
GAUSSIAN PROCESS MODELING AND COMPUTATION IN ENGINEERING

APPLICATIONS

A Dissertation

by

ARASH POURHABIB

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Yu Ding
Co-Chair of Committee, Faming Liang
Committee Members, Jianhua Z. Huang

Satish T.S. Bukkapatnam
Head of Department, César O. Malavé

August 2014

Major Subject: Industrial Engineering

Copyright 2014 Arash Pourhabib

ABSTRACT

Big Data refers to the complexity, high-dimensionality, and high volume of infor-

mation which are common features in many contemporary engineering applications.

In the context of Big Data, however, specific treatments are required to successfully

apply and implement Gaussian processes. This dissertation discusses new method-

ologies for solving three critical problems: analysis of spatial-temporal systems for

wind energy applications; multi-fidelity analysis for nano-manufacturing systems;

and predictive modeling for large datasets.

First, we develop a spatial-temporal model for local wind fields in a wind farm

with more than 200 wind turbines. Our framework utilizes the correlation among

the derivatives of wind speeds to find a neighborhood of predictors. We extend the

model to incorporate the wind direction as a variable to define regimes and fit a

separate model for each regime. We consider other meteorological measurements,

such as air pressure and temperature, by calculating a theoretical wind called the

geostrophic wind to enhance the model’s predictive power. We present the model in

an optimization framework and solve it through numerical techniques. We compare

the model’s performance with some alternatives in order to demonstrate its prediction

accuracy.

Second, we consider a multi-fidelity analysis for predicting the Young’s modules

of buckypaper, a nano-manufactured product. The data for this problem derive

from expensive, but accurate, physical experiments and an inexpensive, but less

accurate, simulation model. The practice of integrating such data with different

levels of accuracy is called multi-fidelity analysis. The challenge is that some of the

input variables in the physical experiments are difficult to measure. We formulate

ii

the problem by introducing latent variables and then imputing unobserved latent

variables in a two-step process: defining the functional relationship between observed

and latent variables, and finding the optimal relationship by minimizing the distance

between them. We demonstrate that this problem can be understood as a case of

non-isometric curve to surface matching.

Third, we apply Gaussian process regression to large datasets. We propose a

Bayesian Site Selection (BSS) approach which approximates the likelihood of the

Gaussian process by using unobserved variables called pseudo-inputs. The BSS

framework enables us to learn both the number and the location of the pseudo-

inputs simultaneously through reversible jump Markov chain Monte Carlo methods.

Testing the proposed method on both real and artificial datasets shows that the BSS

approach provides a sensible trade-off between the prediction accuracy and compu-

tation time.

iii

ACKNOWLEDGEMENTS

I express gratitude to my advisor, Dr. Yu Ding, for the guidance he has provided.

This dissertation would not have been possible without your encouragement, advice,

and assistance and I remain deeply indebted to you.

I also thank my co-advisor, Dr. Faming Liang, and my committee members, Dr.

Jianhua Huang and Dr. Satish Bukkapatnam. All of you have given me support and

helped me to develop the skills I needed for independent research. My special thanks

to Dr. Huang, for the time you devoted to assisting me throughout the course of my

research.

I acknowledge Dr. Abhishek Shrivastava, Dr. Eunshin Byon, Dr. Chiwoo Park,

and Dr. Giwhyn Lee, who are former members of the Advanced Metrology Labora-

tory, and Yanjun Qian and Hoon Hwangbo, who are current members. Thank you

all for your insights and support.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION: GAUSSIAN PROCESSES 1

1.1 Short History of Gaussian Stochastic Processes 1
1.2 Gaussian Process Regression . 2
1.3 Gaussian Markov Processes . 4
1.4 Research Objective and Outline . 8

1.4.1 Problem 1: Spatial-temporal Dynamics of Local Wind Fields . 8
1.4.2 Problem 2: Multi-fidelity Analysis Based on Latent Variables . 9
1.4.3 Problem 3: Approximating GP for Large Datasets 10

1.5 Organization of Dissertation . 10

2. SHORT-TERM WIND SPEED FORECAST USING MEASUREMENTS
FROM MULTIPLE TURBINES IN A WIND FARM 12

2.1 Introduction . 12
2.2 Review of Existing Short-term Wind Forecast Methods 14

2.2.1 Temporal Models . 15
2.2.2 Spatial-temporal Models . 17

2.3 Spatial-temporal Auto Regression For Short-term Wind Forecast . . . 19
2.3.1 Gaussian Spatial-temporal Auto Regression 20
2.3.2 Selecting Informative Neighborhoods 24
2.3.3 Regime Switching Gaussian Spatial-temporal Auto Regression 26
2.3.4 Using Geostrophic Wind in Regime Switching Gaussian Spatial-

temporal Auto Regression . 27
2.3.5 Choice of Loss Functions and Handling Missing Data 29

2.4 Results . 32
2.4.1 Model Setup . 34

v

2.4.2 Forecasts and Comparisons 36
2.4.3 Informative Neighborhoods and Propagation of Information . 40
2.4.4 Temporal Dependency for Wind Speed 43

2.5 Summary . 48

3. MODULUS PREDICTION OF BUCKYPAPER BY MULTI-FIDELITY
ANALYSIS INVOLVING LATENT VARIABLES 49

3.1 Introduction . 49
3.2 Latent Variable Multi-fidelity Analysis with Correlated Inputs 54
3.3 PVA-treated Buckypaper Fabrication Process Model 58

3.3.1 Design of Experiments . 59
3.3.2 Gaussian Process Model and Bias Term 61
3.3.3 Choice of Linkage Function 62
3.3.4 Solution Approach . 64

3.4 Results . 68
3.4.1 Performance Comparison . 68
3.4.2 Impact of High-fidelity Data Amount 72
3.4.3 Impact of Linkage Functions 73

3.5 Summary . 76

4. BAYESIAN SITE SELECTION FOR FAST GAUSSIAN PROCESS RE-
GRESSION . 77

4.1 Introduction . 77
4.2 Likelihood Approximation Based on Pseudo Inputs 81
4.3 Bayesian Site Selection . 86

4.3.1 Algorithm . 88
4.3.2 Computational Details . 92
4.3.3 Choices of Other Parameters 93

4.4 Experimental Results . 95
4.4.1 Datasets and Performance Criterion 95
4.4.2 A One-dimensional Example 97
4.4.3 Performance Comparison . 98
4.4.4 Sensitivity Analysis . 103

4.5 Summary . 105

5. CONCLUSION . 107

5.1 Summary . 107
5.2 Suggestions for Future Research . 109

REFERENCES . 112

vi

LIST OF FIGURES

FIGURE Page

2.1 Power curve for a wind turbine . 30

2.2 Neighborhood selection in GSTAR models for a sample data in Jan-
uary 2009: (a) three different sites and turbines in their neighborhood;
(b)-(d) informative neighborhood selection for each site. 35

2.3 Sample partial autocorrelation for turbine#1 in 2009: each subplot
denotes the sample partial autocorrelation for a month in 2009; the
x-axis is the lag (in hour) and the y-axis is the sample partial autocor-
relation. The two parallel lines are approximate 95% upper and lower
confidence bounds. 44

2.4 Wind speed for turbine#1 for a sample week 47

3.1 Young’s modulus of the simulation and physical experiments. 52

3.2 The design layout for the computer experiment. 62

3.3 The curves are the level sets for the simulation surface with step size
of 50. The colorbar represents the Young’s modulus from the simula-
tion model. The dashed curve shows the linkage function. The values
close to the dark circles are the Young’s modulus from the physical
experiment given the corresponding PVA values. The linkage function
is decided such that the overall difference between the physical experi-
ment responses and the simulation responses, plus some constant bias,
is minimized. 67

3.4 Improvement of MFA with LA over SFA under different number of
high-fidelity data points. 74

4.1 Left: (a) The revised Ackley’s path when d = 1, and N = 5, 000 (the
plot only shows 2,000 training points whose inputs are positive). (b)
The initial locations of sites and their new locations after every 1,000
MCMC iterations (on the positive side of the axis). Right: (c) Number
of sites vs. MCMC iterations. (d) MSE vs. MCMC iterations after
the burn-in period. 99

vii

4.2 Top: The results of BSS comparing with DSS, FGP, and TGP for
the revised Ackley’s path with d = 10, and N = 1, 000. In the left
side plot, the number of initial sites for BSS and the (fixed) number
of sites for DSS are 64, and on the right side they are 128. Bottom:
The results of the BSS comparing with DSS and FGP for the revised
Ackley’s path with d = 10, and N = 5, 000. In the left side plot, the
number of initial sites for BSS and the (fixed) number of sites for DSS
are 64, and on the right side they are 128. 100

4.3 (a) MSE vs. MCMC iterations (after burn-in period) for different
values of κ and l for the revised Ackley’s path with d = 2 and N =
10, 000. (b) Normalized computation time vs. MCMC iterations. (c)
Number of sites vs. MCMC iterations. 106

viii

LIST OF TABLES

TABLE Page

2.1 Features of proposed models . 33

2.2 Prediction results for 2009 and 2010 using PCE. The values in paren-
thesis are the standard deviations of the corresponding predictions.
Last row denotes improvement of the best method over PER. 37

2.3 Percentage of improvement over PER in 2009 and 2010, measured by
PCE on individual turbines. The data pair in a parenthesis are the
percentage of turbines that see an improvement and the average im-
provement percentage for those turbines. The bold values correspond
to the best method in Table 2.2. 38

2.4 Prediction results for 2010 using CRPS for twenty randomly selected
turbines. 39

2.5 Sensitivity analysis for the value of α ranging in [0.6, 0.8] for the year
2009. The values in parenthesis are the average of standard deviations
for each case. 39

2.6 Proportion of significant changes in the informative neighborhood Sc. 42

3.1 Comparison of methods: the two rightmost columns show the improve-
ment percentage of the proposed method over the other two methods. 71

3.2 Comparing different linkage functions in terms of SRMSE: the right-
most column denotes the linkage function used in Section 3.4.1 75

4.1 Summary of the results presented in Figure 4.2 101

4.2 Comparing BSS with DSS in terms of MSE. The numbers in the paren-
theses are standard deviations. 101

4.3 Predictive log score measure (PLSM). M = 32, and for BSS, the
MCMC chain runs 2,000 iterations with 1,000 burn-in iterations. The
numbers in the parentheses are standard deviations. 102

4.4 ANOVA analysis for revised Ackley path with d = 2, N = 10, 000 and
5,000 MCMC iterations . 103

ix

1. INTRODUCTION: GAUSSIAN PROCESSES

The sheer immensity and complexity of the Big Data used to model and analyze

contemporary engineering systems present system engineers and data analysts with

unique challenges, e.g., determining how to extract only the pertinent knowledge.

This study examines the use of Gaussian processes (GPs), which are based on the

prevalent concept of normal, or Gaussian, distribution for natural phenomena.

This section serves as an introduction to GPs. We present a short history and

give the basic definitions. Here, we focus on two classes of models involving GPs:

GP regression that mainly concerns predictive modeling for systems with datasets

having arbitrary dimensions, and Gaussian Markov processes for the special case of

one-dimensional data, especially systems that evolve over time.

1.1 Short History of Gaussian Stochastic Processes

Modeling natural phenomena using Gaussian distribution has long been used in

science and engineering. In the eighteenth century, de Moivre gave the first formal

definition of normal distribution, which was named “Gaussian” after Johan Carl

Friedrich Gauss, who studied it extensively in the nineteenth century (Le Cam and

Yang, 2000). Informally, a GP can be understood as a sequence of random variables

each and jointly following the Gaussian distribution. Originally, GPs were developed

to study one-dimensional time-series models (Wiener, 1964) and later they became

central to statistical machine learning. Krige (1951) introduced an application of

GPs as an interpolation technique in his attempt to identify the potential locations

of gold mines. This brought attention to, and popularity, for GPs beyond time-

series applications, e.g., the rigorous mathematical theorems and proofs proposed

by Matheron (1973). O’Hagan (1978) studied GPs for curve fitting and optimal

1

predictions.

A new era began for GPs when their application was introduced into the design

and analysis of computer experiments (Sacks et al., 1989). As GPs became a core

part of machine learning, several books were published on different aspects of GPs,

such as Rasmussen and Williams (2006), Santner et al. (2003), and Kleijnen (2007).

Today, GPs prevail as a powerful tool in the era of Big Data. Emerging applications

and variations include (Hensman et al., 2013; Damianou and Lawrence, 2013; Clifton

et al., 2013; Zhu and Dunson, 2013; Pérez-Cruz et al., 2013).

1.2 Gaussian Process Regression

In this study, we are interested in the application of GPs in statistical learning.

Statistical learning concerns identifying patterns, or building predictive models, from

collected data (Hastie et al., 2001). Supervised learning estimates the functional

relationship between a set of inputs and its corresponding set of outputs. If the

outputs come from a discrete set, we call the problem classification, whereas if they

potentially come from a continuous set, such as real variables, we call the problem

regression. Here, we briefly review regression based on GPs adopted from Rasmussen

and Williams (2006) (see Rasmussen and Williams (2006); Santner et al. (2003) and

Kleijnen (2007) for detailed discussions).

In a regression context, suppose we observe data points in the form of (xi, yi),

where x is the vector of input variables or explanatory/predictive variables, y is the

output, and i is the index of observations. If we observe N data points, we denote

the inputs by X = {x1,x2, . . . ,xN}, and the outputs by Y = {y1, y2, . . . , yN}, which

we assume are independent and identically distributed (i.i.d). We call the combined

(X,Y) the observed data, or simply data, as denoted by D. In the regression, we

assume there exists a function, or the ground truth, f , such that yi = f(xi) + εi, for

2

i = 1, 2 . . . , N , where εi denotes the observation noise, or any other discrepancy that

cannot be captured by the model, usually assumed to follow a normal distribution

with mean 0 and variance σ2. We consider the case where each xi ∈ X ⊂ Rd for

some d ≥ 1 and yi ∈ R.

To find function f , we impose extra constraints on the model in order to obtain

a well-defined problem. GP regression is a powerful tool for inferring such functional

relationships while maintaining good interpretability and model flexibility. There are

many ways to describe the GP regression, such as conceiving the weight-space view

or the function-space view. The former is derived by extending the simple linear

regression into a high-dimensional feature space, whereas the latter is derived by

directly defining distribution over functions (we note that the function-space view

provides a more general framework). Specifically, from the function-space view, a

GP is a continuous stochastic process in which any finite number of variables have

a joint Gaussian distribution (Rasmussen and Williams, 2006, p. 13). Based on the

function-space view, the random variables are simply f(x) – the “true process”– as

we defined above. In other words, in the context of stochastic processes, we have an

index set, X ⊂ Rd, that is partially ordered according to the observed input set, X,

and the value of f(x) is a random variable. An analogy to the Gaussian distribution

demonstrates that we can specify a GP by its mean and covariance functions

µ(x) = E {f(x)} ,

K(x,x′) = E {(f(x)− µ(x)) (f(x′)− µ(x′))} , (1.1)

where E{.} is the expectation operator. Note that the mean and the covariance

functions are specified in terms of the inputs, x and x′. It is also possible to define

the parametric forms for the covariance function, e.g., a simplified form of the squared

3

exponential covariance

K(x,x′) = σ2
f exp

(
−||x− x′||2

2η

)
, (1.2)

where η and σ2
f are, in fact, the “parameters” of the model which we can collectively

denote by θ.

In practice, the ultimate goal in regression is to find the predictive distribution

of the process at some test point, x∗ ∈ X . From a decision theory perspective, we

can minimize the expected loss, specifically, the predicted value at x∗ is

y∗ = arg min
y

∫
L (y∗, y) p(y∗|x∗,D) dy∗, (1.3)

where p(y∗|x∗,D) is the predictive distribution of the response at x∗ given the data,

and L(., .) is the loss function.

First, however, we want to fit the model to the data, or from a statistical learning

perspective, we want to “learn” the parameters in the model. Generally in the GP

regression, we estimate the parameters of the covariance function by maximizing the

marginal log-likelihood log p(y|X,θ) with respect to the parameters θ. Having done

so, we use the fully specified model to obtain the probabilistic prediction at any test

point, x∗ ∈ X .

1.3 Gaussian Markov Processes

Recall that we are interested in the special case of one-dimensional data, espe-

cially systems that evolve over time. Examples include the temperature of an object

undergoing a chemical reaction, or the wind speed at a specific site. In many prac-

tical applications for such processes, the current response is a function of the past

responses of the process. We can study this by using autoregressive models which

4

assume linear dependency between the system’s responses plus some discrepancy

modeled through a random noise. For example, if we denote the system’s response

at time t by yt, a (discrete-time) autoregressive model of order p is

yt =

p∑
i=1

αiyt−i + εt, (1.4)

where εt is a “white noise” following N (0, σ2), and αi, i = 1, 2, . . . , p are the autore-

gressive coefficients.

Knowing that many of the systems that change over time are continuous prompts

us to try modifying equation (1.4) to explicitly model a continuous system like our

case example of a wind farm. The extension of equation (1.4) for the continuous

case is not trivial, so we determine the correct generalization by solving a Stochastic

Differential Equation (SDE), which gives rise to a continuous autoregressive model

(Rasmussen and Williams, 2006). Thus, the SDE we need to solve is

0 =

p∑
i=1

αiy
(i)
t + α0yt + εt, (1.5)

where y
(i)
t denotes the ith derivative of the process y(.) at time t. Note that because

y(.) is a stochastic process, we cannot define its derivative, and as a result, equation

(1.5), using the classical concept of the derivative for a (deterministic) function, yet

we need separate theories in order to rigorously define such operators and processes

(Øksendal, 2003). Therefore, we review a heuristic way of building a derivative

function for a special stochastic process known as the standard Brownian motion. We

also can apply similar treatments to the other (one-dimensional) stochastic processes

we consider, but for the purpose of this study, a heuristic construction is sufficient.

5

First, we want to know if we can use model (1.4) to describe a system that

follows equation (1.5), but we only observe its status at discrete times. We note

that the answer generally appears to be negative. Moreover, deriving a rigorous

relationship between continuous and discrete autoregressive models (equations (1.5)

and (1.4), respectively), entails Fourier Analysis, and certain regulatory conditions

need to hold in order for the discrete sampling of a continuous autoregressive system

to engender a discrete autoregressive model (see Rasmussen and Williams (2006, pp.

207-219) for details). However, we assume that a discrete sampling of the continuous

process described by (1.5) indeed will result in a discrete autoregressive model (1.4).

We note that this statement holds if p = 1 (Rasmussen and Williams, 2006).

The special case of equation (1.5) when p = 1 gives

α1y
(1)
t = α0yt + βεt, (1.6)

which is a continuous counterpart for an autoregressive model of order p = 1. We

can use this very simple case to define the Gaussian Markov processes for modeling

the wind speeds at our wind farm. Therefore, we investigate equation (1.6) in more

detail. Recall that for a continuous stochastic process to be a Markov process we

need to have

E{yt|Fs} = E{yt|ys}, ∀ 0 ≤ s < t, (1.7)

where Fs is a sigma-algebra generated by ys for all s < t (Hunter, 2009). This

statement means that given the current value of the process, the “upcoming” value

is independent of the history of the process. A Gaussian Markov process is simply a

(one-dimensional) GP that also satisfies the Markovian property.

6

For better understanding, we can express equation (1.6) in another equivalent

form. First, note that we can define white noise, εt, as a stochastic derivative of the

standard Brownian motion. Since the standard Brownian motion on R is a GP whose

increments are independent Gaussian random variables, this motion is a Gaussian

Markov process, and the Markovian property is due to the fact that the increment

should follow the Gaussian distribution. However, the standard Brownian motion is

not stationary and, in fact, the covariance between two values at times t and s is

min(t, s). Heuristically, we build the relation between the standard Brownian motion

and εt by first defining a new stochastic process as the difference between two “very

close in time” values of a Brownian motion (Hunter, 2009). Let B denote a standard

Brownian motion, and then define

ε∆t(t) =
B(t+ ∆t)−B(t)

∆t
; (1.8)

therefore ε∆t(t) is a GP with mean 0 and variance (∆t)−1. If we find the limit of

ε∆t(t) as ∆t→ 0, we get a stochastic process with mean 0 and variance between two

different values at times t and s as δ(t− s), where δ is the Kronecker delta function.

This description and the white noise we described above are the same. This approach

also demonstrates a heuristic way to build the derivative of the stochastic processes.

Therefore, ε = dB
dt

. For more rigorous construction of the Brownian motion and the

white noise see (Øksendal, 2003).

Having established the relation between the Brownian motion and the white noise,

we can express equation (1.6) as

dy = −aydt+ bdB, (1.9)

7

which is the Ornstein-Uhlenbeck (OU) process (Øksendal, 2003). As t→∞, the solu-

tion of this process approaches a stationary Gaussian Markov process. Its expression

in stochastic form allows us to intuitively understand equation (1.9). Specifically, the

rate of change in the response consists of one part that is explained by the current

value of the process, and a second part following a random path that accounts for

the measurement noise or any other parts not captured by the model.

In Section 2 we will utilize an extension of equation (1.9) to model the local

wind fields. Specifically, if y denotes the wind speed a a target location, we want to

utilize the information in its vicinity, which is captured through other wind speed

measurements. Therefore, we have

dy = −aydt+ f(u(y)) + bdB, (1.10)

where u(y) consists of wind speed measurements around the target location and f is

a function. We are not concerned about the theoretical properties of equation (1.10);

instead we utilize it towards devising a predictive model for local wind fields.

1.4 Research Objective and Outline

This study addresses three problems characterized by having two features in

common: (1) Big Data, i.e., large datasets or complex data; (2) Gaussian processes

or a variation, in their modeling and analysis. Below, we describe the three problems

and our research objectives.

1.4.1 Problem 1: Spatial-temporal Dynamics of Local Wind Fields

The latest IPCC findings (https://www.ipcc.ch/report/ar5/index.shtml) add ur-

gency to global efforts to increase wind power generation. Expanded use of this

important renewable resource, however, will not occur until we develop more effec-

8

tive methods, e.g., improving turbine capacity, to drive down the cost of operations

and maintenance (O&M) (Blanco, 2009). Solving significant technological issues re-

quires addressing wind dynamics including intermittency and volatility that result

in high variability of the energy produced.

Wind forecasters typically develop their wind speed/power predictions based on

aggregating all of the data collected from a wind farm. In this study, we argue that

collecting data “turbine by turbine” rather than aggregating data from the whole

farm will produce relatively accurate forecasts, and that with such knowledge we

can tailor very specific, and less costly, O&M strategies. To solve the problem of

analyzing the dynamics of local wind fields, we construct a set of spatial-temporal

models that relate closely to Gaussian Markov processes. We use a dataset of near

ground wind speeds collected over two years from a wind farm with 200 turbines

in Illinois, and consider both historical wind speed data and other meteorological

measurements. We present the models in the form of optimization problems for

large datasets and solve them through efficient parametrization.

1.4.2 Problem 2: Multi-fidelity Analysis Based on Latent Variables

Analysis of many Big Data problems generally uses data drawn from many

sources, e.g., a simulation model and physical observations, or a variety of sensing

devices. Multi-fidelity analysis, which refers to the analysis of such data structures,

requires addressing each specific application and its associated considerations in order

to obtain a comprehensive analysis. We are interested in analyzing a multi-fidelity

system having some input variables that cannot be measured, leaving only a physical

dataset with partially observed inputs. The lack of observability of some variables

implies that we cannot appeal to existing multi-fidelity analyses, since virtually all

of them assume that all variables are observable. We utilize GP regression to con-

9

struct a simulation model that is the low-fidelity experiment. We apply our model

to analyze buckypaper, a nano-manufactured product.

1.4.3 Problem 3: Approximating GP for Large Datasets

Traditionally, GP regression has been popular for modeling complex engineering

systems, due to its flexibility and non-parametric nature. However, its application

in large datasets is limited, because it does not scale well. To approximate GP

regression, current approaches infuse sparsity into the model, or use likelihood ap-

proximation. We are interested in improving the likelihood approximation in order

to obtain a a sensible balance between prediction accuracy and computation time.

We propose a Bayesian Site Selection (BSS) model for approximating the GP re-

gression. BSS utilizes a set of unobserved variables to approximate the likelihood

of the GP model. We solve BSS by employing reversible jump Markov chain Monte

Carlo. Applying BSS to several large scale datasets, we demonstrate that our model

is efficient in tackling Big Data while simultaneously producing reasonably accurate

prediction results with less computation.

1.5 Organization of Dissertation

The remainder of this dissertation is organized as follows. Section 2 describes

the first problem, modeling the spatial-temporal dynamics of local wind fields. We

explain how to model the problem by utilizing a variation of Gaussian Markov pro-

cesses with discrete sampling. We propose to use spatial-temporal parametrization

to solve it efficiently while maintaining the interpretability of the model. We test the

model by using two years of data compiled for ground level wind speeds and analyze

the results.

Section 3 describes the second problem, calibration in the nano-manufacturing

process of buckypaper fabrication. We use the GP regression to model an existing

10

simulation model so that the GP surface serves as a surrogate model. We demonstrate

how to calibrate such simulation models in the context of partially observable inputs.

Section 4 describes the third problem, employing the GP regression on large

datasets. We propose a Bayesian framework to improve the accuracy of existing

likelihood approximation techniques. We solve the problem using reversible jump

Markov chain Monte Carlo. We test the model on datasets having more than 50,000

data points and describe the results.

Section 5 summarizes our findings and suggests some future research pursuits.

11

2. SHORT-TERM WIND SPEED FORECAST USING MEASUREMENTS

FROM MULTIPLE TURBINES IN A WIND FARM

2.1 Introduction

Interest in methods for achieving more economic wind power production (Blanco,

2009) hinges upon an enhanced comprehension of the behavior of near ground wind,

the major input force to wind power systems. Modeling the spatial-temporal aspects

of wind can facilitate many practical aspects related to operations including the

analysis of wake effect (Crespo et al., 1999), maintenance and control, and optimal

siting of turbines.

In particular, accurate prediction of wind speeds can lead to more confident es-

timations of the wind energy produced, which energy producers and regulators can

utilize to improve overall wind energy supply. An improved understanding of wind

dynamics also can allow system operators to incorporate greater amounts of wind

energy into the grid. In this section, we focus on wind speed prediction due to its

significance and practical importance. In brief, we categorize wind speed forecasting

by short-term, medium-term, and long-term. There is no sharp division between

medium- and long-term forecasts, which can range from days to years. Short-term

forecasts rely on efficiently utilizing past wind speed measurements due to the high

volatility of short-term wind and the computational cost of running physics-based nu-

merical weather prediction (NWP) methods (Hering and Genton, 2007). A common

consensus is that within six hours of a prediction horizon, data-driven, statistical

models can outperform the physics-based NWPs, and that beyond six hours, fore-

casts without considering atmospheric physics cannot be trusted (Giebel et al., 2011).

Therefore, the six-hour boundary is the separator that differentiates short-term from

12

medium- and long-term forecasts.

Producers use short-term wind forecasts as guides for adjusting their wind energy

supply in order to meet the demand in a short horizon. The significance of the short-

term wind forecast has encouraged substantial research by engineers and statisticians

(see Giebel et al. (2011) and Zhu (2013) for comprehensive reviews of the work done

in the past three decades). Despite numerous efforts to build predictive models

for wind speed forecasting, spatial information is much less frequently used than

temporal information in most short-term forecasts.

This section presents our spatial-temporal models for analyzing the behavior of

near-ground wind. Our technical objective is to use the in-situ measurements at

multiple turbine locations within the same wind farm, which constitute a multiple

time-series. We model the relationship of the wind speed at any given turbine location

with surrounding wind turbines in the farm. One contribution of our work is a novel

way to adaptively determine the neighborhood for a target site, leading to a sparse

representation of the spatial dependency unique to each turbine. We also model the

variance of the wind speed as a function of volatility in its neighborhood, and use

the predictive distribution to quantify the uncertainty associated with the prediction.

We incorporate two existing ideas into the model to enhance its performance: (1)

a regime-switching approach to account for the dominant wind directions; and (2)

meteorological measurements, such as temperature and air pressure, as inputs. We

test our proposed models on real data from a wind farm with more than 200 turbines

and multiple meteorological mast towers.

The remainder of this section is organized as follows. Section 2.2 reviews some

of the widely used models for short-term wind forecasting. Section 2.3 presents the

proposed model and discusses the selection of appropriate loss functions. Section

2.4 applies the proposed methods and compares their performance with some other

13

practices. Section 2.5 summarizes the research findings in this section.

2.2 Review of Existing Short-term Wind Forecast Methods

To start, we briefly review some widely used models for short-term wind fore-

casting (see Giebel et al. (2011) and Zhu (2013) for comprehensive reviews). Let

Yi(t) = Y (si; t) denote the wind speed at time t measured at location si for i =

1, 2, . . . , I. Use the vector notation Y(t) = [Y1(t), Y2(t), . . . , YI(t)]
T . Assume hour

for the resolution for time. Now, suppose we observe the wind speed at locations

si for i = 1, 2, . . . , I for times t = 1, 2, . . . , T and then we want to make an h-step

ahead prediction that is Ŷi(t+ h). In general, h is between one and six hours.

Statistical models developed for short-term wind forecasts can be categorized into

temporal and into spatial-temporal models. The basic idea behind temporal mod-

els is that wind speed at each time is affected by the wind speed in its near past

and that knowledge can be employed to build time-series modelsfor the short-term

forecasts. The plethora of time-series models has created remarkable and rich litera-

ture for short-term wind forecasts, particularly, autoregressive models (Schlink and

Tetzlaff, 1998; Brown et al., 1984; Huang and Chalabi, 1995), autoregressive moving

average (Torres et al., 2005; Erdem and Shi, 2011), and autoregressive integrated

moving average (Palomares-Salas et al., 2009) have all been used on wind data for

the short-term forecast. Spatial-temporal models hinge upon the idea that the wind

characteristics of a region resemble the characteristics of neighboring regions. This

idea has encouraged researchers to take into account the spatial dependency of wind

in their model building (Gneiting et al., 2006; Hering and Genton, 2010). In this

part, we present some of the main ideas in each of these two classes.

14

2.2.1 Temporal Models

This class of methods build individual models for each respective time series

{Yi(t) : t = 1, 2, . . . , T}, for i = 1, 2, . . . , I. The simplest case known as the persis-

tence forecasting simply assumes

Ŷi(t+ h) = Yi(t), for i = 1, 2, . . . , I, (2.1)

that is, the wind speed “persists” over time for the following h hours. The persistence

method has been considered as a reference model in the literature (Giebel et al.,

2011). Despite its simplicity, we will later show that the persistence method performs

relatively well for short forecast horizon such as 2 or 3-hour.

More sophisticated methodologies can be employed in an attempt for better fore-

casting results. For instance, an autoregressive moving average model of order (p, q),

denoted by ARMA(p,q), is a popular choice. The model can be expressed as:

Yi(t) = c+

p∑
`=1

φ`Yi(t− `) +

q∑
`=1

θ`ε(t− `) + ε(t), for i = 1, 2, . . . , I, (2.2)

where c is a constant, φ` and θ` are the autoregressive and moving average parame-

ters, respectively, and ε(t) ∼ (0, σ2) for t = 1, 2, . . . , T . A special case is when q = 0;

this results in an autoregressive model of order p, denoted by AR(p). AR models

have been popular in short-term wind forecast. Particularly Brown et al. (1984), by

explicitly considering non-Gaussian distribution and diurnal non-stationarity, found

that AR(1) and AR(2) models outperform the persistence method for hourly data.

In general, low-order AR models are considered the most suitable type of AR models

for short-term forecast (Katz and Skaggs, 1981; Huang and Chalabi, 1995). However,

successful implementation of higher-order AR models for short-term forecast has also

15

been reported, for instance, by Schlink and Tetzlaff (1998).

ARMA models have also been used for short-term forecast. Torres et al. (2005)

showed that ARMA(p,q) with p = 1 and q ≤ 4 outperforms the persistence method

for most cases over five sites with different terrain features. Specifically, they found

that the root mean squared error for one hour ahead forecast is, on average, 2 to 5%

less than that of the persistence method, and when the prediction horizon is larger,

the difference is more pronounced (up to 20% for ten-hour ahead forecast). Kamal

and Jafri (1997) showed that ARMA(p,q) with a higher order for p (up to p = 5)

can produce accurate results for minutes ahead forecast using data with resolution of

minutes. Daniel and Chen (1991) use the Bayesian Information Criterion (BIC) and

Akaike Information Criterion (AIC) to choose the values of p and q in an ARMA(p,q)

model and found that p = 2 and q = 0 would be selected based on those criteria,

which in fact reduces to an AR(2) model.

Another linear model as an alternative to AR(p) is Kalman Filter (KF) (Kalman,

1960), applications of which in short term wind forecast can be found in Louka et al.

(2008) and Crochet (2004). KF has also been used in combinations with other

methods such as the Kalman Filtering of Numerical Weather Predictions output

(Cassola and Burlando, 2012) as well as hybrid time series Kalman Filter models

(Liu et al., 2012). Also, more sophisticate AR models to handle handle seasonal

fluctuations such as Markov-Switching Autoregressive models has been used to model

wind speed time-series (Ailliot and Monbet, 2012). Furthermore, there is research

that focuses on forecasting the wind power directly include (Pinson, 2012; Bessa

et al., 2012; Wan et al., 2014). Nevertheless, these works essentially follow a similar

approach with the distinction that they entail modeling the relation between the

wind speed (and other meteorological variables) and wind power.

16

2.2.2 Spatial-temporal Models

While the use of spatial information is a standard treatment in physics-based

NWPs, temporal models dominate the statistical approaches for short-term wind

forecast. Spatial-temporal models developed in the past decade were encouraged

by the fact that wind speed at some location is informative of wind speed at its

vicinity. Of course the physical properties of a region dictate how the dependency

manifests itself. In general, for flat regions we expect wind characteristics to be

positively correlated, while, on the other hand, even in small regions, erratic changes

in altitude would render spatial information for wind speed and direction useless

(Zhu and Genton, 2012). Therefore, spatial-temporal models not only consider the

historical wind data at the reference site, but also explicitly employ the data at other

locations.

To take spatial dependency into account, a straightforward extension of the AR(p)

model that yields Vector AR(p) (Johansen, 1995), or simply VAR(p), which is defined

as

Y(t) = c +

p∑
`=1

Ψ`Y(t− `) + ε(t), (2.3)

where c is an I × 1 constant vector, Ψ` is an I × I matrix of autoregressive coeffi-

cients for ` = 1, 2, . . . , p, and ε(t) is the I × 1 error vector such that E{ε(t)} = 0,

E{ε(t)ε(t)T} = Ω, where Ω is a diagonal matrix with non-negative entries, and

E{ε(t)ε(t − k)T} = 0, for k 6= 0. One can generalize the VAR(p) model to a Vec-

tor AR with a moving average part, which becomes a Vector ARMA, or VARMA

(Mauricio, 1995)

Y(t) = c +

p∑
`=1

Ψ`Y(t− `) +

q∑
`=1

Ξ`ε(t− `), (2.4)

17

Ξ` is an I × I matrix of moving-average coefficients for ` = 1, 2, . . . , q. To explic-

itly include spatial-temporal dependency, a parametrized from of model (2.4) yields

spatio-temporal autoregressive moving-average (STARMA) (Cressie and Wikle, 2011,

p. 344):

Y(t) =

p∑
k=0

(
λk∑
j=1

fkjUkj

)
Y(t− k) +

q∑
`=0

(
µ∑̀
j=1

g`jVkj

)
W(t− `) (2.5)

where Ukj and Vkj are known weight matrices, and p and q are the orders of the au-

toregressive part and the moving average part, respectively, fkj and g`j are the model

parameters, and {Wt} are i.i.d random vectors with mean 0 and covariance matrix

ΣW . Estimating the parameters in such models is, however, not a straightforward

undertaking.

An application of VAR(p) for wind speed forecast can be found in de Luna

and Genton (2005). Other models utilizing spatial information include the regime-

switching approach proposed by Gneiting et al. (2006) which utilizes data at three

different sites in northern Oregon and southern Washington. The regime in this con-

text refers to the dominant direction of the wind; in their particular case it is either

towards the east or towards the west. Hering and Genton (2010) propose an exten-

sion of this model in which the wind direction also serves as a predicting variable,

as opposed to merely defining the regime. Other works considering using data at

nearby sites include Alexiadis et al. (1999) and Kusiak and Li (2010) where both use

Artificial Neural Networks (ANNs). In addition, models have been proposed which

directly address the problem of forecasting the wind power generation using spatial

information (Tastu et al., 2014).

In the most aforementioned spatial-temporal approaches for the wind speed fore-

cast, multiple measurements come from relatively large regions for a small number

18

of locations, i.e. geographically dispersed information. This is different from the

problem of our interest in which we explicitly consider a set of measurements in a

relatively small region for a large number of locations, specifically within a wind

farm. Therefore, the problem resembles some of the cases investigated by Alexiadis

et al. (1999) and Kusiak and Li (2010); however, we try to model spatial depen-

dency using a continuous and interpretable field unlike utilizing ANNs which lack

physical interpretation. Furthermore, our goal is to make individual speed predic-

tions at individual turbine locations, as we argue the impact of this knowledge can

transcend mere power generation forecast and can be utilized for better control of

wind power systems; specifically, we need turbine-specific wind forecasts to be able

to effectively control the damage created by the fatigue on the structural components

(Santos, 2007). Hence, this work is different from those that consider individual tur-

bine measurement for an overall power forecast of the whole wind farm (He et al.,

2013). Hence, selection and modeling such spatial dependency in local wind fields

for individual turbine present unique challenges which will be discussed in detail in

Section 2.3.

2.3 Spatial-temporal Auto Regression For Short-term Wind Forecast

In this part, we present the details of our approach for modeling the wind speed

in a local wind field with wind measurements available at multiple locations. To

explicitly consider the variability in the wind speed, we assume the wind speed at

each location is a random variable. Different distributions have been proposed in the

literature to model this random variable, including Weibull (Yu and Tuzuner, 2008)

and truncated normal (Gneiting et al., 2006), among which the truncated normal

has proven powerful for the purpose of short-term wind forecast. In particular, a

truncated normal can model non-negativity of the wind speed and also its quantiles

19

can be easily computed. Therefore, we assume wind speed Yi(t) = Y (si; t) follows

a truncated normal distribution N+(µi(et), σ
2(et)) at time t at location si for i =

1, 2, . . . , I (location si will be often shortened as location i), where et denotes the

“epoch” at time t, i.e. a section of days in a period of time in which the wind speed

can be assumed stationary (He et al., 2013). Epochs are introduced as a mean to

model the nonstationarity of wind speed. For example, we may consider 6a.m. to

12p.m. in the month of January as an epoch. The main goal here is to develop a

model for the parameters of the truncated normal distribution by considering both

temporal and spatial dependency in the field. Here, we first present three models

to analyze the dynamics of wind in local regions, and then address the loss function

issue.

2.3.1 Gaussian Spatial-temporal Auto Regression

Towards devising a model for the wind speed, we note that single time-series

models can be derived from the assumption that wind speed is some (parametric

or non-parametric) function of the past wind speed values. Considering the spatial

dependency of the wind speed, we extend this understanding by assuming that the

mean of the wind speed is a function of the means of the wind speeds at not only the

target site but also other locations in that region. Of course, to handle the problem

in practice we need to be more specific about this relationship. A simple extension

of single time-series modeling for efficiently incorporating the spatial dependency

suggests a linear form for this dependency, namely that the mean of the wind speed

over time at location i is expressed as a linear combination of a group of mean

speed values, estimated by observed wind speeds, at locations Ji ⊂ {1, 2, . . . , I}.

20

Specifically,

µi(et) = c+

p∑
`=0

∑
j∈Ji

aij`Yj(t− `), for i = 1, 2, . . . , I, (2.6)

where c is a constant, p represents the history of time which can be informative to

model the mean of the distribution, aij` are the parameters which show the spatial-

temporal dependency, and h is the prediction horizon. Here, the order of temporal

part p is fixed and we will discuss its determination in Section 2.4.4. Furthermore,

we delay the discussion about the selection of time epochs, et, to Section 2.4.

Dealing with large-scale datasets which influence the model through Ji, instead

of directly estimating all the unknown coefficients in equation (2.6) we proceed by

imposing a natural structure on the spatial-temporal coefficients through parameter-

ization. Furthermore, we adaptively select the neighborhood size such that most im-

portant information is captured via employing a smaller number of locations. These

tasks, while maintaining the model interpretability, facilitate the solution procedure

enormously as will be explained in detail.

We assume the spatial-temporal parameters aij` can be decomposed into the

respective spatial and temporal parts. That is

aij` = asija
t
i` for i = 1, 2, . . . , I, j ∈ Ji, ` = 1, 2, . . . , T. (2.7)

A key observation in modeling the spatial parameter asij is that wind speeds at closer

geographic proximity contribute more in explaining the change in the wind speed at

the target site, while wind speeds at faraway locations could also be informative but

to a lesser degree. One way to model this type of dependency is through a Gaussian

21

kernel. Specifically,

asij = exp
[
− (si − sj)

T Λi (si − sj)
]
, for i = 1, 2, . . . , I, (2.8)

where Λi = diag{λi1, λi2}, and λi1 and λi2 are parameters modeling the spatial

decay in the longitudinal and latitudinal directions, respectively. In other words, this

Gaussian kernel assigns “weights” to different locations and the weight continuously

diminishes as the distance increases. Therefore, this modeling strategy creates a

contentious spatial field; this spatial field is achieved by replacing the spatial part of

the coefficients in equation (2.6) by new location-specific parameters Λi.

For the temporal part ati` we can make a similar argument, i.e., an exponential

delay in weighting but in terms of time distance. This leads to the following equation

ati` = exp [−λi3`] , for i = 1, 2, . . . , I, (2.9)

where λi3 is a parameter modeling the temporal decay. The subscript “3” means to

include the time as the third dimension in the input space.

Our goal is to use data to decide both Ji and aij` for each location i. Let Ai

denote an I × p matrix of spatial dependency for location i. This means if j ∈ Ji

the (k, `) entry of the matrix is asij, otherwise it is zero. We also define matrix Di

as an p× p diagonal matrix whose (`, `)th entry is ati`. Then, equation (2.6) can be

written as

µi(et) = c+ tr
(
AiDiYT (t)

)
, for i = 1, 2, . . . , I, (2.10)

where Y is an I×p matrix whose `th column is Y(t−`), and the superscript T denotes

the transpose. We call model (2.10) Gaussian Spatial-temporal Auto-regression of

order p and denote it by GSTAR(p).

22

To estimate the parameters in equation (2.10) we follow a regularized least square

estimation procedure. The regularized least square estimation, as the name suggests,

is an optimization framework consisting of two parts: we want to find the parameters

which minimize the discrepancy between the observations and the model prediction

through, and also, we add a penalty to avoid overfitting in both time and space. In

fact, one purpose of considering a penalty term is to find the “best” neighborhood

Ji while keeping the size of the optimization problem tractable.

Let us first present the optimization formulation and delay the discussion of how

the optimization selects the neighborhood to Section 2.3.2. Specifically, given p, we

consider the optimization problem

minU(λi1, λi2, λi3) =
T∑
`=1

L
{
Yi(`+ h)− Ȳi, tr

(
AiDiYT (`)

)}
+ γPen (Ai) , (2.11)

where Ȳi = 1
T

∑T
`=1 Yi, L{., .} is a loss function (to be explained in Section 2.3.5), γ

is a penalty coefficient, and Pen (Ai) is a penalty term. The purpose of including

Pen (Ai) is to obtain a sparse representation of the informative neighborhood based

on the similarity in the rate of change of the wind speed between the target site and

other locations in the wind farm. In Section 2.3.2 we will discuss in detail the role

and definition of this penalty term.

The variance of wind speed can be modeled as a linear combination of volatility,

which presents the size of recent changes in wind speed (Gneiting et al., 2006).

Specifically,

σ2
i (et) = b0 + b1νi(t), for i = 1, 2, . . . , I, (2.12)

23

where

νi(t) =

[
1

2|Ji|
∑
j∈Ji

1∑
`=0

{
(Yj(t− `)− Yj(t− `− 1))2}] 1

2

, (2.13)

|Ji| is the number of elements in Ji, and b0 and b1 can be estimated through least

square estimation using the past sample variance of σ2
i (et) and νi(t).

The predicted value for location i at h-step ahead will be the α-quantile of the

truncated normal distribution;

Ŷ (t+ h) = µ̂i(t+ h) + αΦ−1

[
α + (1− α)Φ(− µ̂i(t+ h)

σ̂i(t+ h)
)

]
, (2.14)

where µ̂i(·) is the estimated mean found through equation (2.10) (likewise, σ̂i(·) can

be found through equation (2.12)), and the value of α should be decided based on

the loss function L(·, ·). In Section 2.4.2 we discuss the optimal choice for α.

2.3.2 Selecting Informative Neighborhoods

One important aspect while making use of multiple-site measurements is which

sites, among all possible locations, can be genuinely “informative”. Despite the fact

that a Gaussian kernel as in equation (2.8) has already been used to weigh locations

based on their relative distance from the target site, our analysis reveals that a pure

distance-based determination of informative sites is insufficient and ineffective. The

key to identify the informative neighborhood is, based on our study, to observe that

if two locations have similar rates of change in wind speed for a given period, they

can be informative for each other. In other words, the spatial dependency can be

determined using the correlation among the rate of change of the wind speed.

Specifically, let Zi(t) =
dY s

i (t)

dt
≈ Y s

i (t) − Y s
i (t − 1), for i = 1, 2, . . . , I, where

Y s
i = Yi

m(Yi)
, where m(Yi) = max{Yi(t); t = 1, 2, . . . , T ; i = 1, 2, . . . , I}. Then, define

24

a sample covariance matrix for Z as:

ρ =
1

T

T∑
`=1

(
Z(`)− Z̄

) (
Z(`)− Z̄

)T
, (2.15)

where Z(`) = [Z1(`), Z2(`), . . . , ZI(`)]
T , for ` = 1, 2, . . . , T and Z̄ = 1

T

∑T
`=1 Z(`).

Next, we discuss the role of penalty Pen (Ai). The inclusion of this penalty

is to find a sparse representation of the informative neighborhood by utilizing the

information embedded in ρ. This task is done by performing several operations in

turn. These operations are to ensure that we select a small neighborhood which has

a high correlation in the rate of change with the target site. Specifically, Pen (Ai)

does three operations: (a) it thresholds the entries of ρ with respect to β ∈ [0, 1];

(b) it creates a new matrix whose entries are the inverse of the entries of the matrix

obtained in step (a) (with the convenience that inverse of zero is∞); and (c) it returns

the product between the matrix obtained after step (b) and Ai with the convention

that 0 × ∞ = 0. Specifically, let ρβ denote the matrix ρ after thresholding with

respect to β:

ρβjk = ρjk if ρjk ≥ β otherwise ρβjk = 0, (2.16)

where ρβjk and ρjk are the (j, k)th entries of ρβ and ρ respectively for j, k ∈ {1, 2, . . . , I}.

Then, let ρβinv define the entrywise inverse of matrix ρβ, that is

ρβinv,jk =
1

ρβjk
, (2.17)

where ρβinv,jk is the (j, k)th entry of ρβinv for j, k ∈ {1, 2, . . . , I}. We assume ρβjk = 0

implies ρβinv,jk =∞. Finally, we define

Pen (Ai) = ‖AT
i ρ

β

inv‖F , (2.18)

25

where ‖.‖F denotes the Frobenius norm and we use the notational convention that

0×∞ = 0.

In other words, Pen (Ai) is a scalar obtained by imposing a sparse structure

on Ai in which entries with associated sample correlation of the derivative smaller

than β is 0. If the sample correlation of the derivative is small (but larger than

β) the associated entries in Ai are penalized more; on the other hand, if the sample

correlation of the derivative is large the associated entries in Ai are slightly penalized.

Therefore, Ji = {j : ρβij 6= 0}. In Section 2.4.2 we present how this approach can be

used to select neighborhoods.

2.3.3 Regime Switching Gaussian Spatial-temporal Auto Regression

Following the regime switching approach developed by Gneiting et al. (2006), we

extend model (2.10) to take the wind direction into account. Regimes are determined

according to the wind direction, denoted by θ. This means we consider a partition

of the interval [0o, 360o), with 0o representing due north, where each segment of the

partition defines a regime. For example, an east-west two-regime partition can be

represented as r = {[0o, 180o)}, meaning that when 0o ≤ θ(t) < 180o, it is the east

regime, whereas when 180o ≤ θ < 360o, it is the west regime. Then, we fit a separate

model for each regime. Specifically, we can model the mean of the wind speed as

µi(et) = c+ tr
(
Ai(θ(t), r)DiYT (t)

)
, for i = 1, 2, . . . , I, (2.19)

where r denotes the forecast regimes, and θ(t) is the current wind direction at loca-

tion i. The matrix Ai(θ(t), r) is similar to Ai as defined in Section 2.3.1, however,

the dependency on (θ(t), r) means that in the training stage, for each regime, we

only consider those observations that fall in the specific range determined by (θ(t), r).

Then, based on the regime at time t, we make a prediction for the wind speed at

26

time t + h, according to the specific trained model for that θ. We call model (2.19)

Regime-switching GSTAR of order p and denote it by RGSTAR(p). Specifically, we

solve

minU(λi1, λi2, λi3) = c+
T∑
`=1

L
{
Yi(`+ h)− Ȳi, tr

(
Ai(θ(t), r)DiYT (`)

)}
+γPen (Ai) ,

(2.20)

which, given a regime, is solved similar to optimization problem (2.11).

In our analysis, to find the regimes in each calendar month, we use the data in the

previous year. First, we select a group of candidate regimes, for example, east-west,

or north-south. Then, for each of the candidate regimes, we fit the model (2.19), and

then we choose a regime which yields the smallest training error. In other words, we

choose a set of regimes based on the following:

r∗ = arg min
r
Em(r), formo = 1, 2, . . . , 12, (2.21)

where Em(r) denotes the prediction error based on some loss function for month

mo. This simply means for each month we choose the regime which yields a smaller

prediction error; however, based on our analysis, selecting a regime with too many

partitions does not improve the prediction accuracy as it reduces the number of data

points needed for training in each regime. Therefore, in general, regimes with two

or three partitions work the best.

2.3.4 Using Geostrophic Wind in Regime Switching Gaussian Spatial-temporal

Auto Regression

In addition to the information related to the wind speed and wind direction, one

can utilize measurements of temperature and air pressure for the purpose of short

term wind forecast. One way to effectively employ temperature and air pressure

27

measurements for the predictive modeling of wind speed is through geostrophic wind

(Zhu, 2013). Geostrophic wind is a type of theoretical wind obtained by assuming an

exact balance between the air pressure gradient force and the Coriolis force (Focken

and Lange, 2006). Geostrophic wind can be obtained after some simple calculations

on temperature and air pressure measurements (Zhu, 2013, pp.77-81). The actual

value of geostrophic wind is in general assumed to be in good accordance with the

wind speed close to the ground.

Let ωi(t) denote the geostrophic wind at location i at time t. We can extend

model (2.19) to incorporate geostrophic wind. Specifically,

µi(et) = tr
(
Ai(θ(t), r)DiYT (t)

)
+

w∑
`=1

ψ(t− `)ωi(t− `), for i = 1, 2, . . . , I

(2.22)

where ψ(`) denotes the coefficient of the geostrophic wind at time ` and w is the order

of the model associated with the geostrophic wind. We call model (2.22) RGSTAR

Geostrophic Wind of order (p, w) and denote it by RGSTARGW(p,w). To find the

optimal values of the parameters in model (2.22), we use a two-step approach. First,

given p and w, we fit data to the model RGSTAR, for each respective regime, based

on the model discussed in Section 2.3.3, namely optimization problem (2.20). Then

we regress the residuals on the geostrophic wind using least square estimation.

Ŷi(t+h)−tr
(
Âi(θ(t), r)D̂iYT (t)

)
= c+

w∑
`=1

ψ(t−`)wi(t−`), for i = 1, 2, . . . , I,

(2.23)

where Âi(θ(t), r) and D̂i are the estimated values for the matrix Ai(θ(t), r) and Di

respectively, and Ŷi(t+ h) is the predicted value obtained in the first step.

In all the above discussion, we focus on how to incorporate the spatial information

into our model for a given order of temporal dependency, namely for fixed p, q and/or

28

w. We delay the discussion of the selection of temporal order Section 2.4.4.

2.3.5 Choice of Loss Functions and Handling Missing Data

The evaluation of prediction should be based on suitable loss functions for the

wind energy industry. If Ŷi(t+h) denotes the predicted wind speed for h-step ahead

forecast at location i for i = 1, 2, . . . , I, a common choice to evaluate the prediction

is the mean absolute difference

MAD =
1

I

I∑
i=1

∣∣∣Ŷi(t+ h)− Yi(t+ h)
∣∣∣. (2.24)

However, as Hering and Genton (2010) argued, this loss function (or similar loss

functions like root mean squared error) is not suitable for the wind energy industry.

The reason can be explained by recalling that the ultimate goal in short term wind

forecast is to predict the amount of wind energy produced. To estimate the wind

energy produced by a turbine, one can use the power curve associated with a turbine

converting wind speed into power production.

As shown in Figure 2.1, for a wind speed smaller than cut-in speed the energy

produced by the turbine is zero. For wind speed between cut-in speed and rated

speed, the energy produced is monotonically increasing. If the wind speed is between

the rated speed and the cut-out speed, the output will not exceed the maximum

capacity of the turbine. If the wind speed exceeds the cut-out speed the turbine is

shut down for safety purposes and no energy is produced. To explicitly consider the

energy produced, Hering and Genton (2010) proposed the power curve error which

is defined as

PCE(Y, Ŷ) =

 α
(
g(Y)− g(Ŷ)

)
if Ŷ ≤ Y ,

(1− α)
(
g(Ŷ)− g(Y)

)
if Ŷ > Y ,

(2.25)

29

cut-in speed rated speed cut-out speed

P
o

w
e

r
O

u
tp

u
t

Wind Speed

ra
te

d
 p

o
w

er

Figure 2.1: Power curve for a wind turbine

where g(.) is the power curve and α ∈ (0, 1). The parameter of α is introduced to pe-

nalize underestimation and overestimation differently. The reason can be attributed

to the fact that, in practice, the cost incurred by underestimating the wind energy

is more than that of overestimating. Therefore, for practical purposes α > 0.5. Fur-

thermore, the value of α in equation (2.25) is the quantile of the optimal predictor,

given the PCE is used as the loss function, and is the same as the α shown in equation

(2.14).

In solving optimization problem (2.11), the loss function L is determined based

on the forecast objective. For example, if we want to make a prediction based on the

power curve error, optimization problem (2.11) can be written as

minU(λi1, λi2, λi3) =
T∑
`=1

PCE
{
Yi(`+ h)− Ȳi,AiDiYT (`)

}
+ γPen (Ai) , (2.26)

30

where we simply replace L(., .) with PCE. Note that PCE possesses practical signifi-

cance as it explicitly consider the cost associated with wind speed forecast for power

generation. Nevertheless, we also consider the continuous rank probability score

(CRPS) which is akin to PCE, but it evaluates the forecast from a distributional

perspective. Specifically, CRPS is defined as

CRPS =
1

I

I∑
i=1

∫ 1

0

(
F̂ (X)− I(X ≥ gi)

)2

, (2.27)

where F̂ (X) is the distributional forecast of power (assuming g is known), gi is the

(normalized) power generated by turbine i, and I(ξ) is equal to 1 if ξ is true otherwise

it is 0. and Unlike Gneiting et al. (2006) we do not use CRPS for estimation, but

for model evaluation (He et al., 2013).

For the data sets we use in this paper, there exist missing observations for both

turbines and meteorological masts. To address the missing data problem, we im-

pute missing values using a singular value decomposition (SVD) method (Golub and

Van Loan, 2012). Let X denote the complete data matrix, where data refer to any

of the following: wind speed, wind direction, temperature, or air pressure. Assume

that the dimension of X is n×m, and let I be a matrix of the same size where if (i, j)

element of X is observed then (i, j) element of I is 1, otherwise it is 0. A truncated

SVD decomposition of X is defined as

[Ud,Σd,Vd] = SVD(X, d), (2.28)

such that

X = UdΣdV
′

d, (2.29)

where Ud is an m×d matrix, Σd is a diagonal d×d matrix and Vd is an n×d matrix,

31

where d < min(m,n). Then, for imputing the missing values, we use iterative SVD

decomposition (Maadooliat et al., 2013; Beckers and Rixen, 2003). This procedure

leaves the observed data intact and only interpolates the missing values. For the

wind speed data, we have an average of 2 to 3 percent of missing data in each month

which is relatively small. For other meteorological data, in particular temperature

and pressure we observe relatively higher percentage of missing data, which for some

months reaches up to 30 percent. The adverse effect of this high amount of missing

data will be discussed in Section 2.4.2.

2.4 Results

The wind farm we are interested in, consists of more than 200 wind turbines and

a few meteorological mast towers. The data used in this paper are randomly selected

at 200 sites. We used 200 turbines rather than all of them because our industrial

partner deems the exact number of turbines confidential and asks that number not

to be disclosed.

This wind farm is on a reasonably flat terrain, so the elevation differences between

the highest and lowest locations are less than ten meters, over a stretch of approx-

imately 160 square kilometers. The data we have were obtained in 2008 through

2010. Each wind turbine has the measurements of wind speed for every 10 minutes

and the standard deviation of the wind speed during that 10-minute period. The

meteorological mast towers provide us with the measurements of temperature, air

pressure and the wind direction, all measured as a 10-minute average. Arranging

data in 10-minute blocks is a common practice in the wind industry. For our fore-

cast purpose, we further average the each data set over each hour, i.e. an average

over the 10-min observations taken at 10, 20, 30, 40, 50, and 60 minutes; therefore

we obtain datasets with a measurement resolution of one hour.

32

We consider three proposed methods: GSTAR, RGSTAR, and RGSTARGW.

GSTAR(p) is simply Gaussian Spatial-temporal Model as described in Section 2.3.1,

RGSTAR(p) is the regime-switching GSTAR in which the regime in each calendar

month is decided based on the data in the previous year. Finally, RGSTARGW(p,w)

utilizes the temperature and pressure measurements in forms of geostrophic wind as

described in Section 2.3.4. For each model, we define four epochs for each day in a

calendar months: (1) 12:00 am to 6:00 am, (2) 6:00 am to 12:00 pm, (3) 12:00 pm to

6:00 pm, and (4) 6:00 pm to 12:00 am. This means, for example, the time sections

12:00 am to 6:00 am in each day for the month of January comprise an epoch during

which the wind speed is assumed a stationary stochastic process. Consequently, we

need to fit individual models for each epoch, depending on the epoch to which the

forecast horizon belongs. In each month, we randomly assign each turbine (out of a

total of 200 turbines) to one of the four regimes, and fit a respective model for that

case. Then, we report the average prediction error for each month which is a good

approximation of the overall prediction error as epochs are uniformly assigned to

turbines for model evaluation. Table 2.1 summarizes features of each of the models.

Table 2.1: Features of proposed models

Model Epochs Regimes Geostrophic Wind
GSTAR Yes No No
RGSTAR Yes Yes No
RGSTARGW Yes Yes Yes

The competing algorithms will be ARMA(p,q), ARMA∗(p,q), Vector AR of order

p (VAR(p)), and Persistence method (PER). ARMA∗(p,q) is the same as ARMA(p,q)

but the analysis is performed on the residuals after removing a diurnal trend as will

33

be discussed in Section 2.4.4. For the VAR(p) we select the neighborhood based

on the geographical distance smaller than 5km. For these models we select p = 1

, q = 2, and w = 1. We delay the discussion on the rational and criteria for

selection of p, q, and w, and also, addressing the diurnal trend in wind speed to

Section 2.4.4. We compute h-step ahead predictions for h = 2, 3, . . . , 5. Specifically,

for each h-step ahead prediction we train the model for 30 days using hourly data

and then make predictions for the next h hours, i.e. we fit separate models for

each prediction horizon; based on our experiments, this creates better predictions

compared to multi-step prediction in which we use fit a single model and then make

a prediction step-by-step for the next h hours. The loss functions will be PCE as

defined in Section 2.3.5.

2.4.1 Model Setup

An important aspect regarding the GSTAR models is the way they select the

informative neighborhood for each target site. It will be elucidative to take a look

at how neighborhoods are selected. Figure 2.2 shows a sample of results for three

different sites using data of January of 2009. As evident in the figure, the selection

is not necessarily based on geographical proximity. The neighborhood is selected

according to historical similarity in the rate of the change of the wind speed as

explained in Section 2.3.2.

Next we discuss the actual values used for β in equation (2.16). Smaller values

for β imply a larger neighborhood for a target site since it makes the thresholded

covariance matrix of the derivatives, ρβ, have less zero entries. On the other hand,

larger values for β create a smaller informative neighborhood. As will be discussed in

Section 2.4.3, the suitable size of the neighborhood is related to the forecast horizon.

Nevertheless, for the range of 2-hour ahead to 5-hour ahead the weather-related

34

Site 1

Site 3

Site 2
Site 1

Site 2

Site 3

(a) (b)

(c) (d)

Figure 2.2: Neighborhood selection in GSTAR models for a sample data in January
2009: (a) three different sites and turbines in their neighborhood; (b)-(d) informative
neighborhood selection for each site.

35

information, which travels through the wind speed, contributes little to the model’s

performance. Therefore, we choose similar values for each horizon but in a descending

order, i.e. for 2-hour ahead forecast we choose β = 0.85 and for 5-hour ahead β = 0.92

and we linearly interpolate the values of βs for 3 and 4-hour ahead. The rational for

this descending trend is that for longer horizons, a smaller neighborhood is deemed

sufficient since the information conveyed through the weather system will be to little

avail. This phenomenon will be further discussed in Section 2.4.3.

2.4.2 Forecasts and Comparisons

Here we present the prediction results for the array of methods selected, including

different variants of the GSTAR models, VAR model, ARMA models, and PER. We

train each model using one month of data and then make an h-step ahead forecast for

h = 2, 3, . . . , 5 hours. For each of year 2009 and year 2010, we do this task for turbine

i = 1, 2, . . . , 200, therefore for each method we get 200 × 12 prediction results per

year, and we report the average values and the standard deviations of the associated

loss functions. The data in year 2008 is used to determine the regimes for year

2009. For the loss function PCE, we normalize the power curve so the rated power

is transformed into 1, also we choose α = 0.73 as suggested by Hering and Genton

(2010). The point forecast for GSTAR models is α-quantile of the predictive normal

distribution, since Gneiting (2011) notes that for the PCE error, the α-quantile is

the optimal predictor.

Tables 2.2 shows the results for the GSTAR methods (i.e. GSTAR, RGSTAR, and

RGSTARGW) and four competing methods, which are PER, VAR(1), ARMA(1,2),

and ARMA∗(1,2). The results suggest that in general GSTAR models perform better

than the persistence method, the vector autoregressive and the autoregressive mov-

ing average. Another piece of information which is worth considering is the relative

36

performance of ARMA and VAR. ARMA performs better than VAR: this indicates

the significance of choosing the appropriate neighborhood as discussed in Section

2.3. A poor selection of neighborhood, such as simply based on the geographical

distance, can mislead the model into making worse predictions for longer horizons.

We want to note that the GSTAR methods consistently outperform the VAR and

ARMA methods, sometimes by more than 10% reduction in PCE. The relative poor

performance of RGSTARGW 2009 can be attributed to the high percentage of miss-

ing meteorological data in a few months, consequently affecting the performance of

the model.

Table 2.2: Prediction results for 2009 and 2010 using PCE. The values in parenthe-
sis are the standard deviations of the corresponding predictions. Last row denotes
improvement of the best method over PER.

2009
Method 2-h 3-h 4-h 5-h
PER 0.054 (0.013) 0.066 (0.17) 0.076 (0.022) 0.089 (0.025)
VAR(1) 0.109 (0.053) 0.115 (0.044) 0.126 (0.042) 0.127 (0.037)
ARMA(1,2) 0.058 (0.016) 0.077 (0.020) 0.088 (0.028) 0.100 (0.028)
ARMA∗(1,2) 0.066 (0.018) 0.085 (0.022) 0.094 (0.027) 0.104 (0.028)
GSTAR(1) 0.050 (0.012) 0.058 (0.016) 0.066 (0.019) 0.080 (0.025)
RGSTAR(1) 0.055 (0.018) 0.061 (0.020) 0.070 (0.022) 0.085 (0.025)
RGSTARGW(1,1) 0.054 (0.016) 0.059 (0.019) 0.069 (0.021) 0.087 (0.027)
Imp. % over PER 7.4 12.1 13.2 10.1

2010
PER 0.047 (0.012) 0.053 (0.015) 0.069 (0.019) 0.074 (0.023)
VAR(1) 0.110 (0.068) 0.129 (0.075) 0.138 (0.058) 0.148 (0.057)
ARMA(1,2) 0.055 (0.014) 0.068 (0.017) 0.085 (0.023) 0.094 (0.026)
ARMA∗(1,2) 0.096 (0.015) 0.104 (0.017) 0.118 (0.020) 0.121 (0.022)
GSTAR(1) 0.042 (0.013) 0.052 (0.016) 0.063 (0.019) 0.071 (0.020)
RGSTAR(1) 0.043 (0.017) 0.051 (0.017) 0.067 (0.022) 0.073 (0.021)
RGSTARGW(1,1) 0.042 (0.014) 0.054 (0.016) 0.066 (0.021) 0.071 (0.021)
Imp. % over PER 10.6 3.8 8.7 4.1

To achieve a better understanding of the relative performance of the GSTAR

37

models, we present more detailed results. Table 2.3 shows the average improvement in

prediction made on individual turbines. Specifically, the first number in parentheses

is the percentage of turbines for which the proposed methods works better than the

persistence method and the second number is the average percentage of improvement

over the persistence method for those turbines. We observe that for those best

methods identified in Tables 2.2, the GSTAR methods always perform better than

the persistent method on more than half of the turbines. In fact, for many of the

case, the GSTAR methods perform better on nearly two-thirds of the turbines. A

second observation is that whenever the GSTAR methods perform better, it makes

an appreciable improvement: the improvements are always more than 15%, but could

be as much as 29%. We do acknowledge that for some other cases, due to the sudden

change in the wind speed or other forms of volatility, the GSTAR models cannot

capture such trends, and could perform worse than the persistent model. Hence,

such cases suggest that more sophisticated framework is also needed to address those

patterns and trends the GSTAR methods currently fall short of capturing. We also

Table 2.3: Percentage of improvement over PER in 2009 and 2010, measured by
PCE on individual turbines. The data pair in a parenthesis are the percentage of
turbines that see an improvement and the average improvement percentage for those
turbines. The bold values correspond to the best method in Table 2.2.

Method 2-h 3-h 4-h 5-h
GSTAR(1) (2009) (66, 18.0) (75,20.1) (77,20.3) (70,19.8)
RGSTAR(1) (2009) (53, 23.9) (60,27.6) (58,30.1) (57,27.3)
RGSTARGW(1,1) (2009) (49,24.9) (60,28.9) (60,29.1) (49,30.8)

GSTAR(1) (2010) (63,22.1) (54,18.6) (63,19.5) (59,15.9)
RGSTAR(1) (2010) (61,31.9) (56,27.1) (54,28.7) (53,26.5)
RGSTARGW(1,1) (2010) (66,29.2) (46,26.3) (54,28.1) (53,26.8)

present a sample of results using CRPS as the loss function. We randomly select

38

twenty turbines and apply the GSTAR model using the data in the year 2009. The

results, shown in Table 2.4, compare the value of CRPS for GSATR with taht of

ARMA(1,2). As the table suggests similar messages, we will not discuss the CRPS

loss function. Finally, we want to investigate if the model performance is sensitive to

Table 2.4: Prediction results for 2010 using CRPS for twenty randomly selected
turbines.

Method 2-h 3-h 4-h 5-h
ARMA(1,2) 1.166 1.480 1.845 2.353
GSTAR 0.997 1.198 1.478 1.532

the value of α used in the PCE. Note that the PCE loss function and the associated

value of α = 0.73 are suggested by Hering and Genton (2010) as a “practical” measure

for the accuracy of the prediction. Considering values of α ranging from 0 to 1 would

be of little use as it considers arbitrary measures for over and underestimation.

However, we present sensitivity analysis for the value of the parameter α. Our

sensitivity analysis is to change the value of α between 0.6 and 0.8 and we average

the PCE error over this range. We present the results of this sensitivity analysis for a

sample of 100 turbines and the data in the year 2009. The analysis suggests despite

the fact that α = 0.73 is used for model fitting and evaluation, the performance of

the model is not sensitive to that specific value.

Table 2.5: Sensitivity analysis for the value of α ranging in [0.6, 0.8] for the year
2009. The values in parenthesis are the average of standard deviations for each case.

Method 2-h 3-h 4-h 5-h
PER 0.071 (0.007) 0.073 (0.008) 0.064 (0.009) 0.077 (0.010)
GSTAR 0.057 (0.007) 0.066 (0.007) 0.053 (0.009) 0.074 (0.008)

39

2.4.3 Informative Neighborhoods and Propagation of Information

Here we discuss the question of why the GSTAR models can outperform the com-

peting models. This question can be approached from an information propagation

perspective. Recall that the region we are considering is relatively small, around

160 square kilometers. Therefore, the information related to the weather system,

which is assumed to travel by the wind speed, travels the entire region in a short

amount of time generally between half an hour to an hour. Consequently, for a fore-

cast horizon greater than 2 hours, which is the focus of this paper, such information

cannot have a role in the prediction performance. This shows the contrast between

this problem and other spatial modeling for wind speed/power forecast such as those

of Tastu et al. (2014) or Gneiting et al. (2006) in which the weather information

at a relatively distant point, in some cases more than 100 kilometers away, is used

for the prediction at the target site. In fact, the best relative performance for the

model proposed by Tastu et al. (2014) occurs at 1-hour ahead forecast, and that can

be explained by noting the average wind speed in the region (30-50 km/h) and the

average distance of their target site and other wind farms in their study(around 50

km).

The performance of the GSTAR models relies on different aspects, which are

neighborhood selection, regime switching, the loss function, and epochs. In fact, the

GSTAR models select a neighborhood which has a similar rate of change with that of

the target site, and as a result and combined with the other aspects of the methods,

they improve the prediction power. Note that this does not imply the prediction

error for longer horizons are better than that of the shorter horizons: as tables in

Section 2.4.2 demonstrate, in general, the prediction error increases as the prediction

horizon gets longer. However, the deterioration for the GSTAR models, compared

40

to other methods, is less significant.

In other words, the GSTAR models find a subset of turbines, which have a similar

rate of change with that of the target turbine, and then build, loosely speaking, an

“ensemble learner” using those turbines. Hence, the GSTAR models do not use the

data in the sense that Tastu et al. (2014) use, but more closely to Alexiadis et al.

(1999) and Kusiak and Li (2010), in which a machine learning algorithm using the

data in close-by region has been built to predict the wind speed.

To test this hypothesis, i.e. the performance of the GSTAR models lies, par-

tially, in utilizing an effective machine learning algorithm and not that the weather

information is employed, we design an experiment. We want to see if there exists a

neighborhood which is informative in the sense described in the paper. To this end,

we compare the change in the neighborhood selected by the GSTAR for two cases,

(i) when the GSTAR performs better than the persistence method, and (ii) when the

GSTAR performs worse than the persistence method. Our hypothesis suggests that

for the former, the selected (informative) neighborhood should remain pretty much

the same as we move to the following month, while for the latter the informative

neighborhood should change dramatically. To this end, we define a metric change in

the neighborhood ch(i,m) for i = 1, 2, . . . , 240 and for m = 1, 2, . . . , 12

ch(i,m) =
|Ji(m) ∩ Ji(m+ 1)|

|Ji(m)|
, (2.30)

where Ji(m) denotes the informative neighborhood selected by the GSTAR at month

m for turbine i and |Ji(m)| is the number of elements in the set Ji(m). Note that

ch(i,m) is a number greater than or equal to 0 and smaller than or equal to 1. To

obtain a robust statistic, we set a threshold, tch ∈ (0, 1), and find the proportion of

time the change in the informative neighborhood is larger than that threshold. In

41

other words, we define

Sc = E
{
I
(
ch(·, ·) ≥ tch

)}
, (2.31)

where I is the indicator function defined similarly to what we had in equation (2.27)

and E is the expectation operator. Simply speaking, an estimate for the value de-

fined by (2.31) denotes the probability of a “significant” change in the informative

neighborhood. Therefore, our proposed hypothesis means that if GSTAR outper-

forms the persistence method, Sc should be relatively larger compared with the cases

that GSTAR performs worse. To test this hypothesis, we select 60 turbines and

calculate Sc metric for the year 2010, for the two cases where the GSTAR produces a

better h-hour ahead forecast compared with the cases when the persistence method

produces a better h-hour ahead forecast, for h = 2, 3, 4, 5. We choose tch = 0.8 and

estimate the value of Sc by counting the proportion of time ch(i,m) is greater than

0.8. The results are shown in Table 2.6. As the results display, for smaller horizons,

when the GSTAR model performs better, with a higher probability we observe a sig-

nificant change in the neighborhood selected. However, for longer horizons, this rule

does not apply.This suggests that when predicting for shorter horizons, the role of an

informative neighborhood is more important. However, that functionality becomes

less significant for longer horizons.

Table 2.6: Proportion of significant changes in the informative neighborhood Sc.

Sc 2-h 3-h 4-h 5-h
GSTAR performs better 0.68 0.59 0.53 0.53
Persistence performs better 0.56 0.56 0.60 0.72
Difference 0.12 0.03 -0.07 -0.19

This brings us to the role of some other aspects in the GSTAR models,

42

specifically using epochs for modeling non-stationarity and the use of the PCE loss

function in model training for GSTARs. Particularly, the latter, using the PCE,

helps the GSTAR models adapt to the data based on the loss function used in the

evaluation. In particular, the GSTAR models are less sensitive for the wind speed

less than the cut-in speed or greater than the cut-out speed. That contributes to

an overall better performance once we evaluate the models mainly in the range that

falls between the cut-in and cut-out speed.

2.4.4 Temporal Dependency for Wind Speed

Here we revisit some issues regarding specification of temporal parameters and

diurnal trends in spatial-temporal models and discuss them in more detail. One im-

portant issue regarding autoregressive moving average models is deciding the orders

of the model, p and q. For autoregressive models, one approach to find the order p is

the partial autocorrelation function (Brockwell and Davis, 2009). Partial autocorre-

lation of lag k is defined as the autocorrelation between the terms with indices t and

the t+ k where the linear dependency of the terms with indices t+ 1 to t+ k− 1 are

not accounted for, i.e. removed. Katz and Skaggs (1981) found that in general, for

meteorological data, a low order for AR models, often p = 1, would suffice; for our

data, the results seem to be in accordance with this claim.

Specifically, Figure 2.3 displays a sample of results for partial autocorrelation for

turbine#1 in year 2009. As evident in the figure the order of 1 for autoregressive

models deems adequate. The results for other cases agree with this figure. Therefore,

for autoregressive term in VAR, GSTAR, RGSTAR, and RGSTARGW models, we

use p = 1. Also for RGSTARGW, as the partial autocorrelation of order 1 for the

geostrophic wind has the largest value and higher orders are negligible, we use w = 1.

One can also use criteria such as the Bayesian Information Criterion to identify the

43

Figure 2.3: Sample partial autocorrelation for turbine#1 in 2009: each subplot de-
notes the sample partial autocorrelation for a month in 2009; the x-axis is the lag
(in hour) and the y-axis is the sample partial autocorrelation. The two parallel lines
are approximate 95% upper and lower confidence bounds.

order for the autoregressive part p or moving average parts q. In general, this criterion

suggests that low order ARMA models are adequate, such as p = 1 and q ≤ 2 for

most cases (Erdem and Shi, 2011; Torres et al., 2005). For our data, ARMA(1,2)

provides the smallest BIC for most cases and therefore we choose it as a competing

algorithm.

Another important issue for wind speed modeling is dealing with diurnal trends.

The existence of diurnal trends in the wind speed is a well-known fact. However,

addressing this diurnal trend is not a straightforward task. For example, Gneiting

44

et al. (2006) proposed to use summation of trigonometric functions to model the

diurnal trend:

D(s) = d0 + d1 sin

(
2πs

24

)
+ d1 cos

(
2πs

24

)
+ d1 sin

(
4πs

24

)
+ d1 cos

(
4πs

24

)
, (2.32)

where s = 1, 2, . . . , 24. Based on the regime-switching approach proposed by Gneit-

ing et al. (2006), however, removing a diurnal trend does not always provide a better

forecast results in all regimes, even for the same data set. In Gneiting et al. (2006),

for the westerly regime the authors removed the diurnal trends and performed the

subsequent analysis on the residuals, whereas for the easterly regime, they use the

original time series as removing the trends did not improve predictive performance.

Using equation (2.32) to model the diurnal trend for our data set does not appear

to improve the prediction in general.

Other approaches for removing the diurnal trends have been proposed in the

literature. For example, Torres et al. (2005) standardize the data according to

Yi(t)
∗ =

Yi(t)− µ∗(s)
σ∗(s)

, for s = 1, 2, . . . , 24; i = 1, 2, . . . I, (2.33)

where Yi(t)
∗ denotes the standardized speed (i.e. speed after removing the diurnal

trend) and

µ∗(s) =

∑d−1
j=0 Yi(24j + s)

d
, for s = 1, 2, . . . , 24; i = 1, 2, . . . I, (2.34)

σ∗(s) =

[∑d−1
j=0 (Yi(24j + s)− µ∗(s))2

d

] 1
2

, for s = 1, 2, . . . , 24; i = 1, 2, . . . I,

(2.35)

where d is the number of days in each month. Due to large day-to-day variability

45

in our datasets, using this formulation for our wind speed data leads to an almost

constant µ∗(s) and a very large σ∗(s) which will make the standardized data nearly

zero. As such, what we would have done using this formula is to simply remove a

constant c as the diurnal trend, which is in fact what we actually did in Section 2.3.1.

Not removing a diurnal trend seems to be at odds with standard time-series

practices. This appears one unique aspect in handling wind speed data that have

a very significant day-to-day variability. Consequently, it becomes challenging, and

currently still an elusive objective, regarding how to fit a suitable temporal trend and

extrapolate the trend into the prediction horizon. Empirical evidence suggests, at

least in our analysis, that for many cases regarding wind speed forecast, one would

be better off to conduct the analysis on the original data.

The relative poor performance of ARMA∗(1,2), as demonstrated in Section 2.4.2,

indicates the issue associated with removing a diurnal trend and then adding it

back. To better illustrate this point we present in Figure 2.4 the wind speed data

for turbine#1 for seven consecutive days. If one looks at an individual day, there

appears a diurnal trend. On the other hand, if one looks at the seven days together,

there is a large day-to-day variability that renders the practice of deseasonalizing the

trend different and current methods of doing so ineffective.

We suspect that this complicated trend in wind speed data can be ascribed to

nonlinearity embedded in some meteorological structures (Giannakis and Majda,

2012), and we believe that on such data sets, any linear attempt to capture the

temporal effect would be to little avail. Together with our comparison results in

Section 2.4.2, we present the take-away messages from this study as:

• The spatial information incorporated in the proposed GSTAR models helps the

wind forecast objective;

46

Figure 2.4: Wind speed for turbine#1 for a sample week

• Selection of the informative neighborhood is important for making effective use

of the spatial information;

• We suggest using the rate of change in wind speeds as the criterion to select

the informative neighborhood, instead of basing the selection on distance only.

• The temporal information and trend is difficult to model, so that many time

series models in and by themselves cannot beat the persistent method.

The results reported in Table 2.3 indicate that our proposed methods do not

always outperform the persistent model on the 200 turbines. This is in contrast

to the large body of literature using a single time series dataset, claiming to make

improvement over the persistent model. Our study suggests that it is unlikely that

any temporal-only model can consistently outperform the persistent model in a com-

prehensive comparative study.

47

2.5 Summary

In this section we presented a spatial-temporal model for short-term forecasting

of wind speeds in local wind fields. Our contributions included a novel approach to

determine the informative neighborhood based on the rate of change in wind speeds.

To produce a robust predictive outcome, especially for a longer prediction horizon,

we identified three important components: (a) using the wind speed measurements

in the informative neighborhood, as just mentioned; (b) using the regime-switching

approach to account for the wind direction effect; and (c) incorporating other envi-

ronmental measurements, such as temperature and air density. Empirical compar-

isons using 200 turbines and real two-year data demonstrated the practical utility

of the model. From the results, we concluded that our spatial-temporal model out-

performed the persistent model for three-hour to six-hour forecast horizons in most

cases.

48

3. MODULUS PREDICTION OF BUCKYPAPER BY MULTI-FIDELITY

ANALYSIS INVOLVING LATENT VARIABLES*

3.1 Introduction

As mentioned in Section 1, GP regression may serve as a surrogate model for a

computer experiment. To make the surrogate model match the real process, we need

to calibrate that model. This section presents the details of such a procedure for a

nano-manufacturing problem (Pourhabib et al., 2014).

Carbon nanotubes (CNTs) are a type of carbon structure made of nano-scale

tubes (Iijima, 1991). Possessing exceptional thermal and mechanical properties,

CNTs hold promise for a wide range of applications (Tsai et al., 2011). One method

to fabricate CNT-based products is by manufacturing buckypaper, which are thin

layers of CNTs (Wang et al., 2004). However, since buckypaper does not necessarily

possess the desirable properties for industrial applications (Tsai et al., 2011), one

treatment is to add polyvinyl alcohol (PVA) (Zhang et al., 2011), which results in

the high stiffness product, PVA-treated buckypaper.

It is important to understand how the addition of PVA in the presence of other

noise variables affects the stiffness of the buckypaper as measured in terms of the

Young’s modulus. Thus, practitioners use a standard approach to conduct a set

of physical experiments, namely to fabricate a number of buckypaper strips with

varying amounts of the PVA added, measure the Young’s modulus of the resulting

buckypaper, and fit a functional relationship between the PVA input and the stiff-

ness output. Because these physical experiments are both time-intensive and costly,

∗Reprinted with permission from “Modulus prediction of buckypaper based on multi-fidelity
analysis involving latent variables” by Pourhabib, A., J. Z. Huang, K. Wang, C. Zhang, B. Wang,
and Y. Ding, 2014. IIE Transactions, in press, Copyright 2014 by Taylor & Francis.

49

and measuring the Young’s modulus can damage the buckypaper being tested, a

simulation model based on finite element approximation has been developed to nu-

merically calculate the Young’s modulus of the buckypaper under a given amount of

PVA additive and a few specifications of CNTs (Wang et al., 2013). Unfortunately,

the co-existence of the physical and simulation outputs of the buckypaper fabrication

process gives rise to another issue, the multi-fidelity analysis problem.

As discussed in Section 1, the GP regression may serve as a surrogate model

for a computer experiment. In this section, we discuss an application of the GP

models to the buckypaper nano-manufacturing problem. To make the surrogate

model (i.e. the GP model) fit the real process, we need to calibrate that model. In

our case, we consider that the physical outputs provide the ground truth, and are

therefore the high-fidelity outputs, whereas the simulation is an approximation, and

understandably, provides the low-fidelity responses.

Multi-fidelity analysis uses the following datasets from: (a) A physical experiment

and a simulation model, (i.e., our buckypaper fabrication) (also see Qian and Wu

(2008); Kennedy and O’Hagan (2001); Reese et al. (2004); Kennedy and O’Hagan

(2000); Joseph and Melkote (2009); Higdon et al. (2004); Han et al. (2009); Bayarri

et al. (2007)); (b) Two physical processes of different measurement resolutions (Xia

et al., 2011); or (c) Simulation models of different degrees of accuracy (Qian et al.,

2006; Xiong et al., 2013).

Regardless of the origin of the data, we have the situation where one experiment

provides more accurate data (high-fidelity) at a relatively higher cost, whereas the

other provides less accurate data (low-fidelity) at a lower cost. Of course, if we

could collect an adequate number of data points from the high-fidelity experiments,

we would not need the low-fidelity data. In practice, the higher cost prohibits us

from running the high-fidelity experiments/simulations that we need for covering a

50

sufficient number of input conditions, nor can we rely on the high fidelity responses

with their inferiority in numbers.

The methods developed to tackle the multi-fidelity fall into two broad categories:

those based on building respective models for each dataset; and those based on

building a model for one of datasets (e.g., a low-fidelity dataset) and then employing

a linkage model to connect both datasets. The methods in the first category is based

on the concept that the same underlying physical mechanism generates the data

from each of the corresponding experiments and therefore creates similar models

for describing the datasets that connect implicitly via the underlying physics. The

literature reports a variety of modeling strategies. For example, to combine spatial

data with different levels of accuracy, Wikle and Berliner (2005) devise a hierarchical

Bayesian framework for making an inference at some predetermined level. Reese

et al. (2004) use the low-fidelity data as a prior for making the model fit using the

high-fidelity data.

The methods in the second category assume that the responses in one of the

datasets can be re-constructed by including correction terms to the responses in the

other dataset, and then using a calibration model to explicitly link the two datasets.

Generally, the existing methods employ GP to model the low-fidelity experiment and

a linear calibration function to connect the two datasets (Kennedy and O’Hagan,

2000, 2001; Qian and Wu, 2008; Xia et al., 2011; Joseph and Melkote, 2009; Bayarri

et al., 2007; Goldstein and Rougier, 2009, 2006; Han et al., 2009; Higdon et al., 2004;

Xiong et al., 2009). Irrespective of the specific details, they all implicitly assume

that the output in each dataset is a function of the same set of input variables for

both the high-fidelity and low-fidelity experiments. More important, we can directly

measure these inputs so that a response from the high-fidelity experiment can be

matched to its low-fidelity counterpart.

51

Figure 3.1: Young’s modulus of simulation model and physical experiments.

As mentioned, the problem of predicting the Young’s modulus of the PVA-treated

buckypaper presents some extra challenges. To illustrate, Figure 3.1 above shows

that our simulation model tends to underestimate the Youngs modulus for the small

amounts of PVA and to overestimate the modulus for the larger amounts of PVA.

Our understanding of the physical process suggests that such a mismatch in the trend

line is caused by assuming in the simulation that the effectiveness of PVA, i.e., the

amount of the PVA absorbed in the process, does not change as its amount varies.

In other words, our assumption makes the simulation responses continue to rise at a

rapid rate, as the amount of PVA addition increases, whereas the physical responses

increase slowly, or even level off somewhat.

Theoretically, it should be possible for the simulation outputs to track the physi-

cal responses by using this extra variable with appropriate input values, but since we

52

cannot directly measure this PVA effectiveness in the physical process, it becomes

difficult to set in our simulation model. In other words, we have a multi-fidelity

analysis problem having some unobservable input variables in the physical experi-

ment and we have to represent them by using latent variables in the corresponding

response model. As a result, our problem becomes a multi-fidelity analysis involving

latent variables.

We also want to emphasize the difference between latent variables and parameters

in the physical experiment. Several multi-fidelity methodologies explicitly consider

the existence of some unobserved or uncontrollable features in the physical experi-

ments, generally referred to as calibration parameters (Higdon et al., 2004; Han et al.,

2009; Bayarri et al., 2007; Xiong et al., 2009; Goldstein and Rougier, 2006, 2009);

however, a calibration parameter is internal to the physical experiments, rather than

correlating with the inputs to another response. The role of the latent inputs here

allows us to link the two experiments, which is an important difference between our

proposed model and the existing multi-fidelity analyses.

In this section, we introduce a solution approach targeting the specific applica-

tion as described above. We assume that the latent input variables are correlated

with and can be imputed from the observable variables. Our strategy entails the

following elements: (a) For the low-fidelity simulation responses, we resort to a GP

model; this is the same as in the existing multi-fidelity analyses; (b) Based on the

aforementioned assumption, we introduce a functional relationship connecting the

latent variables with the observed ones; (c) We formulate the combined models as

a non-linear optimization problem which we solve in turn by using numerical tech-

niques.

The remainder of this section is organized as follows. Section 3.2 defines the

problem and describes our mathematical setup. Section 3.3 discusses our choices

53

of specific model components for the PVA-treated buckypaper fabrication process.

Section 3.4 demonstrates how our method outperforms existing methods in terms of

prediction accuracy. In particular, the advantage of the proposed method becomes

more obvious when we perform extrapolation. Section 3.5 summarizes the research

findings in this section.

3.2 Latent Variable Multi-fidelity Analysis with Correlated Inputs

We first introduce the notations and symbolism to define the latent variable

multi-fidelity analysis problem in the context of the Young’s modulus prediction in

the PVA-treated buckypaper fabrication process. Consider two data sets available in

such a process, the physical experiment denoted by P and the simulation denoted by

S. We assume there exists a degree of similarity between the simulation responses

and the physical responses so their integration is justified. The degree of similarity

can be easily checked by computing the correlation between the two datasets.

Let x ∈ X be the input vector, then P = {(x, P (x)) : x ∈ X} where (x, P (x)) is

an input-output pair for the physical experiment. Similarly, we have S = {(x, S(x)) :

x ∈ X} where (x, S(x)) is an input-output pair for the simulation. Assume we can

decompose the components of the vector x into two parts such that x = (xo,xm),

where the subscript o and m stand for “observable” and “missing,” respectively.

Then, we can express the functional relation between inputs and outputs in the two

experiments as P = P (xo,xm) and S = S (xo,xm). In other words, both physical

experiment and simulation are functions of x = (xo,xm). In the physical experiment,

however, only a subset of components of the input, i.e., xo, can be specified, while

in the simulation, both xo and xm can be specified.

In order to handle the latent variables, we believe that their values need to be

in some way informed by those of the observable inputs in xo, because if xms are

54

completely uncorrelated to anything we can observe, it becomes impossible to make

an inference about them. Based on this understanding, we assume that xms can be

described by using the observations in xo, through a relationship g(·) and subject

to a prescribed level of discrepancy. Specifically, we intend to find the relationship

g(·) by minimizing the difference between the simulation outputs and the physical

experiment outputs, such as:

min
g∈G
L (P (xo,xm) , S (xo,xm))

s.t.

∫
X

[xm − g(xo)]2 µ(dx) ≤ δ, g ∈ G, (3.1)

where L(., .) is a loss function, G is a class of functions to which g is deemed to belong

and δ is the predetermined discrepancy allowance in terms of some metric induced

by a measure µ(·). The integral constraint is to connect the unobservable variables

xm with the observed variables xo, by minimizing the average difference between the

latent variables and the fitted values based on the estimated relationship.

This formulation is in general difficult to solve. To make it tractable, we would

like to introduce a few simplifications. Since we care about the mean prediction,

the loss function L(., .) is chosen to be a squared error loss function. An alternative

choice is the absolute error loss, and using the absolute error loss leads to optimality

in median estimation. The absolute error loss is more robust to the existence of

outliers, while the squared error loss is easier to optimize. In our application, the

outlier problem is not a source of worry so we choose the squared error loss here.

Being multi-fidelity means that the simulation responses generally differ from the

physical responses by a noticeable bias. Without bias, people can simply run the low-

fidelity simulation a good number of times and average the responses to produce a

result comparable to the high-fidelity source. In reality, the low-fidelity data sources

55

are inherently inferior because the bias cannot be reduced or eliminated through

averaging. When using the squared error loss function, we would like to include a bias

term B(xo,xm), the value of which may depend on the input conditions in general.

Under this general circumstance, we assume that B(xo,xm) can be parameterized by

a set of parameters ΘB. One example of such parametrization is to use a Gaussian

process to model the bias B(xo,xm) as a function of the input conditions; as such,

ΘB contains the parameters in the GP model.

The loss function will be evaluated using a set of training data. Suppose that

we execute n runs of high-fidelity experiments, having their input conditions as

xo1,x
o
2, . . . ,x

o
n, and the ith experiment was replicated ni times. Then, the noise

contaminated responses of the high fidelity experiments are

yij = P (xoi) + εij, i = 1, 2, ..., n, and j = 1, ..., ni. (3.2)

where εij ∼ N (0, σ2) captures variability in y due to both measurement errors and

uncertainty associated with unknown latent variable xmi .

In parallel, we also execute a set of low-fidelity simulations. Here we are primarily

concerned with the so-called deterministic simulations that yield the same response,

when run repeatedly under the same input condition. The deterministic simulations

are usually referred to as computer experiments (Santner et al., 2003). The simula-

tion, being low cost computationally, can be run in a large number. Suppose there

are a total of N(>> n) runs for the observable variables and L runs for the unob-

served variables (recall that both of the variables can be specified in the computer

experiment), then

Si` = S(xoi ,x
m
`), i = 1, 2, ..., N, and ` = 1, ..., L. (3.3)

56

Understandably, when planning for the two sets of experiments, we would like the

input conditions used in the physical experiment to be a subset of those used in the

computer experiment.

The simulation code has to be run at specific values of the input variables, so that

including the simulation directly in an optimization formulation creates a continuous-

discrete mixed optimization problem that is usually harder to solve. To alleviate this

problem, We use a Gaussian process to model the simulation responses {Si`} and

denote the resulting GP model as Ŝ(xo,xm). The GP model provides a smooth and

continuous response over the design space, and using the GP model in the objective

function makes the problem easier. We want to note that modeling the low-fidelity

response using GP models is a standard practice in the existing multi-fidelity analysis

literature, for example, Kennedy and O’Hagan (2000, 2001); Qian and Wu (2008);

Xia et al. (2011), among others, but the motivation of doing so here is slightly

different.

We believe that the choice of G will have to be decided according to specific

applications. Generally the governing physics of a process should indicate whether

xo and xm are related, and if so, how. Here we assume that the class of G can be

parameterized through a set of parameters in ΘG.

Provided all the above simplifications and specifications, and moreover, choosing

a counting measure for µ, the original optimization formulation can be rewritten, for

a given δ, as

minΘB ,ΘG

∑
i

∑
j

(
yij − Ŝ(xoi ,x

m
i)−B(xoi ,x

m
i ; ΘB)

)2

(3.4)

s.t.
n∑
i=1

|xmi − g(xoi ; ΘG)|2 ≤ δ, (3.5)

57

where the parameters of the bias and the linkage function g are explicitly men-

tioned to demonstrate how the decision variables impact the optimization problem.

However, for simplicity of notation, hereafter we drop the explicit notational depen-

dencies, namely using B(xoi ,x
m
i) for B(xoi ,x

m
i ; ΘB) and g(xoi) for g(xoi ; ΘG).

Solving the optimization problem (3.4)-(3.5) requires imposing additional con-

straints on the relation between observed and latent variables. The reason can be

mainly attributed to the fact that we cannot observe xmi and we need to impute those

values in the optimization procedure. Therefore, depending on the nature of the ap-

plication, one needs to make pertinent assumptions to solve (3.4)-(3.5). For example,

if the particular application permits and g is selected to be flexible enough, one may

assume δ = 0 which in essence implies xmi can be imputed by g(xoi). In Section 3.3

we proceed by considering a similar approach and demonstrate how one can utilize

such dependency towards devising a tractable optimization problem for buckypaper

fabrication. In Section 3.3.3, we choose the appropriate g function, while in Section

3.3.4 we present additional regulations to be used for the buckypaper fabrication

process, and finally solve the above optimization problem.

3.3 PVA-treated Buckypaper Fabrication Process Model

In this part, we specify the model components for the PVA-treated buckypaper

fabrication process. In this application, xo represents the PVA amount, denoted

as p and measured by the weight ratio of the PVA additive versus the raw carbon

nanotubes (see also the x-axis of Figure 3.1), and xm is the absorption rate of the

PVA, i.e., the effectiveness of the PVA, denoted as α and expressed in percentage,

so that 0 ≤ α ≤ 1.

58

3.3.1 Design of Experiments

Since xo is one dimensional, the design of physical experiments is straightforward.

Our material scientist partners set the PVA amount range to be from 0.4 to 1.2, and

conduct a total of n = 17 physical experiments with pis evenly spread over the

input range. Under each pi level, there were five replications, namely ni = 5 for

all i = 1, ..., n. There are therefore a total of 85 physical experiments conducted.

We want to note that in this study, the number of physical experiments is relatively

large because we need extra data for the validation purpose. In practice, it is usually

difficult to afford this level of luxury.

The simulation code takes two inputs p and α. The simulation code does involve

a group of randomly generated parameters associated with CNTs, such as a CNT’s

diameter, length, and orientation, so its response is not entirely deterministic. But

the simulation code generates a large quantity of the CNTs to mimic the underlying

structure in a buckypaper, and the resulting Young’s modulus is affected mostly by

the two inputs mentioned above. The randomness of the response, under a given

setting of p, is much smaller as compared to the randomness in the physical ex-

periments. So we believe that the simulation can be reasonably approximated by a

deterministic computer experiment.

The computer experiment is designed to cover the PVA amount in the range of

0.5 ≤ p ≤ 1. The physical responses outside this range are reserved for validating

the quality of extrapolation. The simulation code we use has a restriction on the

product of p × α. This product indicates the effective PVA level and cannot be

smaller than 0.40 in the simulation code (Wang et al., 2013); otherwise the simulation

returns a Young’s modulus virtually zero. This is one of the limitations of the

current simulation code for the computer experiments that the material scientists are

59

working to improve. Given this restriction, our design input space for the computer

experiment is no longer a rectangular region.

This type of design problems is generally solved through a space-filling design

formulation (Johnson et al., 1990). The basic idea is to find the design points that

minimize the maximum inter-point distance; this is the so-called minimax design cri-

terion. Alternatively, a maximin criterion can be used as well (Stinstra et al., 2003).

Suppose we choose the minimax criterion. The design problem can be expressed as

follows—for a fixed number of design points ns, find a set of design points D ⊂ T

that solves the following optimization formulation:

infD supt∈T ρ(t,D)

s.t. |D| = ns, D ⊂ T, (3.6)

where ρ(t,D) = infd∈D ρ(t, d) is the inter-point distance, |D| denotes the cardinality

of the set D, and T is the feasible region from which a candidate design point is

chosen. Specifying T differentiates the non-regular designs of arbitrary shape from

the regular designs of a rectangular design region. When T is a bounded polytope,

Draguljć et al. (2012) developed an efficient algorithm that finds the optimal design.

The feasibility constraint for a polytope T is specified as:

At ≤ r,

l ≤ t ≤ u, (3.7)

for some matrix A and vectors r, l and u, where the inequality should hold pointwise

between the corresponding vectors. Using this set of constraints, together with the

minimax design criterion, Draguljć et al. (2012) showed that it can be solved using

60

a sequential algorithm entailing mainly linear operations. For other alternatives re-

garding space-filling designs, for example the sliced Latin hypercube designs (SLHD),

the readers may refer to Qian (2012) and Qian and Wu (2009).

The design area of our computer experiments can be duly represented by a poly-

tope. Specifically, let t = (p, α)T , then the design space can be represented in terms

of (3.7) using the following values

A = [−0.8,−1], r = −1.2,

l = [0.5, 0.4]T , u = [1, 1]T .

Note that as only one of the constraints is non-parallel to an axis, the matrix A

degenerates to a 1 × 2 vector and r to a real number. The number of points ns

(i.e. |D| = ns) is decided such that the subsequent surrogate GP model for the

low-fidelity data suitably represents the corresponding response surface. Using a few

rounds of trial and error, we settle at ns = 150. Note that the number of low-fidelity

input settings is about one order of magnitude higher than that of the high-fidelity

physical experiment (150 versus 17). Figure 3.2 displays the selected design points

for (p, α) in this computer experiment.

3.3.2 Gaussian Process Model and Bias Term

Once the experimental designs are finished and data are collected, we are ready to

train a GP model for the low-fidelity responses, and if needed, for the bias correction

term.

The key aspect in training a GP model is to specify a covariance function which,

loosely speaking, determines the similarity of the response surface at different loca-

tions. Here we choose a squared exponential (SE) covariance function as defined in

61

Figure 3.2: The design layout for the computer experiment.

(1.2) whose parameters are estimated by using the low-fidelity data obtained from

the previous subsection. The SE covariance function is arguably the most widely

used form in many applications and it is isotropic.

Concerning the choice of the bias term, we believe it is adequate to use a constant

in this buckypaper fabrication process because the resulting response surface is not

complicated. Making the bias term more flexible does not bring in much added value.

Given this choice, the parameter ΘB = {B}.

3.3.3 Choice of Linkage Function

Based on our understanding of the physical process, the absorption rate of the

PVA appears to be in a monotonically decreasing relation with the PVA amount

(Zhang et al., 2011). This implies that when xo = 0.7, the corresponding absorption

rate = 75%, then when xo = 0.8, the corresponding absorption rate is smaller than

62

75%. This intuitively explains why the physical responses do not increase with a

rapid rate as in the simulation responses in which the absorption rate is set constant

for all PVA levels. For this reason we choose G as the class of smooth monotonically

decreasing functions.

For the PVA-treated buckypaper fabrication process, we propose to model func-

tion g(·) as a sum of monotone splines. Specifically,

g =

Q∑
q=1

gq, (3.8)

log (−Dgq) is differentiable and

D{log (−Dgq)} =
D2gq
Dgq

(3.9)

is Lebesgue square integrable, where Dm represents taking the derivative of order

m > 0. These conditions guarantee that gi is smooth and strictly monotonically

decreasing (Ramsay, 1998). For different choices of q, g(·) can take a variety of

forms which results in a rich and flexible set of functions.

In the buckypaper fabrication process, since the observable and unobservable vari-

ables both have a single element, the function form of g(·) can be greatly simplified.

In a one-dimensional space, one solution to differential equation (3.9) is gq(p) = ab·p,

provided that a · b < 0, thereby, assuming Q = 1, g(p) = ab·p is an option for the

linkage function. This simple form is desirable as it facilitates the subsequent opti-

mization problem for linking the two experiments without sacrificing the flexibility

of the model. We conduct numerical analysis later in Section 3.4, comparing this

simple choice of g function with a few other alternatives and showing that this choice

suits our problem well. Given this choice, the function g(·) can be parametrized by

63

ΘG = {a, b}.

3.3.4 Solution Approach

The final step is to solve optimization (3.4)-(3.5). Based on our understanding

of the buckypaper fabrication process, we believe it is reasonable to assume that the

relation between the latent variables can be expressed as a nonlinear function of the

observed variables plus a residual difference, such that

xm = g(xo) + e, (3.10)

where e ∼ N (0, σ̃2). Then, in order to solve optimization (3.4)-(3.5), we can

simply replace the unknown latent variables xmi with its sample mean, g(xoi), for

i = 1, 2, . . . , n, and plug the sample mean in the optimization formulation. When

taking this approach, we can express the optimization problem as

minΘB ,ΘG

∑
i

(
ȳi − Ŝ(xoi , g(xoi))−B(xoi , g(xoi))

)2

, (3.11)

where ȳi = 1
ni

∑ni

j=1 yij. The resulting optimization problem can be solved by stan-

dard nonlinear optimization techniques.

Once solving the above optimization problem in (3.11), the multi-fidelity analysis

yields a linkage function g(·), determined by â and b̂ (estimated parameters in ΘG),

and a bias function B(xoi ,x
m
i), determined by B̂ (estimated parameter in ΘB). For

any given test case which has an observable xo∗, the linkage function g(·) would

determine an associated unobservable input component xm∗ which represents the

average value of unobserved latent variables for the input xo∗. With both xo∗ and

xm∗ , the corresponding low-fidelity simulation response (or its GP surrogate model

response) as well as the bias correction can be computed. Adding the low fidelity

64

simulation response (or its GP model response) and the bias correction together

produces the multi-fidelity prediction for input xo∗. Specifically, given xo∗, we have

xm∗ = g(xo∗) and the predicted value y∗ = Ŝ(xo∗,x
m
∗)+B(xo∗,x

m
∗). Furthermore, as the

optimization yields the functional relationship g(.), one can utilize that information

for a better understanding of the process. Indeed understanding how the latent and

observed variables connect can provide insight into the physical process. This fact

could be of significant importance for engineers who design or operate the application

process.

Using the notations and specific models presented in Sections 3.3.1, 3.3.2 and

3.3.3, we can further simplify the optimization problem in (3.11) as

minθ∈Θ u(θ) =
∑n

i=1

(
ȳi − Ŝ(pi, g(pi))−B

)2

,

s.t. Θ = {(a, b, B) ∈ R3 | a · b < 0}, (3.12)

where Θ is used as a collection of the parameters in both ΘB and ΘG.

We solve this constrained optimization problem in (3.12) numerically using a

steepest descent algorithm. We sequentially update the parameter values by moving

opposite the gradient direction for each parameter. The steps for this procedure

are summarized in Algorithm 1. The parameter ω∗ in the algorithm determines the

length of each optimization step. Specifically, to find the value of ω∗ at each step, we

discretize the interval (0, 1) and choose a value which provides the largest decrease

in the objective function:

ω∗ = arg min
ω∈(0,1)

u(θω`), for ` = 1, 2, 3, (3.13)

where θ` is the `th parameter in Θ. Here we have three θ parameters, namely

65

θ1 = a, θ2 = b and θ3 = B. In the above expression, θω` = θ` − ω ∂u(θ)
∂θ`

and u(θ) is

defined in (3.12). The derivative of Ŝ(pi, g(pi)) with respect to a and b are computed

numerically. Also, to ensure the relation a · b < 0 holds, the step to update b is

performed only if the resulting b has a different sign with the current value for a. As

the value of objective function decreases at each stage, the algorithm continues until

the change in the objective function is negligible where the algorithm determines

that location as a local optimum. The parameters of the covariance function (1.2)

for the GP remain unchanged as the algorithm proceeds, because those values were

estimated using merely the low-fidelity data prior to the iterations of the algorithm.

Algorithm 1 Sequential Update For Optimization Problem 3.12

1: Set θ = (1,−0.1, 500)
2: repeat
3: Calculate ω∗ according to equation (3.13)

4: a← a+ 2ω∗
∑n

i=1

{(
ȳi − Ŝ(pi, g(pi))−B

)
∂
∂a
Ŝ(pi, g(pi))

}
5: b← b+ 2ω∗

∑n
i=1

{(
ȳi − Ŝ(pi, g(pi))−B

)
∂
∂b
Ŝ(pi, g(pi))

}
6: B ← B + 2ω∗

∑n
i=1

(
ȳi − Ŝ(pi, g(pi))−B

)
7: Re-evaluate Ŝ(pi, g(pi)) based on (a, b)
8: θ ← (a, b, B)
9: until Local minima are found

10: θ̂ ← θ

In fact our multi-fidelity analysis problem can be seen as a special case of matching

a 1D curve to a 2D surface in the 3-D Euclidean space. Here the Euclidean space

is generated by (p, α) together with the Young’s modulus, while the 2D surface is

the response surface generated by the simulation model and the 1D curve is formed

by the responses of the physical experiment. Once the 2D surface is constructed,

one can choose to position the 1D curve such that the response values associated at

66

Figure 3.3: The curves are the level sets for the simulation surface with step size of
50. The colorbar represents the Young’s modulus from the simulation model. The
dashed curve shows the linkage function. The values close to the dark circles are
the Young’s modulus from the physical experiment given the corresponding PVA
values. The linkage function is decided such that the overall difference between the
physical experiment responses and the simulation responses, plus some constant bias,
is minimized.

different locations (i.e., PVA levels) on the curve can be matched to those on the 2D

surface as close as possible, after a bias adjustment. Once such a match is found, it

reveals the linkage function between the two variables, as illustrated in Figure 3.3.

In our solution procedure, the manipulation of the position of the 1D curve is in fact

done through specifying and solving for the linkage function, as we presented in the

preceding parts of this section.

67

3.4 Results

In this part, we evaluate the performance of the proposed multi-fidelity analysis

method. In the first subsection, we compare the performance of the proposed method

with two alternatives, while in the two following subsections, we investigate the

impact of the high-fidelity data amount on the multi-fidelity analysis and the effect

of different choices of the linkage function.

3.4.1 Performance Comparison

Concerning the multi-fidelity analysis problem involving latent variables, we see

two alternatives to what we present in this part: (a) since the effectiveness of PVA

is not observable, one may argue that we should simply ignore its existence and use

whatever is observable to conduct a multi-fidelity analysis following the procedure,

say, in Reese et al. (2004) or in Kennedy and O’Hagan (2001). (b) Because the

low-fidelity computer experiment response, while using the observable variable alone

(i.e., the PVA amount), could possibly mislead us, it may be most appropriate to

rely solely on the physical experiment data for making predictions at an input level

where experimental data were not available. To do this, a Gaussian process model

can be used to fit the physical data and make predictions. We refer to option (a)

as the multi-fidelity analysis without considering the latent variables (“MFA w/o

LA”), option (b) as a single-fidelity analysis (SFA), and our proposed method as

“MFA with LA”.

More specifically, in MFA w/o LA, we assume the physical experiment value for

run i (i.e. P (pi)) could be modeled after a bias and scale change on the simulation

response Ŝ(pi). Here, Ŝ(pi) is the average of the surrogate model Ŝ(pi, α) over all

68

possible values of α. The calibration model can be expressed as

P (pi) = β0 + β1Ŝ(pi) + γi, (3.14)

where β0 and β1 are constants and γi ∼ N (0, σ2
γ). Then the model can be readily

solved following the procedure in Kennedy and O’Hagan (2001).

On the other hand, when choose option (b), i.e., SFA, we simply train a one-

dimensional GP using the training data {(pi, yij), i = 1, 2, . . . , n; j = 1, 2, . . . , ni}.

To evaluate the performance of a method, we divide the physical experiment

data into the training set and test set: use the training set to fit a model during

the analysis step and use the test set to compute a performance measure. Note

that the low-fidelity data are only used in the training (model fitting) stage not in

the testing stage, because the outcome from a multi-fidelity analysis is supposed to

be better than the low-fidelity response; otherwise, it is of no value to conduct the

multi-fidelity analysis. One performance measure we use is the standardized root

mean squared errors (SRMSEs):

SRMSE =

√∑nt

i=1 [(ŷi − ȳi) /ȳi]2

nt
, (3.15)

where ŷi denotes the predicted value (i.e., a method’s output) when given the ith

observable input xoi in the test set and nt is the number of data points in the test

set. Besides, as suggested by a reviewer, we also consider standardized maximum

absolute deviation

SMAD = max {(ŷi − ȳi) /ȳi} ; i = 1, . . . , nt. (3.16)

69

Depending on how the training/test data sets are generated, we produce the

following three types of performance measures:

• Leave-One-Out (LOO): For the details of LOO cross validation, please refer

to Hastie et al. (2001). The reported LOO SRMSE is the average of the 13

SRMSEs computed when one of the physical data points is left out during the

training stage for the physical data in the range of 0.5 ≤ p ≤ 1.1 (therefore

n = 12 for each case).

• Extrapolation (EXT): Under this circumstance, the training dataset contains

all the physical data in the range of 0.5 ≤ p ≤ 1.1. Four pairs of data points

outside this range, two having p < 0.5 and two having p > 1.1, are used as the

test set (therefore n = 13).

• Interpolation (INT): Under this circumstance, we select eight of the physical

data points, evenly spread over the input region as the training set and use the

remaining as the test set (therefore n = 8).

Table 3.1 shows the comparison of results from the three different methods, where

under “Improvement” column, the numerics are the reduction of SRMSE or SMAD,

expressed in percentages, when the proposed MFA method is compared to the other

two methods. As evident in the table, the proposed method outperforms the other

two algorithms for all evaluation measures. When the latent variable is present so

that the low-fidelity response deviates significantly from the high-fidelity response

over certain area of the input space, the existing multi-fidelity analysis (“MFA w/o

LA”) performs even worse than the single-fidelity analysis. This outcome suggests

that without a new methodology handling the latent variables, people would be

better off by ignoring the low-fidelity responses.

70

It is interesting to know that the proposed MFA performs much better than

the SFA and MFA w/o LA when they are used for extrapolation. Extrapolation

is considered more valuable for product development and process control purposes

because a good extrapolation tool can save the time and cost while exploring a

large response surface. It is a common understanding that SFA does not have good

extrapolation ability since it is purely data driven. The multi-fidelity analysis is

supposed to improve SFA over the extrapolation ability, because the low-fidelity

model is supposed to be still physics-based and can guide its response when doing

extrapolation. Of course, this is only true when the low-fidelity model uses the right

physics to guide its response. We believe this is one critical reason to understand the

role of the latent variables and then incorporate them into the multi-fidelity analysis.

Table 3.1: Comparison of methods: the two rightmost columns show the improve-
ment percentage of the proposed method over the other two methods.

SRMSE Improvement (%)

MFA with LA SFA MFA w/o LA over SFA over MFA w/o LA

LOO 0.0032 0.0045 0.0140 29% 77%

EXT 0.0392 0.0806 0.1501 51% 73%

INT 0.0383 0.0547 0.0681 30% 43%

SMAD Improvement (%)

MFA with LA SFA MFA w/o LA over SFA over MFA w/o LA

LOO 0.0092 0.0097 0.0195 5% 20%

EXT 0.0885 0.0993 0.1666 11% 47%

INT 0.0612 0.0818 0.0923 25% 34%

71

3.4.2 Impact of High-fidelity Data Amount

We are interested in knowing how the high-fidelity data amount may impact the

quality of the multi-fidelity analysis. Here our benchmark is the SFA, since the

previous subsection establishes that with the presence of latent variables the SFA

outperforms the multi-fidelity analysis that does not consider the latent variables.

To this end, we select a subset of data points from the physical experiment and

conduct both SFA and multi-fidelity analysis (with LA) using the same set of data.

Here we keep the same number of replications per input level as before but choose a

subset of the PVA amounts. We start off with four PVA levels, which are randomly

selected, as the training data, and then we append one extra PVA level at a time

and observe the difference between the SRMSEs when using the two methods; the

SRMSEs are obtained by comparing the predicted values at the PVA levels not used

in the training data with their counterparts from the physical experiment.

Figure 3.4 displays the results. If we look at the right side of the figure when the

high-fidelity physical data are plenty, there is not much difference between SFA and

MFA. This is expected, as we argued before that with a sufficient amount of high-

fidelity data, SFA can do an adequate job of making predictions, and consequently,

the low-fidelity data may no longer be needed. As we move along the horizontal axis

to the left as the amount of the high-fidelity physical data gets smaller, the benefit of

using MFA becomes obvious because MFA can borrow strength from the simulation

responses.

As the high-fidelity data points get fewer, the difference between MFA and SFA

once again diminishes. We believe that there are two reasons behind. The first

reason is common to all multi-fidelity analysis problems. When the high-fidelity

data points are too few, the dominance in data amount as presented by the low-

72

fidelity data is much more pronounced and the benefit of using a combined MFA

could be compromised. This reason alone, however, cannot explain the trend shown

in Figure 3.4, in which when the high-fidelity data points are three or four, MFA

makes slight improvement over SFA. The previous study in the literature concerning

multi-fidelity analysis without latent variables showed a somewhat different insight

– when the high-fidelity data points become substantially small, the benefit of using

MFA, albeit compromised, remains significant; for an example, please see Table VII

of Xia (2008, page 90).

That is why we believe that for the problems of MFA with latent variables, the

second reason is more important. The existence of latent variables forces us to include

another layer of estimation action, which is to use the multi-fidelity data to find out

the linkage function between the observable and unobservable variables. The quality

of this estimation action suffers when the high-fidelity data points are too few. In

turn, a poorly estimated linkage function does not do due service for making the

combined predictions better than that from SFA.

This analysis tells us that a multi-fidelity analysis with latent variables will be

effective only for the right range of the amount of high-fidelity data points. The low

bound of this range depends on the amount of data points that can provide a quality

estimation of the linkage function, and the upper bound is decided by the amount of

data points that can make SFA self-sufficient. Our experience indicates that there is

generally a considerable gap between the two bounds for practical problems, thereby

rendering the multi-fidelity analysis with latent variables a useful methodology.

3.4.3 Impact of Linkage Functions

We compare different linkage functions g which could potentially be used in the

proposed method. Our aim is to investigate the effect of the functional form specified

73

Figure 3.4: Improvement of MFA with LA over SFA under different number of high-
fidelity data points.

for linking the two sets of data sources and substantiate the specific choice of the

linkage function made in the previous parts of this section.

We consider two sets of alternatives. The first is a more complex class G whose

elements are expressed as the sum of two decreasing splines. Specifically, for the

form defined in (3.8), we let Q = 2 which means each function in G is the sum

of two exponential functions. Comparing the choice between Q = 1 versus Q =

2 is intended to provide some insights into the question whether a more complex

class of functions would improve the prediction accuracy. The second set is the

polynomial functions that are popularly used in curve fitting. Specially, we consider

the linear and quadratic functions. Our experience with the buckypaper fabrication

process indicates that using a very complex form for the linkage function does not

74

make the final model effective because as the number of parameters to be estimated

in the subsequent optimization problem increases, the efficiency of the subsequent

optimization procedure deteriorates.

Table 3.2 compares the different linkage functions in terms of SRMSE for both

extrapolation and interpolation cases. As evident in the table, using the class G with

Q = 1, which was the linkage function chosen in Section 3.4.1, produces the best

results among all, while using a more complex function does not appear to benefit

the final prediction objective. This is not only true from the Q = 1 versus Q = 2

comparison but also true from the linear versus quadratic comparison (namely a

linear function works better).

We believe that the reason that the simple linkage function is favored in our

problem is rooted in the fact that the problem has only one observable and one

unobservable variable, and that the two variables appear to have a rather monotonic

relationship. This may not be true for other problems. We stress that the linkage

function should be chosen based on the structure of a specific problem and the

availability of data. One can choose other classes of functions in the case of a viable

justification for the problem of interest. In addition, more data points also offer the

opportunity to employ a linkage function comprising more parameters for handling

a linkage relationship of complicated form.

Table 3.2: Comparing different linkage functions in terms of SRMSE: the rightmost
column denotes the linkage function used in Section 3.4.1

SRMSE SRMSE

Linear Quadratic Q = 2 Q = 1

EXT 0.0490 0.0570 0.0898 0.0392

INT 0.0409 0.1753 0.0504 0.0383

75

3.5 Summary

In this section we developed a new method for predicting the Young’s modulus

in PVA-treated buckypaper. We aggregated the information from two datasets,

(physical experiments and an FEA-based simulation model) by introducing a latent

variable which represented the level of effectiveness of the PVA in each sample.

The latent variable in turn helped to determine the functional relation between the

effectiveness and the PVA level. Solving for the linkage function led to a multi-fidelity

model allowing predictions to be made at any untried levels of the PVA.

Applying the model to the PVA-treated buckypaper fabrication process showed

that it outperformed both the existing multi-fidelity analysis that does not consider

the latent variables and the single-fidelity analysis that ignores the low-fidelity data.

Notably, in the problems of multi-fidelity analysis with latent variables, the proposed

method appeared effective when the amount of high fidelity data was in the correct

range, i.e., too few high-fidelity data points did not allow a quality estimation of the

linkage function, whereas too many high-fidelity rendered the single-fidelity analysis

self-sufficient. From the results, we concluded that our proposed multi-fidelity analy-

sis method can exploit the valuable information in the low-fidelity (simulation) data

and make an overall better prediction.

76

4. BAYESIAN SITE SELECTION FOR FAST GAUSSIAN PROCESS

REGRESSION*

4.1 Introduction

This section presents an approximation algorithm for GP regression (Pourhabib

et al., 2014). Since its introduction, the GP regression has gained popularity among

experts ranging from computer scientists and statisticians to engineers. GP’s flexi-

bility, nonlinearity, and inherent nonparametric structure are the key features which

have made it of use to a wide range of researchers (Rasmussen and Williams, 2006).

GP regression has proliferated in recent years owing to the widespread availability

of data. On the other hand, however, the vast amount of data, while furnishing

adequate information to train the model, could hamper computationally-efficient

implementation of GP regression. As the Gaussian distribution is central to the GP

regression, in almost all methods of full GP regression one needs to invert matrices of

size equal to the number of data points; this could be a burdensome task as its com-

plexity is of order O(N3), noting that most methods require executing this matrix

inversion many times to guarantee successful implementation of the algorithms.

For example, the surrogate GP model used for the buckypaper fabrication process

in Section 3 utilizes a modest number of data points in the training stage. However,

if we wanted to use a very large number of data points, to achieve a more reliable

surrogate model, it would become practically impossible to utilize a full GP. Another

example that discussed in Section 2 can also convey a similar message: Due to the

existence of very large datasets we cannot afford to rely on a full implementation of a

∗Reprinted with permission from “Bayesian site selection for fast Gaussian process regression”
by Pourhabib, A., F. Liang, and Y. Ding, 2014. IIE Transactions, 46(5), 543-555, Copyright 2014
by Taylor & Francis.

77

GP model. In the case of the GP regression, spurred on by GP’s popularity, research

has been conducted in recent years to address the computation issue of handling large

datasets. There are two main schools of thought: sparse approximation and low-rank

approximation. The sparse approximation methods employ a compactly supported

covariance function in a way that it results in a sparse covariance matrix, still of size

N , but inverting this sparse matrix using the sparse matrix algorithms (Furrer et al.,

2006; Gneiting, 2002) can lead to a substantial reduction in computation. Although

the theoretical complexity of this method is difficult to determine, Furrer et al. (2006)

observed through a number of numerical case studies that the training computation

increases almost linearly in N . This class of algorithms, however, suffers from a high

order of complexity during the test stage, which is also linear in N , whereas the

low-rank approximation, as we will briefly review below, can do faster than O(N)

during testing.

The second school of thought, the low-rank approximation, tries to reduce the

computational complexity by inverting a matrix of reduced rank instead of the orig-

inal covariance matrix. Utilizing different techniques to produce the reduced-rank

matrix, low-rank approximation can be categorized into three groups: matrix approx-

imation, localized regression, and likelihood approximation. The algorithms based

on the matrix approximation seek substitutions for the original covariance matrix,

which has truncated bases (e.g. Nyström method), resulting in a rank reduction,

and can therefore be handled less expensively (Quiñonero-Candela and Rasmussen,

2005). Localized regression assumes that the data points far from each other do not

share any measure of similarity and one can employ a GP on a local region by merely

taking the data points in the very region into account (Park et al., 2011). The like-

lihood approximation methods (Seeger et al., 2003; Snelson and Ghahramani, 2007;

Snelson, 2007) try to reduce the computation cost by making use of a set of unob-

78

served latent variables called pseudo points. Assuming the conditional independence

of the observed variables given the pseudo outputs, one needs to invert matrices of

the size equal to that of the pseudo points M , and doing so can save significant time

if one chooses M � N (Seeger et al., 2003; Snelson and Ghahramani, 2007; Snel-

son, 2007). Specifically, assuming that each training and test point in the dataset is

independent from others given the pseudo points, one can achieve a computational

complexity of O(NM2) for the training stage and O(M2) for testing (Snelson and

Ghahramani, 2006). This complexity expression is generally true for other methods

in the school of low-rank approximation methods, although the meaning of M in a

specific method differs.

While the methods in the low-rank approximation class typically mitigate the

computational burdens, they suffer from other problems. For instance, the matrix

approximation algorithms may lead to poor estimation and lack of interpretability

(Snelson and Ghahramani, 2006), and its prediction variance is not guaranteed to be

positive (Park et al., 2011). In localized regression algorithms, it is not very straight-

forward to select independent subsets. Localized regression predictions, in general,

lack continuity on boundaries, and the existing methods to address this problem

cannot handle datasets other than those from one- or two-dimensional spaces (Park

et al., 2011). In likelihood approximation, despite the fact that the accuracy and

computation of the algorithm rely heavily on the number of pseudo points selected,

there are no strict guidelines regarding how to choose them, and currently, M is

typically fixed a priori.

In this section, we choose to make a further improvement for the likelihood ap-

proximation methods because they are easy to use and do not have problems such as

higher complexity in testing (associated with the spare approximation) or disconti-

nuity in prediction (with the localized GP). But as we mentioned above, one major

79

improvement needed for the likelihood approximation methods is a more flexible way

of deciding the number of pseudo points. The current inflexibility often causes the

likelihood approximation methods to have a higher prediction error (measured by

the mean squared errors using a testing data set).

For the purpose of improving the likelihood approximation, we propose a Bayesian

Site Selection (BSS) method that allows the data to decide simultaneously the num-

ber and locations of pseudo inputs. Specifically, BSS considers the pseudo inputs

as a new set of parameters in the model and selects them from a subspace of the

training data. Then, BSS tries to estimate the posterior predictive distribution via

a Markov Chain Monte Carlo (MCMC) method. We call the new set of parameters

in the BSS “sites,” which are the counterparts of the pseudo inputs in the likelihood

approximation methods. We generate an artificial GP defined on the sites, and con-

dition our real response on those artificially-generated outputs to reduce the order

of computational complexity.

Comparing with the current likelihood approximation methods, BSS tries to sys-

tematically discover the number of sites used as the pseudo inputs. The efforts

spent in finding the appropriate sites are valuable as those lead to a less subjective

algorithm and produce more accurate results. In addition, BSS chooses the loca-

tions of sites based on an MCMC algorithm, and by applying MCMC, BSS employs

more than one GP approximation, and can thereby provide more accurate prediction

results through the mechanism of Bayesian model averaging (Hoeting et al., 1999).

Understandably, doing all these in BSS comes with a higher computation cost

than the existing likelihood approximation methods. The theoretical computational

complexities of the likelihood approximation methods and BSS, if using the same

number of sites, are at the same order; for training, it is at O(LNM2), where L is

the number of iterations a method employs to fit the model – the model fitting process

80

is also known as hyperparameter learning in GP research (Rasmussen and Williams,

2006). Because the current likelihood approximation methods use a deterministic

gradient-based optimization method, its L in practice is smaller than that in BSS;

L in BSS is the number of iterations of MCMC. But we would like to point out

that BSS, with appropriate priors chosen, can produce a practically sensible balance

between computation time and prediction accuracy: it is fast enough to handle large

datasets that a full GP is unable to handle, while it improves, quite often remarkably,

the prediction accuracy, as compared to deterministic likelihood approximations.

The remainder of the section is organized as follows. Section 4.2 gives the GP

regression formulation and uses the method in Snelson and Ghahramani (2006) to

explain the basic thoughts behind the likelihood approximation. Section 4.3 presents

the details of the BSS approach, including discussions about the implementation of

the method. In Section 4.4, we implement our method on several simulated and real

datasets and show that the BSS method outperforms the existing methods for several

test cases. Finally, we conclude the research findings regarding GP approximation

methods in Section 4.5 with additional discussions and comments.

4.2 Likelihood Approximation Based on Pseudo Inputs

Recall that in Section 1 we defined the GP as a continuous stochastic process

such that any finite number of those variables follow a joint Gaussian distribution.

Following the notation we introduced in Section 1, define fi := f(xi). Then if

f = {f1, f2, . . . , fN} represents a finite collection of these variables, we have

π(f |X) = N (µ,K), (4.1)

where N (µ,K) denotes a multivariate Gaussian distribution over x ∈ Rd with mean

µ and covariance matrix K whose entries are defined by the covariance function

81

K(., .) as in equation (1.1). One particular case of interest for the covariance function

is a generalization of the squared exponential function (1.2), also known as automatic

relevance determination (ARD) which can be represented in the following form

K (xi,xj) = σ2
f exp

[
−1

2

d∑
`=1

(
xi` − xj`

η`

)2
]
, (4.2)

where η` is the `th component of the vector of the length-scale parameter η =

{η1, η2, . . . , ηd}, xi` and xj` are the `th components of xi and xj, respectively, and

d is the dimension of the input space. As we can always subtract a constant from

the response values before using the data, without loss of generality we can assume

µ = 0.

As mentioned in Section 1, for the task of regression we need to minimize the

expected loss according to equation (1.3). It is not difficult to show (see Rasmussen

and Williams (2006)) if we choose the loss function as the squared loss (y∗ − y)2, the

joint Gaussian distribution implies that the predictive distribution of the response

value at x∗ is also Gaussian with mean µ∗ and variance σ2
∗, where

µ∗ = K∗N
(
KN + σ2I

)−1
y,

σ2
∗ = K∗ −K∗N

(
KN + σ2I

)−1
KN∗ + σ2. (4.3)

Here, we need to elaborate on the notations used for the covariance matrix. In the

above, the subscript of the covariance matrix implies the data points for which the

covariance matrix is formed. For example, KN is the N × N covariance matrix of

all training data points, {x1,x2, . . . ,xN}. For a covariance matrix between a single

point and a set of points, such as the test point x∗, we explicitly denote the point

in the covariance notation. Therefore, K∗N denotes the 1 × N covariance matrix

82

between the test input x∗ and the training points {x1,x2, . . . ,xN}. Finally, K∗ is

used to denote K (x∗,x∗), the prior variance associated with the test site x∗. The

same symbolism is used throughout this section.

The computational issue mentioned earlier is related to the inversion of (KN + σ2I).

This inversion happens during the learning stage of the parameters at the order of

O(N3). Note that once the parameter learning is done, the calculation of the mean

and variance of a test point x∗ costs O(N) and O(N2) respectively.

The likelihood approximation method we aim at improving in this section is the

one using sparse pseudo input Gaussian process (SPGP) (Snelson and Ghahramani,

2006). The SPGP method works as follows. Instead of using the N observations of

y directly, which are too numerous and cause the computational problem, one can

consider using a much smaller set of inputs of size M � N to approximate the full

GP model. If this smaller set of inputs is a subset of the actual N data points,

that method is called the Subset of Data Approximation (Quiñonero-Candela and

Rasmussen, 2005, SDA). But researchers have realized that the simple SDA usually

does poorly in approximating the full GP because the possible subsets are restricted

to the locations where the data were observed. If that restriction is lifted, meaning

that if the input locations can be strategically selected to be at places where there

are not necessarily any observations, the resulting GP approximation can be much

improved, and the unrestricted inputs are then called pseudo inputs.

Following the notations in Snelson (2007), let X̄ = (x̄)Mm=1 denote the pseudo

inputs and f̄ =
(
f̄
)M
m=1

denote the pseudo outputs. The bar notation shows the

pseudo inputs (and outputs) reside in the same spaces as those of real data, but

they cannot be observed. Another important point is that since pseudo outputs are

not actually observed, it does not make sense to include observation noise (i.e. ε) in

them, which is why f̄ is used instead of ȳ. Based on the same reasoning presented

83

for the selection of the GP prior in equation (4.1), we can assume the following prior

for pseudo outputs

π(f̄) = N (0,KM) , (4.4)

and if assuming the outputs are independently, identically distributed (i.i.d) given

the inputs, one can have

π
(
y | f̄ ,X, X̄,θ

)
=

N∏
n=1

π
(
yn | f̄ ,X, X̄,θ

)
= N

(
KNMK−1

M f̄ , diag (KN −QN) + σ2I
)
, (4.5)

where KNM is the N ×M covariance matrix between the N training points and the

M pseudo inputs (Snelson, 2007, p. 38). The matrix QN is the low-rank covariance

matrix whose entries are defined by the low-rank covariance function Q(., .)

Q (x,x′) = KxMK−1
M KMx′ . (4.6)

Next, integrating out the pseudo outputs produces the marginal likelihood

π(y | X, X̄,θ) =

∫
π
(
y | f̄ ,X, X̄,θ

)
π(f̄ | X̄,θ)df̄

= N
(
0,QN + diag (KN −QN) + σ2I

)
. (4.7)

The predictive distribution can be obtained by first writing the joint distribution

of π(y∗,y), which is multivariate normal and takes the same form as in equation

(4.7). From the joint distribution of π(y∗,y), the prediction distribution π(y∗|y)

can be attained using the conditional normal distribution formula (Rasmussen and

84

Williams, 2006, p. 200). The resulting π(y∗|y) is as follows:

π(y∗ | y,X, X̄,θ) = N
(
µ∗, σ

2
∗
)

µ∗ = Q∗N
(
QN + diag (KN −QN) + σ2I

)−1
y

σ2
∗ = K∗ −Q∗N

(
QN + diag (KN −QN) + σ2I

)−1
QN∗ + σ2. (4.8)

Despite entailing N×N matrix inversions in equation (9), using the matrix inversion

lemma, one can show that the computation complexity is actually O(NM2) (Snelson,

2007, p. 40). The reason is simply that after using the matrix inversion lemma, the

N × N matrices will become diagonal whose inversion is O(N), and consequently,

the computation is no longer dominated by inverting those matrices.

The parameters in the above model can be categorized into two groups: (a) The

so-called hyperparameters that are also used by other GP models, usually denoted

by θ. Here θ = {σ, σf ,η}. (b) The locations of pseudo inputs X̄. To estimate

all the model parameters (θ, X̄) together, one can use gradient ascent methods to

optimize the marginal likelihood in (4.7). The details of the optimization procedure

as well as how to take the gradients can be found in Snelson (2007, pp. 126-129). For

the SPGP method, the cost for computing the marginal likelihood in (4.7) once is

O(NM2), due to the fact that QN is of rank M (lower than N). If the optimization

method takes l steps to converge, then the training cost, i.e. that for hyperparameter

learning, is at O(lNM2). We will refer to the SPGP method as the Deterministic

Site Selection (DSS) hereafter. This name is chosen because it helps highlight the

difference between the existing likelihood approximation and our proposed Bayesian

method.

85

4.3 Bayesian Site Selection

One drawback of the DSS mechanism in SPGP is that the number of pseudo

inputs, i.e. the cardinality of X̄, is fixed at M . Given the important role that the

number of pseudo inputs plays in both computation and prediction accuracy, it would

be desirable that the number of pseudo inputs can change in the algorithm and be

decided by the data. That is indeed the objective of the research presented in this

section, through a method we label as Bayesian Site Selection.

To establish a Bayesian framework for this problem, we begin by emphasizing

that the goal is to make an inference about the posterior predictive distribution

π (y∗|y,X, θ). As we are interested in utilizing the information inherent in the pseudo

inputs, we consider the pseudo inputs as a set of new parameters through which we

can represent the predictive distribution, namely

π (y∗|y,X,θ) =

∫
π
(
y∗|y,X, X̄,θ

)
π
(
X̄|y,X,θ

)
dX̄. (4.9)

Equation (4.9) requires specifying the posterior distribution π
(
X̄|y,X,θ

)
which can

be expressed as

π
(
X̄|y,X, θ

)
∝ π

(
X̄
)
π
(
y|X, X̄,θ

)
. (4.10)

Note that π
(
y|X, X̄,θ

)
follows a normal distribution according to (4.7). More-

over, as the new observation y∗ and y are jointly normally distributed, π
(
y∗|y,X, X̄,θ

)
is also normally distributed with parameters shown in (4.2). Therefore, the only term

to be determined in order to fully specify the model is the prior distribution of the

pseudo inputs. A suitable prior distribution should take into account the number of

pseudo inputs so that we can update our belief about their number in light of the

observed data. Considering X̄ as an M × d matrix, one reasonable choice for the

86

prior could be

π
(
X̄
)
∝ λ|X̄|

|X̄|
× I

(
kl ≤ |X̄| ≤ ku

)
(4.11)

where |X̄| denotes the number of rows in X̄ (i.e. the number of pseudo inputs),

and I(.) is the indicator function. The prior considers a range for the number of

locations
(
kl ≤ |X̄| ≤ ku

)
which describes the smallest and the largest number of

pseudo inputs we would like to consider in our model. The new hyperparameter λ

reflects our belief regarding the average number of pseudo inputs in the prior.

Having specified the terms constituting the integrand in equation (4.9), we want

to evaluate the value of the integral. Unfortunately, the integral in (4.9) cannot be

solved analytically, and consequently, we need to appeal to numerical methods to ap-

proximate the integral. In fact, if we can generate Markov samples {X̄1, X̄2, . . . , X̄T}

from π
(
X̄|y,X, θ

)
, then we can approximate the integral in (4.9) by

π̂ (y∗|y,X,θ) =
T∑
t=1

π
(
y∗|y,X, X̄t,θ

)
. (4.12)

Then, the problem is reduced to how to draw samples from π
(
X̄|y,X,θ

)
.

The difficulty associated with drawing samples from π
(
X̄|y,X,θ

)
is that a direct

application of MCMC fails as it requires the state space of the Markov chain to be of

a fixed dimension, but the dimension of X̄ may actually vary. To overcome this issue,

we can use the Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm

(Green, 1995) which allows the dimension of the state space of the Markov chain to

vary. The idea behind is that RJMCMC introduces three types of moves: exchange,

birth, and death. Exchange means that the chain remains in the space with the same

dimension, but moves into a new state. Birth and death are the moves which change

the dimension of the state space. Intuitively, a birth step augments the state space

87

by adding new states, while a death step reduces the dimension of the state space.

At each iteration, the type of move, be it an exchange, birth, or death, is randomly

chosen, and one accepts the new state using a Metropolis-Hastings rule. To see full

details and examples, refer to Green (1995).

4.3.1 Algorithm

Specifically, to generate the sample {X̄1, X̄2, . . . , X̄T}, we build a Markov chain

whose space is a subset of Rd×s for varying values of s, so that at stage t, the

corresponding set of pseudo inputs X̄t may have a number of elements different from

previous stages. This allows the number of pseudo inputs to change so that we can

seek simultaneously the number and location of the pseudo inputs.

To employ the RJMCMC, we need to introduce some new notations and make

some extra assumptions. We restrict the space from which the pseudo inputs can

be chosen by imposing it to be finite. Specifically, let S denote the whole space of

explanatory variables, so if x is an element in X or X̄, then x ∈ S. Let S̃ ⊂ S denote a

finite discretized subspace in the sense that |S̃| <∞. For an x := {x1, x2, . . . , xd} ∈

S̃, xi ∈ {x̃imin, x̃imin + ξ, x̃imin + 2ξ, . . . , x̃imax},∀i ∈ {1, 2, . . . , d}, where x̃imin and

x̃imax are the minimum and maximum values to consider in the ith dimension of S,

respectively, and ξ is the discretization step. We choose the locations of the pseudo

inputs from S̃ instead of from the original S for the sake of computation easiness. As

such, X̄ ⊂ S̃ and we refer to X̄ as “sites” in our approach. Note that if ξ is taken to

be a small number and |x̃imin| and |x̃imax| are large enough, then S̃ can approximate

S reasonably well.

Same as in other RJMCMC-based algorithms, we also use three types of moves:

Birth, Death and Exchange. Birth and Death are used to add or remove points

to the current X̄, and Exchange is used to update the locations of sites while the

88

numbers are kept unchanged. Recall that the set of parameters for this model is (θ,

X̄), where θ = {σ, σf ,η}. In order to optimize θ, a full Bayesian approach is to

incorporate both θ and X̄ in the RJMCMC algorithm and update them both as the

chain evolves. Based on our numerical analysis, this approach, although theoretically

appealing, does not provide stable results numerically; at least we have not found a

robust enough numerical procedure attaining that outcome. Therefore, we choose to

employ the gradient ascent method to find a θ that maximizes the marginal likelihood

(4.7) for a fixed set of X̄. That is to say, after every few iterations we seek for the

optimal value of θ conditioned on the current value of X̄, and then we update X̄

using RJMCMC moves, conditioned on the newly found value of θ. We denote the

number of RJMCMC iterations between two consecutive optimizations of θ by κ. We

also want to note that the algorithm used here to maximize the marginal likelihood

(4.7), for a given X̄, is the same as that in the full GP.

Next, we present the specific formulations of the RJMCMC moves. In the follow-

ing, q(A → B) is the proposal distribution denoting the probability of going from

a set A ⊂ S̃ to B ⊂ S̃, and a and b are the probabilities of performing Birth and

Death, respectively; both will be explained after the formulations.

Birth: Choose a point from S̃\X̄, say x∗, and add it to the current site set X̄

with probability p so that the new site set is X̄ ∪ {x∗}, where

p = min

(
1,
π
(
X̄ ∪ {x∗}|y,X,θ

)
q
(
X̄ ∪ {x∗} → X̄

)
π
(
X̄|y,X,θ

)
q
(
X̄→ X̄ ∪ {x∗}

) × b

a

)
;

Death: Choose a point from X̄, say x∗, and remove it from the current site set

X̄ with probability p so that the new site set is X̄\{x∗}, where

p = min

(
1,
π
(
X̄\{x∗}|y,X,θ

)
q
(
X̄\{x∗} → X̄

)
π
(
X̄|y,X,θ

)
q
(
X̄→ X̄\{x∗}

) × a

b

)
;

89

Exchange: Choose a point from S̃\X̄, say x∗, and a point from X̄, say x∗∗, and

exchange the two points with probability p where

p = min

(
1,
π
(
X̄ ∪ {x∗}\{x∗∗}|y,X,θ

)
q
(
X̄ ∪ {x∗}\{x∗∗} → X̄

)
π
(
X̄|y,X,θ

)
q
(
X̄→ X̄ ∪ {x∗}\{x∗∗}

))
.

Regarding the choice of the proposal distribution q (A→ B) used in the moves,

we choose to use a uniform function which assigns equal weights to all the points

in the sets S̃\X̄ and X̄. For example, q
(
X̄ ∪ {x∗} → X̄

)
can be expressed as 1

|X̄|+1

and q
(
X̄→ X̄ ∪ {x∗}

)
is equal to 1

|S̃|−|X̄| . Choosing the uniform proposal and ex-

pressing the posteriors as the product of the priors and the likelihoods, we will get

the following forms for the acceptance probabilities of Birth, Death, and Exchange,

respectively:

pB = min

1,
λ|X̄|

(
|S̃| − |X̄|

)
f
(
y|X, X̄ ∪ {x∗},θ

)
(
|X̄|+ 1

)2
f
(
y|X, X̄,θ

) × b

a

 ;

pD = min

1,

∣∣X̄∣∣2 f (y|X, X̄\{x∗},θ)
λ
(
|S̃| − |X̄| − 1

) (
|X̄| − 1

)
f
(
y|X, X̄,θ

) × a

b

 ;

pE = min

(
1,
f
(
y|X, X̄ ∪ {x∗}\{x∗∗},θ

)
f
(
y|X, X̄,θ

))
.

Other valid proposal distributions could be used as well; for a few other proposal

distributions, see Liang et al. (2010).

Algorithm (2) presents the procedure of this RJMCMC, which generates a Markov

chain of sites whose stationary distribution is π
(
X̄|y,X,θ

)
. Once we have

{
X̄t

}T
t=1

from the posterior distribution of X̄t, we can use equation (4.12) to make a prediction

at any untried points. In Algorithm (2), the values a and b can be selected as

90

a = b = 1
3
, which means the probability of performing each of the operations Birth,

Death, and Exchange is equal.

Algorithm 2 Bayesian Site Selection for Sparse Pseudo Input Gaussian Processes

Choose X̄0 as a uniformly random draw from S̃ where |X̄0| = M
Optimize the value of θ for a fixed X̄0

repeat
Draw u uniformly from [0, 1]
if u ≤ a then

Perform Birth
else

if a < u ≤ a+ b then
Perform Death

else
Perform Exchange

end if
end if
After each κ steps optimize the value of θ for a fixed X̄t

After burn-in steps store the values of X̄t

until The number of RJMCMC iterations reaches the pre-specified value of MCMC
Length

To choose the optimal number and locations of the pseudo inputs, BSS’s order of

complexity for the training stage is O (LMN2), and for the test stage is O (LM2),

where L is the length of the MCMC chain. Comparing the BSS’s computation

complexity with that of the full GP, which isO (N3) for the training stage andO (N2)

for the test stage, one can see considerable cost reduction as long as M is chosen

such that M � N . Comparing the BSS with the DSS, BSS costs more because L in

the MCMC is longer than its counterpart in a gradient-based optimization, namely

the number of optimization iterations l. However, BSS generally produces results

with better accuracy than those of DSS, as will be demonstrated in Section 4.4.

91

Finally, it should be noted that since the BSS method is a Bayesian approach, it

naturally provides the posterior distribution that inherently contains the information

about uncertainty associated with the method. Once the method is established, one

only needs to sample from its posterior distribution enough times to get the mean

prediction and the confidence intervals.

4.3.2 Computational Details

As the new algorithm employs GP and MCMC methods, the reader can consult

Rasmussen and Williams (2006) for general advice related to GP implementation

and Liang et al. (2010) concerning MCMC.

The bottleneck for the computation comes from inverting the matrix of size N :

(i) when we evaluate the likelihood in the Birth, Death and Exchange steps in RJM-

CMC, and (ii) when we evaluate the posterior predictive distribution after burn-in

steps. The computation of evaluating the likelihood in RJMCMC is at the order of

O(NM2) (Snelson, 2007, p. 40), but the computation can be further reduced. Since

the low-rank covariance in equation (4.6) after each move changes moderately, we

can exploit the similar structures of the very past matrix to calculate the new one.

To illustrate, assume we want to perform the Birth step. Let xb be the newly-added

point to the site set X̄. As such, the new low-rank covariance is

Qnew = KN(M+1)K
−1
M+1K(M+1)N , (4.13)

which can be written as

Qnew =

[
KNM KNxb

] KM KMxb

KxbM Kxbxb


−1 KMN

KxbN

 . (4.14)

92

Let k = Kxbxb
and use the matrix inversion formula for a partitioned matrix (Ras-

mussen and Williams, 2006, p. 201), we get

Qnew =

[
KNM KNxb

] ΣM −1
c
K−1
M KMxb

−1
c
KxbMK−1

M
1
c


KMN

KxbN

 (4.15)

where c = k−KxbMKM
−1KMxb

and ΣM = KM
−1+ 1

c
KM

−1KMxb
KxbMKM

−1. There-

fore, to evaluate Qnew instead of inverting KM+1 as in equation (4.13), equation (4.15)

allows us to use the inverse of KM from the very previous step. Similar actions can

be taken to facilitate the computation in the Death and Exchange steps.

4.3.3 Choices of Other Parameters

We share our thoughts in choosing the parameters when initializing the BSS

algorithm. The first is what to choose for λ in the site prior (4.11). The effect of λ can

be understood as follows. A small value of λ forces the algorithm to choose a smaller

number of sites, while a large value of λ has the reverse effect. The latter typically

results in a more accurate prediction but at the expense of longer computation time.

Taking this trade-off into consideration, one can decide the value of λ by selecting a

subset of data to train the model for different values of λ. Then the trained model

can be used to predict the responses of another unused subset of data to observe the

prediction accuracy. As the computation time can approximately be extrapolated

over the whole data set, this method can provide us with the information about the

accuracy and computation time trade-off as a result of choosing different values for

λ. In our implementation, the value of λ is selected to be 1.5 M
10t
d where M is the

initial number of sites, d is the dimension of the input space, and t is selected from

the interval [1, 4].

The second parameter is the size of the discretized subspace, S̃\X̄, from which

93

we choose the sites. The discretized subspace should be constructed based on the

trade-off between computation time and accuracy. Larger |S̃\X̄| yields more accurate

results but could slow the computation. As a rule of thumb, one can choose |S̃\X̄| =

10N .

The next set of parameters is the initial locations of sites, decided in three steps:

first, we randomly choose a subset of the training points; second, we find the new

locations (while the number of pseudo inputs are kept fixed) by maximizing the

marginal likelihood; and finally, we find the closest points in the discretized steps to

those locations.

The other set of parameters is the range of the pseudo inputs, namely the lower

and upper bounds kl and ku used in the site prior of equation (4.11). Our analysis

shows that the values of kl and ku do not affect the method as long as the range

is selected wide enough. However, if a user wants to prevent the algorithm from

choosing a large number of locations (for instance, due to the time constraint), he/she

can choose a relatively small number for the upper bound ku. On the other hand,

if the user wants to make sure the accuracy of the method is over some threshold,

he/she can choose a relatively large number for the lower bound kl, so that the

algorithm will not choose a number of locations less than that limit. In the current

implementation, the range is decided based on the initial number of pseudo inputs

M and the number of data points in the training set N . Specifically, kl = M
tl

, and

ku = tu1M + N
tu2

for some constants tl, tu1 and tu2 .

Finally, we want to note that the stopping criterion for this algorithm is decided

based on the trade-off between computation time and accuracy, not necessarily based

on the probabilistic convergence of a Markov Chain. Doing so can be justified by

noting two facts: first, the BSS is a Bayesian model averaging approach and, theoret-

ically speaking, as the chain evolves, the results get more accurate. Second, letting

94

the chain run for a very long time is counterproductive to the original purpose of

the algorithm, which is to approximate the GP regression and provide a reasonable

result in a relatively short period of time. As such, we would recommend that the

stopping criterion be decided based on the presumed reduction in the MSE in a

specified period of time, which can be evaluated through cross validation.

4.4 Experimental Results

In this section we present the results of the proposed method on some real and

simulated datasets. First, we compare BSS with the full GP (FGP) and Treed

Gaussian Processes (TGP) (Gramacy and Lee, 2008) for some small- to moderate-

sized datasets. Then, we compare BSS with the DSS (Snelson, 2007) for some large

datasets. Through both comparisons, we want to reinforce our claim that BSS pro-

vides a good trade-off: on one hand, it can handle the large datasets that full GP

and TGP usually could not, while on the other hand, it is more accurate than DSS in

terms of mean squared prediction errors. All the numerical studies were performed

on a computer with two 3.16 GHz quadcore CPUs.

4.4.1 Datasets and Performance Criterion

We use four real datasets: the first two datasets are available at the UCI Machine

Learning Repository (UCI, 2010), and the next two are NASA’s satellite data. The

first set is the Abalone data, which consists of 4,177 points and each data record has

an input vector x of dimension d = 7. The response in the Abalone dataset is the

abalone age, and its inputs in x are related to different properties in an abalone’s

body. The second set is the Sarcos data, which consists of 48,933 data points and

d = 27. The data are related to the dynamics of a robot. The two NASA datasets,

the third and fourth real datasets, are spatial data; both have d = 2. The third

dataset is TCO, which consists of 48,331 measurements of the total column of ozone

95

around the globe, collected by NIMBUS-7/TOMS satellite on October 1, 1988. The

fourth data set is MOD08-CL, which is the data collected by the Moderate Resolution

Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. The data points,

64,800 in total, are the measurements of the average of cloud fractions around the

globe from January to September in 2009.

We also test the proposed method on a set of simulated datasets generated using

the revised Ackley’s path function (Joseph and Kang, 2011), which is defined as

f(x) = −α exp

−β
√√√√ d∑

`=1

x2
`

d

− exp

(
d∑
`=1

cos(γx`)

d

)
+ α + exp(1), x ∈ [−2, 2]d,

(4.16)

where α = 2d, β = 0.2, and γ = 2π. To generate a set of data, d and N need to

be specified. Additionally, the locations of the data points need to be selected, and

following Joseph and Kang (2011), we use the Latin Hypercube designs (Wu and

Hamada, 2009) for this purpose.

To evaluate the performance of a method, we partition each simulated data set

so that 80% is for training and the remaining 20% is for testing, and for the real

datasets, we use a five-fold cross validation.

The primary evaluation criterion is the mean squared error (MSE), defined as

MSE =
Nt∑
i=1

(yi − ŷi)2

Nt

,

where yi is the observed value, ŷi is the predicted value, and Nt is the number of

test cases. When comparing BSS and DSS on the real datasets, in addition to MSE,

which measures the accuracy of the mean prediction, we employ a predictive log

score measure (PLSM) (Hoeting et al., 1999), which takes into account the predictive

96

uncertainty of a method. PLSM is formally defined as

PLSM = −
∑
δ∈DT

log

{∑
M∈A

Pr(δ|M,DB)pr(M |DB)

}
, (4.17)

where DB and DT are the build data (i.e. training data) and test data respectively.

Specifically, DB = {(xi, yi); i = 1, 2, . . . , N} and DT = {(x̂i, ŷi); i = 1, 2, . . . , Nt},

where (xi, yi) is the ith input-output pair for training and (x̂i, ŷi) is the ith input-

output prediction pair in which x̂i is the test input and ŷi is the corresponding

prediction. The set A contains all the models used in prediction; for the BSS, A is

the set of all pseudo input-based approximations based on the set of pseudo inputs

X̄t for t > burn-in, and for the DSS A is simply one approximation based on a fixed

number of pseudo inputs. A smaller PLSM indicates an overall better predictive

performance of a method, considering all uncertainties involved.

4.4.2 A One-dimensional Example

To illustrate how the algorithm works, we first generate a simulated dataset from

equation (4.16) for d = 1 and N = 5, 000 and apply the BSS algorithm with λ chosen

to be 0.1. Figure 4.1 presents four plots showing the results. Figure 4.1 (a), the top-

left plot, displays half of the 4,000 points selected as the training data set. Here

we plot only the positive half as the revised Ackley’s path is symmetric around the

y-axis. Figure 4.1 (b), the bottom left plot, illustrates how the sites (locations of the

pseudo inputs) change as the MCMC chain evolves. Figure 4.1 (c), the top-right plot,

displays the number of sites versus the number of MCMC iterations. Considering

the plots in Figure 4.1 (b) and (c), one can observe how the number and locations of

sites change; during the first 1,000 iterations, the number of sites increase to around

110. After that, the number of sites oscillates around 110, and the locations change

97

as a combined result of the Birth, Death and Exchange operations. Although the

plot indicates that the number of sites at a given iteration might be the same as

that of a few iterations before, the very locations of sites are not necessarily the

same. The last plot, Figure 4.1 (d), displays how the MSE changes after the 1,000

burn-in iterations. Initially, we observe a significant reduction in MSE, then the

decrease levels off. This example provides insights regarding how the BSS works:

the method is initialized by selecting a number of sites, and through RJMCMC, BSS

chooses different sites both in locations and quantity. In general, the predictive MSE

has a decreasing trend and the number of sites converges toward a specific range,

depending on the value of λ used.

4.4.3 Performance Comparison

We first use the simulated dataset from the revised Ackley’s path to compare

BSS with FGP, TGP and DSS. The dimension of the revised Ackley’s path is fixed

at d = 10 but two dataset sizes are used: N = 1, 000 and N = 5, 000. These dataset

sizes are moderate, so that FGP and TGP can handle them. Figure 4.2 illustrates

the results of the proposed method as well as that of the other three methods.

For BSS, three MSEs are presented in Figure 4.2, each of which corresponds to

some pre-determined RJMCMC chain length. As the length of the chain increases,

the MSE in general decreases. For DSS, the different results are due to the different

initial locations (randomly selected) used in the gradient-based optimization. For

TGP, we use the default parameter settings in its R package. The top part of the

figure presents the results for N = 1, 000. As evident in the figure, BSS produces

MSE results close to those of FGP while spending less time. When we allow BSS

to spend nearly the same time as FGP, it can produce smaller MSEs. DSS here

uses a fixed number of sites, the same as the initial number of sites used in BSS,

98

Figure 4.1: Left: (a) The revised Ackley’s path when d = 1, and N = 5, 000 (the plot
only shows 2,000 training points whose inputs are positive). (b) The initial locations
of sites and their new locations after every 1,000 MCMC iterations (on the positive
side of the axis). Right: (c) Number of sites vs. MCMC iterations. (d) MSE vs.
MCMC iterations after the burn-in period.

and then tries to find the optimal locations of those sites. As we see for this case,

BSS obviously spends more time but produces more accurate predictions than DSS

does. TGP produces very competitive MSE results but takes the longest time. The

bottom part of the figure presents the results for N = 5, 000, at which dataset size

TGP takes too long to run, so the figure includes only the results of BSS, DSS, and

FGP. The observations made earlier apply here too. In fact, compared to FGP, BSS

performed noticeably better in less time. This could be due to the fact that the

99

d d

d d

N N

N N

Figure 4.2: Top: The results of BSS comparing with DSS, FGP, and TGP for the
revised Ackley’s path with d = 10, and N = 1, 000. In the left side plot, the number
of initial sites for BSS and the (fixed) number of sites for DSS are 64, and on the
right side they are 128. Bottom: The results of the BSS comparing with DSS and
FGP for the revised Ackley’s path with d = 10, and N = 5, 000. In the left side plot,
the number of initial sites for BSS and the (fixed) number of sites for DSS are 64,
and on the right side they are 128.

dimension of the dataset (d = 10) is relatively high, which makes it difficult for FGP

to learn the hyperparameters, and consequently, a poor estimate of hyperparameter

hinders its performance. A summary of these results is also presented in Table 4.1.

We also compare BSS with DSS using the real, generally larger-sized data sets;

for the datasets larger than 1,000 data points, FGP and TGP are too computation-

ally expensive to run, so that we do not include FGP and TGP in the subsequent

100

Table 4.1: Summary of the results presented in Figure 4.2
N = 1, 000, d = 10 N = 5, 000, d = 10

Algorithm Computation Time (sec) MSE Computation Time (sec) MSE

BSS (64)
26.9 0.0617 277.1 0.0588
53.9 0.0581 554.1 0.0574
80.8 0.0581 831.1 0.0570

DSS (64)
6.4 0.0685 14.4 0.0656
6.3 0.0688 15.8 0.0646

BSS (128)
49.2 0.0633 534.3 0.0588
98.5 0.0603 1,068.5 0.0585
147.6 0.0591 1,602.8 0.0582

DSS (128) 35.8 0.0597 77.6 0.0596
35.8 0.0599 78.2 0.0593

FGP 125.2 0.0607 2,417.5 0.0624
TGP 8,145.0 0.0585 N/A N/A

comparisons. To reach a more definite conclusion, we use a five-fold cross validation.

The five-fold cross validation provides average MSE/PLSM values as well as their

standard deviations from the five trials.

Table 4.2 presents the MSE results of BSS and DSS when both are applied to the

four real datasets. As shown in the table, BSS always produces a smaller average

MSE than DSS: on the two spatial data cases the reduction in MSE is impressive,

around two-fold smaller than that of DSS; on Sarcos data, BSS provides a remarkable

35% decrease in the average MSE; and on Abalone data, the two methods performed

similarly, especially considering the standard deviation of the MSE.

Table 4.2: Comparing BSS with DSS in terms of MSE. The numbers in the paren-
theses are standard deviations.

Data Set Dimension Number of data points BSS DSS
Abalone 7 4,177 4.4081 (0.2018) 4.4454 (0.2008)
Sarcos 27 48,933 0.0558 (0.0082) 0.0754 (0.0059)
MOD08-CL 2 64,800 0.0058 (0.0004) 0.0147 (0.0010)
TCO 2 48,331 197.8 (37.4) 337.2 (37.5)

101

Table 4.3 shows the PLSMs of the two methods for the data sets used in the

section. It is observed that except for the Abalone data set, the BSS has a signifi-

cantly smaller average PLSM than that of the DSS. Recall that PLSM measures the

combined effect from the accuracy of the mean prediction and the predictive vari-

ance. Smaller PLSM and MSE values for Sarcos, TCO, and MOD08-CL datasets are

strong indicators that BSS outperforms DSS not only in terms of mean prediction

but also with lower overall uncertainty. On Abalone data, the two methods perform

similarly: BSS and DSS have almost indistinguishable MSEs but BSS has a slightly

worse PLSM.

Table 4.3: Predictive log score measure (PLSM). M = 32, and for BSS, the MCMC
chain runs 2,000 iterations with 1,000 burn-in iterations. The numbers in the paren-
theses are standard deviations.

Data PLSM - BSS PLSM - DSS
Abalone 8, 600.1(40.13) 8, 461.1(23.1)
Sarcos −7, 039.3(1, 155.8) −2, 123.2(1, 007.6)
MOD08-CL −92, 458.3(2, 608.6) −44, 563.2(1, 793.5)
TCO 177, 695.2(4, 112.2) 206, 905.6(3, 040.9)

Admittedly, the improvement in accuracy by BSS comes with the cost of more

computation time. The computation times of BSS, however, still reside in a region

desirable for practical purposes. For example, BSS produces the results in less than 8

minutes for the Abalone data, 230 minutes for the Sarcos, and less than 100 minutes

for both MOD08-CL and TCO data sets. Corresponding computation times for DSS

are 10 seconds for Abalone, 8 minutes for Sarcos and around 3 minutes for MOD08-

CL and TCO data sets. Should FGP be applied to a data set of a size similar to

TCO, based on extrapolation from FGP’s run times of solving smaller datasets, it

would take more than 20 days.

102

4.4.4 Sensitivity Analysis

Recall that we embed an optimization procedure within the RJMCMC moves.

Here we investigate how the running of the optimization would affect the results of

BSS.

There are two parameters involved; one is the number of MCMC iterations be-

tween two consecutive optimizations of hyperparameters, which we denote by κ,

while the second parameter, intuitively speaking, concerns how “well” we perform

the optimization, which can be characterized by the number of gradient steps used

in the optimization procedure. The number of gradient steps was denoted by l in

DSS; here we adopt the same notation. Using the revised Ackley’s path case with

d = 2 and N = 10, 000, we run an ANOVA taking κ and l as the factors. The value

of κ is chosen from seven levels {1 , 5 , 10 , 25 , 50 , 75 , 100} and l is chosen from six

levels {10 , 20 , 40 , 100 , 150 , 200}. Note that in DSS, the number of gradient search

iterations is generally fixed around 200. The response values are the mean squared

errors under each combination of factors. The value of λ is randomized so it would

not have a significant effect on the responses. We run three replications in a full

factorial design. Tabel 4.4 shows the resulting ANOVA table.

Table 4.4: ANOVA analysis for revised Ackley path with d = 2, N = 10, 000 and
5,000 MCMC iterations

Source Sum of squares Degree of freedom Mean of squares F Prob>F
κ 0.0046 6 0.0008 0.9850 0.4350
l 0.0053 5 0.0011 1.3397 0.2467
κ× l 0.0156 30 0.0005 0.6630 0.9140

Error 0.2963 378 0.0008
Total 0.3218 419

103

The ANOVA results are presented in Table 4.4. This set of results is based on

5,000 MCMC iterations. This ANOVA table suggests none of the factors is significant

under α = 0.05. However, among the parameters investigated, the parameter l has

the smallest p-value. Based on other experiments conducted on the same data set,

l may be found significant under α = 0.05 when shorter MCMC chains were used.

We believe that this analysis suggests that if the length of the MCMC chain is long

enough, the BSS method becomes less sensitive (or insensitive) to the change in

parameters. This conclusion is supported by most of the other data sets we used.

To gain more insight concerning the effect of the parameters, we decide to look

further into the behavior of the algorithm for different values of κ and l. Figure 4.3

shows the change in the MSE, the normalized computation time and the number of

sites for different values of κ and l as the chain evolves, based on a MCMC chain

truncated at 2,000 for the revised Ackley’s path with d = 2 and N = 10, 000. The

normalized computation time is the computation time under a combination of κ

and l, normalized by dividing the longest computation time among all possible κ-l

combinations.

We would like to make a number of observations in Figure 4.3: (1) Intuitively

people might think a larger l leads to a smaller MSE since a larger l means a deeper

optimization of θ at each iteration. In reality, it turns out a smaller l helps reduce

the MSE more. The reason behind this is because a model’s MSE depends much

more on the number and locations of the sites than the optimization of θ. Long

iterations in the optimization routine could overfit the data with a smaller number

of sites and a refined θ, which may very well end up with a higher MSE. (2) Given the

observation in (1), in order to get smaller MSE values, people would understandably

use a smaller l (e.g., l = 10) . The other factor of consideration is the computation.

On the surface, a smaller l could mean a fast computation, and pairing with the

104

small l, a large κ should be chosen to further reduce the computation. Although

the large κ choice is generally correct, a small l does not necessarily lead to fast

computation. For example, for the combination κ = 1 and l = 10 the algorithm

has longer computation time and results in a smaller MSE, as compared to κ = 1

and l = 100. The reason is again the number of sites the algorithm chooses, and the

computation depends much more on the number of sites than the value of l. Generally

speaking, a smaller l causes the selection of a larger number of sites, leading to a

smaller MSE but causing a longer computation. This can be seen by comparing

Figure 4.3 (b) and (c). Our experience indicates that a general practice is to choose

a relatively large l, say l = 40, paired with a large κ, say κ = 25, that can arrive at

a good compromise between prediction quality and computation expense.

4.5 Summary

This section presents an approximation algorithm to reduce the computation

time of GP regression when dealing with large datasets. We tackle the problem by

trying to approximate the likelihood function using a set of artificial data points

and labeling them as “sites.” We devise a Bayesian site selection method and solve it

using the reversible jump MCMC algorithm, to find simultaneously the locations and

number of the sites. Our method can handle large datasets with general dimensions

and outperforms the deterministic site selection method, which decides the locations

of sites but with the site number fixed a priori.

As evident in the case studies presented in Section 4.4, the proposed BSS method

produces similar or even smaller MSEs as compared to full GP, while being able to do

so faster. It can handle large datasets that full GP is not practically able to handle,

while producing MSEs smaller than the deterministic site selection method. The

computation time related to BSS can be reduced further by reducing the number of

105

(a) MSE vs. MCMC Iteration

(c) Number of Sites vs. MCMC Iteration

(b) Normalized Computation Time vs. MCMC Iteration

 =
 5

0

 =
 2

5

 =
 1

0

 =
 5

 =
 1

 =
 5

0

 =
 2

5

 =
 1

0

 =
 5

 =
 1

 =
 5

0

 =
 2

5

 =
 1

0

 =
 5

 =
 1

 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟒𝟎 𝒍 = 𝟏𝟎𝟎

 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟒𝟎 𝒍 = 𝟏𝟎𝟎

 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟒𝟎 𝒍 = 𝟏𝟎𝟎

Figure 4.3: (a) MSE vs. MCMC iterations (after burn-in period) for different values
of κ and l for the revised Ackley’s path with d = 2 and N = 10, 000. (b) Normalized
computation time vs. MCMC iterations. (c) Number of sites vs. MCMC iterations.

MCMC iterations in RJMCMC. Understandably, this may come at the expense of a

decrease in prediction accuracy. Our current analysis indicates that with appropriate

priors chosen, BSS generally provides a good trade-off between the two conflicting

objectives.

106

5. CONCLUSION

This study has discussed applications of Gaussian processes to solve three prob-

lems that involve Big Data: local wind field modeling in a wind farm, buckypaper

nano-manufacturing, and applying GP regression to large datasets. This section

presents the insights we gained from applying Gaussian processes (GPs) to solve

these three problems that involve Big Data. Below, we summarize our findings and

propose some new areas for future research.

5.1 Summary

To solve the first problem related to improving the short-term forecasting of wind

speed, we constructed three different spatial-temporal models: GSTAR, RGSTAR,

and RGSTARGW. All three used a Gaussian kernel to model spatial dependency

in a local region and autoregressive components for linking past observations to

the current observation. RGSTAR also incorporated wind direction by introducing

regimes. RGSTARGW incorporated meteorological measurements by calculating the

geostrophic wind in the region under study. We showed how the three models closely

related to Gaussian Markov processes and could be interpreted as a parametrized

case of vector autoregressive models. We presented each model as an optimization

problem that could be solved using numerical techniques.

To solve the second problem related to predicting the mechanical properties of

buckypaper, a nano-manufacturing product, we calibrated an existing simulation

model which used accurate, but costly, physical experiments. To overcome the chal-

lenge of some unobserved input variables in the physical experiments, we proposed a

calibration framework introducing latent variables which were imputed using a func-

tional relationship between the observed and unobserved variables. We developed

107

an algorithm which sequentially updated the parameters in the model. Empirical

results demonstrated that the proposed model outperformed existing single-fidelity

or multi-fidelity analysis without latent variables.

To solve the third problem of approximating the GP regression to strike a sen-

sible balance between prediction accuracy and computation time, we proposed to

improve the prediction accuracy of existing likelihood approximation methods. Our

framework modeled the covariance of the GP using latent variables called pseudo-

inputs. The pseudo-inputs were treated as an extra parameter in the model, and

their number and locations were determined simultaneously using a reversible jump

MCMC method. Empirical results showed the method achieves a sensible balance

between prediction accuracy and computation time.

We summarize the major contributions of this study as follows:

• Spatial-temporal analysis of systems with dense measurements: This study

proposes a methodology for eliciting pertinent information from a network of

dense observations in time and space. The novelty of the idea is how to identify

the information that propagates in a small region through efficient space-time

modeling. The method can serve as the basis for improving O&M and planning

strategies for a wind power system, because the proposed models allow single

turbines to be isolated, which in turn implies that each turbine can be treated

separately for control and maintenance. The model also can be applied to other

spatial-temporal systems having a set of time-series that are highly dense in

space.

• Local calibration of complex computer codes: The proposed methodology for

the calibration of simulation experiments involving latent variables can be un-

derstood as a task of the local calibration of parameters in physical experiments.

108

In fact, the latent variables introduced in the methodology can be conceived

as parameters in the physical experiments which are dependent on other vari-

ables and therefore need to be locally calibrated. The proposed method can be

applied to other engineering applications requiring local calibration with less

cost and time.

• Predictive modeling for large-scale and complex systems: The BSS method is

an efficient algorithm to use as a predictive model for any complex system.

The proposed model was constructed upon a GP-based framework, therefore

making weak assumptions about the structure of the system of interest. There

is no restriction for the dimension of the dataset. The BSS method can be used

for spatial data and as a surrogate model for complex and large-scale computer

codes. Allowing the user to decide the trade-off between computation time

and prediction accuracy makes the BSS method appealing for many practical

purposes.

5.2 Suggestions for Future Research

Based on each separate problem addressed in this study, we present the following

suggestions for future research:

• Short-term Wind Speed Forecast Using Measurements from Multiple Turbines

in a Wind Farm:

GSTAR models do not always outperform the persistent model for very short

horizons, such as for a two-hour ahead prediction. This suggests the need to

develop more sophisticated modeling to capture such temporal dependency, in-

stead of simple linear relationships as manifested in the low order of temporal

process parameter, p. For the highly volatile near-ground wind field, we conjec-

109

ture that any attempts to model the temporal dependency as a linear function

will fail. Nonlinear models in the mode of Giannakis and Majda (2012) may

be more capable of handling the nonlinear dependency for meteorological data,

but how this type of method can be transformed to the wind field modeling

is not straightforward and thus represents an interesting research pursuit. We

suggest that the utility of the proposed methods for short-term wind forecasts

can be employed for other important applications, such as reconstructing the

wind field and analyzing the wake effect. We suggest using the GSTAR models

for simulating local wind fields, based on point-wise measurements at turbine

sites, and providing certain understanding of how the rotor motion of one tur-

bine can affect the performance of neighboring turbines. This analysis should

prove useful for designing the layout of wind farms.

• Modulus Prediction of Buckypaper based on Multi-fidelity Analysis Involving

Latent Variables:

We have modeled the relationship between unobserved and latent variables

via equation (3.10). An interesting alternative approach would be to utilize

an EM algorithm (Dempster et al., 1977) to impute the unobserved variables.

We note that doing so would not be straightforward, since it would require

making assumptions on the distribution of unobserved input variables and ex-

pressing the optimization problem in (3.1) in terms of likelihood maximization.

In addition, for practical purposes, we suggest it would be useful to develop

guidelines to evaluate the similarity between the simulation outputs and the

physical responses, which then could be used to justify the action of integrat-

ing the simulation and physical responses. One work alluding to this aspect is

Xiong et al. (2013), which sets a threshold on testing the cross-validation error

110

for continuation in a sequential design. Using this cross-validation measure

sheds light on how a multi-fidelity model improves the predictive outcome, but

leaves open the issue of whether a multi-fidelity design is “worth it” or not

until the cross-validation error is computed (which can only be done after the

multi-fidelity model is established). We believe that this is an unsettled issue

needing attention from the academic community.

• Bayesian Site Selection for Fast Gaussian Process Regression:

One possible improvement is a full Bayesian treatment that updates θ the

same time as the site locations x̄s vs. using the gradient method for θ within

the RJMCMC iterations. That is to say, in each Birth, Death, or Exchange

step, in addition to proposing a value for x̄, we also could propose a value

for θ and use the ratio test to either accept or reject it. Not yet resolved

is the proposal distribution to use. The typical distributions we have tested

have been ineffective. Another research path involves making BSS choose the

sites from a continuous subspace vs. from a discretized subspace in its current

version. We suggest that lifting the site selection restriction should enhance

the performance of BSS in high-dimensional data problems.

111

REFERENCES

Ailliot, P. and V. Monbet (2012). Markov-switching autoregressive models for wind

time series. Environmental Modelling & Software 30, 92–101.

Alexiadis, M. C., P. S. Dokopoulos, and H. S. Sahsamanoglou (1999). Wind speed

and power forecasting based on spatial correlation models. Energy Conversion,

IEEE Transactions on 14 (3), 836–842.

Bayarri, M. J., J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H.

Lin, and J. Tu (2007). A framework for validation of computer models. Techno-

metrics 49 (2), 138–154.

Beckers, J.-M. and M. Rixen (2003). EOF calculations and data filling from in-

complete oceanographic datasets. Journal of Atmospheric and Oceanic Technol-

ogy 20 (12), 1839–1856.

Bessa, R. J., V. Miranda, A. Botterud, J. Wang, and E. M. Constantinescu (2012).

Time adaptive conditional kernel density estimation for wind power forecasting.

IEEE Transactions on Sustainable Energy 3 (4), 660–669.

Blanco, M. I. (2009). The economics of wind energy. Renewable and Sustainable

Energy Reviews 13 (6), 1372–1382.

Brockwell, P. J. and R. A. Davis (2009). Time Series: Theory and Methods. Springer.

Brown, B. G., R. W. Katz, and A. H. Murphy (1984). Time series models to sim-

ulate and forecast wind speed and wind power. Journal of Climate and Applied

Metereology 23, 1184–1195.

Cassola, F. and M. Burlando (2012). Wind speed and wind energy forecast through

kalman filtering of numerical weather prediction model output. Applied Energy 99,

154–166.

112

Clifton, L., D. A. Clifton, M. A. Pimentel, P. J. Watkinson, and L. Tarassenko

(2013). Gaussian processes for personalized e-health monitoring with wearable

sensors. IEEE Transactions on Biomedical Engineering 60 (1), 193–197.

Crespo, A., J. Hernandez, and S. Frandsen (1999). Survey of modelling methods for

wind turbine wakes and wind farms. Wind Energy 2 (1), 1–24.

Cressie, N. and C. K. Wikle (2011). Statistics for Spatio-Temporal Data. New York

City: Wiley.

Crochet, P. (2004). Adaptive Kalman filtering of 2-metre temperature and 10-metre

wind-speed forecasts in Iceland. Meteorological Applications 11 (2), 173–187.

Damianou, A. and N. Lawrence (2013). Deep Gaussian processes. In Proceedings

of the Sixteenth International Conference on Artificial Intelligence and Statistics,

pp. 207–215.

Daniel, A. and A. Chen (1991). Stochastic simulation and forecasting of hourly

average wind speed sequences in jamaica. Solar Energy 46 (1), 1–11.

de Luna, X. and M. G. Genton (2005). Predictive spatio-temporal models for spatially

sparse environmental data. Statistica Sinica 15 (2), 547–568.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

Series B 39 (1), 1–38.

Draguljć, D., A. M. Dean, and T. J. Santner (2012). Non-collapsing space-filling

designs for bounded nonrectangular regions. Technometrics 54 (2), 169–178.

Erdem, E. and J. Shi (2011). ARMA based approaches for forecasting the tuple of

wind speed and direction. Applied Energy 88 (4), 1405–1414.

Focken, U. and M. Lange (2006). Physical Approach to Short-Term Wind Power

Prediction. Springer.

Furrer, R., M. G. Genton, and D. Nychka (2006). Covariance tapering for interpo-

113

lation of large spatial datasets. Journal of Computational and Graphical Statis-

tics 15, 502–523.

Giannakis, D. and A. J. Majda (2012). Nonlinear laplacian spectral analysis for

time series with intermittency and low-frequency variability. Proceedings of the

National Academy of Sciences 109 (7), 2222–2227.

Giebel, G., R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl (2011). The

state-of-the-art in short-term prediction of wind power: A literature overview.

Technical report, Risø DTU National Laboratory for Sustainable Energy, Roskilde,

Denmark.

Gneiting, T. (2002). Compactly supported correlation funtion. Journal of Multivari-

ate Analysis 83 (2), 493–508.

Gneiting, T. (2011). Quantiles as optimal point forecasts. International Journal of

Forecasting 27 (2), 197–207.

Gneiting, T., K. Larson, K. Westrick, M. G. Genton, and E. Aldrich (2006). Cali-

brated probabilistic forecasting at the stateline wind energy center. Journal of the

American Statistical Association 101 (475), 968–979.

Goldstein, M. and J. Rougier (2006). Bayes linear calibrated prediction for complex

systems. Journal of the American Statistical Association 101 (475), 1132–1143.

Goldstein, M. and J. Rougier (2009). Reified bayesian modelling and inference for

physical systems. Journal of Statistical Planning and Inference 139 (3), 1221–1239.

Golub, G. H. and C. F. Van Loan (2012). Matrix Computations, 3rd edition. Johns

Hopkins University Press.

Gramacy, R. B. and H. K. H. Lee (2008). Bayesian treed Gaussian process models

with an application to computer modeling. Journal of the American Statistical

Association 103, 1119–1130.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and

114

Bayesian model determination. Biometrika 82, 711–732.

Han, G., T. J. Santner, and J. J. Rawlinson (2009). Simultaneous determina-

tion of tuning and calibration parameters for computer experiments. Techno-

metrics 51 (4), 464–474.

Hastie, T., R. Tibshirani, and J. Friedman (2001). Elements of Statistical Learning:

Data Mining, Inference and Prediction. Springer.

He, M., L. Yang, J. Zhang, and V. Vittal (2013). A spatio-temporal analysis approach

for short-term forecast of wind farm generation. IEEE Transactions on Power

Systems . in press.

Hensman, J., N. Fusi, and N. D. Lawrence (2013). Gaussian processes for big data.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pp.

282–290.

Hering, A. S. and M. G. Genton (2007). Blowing in the wind. Significance 4, 11–14.

Hering, A. S. and M. G. Genton (2010). Powering up with space-time wind forecast-

ing. Journal of the American Statistical Association 105 (489), 92–104.

Higdon, D., M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne (2004).

Combining field data and computer simulations for calibration and prediction.

SIAM Journal on Scientific Computing 26 (2), 448–466.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999). Bayesian

model averaging: A tutorial. Statistical Science 14 (4), 382–417.

Huang, Z. and Z. S. Chalabi (1995). Use of time-series analysis to model and forecast

wind speed. Journal of Wind Engineering and Industrial Aerodynamics 56 (2),

311–322.

Hunter, J. K. (2009). Lecture Notes on Applied Mathematics,

https://www.math.ucdavis.edu/ hunter/m280-09/ch.pdf. last time accessed

March 2014.

115

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354 (6348), 56–58.

Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive

Models. Cambridge Univ Press.

Johnson, M., L. Moore, and D. Ylvisaker (1990). Minimax and maximin distance

designs. Journal of Statistical Planning and Inference 26 (2), 131–148.

Joseph, V. and L. Kang (2011). Regression-based inverse distance weighting with

applications to computer experiments. Technometrics 53, 254 –265.

Joseph, V. R. and S. N. Melkote (2009). Statistical adjustments to engineering

models. Journal of Quality Technology 41 (4), 362–375.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Transactions of the ASME - Journal of Basic Engineering 82 (1), 35–45.

Kamal, L. and Y. Z. Jafri (1997). Time series models to simulate and forecast hourly

averaged wind speed in Quetta, Pakistan. Solar Energy 61 (1), 23–32.

Katz, R. W. and R. H. Skaggs (1981). On the use of autoregressive-moving average

processes to model meteorological time series. Monthly Weather Review 109 (3),

479–484.

Kennedy, M. C. and A. O’Hagan (2000). Predicting the output from a complex

computer code when fast approximations are available. Biometrika 87 (1), 1–13.

Kennedy, M. C. and A. O’Hagan (2001). Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3),

425–464.

Kleijnen, J. P. (2007). Design and Analysis of Simulation Experiments. Springer.

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems

on the witwatersrand. Journal of the Chemical, Metallurgical and Mining Society

of South Africa 52 (6), 119–139.

Kusiak, A. and W. Li (2010). Estimation of wind speed: A data-driven approach.

116

Journal of Wind Engineering and Industrial Aerodynamics 98 (10), 559–567.

Le Cam, L. and G. L. Yang (2000). Asymptotics in Statistics: Some Basic Concepts

(second ed.). Springer.

Liang, F., C. Liu, and R. Carroll (2010). Advanced Markov Chain Monte Carlo

Methods: Learning from Past Samples. John Wiley and Sons.

Liu, H., H.-Q. Tian, and Y.-F. Li (2012). Comparison of two new ARIMA-ANN and

ARIMA-Kalman hybrid methods for wind speed prediction. Applied Energy 98,

415–424.

Louka, P., G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis, and

G. Kallos (2008). Improvements in wind speed forecasts for wind power predic-

tion purposes using kalman filtering. Journal of Wind Engineering and Industrial

Aerodynamics 96 (12), 2348–2362.

Maadooliat, M., J. Z. Huang, and J. Hu (2013). Integrating data transformation in

principal components analysis. Journal of Computational and Graphical Statistics .

Under Review.

Matheron, G. (1973). The intrinsic random functions and their applications. Ad-

vances in Applied Probability 5 (3), 439–468.

Mauricio, J. A. (1995). Exact maximum likelihood estimation of stationary vector

ARMA models. Journal of the American Statistical Association 90 (429), 282–291.

O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the

Royal Statistical Society. Series B (Methodological) 40 (1), 1–42.

Øksendal, B. (2003). Stochastic Differential Equations. Springer.

Palomares-Salas, J. C., J. J. G. De la Rosa, J. G. Ramiro, J. Melgar, A. Agera, and

A. Moreno (2009). ARIMA vs. Neural networks for wind speed forecasting. In Pro-

ceedings of the 2009 IEEE International Conference on Computational Intelligence

for Measurement Systems and Applications, Hong Kong, pp. 129–133.

117

Park, C., J. Z. Huang, and Y. Ding (2011). Domain decomposition approach for

fast Gaussian process regression of large spatial data sets. Journal of Machine

Learning Research 12, 1697–1728.

Pérez-Cruz, F., S. Van Vaerenbergh, J. J. Murillo-Fuentes, M. Lázaro-Gredilla, and

I. Santamaria (2013). Gaussian processes for nonlinear signal processing: An

overview of recent advances. Signal Processing Magazine, IEEE 30 (4), 40–50.

Pinson, P. (2012). Very-short-term probabilistic forecasting of wind power with

generalized logit-normal distributions. Journal of the Royal Statistical Society:

Series C (Applied Statistics) 61 (4), 555–576.

Pourhabib, A., J. Z. Huang, K. Wang, C. Zhang, B. Wang, and Y. Ding (2014).

Modulus prediction of buckypaper based on multi-fidelity analysis involving latent

variables. IIE Transactions . in press.

Pourhabib, A., F. Liang, and Y. Ding (2014). Bayesian site selection for fast Gaussian

process regression. IIE Transactions 46 (5), 543–555.

Qian, P. Z. (2012). Sliced latin hypercube designs. Journal of the American Statistical

Association 107 (497), 393–399.

Qian, P. Z. and C. J. Wu (2009). Sliced space-filling designs. Biometrika 96 (4),

945–956.

Qian, P. Z. G. and C. F. J. Wu (2008). Bayesian hierarchical modeling for integrating

low-accuracy and high-accuracy experiments. Technometrics 50 (2), 192–204.

Qian, Z., C. C. Seepersad, V. R. Joseph, J. K. Allen, and C. F. J. Wu (2006).

Building surrogate models based on detailed and approximate simulations. Journal

of Mechanical Design 128 (4), 668–677.

Quiñonero-Candela, J. and C. E. Rasmussen (2005). A unifying view of sparse ap-

proximate Gaussian process regression. Journal of Machine Learning Research 6,

1939–1959.

118

Ramsay, J. (1998). Estimating smooth monotone functions. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 60 (2), 365–375.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine

Learning. MIT Press.

Reese, C. S., A. G. Wilson, M. Hamada, H. F. Martz, and K. J. Ryan (2004).

Integrated analysis of computer and physical experiments. Technometrics 46 (2),

153–164.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis

of computer experiments. Statistical Science 4 (4), 409–423.

Santner, T. J., B. J. Williams, and W. I. Notz (2003). The Design and Analysis of

Computer Experiments. Springer Verlag.

Santos, R. A. (2007). Damage Mitigation Control for Wind Turbines. Dissertation,

University of Colorado, Boulder, CO.

Schlink, U. and G. Tetzlaff (1998). Wind speed forecasting from 1 to 30 minutes.

Theoretical and Applied Climatology 60 (1-4), 191–198.

Seeger, M., C. K. I. Williams, and N. D. Lawrence (2003). Fast forward selection to

speed up sparse Gaussian process regression. In Workshop on Artificial Intelligence

and Statistics 9. Society for Artificial Intelligence and Statistics.

Snelson, E. (2007). Flexible and Efficient Gaussian Process Models for Machine

Learning. Dissertation, Gatsby Computational Neuroscience Unit University Col-

lege London, London, United Kingdom.

Snelson, E. and Z. Ghahramani (2006). Sparse Gaussian processes using pseudo-

inputs. Advances in Neural Information Processing Systems 18, 1257–1264.

Snelson, E. and Z. Ghahramani (2007). Local and global sparse Gaussian process

approximations. In International Conference on Artifical Intelligence and Statistics

11. Society for Artificial Intelligence and Statistics.

119

Stinstra, E., P. Stehouwer, D. den Hertog, and A. Vestjens (2003). Constrained

maximin designs for computer experiments. Technometrics 45 (4), 340–346.

Tastu, J., P. Pinson, P. J. Trombe, and H. Madsen (2014). Probabilistic forecasts of

wind power generation accounting for geographically dispersed information. IEEE

Transactions on Smart Grid (5), 480–489.

Torres, J., A. Garca, M. De Blas, and A. De Francisco (2005). Forecast of hourly

average wind speed with ARMA models in Navarre Spain. Solar Energy 79 (1),

65–77.

Tsai, C., C. Zhang, J. A. David, B. Wang, and R. Liang (2011). Elastic property

prediction of single-walled carbon nanotube buckypaper/polymer nanocompos-

ites: stochastic bulk response modeling. Journal of Nanosience and Nanotechnol-

ogy 11 (3), 2132–2141.

UCI (2010). UCI Machine Learning Repository, http://archive.ics.uci.edu/ml. last

time accessed January 2014.

Wan, C., Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong (2014). Optimal prediction

intervals of wind power generation. IEEE Transactions on Power Systems 29 (3),

1166–1174.

Wang, K., A. Vanli, C. Zhang, B. Wang, and Z. Liang (2013). Model calibration

and adjustment of 2D Truss model for predicting youngs modulus of Poly(vinyl

alcohol)-enhanced carbon nanotube sheet. Working paper, Submitted to ASME

Manufacturing Science and Engineering.

Wang, Z., Z. Liang, B. Wang, C. Zhang, and L. Kramer (2004). Processing and

property investigation of single-walled carbon nanotube (swnt) buckypaper/epoxy

resin matrix nanocomposites. Composites Part A: Applied Science and Manufac-

turing 35 (10), 1225–1232.

Wiener, N. (1964). Extrapolation, Interpolation, and Smoothing of Stationary Time

120

Series: With Engineering Applications, Volume 8. MIT press.

Wikle, C. K. and L. M. Berliner (2005). Combining information across spatial scales.

Technometrics 47, 80–91.

Wu, C. F. J. and M. S. Hamada (2009). Experiments: Planning, Analysis, and

Optimization, 2nd Edition. John Wiley and Sons.

Xia, H. (2008). Bayesian Hierarchical Model for Combining Two-resolution Metrology

Data. Dissertation, Texas A&M University, College Station, TX, USA.

Xia, H., Y. Ding, and B. Mallick (2011). Bayesian hierarchical model for combining

misaligned two-resolution metrology data. IIE Transactions 43 (4), 242–258.

Xiong, S., P. Z. G. Qian, and C. F. J. Wu (2013). Sequential design and analysis of

high-accuracy and low-accuracy computer codes. Technometrics 55 (1), 37–46.

Xiong, Y., W. Chen, K.-L. Tsui, and D. W. Apley (2009, March). A better under-

standing of model updating strategies in validating engineering models. Computer

Methods in Applied Mechanics and Engineering 198 (15-16), 1327–1337.

Yu, Z. and A. Tuzuner (2008). Wind speed modeling and energy production sim-

ulation with weibull sampling. In Power and Energy Society General Meeting-

Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, pp.

16.

Zhang, C., K. Wang, Z. Liang, and B. Wang (2011). Fast filtration synthesis method

for buckypaper using highly concentrated carbon nanotube slurry. Informs Annual

Meeting, Charlotte, NC, Nov. 13-16, 2011.

Zhu, B. and D. B. Dunson (2013). Locally adaptive bayes nonparametric regres-

sion via nested gaussian processes. Journal of the American Statistical Associa-

tion 108 (504), 1445–1456.

Zhu, X. (2013). Wind Forecasting for Power System Operation. Dissertation, Texas

A&M University, College Station, TX.

121

Zhu, X. and M. G. Genton (2012). Short-term wind speed forecasting for power

system operations. International Statistical Review 80 (1), 2–23.

122

