluctuating velocity field is expressed

in terms of different modes, each characterized by a wavenumber vector and a veloc-

ity amplitude vector. The role of pressure is to maintain orthogonality between the

wavenumber and amplitude vectors, so as to impose the divergence-free constraint.

Clearly, this action is strongly dependent on the wavenumber vector dynamics. How-

ever, information regarding the wavenumber vector requires a multi-point description

in physical space.

It is reasonable to categorize pressure effects into linear (rapid) and non-linear

(slow) components. Herein, it is generally accepted that the role of slow pressure is to

isotropize the velocity fluctuations. While the precise manner of return-to-isotropy

is still under some debate, the general isotropizing action is established. Much of

the complexity of the pressure action can be attributed to the rapid component of

pressure. Under the aegis of the Rapid Distortion Theory (RDT), the action of
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the rapid pressure component can be isolated from its slow counterpart. In this

vein, Salhi et al. (1997) have pointed out the analogy between analyses based on

RDT and linear hydrodynamic stability. Additionally, there is strong evidence that

closure models consistent with linear stability theory are better equipped to capture

the physics of a wide range of turbulent flows (Speziale et al., 1990, 1996). In

conclusion, the IET mechanism incumbent in RDT represents important physics

that must be appropriately included in pressure-strain correlation models. Brasseur

& Lee (1987, 1988) have studied the IET phenomenon in physical space in particular

regimes of homogeneous, sheared flows. Perot & Moin (1995) have examined this

phenomenon to investigate near wall turbulence. Prior studies of IET have had a

predilection to investigate its importance with respect to the coherent structures

in the flow. However, in this investigation, we analyze the IET mechanism with

an emphasis on its multi-point characteristics and the subsequent implications to

turbulence modeling.

2.2.1 Multi-point closure approaches

Multi-point closures potentially possess the means to capture the linear facets of

the non-local features of turbulence. Such approaches account for the continuum of

turbulent scales and are conceivably capable of adequate description of the action of

pressure. Consequently, they capture the non-local nature of the turbulent flow and

require closures only for the non-linear aspects thereof. Some notable approaches of

this type would include the Direct Interaction Approximation (Kraichnan, 1959), the

Eddy-Damped Quasi-Normal Markovian (Orszag, 1970) and the Test Field Model

(Kraichnan, 1971). These were developed for the simplified case of homogeneous,

isotropic turbulence. The effort to extend these to anisotropic and inhomogeneous

turbulent flows is an ongoing line of research. However at present, multi-point clo-
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sures are not well developed and validated for general turbulent flows. Accordingly,

their use is not viable in practical computations, owing to their excessive computa-

tional burden.

A different multi-point closure paradigm is the Turbulence Structure-Based mod-

eling framework of Reynolds and co-workers (Kassinos & Reynolds, 1994). The key

element motivating this approach is the discernment between the componentiality and

the dimensionality of turbulence. The one-point statistic of the Reynolds stresses,

when expressed in spectral space, is the sum of the contributions of turbulent struc-

tures of different sizes and alignments. Thus, the same Reynolds stress tensor can

be decomposed in a multitude of different ways in Fourier space, giving disparate

spectral tensors, corresponding to different internal structuring of the turbulent flow.

Consequently, an expression of the turbulent flow in terms of the Reynolds stresses

only, gives information about the componentiality of the flow, but provides no insight

about its internal structure. In an attempt to incorporate this missing information

into the modeling framework, the Turbulence Structure-Based framework introduces

additional tensors, such as Stropholysis, Circulicity, etc, into the modeling basis

(Kassinos et al., 2001). These tensors and the concomitant information is subsumed

into the formalism of Cambon and co-investigators, wherein the anisotropy is divided

into distinct contributions: isotropic, directional and polarization anisotropy (Sagaut

& Cambon, 2008).

2.2.2 One-point closure approaches

Single-point closures generally omit non-local physics in favor of closure simplic-

ity and computational viability. The level of incumbent physics strongly depends

upon the specific one-point approach. The Second Moment Closure (SMC) recourse

represents the lowest-level of closure in which the IET effects can be explicitly incor-

19



porated into the model. IET manifests itself through the pressure-strain correlation

in SMC and its closure has long been identified as a major weakness in current

modeling practice. Two primary examples of flows where prevalent one-point clo-

sures perform inadequately are elliptic flows and, to a lesser extent, flows subject

to strong system rotation. For elliptic streamline flows, the predicted behavior is,

even qualitatively, contrary to observed behavior, as exhibited in the Direct Numer-

ical Simulations of Blaisdell & Shariff (1996). For instance, while the DNS results

indicate the exponential growth of turbulent kinetic energy, the models predict that

the state of turbulence decays. Consequently, the models are unable to reproduce

the elliptic flow instability appropriately. In this vein, independent investigations

such as Cambon (1990) and Speziale et al. (1996) have highlighted the inability of

single-point closures to replicate the action of fluctuating pressure. In separate in-

vestigations, Jacquin et al. (1990) and Cambon & Jacquin (1989) have pointed out

that rotating turbulence can be described much better in terms of multi-point clo-

sures. Pressure-strain correlation, in particular, and one-point closures, in general,

represent ill-posed mathematical problems as the closures crucially depend upon

inaccessible multi-point details of the flow field. The very simplicity that makes one-

point closures useful also renders them too elementary to capture IET physics in a

variety of important flows.

Thus, there is a clear impasse between different modeling approaches. Multi-

point approaches that can resolve the non-local dynamics in turbulence, are compu-

tationally expensive and not robust. Single-point approaches while both robust and

computationally feasible, are unable to capture the non-local phenomena manifested

in turbulence. To resolve this schism, many investigations have attempted to use

the conclusions from multi-point theories to develop better single-point models. In

Godeferd et al. (2001), strategies for such an approach were outlined and discussed.
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Additionally, newer models seek to conform with the predictions of the Rapid Dis-

tortion Theory, where applicable, as evidenced in the works of Johansson & Hallback

(1994) and Mishra & Girimaji (2010). A notable example in this context is Cambon

et al. (1992), who tried to use the information from spectral investigations to develop

better closures in physical space, for rotating flows. Our investigation adheres to this

paradigm. The multi-point theory of RDT is used to develop a better understand-

ing of the system. Thence, this understanding is used to assess the capabilities of

single-point closures.

In this article, we investigate the IET physics in two-dimensional homogeneous

turbulent fields. These flows encompass many of the phenomena observed in re-

distribution physics. Furthermore, they represent benchmark cases wherein new

nominations for pressure strain closures are tested and validated. Termed as planar

quadratic flows (Salhi et al., 1997), these flows exhibit a universal mechanism for the

transfer of energy from the large scales to small scales in a turbulent flow (Pierre-

humbert, 1986). For such flows, arbitrary small three-dimensional perturbations can

be created by an instability of the basic two-dimensional flow. Pierrehumbert (1986)

has suggested this as a mechanism for the cascade process in turbulent flows. The

interested reader is referred to Pierrehumbert (1986) and Bayly (1986) for details of

the mechanism and to Malkus (1989) for an experimental realization of the same.

This mechanism is significant due to its role in the transition of turbulence in free-

shear layers, wall-bounded shear flows, the formation of Kelvin-Helmholtz billows,

etc.

2.2.3 Objectives and investigations

The objective of the present work is to investigate the multi-point characteristics

of IET for the purpose of

21



1. establishing the scope of validity and limitations of present one-point closures;

2. examining avenues for incorporating multi-point physics into one-point clo-

sures;

3. initiating the development of a framework for uncertainty estimation in closure

models.

In a Fourier decomposition of the flow field, the flow is represented via a set of

wavevectors and a velocity field associated with each wavevector. Information regard-

ing the wavevector set is inherently non-local and is not in the purview of single-point

closures. As a recourse, one-point closures attempt to represent the behavior of this

unknown wavevector ensemble via the evolution of a single hypothetical mode. We

attempt to establish the critical characteristic features of this dynamical system and

identify the statistically most likely behavior. Such a characterization would be crit-

ical for modeling, as the modeling procedure would simplify to identifying the modal

alignment that replicates the dynamics of the ensemble of wavevectors. Identifying

such universal behavior entails an analysis of the invariant sets of the wavevector (i.e.

attractors, saddle nodes, limit cycles, etc) and their evolution (i.e. bifurcations, etc)

along the lines of the theory of dynamical systems. Thence, we attempt to identify

the dominant (most-energetic) modes. The identification of such modes would be

propitious. Instead of attempting to capture the dynamics of the entire ensemble,

the model can focus on replicating the behavior of this smaller set. This phase of the

analysis is along the lines of hydrodynamic stability, where the focus is on the most

unstable modes. Furthermore, we attempt to identify the most-likely behavior aris-

ing from this ensemble, with respect to the IET. We identify this as the statistically

most likely behavior. In summation, the specific tasks undertaken in this study are:
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1. to demonstrate the critical role played by IET in determining the stability of

perturbation modes;

2. to establish the wavevector dynamics, specifically the fixed point behavior and

the bifurcations in the system are clearly demonstrated as a function of mean

velocity gradient invariants;

3. to characterize the IET for different mean velocity gradients, as a function of

wavevector orientation;

4. to identify the topology of the most energetic wavevector modes for each flow

regime;

5. to determine the statistically most likely (SML) IET behavior for each mean

velocity-gradient and further establish the range of possible behaviors.

In light of these analyses, the article is arranged thus. The Kelvin-Moffat set

of RDT equations are derived and discussed in Section II. Section III presents a

preliminary examination of the contrasting IET influence on the linear stability of

open and closed stream-lined flows. Building upon this, Section IV presents a more

detailed RDT analysis of various features of IET: modal analysis, stability, fixed-

point behavior and statistically most likely behavior. A summary of the physics of

the action of pressure is also given. Section V establishes the importance of linear

physics even in the presence of scrambling non-linear effects. The range of validity

and limitations of one-point closures in capturing IET features is examined in Section

VI. The article concludes with a reiteration of key findings and significant conclusions

in Section VII.
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2.3 Mathematical formulation

This investigation considers the influence of the pressure field on the evolution of

the velocity perturbations, u′, given a background velocity field, U. We attempt to

isolate the effect of the pressure field on the velocity perturbations by contrasting the

evolution of said fields subject to the Euler and the Burgers equations. In this article,

the investigation is restricted to a linear analysis. The linearized Euler equations

(rapid distortion equations) for the velocity perturbation subject to a given mean

velocity field, are given by:

D̄u′j

D̄t
= −u′i

∂Uj
∂xi
− 1
ρ

∂p(r)

∂xj
, (2.1)

1
ρ
∇2p(r) = −2∂Uj

∂xi

∂u′i
∂xj

. (2.2)

Here, the D̄
D̄t

operator represents the total derivative following a mean streamline. As

per precedent, the fluctuating pressure, p, is decomposed into two components: rapid

pressure, p(r), and slow pressure, p(s). Upon linearization of the Poisson equation for

pressure, the slow pressure term is eliminated.

The rapid distortion equations are examined in Fourier space, via the projection:

u′i(x, t) =
∑

ûi(κ, t)exp(iκ · x), p(r)(x, t) =
∑

p̂(t)(κ, t)exp(iκ · x). (2.3)

In the Fourier analysis, the perturbation is characterized in terms of the wavenumber

vector, κ(t) and û, p̂, the corresponding Fourier amplitudes and pressure coefficients.

As the equations (2.1) and (2.2) are linear, each Fourier mode evolves independently
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Figure 2.1: The mean flow streamlines as a function of the parameter, β. With
increment in β, from zero to one over the course of the five figures, we observe the
variation in the mean flow streamlines. (a) and (b) represent hyperbolic flows, where
β < 0.5. (c) represents a pure shear case with β=0.5. (d) and (e) are representative
of elliptic flows cases, where β > 0.5.

and hence the equations can be decomposed and written for each fluctuation mode

separately. Starting from the incompressible Euler equations at the rapid distortion

limit, the relevant modal equations can be derived as:

dκl
dt

= −κj
∂Uj
∂xl

, (2.4)

dûj
dt

= −ûk
∂Ul
∂xk

(δjl − 2κjκl
κ2 ), (2.5)

and the incompressibility constraint is given by û · κ = 0. This indicates that the

wavenumber vector, κ, and Fourier amplitude vector, û, remain orthogonal to each

other.

To characterize the applied gradient field, we introduce the ellipticity parameter,
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β , defined as:

β = WpqWpq

WijWij + SijSij
, Sij = 1

2(∂Ui
∂xj

+ ∂Uj
∂xi

), Wij = 1
2(∂Ui
∂xj
− ∂Uj
∂xi

). (2.6)

Here, Wij and Sij refer to the rate of rotation and rate of strain tensors of the back-

ground flow. Plane quadratic flows can be uniquely characterized by the value of β,

as exhibited in figure 2.1. For the purposes of the present investigation, the applied

gradient field is confined to the 1-2 plane and the figures exhibit the streamlines

in this plane. Quadratic flows can be divided into three classes, based on the ap-

plied gradient field: hyperbolic (strain dominated or open streamline flows), elliptic

(rotation dominated or closed streamline flows) and purely sheared flows. The classi-

fication and nomenclature used to differentiate between quadratic flows are outlined

in Table 2.1. The relative strengths of the rate of strain and rotation tensors can be

quantified by non-dimensionalizing their norms by that of the mean velocity gradient

tensor. In this regard, we define the derived parameters:

a =
√

1− β
2 , b =

√
β

2 . (2.7)

Thus, the parameter “a" measures the relative strength of the applied strain and “b",

of the applied rotation. In the principal co-ordinates of strain, the requisite mean

flow tensors are given as,

∂Ui
∂xj

=


a −b 0

b −a 0

0 0 0

 , Sij =


a 0 0

0 −a 0

0 0 0

 , Wij =


0 −b 0

b 0 0

0 0 0

 . (2.8)

For the specific case of the two dimensional, constant mean velocity gradient
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Range of β Nomenclature

I. [0, 0.5) Hyperbolic/Strain-dominated/Open-streamline flow

II. 0.5 Purely sheared/Homogeneous shear flow

III. (0.5, 1] Elliptic/Rotation-dominated/Closed-streamline flow

Table 2.1: The nomenclature used for the different regimes of flow and their relation
to the ellipticity parameter.

fields considered in this study, the structure of the Kelvin-Moffat set (Moffatt, 1967;

Sagaut & Cambon, 2008) is as follows :

de1

dt
=ae3

1 − ae1(1 + e2
2)− be2,

de2

dt
=− ae3

2 + ae2(1 + e2
1) + be1,

de3

dt
=ae3(e2

1 − e2
2),

dû1

dt
=(2ae2

1 + 2be1e2 − a)û1 − (2be2
1 + 2ae1e2 − b)û2,

dû2

dt
=(2be2

2 + 2ae1e2 − b)û1 − (2ae2
2 + 2be1e2 − a)û2,

dû3

dt
=2e3(ae1 + be2)û1 − 2e3(ae2 + be1)û2.

(2.9)

This represents a six-dimensional, non-linear ordinary differential equation gov-

erning the evolution of the unit wavenumber vector,e and the Fourier amplitude

vector, û. With the imposed background velocity gradient field expressed as a func-

tion of the ellipticity parameter, this forms a single-parameter dynamical system.

To isolate the action of pressure, we contrast the behavior of the Euler system

against its pressure-released analogue, the Burgers equations. The linearized Burgers
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equation for perturbations can be expressed as:

D̄u′j

D̄t
= −u′i

∂Uj
∂xi

. (2.10)

Upon projection into Fourier space, the linearized Burgers equation reduces to,

dû1

dt
=− aû1 + bû2,

dû2

dt
=− bû1 + aû2,

dû3

dt
=0.

(2.11)

2.3.1 Individual vs. collective behavior

In order to develop comprehensive physical understanding, it is important to ex-

amine the behavior of individual Fourier modes in addition to the investigation of

the statistical behavior of the collection of Fourier modes. Under the aegis of the

Rapid Distortion Theory, the magnitude of the wavevector is inconsequential and

only the alignment of the mode is important. Thus, for the statistical treatment

based on RDT, the initial conditions are chosen to correspond to an isotropic ini-

tial state of turbulence (unbiased initial state). To achieve an isotropic initial state,

velocity fluctuations in all permissible directions are taken to be equally energetic

(Girimaji et al., 2003). That is, Fourier coefficients of initial velocity fluctuations in

all permissible directions have equal magnitudes. For a given vector u all permis-

sible wavenumber vector directions are equally probable. Consequently, the initial

wavevectors are uniformly distributed on a unit sphere.

Considering a statistical ensemble as in SMC, the transport of the Reynolds stress
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tensor is governed by:

dRij

dt
= Pij + πrij,

where, Rij =
∑
κ

〈uiuj〉,

πrij = 2∂Ul
∂xk

(Mkjil +Mikjl),

Mijkl =
∑
κ

〈ûiûjekel〉,

andPij = −Rjk
∂Ui
∂xk
−Rik

∂Uj
∂xk

.

(2.12)

To understand the statistical effect of IET, it is instructive to compare the physics

of the above equation with its pressure-released counterpart – Burgers turbulence or

Burgulence:
dRij

dt
= Pij. (2.13)

In this study, we investigate the behavior of individual modes as well as the

statistics of a collection of modes. As mentioned in the Introduction, the behavior

of individual modes is important to the Turbulence Structure-Based approach, as

well as for SMC. While studying specific modes, the initial conditions are chosen to

highlight the specific phenomenon to be studied. The investigation of the collective

behavior is entirely motivated by SMC wherein the statistics of an ensemble of modes

are to be determined. The challenge of one-point SMC modeling is that the modes

that constitute the ensemble are not known. The best an SMC model can attempt

to accomplish is to provide closure based on the statistically most likely ensemble.

We propose that the SML ensemble is one wherein the wavenumber vectors are

initially distributed isotropically in Fourier space. This represents an unbiased initial

distribution. With such an initial choice, the most energetic wavenumbers naturally

emerge from the collection to dominate the statistics (Girimaji et al., 2003), leading
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to the statistically most likely behavior. However, it is important to point out that

the ensemble in a practical application may be very different depending on the flow

conditions. Finally, a fourth-order Runge-Kutta scheme is used for time integration

of all equations.

2.4 The action of pressure: overall flow stability

As pressure realigns the velocity vectors to impose the divergence-free constraint,

it critically affects the flow stability. As explained in the introduction, the key

challenge of one-point closures is to establish the statistical behavior of a collection

of modes, bereft of any information regarding the constituents of this ensemble.

The incipient step toward achieving a reasonable closure is to establish the stability

characteristics of the full system. In this vein, we need to isolate the action of

pressure and determine the stability characteristics engendered by pressure effects

and those due to inertial effects. To categorically explicate the effect of pressure, we

compare results computed from linearized (RDT based) simulations of the Euler and

the Burgers equations. These are referred to as RDT-E and RDT-B, respectively.

This comparison focuses on the turbulent kinetic energy, k = uiui

2 , and the Reynolds

stress anisotropies, bij = uiuj

2k −
σij

3 .

2.4.1 Burgulence

The Burgers system is governed by the production mechanism only and hence,

offers an excellent platform to isolate the inertial dynamics. The linearized Burgers

equations (2.11) represent a homogeneous linear differential system with the dynam-

ics confined to the û1− û2 plane, i.e. the plane of applied strain. The corresponding
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solutions for the Fourier amplitude vector in the Burgers system are:

 û1

û2

 = c1 exp(
√
a2 − b2t)

 −
√
a2−b2

a−b

1

+ c2 exp(−
√
a2 − b2t)


√
a2−b2

a−b

1

 . (2.14)

In the general case, the mean velocity gradient matrix has two non-zero eigenvalues,

given by ±
√
a2 − b2. For the case of hyperbolic flows, (a > b), and the eigenvalues

are real. The corresponding eigenvectors represent the extensional (λ > 0) and

compressional (λ < 0) directions of the background flow. With reference to the

equation (2.14), the Fourier amplitude vector aligns itself with the compressional

principal axis. Physically, this represents streamwise vortex stretching which is the

underlying physical mechanism for the hyperbolic flow instability. For elliptic flows,

the non-trivial eigenvalues are complex conjugates. Thus, the mean velocity gradient

does not possess real principal axes. In this regime, production causes the fluctuating

velocity vector to undergo linear oscillations in the û1 − û2 plane.

In summary, the scope of this production mechanism is, directly and linearly,

associated with the applied gradient field and thus, the effects of production are

limited to the plane of applied gradient. For RDT-B, there is a straightforward

transfer of energy from the mean flow to the R11 and the R22 components and vice-

versa, via positive and negative production.

2.4.2 Pressure-effects

For the case of RDT-E, pressure-strain correlation represents a mechanism to

redistribute perturbation energy amongst all the components. The inclusion of the

pressure effect influences the production mechanism indirectly, as it can modify the

alignment of the Fourier amplitudes with the principal axes. In this vein, pressure
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could cause the Fourier amplitude vector to align faster with the compressional axis,

thus bolstering the instability. Conversely, the effects of pressure may counteract

such an alignment and mitigate the flow instability. Conceivably, pressure effects

could be negligible and not have a significant effect on the stability characteristics.

As shall be proved, all of these putative actions are manifested by the system and the

exact nature of the effects of pressure upon flow stability is completely dependent on

the type of mean flow.

2.4.3 Flow statistics in different regimes

Figure 2.2 (a) shows the turbulent kinetic energy evolution for a representative

hyperbolic flow case (Henceforth, S =
√
SmnSmn). As can be observed, in the ab-

sence of pressure (RDT-B), the kinetic energy continues to grow exponentially. In

the case of RDT-E, the kinetic energy grows, exponentially, to a high value where

it settles down. However, the case of RDT-E exhibits a significantly lower rate of

growth for the perturbation kinetic energy, which is a manifestation of the stabiliz-

ing action of pressure. In figure 2.2 (b) and (c), the evolution of the anisotropies for

hyperbolic flows in RDT-E and RDT-B are exhibited, respectively. The statistics

governed by RDT-B have production as the sole turbulent process governing evo-

lution. Consequently, the turbulent kinetic energy is contained in the compressive

principal axis of the mean velocity gradient tensor, Rcc. However, such a state is in

violation of mass conservation, as the wavevectors converge to a state of alignment

along this axis as well. Thus, pressure redistributes the turbulent kinetic energy,

transferring it out of the plane of applied strain. This leads to the increase of the b33

component, observed in the RDT-E evolution. As can be observed, the transfer of

energy to the R33 component, exhibited in 2.2 (b), corresponds to the exact juncture

when the Euler system stabilizes, exhibited in 2.2 (a).
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Figure 2.2: Evolution of statistics for a representative hyperbolic flow, β = 0.36.
(a) Comparison of turbulent kinetic energy evolution in RDT-B and RDT-E, (b) bij
evolution for RDT-E, (c) bij evolution for RDT-B.
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Figure 2.3: Evolution of statistics for a representative elliptic flow, β = 0.64. (a)
Comparison of turbulent kinetic energy evolution, (b) bij evolution for RDT-E, (c)
bij evolution for RDT-B.
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Figure 2.3 (a) displays the kinetic energy evolution for a representative elliptic

flow case. In this case, for RDT-E, the perturbation kinetic energy has no upper

bound and keeps increasing even for the long time spans simulated in this study,

exhibiting the unstable state of the flow. In contrast, for RDT-B, the kinetic energy

is in a bounded, oscillatory state that has a constant amplitude and frequency of

oscillation. Clearly, the pressure-less evolution is in a state of neutral stability, while

the addition of the pressure term engenders the elliptic flow instability. In this

context, Salhi et al. (1997) have pointed out that the elliptic flow instability is

contingent upon the contribution of pressure. In figure 2.3 (b) and (c), the evolution

of the anisotropies for elliptic flows in RDT-E and RDT-B are exhibited, respectively.

For RDT-B, it can be observed that the anisotropy components are in a state of

linear oscillation. For the case of RDT-E, pressure effects transfer energy to and

from the plane of applied strain. This can be observed in the RDT-E evolution,

where b33 oscillates about a mean of zero, representing energy transfer to and from

this component.

For the case of pure shear flows, figure 2.4, it is observed that the evolution of

the anisotropies and turbulent kinetic energy is very similar for both RDT-E and

RDT-B. In this case, the inertial effects engender the velocity field to evolve in a

manner that the continuity condition is nearly satisfied. This obviates the need for

any substantial realignment of the Reynolds stress tensor and consequently, pressure

has a negligible role in the evolution of the flow field. In the hyperbolic and elliptic

regimes, it was observed that pressure was able to change the stability characteristic

of the flow. In figure 2.4 (a), it can be observed that the kinetic energy evolution for

both the Burgers and the Euler RDT simulations show unstable behavior. For the

Burgers system, there is quadratic growth in kinetic energy while the Euler system

exhibits linear growth. Thus, the action of pressure has a negligible effect on flow
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Figure 2.4: Evolution of statistics for a homogeneous shear flow, β = 0.5. (a)
Comparison of turbulent kinetic energy evolution in RDT-B and RDT-E, (b) bij
evolution for RDT-E, (c) bij evolution for RDT-B.
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stability and is not even able to transform the nature of flow stability (polynomial,

as opposed to exponential growth).

By contrasting the RDT-E and RDT-B evolution, it is observed that the effect

of pressure on stability is diametric for open streamline flows and closed streamline

flows. For the case of open streamline flows, pressure has a stabilizing influence and

moderates the hyperbolic instability. On the contrary, for the case of closed stream-

line flows, pressure acts so as to initiate and sustain the elliptic flow instability. At

the point of transition between these flow regimes, i.e., purely sheared flow, pressure

has a minimal effect and does not even alter the nature of the flow instability.

In this section, the redistributive action of pressure and the concomitant conse-

quences on flow stability have been established clearly. While the results illustrate

the critical role of the action of pressure, further modal analysis is vital for developing

the deeper insight necessary for high-fidelity closure models.

2.5 The action of pressure: modal analysis

The magnitude and nature of the action of pressure on realignment, energy re-

distribution and stability is highly contingent on the orientation of the perturbation

mode, ~e. This is related to the “structuring effect" of linear physics (Sagaut &

Cambon, 2008). This hierarchy of dependence can be observed by decoupling the

Kelvin-Moffat set of equations, wherein the wavenumber vector evolves as a function

of the background gradient field only, while the modal kinetic energy evolution is

dependent upon the alignment of the mode as well.

As mentioned in the introduction, the study will consist of the following four

analyses for each type of flow:

1. Invariant sets and their bifurcations of the wavevector evolution.

2. IET and dynamics of Reynolds stress evolution.
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3. Modal stability and the topology of unstable modes.

4. Range of IET behavior and the statistically most likely behavior.

These distinct lines of investigation can provide the insight required to incorporate

multi-point features into a single-point closure, to the possible extent. Equally im-

portant, the study can identify the limitations and potential level of uncertainty in

closure modeling at the single-point level.

As the wavevector evolution is central to the action of pressure, we commence

our analysis with an examination of the evolution of the alignment of modes. The

time-dependent solution for the wavevector evolution is,

 κ1

κ2

 = c1 exp(−
√
a2 − b2t)

 −
√
a2−b2

a−b

1

+ c2 exp(
√
a2 − b2t)


√
a2−b2

a−b

1

 . (2.15)

For open streamline flows, this leads to non-trivial, stationary solutions for ~e. For

closed streamline flows, the solutions are oscillatory. In this section, we study the

dynamics of the modal ensemble, with an emphasis on the wavevector. We seek

a universal behavior herein and analyze the importance of the outliers of this dis-

tribution, that have dynamics deviating markedly from the other members of the

sample.

2.5.1 Hyperbolic flows

2.5.1.1 Wavevector dynamics

For hyperbolic flows, the magnitude of Sij is more than that of Wij. In such

strain-dominated flows, there exist stationary states for modal alignment. These

correspond to the extensional and compressional principal axes of the mean velocity
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(a) 

(b) (c) (d) 

Figure 2.5: The topology of the phase space for a representative hyperbolic flow
(plane strain, β = 0). The inset figures, b,c and d, delineate the topology in the
neighborhood of an attractor, a repeller and a saddle-node, respectively, on a plane
phase space.

gradient tensor. The mean velocity gradient has a predilection to align the modes

in the flow with the compressional principal axis. Thus, in dynamical systems par-

lance, this state of alignment represents an attractor. Almost all the modes in the

flow, except for a set of measure zero, have a bias to align thus. Conversely, the

extensional principal axis acts as a repeller and modes having an alignment close to

this are repelled from such a state. Furthermore, modes that are aligned perpendic-

ular to the plane of applied velocity gradient maintain this orientation. This state

of perpendicular alignment is a saddle-node. The saddle-nodes have the property

of attracting trajectories along a specific direction and repelling trajectories along

another direction. The topology of this phase space is exhibited in figure 2.5, along

with the local trajectories in the vicinity of the critical points mentioned above. The

attracting direction of the saddle-nodes, termed as the separatrix, is the curve joining
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the repellers and the saddle-nodes along the surface of the sphere. As per definition,

the separatrix demarcates the boundary separating trajectories of markedly different

dynamics. In this context, it divides the basins of attraction of the two attractors.

As the topology of the phase space suggests, due to the division by the seperatrix of

trajectories with acutely different behaviors, the dynamics on the separatrix are sin-

gular. Modes that are perfectly aligned with the separatrix, are not attracted to the

compressional principal axes, but instead these evolve toward a state of alignment

that is perpendicular to the plane of applied gradient. As the basins of attraction

cover the entire space, the asymptotic evolution of almost all modes is to either one

of the two attractors. However, the initial evolution of the alignment of a generic

mode is dependent on its proximity to the principal axes. In this regard, the modes

in the flow can be classified into two categories:

1. Modes that are closer to the separatrix evolve, initially, toward a state of

alignment perpendicular to the plane of the applied gradient. (This is due to

the fact that their trajectories of approach to the attractor pass very close to

the saddle-node.) Hereafter this set of modes is referred to as the E-modes.

2. Modes that are closer to the compressional axis evolve to a state of perfect

alignment with the compressional axis. Hereafter this set of modes is referred

to as the C-modes.

It will be shown that these two kinds of evolution are associated with diametric

characteristics with respect to the stability of the mode.

2.5.1.2 IET dynamics

The role of pressure is to maintain the orthogonality between the Fourier ampli-

tude vector and the wavevector. This condition is trivially satisfied if the Fourier
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amplitude vector of the mode is aligned with the compressional principal axis of

the applied gradient field. Consequently, for such modes, the pressure term does

not affect the evolution of the modal velocities and their evolution is identical to a

hypothetical Burgers mode. For all other modes, as is evident from the equations

(2.15) and (2.14), to enforce continuity pressure removes turbulent kinetic energy

from the plane of applied strain. This redistribution leads to a reduction in R11

and R22, with a consequent increase in R33. The hyperbolic instability is essen-

tially due to the effects of the applied strain on the fluctuating velocity component

along the compressional principal axis. Any transfer of fluctuation energy out of the

plane of applied strain diminishes the magnitude of fluctuations along this direction.

Thus, this out-of-plane energy transfer moderates the magnitude of production and

mitigates the state of instability.

Reverting to our classification of the modes based on the initial evolution of their

alignments, we find that the pressure effects are diametric for these sets.

1. C-modes: For these modes, to maintain continuity, the pressure effects project

the Fourier velocity components onto the plane perpendicular to the wavevec-

tor. This reduction in R11 and R22 arrests the production mechanism and leads

to modal stability within a very short span.

2. E-modes: For these modes, the pressure effects are minimal during their phase

of attraction to the saddle-node. Thus, these modes can exhibit growth for

prolonged periods and can possess a growth rate corresponding to a Burgers

mode.

The rationale underlying this codification can be observed in the modal kinetic

energy evolution in figure 2.6. The dotted line exhibits the evolution of a mode that

is not influenced by pressure. This would correspond to a mode governed by the
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Figure 2.6: Evolution of the modal kinetic energy in a hyperbolic flow, for different
modal alignments relative to the separatrix. The mode aligned with the separatrix
is plotted with a dashed line, the mode aligned perpendicular to the separatrix is
plotted with a dot-dash and modes in between these alignments are plotted with a
solid line. As the mode’s alignment with the separatrix improves, the mode becomes
more unstable.

Burgers equations, or consonantly, an Euler mode whose wavevector is aligned with

the separatrix perfectly. If we consider modes that are offset from such a state of

alignment, the pressure effects and the consequent stabilization manifest themselves

progressively. This can be observed in figure 2.6, in the solid lines representing modes

that are influenced by pressure effects. As can be observed, the duration of growth

and the magnitude to which the modal kinetic energy grows is dependent on the

alignment of the mode with the compressive principal axis. As the mode’s alignment

with the axis improves, both these quantities decrease.

Due to the redistribution of kinetic energy, the C-modes reach a state of quies-

cence and thence, do not contribute to flow statistics. For the E-modes, the conti-
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nuity is satisfied even during perturbation growth. These modes exhibit growth for

prolonged periods and engender the flow instability.

2.5.1.3 Topology of the unstable modes

The dependence of modal stability on initial modal alignment is exhibited in

figure 2.7, wherein this small set of outliers is evident. The instability coefficient

determines the modal stability and is defined as:

λmode(t) ≡ log

[
kmode(t)
kmode(0)

]
.

If the modal trajectories, exhibited in Figure 2.5(a), are compared to modal stability,

exhibited in figure 2.7, it is observed that only a small set of modes located near the

seperatrix are unstable. These are the modes that are attracted to the saddle-node

and were anointed as the E-modes.

2.5.1.4 SML behavior and overall range

Figure 2.8 exhibits a schematic of the processes of the system for hyperbolic flows.

The Burgers system, restricted to inertial processes, remains unstable. However, for

the Euler system, the energy transfer due to pressure has a stabilizing influence. This

represents the statistically most likely behavior. As can be observed in the schematic,

the predominant energy transfer is from the compressive eigendirection to the out-

of-plane component. This theme is reiterated in figure 2.9. In this figure, we present

a range of IET possibilities for different wavevectors. Regarding the evolution of the

products of the modal Fourier amplitudes, ûαûα (The summation convention is not

applied to Greek indices.), the symbolic evolution equation is given by:

dû2
α

dt
= Pmodal

αα + πmodalαα . (2.16)
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Figure 2.7: The figure illustrates the effect of initial modal alignment on modal
stability for hyperbolic flows. The figure is for a plane strain case(β = 0). The
instability coefficient measures the growth of modal kinetic energy. Thus, a positive
value indicates growth and a negative value indicates decay.
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Figure 2.8: A schematic of kinetic energy exchange in a hyperbolic flow. The inertial
processes are marked in filled arrows, the pressure effects via dashed arrows. The
subscripts of “e" and “c" denote the extensional and compressional axes of the applied
gradient.
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Figure 2.9: (a) The evolution of the intercomponent transfer from the compressive
eigendirection for a set of randomly selected modes, (b) the evolution of the inter-
component transfer to the out of plane component for a set of randomly selected
modes, (c) The evolution of the diagonal components of the rapid pressure strain
correlation tensor for the case of plane strain. π33,−−−; πcc,−.
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Thus, for instance, πmodal33 = 4e3[a(e1û1 − e2û2) + b(e2û1 − e1û2)]û3. It is exhibited

that in spite of the significant quantitative variance in the individual modal behavior,

the qualitative behavior of the dominant modes is analogous to that exhibited in

figure 2.8. Figure 2.9(c), shows that after a very short transient, the πcc and π33

components balance each other exactly.

2.5.2 Purely sheared flows

In the analysis of purely sheared flows, a different co-ordinate system is utilized

due to its prevalence in prior literature. Herein, the axes in the plane of applied

strain are rotated by π/4 and the mean velocity gradient tensor is given by,

∂Ui
∂xj

=


0 S ′ 0

0 0 0

0 0 0

 ;where S ′ =
√

2S. (2.17)

The 1, 2 and 3 axes correspond to the established cognomen of streamwise, vertical

and spanwise directions, respectively.

2.5.2.1 Wavevector dynamics

The increment in the value of the ellipticity parameter indicates an increasing

influence of the rate of rotation tensor over the rate of strain tensor. This causes the

principal axes of the mean velocity gradient tensor to shift toward each other, as is

evident in figure 2.10. In the limit of the switch from strain dominated to rotation

dominated flows, at the ellipticity parameter, β, value of 0.5, the eigenvectors of

the mean velocity gradient tensor are coincident, along the “vertical" direction. The

explicit solutions for the wavevector evolution is given by:

κ1(t) = κ1(0), κ2(t) = κ2(0)− κ1(0)S ′t, κ3(t) = κ3(0). (2.18)
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Figure 2.10: The figure illustrates the migration of the eigen-directions of the mean
velocity gradient tensor, with increment in the ellipticity parameter. The specific
values used are β =0, 0.19 and 0.36, respectively.
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Figure 2.11: A representation of the effect of modal alignment on (a) intercomponent
energy transfer (b) modal stability.

2.5.2.2 IET dynamics

For individual modes in the flow, the evolution equation for the products of the

modal Fourier amplitudes, ûαûα, is as follows:

dû1û1

dt
=(−2S ′û1û2)(1− 2e2

1),
dû2û2

dt
=4S ′e1e2û

2
2,

dû3û3

dt
=4S ′e1e3û2û3.

(2.19)

The inertial mechanism has a predilection to inject energy along the streamwise

direction and leave the fluctuations along other directions unaffected. We consider

the modes where production is positive, thus −2S ′û1û2 > 0. Examining (2.19), it

is clear that for such modes, the intercomponent energy transfer takes energy from

the streamwise component. Due to the motion of the wavenumber vector, after a

very short span, all unit wavenumber vectors are attracted to a state of alignment

with the vertical direction. Thus, the product e1e2 is negative. Consequently, the

intercomponent energy transfer removes energy from the vertical component as well.
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Figure 2.12: The figure illustrates the effect of initial modal alignment on modal
stability for a purely sheared flow. The instability coefficient measures the growth of
modal kinetic energy. Thus, a positive value indicates growth and a negative value
indicates decay.

This is exhibited in figure 2.11(a). The motion of the modal alignments, marked

by arrows, ensures that after a very short span, energy is removed from the vertical

component for almost all modes and thus for the ensemble as well. This energy is

transferred to the spanwise component. As the spanwise component is bereft of any

production, transfer to this component arrests the rate of kinetic energy growth.

Furthermore, the transfer from the vertical and streamwise components reduces the

production of kinetic energy (P = −2S ′û1û2). This leads to a slight mitigation of

the state of instability of the Euler system, as compared to the Burgers system.

2.5.2.3 Topology of the unstable modes

Figure 2.12 exhibits the relationship between modal alignment and stability for

purely sheared flows. As can be observed in the figure, the unstable modes correspond
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Figure 2.13: A schematic of kinetic energy exchange in a purely sheared flow. The
inertial processes are marked in filled arrows, the pressure effects via dashed arrows.

to the modes with initial alignments close to κ1=0. For almost all other modes, the

redistribution of kinetic energy during the modal migration to the vertical direction

causes stabilization. Thus, flow statistics are determined by a very small set of

modes. The presence of this relation between the unstable modes, their alignments

and such a set of measure zero has been remarked upon by Rogers (1991).

2.5.2.4 SML behavior and overall range

The motion of the modal alignments ensures that after a very short span, energy

is removed from the vertical component to the spanwise component. This is exhibited

in figure 2.13. This represents the statistically most likely behavior in this regime.

The action of pressure is constrained for the duration that the wavevector align-

ment is evolving to the vertical direction. Once the modes are in very close alignment

with the vertical direction, the action of pressure is negligible as the production term

is present for the R11 component, that pertains to the Fourier velocity amplitudes

along the streamwise axis. This is displayed in figure 2.14(c). Thus, the action

of pressure stabilizes the flow, but is substantial for a very brief duration. Con-

sequently, the evolution of kinetic energy is qualitatively similar for RDT-B and

RDT-E, as observed in figure 2.4. In figures 2.14,(a) and (b), the range of the modal
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Figure 2.14: (a) The evolution of the intercomponent transfer from the streamwise
direction for a set of randomly selected modes, (b) the evolution of the intercompo-
nent transfer to the spanwise direction for a set of randomly selected modes, (c) The
evolution of the diagonal components of the rapid pressure strain correlation tensor
for the case of pure shear. π11,—; π22,−−;π33, ·−.
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Figure 2.15: The closed orbits on the sphere at β = 0.55.

intercomponent energy transfer is exhibited. As can be observed, the variance of this

distribution is significant.

2.5.3 Elliptic flows

2.5.3.1 Wavevector dynamics

For closed streamline flows, the magnitude of Wij is greater than Sij. Conse-

quently, the principal axes for the mean velocity gradient are not extant and thus,

the wavenumber vector exhibits periodic solutions. However, even for this regime,

the rate of strain tensor has real eigendirections, associated with the stretching and

squeezing of the streamlines. The wavevector trajectories are stretched along the

compressive direction of the rate of strain and compressed along the extensional di-

rection. This leads to the distortion of the periodic orbits in phase space, as can

be observed in figure 2.15.The wave modes that lie proximate of the plane of ap-

plied strain undergo negligible distortion (marked as “A"). Similarly, modes that
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Figure 2.16: Evolution of the modal kinetic energy in an elliptic flow, for a host
of initial conditions. The evolution of the mode governed by the Burgers system is
plotted in a dotted line. The Euler modes are exhibited in solid lines.

are almost perpendicular to the plane of applied strain do not undergo substantial

distortion (marked as “B"). It is a band of modal alignments between these extremes

that shows significant distortion in the trajectories.

2.5.3.2 IET dynamics

Figure 2.16 exhibits modal kinetic energy evolution for elliptic flows. The mode

governed by the Burgers equations, exhibited by a dashed line in the figure, is neu-

trally stable. The behavior of Euler modes that are aligned perfectly perpendicular

to the plane of applied strain, or, completely in the plane of applied strain is identical

to this. For all other modes the effects of pressure manifest themselves in the modal

kinetic energy evolution. For elliptic flows, as can be seen from figure 2.16, this

effect is predominantly destabilizing.

For the Burgers system in the elliptic regime, both the wavenumber vector and

53



1 1
uu

2 2u u

Figure 2.17: A schematic of kinetic energy exchange in an elliptic flow, as per the
Burgers equations. The inertial processes are marked in filled arrows, their directions
establish positive and negative states of production.

the Fourier velocity amplitudes undergo linear oscillations, with a constant phase

difference and amplitude. Thus, the consequent velocity gradients are in a state of

linear oscillation. The mode is stretched and compressed, alternately, along the axes

in the plane of applied strain. The flow governed by the Burgers equations is in

a state of neutral stability. There is a cyclic exchange of energy to and from the

external source, representing negative and positive production, respectively. This is

exhibited, schematically, in figure 2.17.

For the unstable modes, the out-of-plane transfer to and from R33 causes the

Fourier amplitude vector to stay in a state of positive production. This mechanism

occurs in two stages. In the first stage, the wavevector is being stretched due to the

effect of the rate of strain tensor while the Fourier amplitude vector is in a state of

positive production. Consequently, the components of the Fourier amplitude vector

and the wavevector along the compressive eigen-direction of the rate of strain tensor

are increasing. This would cause the fluctuating velocity gradients in this plane

to increase to very high magnitudes. Such a mode would be stretched along this

direction to very high dimensions and would be in violation of the divergence-free

constraint. Thus, during this period pressure transfers fluctuating kinetic energy

out of this direction to alleviate this conceivable stretching. Explicitly, when the
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wavevector is being stretched, there is a large change in the e3 component. Such

motion of the unit wavenumber vector “pulls" the Fourier amplitude vector along

with it causing the modal velocity vector to remain in the zone of positive production.

The second phase occurs when the mode is being compressed due to the effects of the

rate of strain tensor. This squeezing would cause the velocity gradients along this

direction to decrease to very low magnitudes. Such a mode would be compressed

to very small dimensions and would violate continuity. Thus, during this period

pressure transfers fluctuating kinetic energy to the plane of applied strain to curtail

this contraction. This re-alignment of the Reynolds stress ellipsoid re-aligns the

fluctuating velocity toward the region of positive production.

This mechanism can be observed in figure 2.18, where the rising production for

the mode is arrested by the out of plane energy transfer. As the modal production

reduces, there is a transfer of energy to the plane of applied strain. Due to this

mechanism, the production of turbulent kinetic energy for the mode remains positive

through the cycle, leading to a state of instability.

2.5.3.3 SML behavior and overall range

Figure 2.19 exhibits the energy transfer during the aforementioned stages. These

two stages represent the statistically most likely behavior, to be incorporated into

models.

In figures 2.20,(a) and (b), the range of the modal intercomponent energy transfer

is exhibited. Out of the hundreds of modes plotted, relatively few show significant

growth. When contrasted to the corresponding figure for hyperbolic flows, figure 2.9,

the number of unstable modes is much higher for this case. This is due to the banded

nature of the elliptic flow instability (Pierrehumbert, 1986; Cambon et al., 1994b), as

opposed to the zero measure set of unstable modes for hyperbolic flows. Irrespective
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Figure 2.18: The evolution of flow statistics for a representative elliptic mode. The
statistics have been scaled with the modal kinetic energy.

of these nuances, as can be observed, this distribution has a very significant degree

of variance.

2.5.3.4 Topology of the unstable modes

As can be observed in figure 2.21, the stability of a mode in an elliptic flow is

highly dependent on the modal alignment. Herein, the Floquet multipliers refer to

the eigenvalues of the Monodromy matrix. The figure is motivated by a congruous

illustration in Cambon et al. (1994b). The unstable modes form a band of instability,

when viewed in wavevector space. Furthermore, with a change in the ellipticity

parameter, the shape of this band changes, corresponding to the closed orbits of the

unit wavevector trajectories. With an increment in the ellipticity parameter, this

band shrinks and, in the limit of pure rotation, no unstable modes are extant.
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Figure 2.19: A schematic of kinetic energy exchange in an elliptic flow, (a) while the
wavevector is being stretched and (b) while the wavevector is being compressed.
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Figure 2.20: (a) The evolution of π11 for a set of randomly selected modes, (b)
the evolution of π22 for a set of randomly selected modes, (c) The evolution of the
diagonal components of the rapid pressure strain correlation tensor for the case of a
representative elliptic flow.
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Figure 2.21: The zones of instability in unit wavenumber space at β=0.51, 0.65 and
0.75, respectively.
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2.6 Importance of linear physics

In turbulence modeling, it is accepted that the linear physics provide a qualitative

representation for many features of turbulent flows. Linear theories such as RDT

omit the interaction of the fluctuating flow field with itself. This is justified via

assumptions regarding the times scales (of mean and fluctuating distortions), a weak

turbulence assumption, etc. However, the linear instabilities manifested in RDT

obviate these assumptions. With the increase in the turbulent kinetic energy, the non-

linear effects become more important and thus, linear theory cannot suffice beyond

a limited time period. Thus, any conclusions derived in a purely linear limit may

be equivocal when transferred to general turbulent flows. This ambiguity would be

with respect to the validity of these RDT-based conclusions and the duration of their

applicability. Cambon & Scott (1999) observe that for unstable flows, RDT contains

the seeds of its own invalidity, thus limiting the duration of its applicability.

Before we present any closure modeling inferences based on our linear analysis,

their pertinence to real turbulence is examined in the presence of non-linear effects.

Key RDT results are contrasted against similar data from simulations at smaller val-

ues of Sk
ε
(Here, ε refers to the turbulent energy dissipation rate and S =

√
SmnSmn).

For such an investigation, we would require DNS data for a range of values of Sk
ε
,

as well as different values of the ellipticity parameter, β. DNS results of such a wide

and varied nature are not available as of now. Consequently, in lieu of DNS, the

Langevin equation based stochastic model of Slooten & Pope (1997) is utilized to

generate the required data for comparison. The Langevin model accounts for the

phase scrambling effects of non-linear interactions using the Wiener process. Herein,

we provide the germane model equations and their salient points.
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The set of model equations is as follows:

dûi =− ûk
∂Ul
∂xk

(δil − 2eiel)dt−
1
2
ε

k
(1 + 3

2au)ûidt

+ γε

k
(bij − IIbδij)ûjdt−

√
auεdWi.

(2.20)

dei =− ∂Um
∂xl

em(δil − eiel)dt−
1
2
ε

k
(ae + au

k

usus
)eidt

− γε

k
(δij − 2eiej)bjlel −

√
auε

uiel
usus

dWl+√
aeε

k
(δil − eiel −

ûiûl
ûsûs

)dW ′
l ,

(2.21)

where dW is an isotropic Wiener process and au, ae and γ are coefficients of the

model. For the formulation and benchmarking of the aforementioned, the reader

is referred to Slooten & Pope (1997). For the solution of this set of Ito-stochastic

differential equations, the Milstein method was utilized.

The performance of this Langevin model is exhibited in figure 2.22, where the

results of the Langevin equation representation are compared to those from RDT

based simulations.

Figures 2.6 and 2.21 exhibit the unstable modes, in a representative hyperbolic

and an elliptic flow, with respect to their alignment. As can be observed, the unstable

modes in an elliptic flow form a continuous band, of finite and sizable measure.

However, the unstable modes in a hyperbolic flow lie on a set of almost zero measure.

In the hyperbolic case, all other modes are either stable or can undergo limited

transient growth. Furthermore, this state of alignment for the growing modes is in

itself unstable and these modes can be forced off this alignment by any perturbations.

This is evident in figure 2.2, wherein the hyperbolic flow instability is arrested by the

pressure effects. This occurs via the transfer of turbulent kinetic energy out of the
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Figure 2.22: Comparison of the evolution of Reynolds stress anisotropies in a purely
sheared flow. The lines correspond to a Langevin representation with Sk

ε
= 2.36,

b33,−−−; b22,−.

plane of applied strain via the pressure strain correlation. In this vein, it is pertinent

to question the exactitude of the hyperbolic instability, caused by this very small set

of modes, in regimes where the non-linear effects become more and more significant.

Figure 2.23 compares the evolution of flow statistics for elliptic flows in the pres-

ence and absence of non-linear effects. As can be observed, the results are very

similar in the absence of non-linear effects or at moderately high values of Sk
ε
. This

is due to the finite measure of the set of unstable modes. However, this scenario does

not persist for all elliptic flows. For instance, in purely rotating flows, it is known

that linear theory is inconsistent with DNS results (Cambon & Scott (1999)).

Figure 2.24 compares the evolution of Reynolds stress anisotropies in a hyperbolic

flow, for β = 0.19, as the non-linear effects become more important. The shifts in

the dominant anisotropy component, from b22 to b33, correspond to the migration
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Figure 2.23: Comparison of the evolution of Reynolds stress anisotropies in a rep-
resentative elliptic flow β = 0.61 (a) RDT results, (b) Langevin representation with
Sk
ε

= 50.

of energetic modes from the seperatrix to the attractor, with the ensuing energy

transfer from R22 to R33. Due to the high number of such modes and their disparate

initial locations, there are more than one of these shifts in the RDT simulation. This

causes the transfer of energy between ucuc and the u3u3, as observed in figure 2.8. As

is exhibited in figures 2.24, (a) and (b), the evolution of Reynolds stress anisotropies

is very similar in the RDT limit and a moderately high Sk
ε

= 25. At a Sk
ε

= 5,

exhibited in figure 2.24(c), the nonlinear effects are significant. Nevertheless, the

dynamics determined by the linear physics, wherein the energy transfer is between

ucuc and u3u3, are still reflected, qualitatively.

In summary, it is shown that the key phenomena observed in RDT based simu-

lations, are qualitatively relevant even in the presence of moderate non-linear effects,

for different regimes of flow. Thus, conclusions derived from the linear analysis may

be pertinent for the development of pressure strain correlation models. Obligating

pressure strain correlation models to retain the RDT physics is not just reasonable,

but may be desirable (Speziale et al., 1990, 1996).
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Figure 2.24: Comparison of the evolution of Reynolds stress anisotropies in a rep-
resentative hyperbolic flow (β = 0.19) (a) RDT results, (b) Langevin representation
with initial Sk

ε
= 25, (c) Langevin representation with initial Sk

ε
= 5.
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2.7 Implications to closure modeling

It is reasonable to demand that, in the Rapid Distortion Limit, models for the

pressure strain correlation reflect the dynamics determined by linear physics(Kassinos

& Reynolds, 1994; Pope, 2000). Accordingly, in this section, while comparing RDT

simulations to model predictions, we have restricted the models to terms that scale

with the mean velocity gradient. Consequently, the observations made in this section

pertain to the rapid part of the pressure strain correlation models.

The primary challenge in the single-point closure modeling of the pressure strain

correlation is the representation of the non-local behavior of pressure in terms local

tensors. According to RDT, we must have:

πRDTij = π(Sij,Wij, eiejûkûl), (2.22)

wherein, the summation of eiejûkûl over wavenumber space would result in theMijkl

tensor. The Mijkl tensor contains both the dimensionality (eiej) and the componen-

tiality (ûiûj) contributions. While componentiality information may be included in

a single-point closure, the information in wavenumber space is non-local and con-

sequently, not available in the one-point closure paradigm. Thus, in single-point

closures πij is modeled in terms of local tensors:

πmodelij = π(Sij,Wij, ûkûl). (2.23)

Herein, the summation of ûkûl over wavenumber space would result in the Reynolds

stress tensor. Consequently, the pressure strain correlation has to be modeled with

an incomplete basis, wherein the Mijkl tensor is supplanted by the Rkl tensor. From

a statistical perspective, this is tantamount to representing the dimensionality of an
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Figure 2.25: A comparison of the energy transfer predicted in the Rapid Distortion
Limit by established models contrasted against linear physics for hyperbolic flows.
(a) Plane strain, (b) β = 0.36. π33,−−−; πcc,—; SSG, circles; LRR, squares.

unknown ensemble of modes with a hypothetical single mode. This severely limits the

features of the action of pressure that such models can replicate. As was mentioned

in the Introduction, this truncated representation precipitates a closure modeling

problem, wherein this system is ill-posed. As the preeminent action of pressure

is the intercomponent energy transfer, to ensure any degree of fidelity the models

must be qualitatively consistent with this redistribution. This energy transfer affects

various aspects of the turbulent flow: stability, invariant sets and their bifurcation,

and the holistic nature of dynamics. The manifestation of each of these features

depends on the regime of flow. To evaluate the measure of adherence to IET physics

afforded by models, henceforth, the components of the πij tensor are contrasted in

different regimes. For these comparisons, the models are evaluated in the Rapid

Distortion Limit.
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2.7.1 Closure modeling: different flow regimes

Hyperbolic flows: As exhibited in figure 2.8, the predominant energy transfer for

hyperbolic flows is from the compressional eigendirection to the R33 component. As

can be seen in figure 2.25, after a very short transient, πcc and π33 balance each other.

The established models are not sentient of this and for the case of plane strain, under

predict the out of plane energy transfer. Consequently, they transfer a large part of

the turbulent kinetic energy from the compressional eigendirection to the extensional.

Ignoring this characteristic causes the models to generate inaccurate predictions.

Furthermore, the eigendirections of the mean velocity gradient tensor do not remain

stationary. With increment in the ellipticity parameter, β, the eigendirections shift

toward each other, as exhibited in figure 2.10. The established models do not heed

this shift and thus, even their transfer from the compressive eigendirection becomes

exorbitant. This progressively impairs their ability to mimic the system’s behavior

in the Rapid Distortion Limit.

Pure shear flows: Pure shear flow represents the point of bifurcation of quadratic

flows and therefore, the evolution of flow statistics is asymptotic. As can be observed

in figure 2.26, the energy redistribution is significant for a very short duration, while

the modes in the flow are aligning with the eigenaxes. Subsequently, the transfer

abates quickly. Established models are not cognizant of this transient nature arising

due to the evolution of the wavevector alignment. Such models continue to predict

stationary states for the energy transfer in the Rapid Distortion Limit. Consequently,

their predictions of flow statistics are incorrect, quantitatively and qualitatively.

Elliptic flows: As outlined in the figure 2.19, the energy transfer is cyclic, to and

from the plane of applied strain. With just a local basis, the established models

cannot capture this oscillatory behavior. This is evident in the figures 2.27, wherein
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Figure 2.26: A comparison of the energy transfer predicted in the Rapid Distortion
Limit by established models contrasted against linear physics, for pure shear flows.
π33,−−−; π11,—; π22,•−; SSG, circle ; LRR, squares.
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Figure 2.27: A comparison of the energy transfer predicted in the Rapid Distortion
Limit by established models contrasted against linear physics for elliptic flows. (a)
β = 0.64, (b) β = 0.81. π33,−−−; πcc,—; SSG, circles; LRR, squares.
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Figure 2.28: A comparison of the turbulent kinetic evolution predicted by established
models contrasted against DNS, for an elliptic flow with β =0.87.

the established models predict oscillatory transfer but these oscillations have no

congruence with the RDT dynamics. Accordingly, the predicted evolution of the

flow field is not in conformity with linear physics.

2.7.2 Closure modeling: different flow features

Now, we address the various flow features that are affected by IET and the

tractability of each of these to single-point closure modeling. Illustrative calculations

from current single-point closures, in the Rapid Distortion Limit, are provided to

further bolster the arguments presented hereupon.

Flow instabilities: Both the elliptic flow instability and the hyperbolic instabil-

ity, are induced due to the alignment of specific modes. This is exhibited in figures

2.7 and 2.21, where we exhibit the relationship between initial modal alignment in

wavenumber space and modal stability. For the hyperbolic flow, only a very small
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Figure 2.29: A comparison of the turbulent kinetic evolution predicted by established
models in the Rapid Distortion Limit contrasted against linear physics, for a purely
sheared flow. Euler RDT,—; Burgers RDT,−−−; SSG, circles; LRR, squares.

set of modes, aligned with the extensional eigendirection, exhibit prolonged unstable

behavior. For pure shear flows, the set of unstable modes is relatively larger. How-

ever, only the modes aligned with the “vertical" direction, show significant growth.

This scenario is further exacerbated in the case of the elliptic flow instability wherein

only a narrow “band" of oscillatory modes exhibit unstable behavior. Additionally,

the shape of this instability band is dependent on the ellipticity parameter. In this

light, it is not surprising that the predictions from one-point closures are contrary

to linear physics. This can be observed in figure 2.28 where established models pre-

dict that the state of turbulence will decay for an elliptic flow with β =0.87, while

DNS (Blaisdell & Shariff, 1996) exhibits unstable behavior. In the same vein, a key

feature of pure shear flows is the non-modal nature of their instability. This results

in the linear growth of the turbulent kinetic energy. As can be seen in figure 2.29,
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Figure 2.30: A comparison of the anisotropy evolution predicted by established mod-
els in the Rapid Distortion Limit contrasted against linear physics, at β = 0.55. Euler
RDT,—; SSG, circles; LRR, squares.

established models are unable to replicate this fundamental attribute and predict

exponential growth, which is not even achieved in the “pressure-released" Burgers

system.

In summary, linear physics has a structuring effect on the flow, wherein select

modes are stabilized or destabilized contingent upon their alignment. This informa-

tion about modal alignments is not contained in the basis of single-point closures.

Thus, faithful replication of these flow instabilities is not within the purview of single-

point closures.

The bifurcation in the system: In transitioning from hyperbolic to elliptic flows,

the system undergoes a saddle-node bifurcation. Consequently, the evolution of the

Reynolds stress anisotropies changes from stationary states to oscillatory solutions.

This has been addressed in Girimaji (2000). However, this bifurcation is engendered
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Figure 2.31: A comparison of the anisotropy evolution predicted by established mod-
els in the Rapid Distortion Limit contrasted against linear physics, at β = 0.81. Euler
RDT,—; SSG, circles; LRR, squares.

in the wavevector evolution equation. Thus, popular one-point closure models are

not able to capture the location or the nature of this change in the system’s dynam-

ics. This is exhibited in figure 2.30, where the RDT calculations reveal oscillatory

behavior while models continue to predict stationary states.

The oscillatory behavior in elliptic flows: In this regime, RDT indicates that

flow statistics (such as the Reynolds stress anisotropies) exhibit bilinear oscillations.

Herein, the oscillations have a varying amplitude about a time dependent mean. On

the contrary, the models predict linear oscillations, exhibiting a constant mean and

amplitude, as observed in figure 2.31. To reproduce a time dependent mean and

amplitude with an incomplete basis, the models would have to resort to limit cycle

oscillations to mimic bilinear phenomena. This would require a rapid pressure strain

correlation that is non-linear in the Reynolds stress anisotropies, that would violate
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guidelines obligated by physics. Prior investigations, such as Sjogren & Johansson

(2000), have employed models that are non-linear in the mean velocity gradients to

capture said oscillatory behavior. In turbulent flows, the oscillations of flow statistics

are caused, primarily, due to the dynamics of the wavevector and are thus, outside

the scope of one-point modeling. No permutations of such local tensors can enable

one-point closures to replicate this behavior faithfully.

Uncertainty Quantification: The Reynolds stresses express the componentiality

of the turbulent flow field and do not provide a complete description of the internal

structure of the flow. For the rapid distortion equations, the specification of the

Reynolds stresses does not lead to a unique evolution trajectory. Instead of a single

unique solution once the Reynolds stress tensor has been specified, there is a range

of permissible solutions. In figure 2.32 this range is shown for a representative hyper-

bolic flow (plane strain) and an elliptic flow (β =0.64). The well distributed ensemble

mimics the statistically most likely behavior. In practical flows, the distribution can

be far from such a well distributed ensemble, due to forcing, initial and boundary

conditions. In essence, the distribution of the modes accounts for the history of the

particular flow. It can be observed that even for a purely irrotational case of plane

strain, the wavenumber information is still essential. This is at odds with Kassinos

& Reynolds (1994), wherein the requirement of additional tensors is restricted to

strongly rotational mean flows. For the closed streamline flow, we observe that the

behavior of popular models corresponds to periodic behavior with a frequency that

can’t be replicated via any ensemble of modes. Thus, the predictions are not just

incorrect for this ensemble; they are incorrect for all possible ensembles. For both

these flow regimes, the turbulent kinetic energy evolution is not universal and is

notably dependent on the alignments of the modes in the flow. Bereft of wavevector

information, high fidelity modeling of such behavior by one-point closures remains
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Figure 2.32: The range of permissible behavior for a representative hyperbolic flow,
β =0, and an elliptic flow, β =0.64.

infeasible. Consequently, modeling the statistically most likely behavior, depicted in

Section IV, is an expedient recourse. Even with a model based on the SML behav-

ior, variations in behavior must be considered as a possible uncertainty in the model.

Further study must address the issue of Uncertainty Quantification for such closures.

Tables 2.2 and 2.3 contrast the behavior of flow statistics according to linear

physics against that predicted by established models. It is observed that in spite of

the attempts of one-point closures to capture the dynamics of elliptic flows faithfully,

the results are disappointing. For a large measure of the elliptic regime, the mod-

els are not even cognizant of any oscillations. When the models manage to predict

oscillatory dynamics, these have no correspondence to the cyclic behavior of the sys-

tem, qualitatively or quantitatively. With respect to the evolution of the Reynolds

stress anisotropies and the turbulent kinetic energy in elliptic flows, the amplitudes

of these oscillations are typically small when compared to the overall trend of their

evolution. This has been exhibited in RDT based simulations (Mishra & Girimaji,

2010) and DNS (Blaisdell & Shariff, 1994). In this light, it may be expedient to focus
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Regime Burgers RDT Euler RDT Established models Nonlinear turbulence

Hyperbolic exponential growth exponential growth exponential growth exponential growth

Pure shear quadratic growth linear growth exponential growth growth

Elliptic neutrally stable exponential growth decay exponential growth

Table 2.2: A comparison of the linear stability behavior governed by physics, con-
trasted against established models.

on capturing the mean of these oscillations. As the amplitude of the oscillations is

much smaller than said mean, such a prediction would still have engineering utility.

Furthermore, the energy transfer in hyperbolic flows can be replicated by tuning the

models to transfer energy out of the plane of applied strain from the compressive

eigendirection. Such a model would have to be cognizant of the migration of the

eigen-axes with changes in the mean flow. To achieve this would require models

to utilize the linear physics regarding the structure of turbulence. Accommodation

of this degree of information would require the model coefficients to vary. Except

for a few notable exceptions, such as Ristorcelli et al. (1995), Girimaji (2000) these

coefficients have been considered constants, whose values are assigned from algebraic

relations and numerical simulations. Such a model would be non-linear in the mean

velocity gradients and thus, would violate one of the conditions obligated upon an

ideal model. However, this might represent the optimal substitute for wavevector

information as the wavevector evolution is contingent upon the mean velocity gradi-

ents.

2.8 Conclusions

In the field of turbulence modeling, pressure-strain correlation poses a unique set

of closure challenges. This is primarily due to the fact that pressure is inherently
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Regime Burgers RDT Euler RDT Established models Nonlinear turbulence

Hyperbolic attracting fixed point saddle nodes fixed points fixed points

Pure shear asymptotic fixed points asymptotic fixed points fixed points asymptotic fixed points

Elliptic linear oscillations bilinear oscillations linear oscillations limit cycle

Table 2.3: A comparison of the asymptotic behavior governed by physics, contrasted
against established models.

non-local in character and yet, due to pragmatic considerations, one is constrained

to model its effects with a one-point (local) model. From a statistical view-point,

this difficulty can be expressed as modeling the statistics of an unknown ensemble

of fluctuation wavevector modes with a hypothetical singleton mode. The loss of

wavevector information is particularly detrimental as it plays a key role in determin-

ing the manner of Intercomponent Energy Transfer and ultimately, the stability of

the perturbation mode. In the classical one-point modeling approach, the lack of

the wavevector details is compensated by performing an empirical calibration of the

coefficients leading to the closure. While such an approach has served reasonably

well over the decades, serious deficiencies remain. First and foremost, the wavevec-

tor ensemble in the calibration flow can be very different from that in the test flow

resulting in poor predictions. More importantly, owing to the lack of physical basis,

the empirical approach does not allow for:

1. clear avenues for improvement and

2. reasonable basis for estimating the uncertainty involved.

We propose that both improvement in prediction fidelity and uncertainty esti-

mation can be accomplished within the one-point closure framework if and only if

wavevector dynamics and IET can be characterized in terms of mean velocity gra-
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dients. If such characterization can be accomplished, then the coefficients in the

one-point closure model can be rendered functions of velocity-gradient invariants to

bring about the requisite IET dynamics. Thus motivated, we perform the following

sequence of studies in the RDT limit of turbulence for two-dimensional mean flows:

1. First we demonstrate the critical role played by IET in determining the stabil-

ity of perturbation modes. It is established that pressure-driven wavevector-

dependent IET generally stabilizes perturbations in hyperbolic flows but desta-

bilizes them in elliptic flows.

2. The wavevector dynamics, specifically the fixed point behavior and its bifurca-

tion, are clearly established as a function of mean velocity gradient invariant.

3. For different mean velocity gradients, the IET is characterized as a function of

wavevector orientation. The resulting effect on anisotropy is also established.

4. The topology of the most energetic wavevector modes that dominate the tur-

bulence statistics is categorized for each mean-velocity type.

5. Finally, we identify the statistically most likely IET behavior for each mean

velocity-gradient and further establish the range of possible behavior.

Future work will address incorporation of the SML behavior into traditional one-

point closures by rendering model coefficients as functions of mean velocity-gradient

invariants. Further research is also underway into developing a framework for quanti-

fying the possible uncertainty in the SML closure utilizing the range of possible IET

behavior investigated in study (e), outlined above. Another future research direction

is to characterize wavevector dynamics in general three-dimensional mean flows.
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3. ON THE REALIZABILITY OF PRESSURE-STRAIN CLOSURES

3.1 Overview

The realizability condition for statistical models of turbulence is augmented to

ensure not only that the Reynolds stress tensor is positive semi-definite, but the pro-

cess of its evolution is physically attainable as well. The mathematical constraints

due to this process realizability requirement on rapid pressure strain correlation are

derived. The resulting constraints reveal important limits in the intercomponent

energy transfer and the consequent flow stability characteristics as a function of the

mean flow. Unexpectedly, the realizability constraints are most stringent for the

case of purely sheared flows rather than elliptic flows. The relationship between

the constraints and flow stability is explained. Process realizability leads to closure

model guidance not only at the two-component limit of turbulence (as in the classi-

cal realizability approach) but throughout the anisotropy space. Consequently, the

domain of validity and applicability of current models can be clearly identified for

different mean flows. A simple framework for formulating a rapid pressure-strain

correlation model without resorting to nonlinear expressions in the Reynolds stresses

is identified.

3.2 Introduction and overview

Statistical models of turbulence draw heavily from mathematical precepts for clo-

sure expression form and on physical concepts for function. The realizability principle

holds a crucial place in the model development process as it constrains the model sys-

tem behavior to be within mathematically permissible limits. Schumann (1977) was

the first to articulate the realizability constraint in the context of turbulence closures,

requiring models to yield a Reynolds stress tensor that is positive semi-definite. The
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utility of Schumann realizability constraints is well established in second moment

closure literature. The strong (Lumley, 1978) and weak (Pope, 1985a) realizability

techniques are the two prominent approaches for implementing classical realizability

constraints. Unrealizable models can lead to problems in numerical convergence and

even numerical instability (Hanjalic & Launder, 2011). Realizability considerations

allow for the inclusion of additional closure features yielding better overall fidelity,

for instance, as observed in Shih et al. (1987). Many advanced modeling approaches,

such as Johansson & Hallback (1994) and Sjogren & Johansson (2000) use realizabil-

ity adherence to mandate the entire closure framework and the formulation of the

models.

While the realizability principle as currently formulated is useful, it is not com-

plete or sufficient to ensure that the Reynolds stress evolution is physical. For exam-

ple, evolution of Reynolds stress from one physically permissible state to another is

permitted even if the ensuing Reynolds stress dynamics are non-physical. Another

crucial deficiency of classical realizability lies in its applicability only at the two-

component (2C) limit of turbulence (Schumann, 1977) and its inability to provide

modeling guidance elsewhere in the Reynolds stress anisotropy space. Rubinstein

& Girimaji (2006) point out that 2C limit represents a closure singularity as the

correspondence between the Reynolds Stress Transport equations and the under-

lying equation for the fluctuating field is not unique. Therefore, any realizability

constraint applied on the Reynolds stress equation in this limit does not accurately

represent the dynamics of the underlying fluctuating field evolution. Furthermore,

adherence to classical realizability necessitates closure expressions to be complex non-

linear functions of the Reynolds stress tensor. Not only is this physically inconsistent

for the rapid pressure-strain correlation but it also leads to spurious oscillations in

the vicinity of the 2C state. Even models satisfying the classical realizability condi-
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tions can transition to unrealizable zones near the 1C state (Speziale et al., 1994).

Additionally, classical realizability conditions lack robustness. For instance, under

the rotation of the principal axes of the Reynolds stress tensor, they can lead to

singularities (Speziale & Durbin, 1994).

It has been exhibited in Girimaji (2004) that unrealizable Reynolds stress dy-

namics precede and lead to unrealizable Reynolds stresses. Evidently, classical real-

izability constraints are insufficient as they address the effect and not the cause of

realizability violations. Thus, there exists a clear need to expand the formulation of

realizability constraints to ensure that the process of evolution from one Reynolds

stress state to another is also mandated to be physical. Classical realizability focuses

in the statistical state of the flow and not the statistical process underlying its evolu-

tion. Concordantly, in this article the classical realizability framework is appellated

as state realizability. Necessitating the evolution path to be realizable addresses the

statistical process and hence, it is named process realizability.

The first investigation addressing the realizability of Reynolds stress dynamics

was reported in Shih et al. (1990). Using a simplified representation of the spectrum

tensor in very weakly anisotropic turbulence, the authors derived a linear model for

the rapid pressure strain correlation and postulated its range of validity. Speziale

& Durbin (1994) and Pope (1985) also address process realizability, albeit indirectly

using stochastic analysis. Girimaji (2004) proposed the concept of comprehensive

realizability and instituted constraints for the rapid pressure strain correlation in

order to satisfy the Cauchy’s inequality. The objective of this investigation is to

extend realizability considerations to include the Reynolds stress evolution dynamics;

derive precise constraints that can be employed in closure model development and

evaluation; and establish a framework to extract physical insight therefrom. The

realizability analysis is presented in the context of Reynolds averaged statistics in
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this article. However, the implications can be extended to filtered statistics as well,

using the averaging invariance principle (Germano, 1992).

After a brief overview, we derive and discuss the process realizability constraints

in Section II. In Section III, the insight afforded by the process realizability frame-

work is explicated. Specific discussions in Section III include the broader applicability

of process realizability, their ability to highlight energy redistribution features and

provide more precise model development guidance. Section IV deals with the appli-

cation of the process realizability constraints to popular pressure strain correlation

models and examining the validity of these closures. In Section V, we present a

simple procedure to formulate a prototypical linear model heeding process realizabil-

ity and contrast the new closure against well-established counterparts. The article

concludes with a summary and discussion of results in Section VI.

3.3 Mathematical formulation of process realizability

Realizability is an important concept in the statistical modeling of any physical

process and is applicable to closure representations of all statistics. Ideally, it would

be expedient to have not just the Reynolds stresses, but their derivatives to be

realizable as well. This would ensure that the complete evolution of the Reynolds

stress is physically permissible at all orders. However, the requirement of all higher

order derivatives being realizable is difficult to implement. As a practical closure

modeling requirement, it is reasonable to mandate that the substantiative derivative

of the Reynolds stresses, that is, the Reynolds stress dynamics be realizable.

The Second Moment Closure approach entails solving the Reynolds Stress Trans-
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port equations:

dRij

dt
= Pij −

∂

∂xk
Tijk + πij − εij,

where, Rij = 〈uiuj〉, πij =
〈
p(∂ui
∂xj

+ ∂uj
∂xi

)
〉
,

εij = −2ν
〈
∂ui
∂xk

∂uj
∂xk

〉
and Pij = −Rjk

∂Ui
∂xk
−Rik

∂Uj
∂xk

,

and Tkij = −ν ∂〈uiuj〉
∂xk

+ 2
3δij〈ukp〉+ 〈uiujuk〉.

(3.1)

wherein U represents the mean flow field; lowercase variables represent the fluctuating

field and 〈.〉 represents the Reynolds averaging operator. The fluctuating pressure,

p is governed by a Poisson equation, explicitly:

1
ρ
∇2p = −2∂Ui

∂xj

∂uj
∂xi
− ∂2

∂xi∂xj
(uiuj − 〈uiuj〉). (3.2)

On this basis, the pressure field is decomposed into its linear (rapid) and non-linear

(slow) components: p = p(r) + p(s). Concordantly, the pressure strain correlation is

divided as πij = π
(r)
ij + π

(s)
ij .

Of the turbulence processes delineated above, the production term, Pij, does

not require closure and thus, is consistent with realizability. The other turbulence

processes are unclosed and require models for their closure. Realizability violations

are engendered by unphysical or inconsistent aspects in these closure. Consequently,

process realizability entails the investigation of the model expressions for the unclosed

terms.

In this paper we will restrict our attention to the realizability issues pertaining

to rapid pressure strain correlation closures. While models for the other processes

can potentially lead to violations as well, their transgressions are expected to be

less severe. For instance, the turbulent transport term, Tijk, is often modeled using
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a gradient-diffusion paradigm. This is deemed physically achievable as it has the

same functional form as a molecular transport term, except with an enhanced (tur-

bulent) diffusivity coefficient. The combination of isotropic dissipation and linear

slow pressure-strain correlation models leads to exponential decay of the Reynolds

anisotropy. For example, with reference to the model presented by Rotta (1951), the

evolution equation of the Reynolds stress anisotropies reduces to

ḃij = ε

k
(1− CR)bij, (3.3)

where bij = uiuj

2k −
σij

3 denotes the Reynolds stress anisotropy; k, the turbulent kinetic

energy and ε, the dissipation. Clearly, this model combination leads the anisotropy

evolution trajectory away from the troubling 2C limit for all anisotropic initial states

of turbulence. Consequently, this process of sequential exclusion indicates the key

transgressor for the realizability violations to be the rapid pressure term. In this

regard, it has been exhibited that the primary cause for realizability violations is the

rapid component of the pressure strain correlation Sambasivam et al. (2004) and in

this investigation, we focus on its dynamics.

The correlation between the rapid pressure and the fluctuating velocity gradient

is given by (Pope, 2000):

〈
p(r)

ρ

∂ui
∂xj

〉
= − 1

2π
∂Uk
∂xl

∫∫∫ 1
|r|

∂2R+
il

∂xk∂xj
d~r, (3.4)

where R+ is the two-point correlation and r is the separation vector. The forth order

M tensor is defined as an integral of the two-point correlation (Pope, 2000):

Miljk = − 1
4π

∫ 1
|r|

∂2R+
il

∂rj∂rk
d~r. (3.5)
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The concordant relationship between the M tensor and the rapid pressure strain

correlation is given by:

π
(r)
ij = 2∂Ul

∂xk
(Mkjil +Mikjl). (3.6)

In homogeneous flows, the turbulence processes can be examined in Fourier space.

In the Fourier analysis, the fluctuation is characterized in terms of the wavenumber

vector, κ(t) and û, p̂, the corresponding Fourier amplitudes and pressure coefficients.

ui(x, t) =
∑

ûi(κ, t)exp(iκ · x), p(r)(x, t) =
∑

p̂(t)(κ, t)exp(iκ · x). (3.7)

In this representation, the M tensor is expressed as

Mijkl =
∑ ûi

∗ûjκkκl
κ2 . (3.8)

Modeling the rapid pressure strain correlation is tantamount to modeling the M ten-

sor. Thus, a realizable closure model for the M tensor is critical for a realizable rapid

pressure strain correlation. In the following section, we introduce the process realiz-

ability constraints, along with their underlying mathematical and physical rationale.

The key consideration underlying these conditions is the positive semi-definite na-

ture of the spectrum tensor, Φij, and consequently the Fourier coefficients of the

two-point velocity correlation,R̂ij. The requisite tensors are defined in Fourier space

as

Φij = 1
(2π)3

∫∫∫ ∞
−∞

e−i~κ.~xR+
ij(~r, t)d~r, R̂ij = ûi

∗ûj, (3.9)

where R+
ij denotes the two-point velocity correlation. The relationship between the
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aforementioned is denoted by

Φij(κ̄, t) =
∑
κ

δ(κ̄− κ)R̂ij(~κ, t), (3.10)

where κ̄ is the continuous wavenumber, κ is the discrete wavenumber and δ is the

delta function.

3.3.1 Prior process realizability constraints

We review the constraints on the M tensor that have been introduced hereto-

fore. Pursuant to the paradigm in Shih et al. (1990), the spectrum tensor induced by

the closure for the pressure strain correlation must be positive semi-definite. Since

process realizability does not consider higher order derivatives, it must be empha-

sized that it is only possible to formulate necessary conditions for realizability and

not sufficient conditions. Girimaji(2004) expressed this via two necessary (but not

sufficient) conditions on the M tensor.

First lower bound on the M tensor: The M tensor must be positive semi-

definite. The Poisson equation for the rapid component is:

∇2p(r) = −2∂Ui
∂xj

∂uj
∂xi

. (3.11)

Multiplying this by the rapid pressure term and averaging, we get:

〈
p(r)∇2p(r)

〉
= −2∂Ui

∂xj

〈
p(r)∂uj

∂xi

〉
. (3.12)

For homogeneous turbulence, this reduces to:

〈
∂p(r)

∂xm

∂p(r)

∂xm

〉
= 2∂Ui

∂xj

〈
p(r)∂uj

∂xi

〉
. (3.13)
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Utilizing the definition of the M tensor, this can be expressed as:

〈
∂p(r)

∂xm

∂p(r)

∂xm

〉
= 4∂Uj

∂xi

∂Uk
∂xl

Miljk. (3.14)

Herein, the rapid pressure gradient variance must be non-negative. Thus, the condi-

tion reduces to the First lower bound on the M tensor, explicitly:

∂Uj
∂xi

∂Uk
∂xl

Miljk ≥ 0. (3.15)

This condition ensures that the pressure gradient variance is non-negative for all

mean gradients or equivalently, that the pressure gradient is real. The constraint

acts as a lower bound on the expression for the M tensor.

Second lower bound on the M tensor: The rapid pressure-strain correlation

must adhere to Cauchy’s Inequality. Expressing the pressure strain correlation in

physical space (here, the Greek indices are independent of the summation convention)

|παβ| =
∣∣∣∣∣uα ∂p∂xβ + uβ

∂p

∂xα

∣∣∣∣∣ . (3.16)

Applying the Triangle Inequality, this reduces to:

|παβ| ≤
∣∣∣∣∣uα ∂p∂xβ

∣∣∣∣∣+
∣∣∣∣∣uβ ∂p∂xα

∣∣∣∣∣ . (3.17)

Using the Cauchy’s Condition, we get

|παβ| ≤

√√√√Rαα

〈
∂p

∂xβ

∂p

∂xβ

〉
+

√√√√Rββ

〈
∂p

∂xα

∂p

∂xα

〉
≤
(√

Rαα +
√
Rββ

)√√√√〈 ∂p

∂xk

∂p

∂xk

〉
.

(3.18)

Re-expressing the pressure gradient variance in terms of the M tensor, this reduces

86



to the Second lower bound on the M tensor, explicitly:

|παβ|√
∂Uj

∂xi

∂Uk

∂xl
Miljk

≤ 2(
√
Rαα +

√
Rββ). (3.19)

This obliges the pressure gradient variance (equivalent to 4∂Uj

∂xi

∂Uk

∂xl
Miljk) to not just

be positive semi-definite, but be large enough to satisfy the Cauchy’s inequality ap-

plied to the pressure-strain correlation. As can be observed, this is a more stringent

condition on the M tensor. In this investigation, these conditions are examined to

yield meaningful guidance for closure formulation.

3.3.2 Supplementary process realizability constraints

In this section, we introduce additional constraints on the pressure strain cor-

relation that may be more suitable for closure model development. These utilize

the stronger condition of the semi-definite nature of the spectrum tensor in Fourier

space. These include bounds on the M tensor and on the the πij tensor. Further-

more, these incorporate both upper and lower bounds for the closure expressions of

the aforementioned. For any given mean gradient, these engender the M tensor and

the the πij tensor to become completely bounded quantities.

Expressing the pressure strain correlation tensor in Fourier space, we get

πij =
∑
κ

∂Ul
∂xm

[
R̂imelej + R̂jmelei

]
. (3.20)

Using this representation and considering the contraction between the rapid pressure
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strain correlation and the mean gradient tensor

∂Uj
∂xi

πij ≡
{
∂U

∂x
, π

}
=
∑
κ

[
R̂im( ∂Ul

∂xm
el)(

∂Uj
∂xi

ej) + R̂jm( ∂Ul
∂xm

el)(
∂Uj
∂xi

ei)
]
. (3.21)

Due to the positive semi-definite nature of the spectrum tensor,

R̂ijfifj ≥ 0, (3.22)

where f is any real vector. Without loss of generality, we consider vectors of the from

Gijei to be members of this vector space, wherein G is an arbitrary tensor of the

second order, with real entries, and ~e represents the unit wavevector. Consequently,

in the term R̂jm( ∂Ul

∂xm
el)(∂Uj

∂xi
ei), the mean gradient is decomposed into its symmetric

and anti-symmetric components to ensure a uniform formulation, given by Sij =
1
2(∂Ui

∂xj
+ ∂Uj

∂xi
),Wij = 1

2(∂Ui

∂xj
− ∂Uj

∂xi
), respectively.

{
∂U

∂x
, π

}
=
∑
κ

[
R̂im( ∂Ul

∂xm
el)(

∂Uj
∂xi

ej) + R̂mj(Slmel)(Sijei)− R̂mj(Wlmel)(Wijei)
]
.

(3.23)

Our objective is to determine the extrema of the contraction
{
∂U
∂x
, π
}
. To this

end, we examine the ranges of each of the three discrete terms on the R.H.S. of

equation (3.23). Considering the term R̂mj(Slmel)(Sijei). Since R̂ij positive semi-

definite,equation (3.22), and Sijei defines a real vector vj, we conclude

R̂mj(Slmel)(Sijei) ≥ 0. (3.24)

Consequently, the term R̂mj(Slmel)(Sijei) is strictly non-negative. To determine

the upper bound, we restrict the analysis to induced norms possessing the sub-
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multiplicative property (Meyer, 2001), such that

R̂ijvivj ≤
∣∣∣R̂∣∣∣ |v ⊗ v| , (3.25)

where vj represents the vector Sijei and ⊗, the tensor product. Since e is the unit

wavenumber vector (ei = κi

|κ|), we obtain

|v ⊗ v| ≤ |S ⊗ S| . (3.26)

Additionally,
∣∣∣R̂∣∣∣ possesses the upper bound 2kmodal, where, kmodal is the modal

kinetic energy. Consequently, the limits on the term under consideration can be

expressed as:

0 ≤ R̂mj(Slmel)(Sijei) ≤ 2kmodal |S ⊗ S| . (3.27)

Similarly, the other terms in the expression can be bounded as

0 ≤ R̂mj(Wlmel)(Wijei) ≤ 2kmodal |W ⊗W | , (3.28)

0 ≤ R̂im( ∂Ul
∂xm

el)(
∂Uj
∂xi

ei) ≤ 2kmodal
∣∣∣∣∣∂U∂x ⊗ ∂U

∂x

∣∣∣∣∣ . (3.29)

As the matrix representations of the tensors under consideration is of rank two, we

utilize the respective Spectral norms. Additionally, this is an induced norm and thus,

has the sub-multiplicative property over the vector space composed of real matrices

of rank two. Using this,

∣∣∣∣∣∂U∂x ⊗ ∂U

∂x

∣∣∣∣∣ ≤ (S +W )2, |S ⊗ S| ≤ S2, |W ⊗W | ≤ W 2. (3.30)
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Here, the symbols S and W represent the magnitudes of the rate of strain and the

rate of rotation tensors, respectively. Utilizing equation (3.22), we can express the

contraction symbolically as

{
∂U

∂x
, π

}
= A+B − C, (3.31)

where {A,B,C} are strictly non-negative. Using the norms of {A,B,C} and the

summation over all the modes, the limits of this contraction can be stated as:

−4kW 2 ≤
{
∂U

∂x
, π

}
≤ 4k

(
2S2 +W 2 + 2SW

)
. (3.32)

The aforesaid constitute the lower and the upper bounds on the rapid pressure strain

correlation, respectively.

Lower bound on the pressure strain correlation: This is a less stringent

constraint than equation (3.15). However, it can be expressed directly in terms of

the πij tensor, utilizing the positive semi-definite nature of the spectrum in Fourier

space:

−4kW 2 ≤
{
∂U

∂x
, π(r)

}
. (3.33)

Herein, W represents the norm of the rate of rotation tensor. This constraint is not

as stringent as the First Lower Bound in terms of the M tensor, equation (3.15), but

is more amenable to application in cases where the M tensor may be ambiguous.

Upper bound on the pressure strain correlation: Utilizing the positive semi-

definite nature of the spectrum tensor in Fourier space, this is expressed as:

{
∂U

∂x
, π(r)

}
≤ 4k(2S2 +W 2 + 2SW ). (3.34)
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This constraint sets a limit for the maximum rate of energy redistribution that a

given mean gradient field can support.

For an upper bound on the pressure gradient variance, we consider the projection

in Fourier space
∂Uj
∂xi

∂Uk
∂xl

Miljk = ∂Uj
∂xi

∂Uk
∂xl

∑
κ

R̂ilejek. (3.35)

Using homogeneity, we get

∂Uj
∂xi

∂Uk
∂xl

Miljk ≤
∣∣∣∣∣∑
κ

∂Uj
∂xi

∂Uk
∂xl

R̂ilejek

∣∣∣∣∣ . (3.36)

If said norm is an operator, this reduces to

∂Uj
∂xi

∂Uk
∂xl

Miljk ≤
∑
κ

∣∣∣∣∣∂U∂x ⊗ ∂U

∂x

∣∣∣∣∣ ∣∣∣R̂∣∣∣ . (3.37)

Using the inequalities derived earlier, this reduces to the Upper bound on the M

tensor, explicitly
∂Uj
∂xi

∂Uk
∂xl

Miljk ≤ 2k(S +W )2. (3.38)

This acts as an upper bound for the rapid pressure-strain variance, and concordantly,

the M tensor. It circumscribes the pressure gradient that a given mean velocity

gradient field can support.

3.4 Process realizability constraints and stability implications

In the analysis of explicating the physics incumbent in the process realizability

constraints, for each case of a specific mean flow, a particular constraint is chosen.

The explicit expression for the constraint is examined. The traits of the intercom-

ponent energy transfer obligated by this inequality are simplified and isolated. The

ramifications of such energy redistribution on the flow stability (and the concordant
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effect of pressure) are established and discussed.

We commence the analysis with the evolution equation for turbulent kinetic en-

ergy:
dk

dt
= −2aR12. (3.39)

Here, a is a non-negative norm associated with the mean gradient, thus more negative

values of R12 lead to higher growth of turbulent kinetic energy. Concordantly, any

agency that increases R12 to higher positive values will decrease the growth rate of

kinetic energy and consequently, will have a stabilizing effect. To further examine

the implications of kinetic energy growth, we present the evolution equation for R12:

dR12

dt
= P12 + π12. (3.40)

Thus, positive values of π12 engender an increment in the value of R12, leading to

a lower growth for turbulent kinetic energy and consequently, having a stabilizing

effect.

Considering the first lower bound, equation (3.15), for a planar quadratic flow

the inequality reduces to:

∂Uj
∂xi

∂Uk
∂xl

Miljk ≥ 0⇒ (a− b)2M1122 + (a+ b)2M2211 + 2(a2 − b2)M1221 ≥ 0. (3.41)

Evidently, the process realizability expression is strongly dependent upon the mean

gradient field. This is in clear contrast to the state realizability framework wherein

the implementation of the constraints does not take the mean gradient field into

account. Since production and pressure strain correlation are strong functions of the

mean gradient field, it is natural that process realizability is also contingent upon

the mean gradient. Contrary to state realizability, process realizability fulfills this
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natural requirement. To glean the physical insight afforded by the process realizabil-

ity constraints for a given mean gradient field, we specify the value of the ellipticity

parameter, β, in equation (3.41).

For the case of plane strain, β = 0 (thus, b = 0). The relationship between the

components of the M tensor and π12 is explicitly given by:

π12 = 2∂Uk
∂xl

(M1l2k +M2l1k) . (3.42)

This can be simplified further to:

π12 = 2a (M1122 +M1221) + 2a (M2211 +M1221) . (3.43)

In this case, the requirement that the M tensor be positive semi-definite, equa-

tion (3.41), reduces to:

∂Uj
∂xi

∂Uk
∂xl

Miljk ≥ 0

⇒(a− b)2M1122 + (a+ b)2M2211 + 2(a2 − b2)M1221 ≥ 0

⇒a (M1122 +M1221) + a (M2211 +M1221) ≥ 0

⇒ π12 ≥ 0,

(3.44)

where,⇒ denotes the material implication. Thus, for this case, the action of pressure

is stabilizing. This predisposition of the intercomponent energy transfer has been

observed in Mishra & Girimaji (2013), where the investigation considered the dom-

inant energy redistribution and its relationship with predictive fidelity. Evidently,

for the case of plane strain, such a trend in the energy redistribution is not only ex-

pedient to ensure predictive fidelity but is essential to maintain process realizability.

Furthermore, such limits on the energy redistribution hold for the ensemble and for
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each mode separately. Process realizability necessitates the action of pressure to be

stabilizing in this case, irrespective of the state of turbulence.

Considering an general elliptic flow, the inertial effects engender a state of neu-

tral stability (Salhi et al., 1997). It is known that the action of pressure initiates

and maintains the elliptic flow instability (Cambon, 1982). As the inertial effects

conserve the neutral stability of the system, it is expected that the action of pres-

sure is destabilizing. Applying the upper and lower bounds on the pressure strain

correlation, equations (3.33) and (3.34) respectively:

− 4kW 2 ≤
{
∂U

∂x
, π(r)

}
≤ 4k(2S2 +W 2 + 2SW )

⇒− 4b2 ≤ 2aπ12/k ≤ 4(2a2 + b2 + 2ab)
(3.45)

Clearly, process realizability permits π12 to be both positive and negative. Concor-

dantly, the action of pressure can be both stabilizing or destabilizing. This is bolstered

by numerical investigations(Mishra & Girimaji, 2013). The energy redistribution due

to pressure in elliptic flows is not a straightforward destabilizing effect. As is observed

in numerical simulations, over every cycle of growth during the elliptical instability,

pressure transfers energy both from and to the the plane of applied shear for distinct

intervals. Thus, over the cycle, the action of pressure destabilizes and stabilizes the

flow for distinct intervals.

For the case of a mean flow corresponding to pure shear in a plane, a = b. Herein,

applying equation (3.7),

4a2M2211 ≥ 0⇒M2211 ≥ 0. (3.46)
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This condition prepossess the π12 term to favor positive values. However, this does

not lead to π12 being non-negative for all cases. Thus, this condition is not sufficient

to establish the effect of pressure on flow stability in this case.

Considering mean gradients that are non-planar, we analyze the benchmark case of

axisymmetric contraction, wherein the requisite mean gradient is given by:

∂Ui
∂xj

=


−S/2 0 0

0 −S/2 0

0 0 S

 . (3.47)

In this configuration, the Reynolds stress components R11 and R22 have positive pro-

duction, while R33 has negative production. Thus, the inertial effects destabilize the

fluctuations along the 1 and 2 axes while engendering decay of the fluctuations along

the 3 axis. In this scenario, the only manner by which pressure can keep the fluctu-

ating velocity gradients bounded (that is, maintain continuity), is by redistributing

the energy from R11 and R22 to R33. The first lower bound, equation (3.15), is

mathematically stated as:

S2(M1111

4 + M2222

4 +M3333 + M1221

2 −M1331 −M2332) ≥ 0

⇒ (M1111 +M1221 − 2M1331) + (M1221 +M2222 − 2M2332) + (M3113 +M3223 − 2M3333)

−3(M3113 +M3223 − 2M3333) ≥ 0

⇒ (−π11 − π22 − π33) + 3π33 ≥ 0

⇒ π33 ≥ 0.

(3.48)

In agreement with process realizability, this predicated energy transfer is observed

in DNS studies(Mishra & Girimaji, 2013). Thus, process realizability obliges the
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closure model to counter the inertial effects and stabilize the system.

Similarly, for axisymmetric expansion, R11 and R22 have negative production,

while R33 has positive production. In this case, the first lower bound is mathemati-

cally stated as π33 ≤ 0. This is in congruence with physical precepts wherein pressure

must redistribute energy thus, to ensure that the fluctuating velocity gradients do

not become unbounded along the 3-axis. Consequently process realizability states

that the action of pressure counters the inertial effects and stabilizes the system.

In this section, the implications of the process realizability constraints on flow

physics and stability were discussed. Most notably, process realizability is able to

identify the directions and chief trends of energy redistribution. It is shown that

process realizability constrains the pressure-strain correlation to yield the observed

stabilizing influence on the turbulent kinetic energy evolution.

3.5 Conformity of various models with process realizability

We commence with a conspectus of the classical pressure strain correlation mod-

eling framework. The most general closure expression for theMijpq tensor, satisfying

the innate symmetries is (Johansson & Hallback, 1994):

Mijpq = A1δijδpq + A2(δipδjq + δiqδjp) + A3δijbpq + A4δpqbij

+ A5(δipbjq + δiqbjp + δjpbiq + δjqbip) + A6bijbpq

+ A7(bipbjq + biqbjp) + A8bpkbqkδij + A9bikbjkδpq

+ A10(bikbpkδjq + bjkbpkδiq + bikbqkδjp + bjkbqkδip)

+ A11bijbpkbqk + A12bpqbikbjk + A13(bikbpkbjq + bjkbpkbiq + bikbqkbjp + bjkbqkbip)

+ A14bikbjkbplbql + A15bikbjl(bpkbql + bqkbpl).

(3.49)
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The corresponding general ansatz for the Rapid Pressure Strain Correlation is:

π
(r)
ij

k
= Spq

(
Q1δipδjq +Q2(bipδjq + δiqbjp −

2
3bpqδij)

+Q3bpqbij +Q4(biqbjp −
1
3bpkbqkδij)

+Q5bplbqlbij + (Q5bpq +Q6bplbql)(bikbjk −
1
3IIaδij)

)
+Wpq

(
Q7(bipδjq + bjpδiq) +Q8bpk(bjkδiq + bikδjq) +Q9bpk(bjkbiq + bikbjq)

)
.

(3.50)

Herein, the Reynolds stress anisotropies are defined as bij = uiuj

2k −
σij

3 and the model

coefficients, Ai, are scalar functions of the anisotropy invariants. These are chosen

so as to satisfy continuity, the normalization condition and the Crow Constraint

(Crow, 1968); and calibrated to yield good agreement over a set of benchmark flows

(Johansson & Hallback, 1994).

Closure modeling of the rapid pressure strain correlation is tantamount to deter-

mining the coefficients Ai, subject to mathematical constraints and physical fidelity.

As elaborated in Pope (2000), the notable mathematical constraints are

1. realizability;

2. linearity in the Reynolds stresses;

3. linearity in the mean gradient tensor.

It has been established that closures that are linear in the Reynolds stresses are

unable to adhere to the state realizability condition at the 2C limit (Lumley, 1978).

Consequently, many closure nominations forgo linearity in the Reynolds stresses and

incorporate non-linear terms in the closure expression. Adopting nonlinear expres-

sions for the M tensor, allows the model to be realizable in the neighborhood of the
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Closure Model Mijkl Coefficients πij Coefficients
I. Launder et al. (1975) A1-A5 Q1,Q2 & Q7
II. Speziale et al. (1991) A1-A7 Q1-Q3 & Q7
III. Johansson & Hallback (1994), 2nd order A1-A10 Q1-Q4 & Q7-Q8
IV. Johansson & Hallback (1994), 3rd order A1-A13 Q1-Q5 & Q7-Q9
V. Johansson & Hallback (1994), 4th order A1-A15 Q1-Q9

Table 3.1: Specifics of the M and π tensor expressions in closure models.

2C limit. Higher degrees of nonlinearity provide additional degrees of freedom in

the formulation. This enables the model coefficients to be calibrated for accuracy in

certain flows while still adhering to state realizability.

Hereon, we evaluate the nature of the Reynolds stress dynamics engendered by

popular closure models, for different mean flow gradients. The closures analyzed

correspond to the models introduced in Launder et al. (1975), Speziale et al. (1991)

and Johansson & Hallback (1994). In addition to representing the most widely

tested, verified and applied closures in the field, this set provides a cross-section of

the modeling paradigms vis-à-vis the nonlinearity in the Reynolds stress tensor in the

closure expression and the adherence of the closure to state realizability. The model

of Launder et al. (1975) is linear in the Reynolds stresses and the coefficients therein

are constants. The model of Speziale et al. (1991) is quadratic and the coefficients

are functions of the Reynolds stress anisotropies. The family of models introduced

in Johansson & Hallback (1994) are up to the fourth order in Reynolds stresses

and the coefficients are quadratic bilinear forms in the Reynolds stress anisotropies.

Additionally, the model of Launder et al. (1975) was not explicitly formulated to

satisfy any form of state realizability. The model of Speziale et al. (1991) adheres to

weak realizability and those of Johansson & Hallback (1994) satisfy the strong form

of the realizability constraint. These closure expressions are detailed and contrasted

in table 3.1. In addition to the aforementioned closures subscribing to the classical
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Closure Model Closure expression Closure coefficients Realizability adherence

Launder et al. (1975) Linear in Reynolds stresses Constants None
Speziale et al. (1991) Quadratic Linear in anisotropies Weak realizability
Johansson & Hallback (1994) Up to the 4th order Quadratic bilinear forms Strong realizability
Kassinos & Reynolds (1994) Linear in Rij and Dij Constants None

Table 3.2: Comparison and contrast of the set of models considered

framework, we consider alternative modeling approaches that counsel the inclusion

of additional tensors to the modeling basis, in form of the model of Kassinos &

Reynolds (1994). These modeling paradigms are contrasted in table 3.2.

In the Second Moment Closure approach, the evolution of the Reynolds stresses

is calculated via a modeled equation. Any unphysical behavior of the Reynolds

stresses has to originate due to unphysical features of the closure models. Nonlinear

models forgo the important superposition requirement (Reynolds, 1976) pertaining

to Reynolds stress evolution in favor of state realizability adherence. Thus, it is

important to examine if these closures satisfy the process realizability constraints.

Explicitly, do higher degrees of nonlinearity lead to improved or diminished consis-

tency with of Reynolds stress dynamics.

We perform a phenomenological investigation of the relationship between lin-

earity, state realizability and process realizability. We examine if adherence to state

realizability leads to better process realizability characteristics. Furthermore, in light

of the arguments given in Speziale et al. (1994), it is important to consider if adher-

ence to the weak realizability condition leads to better replication of Reynolds stress

dynamics than the strong realizability condition.

The process realizability violation for each model is examined as follows. The

anisotropy space is discretized into several nodes for the case of each mean velocity

gradient. The modeled Mijkl tensor is constructed at each node. Then, the com-

pliance of the model expression at each node with each of the process realizability
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constraints, equations (3.15), (3.33) and (3.38), is determined. If any of the con-

straints is violated, the model is deemed unrealizable at that location. Herein, the

requisite grid independence is duly carried out. This manner of realizability evolution

is different from that followed by Sambasivam et al. (2004).

3.5.1 The linear closure of Launder et al. (1975)

The linear representation for the M tensor can be expressed as:

M linear
ijpq = A1δijδpq + A2(δipδjq + δiqδjp) + A3δijbpq + A4δpqbij

+ A5(δipbjq + δiqbjp + δjpbiq + δjqbip).
(3.51)

Of the coefficients in the expansion, A1 and A2 are determined from the Crow

Constraint. The latter set of coefficients, A3 to A5 are constrained by continuity

and the normalization condition. These are co-dependent and have only one de-

gree of freedom. Without loss of generality, this is considered to be A5. In the

closure presented in Launder et al. (1975), the value of A5 is taken to be a con-

stant and is calibrated for performance in a set of benchmark flows, leading to

the parameter value of A5 = −0.286. The entire set of parameters is given by

{A1, A2, A3, A4, A5} =
{

4
15 ,−

1
15 ,−

1
3(2 + 11A5), 2

3(1− 2A5),−0.286
}
.

Figure 3.1 exhibits the zones of process realizability adherence for this model. The

shaded region of the anisotropy invariant map signifies the zones where the closure is

unable to ensure a M tensor that is positive semi-definite. As can be observed, the

constraints are violated for significant regions of the anisotropy invariant map. The

2C limit is not attainable with realizable dynamics, for any quadratic flow. Contrary

to expectations, it is not the elliptic flows wherein the realizability violations are

most severe. Purely sheared flows have the largest zone of violation. For hyperbolic

and elliptic flows, pressure counters the inertial effects, stabilizing and destabilizing

100



Figure 3.1: Zones of unrealizable dynamics for the model of Launder et al. (1975).
(a)Plane strain, (b)purely sheared, (c)Pure rotation.

Figure 3.2: Zones of unrealizable dynamics for the model of Speziale et al. (1991).
(a)Plane strain, (b)pure shear, (c)Pure rotation.

the flow, respectively. For purely sheared flows, pressure has a modest effect and does

not even affect the nature of the instability (Mishra & Girimaji, 2013). Paradoxically,

the case of a purely sheared mean flow leads to the largest area of violation, in spite

of having a nominal action of pressure.

3.5.2 The quadratic model of Speziale et al. (1991)

The zones of process realizability adherence for the quadratic model of Speziale

et al. (1991) are exhibited in figure 3.2. The coefficients for this model, with refer-

ence to the notation used in Speziale et al. (1991), are {A1, A2, A3, A4, A5, A6, A7}
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are given by
{
C3−C∗

3
√
II

3 ,−C3−C∗
3
√
II

12 , 101
240 ,

149
240 ,−

5
24 ,−1.8, 1.8

}
. Although satisfying the

weak form of state realizability, the model is unable to ensure realizable Reynolds

stress dynamics beyond moderate degrees of anisotropy. The 2C limit and its neigh-

borhood, wherein weak realizability is applied, are not amenable to realizable dy-

namics for any quadratic flow. Thus, even before the weak realizability condition

would be actuated, the predicted Reynolds stress dynamics would become unphysi-

cal. Additionally, in comparison to the results for the LRR model, notwithstanding

the nonlinearity of the SSG model it exhibits larger zones of process realizability

violation.

3.5.3 The nonlinear models of Johansson & Hallback (1994)

Johansson & Hallback (1994) have formulated a family of closures for the rapid

pressure strain correlation, of the forth, third and second order in anisotropies. All

these proposed closures satisfy the strong form of state realizability. The details

of the closures for the M tensor can be found in Johansson & Hallback (1994) and

Sjogren & Johansson (2000). To evaluate the process realizability for these individual

closures, we appraise their ability to ensure a M tensor that is positive semi-definite

for the case of a plane strain mean flow gradient. The second order model is able

to do thus for the entire Lumely’s Triangle. However, the third and forth order

models exhibit substantial regions where the predicted M tensor is unrealizable, as

exhibited in figure 3.3. Moreover, the zones of violation increase with a corresponding

increment in the order of the model. This trend is observed for all quadratic mean

flows. Consequently, we restrict this investigation to the quadratic model, having

the best process realizability adherence amongst these.

The zones of process realizability adherence for the quadratic model of Johansson

& Hallback (1994) are exhibited in figure 3.4. As can be observed, the process realiz-
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Figure 3.3: Zones of adherence to the first lower bound for the models of Johansson
& Hallback (1994) for the case of a plane strain mean flow. (a)Third order, (b)Forth
order.

ability adherence of the model is far superior to all other closures considered in this

section. However, in spite of its adherence to the strong form of state realizability, the

model is unable to ensure realizable dynamics at the 2C limit or its neighborhood.

Consequently, the predicted Reynolds stress dynamics would have become unsub-

stantiable well before the required application of the strong realizability condition.

It must be observed that the second order model of Johansson & Hallback (1994)

is completely constrained by the conditions of consistency and strong realizability.

Thus, it does not allow for the tuning of the coefficients in the expression to ensure

any degree of predictive fidelity.

3.5.4 Process realizability and intercomponent energy transfer

At this juncture, we address the relationship between closure expressions, of differ-

ent orders in the anisotropy tensor, and their amenability at replicating the Reynolds

stress dynamics. Considering the case axisymmetric contraction, the linear model

of Launder, Reece and Rodi complies with the first lower bound on the M tensor,
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Figure 3.4: Zones of unrealizable dynamics for the second order model of Johansson
& Hallback (1994). (a)Plane strain, (b)Purely sheared, (c)Pure rotation.

equation (3.15), for all states of turbulence. However, as exhibited in figure 3.5, the

non-linear models of Speziale et al. (1991) and Johansson & Hallback (1994) have

significant regions of violation. Furthermore, the region of violation increases sub-

stantially with the order of the modeling expression. On manifesting such violations,

the model transfers energy from R33 to R11 and R22. This trend of redistribution

is clearly unphysical as it leads to unbounded velocity gradients along the 1 and

2-axes. However, more importantly, for such a violation of the process realizability

constraints, R33 will be acted upon by negative production and a negative pressure

strain correlation. This will drive the system toward the 2C limit, where such vi-

olations are even more severe. This will rapidly lead to a negative value for R33

and thus, a violation of State Realizability. This illustration exemplifies the manner

in which realizability violations of the Reynolds stress dynamics precede and lead to

realizability violations of the Reynolds stresses. In the case that the closure complies

with the strong realizability constraint, the value of the pressure strain correlation

will be artificially and unphysically reset at the 2C limit. This would displace the

evolution off the 2C limit whence the process realizability violation would cause it

to proceed toward the 2C limit again and this cycle would repeat interminably. In

104



Figure 3.5: Zones of adherence to the first lower bound for the case of axisymmetric
contraction for the model of (a)Speziale et al. (1991), (b)Johansson & Hallback
(1994).(LRR satisfies this constraint everywhere.)

this light, it is not surprising that such models exhibit spurious oscillations in the

vicinity of the 2C limit (Speziale et al., 1994). This explication serves to underline

the fact that State Realizability constraints are insufficient as they address the effect

of realizability violation and not the cause thereof.

This theme, of unphysical energy redistribution to satisfy state realizability, is

repeated in other varieties of flows as well. For instance, this can be observed in

figure 3.6, where the zones of adherence to the first lower bound, equation (3.15), are

exhibited for the closures of Launder et al. (1975) and Speziale et al. (1991). These

figures indicate that closure expressions of higher orders do not lead to a better

representation of the Reynolds stress dynamics.

3.5.5 Models with extended bases: Kassinos & Reynolds (1994)

Due to the unsatisfactory performance of classical pressure strain correlation

models in certain classes of flows, Kassinos & Reynolds (1994); and Cambon and

co-workers(Cambon et al., 1992) have attempted to use additional tensors in their
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Figure 3.6: Zones of adherence to First Lower Bound for a plane strain flow for
(a)Launder et al. (1975), (b)Speziale et al. (1991).

modeling attempts. Such attempts have very credible arguments, both physical

and mathematical, in their favor. It is accepted that the Reynolds stresses and

the mean gradients do not constitute a complete basis to model the pressure strain

correlation, even in homogeneous flows. Thus, additional tensors are required to

provide the missing information. Kassinos & Reynolds (1994) have averred that

single-point modeling of the dynamics of pressure requires supplementary tensors,

such as Dimensionality, Dij, Circulicity, Fij and Stropholysis, Qijk. For homogeneous

turbulence, these can be defined as:

Rij = Mijkk, Dij = Mkkij, Fij = εimpεjrsMpsrm, Qijk = εipqMjqpk. (3.52)

The authors then proceed to proffer and test models utilizing this basis. For rotation

dominated flows, these models exhibit improved fidelity and capture significantly

more flow features. However, the process realizability adherence of these models is

unsatisfactory, as exhibited in figure 3.7. For quadratic mean flows, these models
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Figure 3.7: Zone of process realizability violation for the model of Kassinos &
Reynolds (1994), for a purely sheared mean flow.

could not ensure realizable Reynolds stress dynamics for any state of turbulence,

including isotropic turbulence. The details of the closures used can be found in

Kassinos & Reynolds (1994) (equations (3.3.5), (3.3.6) and (3.7.2) therein).

3.5.6 Summary

The incomplete basis used in pressure strain correlation modeling leads to the

inapplicability of closure expressions to higher values of anisotropy(Cambon & Ru-

binstein, 2006; Sagaut & Cambon, 2008). This feature is evident in the results of the

process realizability constraints, wherein it is shown that most models can ensure

realizable predictions only for low to moderate levels of anisotropy. All models have

significantly large regions on the anisotropy invariant map where they are unable to

ensure realizable Reynolds stress dynamics. This has consequential ramifications in

the application of such models to engineering problems. This is exacerbated in the

case of strain dominated flows, wherein the state of turbulence evolves to a moder-

ately high level of anisotropy. For instance, figure 3.8 exhibits the evolution of the

anisotropy invariants for the case of a purely sheared mean flow. In spite of com-

107



Figure 3.8: Evolution of the anisotropy invariants for the case of a Purely sheared
mean flow. (a)Temporal evolution, (b)evolution on the anisotropy invariant map.

mencing from an isotropic initial state, no model can ensure realizable prediction

after a span of two shear time units.

It was observed that compliance with state realizability has no direct correlation

with the process realizability characteristics of the model. One of the primary reasons

to resort to non-linear models for the Rapid Pressure Strain Correlation is to ensure

compliance with state realizability. In this investigation, we have exhibited that

non-linear models do not guarantee better process realizability characteristics.

3.6 A realizability-based linear Mijkl closure

The classical modeling formulation seeks to model this with a basis comprising

of the Reynolds stresses and the mean gradient. However, the Reynolds stresses do

not provide an adequate description of the turbulent flow field (Cambon & Scott,

1999). Concordantly, the Mijkl tensor, describing the action of pressure, depends

on the componentiality and dimensionality of the turbulent flow field. As discussed

in Mishra & Girimaji (2013), the dimensionality information is unavailable in the

classical modeling formulation. The challenge inherent to pressure strain correlation

108



Figure 3.9: (a)Formulation of a archetypal linear model, vis a vis process realizability,
for planar quadratic flows,(b)The explicit values of the new model, the value of the
LRR coefficient is notated.

modeling is to presuppose a latent dimensionality, leading to a consistent closure

expression.

Compliance with process realizability is contingent on the mean gradient, for

instance as exhibited in equation (3.53). Consequently, in lieu of the Dimension-

ality information, using the mean gradient information is more physical (Mishra &

Girimaji, 2013) and would enable better process realizability characteristics. Thus,

we propose a simple recourse of making the coefficients of the closure expression

functions of the mean flow invariants. Lee (1990), Girimaji (2000) and Sjogren &

Johansson (2000) represent the few investigations that have considered such an ap-

proach. Both these models exhibited considerable improvements in predictions. Our

thesis recommends this surrogate procedure, not only for predictive fidelity but also

for realizability.

In this section, we outline an a priori application of the process realizability

constraints to formulate a rapid pressure strain correlation model. Thus, the di-
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mensionality information is inferred from the process realizability constraints. These

constraints are used to develop a model that is linear in the anisotropies but uses

model coefficients that are functions of the mean gradient. As mentioned in the pre-

vious section, the most general form of the M tensor that is linear in the anisotropies

can be expressed as equation (3.51). We substitute this expression for the M tensor

in equation (3.41). For a quadratic flow this reduces the constraint to:

[1
5 −

3
2A5(b11 + b22)

]
−
√
β(1− β)

[4 + 7A5

3 (b11 − b22)
]

−2β
[−1

15 + A5(b11 + b22)
]
≥ 0.

(3.53)

This inequality is used to determine the admissible values for A5 for a given value

of β. Figure 3.9 exhibits the adherence to the first lower bound for a linear model,

as a function of its coefficient, A5, and the ellipticity parameter, β. The shaded

intervals exhibit values of β where this constraint can be fulfilled for a range of A5.

The singleton circles represent values where this constraint cannot be fulfilled for any

value of A5. This indicates that the value of the coefficient for these flows depends

strongly on the underlying dimensionality. For these values of β no single values of

A5 can lead to realizable results for all the permissible values of the dimensionality

tensor. In such a case, we choose the value of A5 that minimizes the zone of process

realizability violation. Based on the extension of this smooth curve, as exhibited in

figure 3.9(b), an archetypal linear closure can be obtained. The distribution under-

scores that process realizability constraints are most stringent for flows where the

magnitudes of the mean rate of strain and rate of rotation are similar. Further-

more, as exhibited, the stringency of the constraints is similar for both elliptic and

hyperbolic flows.

The degree of process realizability adherence for this model is exhibited in fig-
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Figure 3.10: Realizability adherence of the process realizability based model for a
quadratic flows with β=0, 0.5, 0.75 and 1.
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ure 3.10 for different types of mean flows. As can be observed, process realizability

adherence of this model is comparable to the linear and non-linear closures evaluated

earlier. Furthermore, the closure gives adequate compliance with the constraints for

elliptic flows. For instance, for a purely rotating mean flow, the model is able to

satisfy process realizability everywhere on the anisotropy invariant map except for a

very small region in the vicinity of the 1C state.

It should be pointed out that the focus of this exercise is to demonstrate process

realizability and not predictive fidelity. We seek to outline the general procedure

by which models can be formulated to ensure physically permissible Reynolds stress

dynamics for the maximal possible states of turbulent flow, at any order of expression.

While developing a new closure model, an acceptable compromise can be arrived at

between predictive fidelity for benchmark flows and process realizability adherence.

Such an effort will be carried out in a subsequent investigation.

3.7 Summary and conclusions

In this investigation, we formulate a set of realizability constraints that behoove

the Reynolds stress dynamics to be physically permissible. It is exhibited that un-

like classical realizability, these constraints are applicable at all states of turbulence.

Thereby, the process realizability framework provides a caveat emptor by clearly

demarcating zones where extant models are inapplicable. Furthermore, process real-

izability constraints provide better guidance for model development as they indicate

permissible ranges for closure coefficients. Most importantly, with specific examples,

it is shown that the process realizability framework gives unequivocal physical in-

sight into the process of energy redistribution. The differences between the process

realizability and the state realizability approaches are highlighted in table 3.3.

Popular closures are evaluated under the purview of these conditions, indicating
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Issue Process Realizability State Realizability

Focus Statistical Process. Statistical state.
(Reynolds stress dynamics) (Reynolds stress tensor)

Applicability All states of turbulence. Restricted to the 2C limit.

Hierarchy Address cause of violation. Address the effect.

Physics Lead to insight into energy redistribution. —-

Modeling More amenable to modeling. —-
(Provide ranges for coefficients)

Utility As a caveat emptor. Incapable of doing so.
(Clearly indicate zones of inapplicability.)

Table 3.3: Contrasting the different approaches to realizability.

regions of realizability adherence for each model and for each mean flow. It is shown

that all the models considered could not ensure realizable Reynolds stress dynamics

for significant regions of the anisotropy invariant map. Furthermore, it is exhibited

that adherence to state realizability in any form does not lead to better process

realizability compliance. The primary reason to resort to non-linear models for the

rapid pressure strain correlation is to ensure compliance with state realizability. We

exhibit that non-linear models do not guarantee better representation of the Reynolds

stress dynamics. In fact, in many cases as the degree of non-linearity increases,

the process realizability characteristics of the closure are progressively undermined.

Finally, we develop an archetypal closure expression, linear in the Reynolds stress,

that gives process realizability adherence at par with highly non-linear closures.
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4. A DYNAMICAL SYSTEMS APPROACH TOWARD MODELING THE

PRESSURE STRAIN CORRELATION

4.1 Overview

A key hurdle in turbulence modeling is the representation of the non-local dy-

namics of pressure within the framework of a single point closure, as manifested in

the pressure strain correlation. In this article, we outline a detailed recourse toward

formulating a pressure strain correlation model that exhibits improved agreement

within the purview of single point closures. Different aspects of the dynamics of pres-

sure are discussed, individually and sequentially, with respect to their amenability

to the single point modeling paradigm and a set of optimal compromises is consti-

tuted within the form and the scope of the model. Thence, this framework is utilized

to formulate an illustrative model. The predictions of this model are compared to

numerical and experimental data while being contrasted against other popular mod-

eling paradigms. Finally, as a caveat emptor, the zones of applicability of this model

are clearly delineated for different mean flows.

4.2 Introduction

Diverse applications require accurate predictions of complex turbulent flows.

These range from flows over aircraft and inside turbomachinery, atmospheric flows

for weather prediction and through the heart for cardiac auscultation, etc. Due to

the disparate character of these flows, predictive methods must be robust, so as to

be easily applicable for most of these cases, yet possessing a high degree of accuracy

in each. Furthermore, as the processes of analysis and design involve repeated itera-

tions, the predictive method must be computationally economical. In this vein, the

Second Moment Closure approach to modeling is of great engineering utility as it is
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less computationally expensive than numerically intensive methods like Direct Nu-

merical Simulation or Large Eddy Simulation. Yet, this approach is more accurate

and robust as compared to one or two-equation models.

The Second Moment Closure methodology is based on the Reynolds Stress Trans-

port (RST) equations:

dRij

dt
= Pij −

∂

∂xk
Tijk + πij − εij,

where, Rij =
∑
κ

〈uiuj〉,

πij =
〈
p(∂ui
∂xj

+ ∂uj
∂xi

)
〉
,

εij = −2ν
〈
∂ui
∂xk

∂uj
∂xk

〉
,

andPij = −Rjk
∂Ui
∂xk
−Rik

∂Uj
∂xk

.

(4.1)

Herein, the convection and production terms adjust to inertial phenomena via the

addition of scale factors or Coriolis terms; hence models based on this paradigm

lead to better descriptions of complex flows. Furthermore, due to the presence of

the terms representing the convection and diffusion of the Reynolds stresses, this

approach is potentially able to account for the non-local and history effects. However,

due to the lack of closure in the Reynolds stress transport equations, models must

be incorporated for the higher order or non-local terms. These include transport,

dissipation and the pressure-strain correlation terms. The ability of any turbulence

model to describe the flow physics depends on the accuracy of the model expressions

utilized therein.

Of these terms, the pressure strain correlation, embodying the action of pressure

is regarded as the most important (Sagaut & Cambon, 2008). The evolution of

the fluctuating velocity field in an incompressible, turbulent flow is determined by
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Figure 4.1: Evolution in the Navier-Stokes system contra the Burgers system, for
the case of (a)a representative hyperbolic flow, (b)a representative elliptic flow.

the balance between inertial, pressure and viscous effects. The inertial effects deform

the fluctuating velocity field without any regard to the incompressibility requirement.

The viscous effects are dynamically passive and do not change the dilatation state of

the velocity field. It is the function of pressure to modify this inertial deformation,

so as to render the velocity field divergence free. Thus, the pressure effects are

omnipresent.

Additionally, the action of pressure is highly complex. The key issues that com-

pound the complexity of turbulence are the non-linearity and the non-locality of the

phenomenon (Tsinober, 2009; Pope, 2011). However, the “pressure-released” Burg-

ers turbulence, that embodies much of the non-linear character of turbulence, has

been much better understood (Sagaut & Cambon, 2008) in contrast to its Navier-

Stokes analogue. Consequently, the complex action of pressure is the key toward

understanding the complicated nature of turbulent flows.

Finally, the action of pressure is critically important in the evolution of turbulent

flows. As illustrated in figure 4.1, in different regimes of quadratic flows, the pressure

effects either suppress (hyperbolic flow) or engender and sustain flow instabilities
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(elliptic flows). Thus, this term determines the central characteristics of turbulent

flows and consequently, its accurate modeling is highly exigent.

The foundations for pressure strain correlation modeling were established in land-

mark papers by Chou (1945) and Rotta (1951). In single point closures the classical

formulation attempts, via rational mechanics, to express the pressure strain corre-

lation as a function of tensors that can be measured in an engineering context such

as the Reynolds stresses, dissipation, mean gradients, etc. In this vein, it represents

the only modeling approach with the requisite measure of engineering applicability.

However, this approach illustrates the schism between the engineering limitations

and the requirements dictated by physics. The set of tensors that can be used in

an engineering perspective does not constitute a complete basis to model the pres-

sure strain correlation. According to the axioms ordained by physics in dealing

with incompressibility, pressure is governed by an elliptic Poisson equation. Pressure

reacts instantaneously to any changes in the entire velocity field and is thus, a non-

local variable. An attempt to develop one-point (or local) models for such non-local

behavior is inherently encumbered by a deficiency in required information (or, an

incomplete basis for this reconstruction). Two-point models do not have to make

such sacrifices regarding the physical description. They are able to represent the

physics of turbulence more realistically, especially regarding the non-local nature of

the pressure fluctuations. However, at this juncture, multi-point approaches are not

robust and computationally expensive and consequently, they are not practical for

engineering applications. Thus at present, single-point closures represent the only

viable engineering recourse. However, this approach has to make concessions in the

modeling procedure as the information available to it is limited. Such an encum-

brance leads to limitations in the features of the pressure strain correlation that the

classical modeling formulation is capable of reproducing. In light of these limitations,
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the pertinent questions involve the degree to which we can replicate these phenomena

and the levels of certitude associated with these predictions.

In this context, various pressure strain correlation models have been developed.

The nominations available and popular at present, like those by Speziale et al. (1991),

Launder et al. (1975), Johansson & Hallback (1994) etc, are limited in their robust-

ness and scope. In regimes like elliptic flows, the predictions of said models are not

satisfactory. Such regimes of flow are fundamentally important to problems such

as those regarding wingtip vortices and wake turbulence. Thus, these models are

of limited engineering utility for a wide variety of pressing problems. Per contra,

there are models like the PRM of Kassinos & Reynolds (1994) that are able to give

moderately accurate predictions for a larger set of flows. However, the engineering

applicability of these models is limited as they require basis tensors that cannot be

measured in an engineering context. Accordingly, there exists a pressing need for a

robust yet austere closure for the pressure strain correlation.

This investigation aims to address these issues, systematically and sequentially.

We outline a paradigm to formulate models for the rapid pressure strain correlation

that possess a very high degree of agreement with linear physics and yet maintain

engineering utility. To this end, the specific issues that are addressed include:

1. Compromises in the scope of the model: Single-point modeling of the RPSC is

an attempt to represent a global phenomenon by the medium of local quantities.

Such an exercise is limited in the extent to which it can replicate the dynamics

of pressure. Herein, we discuss specific flow features, their import in engineering

prediction and their tractability to one-point closure modeling.

2. Compromises in the structure of the model: As mentioned, the basis used

in single point modeling is incomplete for the purposes of reconstructing the
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dynamics of pressure. We discuss the optimal surrogate for this non-local

information and the best manner in which to incorporate and actualize this

information in the model.

3. Execution and analysis: As an illustration, we develop an archetypical model

using this paradigm. The predictions of this model are compared to numerical

and experimental data while being contrasted against other popular modeling

paradigms.

4. Applicability and extent: As a clear caveat emptor, we explicitly demarcate the

zones of validity of this model for different mean flows.

4.3 Mathematical background

Explicitly, the pressure strain correlation is denoted by:

πij =
〈
p

ρ
(∂ui
∂xj

+ ∂uj
∂xi

)
〉
, (4.2)

where lowercase symbols represent the fluctuating quantities and 〈〉 represents en-

semble averaging.

1
ρ
∇2p = −2∂Ui

∂xj

∂uj
∂xi
− ∂2

∂xi∂xj
(uiuj − 〈uiuj〉). (4.3)

With regard to pressure action, by precedent fluctuating pressure is divided into two

components, viz. rapid and slow pressure. These are then modeled separately. Math-

ematically, the terms “rapid" and “slow" refer to the components of pressure arising

from the linear and non-linear parts of the source term in the Poisson equation for

pressure. The slow component acts to conserve the incompressibility of the velocity

field generated by the nonlinear interactions among velocity fluctuations. It is the
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function of rapid pressure to impose the divergence free condition on the fluctuat-

ing velocity field produced by linear interactions between the mean and fluctuating

fields. By their very nature, the non-linear interactions are reasonably independent

of the mean velocity field. It is generally accepted that slow-pressure strain cor-

relation tends to isotropize the fluctuating velocity field, irrespective of the mean

velocity gradient. In contrast, the action of rapid pressure and consequently, the

rapid pressure-strain correlation is highly dependent upon the mean velocity field.

Furthermore, it is observed that the rapid pressure evolution is linear with respect

to the fluctuating velocity. Thus, the rapid pressure term conserves the number of

fluctuating modes.

With respect to the modeling aspect, the RPSC is expressed as a function of

measurable tensors.
πrij
k

=
∑

QnT
n
ij, (4.4)

wherein T nij are symmetric, deviatoric tensors and Qn are the corresponding model

coefficients. Due to the linear form of the Poisson equation, the model expression for

the RPSC must also be linear. The classical form of such a linear RPSC expression

is

πrij
k

=Q1Sij +Q2Spq(bipδjq + bjpδiq + 2
3bpqδij)

+Q3Wpq(bipδjq + bjpδiq).
(4.5)

In the classical modeling approach, the model expressions are regulated by guide-

lines based on mathematics and physics, and limitations stipulated by engineering.

Categorically, these are:

1. limitation of tensor bases to local, measurable quantities, like the Reynolds

stresses, mean gradients, etc;
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2. linearity in the Reynolds stresses;

3. linearity in the mean velocity gradient tensor;

4. other ancillary specifications, such as realizability, the Crow constraint, Mate-

rial Frame Indifference when applicable, etc.

As has been observed in literature, these properties pertain to an ideal model and at

present, no model can conform to all these conditions. Thus, the exercise of modeling

seeks to develop a “best-possible" model, while observing only select guidelines. In

many cases, the individual conditions are antithetical to each other. For instance, it

is proved that linear models, obligated by (a), cannot ensure realizable predictions in

all regions of the AIM as obligated by (d). Thus, there has been a trend to append

non-linear terms to the modeling expression, culminating in the model of Johansson

& Hallback (1994) that ensures realizable predictions everywhere.

However, the modeling of the RPSC is tantamount to modeling a fourth order

Mijkl tensor. Explicitly,

πrij = 2∂Ul
∂xk

(Mkjil +Mikjl),

wherein,Mijpq = − 1
8πk

∫ ∂2Rij

∂rp∂rq

d~x′

r
; ~x′ = ~x+ ~r.

(4.6)

. It is expedient to model this forth order tensor, as just ensuring the adherence of the

RPSC model to said guidelines does not lead to a physically consistent expression for

the M tensor. Furthermore, the M tensor affords the application of comprehensive

realizability conditions.

The most general ansatz for a linear model of M, which has the imprimatur of
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the classical framework of pressure strain correlation modeling, is:

Mijpq =A1δijδpq + A2(δipδjq + δiqδjp) + A3δijbpq + A3δpqbij

+ A5(δipbjq + δiqbjp + δjpbiq + δjqbip).
(4.7)

Analogous to the RPSC, certain constraints are obligated upon such a representation.

These include:

1. linearity condition, with respect to the Reynolds stress anisotropies;

2. symmetry conditions, with respect to the indices (Mijkl = Mjikl,Mijkl = Mijlk);

3. continuity condition (Mijil = 0);

4. Green’s condition (Mijkk = Rij

2k );

5. Crow constraint.

πrij
k

=4
5Sij − 12A5Spq(bipδjq + bjpδiq + 2

3bpqδij)

−4
3(2 + 7A5)Wpq(bipδjq + bjpδiq).

(4.8)

Thus, adhering to the classical framework and its concomitant constraints, the

RPSC model has a single degree of freedom. In the succeeding sections, we shall

outline the specification of the same and the rationale underlying this process. For

the purposes of the analysis preceding the modeling paradigm, we restrict ourselves

to planar quadratic flows (Salhi et al., 1997). Herein, to characterize the applied

gradient field, ellipticity parameter, β , is defined as:
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Figure 4.2: The mean flow streamlines as a function of the parameter β. With incre-
ment in β, from zero to one, we observe the variation in the mean flow streamlines.
(a) and (b) represent hyperbolic flows, where β < 0.5. (c) represents a pure shear
case with β=0.5. (d) and (e) are representative of elliptic flows cases, where β > 0.5.

β = WpqWpq

WijWij + SijSij
,where, (4.9)

Sij = 1
2(∂Ui
∂xj

+ ∂Uj
∂xi

), Wij = 1
2(∂Ui
∂xj
− ∂Uj
∂xi

). (4.10)

Wij and Sij refer to the rate of rotation and rate of strain tensors of the background

flow. Planar quadratic flows can be uniquely characterized by the value of β, as

exhibited in figure 4.2. For the purposes of the present investigation, the applied

gradient field is confined to the 1-2 plane and the figures exhibit the streamlines

in this plane. Quadratic flows can be divided into three classes, based on the ap-

plied gradient field: hyperbolic (strain dominated or open streamline flows), elliptic

(rotation dominated or closed streamline flows) and purely sheared flows. The classi-

fication and nomenclature used to differentiate between quadratic flows are outlined
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Range of β Nomenclature

I. [0, 0.5) Hyperbolic/Strain-dominated/Open-streamline flow

II. 0.5 Purely sheared/Homogeneous shear flow

III. (0.5, 1] Elliptic/Rotation-dominated/Closed-streamline flow

Table 4.1: The nomenclature for different regimes of flow and their relation to the
ellipticity parameter.

in Table 4.1. The relative strengths of the rate of strain and rotation tensors can be

quantified by non-dimensionalizing their norms by that of the mean velocity gradient

tensor. In this regard, we define the derived parameters:

a =
√

1− β
2 , b =

√
β

2 . (4.11)

Thus, the parameter “a" measures the relative strength of the applied strain and “b",

of the applied rotation. In the principal co-ordinates of strain, the requisite mean

flow tensors are given as,

∂Ui
∂xj

=


a −b 0

b −a 0

0 0 0

 , Sij =


a 0 0

0 −a 0

0 0 0

 , Wij =


0 −b 0

b 0 0

0 0 0

 . (4.12)

4.4 The effects of pressure: amenability to single point modeling

In an incompressible flow, pressure has to respond instantaneously to any changes

in the entire velocity field. This global nature of the pressure action is reflected in

its evolution via a Poisson equation. However, in the context of one-point closure

modeling, the action of pressure, embodied in the pressure strain correlation, must be
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Figure 4.3: The figure illustrates the effect of initial modal alignment on modal
stability for (a) a representative hyperbolic flow, and, (b) a representative elliptic
flow.

expressed via local tensors which can be measured in an engineering context. Thus,

single-point modeling of the RPSC is an attempt to represent a global phenomenon

by the medium of local quantities. Clearly, such an exercise will be limited in the

scope, to which it can replicate the dynamics of pressure, and the extent, to which it

can capture specific phenomena. Herein, we discuss specific flow features and their

tractability to one-point closure modeling. These have been examined at length

in Mishra & Girimaji (2013). Thence, specific compromises are suggested in the

classical modeling formulation to arrive at a "best-possible" formulation.

Flow instabilities: For planar quadratic flows, the inertial effects on a Fourier

mode are independent of the alignment of the mode with respect to the eigen-

directions of the applied gradient. However, the action of pressure is a strong function

of modal alignment. For different regimes of flow, the pressure effects selectively sta-

bilize or destabilize specific modes, to different degrees, contingent upon the modal
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alignment. This is related to the “structuring effect" of linear physics (Sagaut &

Cambon, 2008). Consequently, accurate replication of the action of pressure is highly

contingent upon wavenumber space information.

As discussed in Cambon et al. (1992); Jacquin et al. (1990); Mishra & Girimaji

(2013), the pressure effects play a profound role in the inception of the instabilities

manifested in planar quadratic flows. Both the elliptic flow instability and the hy-

perbolic instability are highly dependent on the alignment of specific modes. This

is exhibited in figures 4.3(a) and 4.3(b) respectively, where we exhibit the relation-

ship between initial modal alignment in wavenumber space and modal stability. For

the hyperbolic flow, only a very small set of modes, aligned with the extensional

eigendirection, exhibit prolonged unstable behavior. For pure shear flows, the set of

unstable modes is relatively larger. However, only the modes aligned with the “ver-

tical" direction, show significant growth. This scenario is further exacerbated in the

case of the elliptic flow instability wherein the effects of pressure initiate and sustain

the flow instability. Here, only a narrow “band" of oscillatory modes exhibit unsta-

ble behavior. Additionally, the topology of this band of unstable modes is highly

dependent on the ellipticity parameter.

Due to the spherical averaging inherent to the Second Moment Closure method-

ology (Cambon & Rubinstein, 2006), such models are bereft of wavenumber space

information. In this light, accurate representation of the flow instabilities is not

within the purview of models adhering to this framework.

The oscillatory behavior in elliptic flows: For the regime of elliptic flows, RDT

exhibits bilinear oscillations. Consequently, the oscillations have a varying amplitude

about a time dependent mean. On the contrary, established models predict linear

oscillations, exhibiting a constant mean and amplitude. To reproduce a time depen-

dent mean and amplitude with an incomplete basis, the models would have to resort
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to limit cycle oscillations to mimic bilinear phenomena. This would require a rapid

pressure strain correlation that is non-linear in the Reynolds stress anisotropies, that

would violate guidelines obligated by physics. To completely characterize a state of

oscillation, of the generic form x = Asin(ωt+φ), one requires three functions, namely

amplitude, frequency and phase. The frequency of oscillation is an explicit function

of the mean flow topology. However, the determination of the amplitude and the

phase require explicit knowledge of the initial conditions of the internal structure

of the turbulent flow field. Thus, to approximate the oscillatory behavior shown

in elliptic flows, the wavenumber space information needs to be a part of the basis

utilized in the model. Prior investigations, such as Sjogren & Johansson (2000), have

employed models that are non-linear in the mean gradients to capture said oscillatory

behavior. In turbulent flows, the oscillations of flow statistics are caused, primarily,

due to the dynamics of the wave-vector and are thus, outside the scope of one-point

modeling. No permutations of such local tensors can enable one-point closures to

replicate this behavior faithfully.

The bifurcation in the system: In transitioning from hyperbolic to elliptic flows,

the system of governing equations undergo a saddle-node bifurcation. Consequently,

the evolution of the Reynolds stress anisotropies changes from stationary states to

oscillatory solutions. However, this bifurcation is engendered in the wave-vector

evolution equation. Thus, popular one-point closure models are not able to capture

the location or the nature of this change in the system’s dynamics.

Realizability: Schumann (1977) was the first to articulate the realizability con-

straint for turbulence closures, requiring models to yield a Reynolds stress tensor

that is positive semi-definite. It has been pointed out by Shih et al. (1990), Cambon

& Rubinstein (2006) and Speziale et al. (1994) that due to the lack of wavenumber

space information in the formulation, models based on the Second Moment Closure
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paradigm are limited in their applicability to low to moderate levels of anisotropy.

According to Cambon & Rubinstein (2006), this limitation is manifested via real-

izability violations. It has been proved, analytically (Rubinstein & Girimaji, 2006)

and computationally (Lumley, 1978), that linear models cannot ensure physically

meaningful solutions for all states of turbulence. This has been one of the principal

motivations to append non-linear terms to the model expression. In this vein, the

lowest order model that can asservate realizability is the fifth order expression of

Johansson & Hallback (1994).

However, in a recent investigation Mishra & Girimaji (2014) have pointed out

that even models adhering to these realizability conditions can still predict Reynolds

stress dynamics that are completely aphysical. Furthermore, approaches such as

those that add higher order non-linear terms to the modeling expression or those

that seek to add additional tensors to the basis, manifest larger violations from

permissible dynamics for larger regions of the anisotropy invariant map.

This represents a paradoxical scenario for the Second Moment Closure framework.

Models adhering to this recourse replicate the dynamics due to unclosed terms in

the Reynolds stress transport equations and lead to predictions for the Reynolds

stresses. However, to ensure that these predictions are physically meaningful, the

models have to resort to measures that engender the Reynolds stress dynamics to be

aphysical.

Uncertainty Quantification: The Reynolds stresses express the componentiality

of the turbulent flow field and do not provide a complete description of the internal

structure of the flow. For the rapid distortion equations, the specification of the

Reynolds stresses does not lead to a unique evolution trajectory. Instead of a single

unique solution once the Reynolds stress tensor has been specified, there is a range of

permissible solutions. In figure 4.4 this range is shown for a representative hyperbolic
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Figure 4.4: The range of permissible behavior for a representative hyperbolic flow,
β =0, and an elliptic flow, β =0.64.

flow (plane strain) and an elliptic flow (β =0.64).

In essence, the distribution of the modes accounts for the history of the particular

flow. For both these flow regimes, the turbulent kinetic energy evolution is not

universal and is notably dependent on the alignments of the modes in the flow.

Bereft of wavenumber space information, high fidelity modeling of such behavior by

one-point closures remains infeasible.

4.5 Single point modeling: compromises and allowances

Building upon the discussion in the prior section, we outline compromises in

the scope of the modeling objectives, vis-a-vis their scope. Thence, we delineate

modifications in the modeling framework and the rationale underlying the same.

As has been discussed, the oscillatory behavior in flow statistics for rotation dom-

inated flows is not amenable to replication in single point models. However, from

an engineering perspective, the dynamics of the oscillatory behavior are relatively

unimportant when compared to the evolution of the mean value of the flow statis-

tic. As an illustration, we consider the DNS results of Blaisdell & Shariff (1994) in
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figure 4.5. As schematically exhibited therein, a model that is able to replicate the

evolution on the mean value of the statistic may be of significant engineering utility.

Adopting such a simplification in the modeling objective precludes the necessity of

considering the bifurcations in the system, as for either variety of flow (strain or

rotation dominated), the modeling exercise will predict stationary states.

Considering the issue of realizability, the specification of a model for the pressure

strain correlation is equivalent to the ascription of the Reynolds stress dynamics

owing to pressure effects. In this regard, it is holistically harmonious to enjoin

the Reynolds stress dynamics to be realizable. Furthermore, it has been exhibited

that violations in the realizability of the Reynolds stress dynamics precedes and

leads to violations in the realizability of the Reynolds stresses. In this light, it

may be expedient for modeling exercises to adopt the process realizability framework

(Mishra & Girimaji, 2014). This approach has two additional advantages, wherein,

this framework can explicitly demarcate, a priori, the zones where the model is valid

and where it is not applicable, for any and all mean flows. This acts as caveat emptor

for engineering applications of any model. Additionally, Mishra & Girimaji (2014)
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have outlined an analytical methodology to maximize the zones of validity for any

modeling attempt.

Considering the form of the closure expression, the properties that an ideal model

for the M tensor should possess are:

1. The model expression should adhere to a certain functional form. The specifics

of the form of the expression have been discussed in Section II. This form

ensures that the modeled M tensor retains the requisite symmetries (that arise

due to specific properties of the tensor). Furthermore, this limits the tensor

basis to local tensors that can be measured in an engineering context.

2. The model expression should be linear in the Reynolds stresses. In this regard,

the Poisson equation governing rapid pressure is linear in the fluctuating ve-

locities. Consequently, the rapid pressure strain correlation must conserve the

number of Fourier modes in the representation of the fluctuating field. This

is often argued via the superposition principle, wherein a fluctuating velocity

field constituted of uncorrelated fluctuating fields should possess a pressure

strain correlation that is the summation of the pressure strain correlations of

the individual, uncorrelated constituents (Reynolds, 1976).

3. The model expression should not be a function of the mean gradient. Consid-

ering the mathematical definition,

Mijpq = − 1
8πk

∫ ∂2Rij

∂rp∂rq

d~x′

r
, (4.13)

it is evident that this tensor is not directly affected by changes in the mean

gradient field. The dependence of the M tensor on the mean velocity gradient

is indirect and arises through the two-point correlation. Consequently, making
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the M tensor expression directly dependent on the mean gradient may not

possess outright mathematical imprimatur.

It is established that no model can satisfy these properties and yet ensure accurate

and realizable predictions for a variety of flows. Thus, different modeling attempts

seek to relax some of the aforementioned properties to enable predictions with higher

fidelity and realizability. In this regard, it has been established that closures that are

linear in the Reynolds stresses are unable to ensure a realizable Reynolds stress ten-

sor in the vicinity of the 2C limit (Lumley, 1978). Furthermore, model expressions

that are linear in the Reynolds stress possess only one tunable coefficient. If adhering

to all the properties above, this coefficient must be a constant. This hinders the cali-

bration of the model to yield better agreements with experiments for different flows.

Consequently, many closure nominations forgo linearity in the Reynolds stresses and

incorporate non-linear terms thereof in the closure expression. Adopting nonlinear

expressions for the M tensor, allows the model to be realizable in the neighborhood

of the 2C limit. Higher degrees of nonlinearity provide additional degrees of freedom

in the formulation. This enables the model coefficients to be calibrated for accuracy

in certain flows while still maintaining Reynolds stress realizability.

While the relaxation of the linearity requirement represents a pragmatic engi-

neering compromise, this does leads to complications. Nonlinear models of any order

cannot ensure a realizable Reynolds stress tensor. Even models satisfying the clas-

sical realizability conditions can transition to unrealizable zones near the 1C state

(Speziale et al., 1994). Resorting to nonlinear expressions in the Reynolds stresses

leads to spurious oscillations in the vicinity of the 2C state (Speziale et al., 1994).

In an investigation of modeled Reynolds stress dynamics, Mishra & Girimaji (2014)

have exhibited that nonlinear model expressions do not lead to better process realiz-
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ability characteristics. In fact, in most cases, as the degree of non-linearity increases,

the process realizability characteristics of the closure are progressively undermined.

Resorting to modeling expressions that are nonlinear in the Reynolds stresses is

equivalent to attempting to use the Reynolds stresses as a surrogate for the missing

wavenumber space information. However, the Reynolds stress tensor does not pos-

sess this information regarding the internal structure of the flow and consequently,

such measures have met with limited success.

As has been exhibited, in homogeneous flows, only small sets of modes from the

ensemble exhibit unstable behavior. The flow statistics are determined by the con-

tributions from these modes. The evolution of these modes leads to concomitant

ramifications upon the flow statistics. Thus, flow statistics are highly dependent on

wavenumber space dynamics. The key hurdle in high-fidelity single point modeling

of pressure effects is to reproduce this behavior while bereft of information regarding

wavenumber dynamics. However, in a detailed analysis based on Dynamical Sys-

tems Theory, Mishra & Girimaji (2010) have shown that due to the invariant sets

manifested in the phase space of the wavenumber vector, the wavenumber vector

trajectories exhibit universal dynamics. Consequently, after a brief transient, almost

all modes in wavenumber vector space exhibit similar behavior. The minutiae of

this universal behavior are highly dependent on the topology of the mean gradient,

that can be characterized via its invariants. Consequently, explicit specification of

the mean gradient field in the model for the M tensor can act as a surrogate for the

missing wavenumber vector space information. Thus, inclusion on the mean veloc-

ity gradient invariants into the basis for the M tensor, may lead to better fidelity of

predictions.

Considering the issue of realizability, the process realizability approach seeks to

ensure that the Reynolds stress dynamics remain physically permissible. Thus, the
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model expression should be capable of replicating the dynamics engendered by any

set of modes that may constitute the given Reynolds stress tensor. As the dynamics

of the modes in the flow are completely dependent on the mean velocity gradient,

there is an intimate relationship between the process realizability framework and the

mean gradient. As discussed in Mishra & Girimaji (2014), the process realizability

constraints are explicit functions of the mean velocity gradient. Consequently, in

lieu of the wavenumber space information, using the mean gradient information in

the model for the M tensor would enable better process realizability characteristics.

Thus, explicit inclusion of mean gradient information in the M tensor expression

would lead to models that are capable of better fidelity in the prediction and improved

realizability characteristics. Lee (1990) and Sjogren & Johansson (2000) represent

the few investigations that have considered such an approach. Both these models

exhibited considerable improvements in predictions.

Consequently, for the three reasons discussed above, it is suggested that the most

optimal recourse may be to make the M tensor expression directly dependent on

the mean gradient, while retaining the linearity in the Reynolds stresses. Once this

paradigm has been adopted, the next issue to be addressed is how to incorporate

this into a model expression. Lee (1990) attempted to utilize this information using

the reference logarithmic strain parameter, while Sjogren & Johansson (2000) have

used explicit tensor functions of the rate of strain and the rate of rotation. However,

the analysis of Mishra & Girimaji (2010) reveals that the dynamics in wavenum-

ber space can be characterized based on the topology of the flow. For the case of

planar, quadratic flows, the topology of the mean velocity field can be completely

determined by a single scalar parameter. In this light, it may be expedient to make

the coefficients, Ai, in the expression for the Mijkl tensor to be explicit functions

of this scalar parameter. Explication of this functional dependence, determines the
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final model.

In prior investigations, attempts have been made to utilize the conclusions from

multi-point theories to develop better single-point models. In Godeferd et al. (2001),

strategies for such an approach were outlined and discussed. To determine this

dependence, it is suggested that explicit numerical simulation under the aegis of the

Rapid Distortion Theory be utilized to yield the values of the coefficient. A similar

approach has been utilized by Jakirlic & Hanjalic. (2013) to re-examine the values

of the coefficients in pressure strain closures. For the purposes of developing an

archetypical model to outline this procedure, we use a simple methodology wherein

RDT based simulations are carried out with a well distributed modal ensemble.

Thus, for this statistical treatment, the initial conditions in Fourier space are chosen

to correspond to an isotropic initial state of turbulence representing an unbiased

initial state. Herein, velocity fluctuations in all permissible directions are taken

to be equally energetic. This ensures that the initial state is not biased and the

predilection in the dynamics of the system manifests itself in an unhindered manner.

Specific phases, wherein agreement between the simulations and model predictions

is essential, are chosen. The details of these phases for different mean flows and the

rationale underlying their choice is discussed in extensive detail in Mishra & Girimaji

(2010). For these phases, the values predicted by the modes are averaged with over

the modes in the ensemble, weighed by the modal kinetic energies, and over the

duration of the phase to give the explicit value of the coefficient for the specific mean

flow. This leads to a curve determining the value of the coefficient A5 with respect

to the elliptcity parameter, β, as exhibited in figure 4.6.

Despite the severely austere methodology adopted, a few salient features of this

functional dependence need to be emphasized. As discussed in Mishra & Girimaji

(2013), the predominant energy transfer for hyperbolic flows is from the compres-
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Figure 4.6: The functional relationship between A5 and the ellipticity parameter, β.

sional eigendirection to the R33 component. With increment in the ellipticity pa-

rameter, β, these eigendirections shift linearly toward each other. Closures with

constant coefficients do not heed this shift and this progressively impairs their abil-

ity to mimic the system’s behavior in the Rapid Distortion Limit. The methodology

outlined above is able to account for this migration of the eigendirections, manifested

in the linear variation of the A5 coefficient for hyperbolic flows. Additionally, this

modeling methodology ignores the oscillatory behavior for elliptic flows, thus ignoring

the bifurcation in the system while transitioning from strain to rotation dominated

flows. In spite of this, the bifurcation in system behavior is accounted for in the

A5 coefficient, wherein the dependence of A5 changes from a linear to a nonlinear

function of β on transitioning from strain to rotation dominated flows, respectively.

4.6 Model behavior: predictive fidelity

In this section, the predictions of this illustrative model are compared to numer-

ical and experimental data while being contrasted against other popular closures.

The popular closures represent different modeling paradigms, with respect to their
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adherence to the constraints imposed upon an ideal model, as represented in the

schematic.

With respect to the properties obligated upon an ideal closure, the model of

Launder et al. (1975) adheres to all the three properties obligated upon an ideal

model. However, the dynamics predicted by this model are often deficient, especially

for the case of rotation dominated flows. The model of Speziale et al. (1991) relaxes

the condition of linearity in the Reynolds stress tensor. Using an invariant dynamics

approach, this model utilizes a closure expression that is quadratic in the compo-

nents of the Reynolds stress tensor and the coefficients used therein are functions of

the invariants of the Reynolds stress anisotropy tensor. This allows the closure to

adhere to the weak form of the realizability condition and exhibit better predictions,

especially for purely sheared flows (in both inertial and non-inertial frames). How-

ever, the dynamics predicted by this model for regimes such as those with rotation

are unsatisfactory. The closure suggested by Johansson & Hallback (1994) utilizes

fourth order expansions in the components of the Reynolds stress anisotropy tensor.

This enables the model to satisfy the strong form of the realizability constraint for

all states on the anisotropy invariant map and exhibit improved agreements with

experimental data for a variety of flows. However, this model is still deficient for

the replication of the dynamics of flows with rotational effects. Due to this unsat-

isfactory performance of classical pressure strain correlation models, Kassinos and

Reynolds(Kassinos & Reynolds, 1994) have attempted to use additional tensors in

their modeling framework. Kassinos & Reynolds (1994) have averred that single-

point modeling of the dynamics of pressure requires supplementary tensors, such

as Dimensionality, Dij, Circulicity, Fij and Stropholysis, Qijk. For homogeneous
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turbulence, these can be defined as:

Rij = Mijkk, Dij = Mkkij, Fij = εimpεjrsMpsrm, Qijk = εipqMjqpk. (4.14)

The authors then proceed to proffer and test models utilizing this basis. For rotation

dominated flows, these models exhibit slight improvement in predictive fidelity and

capture more flow features in rotation dominated regimes. However, the improvement

in fidelity are not commensurate with the inherent complexity of the model, requiring

tensors that are not measurable in a single-point paradigm. Furthermore, the models

of Kassinos & Reynolds (1994) are highly susceptible to violations in Reynolds stress

realizability. The different paradigms of modeling are contrasted in the schematic

given in figure 4.7.

The types of flows utilized in this comparison are discussed in Table 4.2, along

with the rationale underlying the choice. The objective of this exercise is to exhibit

that the illustrative model developed in the last section is able to exhibit predictions

that are at par with other models for the regimes of flow wherein these established

models perform adequately. Furthermore, in regimes wherein established models do

not exhibit satisfactory performance, the illustrative model is still able to provide

predictions of engineering utility.

4.6.1 Performance under the Rapid Distortion assumption

In figure 4.8, the predictions of the illustrative model are compared to RDT sim-

ulations and contrasted against other popular models. As can be observed, the new

modeling paradigm proffers better agreement with RDT data, as compared to pop-

ular closures such as those by Launder et al. (1975) and Speziale et al. (1991). It

is well established that the aforementioned models do not provide satisfactory pre-

dictions in the regimes of elliptic flows. For this case, we contrast the new modeling
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Figure 4.7: Schematic illustration of the different approaches to model the pressure
strain correlation.

Type of Flows Rationale

I. Under the Rapid Distortion assumption To test the RPSC model, in isolation.

II. DNS of hyperbolic flows Classical benchmarking case.

III. Axisymmetric Expansion and Contraction. Performance in non-planar flows.

IV. Rotating Shear. Performance in non-inertial frames.

V. DNS of elliptic flows. Robustness and applicability.

Table 4.2: The set of cases under consideration and the rationale thereof.
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Figure 4.8: Fidelity under the Rapid Distortion assumption. (a)Plane strain,
(b)Hyperbolic flow with β = 0.19, (c)Purely sheared flow.
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Figure 4.9: Fidelity under the Rapid Distortion assumption. (a)elliptic flow with
β = 0.64, (b)elliptic flow with β = 0.81.

paradigm against the advanced closures formulated by Johansson & Hallback (1994)

and Kassinos & Reynolds (1994). In figure 4.9, it is exhibited that the new modeling

paradigm is able to replicate the evolution of the mean of the oscillatory statistic to

a satisfactory degree. The models of Johansson & Hallback (1994) and Kassinos &

Reynolds (1994) predict oscillatory behavior but the mean of the predicted oscilla-

tions is not commensurate to that of the RDT data. Additionally, the nature of the

oscillations is markedly different. The RDT simulations undergo bilinear oscillations

with an evolving mean and amplitude. The models of Johansson & Hallback (1994)

and Kassinos & Reynolds (1994) predict linear oscillations with a constant mean

and amplitude. Furthermore, the oscillations predicted by the aforementioned do

not possess the correct phase relationship with the RDT data. This underscores the

inability of second moment closures to replicate the oscillatory dynamics faithfully.

4.6.2 Performance for hyperbolic flows

In figure 4.10, the predictions of the illustrative model are compared to DNS data

and contrasted against other popular models for the case of a plane strain mean
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Figure 4.10: Fidelity for hyperbolic flows. (a)anisotropy evolution for plane strain,
(b)turbulent kinetic evolution for plane strain.

flow. As can be observed, the new modeling paradigm is able to ensure satisfactory

agreement with DNS data, at par with established closures.

4.6.3 Performance for axisymmetric expansion and contraction

In figure 4.11, the predictions of the illustrative model are compared to DNS data

and contrasted against other popular models for the case of a mean flow undergoing

axisymmetric contraction. As can be observed, the new modeling paradigm is able

to ensure satisfactory agreement with DNS data and its predictions are at par with

popular closures. Similar behavior can be observed for the case of a mean flow

undergoing axisymmetric expansion, as exhibited in figure 4.12.

4.6.4 Performance for the case of rotating shear

In figure 4.13, the predictions of the illustrative model are compared to DNS data

and contrasted against other popular models for the case of a shear flow with rotation

of the coordinate axes. As can be observed, for moderate values of the parameter ω
S
,

the new modeling paradigm is able to ensure good agreement with DNS data.
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Figure 4.11: Fidelity for Axisymmetric contraction.

Figure 4.12: Fidelity for Axisymmetric expansion.
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Figure 4.13: Fidelity for the case of rotating shear. (a)ω
S

= 0.0, (b)ω
S

= 0.25.

4.6.5 Performance for elliptic flows

In figure 4.14, the predictions of the illustrative model are compared to the DNS

data of Blaisdell & Shariff (1996) and contrasted against other popular models for

the case of an elliptic mean flow (β = 0.74). As can be observed, the new modeling

paradigm is able to give significant agreement for the anisotropy evolution. For the

evolution of the turbulent kinetic energy, under the influence of the elliptic flow

instability, the new model is able to capture both the existence of unstable behavior

as well as the growth rate. As the ellipticity parameter is increased, the predictions

of other popular models are exacerbated, as is reflected in figure 4.15. However, even

for such higher values, the new modeling paradigm is able to suggest the presence of

the instability and predict the evolution of flow statistics.

4.7 Model behavior: realizability of Reynolds stress dynamics

The incomplete basis used in pressure strain correlation modeling leads to the

inapplicability of Second Moment closures to higher values of anisotropy(Cambon &

Rubinstein, 2006; Sagaut & Cambon, 2008). This is exhibited in the investigation of
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Figure 4.14: Fidelity for the case of an elliptic flow with β = 0.74. (a)anisotropy
evolution, (b)turbulent kinetic evolution.
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Figure 4.15: Fidelity for the case of an elliptic flow with β = 0.81. (a)anisotropy
evolution, (b)turbulent kinetic evolution.
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Mishra & Girimaji (2014), wherein it is shown that most models can ensure realizable

predictions only for low to moderate levels of anisotropy. All models have significantly

large regions on the anisotropy invariant map wherein they are unable to ensure

realizable Reynolds stress dynamics. For this modeling paradigm, we suggest that

the process realizability constraints developed in Mishra & Girimaji (2014) be applied

to clearly demarcate the states of turbulence wherein the model is able to ensure

realizability. Such explicit delineation of the extent of the validity of the closure acts

as a caveat emptor in the process of its application to engineering problems.

For the explicit procedure of this demarcation, the reader is referred to Mishra

& Girimaji (2014). Herein, we apply the set of process realizability constraints to

exhibit the zones of validity of the model for different planar quadratic mean flows, as

exhibited in figure 4.16. In line with the limitation discussed earlier, the illustrative

model is able to ensure realizable Reynolds stress dynamics for low to moderate levels

of anisotropy. However, it must be emphasized that for the case of hyperbolic and

purely sheared flows, the model shows process realizability adherence that is at par

with other popular models. For the case of elliptic flows, the illustrative model shows

process realizability adherence that is better than popular models such as those of

Launder et al. (1975) and Speziale et al. (1991).

4.8 Summary and conclusions

In this investigation, we outline a paradigm toward formulating a pressure strain

correlation model that possesses the optimal agreement within the scope of single

point closures. The basis of this investigation is grounded in

1. a detailed Dynamical Systems Theory based analysis of modal behavior, and,

2. a analysis of the capabilities of the single-point modeling framework to ensure

permissible Reynolds stress dynamics.
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Figure 4.16: Process realizability adherence of the illustrative model for quadratic
flows, β=0, 0.5, 0.75 and 1.
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Based on these, this paradigm counsels a set of pragmatic compromises with respect

to the scope of the characteristics of the turbulent statistics to be modeled and the

form of the closure. Thence, this methodology is utilized to formulate an illustrative

model. The predictions of this model are compared to numerical and experimental

data while being contrasted against other popular modeling paradigms. We exhibit

that the illustrative model is able to exhibit predictions that are at par with other

closures for the regimes of flow wherein these established models perform adequately.

Moreover, in regimes wherein established models do not exhibit satisfactory perfor-

mance, the illustrative model is still able to provide predictions of engineering utility.

Finally, as a caveat emptor, the zones of validity of this model are clearly delineated

for different mean flows.
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5. MANUFACTURED TURBULENCE WITH LANGEVIN EQUATIONS

5.1 Overview

By definition, Manufactured turbulence(MT) is purported to mimic physical tur-

bulence rather than model it. The MT equations are constrained to be simple to

solve and provide an inexpensive surrogate to Navier-Stokes based Direct Numerical

Simulations (DNS) for use in engineering applications or theoretical analyses. In

this article, we investigate one approach in which the linear inviscid aspects of MT

are derived from a linear approximation of the Navier-Stokes equations while the

non-linear and viscous physics are approximated via stochastic modeling. The ensu-

ing Langevin MT equations are used to compute planar, quadratic turbulent flows.

While much work needs to be done, the preliminary results appear promising.

5.2 Introduction

Turbulence is an enigmatic mix of method (large scale coherent structures) and

madness (chaotic, small scale motions). While the coherent structures are evidently

flow-dependent, the small-scale chaotic motions exhibit a rather surprising level of

independence from the large scales (Kolmogorov hypotheses). Arguably, it is the

large scale structures that are dynamically important and the role of the small scale

motions is merely to provide a means for dissipating the cascaded energy. It is rather

interesting that the dynamically decisive large scales are easier to compute and more

difficult to model than the small scales which are more onerous to compute but play

a more straightforward role. Any attempt at capturing turbulence physics must pay

heed to these crucial matters.

Our charge in this work is to develop simple-to-solve equations that mimic phys-

ical turbulence, rather than model it. Here we reserve the term model to indicate
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those attempts to develop closure equations for the moments of the turbulence field.

To mimic is to yield spatio-temporal realizations of velocity and pressure fields and

entire probability distribution functions. We call such a surrogate flow field, Manu-

factured Turbulence(MT). The MT flow-field is intended for use in engineering appli-

cations and theoretical analyses as an inexpensive substitute to the Direct Numerical

Simulations (DNS) of the Navier-Stokes equations.

In the absence of an analytical theory of turbulence, the computational recourse

to turbulence is extensively utilized in industrial and academic applications. Of these,

computationally intensive methods like Direct Numerical Simulation and Large Eddy

Simulation are limited in their application due to their excessive computational de-

mands. On the other hand, modeling intensive approaches, such as one or two

equation models, are encumbered due to their lack of fidelity in many varieties of

flows. In this vein, synthetic or manufactured turbulence is a contrivance to gen-

erate signals that mimic real turbulent flow fields. Kinematic Simulation (KS) is

predominantly used to this end.

An alternative that is popular in the turbulent combustion community is based

on the Langevin equation in a Lagrangian framework. Such Probability Density

Function methods have been extensively applied and have become established in tur-

bulence research (Pope (1985b); Pope & Chen (1990)). This work is based, in essence,

upon extensions of the simplistic analogy between the motion of fluid elements in a

turbulent flow and the motion of gas molecules. Chung (Chung (1969)) used a sim-

ilar analogy with the motion of fluid elements and Brownian motion, to develop a

simplified statistical model for turbulence. Kuznetsov and Frost (Kuznetsov & Frost

(1973)) applied a consonant similitude to use a Langevin equation for this purpose.

This was extended by Pope and co workers (Haworth & Pope (1986)). In an analogy

with the Langevin equation governing the velocity of a particle undergoing Brownian
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motion, a linear Markov model for fluid particle velocity was developed in Haworth

& Pope (1986). The effects of fluctuating pressure and viscosity are modeled via de-

terministic drift and diffusion terms. The diffusion term represents a random walk in

velocity space. Haworth and Pope (Haworth & Pope (1986)) used the Navier Stokes

equation as the starting point for the model formulation, thus adding physical signifi-

cance to the terms of the Langevin equation and the concomitant coefficients therein.

Furthermore, to account for the rapid component of pressure (and specifically, its

dependence on mean gradients) an anisotropic drift term was added to the generic

Langevin equation.

In this article, we apply a general set of Langevin equations to generate Manu-

factured Turbulence. It is accepted that linear physics provides a qualitative repre-

sentation for many features of turbulent flows. However, the exactitude of this linear

representation is contingent upon many factors. It is found that the quantitative

preponderance of linear theory is highly dependent on the regime of flow. This is

explained with respect to the nature of the instabilities manifested in these flows.

5.3 Mathematical formulation and rationale

The essential components of a turbulent flow field consist of:

1. Linear effects, consisting of inertial physics, embodied in production and rapid

pressure action.

2. Non-linear effects, that include the slow pressure action.

3. Viscous effects.

Of these, the linear effects are the drivers of turbulence and engender the variations in

different flows. Thus, it is essential to ensure that these are represented as precisely

as possible. The non-linear effects are universal and can be modeled statistically.
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Based on physics, pressure action can be decomposed into two components, viz.

rapid and slow.

1
ρ
∇2p′ = −2∂Ui

xj

∂uj
xi
− ∂2

∂xi∂xj
(uiuj − uiuj), (5.1)

where the first and second terms on the right, represent the contributions of rapid and

slow pressure, respectively. The adjectives rapid and slow refer to the components

of pressure arising, respectively, from the linear and non-linear parts of the source

term in the Poisson equation for pressure. The slow component acts to conserve

the incompressibility of the velocity field generated by the nonlinear interactions

among velocity fluctuations. Similarly, it is the function of rapid pressure to impose

the divergence free condition on the fluctuating velocity field produced by linear

interactions between the mean and fluctuating fields.

Based on established theory, surrogates for the linear and the non-linear effects

of pressure can be developed separately. Thence, these can be appended to give a

complete, general surrogate for the pressure effects. In contrast to the slow pressure

and its universal nature, the action of the rapid pressure effects are a strong function

of the mean velocity field and initial flow conditions. In spite of the apparent sim-

plification afforded by linearity, the action of rapid pressure is not straightforward.

Depending on the nature of the mean velocity field and initial conditions of the flow

field, the effect of the rapid pressure component can be diametric. Furthermore, this

action can alter the fundamental nature of the flow. This is best exhibited in the

regime of elliptic flows, where it is established that the rapid pressure effects initiate

and sustain the elliptic flow instability (Cambon et al. (1994a)). Most engineering

models do not capture the nature of this action and predict a decay of turbulence,

contrary to theory and DNS results (Blaisdell & Shariff (1996)). Thus, the linear
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pressure effects must be represented as accurately as possible. The import of fidelity

to linear dynamics, even in KS has been accepted and attempts have been made to

coalesce the knowledge developed via RDT in KS. Nicolleau and Vassilicos (Nicolleau

& Vassilicos (2000)) utilized temporal evolution predicted by RDT with the KS ve-

locity field formalism. This was applied and compared contra DNS in Cambon et al.

(2004). Kaneda and Ishida (Kaneda & Ishida (2000)) used a similar approach to

study the diffusion of a passive scalar. Subsequently, this approach of amalgamating

RDT with KS has been extended, for instance in Nicolleau & Vassilicos (2008). Un-

der the aegis of RDT, the velocity field can be expressed as a summation of advected

Fourier modes. In this formulation, the rapid pressure effects can be represented

exactly. To this end, the rapid pressure component of the Langevin set is formu-

lated in spectral space. In spectral space, this formulation can account for the initial

conditions accurately and is not hampered by an incomplete basis. The germane

equations in this regard are:
dκl
dt

= −κj
∂Uj
∂xl

, (5.2)

duj
dt

= −uk
∂Ul
∂xk

(δjl − 2κjκl
κ2 ), (5.3)

and the incompressibility constraint is given by u · κ = 0. Herein, ~u and ~κ, or

the Fourier velocity amplitude and wave-vector respectively, are considered random

variables and are simulated via Monte Carlo techniques.

With regard to the slow component of pressure, it is established that this has

a return to isotropy effect, wherein, the anisotropy of the Reynolds stress tensor is

reduced. This, in essence, is a redistribution of the turbulent kinetic energy from

any given distribution to an uniform, isotropic distribution. Thus, the slow pressure
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effects are represented via a stochastic diffusion form. Explicitly,

Aij(u, e)dWj, (5.4)

where Aij is the diffusion tensor and dW is an isotropic Wiener process. Conse-

quently, the representation reduces to

dei = gi(u, e) + Aij(u, e)dWj +Bij(u, e)dW ′
j . (5.5)

dui = hi(u, e) +Hij(u, e)dWj +Gij(u, e)dW ′
j . (5.6)

Constraints are applied to the system to ensure physical fidelity. These are:

1. Ensure that ~e remains a unit vector.

2. Maintain orthogonality of ~u and ~e.

3. The PDF of the velocity approaches an isotropic, joint-normal distribution.

4. The evolution of the turbulent kinetic energy is exact in the limit of decaying

turbulence.

These ensure realizability of the Reynolds stresses. For details of the derivation, the

reader is referred to Slooten & Pope (1997). The velocity evolution equation is repre-

sented as a Langevin equation with an anisotropic drift term. Such surrogates can be

thought of as bridging methods between one-point closures and multi-point/spectral

closures.
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The dissipation model is appended to the formulation to complete the basis. This

is of the established form:
dε

dt
= ε2

k
(C1

P

ε
− C2). (5.7)

Consequently, the entire set of equations reduces to:

dui =− uk
∂Ul
∂xk

(δil − 2eiel)dt−
1
2
ε

k
(1 + 3

2au)dt

+ γε

k
(bij − IIbδij)ujdt−

√
auεdWi.

(5.8)

dei =− ∂Um
∂xl

em(δil − eiel)dt−
1
2
ε

k
(ae + au

k

usus
)eidt

− γε

k
(δij − 2eiej)bjlel −

√
auε

uiel
usus

dWl+√
aeε

k
(δil − eiel −

uiul
usus

)dW ′
l .

(5.9)

Figure 5.1 exhibits the representation’s performance, wherein the predictions are

compared against DNS results (Slooten & Pope (1997)).

5.4 Linear physics in planar, quadratic flows

Linear theories such as RDT ignore the interaction of turbulence with itself.

This is justified via assumptions regarding the times scales (of mean and fluctuat-

ing distortions), a weak turbulence assumption, etc. However, the linear instabilities

manifested in RDT obviate these assumptions. With increase in the turbulent kinetic

energy, the non-linear effects become more important and thus, linear theory cannot

suffice, beyond a very limited time period. In this duration, the linear effects struc-

ture the flow field. Thence, non-linear effects modify the evolution of turbulence.

This structuring effect of the linear physics is most evident in the instabilities man-

ifested therein, where certain modes are engendered to grow preferentially. Figure
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Figure 5.1: Comparison of the predictions against DNS results.

5.2 exhibits the unstable modes, in a representative hyperbolic and an elliptic flow,

with respect to their alignment. The figure is motivated by a congruous illustration

in Cambon et al. (1994b).

As can be observed, the unstable modes in an elliptic flow form a continuous band.

However, the unstable modes in a hyperbolic flow lie on a set of zero measure. In

the hyperbolic case, all other modes are either stable or can undergo some transient

growth. Furthermore, this state of alignment for the unstable modes is in itself

unstable and these can be forced off this alignment by any perturbations. This

is evident in figure 5.3, wherein the hyperbolic flow instability is arrested by the

pressure effects. This occurs via the transfer of turbulent kinetic energy out of the

plane of applied shear via the pressure strain correlation. The interested reader is

referred to Mishra & Girimaji (2010), wherein the linear aspects of this problem are

analyzed in detail.

It is observed that this shift is robust and manifests itself for all open streamline
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Figure 5.2: The unstable modes exhibited, with respect to their alignment in (a) a
representative hyperbolic flow, (b) in an elliptic flow.

Figure 5.3: The evolution of (a) the turbulent kinetic energy, (b) Reynolds stress
anisotropies in a plane strain flow, under the aegis of the Rapid Distortion Limit.
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flows, as exhibited in figure 5.4. In this vein, it is pertinent to question the exactitude

of the hyperbolic instability, caused by these modes, in regimes where the non-linear

effects become more and more significant. Furthermore, this is contrasted against

similar comparisons in other regimes of planar, quadratic flows.

The structuring effects of linear physics are most predominant in purely sheared

flows. This is evident the large streamwise length scales observed in boundary layers.

Furthermore, it has been observed that the evolution of flow statistics is similar in

DNS studies, as compared to RDT simulations (Cambon (1999)). This is exhibited

in figure 5.5, where the results of the Langevin equation representation are compared

to those from RDT based simulations.

Figure 5.6 compares the evolution of flow statistics for elliptic flows in the presence

and absence of non-linear effects. As can be observed, the results are very similar in

the absence of non-linear effects or when they are of a small finite value. This is due

to the finite measure of the set of unstable modes. However, this scenario does not

persist for all elliptic flows. For instance, in purely rotating flows, it is known that

linear theory is inconsistent with DNS results (Cambon (1999)).

Figure 5.7 compares the evolution of flow statistics in a representative hyperbolic

flow as the non-linear effects become more important. It is observed that due to the

non-linear effects, the switch in the anisotropy evolution occurs progressively earlier.

This is due to the perturbation of the wave-vector due to the non-linear effects, which

force modes off the unstable set.

5.5 Conclusions

In this article, we exhibit the application of Manufactured Turbulence (MT) to

study the linear physics in a planar quadratic flow. The MT equations are exact in

the Rapid Distortion Limit and use a Langevin equation to simulate the return to
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Figure 5.4: The evolution of (a) the turbulent kinetic energy, (b) Reynolds stress
anisotropies in a representative open streamline flow, under the aegis of the Rapid
Distortion Limit.
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isotropy effect of the slow pressure term. Thus, chaotic advection is incorporated

using a white noise term. The mathematical formulation of such representations is

introduced and the underlying rationale explained.

Thence, this surrogate is applied to study the import of linear physics for planar,

quadratic flows. It is found that for purely sheared flows, linear theory provides a

very good representation of the evolution of flow statistics, even in the presence of

non-linear effects. For general elliptic flows, effects of linear physics are predominant

even in the presence of moderate non-linearity. This is due to the banded nature

of the instability, where unstable modes lie on a continuous band of finite measure.

Thus, perturbations due to the non-linear effects have very little influence on the

instability. However, for hyperbolic flows, the linearly unstable modes lie on a set

of very small measure. Thus perturbations to these modal alignments may have

significant effects on the state of instability and consequently, the evolution of flow

statistics. However, only the transient time to reach the asymptotic stage is affected.

But the final asymptotic behavior is still as dictated by linear phenomenon. It is

observed that linear effects dominate the overall flow behavior, although non-linear

aspects can have an important effect on transients.
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6. ON THE STABILITY OF GENERAL THREE-DIMENSIONAL FLOWS

6.1 Overview

The stability of homogeneous flows is of considerable importance, vis-à-vis the

hydrodynamic stability aspect, as well as for the development of turbulence theory.

While the stability of planar flows has been extensively examined and explicated in

literature, the case of general three-dimensional flows is not understood as well. This

article seeks to address the stability of three-dimensional incompressible, inviscid

flows. In addition to the linear stability analysis; we isolate, investigate and enucleate

the role of the inertial processes and pressure in the evolution of the perturbation.

Based on these analyses, the exact dependence of flow stability, the action of pressure

and of inertia upon the flow topology, i.e. the mean flow invariants, is established

and explicated.

6.2 Introduction

The stability of incompressible flows with uniform, planar velocity gradients has

been extensively studied in literature. These include canonical cases such as the

case of a flow under pure rotation, plane strain, pure shear, besides others. This

body of flows represents benchmark cases for the purposes of turbulence theory and

modeling. Furthermore, this investigation has been rewarding on a purely aesthetic

level, revealing fascinating phenomena such as the elliptic flow instability for closed

streamline flows.

Apropos the investigations into the stability of such flows, there have been two

distinct paradigms that have been followed by different investigators. The geomet-

ric approach to hydrodynamic stability was introduced and developed by Arnold

(Arnold, 1999). In this regard, Friedlander and co-workers have carried out stability
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investigations based on the method of geometrical optics, supplemented by quasi-

WKB asymptotics (Friedlander & Vishik, 1991, 1992; Friedlander et al., 1993). This

approach avoids the spectral problems associated with the equilibria of the Euler sys-

tem. Instead, said approach focuses on a purely geometric parameter that provides

the lower bound on the growth rate of the linearized Euler operator. Using this tech-

nique, Friedlander & Vishik (1991) have proved that all such flows with hyperbolic

stagnation points are unstable. It is interesting to note that the system of equations

circumscribing the growth rate of the Green’s function evolution operator are exactly

equivalent to the Kelvin-Moffat system, developed in the linearized analysis carried

out under the aegis of the Rapid Distortion Theory. Regarding the investigations

carried out under the RDT methodology, Cambon (1982) had discovered and ana-

lyzed the instability of elliptic flows. Since then, the stability of planar mean flows

with uniform gradients has been extensively analyzed by Cambon and co-workers

(Jacquin et al., 1990; Cambon & Jacquin, 1989; Salhi et al., 1997) and additionally,

by Mishra & Girimaji (2013). In this regard, RDT based investigations conduct

a quasi- stability analysis, in a distorting Fourier space. However, as observed in

Cambon (1982), RDT pays heed to both the transients and the asymptotic states

for the flow. At the boundary of these two approaches, we find investigations such as

those of Craik & Criminale (1986), Waleffe (1990) and Bayly (1986). Herein isolated

modes are analyzed for the case of an unbounded flow, which leads, naturally, to a

linear analysis as there are no modal interactions.

From the discussion hereto, it is evident that prior investigation have focused

on the dynamics of planar flows. However, the case of general three-dimensional

flows is not understood as well. In spite of the fact that this classification includes

important flows such as axisymmetric expansion and contraction, flows with swirl,

etc.; the stability, dynamics and evolution of these flows have not been analyzed as
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extensively as planar flows. The primary objective of this study is to investigate

the stability of such general three-dimensional flows. Furthermore, we aim to isolate

and explicate the role of the inertial effects and that of pressure in the evolution of

the flow. In prior investigations, it has been established that for two-dimensional

mean flows, the inertial effects, the action of pressure and the concomitant stability

characteristics are clear functions of the invariants of the topology of the mean flow.

We investigate if such a scenario persists for three-dimensional flows. Explicitly,

we seek to analyze the dependence of flow stability, the action of pressure and of

inertia on the flow topology, i.e. the mean flow invariants. Additionally, this article

investigates if important phenomena from planar flows, such as parametric resonance,

persist in three-dimensions.

6.3 Mathematical formulation

As the first step of the analysis, we seek to codify the different varieties of three-

dimensional flows. Motivated by the need of a general methodology for categorizing

flow topology, Chong et al. (1990) proposed a scheme based on the invariants of the

velocity gradient tensor, Aij. For an incompressible flow, the invariants are defined

as

P = Sii(= 0), Q = −1
2(SijSji +WijWji),

R = −1
3(SijSjkSki + 3WijWjkSki).

(6.1)

Here, Wij and Sij refer to the rate of rotation and rate of strain tensors of the

background flow. Employing this scheme, the streamline topology of general three-

dimensional mean flows can be inferred and categorized, as is exhibited in figure

6.1. The relevant cognomen are chosen to be in harmony with the behavior and

precedent. Expansion and Contraction flows are topologically homeomorphic to their
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Figure 6.1: Schematic representation of the different regimes of flow and their locus
with respect to the IInd (Q) and IIIrd (R) invariants.

axisymmetric counterparts. The Cyclonic and the Anticyclonic flows are named

thus to reflect the directionality of rotation manifested therein and the established

nomenclature in Meteorology (Tannehill, 1934).

The Kelvin-Moffat system in Fourier space is given by:

duj
dt

= −ukAlk(δjl − 2ejel),
del
dt

= −emAmi(δil − eiel).
(6.2)

This is subject to the orthogonality condition, uiei = 0. Herein, ~u and ~e represent the

Fourier amplitude and the unit wavenumber vectors. For a derivation and detailed

discussion of the Kelvin-Moffat system, the interested reader is referred to Sagaut &

Cambon (2008). In the co-ordinate system utilized, the requisite mean flow tensors
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for Strain and Rotation dominated flows are given by:

AStrainij =


λ1 0 0

0 λ2 0

0 0 λ3

 , A
Rotation
ij =


σ ω 0

−ω σ 0

0 0 λ

 . (6.3)

To isolate and analyze the role of the different mechanisms in the evolution of the

flow, we utilize the technique of Burgulence (Sagaut & Cambon, 2008). Herein, the

evolution of the “pressure-released" Burgers system is contrasted against the Euler

system to isolate the individual mechanisms. This has been applied in similar prob-

lems with success by Salhi et al. (1997) and Mishra & Girimaji (2013). Hereon, the

analysis considers the dynamics of the aforementioned flow categories, individually

and sequentially.

6.4 Stability analysis

Expansion Flows: For the expansion flows, the inertial effects engender a state

of exponential instability with the energy resident in the u3 component. The 1 and

the 2-axes have a negative production of perturbation energy while the 3-axis has a

positive production. However, for this variety of Strain dominated flows, the phase

space of the unit wavenumber vector has two attractors located at the 3-axis. Thus,

all modes in the flow are attracted to the 3-axis and assume a state of alignment

perpendicular to the 1-2 plane, as is observed in figure 6.2. Consequently, the inertial

effects produce energy for the u3 component and the modes are aligning with the

3-axis, thus, e3 → 1. This represents a stretching of the hypothetical fluid particle

along the 3-axis that would cause the velocity gradients along this direction to be

unbounded. This would be in violation of continuity. In this scenario, the pressure

effects transfer perturbation kinetic energy from the u3 component to the u1 and
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Figure 6.2: Representation of the dynamics of the unit wavenumber vector with
respect to the IInd (Q) and IIIrd (R) invariants. The dark circles mark the initial
alignment of the mode.

u2 components. This energy redistribution arrests the positive production along the

3-axis. The transferred energy is consumed by negative production along the 1 and

the 2-axes. This leads to the perturbation kinetic evolution observed for the Euler

system, where the pressure effects lead to a state of asymptotic stability, as can be

observed in figure 6.3.

Cyclonic Flows: For the Rotation dominated case of Cyclonic flows, the inertial

effects lead to a state of exponential instability. Similar to the case of expansion

flows, the 1 and 2-axes have a negative production of perturbation energy while the

3-axis has a positive production. Thus, perturbation kinetic energy is resident in the

u3 component. Considering the phase space of the unit wavenumber vector, we see

that the shift from a Strain dominated to a Rotation dominated system has lead to

a bifurcation in the invariant sets. The attracting fixed points at the poles are no

longer extant and have been replaced by a pair of limit cycles. The limit cycle along

169



Figure 6.3: Comparison of the perturbation kinetic energy evolution for the Burgers
and the Euler systems, for flows where R > 0. The trajectories for the burgers
system are marked by circles.

the 3-axis is attracting while the limit cycle in the 1-2 plane is repelling. Thus, all

the modal alignments are attracted to the e3 = 1 point, along helical trajectories,

as is observed in figure 6.2. In this scenario, the inertial effects produce energy for

the u3 component and the modes are aligning with the 3-axis, thus, e3 → 1. Clearly,

this represents a state where the perturbation velocity gradients along the 3-axis are

increasing to very high levels, in violation of continuity. The pressure effects transfer

perturbation kinetic energy from the u3 component to the u1 and u2 components.

This energy redistribution arrests the positive production along the 3-axis. The

transferred energy is consumed by negative production along the 1 and the 2-axes.

This leads to the perturbation kinetic evolution observed for the Euler system, where

the pressure effects lead to a state of asymptotic stability, as exhibited in figure 6.3.

Anticyclonic Flows: For the Rotation dominated case of Anticyclonic flows, the

inertial effects engender a state of exponential instability with the perturbation ki-

netic energy resident in the u1 and u2 components. Considering the invariant sets

170



in the phase space of the unit wavenumber vector, the limit cycle in the 1-2 plane

is attracting while the point cycle along the 3-axis is repelling. Thus, all the modal

alignments are attracted to the limit cycle in the 1-2 plane, along helical trajectories,

as observed in figure 6.2. In this state, the perturbation kinetic energy is resident in

the fluctuations along the 1-2 plane and the unit wavenumber vectors are also being

attracted to this plane. Thus, to maintain continuity pressure transfers energy from

the fluctuations in the 1-2 plane to the fluctuations along the 3-axis. This transfer

is brief and occurs during the migration of the unit wavenumber trajectories to the

limit cycle. In Fourier space, the continuity condition is mathematically expressed

in the orthogonality of the Fourier amplitude vector and the unit wavenumber vec-

tor, explicitly uiei = 0. Once the unit wavenumber vector is close to the 1-2 plane,

transfer of energy to the fluctuations along the 3-axis is inadequate as the e3 com-

ponent for these states is negligible. Thence, to maintain continuity, pressure has

to redistribute perturbation kinetic amongst the u1 and the u2 components. If the

pressure effects are able to completely drain the perturbation kinetic energy from the

fluctuations in the 1-2 plane before this state is reached, the mode is stable. Else,

the residual perturbations in the 1-2 plane start to grow due to inertial effects and

the modal kinetic energy starts to grow. Thus, the instability engendered by the

inertial effects is not completely offset by the effects of pressure for all the modes. As

can be seen in figure 6.4, pressure has a mildly stabilizing effect on the evolution of

the perturbation kinetic energy. This effect is manifested during the initial few time

steps, while the modal alignments are evolving rapidly. However, after this transient,

the inertial effects dominate and flow is still exponentially unstable.

Contraction Flows: For the Strain dominated case of contracting flows, the in-

ertial effects lead to a state of exponential instability with the perturbation kinetic

energy resident in the fluctuation along the 1-2 plane. Considering the dynamics in
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Figure 6.4: Comparison of the perturbation kinetic energy evolution for the Burgers
and the Euler systems, for flows where R < 0.

the phase space of the unit wavenumber vector, the state of modal alignment per-

pendicular to the 1-2 plane is repelling (in direct contrast to the case of Expansion

flows). All modal alignments evolve to attracting stationary states in the 1-2 plane,

exhibited in figure 6.2. In this scenario, the perturbation kinetic energy is resident

in the fluctuations along the 1-2 plane and the modal alignments are also being at-

tracted to this plane. Thus, to maintain continuity pressure transfers energy from

the fluctuations in the 1-2 plane to the fluctuations along the 3-axis. This trans-

fer is brief and occurs during the migration of the unit wavenumber trajectories to

the limit cycle. Due to the transient nature of this energy redistribution, all modes

are not stabilized by pressure effects. Pressure has a mild stabilizing effect during

this transient stage. After this transient, the inertial effects dominate and flow is

unstable, as seen in figure 6.4.
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Figure 6.5: Comparison of the perturbation kinetic energy evolution for the Burgers
and the Euler systems, for flows where R = 0.

6.5 Conclusions

In conclusion, general incompressible, inviscid flows can be classified into two cat-

egories based on the dynamics exhibited therein, viz., flows where the flow topology

has a positive value of the third invariant (R > 0) and flows where R < 0. For either

category, the inertial effects are destabilizing and lead to a state of exponential in-

stability. Furthermore, for both the classes of flows, pressure has a stabilizing effect.

For flow topologies with R > 0, pressure effects are able to dominate and lead to flow

stability. For flows with R < 0, the inertial effects dominate and the flow remains

unstable.

The cases of planar flows (with R = 0) forms the bifurcation boundary in pa-

rameter space, separating these behaviors. The dynamics and behavior observed in

hyperbolic flows present a natural transition between the dynamics of Expansion and

Contraction flows, as observed in figure 6.5. However, the case of elliptic flows has

very peculiar dynamics. Unlike all other flows, in elliptic flows the inertial effects
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engender a state of neutral stability. Moreover, unlike all other flows, the pressure

effects actually initiate and sustain the flow instability herein. Additionally, char-

acteristic phenomena like that of parametric resonance underlying the elliptic flow

instability, are found to be completely absent in other Rotation dominated flows. In

this vein, the case of elliptic flows represents a singular limit.
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7. CONCLUSIONS

As an engineering recourse, one-point closure models are still the workhorse in

industrial applications. These have limitations, such as their inaccuracy for flows

with large coherent structures. However, with the level of detailed information that

these single-point closures provide, at the reasonable computational expense, these

are favored over other approaches like LES or DNS. In the context of single point

closures, viscosity based models are very simple but have low fidelity and robustness

for most flows. Thus, the Second Moment closure paradigm offers the best option.

These have under-performed thus far due to the inherent empiricism in the modeling

paradigm. In this vein, a better modeling methodology is required. In this investi-

gation, we attempt to develop this, by addressing the key issues of linear stability

and realizability. As the non-local action of pressure represents the key hurdle in this

modeling framework, we focus on the pressure-strain correlation model. We perform

an extensive linear stability analysis based on Rapid Distortion Theory to gauge

the Intercomponent Energy Transfer induced by pressure. This is analyzed and ex-

plained based on a model analysis. Thence, the statistically most likely behavior is

identified, as a guide to model development. We examine the validity and limitations

of the one point closure paradigm. This leads to a set of studied compromises in the

scope and form of single point closure models. Thence, we discuss the realizability

constraints on models. It is exhibited that classical realizability considers only the

state of the stochastic process and not the stochastic process itself. Thus, these are

insufficient. We develop a set of process realizability constraints to ensure that the

Reynolds stress dynamics predicted by models are physically permissible. These are

applied to established models and it is shown that even models with adherence to
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classical realizability and lead to unphysical Reynolds stress dynamics in the system.

Thence, a methodology to ensure optimal process realizability adherence is outlined.

Based on the linear stability analysis and the process realizability constraints, we

develop a novel modeling methodology. This is applied to develop an illustrative

pressure strain correlation model. The predictions of this model are compared to

numerical and experimental data while being contrasted against other popular mod-

eling paradigms. It is exhibited that the simple, illustrative model is able to predict

the dynamics of the system better than established models. Finally, the zones of

applicability of this model are clearly delineated for different mean flows.

The robustness of the linear physics was then checked using stochastic models

based on the Langevin equation. These exhibit clearly that the qualitative nature of

the dynamics engendered by linear physics are robust under mild non-linear effects.

Having developed a modeling paradigm for planar quadratic flows, we investigate

the linear stability of general three-dimensional flows. It is found that the dynamics

and the stability of the wave mode are highly dependent on the alignment of the

mode, with respect to the strain field, to a degree significantly greater than for

planar flow. This suggests that replicating the behavior of general three-dimensional

homogeneous flows with single point closures may be prohibitively demanding.
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