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ABSTRACT

Poiseuille �ow is a prototypical wall-bounded �ow in which many fundamental

aspects of �uid physics can be analyzed in isolation. The objective of this research

is to establish the stability characteristics of high-speed laminar Poiseuille �ow by

examining the growth of small perturbations and their subsequent breakdown toward

turbulence. The changing nature of pressure is considered critical to the transforma-

tion from incompressible to compressible behavior. The pressure-velocity interactions

are central to the present investigation.

The study employs both linear analysis and temporal direct numerical simulations

(DNS) and consists of three distinct parts. The �rst study addresses the development

and validation of the gas kinetic method (GKM) for wall-bounded high Mach number

�ows. It is shown that sustaining the Poiseuille �ow using a body force rather than

pressure-gradient is better suited for accurate numerical simulations. E�ect of uni-

form and non-uniform grids on the simulation outcomes is examined. Grid resolution

and time-step convergence studies are performed over the range of Mach numbers

of interest. The next study establishes the stability characteristics at very high and

very low Mach number limits. While stability at low Mach number limit is governed

by the well-established Orr-Sommerfeld analysis, the pressure-released Navier-Stokes

equation is shown to accurately characterize stability at the in�nite Mach number

limit. A semi-analytical stability evolution expression is derived. It is shown that

the GKM numerical approach accurately captures the low and high Mach number

solutions very precisely. The third study examines the critical e�ects of perturba-

tion orientation and Mach number on linear stability, and investigates the various
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stages of perturbation evolution toward turbulent �ow. This study can break into

two parts. In the �rst part, an initial value linear analysis is performed to establish

the self-similar scaling of pressure and velocity perturbations. The scaling then is

con�rmed with DNS. Based on analytical and numerical results, regions of stability

and instability in the orientation space are established. Compressibility is shown to

strongly stabilize streamwise perturbations. However, span-wise modes are relatively

una�ected by Mach number. The multiple stages of temporal perturbation evolu-

tion are explained. The manner of Tollmien-Schlichting (TS) instability suppression

due to compressibility is also described. In the second part, the progression from

linear to nonlinear to preliminary stages of breakdown is examined. It is shown that

nonlinear interactions between appropriate oblique perturbation mode pairs lead to

span-wise and streamwise modes. The streamwise modes rapidly decay and span-

wise perturbations are ultimately responsible for instability and breakdown toward

turbulence. Overall, the studies performed in this research lead to fundamental ad-

vances toward understanding transition to turbulence in wall-bounded high-speed

shear �ows. Such an understanding is important for developing transition prediction

tools and �ow control strategies.
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1. INTRODUCTION

1.1 Motivation

Compressibility exerts a profound in�uence on transition and turbulence phe-

nomena. A preeminent example of compressibility e�ect on turbulent �ows is the

suppression of the mixing layer growth rate in supersonic mixing layers [1]. This

so-called �Langley curve� e�ect has been extensively investigated and the probable

underlying phenomena has been proposed [2�5]. Many of these studies examine com-

pressible �ow physics in homogeneous shear �ow which is a reasonable idealization

of free shear �ows. In wall-bounded �ows, the most prominent manifestation of

compressibility e�ects is on the transition process in high-speed boundary layers. In

hypersonic boundary layers over cones and �at plates, the transition zone between

laminar and turbulent regions is extended over a longer distance than in comparable

low-speed boundary layer [6�9]. Furthermore, during the transition, the skin fric-

tion and heat transfer coe�cients demonstrate strong non-monotonic behavior that

cannot be explained by intermittency alone [8]. Sivasubramanian et al. [10] show

that pressure �uctuations play an important role in this region of non-monotonic

behavior.

Couette and Poiseuille �ows are prototypical shear �ows in which many funda-

mental physical features of practical importance pertaining to instability, transition

and turbulence can be investigated. Both �ows describe �uid motion between two

parallel plates, but driven in di�erent ways. In a Couette �ow, the bottom plate is

stationary and the top plate moves with a uniform velocity. The resulting �ow has

a linear velocity pro�le which corresponds to uniform shear (velocity-gradient). The

walls of a Poiseuille �ow are stationary and the �uid between them is driven by an
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applied uniform pressure gradient. The Poiseuille velocity pro�le is parabolic and

correspondingly the shear varies in space. In computer simulations, the Couette �ow

away from the wall can be approximated as a homogeneous shear �ow. Much work

has been done on instability and turbulence in homogeneous shear (Couette) �ow.

Instability and turbulence in homogeneous shear �ow have been extensively studied

in literature [11�17]. Most recently, the instability characteristics of homogeneous

shear �ows over a range of Mach number values have been contrasted by [17, 18].

To extend the investigation to include wall-bounded e�ects, Poiseuille �ow is an

appropriate choice. Poiseuille or channel �ow serves as an excellent idealization of

wall-bounded shear �ows and has been widely used to study fundamental �ow phe-

nomena. In this thesis, we focus on the stability features in inhomogeneous shear

(Poiseuille) �ow. Experimental investigations of the stability of plane Poiseuille �ows

have been performed to understand the transition process in low-speed wall-bounded

�ows [19]. Large eddy simulations (LES) of transition in a compressible channel �ow

is presented in previous works [20]. In [21] and [22], important features of fully

developed compressible turbulent channel �ow have been identi�ed.

The primary objective of this thesis is to investigate the stability characteris-

tics of small perturbation evolution toward turbulence in high-speed wall-bounded

�ows. In particular, we investigate the in�uence of perturbation obliqueness and

Mach number on stability. In homogeneous shear (Couette) �ow, the e�ect of Mach

number and perturbation orientation has been investigated in [23]. In that work,

self-similar scaling of the pressure equation is demonstrated and multiple stability

regions in perturbation-orientation space have been identi�ed. The critical e�ect of

perturbation obliqueness on pressure evolution and ultimately on stability has been

demonstrated. Here, we perform a similar examination for wall-bounded �ows which

additionally feature the Tollmien-Schlichting (TS) instability at low speeds.
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The present study features direct numerical simulations (DNS) as well as lin-

ear analysis. Unlike most stability and transition studies which examine eigenvalue

problems, the linear analysis solves an initial value problem. The thesis is composed

of three studies:

1. Development of gas-kinetics based numerical scheme for highly compressible

wall-bounded �ows.

2. Investigation of the stability of Poiseuille �ow at extreme Mach numbers.

3. Analysis and simulation of Poiseuille �ow instability and breakdown at inter-

mediate Mach numbers.

The brief introduction to each study is provided in this section. In subsequent

sections, each of the studies is presented in detail.

1.2 Development of Numerical Approach

The Gas Kinetic Method (GKM) is employed to perform direct numerical sim-

ulations (DNS) of Poiseuille �ow. The GKM is emerging as a viable alternative to

Navier-Stokes (NS) based �ow simulation scheme, especially for compressible �ows.

One of the potential advantages of the gas-kinetic approach over more conventional

methods is that the former employs a single scalar gas distribution function, f , to di-

rectly compute the �uxes of mass, momentum, energy densities [24]. The underlying

argument is that it is more holistic to apply the discretization to the fundamental

quantity, the distribution function, rather than the derived quantities, the primitive

or conservative variables. The constitutive relationships such as the stress tensor

and heat �ux vector are computed as moments of the distribution function on the

same stencil as convective �uxes leading to inherent consistency between various
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discretized conservation equations and avoiding additional viscous/conductive dis-

cretization [25�30]. The GKM also o�ers a more convenient numerical platform for

including non-thermochemical equilibrium and non-continuum e�ects as precise con-

stitutive relations are not invoked in the simulations [17]. While the potential of

GKM is clearly evident, much development, veri�cation and validation is necessary

before GKM can be considered as a robust and a versatile numerical approach for a

broad range of computational �uid dynamics applications.

In a series of works, our research group has explored the applicability of ki-

netic theory based methods of the Lattice Boltzmann Method (LBM) and GKM

to a variety of turbulent �ows [11�17]. In [16], the authors compare the LBM and

GKM against Navier-Stokes in mildly compressible turbulent �ows. The GKM is

augmented with a WENO-interpolation scheme and examined over a large range

of Mach numbers in decaying isotropic and homogeneous shear turbulence in [17].

Overall, the GKM solver has been well studied for free-shear layers. An important

class of �ows in which GKM has not been carefully scrutinized is �ows undergoing

transition from laminar to turbulent states. Wall-bounded �ows represent another

category of �ows in which GKM has not been tested yet.

To extend the GKM numerical simulation to wall-bounded shear �ow which has

non-uniform velocity gradient, the WENO scheme must be adapted to spatially-

varying grid. The non-uniform WENO scheme is expected to capture the physics

better by adapting to the variation of the �ow. Wang et al. [31] have derived the

explicit formulation of a �fth-order WENO method on non-uniform meshes and

compared the performance with the classical uniform mesh approach demonstrating

the signi�cant bene�t of the non-uniform scheme. Following Wang's proposal, the

non-uniform WENO is developed and implemented into the GKM solver.

When performing temporal �ow simulations, forcing terms should be introduced
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into the momentum equation to ensure that the �ow variables behave appropriately

in the stream-wise direction. The forcing term can be manifested in the calculation ei-

ther through an imposed pressure-gradient or an extra body force [21,32]. Of the two

options, pressure-gradient forcing must be considered more natural as it represents

a physical e�ect. In incompressible �ows, both options lead to identical outcomes.

However, in compressible �ows there exists a fundamental di�erence between the two

types of forcing. As pressure is related to other thermodynamic variables through

the state equation, an imposed stream-wise pressure-gradient will necessarily lead

to stream-wise variations in temperature and density. This could lead to undesir-

able consequences in the temporal simulation outcome. Body force driving, on the

other hand, does not lead to stream-wise variation in the thermodynamic state vari-

ables [20,33]. However, as mentioned earlier, the body-force approach is less intrinsic

to a �ow than pressure-gradient forcing. Thus, in high-speed �ows both body force

and pressure-gradient approaches have potential shortcomings. It is important to

compare and contrast the features of these two forcing approaches over a range of

Mach numbers.

To obtain reliable DNS results, the convergence study is performed to examine

the numerical accuracy of GKM solver. In addition, the calculated Reynolds stress

evolution equation (RSEE) [34, 35] balance is also investigated. Verifying the bal-

ance serves two important purposes: (i)identi�es the relative importance of di�erent

processes, and (ii) con�rms the accuracy of the numerical computations.

1.3 Instability of Poiseuille Flow at Extreme Mach Numbers

In this study, we establish the stability characteristics of Poiseuille �ow at very

high and very low Mach number limits before proceeding to intermediate Mach num-

bers in the next study. Pressure plays a profound role in shaping the nature of insta-
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bility, transition and turbulence phenomena in �uid �ows. The interaction between

pressure and velocity �eld depends upon the �ow-to-acoustic (pressure) timescale

ratio quanti�ed by Mach number. At the vanishing Mach number limit, pressure

evolves instantaneously to impose the incompressibility constraint on the velocity

�eld. Under these conditions, hydrodynamic pressure can be completely determined

from a Poisson equation. In such incompressible �ows, pressure-enabled energy re-

distribution mitigates instability in hyperbolic �ows but initiates and sustains insta-

bility in elliptic �ows [36]. The �ow physics at low Mach numbers is described by

the incompressible Navier-Stokes equations.

At the limit of a very high Mach number, pressure evolution is very slow compared

to that of the velocity �eld. Consequently, the velocity �eld evolves nearly impervious

to the pressure �eld. The pressure-less Navier-Stokes equation, called the pressure-

released equation (PRE), describes the evolution at extremely high Mach number

limits. The PRE analysis has been shown to accurately characterize the high Mach

number Navier-Stokes physics in homogeneous shear �ows [17, 18, 37]. The PRE

analysis has also been widely used for inferring velocity gradient dynamics at very

high Mach numbers [38].

In this part, we will perform a linear perturbation analysis of the pressure-released

equation (PRE) to describe the evolution of small perturbations in very high Mach

number Poiseuille �ows. At the limit of a very small Mach number, the classical Orr-

Sommerfeld analysis [39, 40] is used to evaluate perturbation evolution. In addition

to the analyses, direct numerical simulations (DNS) of the Poiseuille �ow at extreme

Mach number limits will be performed using the Gas Kinetic Method. Apart from

providing insight into the instability �ow physics at extreme Mach number limits,

the present study serves an important goal � to benchmark the validity of the GKM

simulations at these limits.
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1.4 Instability of Poiseuille Flow at Intermediate Mach Numbers

With the increase in the Mach number, the role of pressure changes signi�cantly.

As discussed before, at a very low Mach number pressure is dictated by the Poisson

equation. Pressure evolves very rapidly to impose the divergence free condition to

the velocity �eld. However, at a very high Mach number, the action of pressure is

relatively slow compared to that of velocity �eld. Consequently, the velocity �eld

evolves almost una�ected by pressure. At intermediate Mach numbers, the time scale

of pressure evolution is comparable to that of velocity. Pressure behaves according

to the wave equation resulting from the energy equation and thermodynamic state

equation. In this section, we focus on the instability characteristics of Poiseuille �ow

at intermediate Mach numbers by investigating the evolution of small perturbation in

forms of various wave modes. The study employs temporal DNS and linear analysis

of the corresponding initial value problems.

The primary objective of this study is to investigate the stability characteristics of

small perturbation evolution in high-speed channel �ow. In particular, we investigate

the in�uence of perturbation obliqueness and Mach number on stability. In Couette

�ow, the e�ect of Mach number and perturbation orientation has been investigated

in [23]. In that work, self-similar scaling of the pressure equation is demonstrated

and multiple stability regions in perturbation-orientation space have been identi�ed.

The critical e�ect of perturbation obliqueness on pressure evolution and ultimately

on stability has been demonstrated. Here, we perform a similar examination for wall-

bounded �ows which additionally feature the Tollmien-Schlichting (TS) instability

at low speeds. We perform both linear analysis and direct numerical simulations of

small perturbation evolution in high Mach number Poiseuille �ow. The linear analy-

sis mostly focuses on the interaction between pressure and velocity perturbations in
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linear regime. The in�uence of Mach number and perturbation obliqueness are exam-

ined. The outcome of the linear analysis is then con�rmed using DNS data. Finally,

breakdown toward turbulence is examined employing two coupled initial modes.

1.5 Dissertation Outline

This dissertation is organized as follows. In Section 2, we develop the numerical

schemes and tools for high �delity direct numerical simulation (DNS) of wall-bounded

�ows . In Section 3, the instability features at extreme Mach number limits is

discussed. In Section 4, we present the instability investigation at intermediate Mach

numbers. We present the conclusions in Section 5.
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2. NUMERICAL APPROACH DEVELOPMENT

The compressible Navier-Stokes equations based on the ideal-gas law form the

basis of our study.

∂ρ∗

∂t∗
+

∂

∂x∗j

(
ρ∗u∗j

)
= 0, (2.1)

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

=
1

ρ∗
∂τ ∗ij
∂x∗j

, (2.2)

ρ∗c∗v

(
∂T ∗

∂t∗
+ u∗j

∂T ∗

∂x∗j

)
=

∂

∂x∗j

(
k∗
∂T ∗

∂x∗j

)
+ τ ∗ije

∗
ij, (2.3)

P ∗ = ρ∗RT ∗, (2.4)

The rate of strain tensor and stress tensor are de�ned as shown:

e∗ij =
1

2

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
, (2.5)

τ ∗ij = 2µ∗e∗ij +

[
2

3
(λ∗ − µ∗) e∗kk − P ∗

]
δij, (2.6)

where asterisks denote dimensional quantities, c∗v is the speci�c heat at constant

volume, k∗ is the coe�cient of thermal conductivity, R is the speci�c gas constant,

µ∗ is the coe�cient of dynamic viscosity and λ∗ is the coe�cient of second viscosity.

The dynamic viscosity is assumed to follow Sutherland's law [41].

In this thesis, the direct numerical simulation (DNS) is based on the Gas Kinetic

Method (GKM). It is important to distinguish the GKM from other kinetic theory-

based models such as the Lattice Boltzmann method (LBM) and Direct Simulation

Monte Carlo (DSMC). The LBM is a discrete velocity model wherein the di�erent

velocities at a given point represent a lattice structure on a velocity space grid.
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DSMC is based on conceptual particles that represent a collection of molecules. The

GKM, on the other hand, is a hybrid �nite volume method the details of which are

presented in the following discussion.

The GKM is a �nite-volume numerical scheme which combines both �uid and

kinetic approaches. The �uid part comes from the fact that macroscopic �uid vari-

ables are solved. The kinetic part comes from the fact that the �uxes are calculated

by taking moments of a particle distribution function. The central equation for the

GKM is the following:

∂

∂t

∫
Ω

Udx+

∮
A

~F · d ~A = 0. (2.7)

Equation (2.7) shows the conservation of a macroscopic �ow quantity (U) in a control

volume (Ω). U represents mass, momentum or energy. ~F is the �ux through the

cell interfaces ( ~A). The GKM scheme can be decomposed into three stages: recon-

struction, gas evolution and projection. In reconstruction, the values of macroscopic

variables at cell center are interpolated to generate values at cell interface. The

weighted essentially non-oscillatory (WENO) scheme [42, 43] is used for reconstruc-

tion in the present solver.

In gas evolution stage, the �uxes across cell interface are calculated using kinetic

approach. The �ux through a cell interface for one-dimensional �ow case is the

following:

F1 = [Fρ, Fρv1 , FE]T =

∫ ∞
−∞

v1ψf(x1, t, v1, ξ)dΞ. (2.8)

Equation (2.8) represents the �ux calculation of mass (Fρ), momentum (Fρv1), and

energy (FE) by calculating the moments of the particle distribution function (f).

Here, dΞ = dv1dξ, ξ is the molecular internal degrees of freedom and ψ is the vector

10



of moments. The expression of ψ is given by:

ψ =

(
1, v1,

1

2
(v2

1 + ξ2)

)
. (2.9)

To calculate f , the Boltzmann equation with Bhatnagar-Gross-Krook (BGK) colli-

sion operator is used [24]. The distribution function f is solved in the form of the

following:

f(xi+1/2, t, v1, v2, v3, ξ) = 1
τ

∫ t
0
g(x′1, t

′, v1, v2, v3, ξ)

e−(t−t′)/τdt′ + e−t/τf0(xi+1/2 − v1t). (2.10)

The particle distribution function f at cell interface xi+1/2 and time t are presented in

equation (2.10). Here, x′1 represents the particle trajectory, v1, v2 and v3 are particle

velocity space, τ is the characteristic relaxation time, f0 is the initial distribution

function and g is the equilibrium distribution function. f0 and g are calculated from

the reconstructed macroscopic variables at the cell interface.

After f has been solved and updated, the �uxes are calculated through equation

(2.8). Then, in the projection stage with calculated �uxes, equation (2.7) gives

updated cell center macroscopic values.

Un+1
j = Un

j −
1

xj+ 1
2
− xj− 1

2

∫ t+4t

t

(
Fj+ 1

2
(t)− Fj− 1

2
(t)
)
dt, (2.11)

Equation (2.11) shows the macroscopic variable updates in one-dimensional �ow case.

Here, n represents the number of time step. Further details of GKM can be found

in [24,44�48].
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2.1 Non-uniform WENO Scheme

The GKM scheme has been well validated in compressible homogeneous shear

�ow [11�17]. In [16], the authors compare the LBM and GKM against Navier-Stokes

in mildly compressible turbulent �ows. The GKM is augmented with a WENO-

interpolation scheme and examined over a large range of Mach numbers in decaying

isotropic and homogeneous shear turbulence in [17]. In this thesis, wall-bounded

Poiseuille �ow is considered. There exists important distinction between homoge-

neous shear �ow and Poiseuille �ow. One critical distinction between these two types

of �ow is the shear in background �ow. The homogeneous shear �ow exhibits uniform

background velocity gradient, however, Poiseuille �ow features variable background

velocity gradient. To better capture the �ow physics in Poiseuille �ow, the previous

uniform WENO interpolation scheme for homogeneous shear �ow must be extended

to non-uniform grid.

Before developing the non-uniform WENO scheme, we �rst present a general

discussion of WENO scheme. In �nite-volume schemes, the �uxes at the cell interface

are required in order to determine the cell center �ow variables. To calculate the

�uxes at the cell interface, the �ow variables at the cell center must be interpolated

to the cell interface. Simple interpolation schemes such as linear and polynomial

functions can be implemented. However, Gibbs-phenomenon oscillations can occur

for these simple schemes in the presence of steep gradients. To prevent the occurrence

of this unphysical phenomenon a sophisticated scheme, such as weighted essentially

non-oscillatory (WENO) scheme, must be used. The WENO scheme uses adaptive

stencils in the vicinity of steep gradients to avoid oscillation. Previous free shear

�ow simulations mostly use uniform WENO scheme due to mesh simplicity. In the

Poiseuille �ow, shear is non-uniform in the wall-normal direction. Thus, non-uniform

12



WENO is implemented into the GKM solver to better simulate the �ow physics.

A �fth order non-uniformWENO scheme is used and its mathematical description

is given in [31]. To construct 5th order WENO scheme we designate a stencil S
(i)
r , r =

0, 1, 2. For a given cell Ii, the stencil is de�ned as:

S0 = Ii−2, Ii−1, Ii, (2.12)

S1 = Ii−1, Ii, Ii+1, (2.13)

S2 = Ii, Ii+1, Ii+2. (2.14)

On each stencil, there exists a quadratic P
(i)
r (x), r = 0, 1, 2 constructed using the cell

center value of three cells. To obtain a �fth-order accurate approximation of u(xi+ 1
2
),

we choose the convex combinations of Pr(xi+ 1
2
) as:

u(xi+ 1
2
) =

2∑
r=0

wrPr(xi+ 1
2
), (2.15)

where
2∑
r=0

wr = 1. (2.16)

To determine the approximation of u(xi+ 1
2
), we must solve for wr and Pr(xi+ 1

2
). First,

we de�ne the cell size as hm,m = 1, 2, · · · , 5 as:

hm = ∆xi−3+m,m = 1, 2, · · · , 5. (2.17)

Then Pr(xi+ 1
2
) is computed as follows:

Pr(xi+ 1
2
) =

2∑
j=0

crjui−r+j, (2.18)
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Here

crj = brjh3−r+j, (2.19)

And brj is determined by the mesh distribution as:

brj =
3∑

m=j+1

∑3
l=0,l 6=m

(∏3
q=0,q 6=m,l

(
xi+ 1

2
− xi−r+q− 1

2

))
∏3

l=0,l 6=m

(
xi−r+m− 1

2
− xi−r+l− 1

2

. (2.20)

In terms of hm, the brj can be obtained as:

b22 =
1

h1 + h2 + h3

+
1

h2 + h3

+
1

h3

, (2.21)

b21 = b22 −
h1 + h2 + h3

h2h3

, (2.22)

b20 = b21 +
(h1 + h2 + h3)h3

h1h2(h2 + h3)
, (2.23)

b12 =
(h2 + h3)h3

(h2 + h3 + h4)(h3 + h4)h4

, (2.24)

b11 = b12 +
1

h2 + h3

+
1

h3

− 1

h4

, (2.25)

b10 = b11 −
(h2 + h3)h4

h2h3(h3 + h4)
, (2.26)

b02 = − h3h4

(h3 + h4 + h5)(h4 + h5)h5

, (2.27)

b01 = b02 +
h3(h4 + h5)

(h3 + h4)h4h5

, (2.28)

b00 = b01 +
1

h3

− 1

h4

− 1

h4 + h5

. (2.29)

After Pr(xi+ 1
2
) is computed, we need to �nd weighted coe�cients wr. The smooth

measure ISr is de�ned as:

ISr =

∫ x
i+1

2

x
i− 1

2

h3(P ′r(x))2dx+

∫ x
i+1

2

x
i− 1

2

(h3)3(Pr”(x))2dx, (2.30)
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With smooth measure ISr, we de�ne:

αr =
dr

(ε+ ISr)2
, (2.31)

Here ε is a small positive number that is introduced to avoid the denominator be-

coming zero. The dr is calculated using the cell size as:

d2 =
(h3 + h4)(h3 + h4 + h5)

(h1 + h2 + h3 + h4)(h1 + h2 + h3 + h4 + h5)
, (2.32)

d1 =
(h1 + h2)(h3 + h4 + h5)(h1 + 2h2 + 2h3 + 2h4 + h5)

(h1 + h2 + h3 + h4)(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)
, (2.33)

d0 =
h2(h1 + h2)

(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)
. (2.34)

Finally, the coe�cient wr is given by:

wr =
αr

α0 + α1 + α2

. (2.35)

From wr and Pr, the interpolation value at cell interface can be obtained.

2.2 Body Force vs. Pressure Gradient Forcing

When performing temporal �ow simulations, forcing terms must be introduced

into the momentum equation to ensure that the �ow variables behave appropriately

in the stream-wise direction. The forcing term can be manifested in the calculation ei-

ther through an imposed pressure-gradient or an extra body force [21,32]. Of the two

options, pressure-gradient forcing must be considered more natural as it represents

a physical e�ect. In incompressible �ows, both options lead to identical outcomes.

However, in compressible �ows there exists a fundamental di�erence between the two

types of forcing. As pressure is related to other thermodynamic variables through

the state equation, an imposed stream-wise pressure-gradient will necessarily lead
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to stream-wise variations in temperature and density. This could lead to undesir-

able consequences in the temporal simulation outcome. Body force driving, on the

other hand, does not yield much streamwise variation in the thermodynamic state

variables [20, 33]. However, as mentioned earlier, the body-force approach is less in-

trinsic to a �ow than pressure-gradient forcing. Thus, in high-speed �ows both body

force and pressure-gradient approaches have potential shortcomings. It is important

to compare and contrast the features of these two forcing approaches over a range of

Mach numbers.

We examine the di�erence between body force and pressure-gradient forcing in

temporal �ow simulations at low and high Mach number Poiseuille �ows. The uni-

form parabolic background velocity pro�le requires an uniform pressure-gradient

which can be calculated from the momentum conservation equation:

dP ∗

dx
= −2µU0

ρL2
. (2.36)

Here, µ is the dynamic viscosity, U0 is the centerline background velocity, ρ is the

density and L is half channel width. With a pressure-gradient along the stream-wise

direction, the background pressure decreases linearly in the downstream direction. In

compressible �ows, pressure is coupled to density and temperature by the equation of

state. Consequently, density and temperature also linearly change in the stream-wise

direction.

In the body force case, an arti�cial force is applied along stream-wise direction

to sustain the background �ow:

gx = −2µU0

ρL2
. (2.37)
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Since this body force is unrelated to pressure, there is no variation of the latter in

the downstream direction. Other thermodynamic variables such as temperature and

density are also essentially uniform along stream-wise direction.

2.3 Veri�cation Simulations

First we perform a set of simulations to verify the �delity of the solver. A brief

introduction of �ow conditions and numerical set-up are now given. The perturbation

superposed into background �ow is considered in current work. Three grid resolutions

and four di�erent Mach number cases are simulated to examine the numerical �delity

of GKM solver in wall-bounded Poiseuille �ow.

2.3.1 Flow Conditions

To examine the small perturbation evolution, the �ow �eld is decomposed into

background �ow and perturbation quantities:

ρ∗ = ρ̄+ ρ′, u∗i = ūi + u′i, P
∗ = P̄ + p′, (2.38)

Here the asterisk represents the instantaneous �ow, the bar denotes background �ow

and the prime represents perturbation superposed to the background �ow. The

perturbation equations are obtained by subtracting the background �ow equations

from the total variable equations. In the present work, the background �ow is taken

to be a planar and parallel stream-wise pro�le:

ūi = (U(y), 0, 0), (2.39)
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The background velocity pro�le U(y) is speci�ed as a parabolic function along the

wall-normal direction. The background �ow has the velocity pro�le:

U(y) = U0(1− y2

L2
), (2.40)

Here U0 is the centerline value of the background velocity, y is the wall-normal

coordinate and L is the half channel width.

Perturbation velocities are also introduced in the same plane:

u′i = (u, v, 0), (2.41)

The initial perturbation velocities u and v are Tollmien-Schlichting (TS) waves ob-

tained from solutions of linear stability equation as described further in next section.

The evolution of u and v will be investigated to examine the e�ect of body force and

pressure-gradient forcing.

2.3.2 Simulation Procedure

The computational domain is a rectangular box of dimension ratio 4 : 1 : 0.1 along

x (streamwise), y (wall-normal) and z (span-wise) directions. Grid cells are evenly

distributed along x and z directions, but along wall-normal direction y geometric

distribution is used. The geometric grids for di�erent resolutions are speci�ed as:

li+1

li
= 1.020345, i = 1, 2, 3, · · · , n/2, n = 160, (2.42)

li+1

li
= 1.0125, i = 1, 2, 3, · · · , n/2, n = 200, (2.43)

li+1

li
= 1.008172, i = 1, 2, 3, · · · , n/2, n = 400, (2.44)
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Figure 2.1: Sketch of computational domain

Table 2.1: Background �ow conditions for low and high Mach number cases

U0(m/s) ρ(kg/m3) T (K) Re M
Case1 45 1 353 45458 0.12
Case2 1130 1 353 45458 3
Case3 1883 1 353 45458 5
Case4 3013 1 353 45458 8

Here l is the cell size along y direction and n is the number of cells along y direction.

Four Mach number cases are examined to investigate the �ow evolution in low-

speed and high-speed regimes. The details of those cases are given in Table 2.1. The

�ow domain with background velocity pro�le and perturbation is shown in Figure

2.1. The growth or decay of perturbations with time is monitored to investigate the

�ow evolution. The magnitude of velocity perturbation is set to 0.5% of the value

of centerline background velocity. The perturbation velocity is small enough for the

evolution to be governed by linear theory. Along x and z direction periodic boundary
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conditions are applied. No-slip and no-penetration wall boundaries are applied in

the y direction. Temperature boundary conditions can be set to both adiabatic or

isothermal conditions. The adiabatic wall inhibits heat �ux across the wall by setting

the temperature gradient to zero. The isothermal wall speci�es a �xed temperature

at the wall. It is found that both boundary conditions yield similar perturbation

evolutions even though the background temperature and density pro�les may be

slightly di�erent. The results presented in this paper are based on the adiabatic wall

condition.

2.4 Veri�cation Results

First, the comparison between uniform and non-uniform WENO simulation re-

sults are presented. Then the outcomes of body force and pressure gradient forcing

are showed and the capability of these two forcing in high Mach number Poiseuille

�ow simulations is discussed. Finally, convergence study and budget consistency

check are performed.

2.4.1 Uniform vs. Non-uniform Grid

Poiseuille �ow simulations with uniform and non-uniform grids are compared.

Both simulations use 100 cells along the wall-normal direction to compute Poiseuille

�ow at incompressible regime. The kinetic energy plot at Mach number 0.08 is

given in Figure 2.2. The non-uniform case shows kinetic energy evolution is in

good agreement with theoretical prediction. The theoretical result is based on linear

stability theory which will be discussed in the next section with detail. However, the

uniform case demonstrates unphysical oscillations and is clearly incorrect. Several

other comparisons (�gures not shown) also con�rm the superiority of non-uniform

grids over uniform mesh. Overall, it is evident that non-uniform WENO scheme is

better suited for the Poiseuille �ow simulations.
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Figure 2.2: Comparison of non-uniform and uniform WENO scheme at Mach=0.08

2.4.2 Pressure Gradient vs. Body Force

Both pressure-gradient and body force are considered to sustain the background

�ow. The kinetic energy evolution of small perturbation is examined to compare

the e�ect of those two driving forces. The volume-averaged kinetic energy evolution

is shown in Figure 2.3. The kinetic energy evolution is plotted against normalized

time: t∗ = U0t
L
. The linear stability theory prediction is also shown for comparison.

Excellent agreement between computation and analysis is seen. The thermodynamic

variables, such as temperature and density, are initially uniform throughout the �ow

domain implying no thermodynamic �uctuations. During the evolution, the temper-

ature and density changes are examined. Figure 2.4 gives the comparison between

velocity perturbation and temperature perturbation. The maximum values of per-

turbation velocity and temperature during the evolution are plotted as a function

of time. For both forcing cases, the temperature perturbation is scaled 100 times.

Clearly in low-speed �ow thermodynamic quantities such as temperature and density
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Figure 2.3: Evolution of perturbation kinetic energy at Mach=0.12

change very little from their initial state.

The kinetic energy evolution of the body force and pressure-gradient driven sim-

ulations at Mach 8 are compared in Figure 2.5. While the two cases are initially

very similar, the pressure-gradient simulation becomes unstable at 65 time units

and produces unphysical results. The di�erence between the two schemes becomes

noticeable at a much earlier time�approximately 35 time units onward. Pressure-

gradient simulation results may be unphysical from 35 time units. Many transition

to turbulence studies [49] require high �delity over a period of hundred time units.

Thus it is reasonable to infer that pressure-gradient forcing is not suitable for long

duration simulations. The reason for this is investigated next.

The di�erence of the background thermodynamic variables between the two forc-

ing types is examined. For pressure-gradient forcing, the background pressure and

temperature contours are given in Figure 2.6 for Mach 8 case at normalized time

t∗ = 12. Pressure decreases linearly along stream-wise direction. Temperature ex-
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Figure 2.6: Pressure(top) and temperature(bottom) contours for pressure-gradient
case at t∗=12: P is normalized by P0 = 101311Pa, T is normalized by T0 = 353K

hibits similar behavior. The observed background thermodynamic �eld behavior is

clearly non-uniform in streamwise direction. This is at odds with the basic tenets

of a temporal simulation. For the body force case, the pressure and temperature

contours at Mach 8 are shown in Figure 2.7. Uniform pressure and temperature

behavior along the stream-wise direction is clearly seen. Clearly, the body force sim-
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ulation produces a background thermodynamic �eld with very little variation in the

stream-wise direction as required. This stream-wise homogeneity of thermodynamic

variables makes body force better suited for temporal simulation. Overall, for high

Mach number simulations, body force and pressure-gradient forcing yield distinctly

di�erent background thermodynamic features and perturbation kinetic energy evo-
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lutions deviate from each other beyond early stages.

2.4.3 Convergence Study

In high-speed �ow regime, we perform a convergence study for grid resolution and

time step. Three Mach numbers are considered: 3, 5, and 8. The background �ow

conditions for these three Mach number cases are given in Table 2.1. The volume

averaged kinetic energy is considered as the representation of perturbation evolution

in the simulation. The grid convergence study focuses on the resolution along wall-

normal direction. Three grid resolutions are investigated for all three Mach number

cases. The grid convergence study results are shown in Figures 2.8, 2.10 and 2.12.

The kinetic energy evolutions for those three grid resolutions are in good agreement.

The time-step convergence study results are shown in Figures 2.9, 2.11 and 2.13.

Four time-steps are considered for Mach 3 and 5 cases, whereas six time-steps are

examined for Mach 8 case. The kinetic energy evolutions of di�erent time steps are

also shown to be in good agreement. Thus, both grid and time step convergence for

high-speed Poiseuille �ow simulations is demonstrated.

2.4.4 Reynolds Stress Budget

Reynolds stress is an important quantity in examining stability, especially in

turbulent �ows. We focus on the Reynolds stress evolution equation to examine

the �delity of the numerical scheme in greater detail. The Favre-averaged Reynolds

stress evolution equation [35] is used to scrutinize the Reynolds stress budget. The

Favre-averaged Reynolds stress equation is given as follows:

∂τij
∂t

+
∂ũkτij
∂xk

= Pij + Πij − εij + Tij +Wij, (2.45)
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Figure 2.8: Grid resolution study at Mach=3
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Figure 2.9: Time step study at Mach=3
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Figure 2.10: Grid resolution study at Mach=5
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Figure 2.11: Time step study at Mach=5
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Figure 2.12: Grid resolution study at Mach=8
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Figure 2.13: Time step study at Mach=8
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Figure 2.14: Budget equation for τ11 check at Mach 8: left hand side (top) and right
hand side(bottom)

The various terms in this equation are: Reynolds stress, τij = ρu′′i u
′′
j ; produc-

tion, Pij = −τik∂ũj/∂xk − τjk∂ũi/∂xk; and, velocity-pressure-gradient-tensor, Πij =

−u′′i ∂p′/∂xj + u′′j∂p
′/∂xi. Other terms such as dissipation εij, transport term Tij and

work Wij, are trivial in this work.

We compute the two sides of equation to examine the numerical accuracy of the
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Figure 2.15: Budget equation for τ13 check at Mach 8: left hand side (top) and right
hand side(bottom)
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budget in simulation. Both sides of equation (2.45) are independently calculated

from the DNS data. The left and right side of equation are shown in Figures 2.14

and 2.15 for two Reynolds stress components. The exact equivalence of left and right

side of the Reynolds stress evolution equation strongly supports the reliability of the

present budget analysis. The internal consistency check of this equation con�rms the

validity of the simulation and the physical phenomena precisely captured by DNS.

2.5 Summary and Conclusion

In this section, we examine the applicability of GKM for wall-bounded Poiseuille

�ow in both low-speed and high-speed �ow regimes. To better accommodate the

spatial variation in Poiseuille �ow, the �fth order non-uniform WENO scheme is

developed and implemented into the GKM solver. The simulation results for both

uniform and non-uniform WENO schemes are compared by examining the kinetic

energy evolution. Non-uniform WENO is shown to have better performance. Fur-

thermore, both body force and pressure-gradient are applied to sustain the �ow. For

low-speed �ow, small perturbation evolution agrees well with linear theory for both

driving cases and those two driving sources do not signi�cantly alter the thermo-

dynamic quantity evolution due to weak thermodynamic coupling. For high-speed

�ow, body force driving produces a background thermodynamic �eld that is uniform

in the stream-wise direction. Pressure-gradient driven simulation results show un-

desirable stream-wise gradients leading to unphysical results. Therefore, body force

driven temporal simulations appear to be better suited for temporal simulations of

compressible �ows. Convergence study is performed to obtain reliable simulation

result for GKM scheme in Poiseuille �ow. The Reynolds stress evolution equation is

examined numerically in the DNS data. The two sides of the budget equation are

shown to have exact equivalence in the simulation results. This study establishes
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the �delity of the numerical scheme. Now we proceed with further investigation to

examine the stability of high-speed Poiseuille �ows.
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3. INSTABILITY OF POISEUILLE FLOW AT EXTREME MACH NUMBERS∗

The main objective of this study is to examine the stability of Poiseuille �ow at

the two extremes of Mach number�incompressible and highly compressible limits.

The main distinguishing feature between the two extreme limits of Poiseuille/channel

�ow is the action of pressure. Pressure plays a profound role in shaping the nature

of instability, transition and turbulence phenomena in �uid �ows. The interaction

between pressure and velocity �elds depends upon the �ow-to-acoustic (pressure)

timescale ratio quanti�ed by the Mach number. At the vanishing Mach number

limit, pressure evolves very rapidly to impose the incompressibility constraint on the

velocity �eld. Under these conditions, hydrodynamic pressure can be completely

determined from a Poisson equation. In such incompressible �ows, pressure-enabled

energy redistribution mitigates instability in hyperbolic �ows, but initiates and sus-

tains instability in elliptic �ows [36]. The �ow physics at low Mach numbers is

described by the incompressible Navier-Stokes equations.

With the increasing Mach number, the nature of pressure action on the �ow �eld

changes. Pressure evolves according to a wave-equation resulting from energy con-

servation statement and the thermodynamic state equation. In high speed �ows,

as the timescale of velocity and pressure become comparable, pressure does not act

rapidly enough to impose the divergence-free constraint on the velocity �eld. This

in turn leads to the �ow becoming compressible with signi�cant changes in density

across the �eld. At the limit of a very high Mach number, pressure evolution is very

slow compared to that of the velocity �eld. Consequently, the velocity �eld evolves

∗Reprinted with permission from "Instability of Poiseuille �ow at extreme Mach numbers: Linear
analysis and simulations" by Z. Xie and S. S. Girimaji, 2014, Physical Review E, 89, 043001,
Copyright[2014] by American Physical Society
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nearly impervious to the pressure �eld. The pressure-less Navier-Stokes equation,

called the pressure-released equation (PRE), describes the evolution at extremely

high Mach numbers. The PRE �ow behavior has been shown to accurately charac-

terize the high Mach number Navier-Stokes physics in homogeneous shear (Couette)

�ows [17,18,37]. The PRE equation has also been widely used for inferring velocity

gradient dynamics at very high Mach numbers [38].

In this study, we will perform a linear perturbation analysis of the pressure-

released equation (PRE) to describe the evolution of small perturbations in very

high Mach number Poiseuille �ows. At the limit of a very small Mach number,

the classical Orr-Sommerfeld analysis is used to evaluate perturbation evolution.

In addition to the analyses, direct numerical simulations (DNS) of the Poiseuille

�ow at extreme Mach numbers will be performed using the Gas Kinetic Method

(GKM). Apart from providing insight into the instability �ow physics at extreme

Mach numbers, the present study serves an important second goal � to benchmark

the validity of the GKM simulations at these limits.

The outline of this section is organized as follows. Section 3.1 contains the fun-

damental governing equations and linear analyses at the two Mach number limits.

The simulation cases conditions are given in section 3.2. Comparison between the

analysis and numerical results are shown in section 3.3. The conclusion is given in

section 3.4 with a brief discussion.

3.1 Linear Analysis

We present the linear analysis of small perturbation evolution at both high Mach

and low Mach number limit. The compressible Navier-Stokes equations along with

the ideal-gas assumption form the basis of our analysis. These equations are given

in (2.1), (2.2), (2.3) and (2.4). The equations are non-dimensionalized with the
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following reference quantities: density ρ0, velocity U0, temperature T0, characteristic

length L, viscosity µ0, heat conductivity k0 and speed of sound a0. The speci�c

values of these quantities depend on the �ow under consideration. For the channel

�ow, the reference values are those of background �ow at the centerline at t = 0. L

is half channel width. The dimensionless quantities are de�ned as:

ρ = ρ∗/ρ0, ui = u∗i /U0, T = T ∗/T0,

P = P ∗/ρ0a
2
0, xi = x∗i /L, t = U0t

∗/L,

µ = µ∗/µ0, λ = λ∗/µ0, k = k∗/k0. (3.1)

The dimensionless compressible NS equations can be rewritten as follows:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (3.2)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi

1

M2
+
µ

ρ

∂2ui
∂xj∂xj

1

Re
+
µ+ 2λ

3ρ

∂2uj
∂xi∂xj

1

Re
, (3.3)

The pressure equation is:

∂P

∂t
+ uj

∂P

∂xj
=

∂

∂xj

(
k

ρ

∂P

∂xj
− kP

ρ2

∂ρ

∂xj

)
γ

RePr
+

2

3
(λ− µ)

∂uj
∂xj

∂uk
∂xk

γ(γ − 1)M2

Re

+
1

2
µ

(
∂ui
∂xj

∂ui
∂xj

+ 2
∂ui
∂xj

∂uj
∂xi

+
∂uj
∂xi

∂uj
∂xi

)
γ(γ − 1)M2

Re
− P ∂uk

∂xk
γ, (3.4)

The relevant dimensionless parameters are: Reynolds number Re, Mach number M ,

Prandtl number Pr and speci�c heat ratio γ:

Re =
ρ0U0L

µ0

, M =
U0

a0

, P r =
c∗pµ0

k0

, γ =
c∗p
c∗v
, (3.5)
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In the DNS simulations the Prandtl number Pr is held constant at 0.7. The speci�c

heat ratio γ is held constant at 1.4.

3.1.1 High Mach Number Linear Analysis

While the DNS performed in this work employs the full equation set, the anal-

ysis is restricted to inviscid (and non-conducting) �ow phenomena. The simpli�ed

equations are:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (3.6)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi

1

M2
, (3.7)

∂P

∂t
+ uj

∂P

∂xj
= −P ∂uk

∂xk
γ. (3.8)

To investigate �ow stability, we examine the small perturbation evolution. We de-

compose the �ow �eld into background �ow and perturbation quantities:

ρ = ρ̄+ ρ′, ui = ūi + u′i, P = P̄ + P ′. (3.9)

The background �ow equations have a form that is similar to that of total �ow:

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj) = 0, (3.10)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ̄

∂P̄

∂xi

1

M2
, (3.11)

∂P̄

∂t
+ ūj

∂P̄

∂xj
= −P̄ ∂ūk

∂xk
γ. (3.12)
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The perturbation evolution equation can be obtained by subtracting the background

�ow equations (3.10)-(3.12) from the corresponding full equations (3.6)-(3.8):

∂ρ′

∂t
+

∂

∂xj

(
ρ′ūj + ρ̄u′j + ρ′u′j

)
= 0, (3.13)

∂u′i
∂t

+ ūj
∂u′i
∂xj

+ u′j
∂ūi
∂xj

+ u′j
∂u′i
∂xj

= −1

ρ̄

∂P ′

∂xi

1

M2
+
ρ′

ρ̄2

∂(P̄ + P ′)

∂xi

1

M2
, (3.14)

∂P ′

∂t
+ ūj

∂P ′

∂xj
+ u′j

∂P̄

∂xj
+ u′j

∂P ′

∂xj
= −(P̄

∂u′k
∂xk

+ P ′
∂ūk
∂xk

+ P ′
∂u′k
∂xk

)γ, (3.15)

Equation (3.14) stipulates the balance between �ow inertia on the left hand side(LHS)

and the pressure forces on the right hand side(RHS). The pressure forces are inversely

proportional to the square of Mach number, indicating its reduction with increas-

ing �ow velocity. At the limit of in�nite Mach number, the pressure e�ects can

be negligible and the momentum following a background streamline will be nearly

unchanged:

lim
M→∞

[
−1

ρ̄

∂P ′

∂xi

1

M2
+
ρ′

ρ̄2

∂(P̄ + P ′)

∂xi

1

M2

]
−→ 0, (3.16)

This represents the pressure-released limit of �ow. Clearly the description will be

valid only for a �nite period of time as the integrated RHS, however small initially,

will ultimately a�ect the momentum [18, 50]. The equation (3.14) in absence of the

pressure terms is called the pressure-released equation (PRE) for velocity perturba-

tions. The form of equation (3.14) clearly indicates that the duration of PRE validity

will increase with increasing the Mach number as demonstrated in [50] for homoge-

neous shear �ow. During the period of PRE validity, the energy equation decouples

from the momentum equation as the changes in thermodynamic �uctuations are too

slow to a�ect the velocity �eld evolution.

The background �ow follows the parallel shear �ow condition and planar velocity
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perturbations are considered:

ūi = (U(y), 0, 0), (3.17)

u′i = (u, v, 0). (3.18)

As in the incompressible transition analysis, we restrict our considerations to planar

velocity perturbations. Non-planar and oblique perturbations will be considered in

future works. We formulate the PRE analysis for the evolution of small perturbations

in a channel �ow. We linearize the equations retaining only terms of order one in

the perturbation �eld. Finally, the linearized PRE for small perturbation evolution

in parallel non-uniform shear �ows can be written as:

∂u

∂t
+ U

∂u

∂x
+ v

dU

dy
= 0, (3.19)

∂v

∂t
+ U

∂v

∂x
= 0. (3.20)

Perturbations that are periodic in x-direction are investigated. We take the normal

mode approach [39,40] to solve the perturbation evolution equations. Normal mode

forms of perturbations are given as:

u = û(y, t)eiαx, (3.21)

v = v̂(y, t)eiαx, (3.22)

Here û and v̂ are the mode amplitudes of u and v velocity perturbations. The

resulting mode amplitude equations are:

Dû(y, t)

Dt
= −v̂(y, t)

dU

dy
, (3.23)
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Dv̂(y, t)

Dt
= 0, (3.24)

D
Dt

represents the time rate of change in the frame moving with background �ow.

The mode amplitudes are clearly functions of y-coordinate and time. Therefore, the

solutions to these equations will be of the form:

û(y, t) = û(y, 0)− v̂(y, 0)
dU

dy
(y)t, (3.25)

v̂(y, t) = v̂(y, 0). (3.26)

The solution is very similar to the homogeneous shear �ow PRE result, with the

exception that the amplitude is dependent on the y-coordinate as shear is not uni-

form. Given the background shear variation(dU/dy) and the initial perturbation

pro�le û(y, 0) and v̂(y, 0), all the �ow variables can be analytically determined at

later times. Bertsch et al. [18] estimate the duration as a function of the Mach

number over which the PRE solution will remain a reasonable idealization of a high

Mach number homogeneous shear �ow. They show that PRE result is valid for time

range [18]:

τ =
St∗

M1/2
∼ 1.8, (3.27)

where S is the local value of shear which is uniform in homogeneous shear �ow. These

results will be used to examine the high Mach number behavior of �ow perturbations

in the results section.

3.1.2 Low Mach Number Linear Analysis

For incompressible �ow, the linear analysis of small perturbation evolution is

well established [39,40,51]. The divergence-free velocity condition decouples the mo-

mentum and energy equations. The �ow can again be decomposed into background
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and perturbation velocities. The perturbation velocity equations are obtained by

subtracting background �ow equations from total �ow equations:

∂u′i
∂xi

= 0, (3.28)

∂u′i
∂t

+ ūj
∂u′i
∂xj

+ u′j
∂ūi
∂xj

+ u′j
∂u′i
∂xj

= − ∂p
′

∂xi
+

1

Re

∂2u′i
∂xj∂xj

, (3.29)

Here prime represents perturbation quantities and overbar represents background

quantities as before. The normalization is similar to equation(3.1), except pressure

is normalized in incompressible �ows as: P0 = ρ0U
2
0 . The speci�c values of these

quantities depend on the �ow under consideration. For the channel �ow, the reference

values are those of background �ow at the centerline at t = 0. L is half channel width.

The only dimensionless parameter of relevance is the Reynolds number Re.

The background �ow and perturbations are given in equations (3.17)and(3.18).

This planar velocity perturbation is found to be most unstable from linear stability

theory perspective [39,40]. The perturbation equations reduce to the following forms:

∂u

∂x
+
∂v

∂y
= 0, (3.30)

∂u

∂t
+ U

∂u

∂x
= −∂p

′

∂x
+

1

Re

(
∂2u

∂x∂x
+

∂2u

∂y∂y

)
− vdU

dy
, (3.31)

∂v

∂t
+ U

∂v

∂x
= −∂p

′

∂y
+

1

Re

(
∂2v

∂x∂x
+

∂2v

∂y∂y

)
. (3.32)

In this analysis, the viscous term is retained as its e�ect is essential for the

instability under consideration. We take the complex normal mode approach to
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solve perturbation equations. Normal modes of perturbations are given as [40]:

u = ψ(y)eiα(x−ct), (3.33)

v = φ(y)eiα(x−ct), (3.34)

p′ = p(y)eiα(x−ct), (3.35)

ψ, φ and p are complex magnitude of perturbation velocity and pressure. α is

wavenumber of perturbation along streamwise direction. c is the complex phase

speed which will be calculated from equation. By substituting those normal modes

form into perturbation equations and combining those equations together, we can

generate a single stability equation�Orr-Sommerfeld equation(OSE) [51]. The OSE

is given as:

d4φ

dy4
− 2α2d

2φ

dy2
+ α4φ− iαRe[(U − c)(d

2φ

dy2
− α2φ)− d2U

dy2
φ] = 0. (3.36)

For channel �ow, the background velocity pro�le is:

U = 1− y2, (3.37)

U is normalized with centerline velocity and y is normalized with half channel width.

With boundary conditions y = ±1, φ = φ′ = 0, equation (3.36) reduces to an eigen-

value problem. There are many well-established procedures to solve this eigenvalue

problem [52,53]. By solving the OSE, the velocity perturbation φ(y) is obtained. The

other velocity component ψ(y) can also be calculated by the continuity relation. The

eigenvalue c is also from the equation solution. The complex eigenvalue c indicates

the temporal growth rate of perturbation modes. The eigenfunctions ψ(y) and φ(y)
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provide the particular spatial shapes of the perturbation modes. The most unstable

perturbation modes correspond to Tollmien-Schlichting (TS) waves. Following TS

wave forms, the initial condition of the perturbation is introduced into our simulation.

Two �ow condition sets are considered in this work. For Re = 30406, α = π/4, the

most unstable mode has eigenvalue c = 0.1734+0.009105i. For Re = 45458, α = π/4,

the most unstable mode has eigenvalue c = 0.1614+0.009788i. Those corresponding

eigenfunctions (ψ,φ) are obtained by solving the eigenvalue problem.

3.2 Simulation Cases

Temporal channel �ow simulations of small perturbation evolution with a spec-

i�ed background velocity �eld are performed using the GKM. The Mach number

range of the simulations is 0.08-7.2, and Reynolds number range is 30,000-230,000.

The characteristic length is taken to be the channel half-width which is speci�ed

to be 0.020032m. The domain size along streamwise direction is considered as one

wavelength of perturbation. The wavelength is taken to be eight times of the channel

half-width. The background velocity �eld is parabolic and is sustained steady using

streamwise body force or pressure gradient. While both techniques yielded identi-

cal results, body force approach was used in the �nal calculations for the high Mach

number study as it enables the background thermodynamic state to be nearly steady.

The background temperature increase due to viscous losses was found to be minimal

and did not a�ect the outcome of the simulations even at high Mach numbers.

Two channel �ow cases are examined in the low Mach number study and they

are detailed in Table 3.1. The initial perturbation pro�le for the low Mach number

study is chosen to be the most unstable wave mode of the OSE analysis. Simulations

are performed for multiple perturbation velocity amplitudes: 0.1%, 0.5%, 2% of the

background �ow centerline velocity.
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Table 3.1: Background �ow conditions for low Mach number limit

U0(m/s) ρ(kg/m3) T (K) Re M grid(x ∗ y ∗ z)
Case1 30 1 353 30406 0.08 160× 100× 4
Case2 45 1 353 45458 0.12 160× 100× 4

Table 3.2: Background �ow conditions for high Mach number limit

U0(m/s) ρ(kg/m3) T (K) Re M grid(x ∗ y ∗ z)
Case1 705.2 0.0189 61 65754 4.5 160× 200× 4
Case2 931.6 0.02 60 93900 6.0 160× 200× 4
Case3 1108.5 0.04 59 227763 7.2 160× 200× 4

The high Mach number study involves three cases for the �ow conditions which are

given in Table 3.2. Following the transition to turbulence study [20], the background

velocity is taken to be parabolic in shape corresponding to a laminar �ow. The PRE

veri�cation process admits any initial perturbation pro�le. Therefore, for the sake

of simplicity, we use the low Mach number OSE solution as the perturbation pro�le.

The streamwise wavelength and amplitude of the perturbation pro�le are also similar

to that of the low Mach number study. In both low and high Mach number studies,

the background thermodynamic �eld is uniform initially and evolves slowly with

time. The grid resolutions are chosen based on grid convergence investigation.

3.3 Results: Analysis vs. Simulations

The results are presented in three parts. In the �rst part we compare the lin-

ear analysis-based evolution of perturbation kinetic energy at low and high Mach

numbers. The second part focuses exclusively on the high Mach number limit. The

analytical results are compared against DNS data. A similar comparison is performed
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Figure 3.1: Pro�les of perturbation velocity

in the third part, but at the low Mach number limit.

3.3.1 Analytical Results at High and Low Mach Number Limit

In DNS, the perturbation is initially superposed to the background laminar �ow.

The initial conditions for perturbation are from OSE eigensolution which provides the

spatial distribution of perturbation modes. The initial velocity perturbation shapes

are given in Figure 3.1. These perturbations are set to periodic along streamwise

direction and the contours of initial perturbation are given by Figure 3.2.

At both Mach number extremes, the streamwise perturbation velocity dominates

the contribution to the perturbation kinetic energy. In Figure 3.3, the streamwise

perturbation kinetic energy evolution as computed from linear analyses at the two

Mach number extremes are plotted. In the absence of pressure e�ects, the kinetic

energy grows rather rapidly in the pressure-released high-Mach number limit. The

low-Mach number OSE solution exhibits very slow growth. It is therefore reasonable

to say that the action of Poisson pressure is to signi�cantly diminish the growth rate,
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when compared to the pressure-released equation. This is consistent with the �ndings

of Mishra et al. [36] for homogeneous shear (Couette) �ows. But it is important to

note that the pressure-released e�ect will not last inde�nitely and consequently, the

linear PRE may be valid only for a �nite period of time. This will be examined by

comparing linear PRE against DNS data in the next sub-section.

3.3.2 High Mach Number Limit: DNS vs. PRE

In Figure 3.4, we compare the linear-PRE results against DNS data at di�erent

Mach numbers. Non-linear and viscous e�ects are present in DNS computations.

The solid line in Figure 3.4(a) represents the analytical PRE result obtained from

squaring and integrating equation (3.25). The DNS results of various Mach numbers

are shown with symbols. Clearly, the agreement is excellent at early times. It is

evident that the larger Mach number simulations follow the asymptotic analytical

behavior for a longer period of time as anticipated in [18]. Next we examine the

47



 1

 2

 3

 6

 0.1  1  2  3  4  10

u
2
/u

2
0

U0t
*
/L

(a)DNS Ma 7.2

DNS Ma 6.0

DNS Ma 4.5

PRE

 1

 2

 3

 6

 0.1  1  2  3  4  5

u
2
/u

2
0

U0t
*
/(LM

1/2
)

(b)DNS Ma 7.2

DNS Ma 6.0

DNS Ma 4.5

τ=1.8

Figure 3.4: DNS vs. PRE for streamwise kinetic energy evolution:(a)shear time and
(b)mixed time

precise duration over which the PRE formulation is valid in Figure 3.4(b). Clearly

the departure of DNS solution from PRE occurs at the estimated time τ which has

approximate value 1.8, same as in [18]. Beyond this time, pressure e�ects begin to

in�uence the �ow �eld.

In the PRE analysis, the perturbation velocity �eld is a strong function of the
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wall-normal coordinate y. It is therefore important to verify whether the streamwise

and wall-normal perturbation velocity pro�les are captured by DNS. In Figure 3.5,

we compare the streamwise perturbation velocity u pro�le obtained from DNS data

at di�erent lapse times against PRE solution at the corresponding times. Only

Mach 6 case results are shown as other cases show similar behaviors. The DNS

(Mach 6) results match the PRE solution at nearly all locations at all times. The

numerical and analytical pro�les show a small but discernible di�erence at the peak

u locations. This observation can be attributed to the fact that peak u values occur

in regions of very steep second derivatives. In these peak regions, viscous e�ects

(second derivative) dominate over inertial e�ects (�rst derivative). Thus the inviscid

PRE solution is slightly di�erent from the full-physics DNS solution. Comparison of

DNS and PRE wall-normal perturbation velocity v pro�les at di�erent elapsed times

are given in Figure 3.6. The PRE analysis indicates that this pro�le is invariant in

time. The DNS solutions do indeed capture this time-independence. Overall, it is

evident that the computational scheme represents the physics of pressure-released

limit accurately over the initial stages of perturbation growth, further the duration

over which the DNS results are consistent with PRE is similar to that in homogeneous

shear �ows [17] at high Mach number limit.

3.3.3 Low Mach Number Limit: DNS vs. OSE

While PRE represents the asymptotic limit of pressure being too slow to modify

the velocity �eld evolution, incompressible �ow represents the opposite extreme in

which pressure acts instantly to keep the velocity �eld divergence free at all times.

We will now investigate if DNS captures the linear evolution of small perturbations

as dictated by the Orr-Sommerfeld equation (OSE).

We commence with a comparison of DNS and OSE velocity �eld evolution. The
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DNS at two incompressible Mach numbers performed with di�erent initial perturba-

tion amplitudes are plotted along with OSE solutions in Figure 3.7. Figure 3.7(a)

shows Case 1 for which Reynolds and Mach numbers are 30408 and 0.08 respectively.

The streamwise perturbation velocity magnitude maximas at di�erent wall-normal

distances in DNS solution are considered. The maxima evolution for three initial

intensities (0.1%, 0.5%, 2%) is found to follow the linear analysis result very closely

at the early stages before nonlinear e�ects begin to appear. Here the time is nor-

malized by characteristic length and initial background �ow centerline velocity. In

Figure 3.7(b), Case 2 (Re= 45458, and Ma= 0.12) is examined. In this plot the

square root of volume-averaged kinetic energy is considered. Once again excellent

agreement between DNS results and OSE solution is seen irrespective of the initial

perturbation intensity.

Next we compare the evolution of streamwise perturbation velocity u and wall-

normal perturbation velocity v pro�les in Figures 3.8 and 3.9. Only the Ma=0.12

(Re=45458) results are provided as both Mach number cases yield identical outcomes.

Since the OSE solution adopts normal mode form as (3.33) and (3.34) whose spatial

and time dependency are separate, the normalized pro�les of both u and v must be

invariant in time. Indeed, DNS solution preserves the normal mode shape accurately.

3.4 Summary and Conclusion

We develop a linear pressure-released equation (PRE) analysis to describe the

stability of very high Mach number Poiseuille �ow. The PRE and Orr-Sommerfeld

analysis are compared against Poiseuille �ow DNS results at extreme Mach numbers.

The DNS employs the Gas-Kinetic Method (GKM) to study small perturbation evo-

lution in channel �ows over a range of Mach and Reynolds numbers. The agreement

between numerical simulations and linear analysis is very encouraging. Overall the
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present study reveals the physical accuracy and numerical viability of GKM approach

for simulating wall-bounded �ow instabilities over a large Mach number range. The

importance of PRE for describing wall-bounded non-uniform shear �ow at early stage

of evolution is �rmly established. The work in this study is published in [54].
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4. INSTABILITY OF POISEUILLE FLOW AT INTERMEDIATE MACH

NUMBERS

We now investigate the stability characteristics of small perturbation evolution

in high-speed channel �ow at intermediate Mach numbers. Speci�cally, we investi-

gate the in�uence of perturbation obliqueness and Mach number on stability. This

study employs linear analysis and DNS. The linear analysis solves an initial value

problem, rather than an eigenvalue problem, to establish the various stages of per-

turbation evolution. The corresponding temporal-DNS is performed using the Gas

Kinetic Method (GKM). The GKM solver has been well validated by [16,23] and in

previous sections. The base velocity �eld is taken to be parabolic. This velocity �eld

is sustained using either a pressure gradient or a body force. Temporal channel �ow

simulations are performed starting from imposed two and three-dimensional pertur-

bations. To contrast incompressible and compressible �ow characteristics, normal

modes of the incompressible channel �ow with modi�cations are used as the initial

perturbations at all speed regime. This is similar to the initial condition used by

other investigators [20] to examine breakdown to turbulence in compressible channel

�ow. To establish the generality of the in�uence, other mode shapes are also used

for the initial perturbations.

4.1 Governing Equations and Linear Analysis

The compressible Navier-Stokes equations along with ideal-gas assumption form

the basis of the analysis in this study. It is given in equations (2.1), (2.2), (2.3) and

(2.4).
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4.1.1 Linear Analysis

The �ow �eld is decomposed into base �ow and perturbations. The decomposition

is given by:

ρ∗ = ρ̄+ ρ′, (4.1)

u∗i = Ūi + u′i, (4.2)

p∗ = P̄ + p′. (4.3)

Base �ow satis�es the governing equations and stays nearly stationary over the du-

ration of the analysis. The base �ow is plane Poiseuille �ow with a parallel velocity

pro�le:

Ūi = (Ū1(x2), 0, 0). (4.4)

The perturbation �eld is fully three-dimensional and is given by:

u′i = (u′1, u
′
2, u
′
3). (4.5)

We consider small initial perturbations so that the non-linear terms in perturbation

equations can be neglected in the analysis. Here, x1 is de�ned as streamwise direction,

x2 is wall-normal direction and x3 is span-wise direction.

By subtracting base �ow equations from those of total �ow, the linearized per-
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turbation equations can be obtained:

∂u′1
∂t

+ Ū1
∂u′1
∂x1

= −1

ρ̄

∂p′

∂x1

− u′2
∂Ū1

∂x2

+
µ

ρ̄

(
∂2u′1
∂xk∂xk

− 1

9

∂2u′k
∂x1∂xk

)
, (4.6)

∂u′2
∂t

+ Ū1
∂u′2
∂x1

= −1

ρ̄

∂p′

∂x2

+
µ

ρ̄

(
∂2u′2
∂xk∂xk

− 1

9

∂2u′k
∂x2∂xk

)
, (4.7)

∂u′3
∂t

+ Ū1
∂u′3
∂x1

= −1

ρ̄

∂p′

∂x3

+
µ

ρ̄

(
∂2u′3
∂xk∂xk

− 1

9

∂2u′k
∂x3∂xk

)
, (4.8)

∂p′

∂t
+ Ū1

∂p′

∂x1

= −P̄ γ
(
∂u′1
∂x1

+
∂u′2
∂x2

+
∂u′3
∂x3

)
+ o(µ). (4.9)

Here o(µ) is the viscous term in linearized perturbation pressure equation. From the

velocity �eld, the linearized perturbation vorticity equations can be obtained:

∂w′1
∂t

+ Ū1
∂w′1
∂x1

=
1

ρ̄2

∂ρ̄

∂x2

∂p′

∂x3

− ∂Ū1

∂x2

∂u′3
∂x1

− µ

ρ̄2

∂ρ̄

∂x2

(
∂2u′3
∂xk∂xk

− 1

9

∂2u′k
∂x3∂xk

)
+
µ

ρ̄

(
∂3u′3

∂xk∂xk∂x2

− ∂3u′2
∂xk∂xk∂x3

)
, (4.10)

∂w′2
∂t

+ Ū1
∂w′2
∂x1

= −∂Ū1

∂x2

∂u′2
∂x3

+
µ

ρ̄

(
∂3u′1

∂xk∂xk∂x3

− ∂3u′3
∂xk∂xk∂x1

)
, (4.11)

∂w′3
∂t

+ Ū1
∂w′3
∂x1

=
1

ρ̄2

∂ρ̄

∂x2

∂p′

∂x1

− ∂Ū1

∂x2

(
∂u′1
∂x1

+
∂u′2
∂x2

)
− µ

ρ̄2

∂ρ̄

∂x2

(
∂2u′1
∂xk∂xk

− 1

9

∂2u′k
∂x1∂xk

)
+
µ

ρ̄

(
∂3u′2

∂xk∂xk∂x1

− ∂3u′1
∂xk∂xk∂x2

)
+ u′2

∂2Ū1

∂x2∂x2

, (4.12)

In span-wise perturbation vorticity (w3) equation (4.12), multiple instability mecha-

nisms can be identi�ed. On the right side of equation(4.12), the �rst term 1
ρ̄2

∂ρ̄
∂x2

∂p′

∂x1

represents the baroclinic e�ect, the second term ∂Ū1

∂x2

(
∂u′1
∂x1

+
∂u′2
∂x2

)
represents com-

pressible vortex production, the third and fourth terms are viscous e�ect and the

last term u′2
∂2Ū1

∂x2∂x2
is the second derivative e�ect. The same span-wise vorticity equa-

tion in the incompressible �ow regime only contains the second derivative term and
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viscous e�ect term. In compressible �ow linear analysis, the viscous e�ect plays a

less prominent role than the pressure-velocity interactions. Therefore, we focus on

the inviscid perturbation equations:

∂u′1
∂t

+ Ū1
∂u′1
∂x1

= −1

ρ̄

∂p′

∂x1

− u′2
∂Ū1

∂x2

, (4.13)

∂u′2
∂t

+ Ū1
∂u′2
∂x1

= −1

ρ̄

∂p′

∂x2

, (4.14)

∂u′3
∂t

+ Ū1
∂u′3
∂x1

= −1

ρ̄

∂p′

∂x3

, (4.15)

∂p′

∂t
+ Ū1

∂p′

∂x1

= −P̄ γ
(
∂u′1
∂x1

+
∂u′2
∂x2

+
∂u′3
∂x3

)
. (4.16)

To demarcate the perturbation wave mode's shift from its own growth or decay, the

perturbation equations are considered in a coordinate frame moving with base �ow.

The coordinate frame transformation is given by:

X1 = x1 −
∫ t

0

Ū1dt, (4.17)

X2 = x2, (4.18)

X3 = x3, (4.19)

t = t. (4.20)
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Perturbation equations in the new frame are given as:

du′1
dt

= −1

ρ̄

∂p′

∂X1

− u′2
∂Ū1

∂x2

, (4.21)

du′2
dt

= −1

ρ̄

∂p′

∂X2

+
1

ρ̄

∂p′

∂X1

∫ t

0

∂Ū1

∂x2

dt, (4.22)

du′3
dt

= −1

ρ̄

∂p′

∂X3

, (4.23)

dp′

dt
= −P̄ γ

(
∂u′1
∂X1

+
∂u′2
∂X2

− ∂u′2
∂X1

∫ t

0

∂Ū1

∂x2

dt+
∂u′3
∂X3

)
. (4.24)

Based on the �ow homogeneity in streamwise (X1) and span-wise (X3) directions,

the perturbation is introduced in the normal mode forms:

u′1 = û1(X2, t)e
i(κ1X1+κ3X3), (4.25)

u′2 = û2(X2, t)e
i(κ1X1+κ3X3), (4.26)

u′3 = û3(X2, t)e
i(κ1X1+κ3X3), (4.27)

p′ = p̂(X2, t)e
i(κ1X1+κ3X3). (4.28)

Here, hat represents the complex mode amplitude and κ1&κ3 are spatial wave num-

bers. With these mode forms implemented into perturbation equations, the pertur-

bation mode magnitude equations are given as:

dû1

dt
= −1

ρ̄
iκ1p̂− û2

∂Ū1

∂x2

, (4.29)

dû2

dt
= −1

ρ̄

∂p̂

∂X2

+
1

ρ̄
iκ1p̂

∫ t

0

∂Ū1

∂x2

dt, (4.30)

dû3

dt
= −1

ρ̄
iκ3p̂, (4.31)
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dp̂

dt
= −P̄ γ

[
iκ1û1 +

∂û2

∂X2

− iκ1û2

∫ t

0

∂Ū1

∂x2

dt+ iκ3û3

]
. (4.32)

Inspection of equations (4.30) and (4.32) suggests that time integrated terms dom-

inate the perturbation evolution at long times. It is evident that pressure interacts

most strongly with the wall-normal velocity u2. At long times, this interaction is

described by:

dû2

dt
∼ 1

ρ̄
iκ1p̂

∫ t

0

∂Ū1

∂x2

t, (4.33)

dp̂

dt
∼ P̄ γiκ1û2

∫ t

0

∂Ū1

∂x2

t, (4.34)

Evidently, p′ and u′2 are coupled as in a harmonic oscillator. In such a case, energy

must be equi-partitioned between these two perturbation components. Similar �nd-

ings have been reported in other �ows such as homogeneous shear [18, 23]. Later in

this study, DNS results will be scrutinized for this equi-partition.

Most importantly, the pressure-velocity interaction does not require the presence

of a second derivative in the background velocity �eld. At this stage we isolate the

linear and quadratic e�ects of the background velocity �eld. In incompressible �ow,

the quadratic nature of the pro�le leads to the Tollmien-Schlichting instability. In

compressible �ows, the nature of the pressure �eld is established by the linear part

of the �ow �eld. Our goal is to examine the in�uence of the compressible pressure

�eld on the TS wave instability.

First we examine the nature of the pressure �eld by simplifying the background

�eld to be locally linear.

∂Ū1

∂x2

(x2) ≈ S = constant, (4.35)

Clearly, neglecting the second derivative will have some consequences. The validity

of this simpli�cation will be assessed later by comparing analytical results against
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DNS data.

4.1.1.1 Uniform Shear Initial Value Analysis

Under the assumption of uniform shear �ow, the mode forms can be written as:

u′1 = û1(t)ei(κ1X1+κ2X2+κ3X3), (4.36)

u′2 = û2(t)ei(κ1X1+κ2X2+κ3X3), (4.37)

u′3 = û3(t)ei(κ1X1+κ2X2+κ3X3), (4.38)

p′ = p̂(t)ei(κ1X1+κ2X2+κ3X3). (4.39)

The velocity and pressure equations simplify to

dû1

dt
= −1

ρ̄
iκ1p̂− û2S, (4.40)

dû2

dt
= −1

ρ̄

∂p̂

∂X2

+
1

ρ̄
iκ1p̂

∫ t

0

Sdt, (4.41)

dû3

dt
= −1

ρ̄
iκ3p̂, (4.42)

dp̂

dt
= −P̄ γ

[
iκ1û1 +

∂û2

∂X2

− iκ1û2

∫ t

0

Sdt+ iκ3û3

]
. (4.43)

Given ûi(0) and p̂(0), we now seek the perturbation evolution. The equations (4.40),

(4.41), (4.42) and (4.43), and solution mode forms (4.36), (4.37), (4.38) and (4.39),

are now similar to that in a homogeneous shear �ows [23]. Following the derivation

in [17], the pressure evolution equation can be written as:

d3p̂

dt3
= −a2S2κ2(0)cos2β(t2

dp̂

dt
+ 4tp̂), (4.44)
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Figure 4.1: The orientation angle of oblique modes

Here p̂ is the Fourier amplitude of pressure perturbation, a is speed of sound and

κ(0) is the initial wave number and β is the obliqueness angle of a typical wave vector

shown in Figure 4.1.

In the linear analysis for homogeneous shear �ows [18, 23], it is shown that the

velocity �eld is signi�cantly in�uenced by pressure e�ects which are closely related

to the perturbation orientation. For oblique modes, new parameters are de�ned such

as e�ective shear and e�ective Mach number. With the oblique wave vector, the

e�ective shear, S∗, experienced by a perturbation is given by:

S∗ = Scos(β). (4.45)

The e�ective Mach number experienced by a perturbation mode, M∗, de�ned as:

M∗ =
S∗

κ(0)a
= M0cos(β), (4.46)

where M0 is the reference Mach number. This is the Mach number experienced by a
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streamwise (β = 0◦) mode.

With the e�ective parameters, the pressure perturbation in equation (4.44) yields

a self-similar form of:

d3p̂

dt∗3
= −

(
t∗2

dp̂

dt∗
+ 4t∗p̂

)
, (4.47)

The normalized time is de�ned as:

t∗ =
S∗t√
M∗

. (4.48)

Crucial inferences can be drawn from the self-similar behavior of pressure equation:

1. The e�ective Mach number M∗ of a perturbation mode, rather than the refer-

ence Mach numberM0, is more suitable to characterize the behavior of pressure.

2. In terms of normalized variables, the behavior of pressure is independent of

obliqueness angle.

3. There should exists a critical obliqueness angle βc which experiences unit ef-

fective Mach number.

βc = cos−1(
1

M0

). (4.49)

4. The critical angle demarcates the perturbation-orientation space into two re-

gions: supersonic region and subsonic region. All modes with β < βc are

classi�ed as supersonic as their e�ective Mach number is greater than unity.

Modes with β > βc are identi�ed as subsonic modes.

5. Streamwise (β = 0◦) modes experience the highest e�ective Mach number

whereas span-wise modes experience nearly zero e�ective Mach number.

In the compressible homogeneous shear �ow, [17] shows that all supersonic modes

are stable and all subsonic modes are unstable. The schematic stability map for
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Figure 4.2: Schematic of modal stability for compressible homogeneous shear �ow

compressible homogeneous shear �ow is given in Figure 4.2. In this study, we will

use DNS to examine how obliqueness a�ects the �ow stability in Poiseuille �ow.

4.1.1.2 Non-uniform Shear E�ect

The consequence of non-uniform shear is now examined using the span-wise vor-

ticity equation:

∂w′3
∂t

+ Ū1
∂w′3
∂x1

=
1

ρ̄2

∂ρ̄

∂x2

∂p′

∂x1

− ∂Ū1

∂x2

(
∂u′1
∂x1

+
∂u′2
∂x2

)
− µ

ρ̄2

∂ρ̄

∂x2

(
∂2u′1
∂xk∂xk

− 1

9

∂2u′k
∂x1∂xk

)
+
µ

ρ̄

(
∂3u′2

∂xk∂xk∂x1

− ∂3u′1
∂xk∂xk∂x2

)
+ u′2

∂2Ū1

∂x2∂x2

, (4.50)

The inhomogeneous e�ect is incumbent in the term u′2
∂2Ū1

∂x2∂x2
and viscous terms. In

the low-speed regime, these terms yield the Tollmien-Schlichting instability and the

second derivative term is the major contributing e�ect in the span-wise vorticity

equation. However, in high-speed �ow as depicted in equation (4.50), baroclinic
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term 1
ρ̄2

∂ρ̄
∂x2

∂p′

∂x1
and compressible vorticity production term ∂Ū1

∂x2

(
∂u′1
∂x1

+
∂u′2
∂x2

)
appear,

and in�uence the evolution of span-wise vorticity at compressible �ow regime. In the

later DNS discussion, these three terms will be examined.

4.2 Numerical Simulations

The computational domain is a rectangular box of dimension ratio 4 : 1 along

x(x1) and y(x2) directions. Along z(x3) direction, the box length depends upon

the mode under consideration. Grid cells are uniformly distributed along x and z

direction, but along wall-normal direction (y) geometric distribution is applied. The

convergence study for grid resolution and time step is performed as shown in Figures

2.8, 2.9, 2.10, 2.11, 2.12 and 2.13. Excellent grid and time step convergence have

been obtained.

The details of simulation cases are given in Table 3.2. U0 is the initial base

�ow velocity at the centerline, ρ is the initial base �ow density and T is the initial

base �ow temperature. Reynolds and Mach numbers are based on these base �ow

quantities and length scale. The magnitude of velocity perturbation is set to 0.5%

of the value of centerline base velocity. Periodic boundary conditions are applied

in x and z direction. In y direction, no-slip and no-penetration walls are applied.

Both adiabatic and isothermal conditions for temperature are examined. It is found

that both temperature boundary conditions yield similar perturbation evolutions

although the base temperature and density pro�les may be slightly di�erent. The

results discussed in this study are based on the isothermal wall condition.

4.3 Single Mode Perturbation

We �rst present the DNS simulation results of single perturbation mode evolution.

The e�ect of mode orientation and base �owMach number on single mode evolution is

examined. A set of modes of di�erent obliqueness angles are investigated to examine
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stability characteristics in this high-speed Poiseuille �ow. Three Mach numbers are

examined to demonstrate Mach number e�ect on mode evolution.

4.3.1 Single Mode Perturbation in Incompressible Poiseuille Flow

For incompressible wall-bounded �ow, Tollmien-Schlichting instability is well-

known from linear stability theory. In this work, the obliqueness angle β = 0◦

represents TS instability wave. In present DNS, the growth of TS wave is accurately

captured and good agreement is reached between DNS and linear theory prediction.

The kinetic energy evolution of TS wave mode at incompressible limit (Ma=0.08)

is given in Figure 4.3. In Figure 4.3, kinetic energy evolution of other di�erent

obliqueness angles are also given. It is observed that for β = 90◦, the perturbation

evolution exhibits extremely rapid growth. This mode grows more rapidly than TS

wave mode. Perturbation modes with intermediate angles also demonstrate growing

evolution at this low-speed limit. The growth rate of intermediate angle modes is

con�ned by the two limits: β = 0◦ and β = 90◦. Overall, perturbation modes with

all obliqueness angles exhibit persistent growth behavior in this low-speed Poiseuille

�ow. To summarize the mode behavior in incompressible �ow limit, an instability

schematic map is proposed in Figure 4.4. For all perturbation modes with di�erent

obliqueness angles, persistent growth is observed. Instability feature is identi�ed for

all modes. This instability behavior is also dependent on the obliqueness angle. As

to β = 90◦, the most unstable evolution is observed. With increase in Mach number,

this instability feature in Figure 4.4 is a�ected by compressibility e�ect. To further

analyze the compressibility e�ect on perturbation evolution, we focus on the mode

evolution with di�erent obliqueness angles under several Mach numbers in the next

discussion.
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4.3.2 Single Mode Perturbation in Compressible Poiseuille Flow

Di�erent from incompressible �ow limit, high Mach number �ow demonstrates

strong compressibility e�ect. The compressibility e�ect manifests via the nature of

pressure. Pressure plays distinctly di�erent roles with �ow transformation from in-

compressible to compressible regime. To investigate the compressibility e�ect further

pressure e�ect on the perturbation evolution, we focus on kinetic energy evolution

of di�erent modes in high Mach number Poiseuille �ow.

4.3.2.1 Streamwise Mode (β = 0◦)

At incompressible �ow limit, β = 0◦ corresponds to the TS instability wave. For

high Mach number �ow, the same wave mode is considered to investigate compress-

ibility e�ect on TS instability. The kinetic energy component u2 is examined in Figure

4.5. The u2 component is employed to present mode growth because approximate

analysis of this velocity component is performed in prediction of mode evolution at

pressure released limit. Thus, pressure released limit (PRE) and TS instability limit

(OSE) are given in Figure 4.5. Three Mach numbers are considered: 4.5, 6 and 7.2.

The initial growth of all three cases are identical and follow the PRE limit. Thus, for

high Mach number �ows, the initial evolution of small perturbation modes are ex-

empt from pressure e�ect. The initial growth departs from the PRE limit relatively

quickly. With the higher Mach number, the departure occurs later. The subsequent

evolution is in�uenced by oscillatory behavior. This oscillation is accompanied by

decaying. After the early stage, the oscillatory kinetic energy evolution goes down

and reaches a much lower limit than TS instability growth of incompressible �ow.

Therefore, the persistent growth of TS wave in incompressible �ow is changed to

oscillatory decay in high Mach number �ow and the TS instability is suppressed by

compressibility e�ect. In the oscillation region, the higher Mach number leads to
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larger oscillatory amplitude. The Mach number essentially represents the base �ow

inertial e�ect over the acoustic e�ect. As mentioned, the perturbation evolution in

this high Mach number Poiseuille �ow demonstrates quite di�erent behavior from

low-speed case. This di�erence is related with the changing nature of pressure from

incompressible to compressible regime. The balance behavior between �ow inertial

and pressure acts di�erently in low-speed and high-speed �ows. In high-speed �ow,

the initial evolution of perturbation mode demonstrates sharp growing which follows

the PRE limit. This scenario suggests that pressure e�ect is negligible at the early

stage of evolution. The subsequent acoustic-like oscillation is due to the presence of

pressure e�ect.

For β = 0◦ mode, the kinetic energy component v2 is also compared with pressure

energy. Pressure energy is normalized as: p2

rP̄ ρ̄
. For Mach 6 case, those two energy

components are shown in Figure 4.6(a). The v2 versus the total energy of the two
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components with time evolution is given. This fraction initiates with the value 1

due to a null pressure perturbation. Then this value exhibits an oscillatory behavior.

The fraction oscillates around the half separation represented by the dashed line.

Thus, the energy is equi-partitioned between perturbation components v and p′.

This result con�rms the inference from linear analysis. In the linear analysis, the

coupling between v and p′ are shown to act as a harmonic oscillator and energy

is supposed to be equi-partitioned between these two components. For Mach 4.5

case, the fraction plot is given in Figure 4.6(b). Similar equi-partition behavior is

identi�ed.

4.3.2.2 Span-wise Mode (β = 90◦)

For span-wise mode, the wave vector is perpendicular to the base �ow shear

plane. The kinetic energy evolution of such mode at incompressible limit exhibits

rapid growth. The kinetic energy plots for Mach 6 and 4.5 are given in Figures

4.7. Evidently, this mode is rapidly growing with time in high Mach number �ow.

The kinetic energy evolution is compared to PRE limit which excludes any pressure

e�ect. The kinetic energy demonstrates similar behavior as PRE limit. Therefore,

the span-wise mode grows without any constraint from pressure in high Mach number

Poiseuille �ow. In linear analysis, β = 90◦ represents the zero limit of e�ective shear

and e�ective Mach number. The compressibility e�ect on this mode is supposed to

diminish to the minimal. The DNS results shown in Figure 4.7 con�rm the �ndings

from linear analysis.

4.3.2.3 Oblique Modes (0◦ < β < 90◦)

For oblique modes with angle (β) between 0 and 90◦, the individual mode evolu-

tions are investigated by examining the kinetic energy evolution with time shown in

Figure 4.8 for two Mach numbers. It is observed that the streamwise (β = 0◦) mode
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evolution experiences the most oscillatory in�uence compared to other oblique modes.

As mentioned before, the oscillation is brought in by the presence of acoustic-like

pressure e�ect. Thus, the streamwise mode evolution experiences strongest in�u-

ence from pressure. This �nding supports the linear analysis mentioned before. The

e�ective shear and Mach number reach maximum value with β = 0◦. The strong

compressibility e�ect is expected to appear with this mode condition from linear

analysis. The oscillation impact decreases with increase in β. At β = 90◦, the

oscillatory behavior is not observed in the evolution. This oscillation is shown to

depend on the obliqueness angle. We know that this oscillation is closely related

with the behavior of pressure which acts as an acoustic wave in highly compressible

�ow. Therefore, the pressure e�ect is shown to be a function of β in current DNS

results. On the other hand, the linear analysis suggests that perturbation evolution

depends on the e�ective Mach number, further on β. Thus, the DNS results here

con�rm the �ndings from linear analysis. Based on linear analysis, a critical angle

is found to characterize the transition from supersonic to subsonic e�ective Mach

numbers. For the Mach number 6 case, the critical angle (βc) is around 80◦. In ki-

netic energy plot 4.8(a), 80◦ is the approximate separation of decaying and growing

region. For the Mach number 4.5 case, the critical angle is around 77◦ which can

be identi�ed in Figure 4.8(b). The DNS results show that the critical angle is ap-

proximately the demarcation of mode growth and decay. Therefore, it is reasonable

to propose a schematic stability map for high Mach number Poiseuille �ow in mode

orientation space. The stability map is given in Figure 4.9. The schematic stability

map demonstrates that the β = 0◦ TS instability is stabilized in high Mach number

Poiseuille �ow, however, with the increase in β, the stabilization e�ect diminishes.

At around the critical angle, the stability feature is switched and modes with higher

angles become unstable.
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4.3.3 Other Initial Mode Shapes

In previous discussion, we examined the perturbation modes from Orr-Sommerfeld

(OS) solutions. The OS modes demonstrate persistent instability for all β at incom-

pressible �ow limit and di�erent stability features within two regions in high Mach

number �ows. To further investigate the stability characteristics of modes other than

OS type, we also study two other types of mode: new mode 1 and new mode 2.

New mode 1 has the sine and cosine shapes along wall-normal direction. The

perturbation is de�ned as:

u = sin(
x

Lx
2π) ∗ sin(

y

L
π), (4.51)

v = cos(
x

Lx
2π) ∗ (cos(

y

L
π) + 1) ∗ 2L

Lx
, (4.52)

Here Lx is the length of dimension in streamwise direction and L is half channel

width. This mode satis�es the boundary conditions at two walls and the divergence

75



free condition. The kinetic energy evolution of new mode 1 is shown in Figure 4.10(a).

Evidently, similar behavior as OS modes is observed. New mode 2 is composed by

superposition of OS mode and new mode 1. The kinetic energy evolution for this

mode is given in Figure 4.10(b). The similar mode evolution as previous two are

identi�ed. Therefore, the stability characteristics shown in Figure 4.9 for OS modes

are universal in high Mach number �ows.

4.3.4 Vorticity Evolution of Streamwise (β = 0◦) Mode

Three types of modes such as OS mode, new mode 1 and new mode 2 are ex-

amined in previous discussion. They all demonstrate similar stability feathers in

high Mach number Poiseuille �ow. In particular, the streamwise mode exhibits the

most oscillation and stabilization in�uence under this highly compressible �ow. To

further investigate the underlying physics of compressibility impact, we examine the

�ow structure and span-wise vorticity evolution for streamwise mode.

4.3.4.1 Compressibility E�ect

The streamwise (β = 0◦) mode evolution in high-speed Poiseuille �ow is quite dif-

ferent from that in low-speed regime. The low-speed instability is clearly suppressed

and stabilized in high-speed �ow. The kinetic energy evolution already shows the

di�erent behaviors. This di�erence can also be demonstrated in the perturbation

velocity vector plot shown in Figure 4.11. For low-speed Poiseuille �ow, the pertur-

bation evolution sustains the initial spatial structure. However, the high-speed �ow

breaks up the initial perturbation into various small structures. More circulation ex-

ists in high-speed �ow than low-speed �ow. Besides the velocity vector, the span-wise

vorticity also depicts the �ow structure. The span-wise vorticity contours for both

low and high speed Poiseuille �ow are given in Figure 4.12. The vorticity is normal-

ized by the base �ow centerline velocity U0 and length scale L. From the evolution
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of vorticity contour, we found that vorticity for the low-speed case has stationary

structure with time evolution however for the high-speed case the vorticity structure

is changing rapidly. The distinctly di�erent behavior in span-wise vorticity evolu-

tion of high-speed �ow is an additional representation of compressibility in�uence on

perturbation evolution.

4.3.4.2 Inhomogeneity E�ect

The span-wise vorticity structure is examined in the previous discussion. To an-

alyze the vorticity evolution further, we focus on the linearized span-wise vorticity

equation given in equation (4.50). There are three major terms on the right side of

equation besides the viscous e�ect which is trivial in present analysis. As mentioned

before, the baroclinic term and compressible vorticity production are related to the

compressibility e�ect, whereas the second derivative term exists in both the incom-

pressible and compressible �ow regimes. In high Mach number Poiseuille �ow, those

three balancing mechanisms are examined numerically. Those three budget terms

are shown in Figure 4.13. From the budget shown, the baroclinic term is trivial

compared to other two. The compressible vortex production term is shown to be

dominant in the plot. In the DNS result, this compressible vorticity production is

one order higher than second derivative term. Therefore, the compressible vorticity

production term is more critical in the vorticity evolution for high Mach number �ow.

As mentioned before, the second derivative term represents the inhomogeneous shear

e�ect since it reduces to zero for homogeneous shear �ow. Thus, the inhomogeneity

e�ect is superseded by compressibility impact in this high Mach number Poiseuille

�ow.
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4.4 Coupled Modes to Late Stage Evolution

The single mode evolution is discussed in the previous section. The stability

of single mode is well characterized by linear analysis. To further investigate the

perturbation evolution into late stage, 3-D perturbation modes are considered. In

this work, we consider two coupled oblique modes as initial conditions. The non-

linear interactions between two oblique modes are examined and presented.

4.4.1 Single Mode and Coupled Modes

The comparison between two oblique modes and single mode with same oblique-

ness angle β = 60◦ is shown in Figure 4.14(a). As the single mode evolution, coupled

modes initially show rapid growth for short time. After departure from initial growth,

coupled modes fall to a stabilization region. At late time, persistent growth of cou-

pled modes is observed while single mode decays to trivial. The comparison between

two coupled modes and individual mode with same obliqueness angle β = 78◦ is

shown in Figure 4.14(b). Thus, in both cases the coupled modes evolution demon-

strates quite di�erent behavior. The coupled mode evolution can be illustrated by

the stability map shown in Figure 4.15. The initial two modes are interacting to

generate other modes. The derivative modes have a portion fall into unstable region

and other portion fall into stable region. The unstable modes will retain leading to

the later stage growth identi�ed in Figure 4.14.

4.4.2 Late Stage Modes Evolution

The two coupled oblique modes evolution yields late stage growth and possible

breakdown to turbulence. The kinetic energy evolution of two 60◦ oblique modes is

given in Figure 4.16. Five time instances are pointed out in the kinetic energy plot.

Corresponding to the kinetic energy evolution at these �ve time spots, the contours of
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streamwise velocity perturbation are shown in Figures 4.17(a),4.18(a),4.19(a),4.20(a)

and 4.21(a). The contour clearly shows the mode orientation change in coupled

modes evolution. At St = 120, most energetic modes are span-wise modes. From

the oblique mode discussion as before, these span-wise modes have continuous growth

exempt from any pressure constraint. With dominant span-wise modes, the pertur-

bation exhibits late-stage growth and then breaks down. At St = 200, �ow starts

to break down and then �nally breaks down at St = 250. The wavenumber spec-

trum is also examined at the same plane as the contour. The spectrum is shown in

Figures 4.17(b),4.18(b),4.19(b),4.20(b) and 4.21(b). At the early stage St = 2, there

exist both streamwise and span-wise wave numbers. As �ow evolves to St = 120,

only span-wise dominant waves are observed. As �ow breaks down, much broader

spectrum is identi�ed at St = 250.
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Figure 4.17: Streamwise perturbation velocity contour and wavenumber spectrum of
coupled 60◦ modes at Mach 6:St=2
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Figure 4.18: Streamwise perturbation velocity contour and wavenumber spectrum of
coupled 60◦ modes at Mach 6:St=50
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Figure 4.19: Streamwise perturbation velocity contour and wavenumber spectrum of
coupled 60◦ modes at Mach 6:St=120
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Figure 4.20: Streamwise perturbation velocity contour and wavenumber spectrum of
coupled 60◦ modes at Mach 6:St=200

89



x

z

0.05 0.1 0.15

0.02

0.04

0.06

0.08

u: -320 -240 -160 -80 0 80 160

(a) Streamwise velocity perturbation contour

κX

κ Z

 

 

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

1

2

3

4

5

6

7

8

9

10

11
x 10

4

(b) Wavenumber spectrum

Figure 4.21: Streamwise perturbation velocity contour and wavenumber spectrum of
coupled 60◦ modes at Mach 6:St=250
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4.5 Summary and Conclusion

Compressibility e�ects in high-speed �ow cause distinctly di�erent �ow pattern

compared to incompressible low-speed �ow. This di�erence is related to the chang-

ing behavior of pressure with the �ow transformation from low-speed to high-speed

regime. At very low Mach number pressure is dictated by the Poisson equation. Pres-

sure evolves fast enough to instantly impose divergence free condition to the velocity

�eld. However, at very high Mach number the action of pressure is relatively slow

compared to that of velocity �eld. Consequently, the velocity �eld evolves almost

una�ected by pressure. At intermediate Mach numbers, the time scale of pressure

evolution is comparable to that of velocity. Pressure behaves according to wave equa-

tion resulting from the energy equation and thermodynamic state equation. In this

study, we focused on the instability characteristics of Poiseuille �ow at intermedi-

ate Mach numbers by investigating the evolution of small perturbation in forms of

various wave modes.

We perform linear analysis and DNS studies of small perturbation evolution. The

linearized perturbation analysis suggests that the perturbation mode obliqueness and

Mach number are two critical parameters that a�ect stability in compressible �ows.

The DNS results con�rm that the mode evolution is dependent on obliqueness and

Mach numbers in high Mach number Poiseuille �ow. The DNS work is �rst performed

for single perturbation mode. The kinetic energy evolution for single mode is used

to demonstrate the demarcated stability regions in perturbation orientation space.

The zero angle mode is shown to experience the most suppression and stabilization

from compressibility e�ect. On the other hand, the span-wise mode experiences very

little compressibility e�ects. There exists a critical obliqueness angle between them

to demarcate the stability region. With increase in Mach number, the evolution of
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perturbation kinetic energy is a�ected by the growing inertial e�ect. By simulating

two coupled oblique modes we �nd that the kinetic energy evolution exhibits multiple

stage behavior which is quite di�erent from single mode evolution. Non-linear inter-

actions between modes are shown to play a critical role. The non-linear breakdown

toward turbulence is also demonstrated.
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5. CONCLUSIONS

In this doctoral thesis, we investigate the stability characteristics of high-speed

laminar Poiseuille �ow by performing linear analysis and temporal DNS. The work

consists of three parts. The major �ndings of each study is summarized in the

corresponding section. Here we present a brief synopsis of each study.

5.1 Development of GKM Solver

The �rst study addresses the development and validation of the GKM scheme

for wall-bounded high Mach number �ows. In low-speed �ows, GKM simulation

results are compared against Orr-Sommerfeld analytical solution resulting in ex-

cellent agreement. In high-speed �ows, grid and time-step convergence study are

performed for code veri�cation. The budget of Reynolds stress evolution equation

is examined. The two sides of the budget equation are shown to have exact equiva-

lence verifying the �delity of simulations. To better accommodate the spatial vari-

ations in Poiseuille �ow, the �fth order non-uniform WENO scheme is developed

and implemented into the GKM solver. The simulation results for both uniform and

non-uniform WENO schemes are compared by examining the kinetic energy evolu-

tion. Non-uniform WENO is shown to yield superior performance. Both body force

and pressure-gradient are examined for sustaining the �ow. For low-speed �ows,

small perturbation evolution agrees well with linear theory for both cases and the

type of driving does not signi�cantly alter the thermodynamic quantity evolution

due to weak thermodynamic coupling. For high-speed �ows, body force driving

produces a background thermodynamic �eld that is uniform in the stream-wise di-

rection. Pressure-gradient driven simulation results show undesirable stream-wise

gradients leading to unphysical results. Therefore, it is concluded that body force
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driven temporal simulations is better suited for temporal simulations of compressible

�ows.

5.2 Stability at Extreme Mach Numbers

We establish the stability characteristics at very high and very low Mach number

limits before proceeding to intermediate Mach numbers in the third study. We

develop linear pressure-released equation (PRE) analysis to describe the stability of

very high Mach number Poiseuille �ow. The PRE and Orr-Sommerfeld analysis are

compared against Poiseuille �ow DNS results at extreme Mach numbers. The DNS

employs the Gas-Kinetic Method (GKM) to study small perturbation evolution in

channel �ows over a range of Mach and Reynolds numbers. The agreement between

numerical simulations and linear analysis is excellent. Overall this study con�rms

the physical accuracy and numerical viability of GKM approach for simulating wall-

bounded �ow instabilities over a large Mach number range. Further, the importance

of PRE for describing wall-bounded non-uniform shear �ow at early stage of evolution

is �rmly established.

5.3 Stability at Intermediate Mach Numbers

In this study, we perform linear analysis and DNS studies of small perturba-

tion evolution at intermediate Mach numbers. The linearized perturbation analysis

suggests that the perturbation mode obliqueness and Mach number are two critical

parameters that a�ect stability in compressible �ows. The DNS results con�rm that

the mode evolution are dependent on obliqueness and Mach numbers in a self-similar

manner as suggested by linear analysis. The DNS investigation is �rst performed for

single perturbation mode. The kinetic energy evolution for single mode is used to

demarcate stability regions in perturbation orientation space. It is shown that the

zero angle mode (Tollmien-Schlichting instability) experiences the most suppression
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and stabilization due to compressibility e�ects. On the other hand, span-wise modes

experience very little compressibility e�ects. There exists a critical obliqueness angle

which demarcates the sub and supersonic modes. With the increase in Mach num-

ber, the evolution of perturbation kinetic energy is a�ected to di�erent degrees in the

di�erent obliqueness regions. By coupling two oblique modes we �nd that the kinetic

energy evolution exhibits multiple stage behavior which is quite di�erent from single

mode evolution. Non-linear interactions between modes are shown to play a critical

role. The non-linear breakdown toward turbulence is also examined.
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