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ABSTRACT 

Modern power electronic systems operate with different voltage and/or frequency rating 

such as Adjustable speed drive, Micro Grid, Uninterruptable Power Supplies (UPS) and 

High Voltage DC Transmission Systems. To match power electronic systems with the 

mains supply, DC link converters are used. The first stage of the DC link converter is the 

AC/DC conversion (rectifier). The rectifier type utility interface has substantial 

harmonics result in poor power quality due to low power factor and high harmonic 

distortion.  

Power Factor Correction (PFC) schemes are effective methods to mitigate harmonics 

and address this issue. In this thesis, analyses of three approaches for high power density 

rectifiers are developed. In the first study, modular three phase boost rectifiers operating 

in DCM are coupled in order to increase the power density. Major drawback of this 

rectifier is the high currents ripple in both the source and the DC link sides which require 

large EMI filter size -could be larger than the rectifier component size- and large DC 

filter capacitor size. This thesis proposes coupling modular three phase boost DCM 

rectifiers, the currents in both source and DC link sides are interleaved and consequently 

the currents ripple dramatically decreased results in small component size of the EMI 

filter and the DC filter capacitor leading to high power density rectification. Also, 

optimization of the number of the rectifier modules to achieve maximum power density 

is presented. Moreover, the switching function of each rectifier employs harmonic 

injection technique to reduce the low order harmonics. And, the DC output voltage is 
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varied with the load power such that the operation is at the boundary between CCM and 

DCM to achieve maximum power density tracking.    

In the Second study, a resonant three phase single switch PFC is presented to overcome 

the high 5th and 7th order current harmonics drawback in the conventional single switch 

three phase PFC circuits. The input current has low THD for each individual low order 

harmonics with high current ripple at the switching frequency. Interleaving the input 

current by coupling modular rectifiers is also presented to reduce the input current 

ripple. System equations and modes of operation is analyzed and derived to design the 

circuit parameters, switching frequency and duty ratio for the desired output voltage and 

load power.      

In the Third study, an advancement of existing modular T-connected single phase PFCs  

by means of replacing the low frequency transformer with medium frequency electronic 

phase shifter to reduce the size and weight of the system. The approach has higher power 

density compared with the Y, delta and T-connected single phase PFC modules. The 

study examines the 3 to 2 phase conversion, system harmonics, switching technique for 

the AC chopper and the power flow of the system.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Power electronic supply with high electric power density operates from three phase 

system has two stage of conversion.  Starting with rectifying the main ac voltage to DC 

voltage then adjusts the DC voltage to match the DC link requirements. The DC link 

configuration of power electronic supply are widely used in industries that use 

Uninterruptable Power Supply (UPS), Adjustable Speed Drives (ASD), induction 

heating systems, battery chargers and data centers etc. Also, high voltage DC (HVDC) 

systems employ rectifiers to convert ac input to DC output. HVDC is one example of the 

application of AC/DC conversion, in power system also, grid tie of two different power 

system use DC link converters. In renewable energy field, rectifiers are major part in the 

electric power generation stage for the wind generators. Micro grid systems employ 

rectifiers to interface with the surrounding AC systems. Furthermore, most of electronic 

devices are supplied by rectifier. Now a day, electric power supplies are highly relay on 

rectifiers as a major part to deliver the required load power. 

Traditionally, rectifier type utility interface cause substantial harmonic currents and 

voltage distortion at the point of common coupling (PCC) which may lead to poor power 

quality due to ineffective energy transfer, equipment overheating , interface with 

telecommunication devices and electronic devices malfunctioning etc., more impact are 

discussed in the next section. 
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Power quality measurements of sinusoidal main and non-linear load interface generally 

characterized by:   

- Power factor (PF): in linear circuit the term power factor refer to displacement power 

factor however in nonlinear circuit the term power factor is generalized to have two 

components distortion factor (DF) and displacement power factor. Where  

   
                       

                 
  

Displacement power factor cos(θ) , where θ is the angle between voltage and current. 

              

-Total Harmonic distortion (THD): quantity index of the non-sinusoidal property of a 

waveform. 

     
√∑      

   

  
 

- Total demand distortion (TDD): percentage of harmonic current distortion in at 

maximum demand load current for 15 or 30 min demand.  

-Form factor and crest factor are sometimes used to for non-sinusoidal waveforms: 

            
           

              
     ,                 
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1.2 Rectifier interface with the utility 

Unlike the linear loads such as motors and heaters that draw sinusoidal currents 

proportional to the applied main voltage, nonlinear loads such as switch mode power 

supplies draw periodic current waveform that are not sinusoidal but can be expressed as 

sum of orthogonal sinusoidal set by using Fourier series. For rectifier type utility 

interface odd current harmonics (3rd, 5th, 7th, etc.) are major concern. Voltage distortion 

at PCC and neutral current takes into account for this type of interface. In this section 

brief overview of typical current and voltage distortions and their impact on electrical 

apparatus are presented. 

1.2.1 Typical rectifier current harmonics 

Rectifiers draw harmonics current of frequency order and amplitude depend on the 

rectifier type. For diode bridge rectifier with neglecting the ac inductance and DC filter 

current ripple the harmonic order are (multiple of number of pulses±1) with amplitude 

equal to (fundamental current amplitude/harmonic order). For example, single phase 2-

pulse rectifier has harmonics order (3,5,7,…) and three phase 6-pulse rectifier has 

harmonics order (5,7,11,13,….).The generated current harmonics are not in the same 

sequence. In fact, some of them are negative sequence harmonics and under supply 

unbalance condition zero sequence may exist. Table 1 shows each harmonic sequence 

for balance positive sequence 60 Hz supply. Also, triplen harmonics may appear in three 

phase diode bridge rectifiers depend on the DC link filter and bridge connection 

configuration. The triplen harmonics are source of zero sequence current and their effect 

is briefly described in the next subsection.  
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Table 1 Harmonic current sequence 

Harmonic order Frequency Sequence Harmonic 

rotation 

1 60 Positive Forward 

5 300 Negative Backward 

7 420 Positive Forward 

11 660 Negative Backward 

13 780 Positive Forward 

The sequence interchanging manner between positive and negative is continuing 

for the rest of harmonic orders.   

 

 

 

However, taking into account ac inductance reduce the harmonics amplitude while the 

order does not effect. For passive diode bridge rectifier harmonics current amplitude is 

function of ac line inductance so that by increasing the ac line inductance the total 

harmonic distortion reduced for certain range. On the other hand, by considering the ac 

line inductance the rectifier input current will not transfer from one phase to another 

instantaneously and overlap between sequential conducted phases occur known as 

commutation period. Of course this overlapping cause short circuit in the PCC during 
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the commutation period which cause notches to the voltage of PCC. More detail 

described in 1.2.3.  

Inrush current and overvoltage at turn on are facts of concern before presenting the 

effect of harmonics on electric apparatus. In the worst case scenario when the dc filter 

capacitor is completely discharged and the ac source input is at peak value at the turn on, 

an over voltage of factor 2.83 of nominal line voltage for three phase system or source 

voltage for single phase system appears across the dc link capacitor. The dc link voltage 

should be maintained about the design value since the loads are voltage sensitive. The 

starting current in this case reaches magnified value due to the transient response of LC 

circuit which may trip the supply circuit breaker and interrupt the connected loads. This 

problem can be overcome by adding a temporary resistance at the turn on time only 

which causes power losses for very short duration of time. This phenomenon occurs in 

transient and it is only mentioned here. Detail study of its effect is out of this thesis 

scope of work.   

1.2.2 Effect of harmonics current 

The harmonics current affect both the power quality as well as the electric apparatus. 

Harmonics currents affect the power quality and efficient energy transfer between the 

source and the load causing boor power quality. Harmonics are not contributing to 

produce real power that is transferred to type of energy that the electric loads design to 

deliver.  Instead, harmonics creates reactive power that dissipated in the electric 

apparatus as undesirable kind of energy such as heat or vibrations. The tolerance of 
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electric apparatus to harmonic current is determined by their sensitivity to them. The 

least sensitive loads are the pure resistive that design to deliver heat such as oven and 

space heaters. In this case the harmonic function to deliver power but it cause excessive 

heating which result in insulation failure and reduce the equipment life time.  The most 

sensitive loads are those design for pure sinusoidal current mostly found in the 

communication and data processing application [1]. The tolerances of the rest of electric 

loads are between those two limits. Examples of the effect of the harmonics on the 

electric loads from [1] are listed below:      

- Generators and motors: current harmonics have harmful effect on rotating 

machinery starting with the heating of the stator and rotor winding due to 

currents at harmonic frequencies copper losses. In the developed air gap, current 

harmonic may cause torque pulsation, cogging, crawling (very high slip in 

induction machine) and mechanical oscillation. In the iron core, current harmonic 

may cause magnetizing saturation especially if triplen harmonic exist.   

- Transformers: current at harmonic frequencies cause heating to the transformer 

windings and may cause saturation for the iron core. 

- Power cables: increasing the current frequency force it to travel more in the 

surface of the conductors which known as skin effect. In power system the 

harmonic are in higher frequency than the fundamental current frequency. In 

order to handle the skin effect caused by the harmonics, power cable conductor 

size and spacing should be carefully designed. Still the copper losses increase 

with the existence of harmonic. 
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- Capacitor bank: capacitor bank absorb high frequency current which cause 

heating and dielectric stress to the capacitor bank. 

- Electronics and instrument equipment: equipment that design to pick the zero 

crossing or the phase of the voltage or current wave form are disturbed by the 

harmonics since the harmonic may shift the wave form which cause them to 

malfunctioning.  

1.2.3 Voltage distortion 

Switching power supplies cause momentary short circuit to the supply voltage due to 

line commutation effect or switching shoot-through which lead to voltage notches at the 

PCC. The voltage wave form in the PCC may have component at frequencies other than 

the fundamental frequency. The severity of the notch depends on the time at which the 

short circuit occurs relative to the voltage wave form at that time. The most severe 

moment is when the short circuit occurs at the peak voltage, and the least sever or not 

effected when the short circuit occurs at the zero crossing of the voltage wave form. The 

notch depth and area depend on the impedances of the source and the load while the 

width or time period depends on the short circuit time. The voltage distortion due to 

voltage notching can be summarized to two points: 

- Voltage at harmonic frequencies other than the fundamental frequency. 

- Reduced amplitude (RMS or peak) of the fundamental component. 

The effect of voltage distortion on the load is harmful since operating the loads at lower 

voltage than the rating voltage at rating power force them to draw higher current than the 
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rating current consequently overheat the load. The harmonic voltages mostly have the 

same effect of the above mentioned for the current harmonics. 

      1.3 IEEE 519 standard 

Harmonic limits have been regulated by professional organization standards such as 

IEEE 519 and IEC 61000-3-6. In this section IEEE 519 current and voltage harmonic 

recommendation for the system voltage rating concern in this document (low voltage) 

will be presented. This recommendation made for harmonic measured at point of 

common coupling PCC and generated by single consumer. First, harmonic current limits 

are specified based on the size of the load relative to the supply size. Table 2 shows the 

harmonic current limits recommended by IEEE 519-1992 [1]. In table 2 the load current 

harmonics is calculated based on the total demand current TDD. Second, the voltage 

distortions are calculated according to the base voltage or the supply fundamental 

voltage at PCC. The first row in table 3 is of interest in this thesis since it specify the 

limit for the low voltage supply case. 
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Table 2 IEEE harmonic current limits  

relative size 

of the load 

Maximum Percentage of Current harmonics order (h) 

For voltage rating (120 V through 69 000 V ) 

Isc/IL h<11 11<h<17 17<h<23 23<h<35 h>35 TDD 

<20 4.0 2.0 1.5 0.6 0.3 5.0 

20<50 7.0 3.5 2.5 1.0 0.5 8.0 

50<100 10.0 4.5 4 1.5 0.7 12.0 

100<1000 12.0 5.5 5 2.0 1.0 15.0 

1000< 15.0 7.0 6 2.5 1.4 20.0 

 

 

 

Where Isc is the short circuit limit of the supply and IL is the maximum load current. 

And table 3 shows the harmonic voltage limits recommended by IEEE 519-1992 [1]. 
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 Table 3 IEEE voltage distortion limits 

Voltage rating Individual voltage 

distortion (%) 

Total voltage distortion 

THD (%) 

69 KV and below 3.0 5.0 

69 KV through 161 KV 1.5 2.5 

161 KV and above 1.0 1.5 

 

 

 

1.4 Electric power distribution system and Telecom industry power supply 

architecture 

The electric power demand of telecom industry is increased by deploying more 

datacenters and servers to service all the networking, storage, computing, convergence, 

and application technologies used in telecom industry. According to GE datacenters 

consume approximately 3 percent of total U.S use [2]. The power supply is income from 

utility service company to telecom industry facilities and then processed within the 

facility power systems to supply different voltage rating load with reliable high quality 

power.   
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1.4.1 Electric power distribution system 

Utility electric power distribution system mainly consist of three phase three wire or 

three phase four wire systems. In United State, Electric utility should comply with ANSI 

284.1-1989 [3].  

Interface between sensitive electronic equipment, their environment, and the utility 

generate transient disturbance or steady state distortions to the input voltage waveform 

[3]. Table 4 characterizes these disturbance and distortions for the input voltage.  

 

 

 

Table 4 Disturbance and distortions characteristics for the input voltage 

Voltage Parameter affecting loads Typical range of power source 

Over/Under Voltage +6%, -13.3% 

EMI (conducted) normal and common 

mode 

10 V up to 200 KHz 

Less than at higher frequencies 

Voltage distortion  5-50 % THD 

Phase imbalance  2-10 % 

Current parameter affecting source Typical range of power load current 

Power factor 0.85-0.6 lagging 
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Voltage Parameter affecting loads Typical range of power source 

Crest factor 1.4-2.5 

Current distortion 0-10% total rms 

Table 4 continued  

 

 

The favored operation voltage for industrial plants is 480Y/277 V [4]. By such 

utilization three phase 480 V is directly connected to the supply, 277 V lighting loads 

can be connected in single phase line to neutral fashion and 120 V loads can be supplied 

with small rated transformers. Moreover, the usual AC source for Uninterruptible Power 

Supply (UPS) is 480/277 V 208/120 V for three phase systems [5]. In high power rating 

systems 5MW and above medium voltage 1 KV or greater is recommended for the stand 

by generators [6]. In this case the main supply switchgear is connected to medium 

voltage distribution system along with the stand by generator through bus coupler that 

transfer the supply between the main and the stand by generator as required by the 

design followed by medium voltage to low voltage transformer to fit the facility input 

voltage ratings.       

1.4.2 Telecom industry power supply architecture 

Modern telecom power system architecture use low voltage DC link bus either regulated 

48V or semi-regulated (36V- 55V) , to take advantage of reduced distribution losses, 
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supplied through modular UPS systems to share the load power [7]. These modular UPS 

systems rectify the supply mains voltage, 480 Vac for example, and converted to the 

desired low voltage DC link which supplies different power strips that have multi-output 

voltage ,3.3V 5V 6V 12V .. etc. A proposed system with higher DC link voltage (380 V) 

is presented in [8]. The advantage of having higher DC link is: 

 Lower I2R losses. 

 Less conversion stages in the overall system which result in less losses. 

 Smaller size and weight. 

 Longer battery backup. 

 Single global voltage [8]. 

An industry example for this architecture is GE Total Efficiency Datacenter shown in 

figure 1. The DC and AC UPS consist of rectifiers in the AC low voltage end, DC link 

and batteries, and DC/DC converter for DC loads or inverter for AC loads. GE Galaxy 

Power System series used in DC UPS employ modular (4 or 6) 595LTA rectifier for 480 

Vac 60 Hz 20A supplies each rectifier [GPS 4848 Galaxy Power] as shown in figure 2.  
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Utility 
supply 1

Utility 
supply 2

MV
transformer MV

transformer

Generators

MV to LV
transformers

AC loads
AC

UPS
&

Batteries

DC
UPS

&
Batteries

Critical
AC loads

Critical
DC loads  

Figure 1 GE Total Efficiency Datacenter 

 

 

 

 

Rectifier 1
480 V 20 A

Rectifier 2
480 V 20 A

Rectifier 3
480 V 20 A

Rectifier 4
480 V 20 A

3-phase
480V
60Hz

-48 V DC
880 A

GPS 4848

 

Figure 2 GPS 4848 Galaxy Power 
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 1.5 Existing three phase PFC and harmonic filtering scheme 

To meet the harmonic specification and power quality standards several techniques are 

used. Preference of one technique among others depends on the application, nature of the 

load, and system parameters to make use of the advantageous and avoid the 

disadvantageous. An over view of different major and common used techniques are 

presented in this section.    

1.5.1 Multi-pulse rectifiers and phase staggered loads 

Multi-pulse rectifier can be achieved by combining 6-pulse rectifier to form 12-pulse, 

18-pulse, 24-pulse... etc. by shifting each 6-pulse with angle of (360/number of pulse) 

from each other. 18-pulse configurations are widely used in the marketplace and 

practically meet the IEEE 519 standards [9]. However 12-pulse rectifier can achieve 

same performance with some additional modification such as the system proposed in 

[10]. In multi-pulse techniques phase shifting transformers are used to create the phase 

shifting between the pulses and provide electric isolation between the load and the 

supply. Several designs and methods are used to eliminate the transformer size and 

power rating. Main advantages of multi-pulse rectifier are:  

 Transformers provide electric isolation between the load and the supply. 

 No control circuit required which make the system simple. 

 Robust and less maintenance activity. 

 The absence of high switching frequency eliminates the EMI noise.  
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 Transformers turn ratios could be adjusted to have low DC link voltage. 

However, low frequency transformers (60/50 Hz) connected in series between the supply 

and the load yield in the following disadvantages:      

 Occupied large space and has heavy weight compared with the other active 

techniques. 

 Magnetic component used in the transformers core has high cost.  

 In some topologies zero sequence block transformer is required which increase 

the size, weight and cost more. 

 Typical transformer rating for 18-pulse is 68% to 80% of the DC load [9]. 

     Designed for specific system parameter.  

This technique is suitable in high power application with an environment that does not 

limit the size and weight. 

1.5.2 Active filters 

Harmonics can be filtered with passive filters design for each harmonic order. Active 

Power Filter (APF) topologies designed to eliminate several order harmonics using 

less passive element and more active element. APF can be classified to shunt active 

power filter, series active power filter and hybrid power filter which is a 

compensation of active and passive filters to improve the performance with lower 

rating. Shunt APF is used to reduce the current harmonic while the series APF is 

used to reduce the voltage harmonic. Figure 3 shows the topologies of a) series 
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active power filter and b) shunt active power filter. Since the series APF connected 

in series between the supply and the load it is required higher power rating than the 

shunt APF. The shunt APF is of concern in this section because the main objective of 

this work deals with current harmonics elimination. The APF is suitable and cost-

effective for low to medium power industry [11]. Unlike the multi-pulse rectifier, 

APF can be used to compensate several nonlinear load connected to the same PCC 

and can be used to eliminate neutrals current. Moreover, APF is much lower in size 

and cost compared with multi-pulse rectifier. On the other hand, the APF required 

complex control circuit.    

 

 

 

   

Figure 3 a) Series APF 
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The rating of the APF depends on the harmonics to be compensated.  A Comparison of 

current rating of shunt APF compensating an inductive rectifier with various additional 

harmonic mitigation techniques is presented in [12]. Table 5 summarized the result 

found in [12]. 

 

 

 

Table 5 APF current rating 

Number of current pulses IAPF-rms  (pu) 

6-pulse 0.311 

6-pulse with harmonic trap for 5th and 

7th harmonics 

0.191 

12-pulse 0.152 

 

Figure 3 b) Shunt APF 
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Finally, The APF can be used to eliminate real power oscillation, improve power factor 

and provide harmonic damping besides eliminating current harmonics [13].   

1.5.3 Phase modular rectifiers 

Single phase boost PFC has high power density and fulfill the harmonic standard 

requirement and easy to control compared with the PWM rectifier [14].Modular single 

phase PFC can be connected to form three phase PFC system. Modular single phase PFC 

can be connected in Y or delta fashion to form three phase PFC. Using modular single 

phase PFC to form three phase PFC must balance the loading among the modules is vital 

to keep the system. The Y connected modular with open neutral line shown in figure (4 

a) has the Advantage of low output DC link voltage [15].  However, it suffers from 

common mode noise and requires three output voltages to be regulated with balancing 

the input current which result in complex control compared to the delta connected 

modular [16].  
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Figure 4 a) Y connected PFC modular  
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Figure 4 b) Delta connected PFC 

modular 
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b
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c

 

Figure 4 c) 3/2 phase Scott 

transformer based 

 

 

 

Unlike the Y-connected modular, in Delta connected modular shown in figure (4 b) the 

control can be implemented individually for each module and the balance loading 

achieved in symmetrical main voltage [17]. Also, in case of one phase main voltage 

failure the Delta connected modular can be delver full output power without affecting 

the input current quality [18]. However, the DC link voltage is high (more than 1.4 times 

the line-line RMS input voltage).   

 Finally, three phase can be reduced to two phase system by three to two phase T-Scott 

transformer and two  modular  single phase can be used instead of three modular as 

shown in figure(4 c). The advantages of modular method are: 

 Easy to implement. 

 Can be operated for wide input range. 

 High input current quality. 
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 More loads can be added by adding more modular. 

And the disadvantages of the modular method are: 

 Load balance between the modules is required to achieve symmetrical loading. 

 Additional DC/DC converter is required to provide the electrical isolation. 

 Each module has individual DC link and DC capacitor filter. [17] 

 Neutral current may exist. 

 Relatively high number of circuit element used. 

An approach to reduce the number of element by combining 3 to 2 phases is presented in 

[19].      

 1.5.4 Direct three phase PWM rectifiers 

The PWM rectifiers use the pulse width modulation technique to control 3-leg 6-switch 

(IGBT’s) to have sinusoidal input current as shown in figure 5. PWM rectifiers classified 

as current Source rectifier or voltage source rectifier based on DC link type. 
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Figure 5 PWM rectifier 

 

 

 

The current source rectifier has more component and lower performance [20]. The direct 

three phase rectifiers overcome the drawbacks of the modular single phase rectifiers else 

they still require additional DC/DC converter to provide the electrical isolation. Also, 

PWM rectifiers have excessive number of active switches. Several attempt proposed to 

reduce this number of switches such as [20] and [21].     

   1.5.5 Boost rectifier in DCM 

The three phase boost rectifier operating in discontinuous current mode (DCM) is kind 

of direct three phase rectifiers that utilized single active switch. The system first 

proposed by [22]. The circuit topology is shown in figure 6.  It main principal is to shape 

the inductor discontinuous current by the input voltage so that the input current has a 

fundamental sinusoidal modulated wave form along with high frequency carrier wave as 

shown in figure 7.  The main advantageous of this topology are: 
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 Single active switch.  

 Small reactive component. 

 High power factor and low harmonics. 

 Simple control circuit, similar to dc-dc converter. 

 Zero current switching for the diode bridge which eliminates the switching losses 

in the bridge. 

 

 

 

 

Figure 6 DCM boost rectifier 

 

 

 

 

Figure 7 DCM Current wave form 
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Similar resonant topologies have same advantageous were derived and developed from 

same concept such as that proposed in [23] and [24].   

1.5.6 VIENNA Rectifier 

The drawback of the low order harmonics in the system presented in section 1.5.5 is 

overcome with multi-level PWM rectifiers by adding four-quadrant switches in 

symmetrical three phase shape to balance the input current path such as in Delta switch 

rectifier and VIENNA rectifier. VIENNA rectifier shown in figure 8 is of concern since 

it has high power density and it is designed for telecom applications.  

 

 

 

a b

c

M

 

Figure 8 VIENNA rectifier 
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The main advantageous of VIENNA rectifier are summarized from [25]: 

 Low input current harmonics due to out DC voltage mid-point to neutral voltage. 

 Less device voltage stresses compared with PWM rectifier and Delta switch 

rectifier. 

 High power density. 

 Load power can be distributed over the negative and positive output partial 

voltage. 

 Phase shift between the input current and input voltage is possible.  

1.6 Research objective 

The objective of this thesis is to analyze high power density three phase PFC system for 

AC/DC power conversion by combining modular three phase or/and single phase PFCs 

with reduced components size and adequate utility interface.  

The thesis explores three approaches for high power density rectifiers. In the first study, 

modular three phase boost rectifiers operating in DCM are coupled in order to increase 

the power density. Major drawback of this rectifier is the high currents ripple in both the 

source and the DC link sides which require large EMI filter size -could be larger than the 

rectifier component size- and large DC filter capacitor size. This thesis proposes 

coupling modular three phase boost DCM rectifiers, the currents in both source and DC 

link sides are interleaved and consequently the currents ripple dramatically decreased 

results in small component size of the EMI filter and the DC filter capacitor leading to 

high power density rectification. Also, optimization of the number of the rectifier 
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modules to achieve maximum power density is presented. Moreover, the switching 

function of each rectifier employs harmonic injection technique to reduce the low order 

harmonics. And, the DC output voltage is varied with the load power such that the 

operation is at the boundary between CCM and DCM to achieve maximum power 

density tracking.    

In the Second study, a resonant three phase single switch PFC is presented to overcome 

the high 5th and 7th order current harmonics drawback in the conventional single switch 

three phase PFC circuits. The input current has low THD for each individual low order 

harmonics with high current ripple at the switching frequency. Interleaving the input 

current by coupling modular rectifiers is also presented to reduce the input current 

ripple. System equations and modes of operation is analyzed and derived to design the 

circuit parameters, switching frequency and duty ratio for the desired output voltage and 

load power.      

In the Third study, an advancement of modular T-connected single phase PFCs 

presented in [19] by means of replacing the low frequency transformer with medium 

frequency electronic phase shifter to reduce the size and weight of the system. The 

approach has higher power density compared with the Y, delta and T-connected single 

phase PFC modules. The study examines the 3 to 2 phase conversion, system harmonics, 

switching technique for the AC chopper and the power flow of the system. 
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1.7 Thesis outline 

The content of this thesis is organized in chaptered manner. In chapter 1, Introduction of 

AC/DC conversion and associated distortions effect with industrial application example 

of telecom data center is presented. IEEE harmonic standards and literature review of 

previous work to mitigate harmonic distortions is also presented. Finally, research 

objective of building high power density AC/DC system is established.   

In chapter 2, Three phase modular PFC consist of three 3-phase boost DCM rectifiers 

coupled in order to maximize the power density is presented. After the introduction of 

the boost PFC and their types, the analysis started with the analysis of the boost 

converter to identify the boundary of the mode of operation and to find the maximum 

power operating point. Then, three phase boost DCM rectifier and harmonic injection 

method is reviewed. Next, optimization of the number of the modules to achieve 

maximum power density is obtained. Afterward, Maximum power density tracking 

operation is derived by varying the DC link voltage with the variations of the load 

demand. Then, EMI input filter design is presented. Finally, design example and 

simulation results are performed. 

In chapter 3, a resonant three phase single switch PFC is presented. In first section 

introduction of resonant rectifiers and the advantage of the purposed system is 

introduced. Next, proposed system topology and principal of operation is explained. 

Then, the proposed system is analyzed starting with the d-q frame analysis of the neutral 

voltage of three phase single switch rectifier and the neutral voltage shifting to overcome 

the low order current harmonics. Going through each mode of operation of the system 
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the equation and operation limit is derived. Based on the equation derived, system design 

characteristic is provided. Next, interleaving of modular rectifiers to reduce the input 

current ripple and to achieve constant power drawn from the supply is presented. In the 

next section, Example and simulation result is provided. 

In chapter four, modular single phase PFC is combined to form three phase PFC. 

Starting with the introduction of modular single phase PFC and the existing T-connected 

modular single phase PFC system to introduce the proposed advancement of the T-

connected modular single phase PFC by means of replacing the low frequency 

transformer with electronic phase shifter. In the next section, analysis of three to two 

phase conversions and AC/AC conversion are explained. Then, the harmonics associated 

with the switching of the ac chopper is analyzed. The four step switching technique used 

in the proposed system is explained. Example and simulation result is provided. Finally, 

Experimental results are show.    

At the end chapter 5 summarize the results and the advantageous/disadvantageous of the 

proposed systems.      
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CHAPTER II  

INTERLEAVING THREE PHASE DCM RECTIFIERS FOR HIGHER POWER 

DENSITY 

2.1 Introduction 

2.1.1 Boost PFC rectifiers 

Boost power factor correction rectifiers have been widely used to achieve high input 

power factor and low harmonic distortion. The operation of the boost converter can be 

classified depending on the inductor current to three modes: continuous current mode 

(CCM), critical or boundary current mode (CRM), and discontinuous current mode. In 

(CCM) operation the inductor current waveform is continuous and has very small ripples 

which cause the inductor rms current to be nearly equal to the input rms current leading 

to low electromagnetic interface (EMI) and lower conduction losses in the inductor and 

lower conduction loss in the switches as well if compared with the other two modes of 

operation. However, the continuity of the current cause hard switching and consequently 

switching losses exist and diode reverse recovery current should take into account in the 

design. Boost PFC in CCM mode is mainly used in high and medium power application 

[26]. In both CRM and DCM the switches turn on in zero current and no switching 

losses occurs. In CRM high input power factor can be achieved but the frequency is not 

fixed and varies as required to keep the current wave form in the boundary between 

CCM and DCM which cause difficulty in designing the converter and the EMI filter. 

Also, variable frequency may cause peat phenomena and control problems. DCM mode 

has the advantage of zero-current turn on and constant switching frequency. Moreover, 
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DCM can be used in three phase rectifier as shown in section 1.5.5. By placing the 

inductors in the ac line side the commutation of the current through the bridge diodes 

allow continuity of the conduction in each phase if large duty cycle applied for the boost 

converter.  This topology known as PZ circuit proposed by [22] is limited with high 

boosting ratio [27]. 

2.1.2 PZ circuit operation at low boosting ratio 

The analysis is applied during the interval 0<ωt< 

 
  with reference phase a = Van sin(ωt) 

and can be expanded with alternating the phases through the entire line period. In each 

duty cycle the PZ circuit has four mode of operation. Figure 9 shows the circuit. In 

Mode 1 [0, t1], when the switch S1 is closed the diode D1 will open and the three ac 

inductors are shorted through Da1,Dc1,Db2 and S1. As a result the current in each 

inductor will rise in a rate proportional to the line to neutral input voltage. In the DC side 

the capacitor is large enough to maintain constant voltage with small ripple during this 

time. Then the switch is open and Mode 2 [t1, t2] starts. The Diode D1 will close and the 

three diode bridge will remain conducted due to the line commutation of the ac 

inductors.  The most positive or most negative phase in this case phase b discharged in a 

rate equal to the sum of the rate of the other two phases according to KCL. When the 

current in the inductor of the least positive or negative phase in this case phase a reach 

zero at t2 mode 3 [t2,t3] starts and the rate of discharge of the other phases are equal  till 

all the currents reach zero at t3. Finally, Mode 4 [t3,T] all the switches are open. The 

current wave form is shown in figure 10. 
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 The discontinuous currents follow an envelope of the line to neutral voltage as long as 

the three phases are conducting resulting in sinusoidal envelope in phase with the line to 

neutral voltages. However, in the operational mode 3 two phases are conducting and the 

currents follow the line to line voltage between the conducted phases which cause low 

order harmonic to appear in the envelope [27]. The harmonics contain odd harmonics 

only starting from the fifth-order harmonic [28]. The dominant harmonic is the fifth-

order harmonic and its value depends on the boost ratio between the input and the output 

voltage as the boosting ratio increase the value of the harmonics decreases.  The value of 

the fifth-order harmonic is eight times the value of the seventh-order harmonic which is 

the next largest harmonic at V0=1.62 VL-L and its vary from 30% of the fundamental 

component at V0=1.5 VL-L to 7% at V0=2.7 VL-L , where V0 is the output voltage and 

VL-L is the line to line input voltage [28]. To overcome the high distortion in the 

relatively low output voltage fifth-order harmonic filter can be used or variable duty 

ratio with harmonic injection can be added to the control circuit of the boost converter. 

The overall weight, size and coast of the DCM boost rectifier with fifth-order harmonic 

filter is higher than the DCM rectifier with harmonic injection and reach double in some 

design parameters [28].     
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Figure 9 PZ topology 

 

 

 

 

Figure 10 Input current wave form   
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2.2 Proposed system 

The proposed three phase rectifier figure 11 consists of two main power converter 

stages. The first stage is three unites of three-phase rectifiers with three ac line inductors 

and three-phase diode bridge for each unit and a DC filter capacitor. The function of the 

first stage is to provide slightly variable DC voltage with input current complies with the 

harmonic standards. The variation of the voltage is due the variation of the DC load to 

maintain maximum power density as shown in the analysis in the next section. 
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Figure 11 Proposed system of chapter 2 

 

 

 

The second stage is a DC/DC convertor with high frequency transformer to provide 

galvanic isolation and to maintain the output DC voltage.  Each of the three units is 



 

35 

 

basically PZ circuit with variable duty ratio control and relatively low output voltage. 

The objectives of having three units is to interleave the input currents such that the low 

order harmonic are reduced to acceptable limits and to reduce the size of the input filter 

so that high power density can be achieved.  Moreover, the DC filter capacitor has lower 

current ripple as well. The boost switch in each unit is operated at constant frequency 

and its duty ratio is varied to meet the interleaving, harmonic reduction and DC level 

objectives.  The reference signal for the PWM in each unit is same but the carrier signals 

is phase shifted 120 degree that is the first unit carrier phase shift is zero degree ,the 

second unit carrier phase shift is 120 degree and the third carrier signal phase shift is 240 

degree. The input current for each unit is always discourteous shaped by reduced 

harmonic envelope while the total input current is continuous with same individual 

harmonic to fundamental ratio and less THD by 1.732 (√3). Since all current for each 

unit goes to before the end of the switching period, zero current switching is achieved. 

To maintain minimum output voltage for certain power level the operation of the 

converter is near the boundary between the continuous and discourteous mode as shown 

in the next section.           

 2.3 Analysis 

In this section Analysis of the earlier mentioned proposed system is presented. Starting 

with the average analysis of PWM boost converter to identify the boundary between 

CCM and DCM modes of operation and to determine the switching frequency, inductors 

value, duty ratio and the output voltage for certain value of the load power. Then, 

analysis of direct three phase DCM rectifier is presented to determine the relation 
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between the boosting ratio, time at which the switching start and the duration of each of 

the four periods mentioned in section 2.1.2. Next, interleaving of three rectifiers to 

achieve harmonic reduction is presented. Also, the DC capacitor load sharing is shown.       

  2.3.1 Average analysis of PWM boost converter in DCM 

To determine the circuit parameters value, the boundary between CCM and DCM must 

be known to ensure operation at DCM. The inductor current waveform at the boundary 

between CCM and DCM is shown in figure 12 From which  
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Figure 12 Boundary between CCM and DCM 
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In this case (at the boundary) 

              
          

      
 

And the output current 

                 
           

      
  

Thus the output power, 

           
             

      
 

Figure 13 Shows the plot of the normalized output power with base= (V0
2/ 2*fs*L) as 

function of D where the curve in the figure defines the boundary between the CCM and 

DCM.  
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Figure 13 Normalized output power vs. D 

 

 

 

Maximum point is point of interest.  The derivative of P0 with respect to D is 

dP0/dD = (    

      
) *(1-4D+3D2) 

Equating to zero and solving for D yield P0 maximum for DCM occurs at D=(1/3).  

Substituting in the power equation above 
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The DC voltage transfer function is given in [29]  

      
  

   
   

  √
       
     

 
 

For       
  

≤      

      

2.3.2 Analysis of direct three phase boost rectifier in DCM 

In this section the analysis of PZ circuit with low boosting ratio presented in 2.1.2 is 

extended. The current in each mode operation is analyzed. As in 2.1.2, the analysis is 

applied during the interval 0<ωt< 

 
  with reference phase a = Van sin(ωt) and can be 

expanded with alternating the phases through the entire line period. By using switching 

frequency much greater than the line frequency average analysis of the boost converter 

can be applied for each of the switching period. Table 6 introduced by [30] summarize 

the current in each mode and time duration of each mode.  
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Table 6 Current equations in DCM 

Line Mode 1 Mode 2 Mode 3 

a* ia= sin(θ)t 

 

ia= (sin(θ)-  
 

)t+  

 
 ia= 0 

b* ib = - sin(θ+60)t ib=(-sin(θ+60)+  

 
 t-   

 
 ib= (

 

 
 - √        

 
)t-   

 
 

c* ic=cos(θ+30)t 

 

ic=(-  
 

+cos(θ+30))t+  

 
 ic= - ( 

 
 - √        

 
)t+   

 
 

Time 

duration 

DT         

           
   

   √                

              √        
 T 

* The values multiplies by    
   

   

 

 

 

Where M is   

   
 , V0 is the output voltage and Van is the line to neural voltage of the 

supply, θ is the time at which the switching occurs, T is the switching period and D is the 

duty ratio. In mode four all the currents are zero.  

2.3.3 Interleaving n numbers of direct DCM rectifier for high power density 

The objectives of interleaving n numbers of boost rectifiers operated in DCM are: 

1. Reduce the input current harmonics to comply with the technical standards. 

2. Reduce the input current ripple and consequently reduce the EMI filter size 

which reduces the overall volume, weight and cost of the rectifier. 
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3.  Design the rectifier parameters to operate at maximum power density. 

4. Reduce the DC link current ripple which reduces the capacitor filter size.     

As presented earlier the DCM rectifier suffers from high fifth order harmonic if operated 

with constant duty ratio. The input current harmonics as a function of the DC voltage 

gain is presented in [27] and shown in figure 14. The input current wave form shown in 

figure 10 can be interleaved so that the second demagnetization interval of the inductors 

in phase b and c (in this case) can be reduced by interleaving the input current of 

multiple rectifiers. The duty cycle is varied opposite to the sixth order harmonic in the 

DC link side. As a result, by reducing the fifth harmonic in the ac line side seventh 

harmonic increased in the ac line side. The total interleaved current should have 

envelope with acceptable limit of the low order harmonics. It shown in this section that 

the highest power density is achieved by interleaving three rectifiers this operates near 

the boundary between DCM and CMM.  
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Figure 14 a) Harmonic spectrum for 

constant duty ratio [27] 

 

 

 

 

 

Figure 14 b) Harmonic spectrum with 

harmonic injection [27] 
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The input current of n interleaved rectifier is shifted by  
 
 since the switching frequency 

is much larger than the line frequency. Interleaving two rectifiers result in  
 
 phase shift 

between the switching moments of the rectifiers. From figure 13 and average analysis 

equations, the maximum power density occurs at D=0.333. So, for 0.5 average duty 

ratio, the operating point is away from the boundary between DCM and CCM which 

mean relatively low power density. Or, if the two rectifiers have 0.3 average duty ratio, 

the interleaved current has high ripple and could be discourteous. Interleaving four 

rectifiers limit the duty ratio to an average value of 0.25 which result in relatively low 

power density. Obviously, interleaving more than four rectifiers have lower power 

density as the rectifier numbers increase. Interleaving three rectifiers operated at average 

duty ratio of 0.3 results in maximum power density and low current ripple. Figure 15 

shows the power density per maximum power density for 2,3,4 and 5 interleaved 

rectifiers.  

 

 

 



 

44 

 

 

Figure 15 Numbers of modules versus power capacity 

 

 

 

2.3.4 Maximum power density tracking 

The rectifier circuit elements are design to operate at maximum power density (operating 

at the boundary between CCM and DCM) with constant frequency. If the output DC link 

voltage held constant when the load power reduced, the operating point will be in CCM 

region. So, to operate at the boundary, the DC link voltage should vary such that the 

operation point should be near the boundary between CCM and DCM.As can be seen in 

figure 13 at maximum power density Po = rated power and Mvdc= 1.5 from which 
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= 0.12 

If one design for rated power at the maximum power density and track the boundary 

then: 

      

      
= (1.12) √     

     
 

2.3.5 Inputs filter design 

For the three phase AC source the input filter should designed to attenuate the unwanted 

high frequency currents (at switching frequency) and not to cause and phase 

displacement between the input voltage and current to keep unity displacement power 

factor. Figure (16 a) shows the proposed system with the input filter. Since the filter is 

passive element, the design should be at the desired operating power in order to have 

best performance at the rating. On the other hand, the cut off frequency should be chosen 

to attenuate the highest possible harmonic currents which in this case in the lower power.  

The filter characteristic equation is Zo=√
 

 
    and the cutoff frequency is fc=

 

  √  
   

To avoid any phase shift at the desired power the characteristic impedance of the filter 

should match the equivalent resistance (Re) of the load which for wye connected filter 

given by: 

Re=     
   √   
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The cutoff frequency should be selected based on the attenuation wanted at the harmonic 

frequency. According to [30] Table 7 give the loss per octave for the L-filter shown in 

figure (16 b). 

 

 

                                                      

                                   Table 7 Loss per octave for the design 
  

  
 

1 2 3 4 5 6 

Loss per octave 

(dB) 

12 24 36 48 60 72 
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Figure 16 a) Input filter with the system 

 

 

 

 

 
Figure 16 b) Equivalent circuit at high 

frequency 

 

 

 

2.4 Design example and simulation result 

Design for application of  Data Center given in Chapter 1 the total output power for the 

rectifier  is 12 KW (Po=12 KW, 4 KW in each module) from main input Vin=480 VL-L 

rms. Design for maximum power Density at the rated power the boosting ratio and the DC 

voltage gain are m=2.47 and MvDC=1.5 respectively. The output voltage is V0= 973 V 



 

48 

 

accordingly. The switching frequency is chosen to be 70 KHz (fs=70 KHz) at maximum 

power with the parameters above L can be calculated to be 100 uH (total 9).  And for the 

input filter Lf = 53uH and Cf = 47.8 nF. 

Simulation results are obtained at rated power and at half the rated power. For the rated 

power THD=12.4% without the input filter. After input filter THD=11.6%. Figure (17) 

shows the input current in each module in a) time domain wave form of the input current 

in each module. b) the frequency spectrum of current in a). The low order harmonics for 

current in a) are shown in c). It can be seen that the fifth order harmonic is reduced to 

7% from figure (17 c).        

 

                                

                                  Table 8 Design parameters at rated load 
Rectifier inductor L 100 uH (9 total) 

Switching frequency  70 KHz 

Total power 12 KW , 4KW in each module 

Input voltage Vin 480 VL-L rms  

Output voltage V0 973 V 

Voltage gain  2.47 

DC voltage gain  1.5 

Input filter inductor 53 uH 

Input filter capacitor 47 nf 
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Figure 17 a) Current in each module 

 
 

 

 

 
Figure 17 b) FFT for the input current for each module 

 

 

 

 
Figure 17 c) FFT for the low order harmonics in each module 
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Figure 18 a) Interleaved current 

 

 

 

 

 
Figure 18 b) FFT for the interleaved current 

 

 

 

Figure (18) shows the interleaved current (total input current for the rectifier) and its 

frequency spectrums. It can be seen that the high order harmonics (harmonics at 

switching frequency) are canceled which reduce the input filter size. 

Figure (19 a) shows the input current and the input voltage are in phase (unity 

displacement power factor). Figure (19 b) shows the output voltage at rated power. And 

figure (19 c) shows the modulated signal of the PWM for harmonics injection. 
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Figure 19 a) Input current after filtering and input 

voltage are in phase. 

 

 

 

 

 
Figure 19 b) Output voltage at rated power 
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Figure 19 c) Modulated signal for harmonics 

injection 
 

 

 

 
At half the rated (Po=6 KW, 2 KW in each module) power the passive elements remain 

same and the output voltage is vary to operate in DCM. According to the maximum 

power tracking equation the output voltage for the new power is V0= 777 V which 

means m=1.97 and MvDC=1.2.  Simulation result for the proposed system at half the 

rated power gives THD=22% without input filter. And after input filter THD=16% 
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Table 9 Design parameters at half the load 
Rectifier inductor L 100 uH (9 total) 

Switching frequency 70 KHz 

Total power 6 KW , 2KW in each module 

Input voltage Vin 480 VL-L rms 

Output voltage V0 777 V 

Voltage gain 1.97 

DC voltage gain 1.2 

Input filter inductor 53 uH 

Input filter capacitor 47 nf 

                                                       

 

 

Figure 20 shows the input current and the low order harmonics spectrum in each module 

at half the power the individual 5th and 7th order harmonics are 12% of the fundamental.  

The low order harmonic increased compared with the rated load case is due to the low 

voltage boosting ratio in case of half of the rated load. 
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Figure 20 a) Input current for each module at 

half of the rated load 

 
 

 

 

 
Figure 20 b) FFT for low order harmonic at half 

the rated load 

 

 

 

 

Figure 21 shows the interleaved current (input current for the rectifier). Because the 

output voltage reduced according to maximum power tracking, the ripple in the 

interleaved current increased and hence the current amplitude at the switching frequency 

increased.   
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Figure 21 a) Interleaved current at half the rated load 

 

 

 

 

 
Figure 21 b) FFT for the interleaved current at half the rated 

load 
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Figure 21 c) FFT for the low order harmonics for the 

interleaved current at half of the rated load 

 

 

 

 

Figure 22 shows the input current and the input voltage after filtering in a). The phase 

shift just 0.132 rad.  And in b) the amplitude of the input current at the switching 

frequency is filtered. 
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Figure 22 a) Input current after the input filter at half 

of the rated load 

 

 

 

 

 
Figure 22 b) FFT for input current after input filter at 

half of the rated load 

 

 

 

Figure 23 shows the output voltage. The voltage is reduced compared with rated load 

case to follow the maximum power density operating point. Figure 24 shows the 

modulated signal of the PWM for harmonic injection method. 
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Figure 23 Output voltage at half of the rated load 

 

 

 

 

 
Figure 24 Modulated reference signal for harmonic 

injection at half of the rated load 
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2.5 Conclusions 

In this chapter modular three phase rectifier with high power density were introduced. 

Interleaving the input current and vary the DC link voltage to operate at maximum 

power density result in the following advantages of the system: 

 With semi-regulated DC link output voltage the power density increased by 3% 

at operation range of (0.5Po< P< Po) compared with the fixed output voltage. 

 Input filter size is reduced by a factor of 15. 

 Harmonic injection method reduces the fifth order harmonic of the input current 

from 20% to 7%. 
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CHAPTER III  

THREE PHASE RESONANT RECTIFIER WITH HIGH INPUT POWER QUALITY 

AND HIGH POWER DENSITY 

3.1 Introduction 

Modular rectifier systems are the main supply of the telecommunication industry now a 

day due to the advantage of operational behavior, system technology, and coast [20]. 

The power conversion takes place in two stages in these systems. First, three phase diode 

bridge rectifier convert the ac main supply to a DC-link voltage. Second, output voltage 

is obtained from the DC-link voltage by a DC/DC converter with high frequency 

transformer connected in series with the rectifier. As can be seen from chapter 2, the 

conventional three phase diode bridge rectifier has high amplitude of low frequency 

main current harmonics. In chapter 2, harmonic injection method is used to reduce the 

main current harmonics. In this chapter, a resonant three phase rectifier with zero voltage 

switching method is used to further decrease the low order harmonics. Resonant 

rectifiers have been stated to be suitable for power supplies applications due to their high 

main current quality [31]. The proposed system in this chapter also has the advantageous 

of zero switching losses. The absence of the switching losses results in high over all 

system efficiency and high power density [32]-[33].  

The proposed system equation and design aspects are derived in this chapter. Also, 

example and simulation results are provided. 
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3.2 Proposed system 

The proposed system shown in figure 25 is consisting of three interleaved resonant 

rectifiers. Each rectifier is three phase single switch rectifier with zero voltage switching. 

The circuit originates from the circuit proposed in [34]. The purpose of using resonant 

circuit is to further reduce the low order harmonics in the direct three phase rectifier 

proposed in chapter 2 and to have zero switching losses due to zero voltage switching 

technique used. The purpose of interleaving the input current is to remove the input filter 

which reduces the overall rectifier size, weight and cost and to deliver constant power 

from the supply. The system has to stage of conversion first the interleaved resonant 

rectifiers cascaded DC/DC converter with high frequency transformer for each rectifier 

to provide galvanic isolation and to balance the output load between the rectifiers. The 

minimum output voltage of the proposed system is twice the line to line RMS of the 

source voltage and the input current has low THD. The output power is limited to a 

certain value due to the impedance matching of the resonant circuit. The analysis and 

design of the system is presented in the next section.    
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Figure 25 Proposed system of chapter 3 

 

 

 

3.3 Analysis 

In order to design the system and to know the operation limits, the analysis started with 

the analysis of mode of operation of each module. Next, the design characteristics and 

system equations are derived. Finally, interleaving the module to complete the system is 

presented.    

   3.3.1 Module mode of operations and equations 

Figure 26 shows the topology of each module used in the proposed system. The DC/DC 

converter and the load are emulated as simple resister in the analysis in this section. The 

module consist of  three resonant inductors in the ac side of the AC/DC converter and 

six resonant capacitors clamped across each diode in the three phase diode bridge as 

shown in figure 26. The notation in figures will be followed along the analysis in this 

chapter. 
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Figure 26 Module topology of the proposed system in chapter 3 

 

 

 

Modes of operation 

The analysis of the operation for one switching period is derived during the interval from 

θ=0 to θ=  
 
  with input voltage Va = VPK sin(θ) -in phase a-  as a  phase reference as 

shown in figure 27. and it can be generalized for the entire line interval with phases 

interchanged according to the three phase symmetry.   
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Figure 27 Main input voltage 

 

 

 

During the switching period the current in each phase and the voltage across the resonant 

capacitors has six modes of operation. Figure 28 shows the modes of operation of the 

current in each phase with the time duration of each mode. Figure 29 shows the voltage 

across the resonant capacitors during each mode of operation. 

 

 

 

 
Figure 28 Main current during switching period 
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Figure 29 Voltage across the clamped capacitor during the switching period 

 

 

 

The detailed analysis of each mode of operation is presented below: 

Mode of operation 1 

Operation mode 1 where the switch S1 in figure 26 is closed can be divided into interval 

first when the 6 clamped capacitors carry the current and no current pass through the 

bridge diodes till the voltage across them completely discharged as shown in figure(30 

a). And the second interval of operation mode 1 when the capacitors are completely 

discharged and S1 closed here the currents passed through the diode bridge based on the 

input voltage line to neutral as shown in figure (30 b). Since the time duration of the first 

interval is small compared with the time duration of the second interval, the two 

intervals can be approximated to the second interval only which will be the case in this 

analysis. The effect of the first interval will be demonstrated in the capacitor current 

stress.  

In this mode of operation and during the interval θ=0 to θ=  
 
   D1, D5 and D4 carry the 

line current. The instantaneous currents equations are: 
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for the interval from 0<t<t1  where t1=DT. 

With the assumption of the current passing through the diode bridge and the resonant 

capacitors are completely discharged figure (30 b), the current in each phase is linearly 

increased in a ratio proportional to the line to neutral voltage in that phase as can be seen 

from the current equations above. In this mode of operation, the current equation is 

similar to the conventional discontinuous current mode boost rectifier equations as can 

be seen from the equations above and the equations of mode 1 in table 6.  
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Figure 30 a) Circuit during mode 1 
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Figure 30 b) Circuit during mode 1  
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Figure 30 c) Voltage space vector during 

mode 1 
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Figure 30 d) Current space vector during 

mode 1 

 

 

 

 

Mode of operation 2 

Switch S1 is open diode D7 still open since the clamped capacitors opposite to the 

conducting diodes is charging from zero to a final value equal to the output voltage. The 



 

69 

 

inductors current passed through diodes D1,D5 and D4 and capacitors C2, C3 and C6. 

The three capacitors are connected across the bridge DC terminal as shown in figure (31 

a). 
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Figure 31 a) Circuit during mode 2 
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Figure 31 b) Voltage space vector during mode 2 
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Figure 31 c) Current space vector during mode 2 

 

 

 

With phase b as the return path for phases a and c, the instantaneous current is derived 

for phase b and from which the capacitor value is determined. 

                                

Where Vc  is the voltage across the three capacitors 
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From which  

 
   

   
   

 

 
    

Solving for I yield 

     
               

 
                

               

  
             

where ωo=
 

√  
 and Zo=√
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The current in each capacitor is (1/3) ibn so, 
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And at t2 Vc=V0 
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Neglecting the supply resistance the peak value of the undammed system during this 

mode of operation occur at 

  
 

  
               

 

  
          

 

  
 

From which 

     
 

  
   
               

  
      

         

  
                   

Let A=  

  
 where ωs is the switching frequency 

     
                   

 
   
        

 
                  

 

Operation Mode 3 

Voltage across the capacitors C2,C3 and C6 reach the output voltage and the diode D7 

conducted the capacitor currents are zero and the current flow through the load as shown 

in figure(32 a). 
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Figure 32 a) Circuit during mode 3 
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Figure 32 b) Voltage space vector during mode 3 
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Figure 32 c) Current space vector during mode 3 

 

 

 

 

The inductor current equations are 
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At the end of this mode (at t3) ian=0. Result in 

         
          

 
                

                   
          

  
     

Or in term of A  

        
          

 
                

    
 

  
                  

         

 
    

And the final value of ibn in this mode of operation (at t3) is 

          
    

(            
 
    )  

                   
          

  
    

With  t2= DT+  
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In term of A 

          
   

(            
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Operation Mode 4 

The diode D1 open and the current passed through C1 and C2 to balance their voltage 

with the output voltage as shown in figure (33 a) 
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Figure 33 a) Circuit during mode 4 
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Figure 33 b) Voltage space vector during mode 4 
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Figure 33 c) Current space vector during mode 4 

 

 

 

 

The system equations are:  
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Solving for Vc1, Vc2 and iD7 
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With balance three phase supply              and for neutral shifting to reduce the 

input current harmonics               and with small capacitance value. 

                 
   
  

    

      
    

  
=   

√           

    
               

      
    

  
=    

√           

    
              ) 



 

79 

 

              =   
√          

   
    (        ) 

At the resonant rotating reference frame 

                  |   | cos(θ-120)    (        ) 

                  |   | cos(θ+120)    (        ) 

     [|   |              (        )     ] 

    [ |   |              (        )     ] 

Where |   |   
√          

   
 

At the end of this period          at t=t4 and for balance three phase system 

    should start resonate with angle 120 ahead of phase a since in the resonant reference 

frame the sequence is negative. So, at t4 resonant current in phase a will be at angle 

θ+60  

              
 

 
  

From which 

        
  

 

 
 

   
  

Or in term of A 
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Mode of operation 5 

In this mode of operation ibn reach zero, capacitor C4 start charging and capacitor C3 

start discharging as shown in figure (34 a). 
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Figure 34 a) Circuit for mode 5 
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Figure 34 b) Voltage space vector in mode 5 
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Figure 34 c) Current space vector in mode 5 
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The current equations are: 

        
   
 

 

        
   
 

 

    
   
 

 

The current in capacitor C1 and C2 continue in the same rate as in mode 4. Consequently 

the current in phase a continue resonating in same equation as in mode 4.   
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At the end of this period          at t=t5 and for balance three phase system  

    should start resonate with angle 120 ahead of phase b since in the resonant reference 
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frame the sequence is negative. So, at t5 resonant current in phase a will be at angle 

θ+120  

            
  

 
  

From which 

      
  

  

 
 

   
  

Or in term of A 

      
  

  

 
 

     
  

Mode of operation 6 

In mode of operation 6 all the diodes and the switch are open and the current pass throw 

the resonant capacitors as shown in figure (35 a). The current is resonating in each phase 

in LC circuit. The voltage and current phase vector in dq-plan are shown in figure (35 b) 

and figure (35 c) respectively.   
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Figure 35 a) Circuit in mode 6 

 

 

 

 

q

-d

n
Ɵ 

 

Figure 35 b) Voltage space vector in mode 6 
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Figure 35 c) Current space vector in mode 6 
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Table 10 summarizes the current equation and the time duration of each of the mode of 

operation. 

 

 

 

Table 10 Current and time duration in each mode 

Phase Mode 1 Mode 2 Mode 3 
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Table 10 Continued  
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The average neutral voltage during the switching cycle is  

                                       
  

 
    

|       |      |   | 

|       |      |   | 

   
̅̅ ̅̅ ̅=        (

  
 

 
 

     
        

  
  

 
 

     
         

  

 
  ) for 0<θ< 

 
 

For A=2 and VL-L rms =480 V the waveform of the voltage between the midpoint and the 

neutral is shown in figure 36. It can be seen from figure 36 that the neutral voltage is 

shifted every 60 degree of the line frequency. This neutral shifting compensate the 

modulated input currents envelopes change that occur in the conventional DCM rectifier 

mentioned in chapter 2 where the modulated input currents envelopes follow the line to 

neutral voltage of the source in the first demagnetizing interval of the inductors and the 

line to line voltage of the source at the second demagnetizing interval of the inductors 

causing low order harmonics to exist in the input currents.  
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Figure 36 Neutral voltage 

 

 

 

Because of the voltage neutral shifting shown in figure (36) the current low order 

harmonic is reduce.  

   3.3.2 Design characteristics 

Two main parameters are of concern in the design of the proposed system. First, the 

output voltage which should be around twice VL-L rms of the supply voltage in order to 

operate in the operation modes mentioned in the previous subsection and consequently 

satisfy the neutral shifting principle to eliminate the low order harmonics in the input 

current. This can be clearly observe in mode of operation 4 and 5 in order to satisfy KVL 

half of the DC link voltage should be equal to the VL-L rms . The second parameter is the 

output power or the effective load resister seen looking by the resonant circuit in order to 

match the resonant impedance. The effective resister is a factor of the D7 conduction 
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time (t2<t<t5) as shown later in this section. Varying the duty ratio leads to variation of 

the effective resistance which could be design to match range of output load power. 

However, in order to get proper neutral voltage t4 and t5 are of balance since the average 

neutral shift is the resultant of the average of the neutral voltage during these two modes 

of operation. In this section exploration of the circuit parameter and their effect on the 

operation is accomplished.  

The system operates in frequency range below or equal half of the resonant frequency in 

order to catch the desired modulation. The output voltage is designed to be twice VL-L rms 

as explained based on equation  

     
                   

 
   
        

 
                  

Derived in the previous subsection the duty ratio should satisfy the conditions of design 

over the range (0<θ<30) degree which was the assumption of the derivation. Figure 37 

shows the relation between the duty ratio and the ratio between the resonant to switching 

frequencies.        
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Figure 37 D versus A 

 

 

 

The output power is limited to match the effective impedance with the resonant 

characteristic impedance in order to suppress the harmonics. Figure 38 shows the 

equivalent circuit  where Re is the effective impedance and RL is the actual load 

impedance.   
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Figure 38 Equivalent circuit 

 

 

 

  
  

     
  

  
 

For Vo= 2 VL-L rms  

Re= 2.7 Zo  

   
        

 
   

From which the load resistance can be found and hence the output power. 

   3.3.3 Interleaving system input currents 

Interleaving the modules analyzed above reduce the input current ripple which reduce 

the input filter size and provide current path in the mode of operation where the current 

flow in opposite direction refer to the supply which make the supply deliver constant 

power. From modes of operation 1 and 2 the time at which the current rise is 0.35 the 

total switching time result in the maximum number of the interleaved module is three. 

So, interleaving 2 and 3 is analyzed. 



 

93 

 

Figure 39 shows the current waveform and the frequency spectrum of the current in each 

module and the interleaved current with two modules system. From which interleaving 

two modules result in: 

• Reduce current at switching frequency but doubled the ripple at resonant 

frequency. 

• Still have high current ripple. 

 

 

 

 
Figure 39 a) Current wave form for interleaving 2 modules 
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Figure 39 b) Frequency spectrum for interleaving 2 

modules 

 

 

 

 

While interleaving three modules reduce the current ripple at both the switching and 

resonant frequencies and have minimize the current ripple. Figure 40 shows the current 

waveform and the frequency spectrum of the current in each module and the interleaved 

current with three modules system. 
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Figure 40 a) Current wave from for interleaving 3 modules 

 

 

 

 

 
Figure 40 b) Frequency spectrum for interleaving 3 

modules 

 

 

 

 Interleaving the input current effect the average time in modes of operation 4 and 5 

which effect the voltage between the midpoint of the diode bridge and the neutral and 

hence the input line current harmonics.  
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3.4 Example and simulation results 

An example of 18 KW (6 KW in each module) load supplied from 480 VL-L rms supply is 

given. The output voltage is twice the input line-line voltage Vo= 2(480)= 960 V. load 

resistance for this output voltage and 6 KW power is 153.6 ohm from which the 

equivalent resistance is 40.5 ohm and the characteristic impedance of the resonant circuit 

to match the load is 15 ohm. The resonant frequency is 16 KHz and the switching 

frequency is half of the resonant frequency (8 KHz). From figure the duty ratio is 0.11 

constant. The resonant inductor and capacitor can be found from the characteristic 

impedance and the resonant frequency to be 150 uH and 0.667 uF respectively. Table 11 

summarizes the values for the individual module. And figure 41 shows the individual 

resctifier.  

 

 

 

                                               Table 11 Simulation parameters for individual module 

VL-L rms  480 V 
P 6KW 
La 150 uH 
C1 0.667 uF 
fs 8KHz 
Vo 960 V 
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Figure 41 Circuit for parameters given in table 3-2 

 

 

 

     
The input current for individual module and its low frequency spectrum are shown in 

figure 42. It can be seen that the 5th order harmonic is 4.5% . 
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Figure 42 a) Individual module input current 

 

 

 

 

 
Figure 42 b) Frequency spectrum for the individual 

module input current 

 

 

 
 
And table 12 summarize the values for the system and figure 43 shows the system.  
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Table 12 Parameters for the system 

VL-L rms  480 V 
P 18KW 
La 150 uH 
C1 0.667 uF 
fs 8KHz 
Vo 960 V 
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Figure 43 Circuit for the parameters given in table 12 

 

 

 

 
The input current for interleaved system and its low frequency spectrum are shown in 

figure 44. It can be seen that the 5th order harmonic is 8.3% and the 7th harmonic is very 

low. The total THD is around 8.3%.   
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Figure 44 a) System input current 

 

 

 

 

 
Figure 44 b) Frequency spectrum for the system input current 
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Figure 45 shows the full frequency spectrum. It can be seen that the interleaving 

suppress the current at the switching and resonant frequencies in the top compared with 

the individual module in the bottom.  

 

 

 

 

Figure 45 System input current frequency spectrum (above) versus module input 

current frequency spectrum (below) 
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Figure 46 System output voltage 

 

 

 

  Finally, Figure 46 shows the output DC voltage. 
 

3.5 Conclusions 

In this chapter modular resonant three phase rectifier with high input power quality were 

introduced. System equation and design characteristics were derived.  Finally, example 

and simulation results were provided. The result can be summarized as the following:   

 High input current quality utilizing single switch rectifier were achieved. 

  Constant power delivered by the supply. 

 No input filter required. 

 No switching losses. 

 Operate for certain output voltage Vo=2 VL-L rms . 

 Operate for narrow output power rang if individual low order harmonics limited 

to 4%.   
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CHAPTER IV 

A MODULAR THREE PHASE POWER FACTOR CORRECTION (PFC) 

APPROACH WITH TWO SINGLE PHASE PFC STAGES AND AN ELECTRONIC 

PHASE SHIFTER 

4.1 Introduction 

 Rectifiers are widely used to convert main sinusoidal voltage to a DC voltage. The 

rectifier inputs are connected to the grid through a line transformer to provide a galvanic 

isolation between grid voltage and load. The rectified voltage used to supply a DC load 

such as telecommunication and network server industries or act as first stage power 

conversion process such as uninterruptable power supplies (UPS), variable speed drive 

(VSD) and HVDC. Three phase classic diode bridge rectifiers draw nonlinear currents 

with harmonics of order 6nῳ where, w is the angular frequency and n=1,2,3,…., Along 

with the fundamental frequency component which result in a high total harmonic 

distortion (THD) and consequently poor distortion factor (DF) and power factor (PF). 

IEEE standard (512-1992) recommend to limit harmonics to THD <5% for 69KV and 

below and provide basis for limiting the harmonic [1]. In order to meet these quality 

requirements, improvement of the utility interface with power electronic devices is 

applied by adding active filter on the point of common coupling with the utility interface 

or by embedded power factor correction (PFC) topology in the rectifier. Several 

techniques of PFC are used. Multi-pulse rectifier which consists of phase shifting 

transformer and three phase diode bridge rectifier are used to reduce the harmonics to 

multiples of the number of pulses used. This technique is mainly used in high power 
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applications (> 100 KW) due to their relative simplicity and robustness compared with 

other technique [17]. Other method employs additional resonant elements with control 

circuit instead of the phase shifting transformer such as boost convertor operated in 

discontinuous current mode with the three phase bridge rectifier. Three single phase 

modules with boost converter also used to reduce the THD and improve the power 

factor. Their output varies from 12 Vdc to 400 Vdc [3]. Main advantages of using 

modular PFC in three phase rectification are: 

 Individual module does not effect by unbalance or distorted source.  

             Each phase is controlled individually.  

 Can be used for both continuous and discontinuous current mode which can be 

used to minimize the switch stress. [4].  

Main disadvantage of this method is the amount of component used [22].One approach 

to minimize the modules number is presented in [19]. This approach used a transformer 

to combine two phases into one phase with phase shift of 90 degree with respect to the 

third phase as shown in figure (49(c)) and used two single phase PFC module. 

 In this chapter an improvement to system in [19] is proposed by replacing the 

transformer with AC chopper and using high frequency transformers in the DC/DC side 

to provide galvanic isolation as shown in figure 47.  

The AC chopper is less in size, weight and cost compared with the low frequency 

transformer which results in higher power density. 
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4.2 Proposed system 

The proposed system is consist of two single phase PFC module and an AC chopper 

consist of two bidirectional switches by means of two pairs of common emitter 

connected IGBTs with parallel diode as shown in figure 47 and several kilohertz input 

filter. 

 

 

 

 
Figure 47 Proposed system of chapter 4 

 

 

 

 The proposed system is advancement of the system presented in [19] with increased 

power density by replacing the low frequency transformer with AC chopper. The 

function of the AC chopper is to generate the midpoint of two phases in a three phase 

system so that the phase angle between these two phases and the voltage across the 
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midpoint and the third phase is 90 degree as shown in figure (49 c).  This transformation 

of three phase system to two phase system reduces the single phase module from three 

modules to two modules.  

4.3 Analysis 

Phase vector diagram of a balanced three phase line voltages form an equilateral triangle 

as shown in figure 48.  The midpoint m lies between a and b where the vector Vmc is 

perpendicular to Vab and it magnitude is equal to Vab sin(60)= (0.866) Vab. 

 

 

 

 
Figure 48 Phase vectors 

 

 

 

 

Thus, the phase shift between Vab and Vmc is 90 degree and Vmc=(0.866)Vab as shown in 
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figure 48. The AC chopper, in figure 1, is used as electronic phase shifter to physically 

obtain Vmc from Vbc and Vca. The AC chopper switches should operate alternatively with 

0.5 constant duty ratio to get precise 90 degree phase shift. The Fourier series of the 

output voltage is given by 

                           

Where S1(t) and S2(t) is the switching function of the upper leg and the lower leg of the 

ac chopper respectively. 

                                                                     

For switching frequency  >>  line frequency. 

  The three phase sinusoidal time domain waveforms are shown in Figure (49(a)) the 

output of ac chopper is shown in Fig (49(b)) finally the input voltage of the two PFC 

modules is shown in Figure (49 (c)) after being filtered with low pass filter.  
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(a) 

 

 

(b) 

 

 

Figure 49(a) Three phase voltage wave form. 
 (b) The output of the AC chopper with the Vab 

(c) Two phase system with 90 degree phase shift. 
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Pa + Pb = Pmod1 + (1/3) Pmod2  

Pc= (2/3) Pmod2 

For balance loading Pmod1 should be equal to Pmod2 results in Pa=Pb=Pc= (1/3) Ptotal . 

Obviously, the power delivered from each phase should be equal in order to maintain 

balance currents. From equations above, the balance loading occur when the two single 

phase modules share the load equally. This can be achieved by controlling the single 

phase PFC modules to have equal DC link voltage. As a result module2, which has 

lower input voltage, has to boost it rectified voltage more than module1 by a factor of 

0.866 which leads to Imod1= (0.866) Imod2 and Pmod1=Pmod2. Then the DC/DC convertors 

transform the output voltage to the desired voltage value. The two output voltages have 

the same value and connected in parallel to share the load. 

The voltage across the bidirectional switch is VL-L and the current passing through it is 

Imod2 = Ptotal/(√  VL-L rms). The PWM operation with dead time to avoid shorting a 

voltage source or overlap time to provide a path for a current in the circuit is not 

practical in ac/ac conversion with bidirectional switches [35]. The four step switching 

method proposed in [35] can be used to realize the electronic phase shifter. Figure 55 

shows the gating of the switches with this method. Finally, In order to balance the filter 

element between the phases, three EMI filters are used which are the input line current 

filter, the ac chopper output voltage filter, and a filter identical to ac chopper output 

voltage filter placed between phases a and b. Unbalance filter impedance cause transfer 
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between the CM and DM noises [36], [37] and [38].   

4.4 Simulation result 

The design is continued for 12KW rectifier supplied from Vin L-L rms= 480 V as in chapter 

2 and 3 for datacenter power supply applications. Table 13 shows the system parameters, 

Table 14 shows the ac chopper output filter parameters and table 15 shows the input 

current filter parameters. In table 15, delta connected LC filter is used as shown in figure 

50. 

 

 

 

 
Figure 50 Delta connected LC filter 
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Table 13 System parameters (simulation) 
VL-L rms  480 V 

P 12KW 

fs 15KHz 

Vout 48 V 

 

 

 

 

Table 14 AC chopper output filter 

parameters (simulation) 

AC chopper output filter 

L 100 uH 

C 25 uF 

 

 

 

 

Table 15 Input current filter parameters 

(simulation) 

 

Input Current filter 

L 120 uH 

C 25 uF 
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Figure 51 shows the input voltage for each PFC module as expected in the analytic 

results the wave forms are 90 degree apart. And the input current drawn by each PFC 

module for 12KW load is shown in figure 52. The total three phase input currents are 

shown in figure 53. It can be seen that all the currents and voltages are pure sinusoidal 

waves. Finally, Figure 54 shows the output DC link voltage 48V constant. 

 

 

 

 

Figure 51 Input voltage for each PFC module for 480 V supply 
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Figure 52 Input current for each PFC module for 12KW 

load 

 

 

 

 

 
Figure 53 Three phase currents of the supply 
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Figure 54 Shows the output voltage 48V DC for 12KW load 

 

 

 

 
4.5 Experimental results  

A validation of the proposed system by experimental results is conducted. In the 

experiment, two single phase module were used with four IGBT to construct the 

electronic phase shifter by connecting each pair common emitter fashion to build the 

bidirectional switch. Four step switching method were used with load current reference 

to operate the electronic phase shifter. Two high frequency filters one for the ac chopper 

output voltage and the other for the input currents were used. The parameters of the 

experiment are shown in table 16, 17 and 18 for the system parameters, ac chopper 

output filter parameters and input line currents filter parameters respectively.   
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Table 16 System parameters (experimental) 
VL-L rms  174 V 

P 420 W 

fs 15KHz 

Vout 52 V 

 

 

 

 

Table 17 AC chopper output filter 

parameters (experimental) 

AC chopper output filter 

L 330 uH 

C 25 uF 

 

 

 

 

Table 18 Input current filter parameters 

(experimental) 

 

Input Current filter 

L 200 uH 

C 25 uF 
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Figure (55 a) shows the four step switching method used to control the electronic phase 

shifter by sensing the load current and feed it back to the microcontroller to choose the 

switching sequence based on the load current direction. The switching frequency is 15 

KHz and the duty ratio is 0.5 constant. A zoom on the edges of the wave form in figure 

(55 a) is shown in figure (55 b) to show the switching sequence.   

 

 

 

 
Figure 55 a) Four step switching wave form  

 

 

 

 

 
Figure 55 b) Zoom on the edges of the four step 

switching wave form 
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Figure 56 shows the input voltage for each PFC module the blue and red wave form. As 

expected the wave forms are 90 degree apart with amplitude 0.866 VL-L for the ac 

chopper output voltage. Figure 57 shows the input line currents after the input filter. 

Finally, Figure 58 shows the input line current for phase a in the blue line (sine wave) 

and the red line is the frequency spectrum of the current wave from. 

 

 

 

 

Figure 56 Input voltage for each module (Blue and Red) Input current with the 

input voltage (Blue and Pink) 
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Figure 57 Input line current after filtering 

 

 

 

 

 
Figure 58 Input line current (blue line) and frequency spectrum (red line) 
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4.6 Conclusion  

In this an advancement of the system presented in [19] is proposed by means of 

replacing the low frequency transformer with electronic phase shifter. The analyses of 

the system were presented. Simulation and experimental results were provided. The 

advantages of the proposed system are: 

 Only two single phase modules are used. 

 No low frequency transformer required. 

 High input current quality. 

 Can be operate for wide output power range. 
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CHAPTER V  

CONCLUSION 

In this thesis, three advanced active power factor correction approaches of higher power 

density have been proposed via development of the system in chapter 3 or interleaving 

the input current in chapters 2 and 3.  

In the first approach (chapter 2) three modular three phase DCM boost rectifier have 

been interleaved for high power density by reducing the input current filter size and by 

having semi-regulated DC-link voltage to operate at maximum power density point. The 

system operates with harmonic injection method to reduce the input line current low 

order harmonics. In this approach, wide range of output power can be supplied. The 

galvanic isolation is provided by high frequency transformer in the second stage of 

conversion so that no low frequency transformer required.  Analysis, Design example 

and simulation results have been presented in chapter 2. In the second approach (chapter 

3), three resonant three phase modular rectifiers are interleaved to further decrease the 

low order input line current harmonics. In this approach the switching losses are zero, no 

input filter required, and no low frequency transformer. However, the system operates 

for narrow range of output power. The equation of each mode of operation and the 

design equations have been derived in chapter 3. Design example and simulation results 

have been provided in chapter 3. Finally, the third approach in chapter 4 is an 

advancement of existing system proposed in [19] by replacing the low frequency 

transformer with electronic phase shifter to decrees the system size and weight leading to 

higher power density. The system in chapter 4 can be operated for wide output power 
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with high input power quality and no low frequency transformer. However, the system 

suffers from hard switching.  Design example, simulation results and experimental 

results have been provided in chapter 4. Table 19 shows comperes among the three 

approaches. 

 

 

 

     Table 19 Comperes among the three approaches 

Approach Input line 

current 

Harmonics 

Power  

Range 

Switching 

Power 

Losses 

Control 

Circuit 

EMI 

Filters 

Low  

Frequency 

Transformer 

Approach1 Medium Wide Low complex small None  

Approach2 Low Narrow  None simple None None  

Approach3 Very Low Wide Hard 

switching 

complex small None 
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