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ABSTRACT 

 

 

 The goal of this research is to use the energy in cotton gin trash (CGT) to fuel an 

internal combustion engine (ICE) driving a generator to produce electricity for a cotton 

gin. CGT is a fuel that has char that melts at low temperatures. This characteristic is 

referred to as char having a low eutectic point. Biomasses with low eutectic points 

cannot be used in a combustion process because the char will result in slagging and 

fouling. We have used fluidized bed gasification (FBG) to control the reaction 

temperatures and capture the energy in the biomass. CGT has an approximant 16,300 

kJ/kg (7,000 Btu/lb) of energy. The resulting synthetic gas (syngas) can have an energy 

content as high as 7,450 kJ/m
3
 (200 Btu/dscf) and can be fed directly into an internal 

combustion engine (ICE) which can drive a generator to produce electricity. The syngas 

conveys the char from the bed to the gas cleanup system consisting of specially designed 

cyclones. The cyclones were used to reduce particulate matter (PM) concentrations in the 

syngas prior to delivery to the ICE. Cyclones are capable of reducing the concentrations 

of particulate matter from syngas streams. The temperatures of the syngas leaving the 

gasification bed ranges from 371 to 760 ºC (700 to 1400 ºF). These high temperatures 

impact the cyclone inlet velocities as a consequence of the reduced gas densities. 

Changes in gas densities will influence the cyclone design. It was hypothesized that 

changes in cyclone performances as a consequence lower gas densities could be 

approximated by increasing the cyclones inlet velocities of air at standard temperature 

and pressure (STP) to correspond to the anticipated cyclone’s inlet velocities of syngas at 

the higher temperatures. Multiple tests of cyclone performances in simulated high 
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temperature gas streams were conducted using bio-char. Preliminary cyclone testing 

results indicate that the location of the vortex inverter in the cyclone relative to the 

natural length can significantly impact the cyclone performance and design. Tests were 

conducted at inlet velocities of 16.3, 30.5, and 45.7 m/s (3,000, 6,000 and 9,000 fpm). 

Increasing inlet velocities resulted in increasing the cyclone’s natural length. This study 

was limited to testing cyclone performances at ambient temperatures and simulating high 

temperature airflow rates and velocities for safety purposes. Natural lengths were used to 

help determine the optimum location of the vortex inverter; resulting in a new design 

process for cyclones operating with high temperature gases.  
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NOMENCLATURE 

 

AED Aerodynamic Equivalent Diameter 
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CGT Cotton Gin Trash 

ºC Degrees Celsius 

D Cyclone Diameter 
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∆Pk Pressure Drop Due To Kentic Energy  

∆Po Pressure Drop Due To Outlet 
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η Collection efficiency 
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ICE Internal Combustion Engine  
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kPa Kilopascals  
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LN Natural Length 

LCV Low Calorific Value 

LFE Laminar Flow Element 

Mc Mass Captured by the Cyclone 

Mf Mass Captured by the Filter 

µ Viscosity 

µm Micrometers 

MJ Mega Joule 

MMD Mass Median Diameter 

MW Megawatt 

Ne Number of Turns 

PM Particulate Matter 
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PSD Particle Size Distribution 

ρa Density of Air 

ρg Density of Gas  

ρp Density of Particles 

Q Airflow Rate 

Re Reynolds Number  

RPM Revolutions per Minute 

STP Standard Temperature and Pressure 

syngas Synthesis Gas 

TAMU Texas A&M University 

TCD Texas A&M University Cyclone Design 

TCGA Texas Cotton Ginners Association 

Vi Inlet Velocity 

Vo Outlet Velocity 

Vs Strand Velocity 

VPi Inlet Velocity Pressure 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

 Fluidized-Bed Gasification (FBG) is a proposed renewable energy solution for 

cotton gins as the demand for electricity from the grid increases. Currently, cotton gins 

require 108 to 180 MJ (30 to 50 kW-h) to produce a bale of cotton (Texas Cotton 

Ginners Association, 2006). The faculty members in the department of Biological and 

Agricultural Engineering (BAEN) at Texas A&M University (TAMU) have been 

conducting research on FBG of biomasses, including cotton gin trash (CGT) for a 

number of years. The goals of FBG research were to produce a synthetic gas (syngas) 

that could be used to produce electricity (Capareda and Parnell, 2007; Parnell, 1985). 

 The first patent on the TAMU gasifier was in 1989 (US Patent No. 4848249) and 

the second was a 2010 provisional patent (Serial No. 61/302,001) that incorporated 

cyclones in series for biochar removal. The design concept was to have the first cyclone 

remove the large particles and the second cyclone to remove the smaller particles.  

 FBG is a thermo-chemical reaction converting a biomass into two products in the 

exiting gas stream: syngas and bio-char. Syngas comprises 80% of the mass in the gas 

stream and bio-char comprises the remaining 20%. The FBG system is void of oxygen, 

with regulated energy loading rates and fuel-to-air ratios.  

 CGT is a low eutectic biomass, meaning that the ash/char produced has a low 

melting point. Melting ash/char will result in slagging and fouling. FBG allows for 
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controlling the temperature to levels below those resulting in problems (LePori, et al., 

1985). 

 CGT has an energy content of approximately 16.3 MJ/kg (7,000 Btu/lb.). The 

syngas produced can have an energy content of 7,450 kJ/dry standard cubic meter 

(dscm) (200 Btu/dscf). A syngas fueled internal combustion engine (ICE) has an 

estimated capital cost of $1 million per MW as opposed to $2 million per MW for the 

boiler/steam turbine concept (Capareda et al. 2010).  

 Maglinao (2013) reported on the utilization of syngas to operate a spark ignition 

engine generator. It was observed that the fuel line ductwork and spark plugs were being 

clogged with char after two-hour tests. He suggested that clogging could be prevented by 

efficiently removing particles from the syngas. There are different design process that 

can be used to sizes cyclones. 

 Wang (2004) describes the Classical Cyclone Design (CCD) and the TAMU 

Cyclone Design (TCD) as two methods used to design cyclones. The CCD method is 

also described in Cooper and Alley (2011).  

 In the CCD process, an optimum dimension was used to size cyclones base on 

the body diameter (Cooper and Alley, 2011). The optimum dimensions of a cyclone 

were decided by choosing the diameter that yields the collection efficiency required. The 

CCD method for solving for the cyclone collection efficiency was determined by finding 

the cut point in equation 1 (Lapple, 1951):  

      (1) 

where, 
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dpc = cyclone cutpoint (μm), 

μ = gas viscosity (kg/m-s), 

W = width of cyclone inlet (m), 

Ne = number of turns, 

Vi = inlet velocity (m/sec), 

ρp = particle density (kg/m
3
), and 

ρg = gas density (kg/m
3
). 

 However, the CCD method uses a flawed efficiency equation. Results of recent 

studies have shown that the TCD process more accurately predicts cyclone efficiencies 

by moving the 2 in the denominator outside of the radical (Faulkner et al., 2008).  

 Both methods can be used to determine the predicted number of turns. The CCD 

method uses equation 2 to determine the number of turns in a cyclone (Lapple, 1951): 

      (2) 

where, 

Ne = number of effective turns, 

Hc = height of inlet duct (m), 

Lb = length of barrel body (m), and 

Lc = vertical length of cone body (m). 

 In the TCD process the cyclone is sized based upon a design inlet velocities. 

There are a predetermined number of turns depending on the cyclone design. The 

number of turns in a cyclone using this approach is listed in table 1 (Parnell, 1996). 
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Table 1: The design inlet velocity and number of turns for a cyclone in the TCD 

process. 

Cyclone 
Inlet Velocity  

(±2.03 m/s) 

Number of 

turns 

1D3D 16.3 m/s (3,200 fpm) 6 

2D2D 15.2 m/s (3,000 fpm) 6 

1D2D 12.2 m/s (2,400 fpm) 2.3 

 

 

 The pressure drop calculation for both methods requires the designer to utilize a 

constant, K. The K value is based upon the cyclone configuration and operating 

conditions. The TCD process for calculating pressure drop utilizes inlet and outlet 

velocity pressures. 

 LePori and Soltes (1985) reported cyclone efficiencies for the separation of bio-

char from syngas from the initial gasification system. The separation of biochar from the 

syngas stream was accomplished with TCD 1D3D cyclone in series with a 1D5D 

cyclone. The reported efficiencies approached 97% for removing biochar concentrations 

from the syngas. 

Simpson and Parnell (1996) reported efficiencies for the TCD 1D3D and 1D2D 

cyclones up to 99%. Particulate matter (PM) used was found in agricultural industries 

with typical concentrations of 6 grams per cubic meter (g/m
3
). These concentrations 

were much lower than the encountered concentrations of 160 g/m
3
 in the exiting gas 

stream of FBG (LePori and Soltes, 1985). 

 Saucier (2013) tested cyclone collection efficiency for FBG of CGT. He found 

that a 1D3D cyclone was capable of separating an average of 97% of the bio-char from 

air at STP. He tested cyclone performance at concentrations of bio-char ranging from 56 
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to 136 g/m
3
. Additional findings showed that as the bio-char concentration in the gas 

increased the pressure drop decreased, following Shepherd and Lapple’s (1939) 

assumption. Saucier reported that two cyclones were not needed and suggested that one 

cyclone could be used in FBG systems. 

 Wang et al. (2006) conducted a study comparing methods for calculating cyclone 

pressure drops. In the study, she conducted experiments to verify a theoretical approach 

for calculating pressure drop across cyclones. The other pressure drop equations 

compared in this study belonged to First (1950), Alexander (1949), Stairmand (1949), 

Barth (1956), and Shepherd and Lapple’s (1939, 1940) empirical CCD approach. 

Among all the models, Wang’s theoretical approach and the Alexander model had the 

best representation of the experimental pressure drop. Wang’s approach determined the 

number of turns by using average velocity and travel distance.  

 Simpson (1996) found that as the inlet velocity of the cyclone increased the 

efficiency would decrease. A 1D2D cyclone was recorded to have an existing 

concentration go from 100 mg/m
3
 at 14.2 m/s (2,800 fpm) to 343 mg/m

3
 at 16.3 m/s 

(3,200 fpm). A range of 2.03 m/s was established above or below the optimal design 

velocity to achieve the highest cyclone efficiency.  

 All of the previous TCD cyclone work has been within a range that can be 

considered ambient conditions. However, the operating conditions of FBG are outside 

the range of ambient conditions.  
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FBG Project Description 

 Previous test results produced by Saucier (2013) were helpful in the planning of 

tests for this research. The following findings were used to construct the test apparatus 

and plan the tests.  

 The temperatures of the syngas leaving the gasification bed ranged from 538 to 

760ºC (1,000 to 1,400ºF).  

 The syngas temperatures entering the cyclone were typically 371 to 538ºC (700 to 

1,000ºF). 

 The energy loading of the gasifier had an upper limit of 23,900 MJ/m
2
-hr (2.1 

MMBtu/ft
2
-hr). 

 The fuel- to- air ratio was controlled at one pound of fuel per pound of gases: 

 The bed area was 0.0186 m
2
 (0.2 ft

2
).  

 The resulting temperatures in the gasifier resulted in reduced gas densities and 

thus increased the inlet velocities of the cyclones. It was hypothesized that the changes 

in cyclone performance could be measured by testing cyclones at STP with inlet 

velocities corresponding to those associated with syngas densities at high temperatures. 

The inlet velocity of the cyclone was calculated using the ideal gas law to solve for the 

gas density given the temperature. In this research, tests were conducted to evaluate 

cyclone emission concentrations and pressure drops with three inlet velocities to 

simulate the syngas density at high temperatures. The inlet velocities, shown in table 2, 

correspond to syngas temperatures at STP and the upper and lower range seen from 

FBG.  
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Table 2: Approximate inlet velocities of air at STP used to simulate inlet velocities 

of high temperature gases. As the temperature increases the density of the syngas 

decreases. 

Related 

Temperature 

(°C) 

Related 

Density 

(kg/m
3
) 

Inlet Velocity 

(m/s) 

21 1.20 16.3 

94 0.96 20.3 

187 0.77 25.4 

278 0.64 30.5 

371 0.55 35.6 

462 0.48 40.6 

554 0.43 45.7 

 

 

 Increased inlet velocities affect the cyclone’s natural length. The term natural 

length describes the vertical length the air stream travels down the body of the cyclone. 

This distance spans from the top of the inlet to the turning point where the outer vortex 

(outer air stream) changes direction moving upward into the inner vortex (inner air 

stream). Hoffmann (1995) observed a varying natural length at higher velocities. He 

recommended that the cyclone collection efficiency would be highest the closer the 

natural length was to the physical length.  

 Tullis (1997) tested barrel cyclone efficiencies with varying vortex inverters. The 

function of the vortex inverter is to turn the outer vortex inward to the inner vortex. The 

vortex inverter location defines the physical length of the cyclone. The physical length is 

the distance from the top of the cyclone’s inlet to the top of the vortex inverter.  

 The PM to be used in this cyclone system is bio-char from the gasification of 

sweet sorghum. The bio-char’s particle size distributions (PSDs) are best defined by 

lognormal distributions defined by mass median diameters (MMDs) and geometric 
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standard deviations (GSDs) (Cooper and Alley, 2011). The lognormal fit of the 

measured and theoretical PSDs, obtained using the Coulter Counter, are shown in figure 

1. The biochar Saucier (2013) used had a MMD aerodynamic equivalent diameter 

(AED) of 34 µm, a geometric standard deviation (GSD) of 2.2 and a particle density of 

2.1 g/cm
3
. 
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Figure 1: Particle size distributions of bio-char. The measured PSD was obtained 

using a Coulter Counter. 

 

 

Research Goals 

 The goal of this work was to determine a cyclone that minimizes the bio-char  
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concentrations from high temperature gas streams. The goal was achieved by developing 

and completing the following objectives:  

 Construct a testing system to simulate the anticipated volumetric flow rate and 

bio-char concentrations leaving a FBG reactor bed at high temperatures. 

 Determine the optimal vortex inverter placement at a range of inlet velocities.  

 Maximize bio-char removal from simulated FBG gas streams.  
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CHAPTER II 

MATERIALS AND METHODS 

 

 Tests for the cyclones natural length and cyclone collection efficiency were run 

and recorded separately. The results from determining the cyclone’s natural length were 

planned to be used in consideration in the design of the cyclone for collection efficiency 

testing. A testing system for each objective was constructed. 

 

Cyclone Visualization Testing System 

 The testing system shown in figure 2 was designed and constructed to visualize 

the number of turns and natural length of a cyclone. Both Luehrs (2014) and Hoffmann 

(1995) recorded a liquid ring marking the turning point when solutions were injected 

into the cyclone. Identification of the turning point allowed for the measurement of the 

natural length.  
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Figure 2: The Texas A&M cyclone visualization testing system. 

 

 

 Airflow to the cyclone was accomplished by using an automated vacuum pump 

(3 in. Legend Series Positive Displacement Vacuum Pump, Sutorbilt, Gardner Denver, 

IL). The desired flow was monitored with an orifice meter. This pump could operate at 

3,600 rpm under 96.5 kPa of vacuum pressure.  

 An orifice meter was designed and built to operate on a scale of 0.249 to 2.49 

kPa (1 to 10 in. w.g.) for airflow from 34 to 127 m
3
/hr (20 to 75 cfm). A laminar flow 

element was used to calibrate the orifice meter. Pressure drops detected by the orifice 

meter were recorded utilizing a Dwyer Magnesense differential Pressure Transmitter. 

Data Points were collected every 10 seconds during testing.  
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 Inlet velocities were calculated by measuring airflow through the orifice meter. 

The differential pressure, over the orifice meter, was recorded and used to monitor the 

system airflow rate by the following relationship in equation 3: 

    (3) 

where, 

Q = airflow rate (m
3
/s), 

KQ = flow coefficient (dimensionless) (0.539), 

Do = orifice diameter (3.29 cm), 

ΔPQ = pressure drop cross the orifice (mm H2O), and 

ρa = air density (1.2 kg/m
3
). 

 Pressure drop across the cyclone was recorded utilizing a Dwyer Magnesense 

differential Pressure Transmitter. Static pressure was recorded at the inlet and the outlet 

of the cyclone. The pressure tap in the exit tube was centered in order to reduce the 

interference of velocity pressure. Data Points were collected every 10 seconds during 

testing. 

 

Models 

 Wang published a model for a theoretical approach to calculate the pressure drop 

across a cyclone that incorporated inlet velocity and travel distance (Wang et al., 2002 

and 2006). Her model utilized components of pressure drop. The equations used in the 

TCD process are the accumulation of the factors that comprise the pressure drop inside 

of the cyclone. However, the pressure drop component due to the radial forces, in the 
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cone section of the cyclone, was omitted from this model. The total pressure drop can be 

calculated using equation 4:  

    (4) 

where, 

∆P = total cyclone pressure drop (kPa), 

∆Pe = cyclone entry loss, equal to Ce*VPi (Ce ≈ 1) (kPa), 

∆Pk = kinetic energy loss, VPi - VPo (kPa), 

∆Po = outlet and inner vortex energy loss, equal to Co*VPo (Co ≈ 1.8) (kPa), and 

∆Pf = frictional energy loss, function of natural length (kPa). 

 The total pressure drop and three of the components (ΔPe, ΔPk, and ΔPo) were 

calculated. The portion of pressure drop loss due to friction was treated as the unknown 

variable. Assuming a constant vertical trajectory of the outer vortex, the frictional force 

was used to estimate the number of turns and natural length. 

 

Cyclone Efficiency Testing System 

 The test system shown in figure 3 was designed and constructed to test cyclone 

efficiencies. Bio-char was fed into the airstream prior to reaching the cyclone. Char 

entering the cyclone was either captured by the cyclone and fell into the char hopper or 

remained in the exiting airstream was it was captured in the filter assembly. A positive 

displacement pump provided the airflow in the system. The airflow was monitored by an 

orifice meter. Differential pressure gauges measured the pressure drop across the 

cyclone and orifice meter.  
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Figure 3: Cyclone collection efficiency testing system. 

 

 

 Bio-char was fed in to the system with a 0.635 cm variable speed auger. The 

feeder has agitators inside of the hopper above the auger to prevent the bio-char from 

bridging. Achievable feed rates range from 5 to 120 g/min. The bio-char was sieved to 

below 100 μm prior to testing. 

 The vortex inverter had a diameter of 0.9D and a height of 0.45D (Tullis, et al., 

1997). The vortex inverter was adjustable, allowing the ability to vary the physical 

length of the cyclone for higher inlet velocities.   

 Glass–fiber filters (G810, Graseby GMW, Smyrna, Ga.) were used for collection 

of bio-char exiting the cyclone. Glass fiber filters are relatively inert and non-

hygroscopic. The filters were weighed before and after sampling with a high–precision 

analytical balance (AG245, Mettler Toledo, Greifensee, Switzerland). 
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Texas A&M Cyclone Design Process 

 The TCD process states the performance of a cyclone is defined by its fractional 

efficiency curve (FEC), which indicates the efficiency with which a cyclone collects 

particles of a given size (Faulkner et al., 2008). An ideal FEC is characterized a 

lognormal distribution defined by the cutpoint and slope. The TCD process determines 

the cyclone cut point by equation 5:  

    (5) 

where, 

dpc = cyclone cutpoint (μm), 

μ = gas viscosity (kg/m-s), 

W = width of inlet (m), 

Ne = number of turns, 

Vi = inlet velocity (m/sec), 

ρp = particle density (kg/m
3
), and 

ρg = gas density (kg/m
3
). 

 The slope in the FEC is equal to sharpness of collection efficiency from d50 to 

d15.9 and d84.1. An example FEC is shown in figure 4 (Faulkner et al., 2008).  
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Figure 4: Fractional efficiency curve. 

 

 

 Due to the design and application of this cyclone, there is not currently a defined 

slope. Previous cyclone work was able to define a cutpoint and slope for each of the 

TCD cyclones. Cyclones tested with fly ash were recorded as the most conservative 

results and can be seen in table 3 (Wang, 2004).  
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Table 3: TCD cyclone cutpoint and slope to be used in FEC's. 

Cyclone Cutpoint 

(µm) 

Slope 

1D3D 4.25 1.2 

2D2D 4.40 1.2 

1D2D 4.50 1.3 

Barrel 4.60 1.3 

 

 

 Pressure drop was estimated by following equation 6 in the TCD process: 

     (6) 

where,  

∆P = total cyclone pressure drop (kPa), 

K = cyclone pressure drop factor, 

VPi = velocity pressure of the inlet (kPa), and 

VPo = velocity pressure of the outlet (kPa). 

 Velocity pressure of the inlet was determined with equation 7: 

      (7) 

where, 

VPi = inlet velocity pressure (kPa), 

Vi = inlet velocity (m/s), and 

ρa = density of gases (kg/m
3
). 

 Velocity pressure of the inlet was determined with equation 8: 

      (8) 

where 

VPo = outlet velocity pressure (kPa), 

Vo = outlet velocity (2Vi/π) (m/s), and 
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ρa = density of gases (kg/m
3
). 

 

Cyclone Efficiency Testing Procedure  

 The PM captured by the cyclone, removed from the airstream, was referred to as 

Mc, mass captured by the cyclone. PM not captured by the cyclone, or remaining in the 

airstream, had to be measured to determine efficiency. Common practice in cyclone 

testing is to capture all PM in the exiting airstream with a filter assembly. The PM 

captured by the filter assembly exiting the cyclone was referred to as Mf, mass captured 

by the filter. The cyclone collection efficiency was calculated by equation 9: 

     (9) 

where, 

η = collection efficiency of the cyclone (%), 

Mc = mass captured by the cyclone (g), and 

Mf = mass captured by the filter (g). 

 The filters are capable of capturing 0.167 g/m
2
 (one gram per filter). It was 

recorded that the airflow through the system would start to decrease due to the rapid 

increase in system static pressure as the filter became loaded and the duration of the test 

for the cyclone would be limited to only a few minutes (Faulkner et al., 2008). Luehrs 

(2014) reported similar filter concentration levels would result in system pressure drop. 

The criterion given to determine when the filter has reached capacity, and the test should 

end, was when the inlet velocity of the cyclone dropped 2.03 m/s (400 fpm). This level is 

the low end of the TCD recommended inlet velocity range (Wang et al., 2002). A 2.03 
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m/s decrease in the inlet velocity of the cyclone equates to a 149.4 Pa (0.6 in. w.g) 

pressure drop over the orifice meter.  

 The known capabilities of the filters are used to determine the filter 

configuration. Load rates were chosen based on their feasibility and relationship to FBG. 

The design used filters to capture the exiting bio-char concentration from the cyclone. 

The exiting concentration was determined by the mass collected on the filter over a 

period of time given the airflow rate.  

 Tests were conducted in a randomized complete block design with four 

replicates. Averages and standard deviations were taken for all data recorded. Data 

outside of three standard deviations from the average is considered an outlier and was 

removed. Seven inlet velocities were used to measure the natural length. Following 

procedures from Luehrs (2014), three inlet velocities were used to determine the cyclone 

collection efficiency. The bio-char concentrations at each inlet velocity can be seen in 

table 4.  

 

Table 4: The table shows the expected inlet concentrations with a loading rate of 20 

g/min at three inlet velocities for the cyclone. 

Inlet 

Velocity  

(m/s) 

Inlet 

Concentration 

(g/m
3
) 

16.3 28.2 

30.5 15.1 

45.7 10 
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Tests for the cyclones natural length and cyclone collection efficiency were run and 

recorded separately. This was done because the results from determining the cyclone’s 

natural length were used in testing the cyclone’s efficiency. 
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CHAPTER III 

VISUALIZATION RESULTS AND DISCUSSION  

 

 The goal of this study is to remove PM in high temperature gases from FBG. Due 

to the feasibility of testing cyclones at temperatures above ambient conditions all test 

were conducted with an airflow rate at STP that can represent the high temperature 

gases. 

 The temperatures of the syngas leaving the gasification bed ranges from 538 to 

760ºC (1,000 to 1,400ºF). The syngas temperature entering the cyclone was typically 

371 to 538ºC (700 to 1,000ºF). The energy loading of the gasifier has an upper limit of 

23,900 MJ/m
2
-hr (2.1 MMBtu/ft

2
-hr). The fuel- to- air ratio was 1:1. The bed area was 

0.0186 m
2
 (0.2 ft

2
).  

 The testing system shown in figure 2 was designed and constructed to visualize 

the number of turns and natural length of a cyclone. A positive displacement pump 

provided the airflow in the system. The airflow was monitored by an orifice meter. 

Differential pressure gauges measured the pressure drop across the cyclone and orifice 

meter.  

 The reduced gas densities increased the inlet velocities of the cyclones. It was 

hypothesized that the changes in cyclone performance could be measured by testing 

cyclones at STP with inlet velocities corresponding to those associated with syngas 

densities at high temperatures. Tests were conducted to evaluate the cyclone’s natural 
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length at simulated high temperatures. The inlet velocities, shown in table 5, correspond 

to what the syngas temperatures would be from FBG.  

 

Table 5: Average inlet velocities of air at ambient conditions used to simulated inlet 

velocities of high temperature gases. 

Average Inlet 

Velocity 

(m/s) 

Related 

Density 

(kg/m
3
) 

Related 

Temperature 

(°C) 

16.6 1.13 39 

20.5 0.91 114 

25.7 0.73 211 

30.8 0.61 308 

36.1 0.52 407 

41.0 0.46 501 

46.4 0.40 602 

 

 

 The Reynolds number from testing compared to FBG were calculated. A 

hydraulic diameter was used as the diameter of the inlet. The results from these 

calculations as shown in table 6. In order to represent the Reynolds number from FBG 

with a test system the inlet velocity of the cyclone would be below the conveying 

velocity of bio-char.  
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Table 6: Reynolds numbers from testing system and FBG. 

Velocity 

(m/s) 

Tests 

Reynolds 

Number 

FBG 

Reynolds 

Number 

16.5 29,300 29,300 

20.5 36,400 25,700 

25.7 45,600 22,300 

30.8 54,700 19,800 

36.1 64,000 17,800 

41.0 72,800 16,400 

46.4 82,400 15,100 

 

 

 The Reynolds number was also calculated for the MMD of the particles entering 

the cyclone. The Reynolds number was calculated for testing and FBG. A drag 

coefficient was calculated given the range of the Reynolds number. Results for these 

calculations, listed in table 7, were observed but not used for any further calculations. 

 

Table 7: Particle Reynolds numbers from testing system and FBG. 

Velocity 

(m/s) 

Tests’ Particle 

Reynolds Number 

Drag 

Coefficient 

FBG Particle 

Reynolds Number 

Drag 

Coefficient 

16.5 17 101 17 101 

20.5 21 114 15 93 

25.7 26 131 13 85 

30.8 31 146 11 79 

36.1 37 160 10 75 

41.0 42 173 9 71 

46.4 47 187 9 67 
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Cyclone Design 

 Using the TCD process, the diameter of the cyclone is a function of the airflow at 

STP (Parnell, 1996). The FBG bed in this study had a 15.2 cm (6-inch) diameter and was 

operated at a fuel-to-air ratio of 1:1. The energy loading was 23,900 MJ/m
2
-hr (2.1 

MMBtu/ft
2
-hr). The airflow rate required for bed fluidization and the mass of gases 

produced from gasification were used to determine the cyclone diameter. In this FBG, 

0.363 kg/min (0.8 lbs/min) of gas are produced from the biomass plus 0.454 kg/min (1 

lb/min) of fluidizing air results in a total mass flow rate of 0.816 kg/min (1.8 lbs/min) of 

syngas. At STP, this mass flow rate is equivalent to 0.68 m
3
/min (25 scfm). The optimal 

inlet velocity for a 1D3D cyclone was used for this cyclone. The resulting diameter for 

the cyclone, D, was 7.62 cm (3 inches), following equation 10 for sizing cyclones with 

the TCD process: 

     (10) 

where, 

D = cyclone diameter (m), 

Q = Airflow rate (m
3
/s), and 

Vi = Optimal design inlet velocity (1D3D = 16.3 m/s). 

  The configuration of the cyclone is shown in figure 5. The physical length of the 

barrel portion of the cyclone is equivalent to 20D. The idea behind constructing this 

cyclone was to be able to measure the natural length a multiple inlet velocities.  
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Figure 5: Cyclone configuration: Bc = Dc/4 Jc = Dc/4 De = Dc/2 Sc = Dc/8 Hc = 

Dc/2 Lc = 20Dc 

 

 

Natural Length and Number of Turns 

 The natural length of the cyclone was measured by injecting a water and 

propylene glycol solution in the air prior to entering the cyclone. The solution would 

condense on the cyclone’s wall causing the strands of the outer vortex and the turning 

point to become visible as seen in figure 6 and appendix A.   
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Figure 6: Visual test results used to determine the number of strands in the barrel 

cyclone’s outer vortex and natural length. 

 

 

 A ring of liquid remained inside the cyclone once the walls of the cyclone dried. 

This ring was used to identify the location of the turning point of the outer vortex at the 

seven target inlet velocities. It was observed that as the walls of the cyclone dried the 

ring would travel further down the body of the cyclone. To assume a consistent 

coefficient of friction the ring position was not measured until the walls of the cyclone 

Outer vortex 

strands 

(turns) 

Turning Point 

(natural length) 
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were dry. The inlet velocity for each test was randomized in a complete block design 

with three replicates. The averaged results of these tests are shown in table 8. 

 

Table 8: The natural Length was measured from the top of the cyclone to the ring 

of solution. 

Average Inlet 

Velocity 

(m/s) 

Average Measured 

Natural Length 

(cm) 

Standard 

Deviation 

(cm) 

16.6 22.9 0.3 

20.5 23.2 0.3 

25.7 23.8 0.3 

30.8 24.3 0.5 

36.1 25.7 0.3 

41.0 28.6 0.6 

46.4 30.5 1.3 

 

 

 The results from measuring the number of turns are shown in table 9. After 

consideration of these results, it appears that the strands shown by the solution on the 

wall of the cyclone might not represent the number of turns. The path the solution 

traveled down the wall of the cyclone could be a result of the momentum of liquid 

droplets flowing down the wall of the cyclone.  
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Table 9: The number of turns were recorded by counting the number of times the 

solution circled the body of the cyclone. 

Average Inlet 

Velocity  

(m/s) 

Number of 

Turns 

16.6 2.5 

20.5 2.9 

25.7 3.4 

30.8 3.5 

36.1 3.6 

41.0 3.8 

46.4 4 

 

 

Total Pressure Drop Model 

 The total pressure drop of the cyclone is calculated using the velocity at 

operating conditions and the cyclone specific K-value for a given velocity range. Using 

the TCD process the total pressure drop is determined with equation 6. To be able to 

calculate the total pressure drop across this cyclone for future use the K-value had to be 

determined. The cyclone was tested with air at ambient conditions. Data points 

measuring the pressure drop were collected every three second for 10 minutes. All 

pressure drop reading outside of three standard deviations from the average were 

removed. Cyclone pressure drop was recorded for the seven target inlet velocities. Tests 

were conducted in a randomized complete block design with four replicates. The total 

pressure drop was measured by recording the difference in the static pressure at the inlet 

and outlet of the cyclone as shown in table 10, while the velocity pressure was calculated 

following equation 7 and 8. 
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Table 10: Calculated constant K from tests at STP. The inlet and outlet velocity 

pressure were calculated to determine the K factor. 

Inlet 

Velocity 

(m/s) 

Total Pressure 

Drop 

(kPa) 

Inlet Velocity 

Pressure 

(kPa) 

Outlet Velocity 

Pressure 

(kPa) 

Average 

K Value 

Standard 

Deviation  

16.5 1.1 0.2 0.1 4.6 ±0.3 

20.5 1.9 0.3 0.1 5.3 ±0.1 

25.7 3.1 0.4 0.2 5.5 ±0.1 

30.8 4.8 0.6 0.2 6.0 ±0.1 

36.1 6.7 0.8 0.3 6.1 ±0.1 

41.0 8.6 1.0 0.4 6.0 ±0.1 

46.4 10.6 1.3 0.5 5.8 ±0.1 

 

 

 A trendline was used as a best fit for the data. A linear relationship was used to 

determine the K-value at a range of inlet velocities, as seen by equation 11: 

     (11) 

where, 

K = cyclone pressure drop factor, and 

Vi = actual inlet velocity (m/s). 

 

Natural Length Model 

 Wang published a model, shown previously in equation 4, for a theoretical 

approach to calculate the pressure drop across a cyclone that incorporated the inlet 

velocity and travel distance (Wang et al., 2002 and 2006). Her model utilized 

components of pressure drop. However, the pressure drop component due to the radial 

forces, in the cone section of the cyclone, was omitted from this model. The total 

pressure drop and three of the components (ΔPe, ΔPk, and ΔPo) were calculated. The 
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portion of pressure drop loss due to friction was treated as the unknown variable. The 

results from equation 4 can be seen in table 11. 

 

Table 11: Calculated total pressure drop and three of the components of pressure 

drop leaving friction loss as the unknown. 

Total Pressure 

Drop  

(kPa) 

Cyclone 

Entry Loss 

(kPa) 

Kinetic 

Energy 

Loss  

(kPa) 

Outlet and Inner 

Vortex  Energy 

Loss  

(kPa) 

Total Pressure 

Drop Due to 

Friction Loss 

(kPa) 

1.1 0.2 0.1 0.1 0.8 

1.8 0.2 0.1 0.2 1.2 

2.9 0.4 0.2 0.3 2.0 

4.4 0.6 0.3 0.4 3.1 

6.2 0.8 0.5 0.6 4.4 

8.4 1.0 0.6 0.7 6.1 

11.0 1.3 0.7 0.9 8.0 

 

 

 Wang used a velocity of the strand in the outer vortex to determine the frictional 

forces (Wang, 2006). The theory behind this method is to account for the natural shape 

an air stream will form inside of a cyclone. The diameter of the strands in the outer 

vortex was determined with equation 12: 

      (12) 

where, 

Ds = diameter of the strand in the outer vortex (m),  

D = diameter of the cyclone (m), and 

Do = diameter of the outlet of the cyclone (m). 

 The strand velocity was determined with equation 13: 
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      (13) 

where, 

Vs = velocity of the strand in the outer vortex (m/s),  

Q = volumetric airflow rate (m
3
/s), and 

Ds = diameter of the strand in the outer vortex (m). 

 Assuming a constant vertical trajectory of the outer vortex’s strands, the 

frictional force was used to estimate the number of turns and natural length. The 

coefficient of friction was determined by calculating the Reynolds number, as shown in 

table 12. The friction factor, for Reynolds numbers less than 10
5
 and in smooth pipes, 

was determined using equation 14 (ASHRAE Handbook, 1981): 

     (14) 

where, 

ƒ =friction factor, and 

Re = Reynolds number. 

 

 

Table 12: The strand velocity was used in calculating the Reynolds number and 

solving for the friction factor. 

Inlet 

Velocity 

(m/s) 

Strand 

Velocity 

(m/s) 

Airflow 

(m
3
/s) 

Simulated 

Temperature 

(°C) 

Strand 

Reynolds 

Number 

Friction 

Factor 

ƒ 

 16.3   41.4   42.5   21   52,100   0.021  

 20.3   51.8   53.2   94   65,100   0.020  

 25.4   64.5   66.4   187   81,400   0.019  

 30.5   77.7   79.7   278   97,700   0.018  

 35.6   90.4   92.9   371   114,000   0.017  

 40.6   104  106   462   130,000   0.017  

 45.7   116  120   554   146,000   0.016  



32 

 In this case, since the outer vortex’s strands contact the cyclone wall on one side 

and the inner air stream on the other side, one-half of the frictional forces were used for 

the pressure drop calculation. Table 10 lists the friction factors for the cyclone at their 

respective design inlet velocities. The pressure drop due to friction in one turn was 

calculated with equation 15:  

     (15) 

where, 

∆Pf i = frictional energy loss in one turn (kPa), 

ƒ = friction factor, 

L = travel distance of one turn (L ≈ cyclone circumference) (m), 

Ds = diameter of the strand in the outer vortex (m), and 

VPs = velocity pressure of the strand in the outer vortex (kPa). 

 The frictional force was used to estimate the number of turns and natural length. 

Dividing the total pressure drop due to friction, Table 9, by the pressure drop due to 

friction in one turn, equation 15, resulted in the number of turns and was calculated by 

equation 16:  

    (16) 

where, 

Ne = number of turns, 

K = cyclone pressure drop constant (equation 11), 

VPi = velocity pressure of the inlet (kPa), 
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VPo = velocity pressure of the outlet (kPa),  

L = travel distance of one turn (L ≈ cyclone circumference) (m), 

Ds = diameter of the strand in the outer vortex (m), and 

VPs = velocity pressure of the strand in the outer vortex (kPa). 

 Equation 17 is the equation used to calculate natural length and uses a constant 

slope of the outer vortex in the barrel portion a 1D3D cyclone (Wang et al., 2006): 

   (17) 

where,  

LN = natural Length in cyclone diameters, 

Ne = number of turns, 

 The results from equations 4, and 15-17 are listed in Table 13. These results were 

calculated with air at STP in order to compare the model to measured data.  

 

Table 13: Calculated number of turns and natural length using equation 16 and 17. 

Total Pressure Drop 

Due to Friction Loss 

(kPa) 

Pressure Drop Due to 

Friction in One Turn  

(kPa) 

Calculated 

Number 

of Turns 

Natural Length  

(cm) 

0.76 0.13 5.8 23.0 

1.24 0.20 6.1 24.0 

2.05 0.32 6.5 25.4 

3.11 0.46 6.8 26.8 

4.44 0.62 7.1 28.1 

6.08 0.81 7.5 29.5 

8.05 1.03 7.8 30.8 
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Comparison 

 The theoretical number of turns and natural length from this model were 

compared to results measured in visualization testing. Table 14 show the measured and 

theoretical number of turns for the cyclone. The theoretical number of turns shows a 

closer relationship to the number of turns in the TCD process for a 1D3D and a 2D2D 

cyclones at their optimal inlet velocities.  

 

 

Table 14: Comparison of results from model and measured test. The model shows a 

closer relationship to the TCD 1D3D and 2D2D cyclones. The observations from 

measuring the number of turns do not represent the number of turns. 

Target Inlet Velocity 

(m/s) 

Number of 

Turns 

Calculated 

Number of Turns 

16.3 2.5 5.8 

20.3 2.9 6.1 

25.4 3.4 6.5 

30.5 3.5 6.8 

35.6 3.6 7.1 

40.6 3.8 7.5 

45.7 4 7.8 

 

 

 Table 15 shows the measured and calculated natural length for this cyclone.  
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Table 15: Results from the modeled and measured natural length. 

Target Inlet 

velocity  

(m/s) 

Average Measured 

Natural Length  

(cm) 

Calculated 

Natural Length  

(cm) 

16.3 22.9 23.0 

20.3 23.2 24.0 

25.4 23.8 25.4 

30.5 24.3 26.8 

35.6 25.7 28.1 

40.6 28.6 29.5 

45.7 30.5 30.8 

 

 

 A paired t-Test was used to statistical analysis the error in the measured and 

calculated data. An alpha of 0.05 was used to give a confidence interval of 95%. The 

null hypothesis was not rejected for the natural length, meaning that the model to predict 

natural length is significant. The model for number of turns was not significant to the 

measured data; however, it is possible that the visualization test did not represent the 

number of turns. Using the model 5.8 turns were calculated for an inlet velocity of 16.3 

m/s. Parnell showed that a 1D3D cyclone has 6 turns at the same inlet velocity (Parnell, 

1996).  
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CHAPTER IV 

CYCLONE PERFORMANCE RESULTS AND DISCUSSION  

 

 Cyclone efficiency tests were conduct to determine the optimal cyclone design 

for removing bio-char from syngas produced in FBG. All tests were operated at ambient 

conditions with volumetric flow rates seen in FBG. Preliminary calibrations of the test 

system, figure 3, were performed.  

 The hypothesis includes that the natural length of the cyclone would increase as 

the inlet velocity increases. With that consideration, three vortex inverter locations, 

cyclone physical length, were chosen for testing the cyclones collection efficiency: 4D, 

6D, and 8D. Each physical length represented a separate inlet velocity: 16.3 m/s for 4D 

vortex inverter location, 30.5 m/s for 6D vortex inverter location, and 45.7 m/s for 8D 

vortex inverter location. The location of the vortex inverter was based on estimations 

made from the model. All of the physical lengths were beyond the predicted natural 

lengths. In addition, at least one diameter was added to the estimation of the natural 

length to determine the location of the vortex inverter. It is also important to note that if 

the vortex inverter is located to close to the base of the cyclone a dramatic decrease in 

collection efficiency was observed (Luehrs, 2014). 

 The cyclones used in this research were referred to by the placement of the 

vortex inverter. If the vortex inverter location was at 4D the cyclone was named a 4D 

cyclone. To clarify, there was not a cone portion to these cyclones.  
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Testing Results 

 The filter housing was a lamination on the length of testing. It was observed that 

higher feed rates had a greater impact on the length of the test. The feed rate used for 

testing was 20 grams per minute. Following procedures from Luehrs (2014), three vortex 

inverter locations were used in determining the cyclone collection efficiency. The bio-

char concentrations at each inlet velocity can be seen in table 16.  

 

Table 16: The table shows the average inlet concentrations with a loading rate of 20 

g/min at three inlet velocities for the cyclone. 

Cyclone 

Average Inlet 

Velocity  

(m/s) 

Average Inlet 

Concentration 

(g/m
3
) 

4D 16.2 29.1 ±1.2 

6D 30.3 12.6 ±1.6 

8D 45.4 10.2 ±1.1 

 

 

 The exiting bio-char concentration was calculated for each cyclone and is show 

in table 17. The average exiting concentration decreased as the inlet velocity increased. 

 

 

Table 17: Exiting bio-char concentration. 

Cyclone 

Average Outlet 

Velocity  

(m/s) 

Average Exiting 

Concentration 

(g/m
3
) 

4D 10.3 0.69 ±0.19 

6D 19.3 0.40 ±0.11 

8D 28.9 0.32 ±0.09 
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 The configuration of the cyclone is shown in figure 7. The vortex inverter had a 

diameter of 0.9D and a height of 0.45D. The vortex inverter was adjustable, allowing the 

ability to vary the physical length of the cyclone. The vortex inverter was placed below 

the estimated natural length in order to avoid compression of the strands in the outer 

vortex.  

 

 

Figure 7: Cyclone configurations: Bc = Dc/4 Jc = Dc/4 De = Dc/2 Sc = Dc/8 Hc = Dc/2 

Dv = 0.9Dc. The Lc varies for the inlet velocities: 16.3 m/s, Lc = 4Dc; 35.6 m/s, Lc = 

6Dc; 45.7 m/s, Lc = 8Dc. 
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 The PM to be used in this cyclone system is bio-char from the gasification of 

sweet sorghum. The bio-char’s particle size distributions (PSDs) are best defined by 

lognormal distributions defined by mass median diameters (MMDs) and geometric 

standard deviations (GSDs) (Cooper and Alley, 2011). The lognormal fit of the 

measured and theoretical PSDs, obtained using the Coulter Counter, are shown in figure 

8. The biochar used in this study has an MMD aerodynamic equivalent diameter (AED) 

of 27 µm, a geometric standard deviation (GSD) of 1.6 and a particle density of 2.1 

g/cm
3
.  

 

 
Figure 8: Particle size distributions of the bio-char used in this study. The plot 

illustrates the lognormal fit of the measured and theoretical PSDs obtained using 

the Coulter Counter. 
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 The test system shown in figure 3 was designed and constructed to test cyclone 

collection efficiencies. Bio-char was fed into the airstream, prior to reaching the cyclone, 

at 20 grams per minute. Char entering the cyclone was either captured by the cyclone 

and fell into the char hopper or remained in the exiting airstream was it was captured in 

the filter assembly.  

 Collection efficiency was determined with equation 9. The range, average, and 

standard deviation of the collection efficiency at each level are listed in table 18. The 

results from each test are shown in appendix B. A 99% confidence interval from the 

mean was used to decide if data points were outliers.  

 

Table 18: Average collection efficiency for the cyclones with three different vortex 

inverter locations. 

Vortex Inverter Number of Test Average Range 

4D 8 97.8% ±0.6 % 97.3% to 98.8% 

6D 8 96.9% ±0.8% 96.2% to 98% 

8D 8 97.3% ±0.6% 96.6% to 98% 

 

 

 The collection efficiency for each of the vortex inverter locations are shown in 

Figures 9-11.  
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Figure 9: Collection efficiency for the cyclone with the vortex inverter located at 

4D. The average collection efficiency for this cyclone was 97.8%. 

 

 

 

 
Figure 10: Collection efficiency for the cyclone with the vortex inverter located at 

6D. The average collection efficiency for this cyclone was 96.9%. 
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Figure 11: Collection efficiency for the cyclone with the vortex inverter located at 

8D. The average collection efficiency for this cyclone was 97.3%. 

 

 

Cutpoint and Slope 

 In the TCD process, the performance of a cyclone is defined by its fractional 

efficiency curve (FEC), which indicates the efficiency with which a cyclone collects 

particles of a given size (Faulkner et al., 2008). An ideal FEC is characterized a 

lognormal distribution defined by the cutpoint and slope. An expected cutpoint was 

calculated for this cyclone at each inlet velocity using the TCD cutpoint equation 5. The 

number of turns used in calculating the cut point was calculated from equation 16. 

Results from the cut point equation are listed in table 19. The calculated cutpoint was 

less than 1 µm for two of the target inlet velocities. It is not feasible for a cutpoint of this 
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value to represent a cyclone with a FEC. Other methods to determine the cutpoint were 

reviewed.  

 

 

Table 19: The TCD calculated cutpoint for three different inlet velocities. Number 

of turns was calculated by using equation 16. 

Inlet Velocity 

(m/s) 

Number 

of Turns 

AED Cutpoint 

(µm) 

16.3 5.8 1.12 

30.5 6.8 0.75 

45.7 7.8 0.58 

 

 

 The collection efficiency from cyclone testing and the calculated TCD cutpoint 

were used to determine the slope for this cyclone. The results from this method are listed 

in table 20 for each cyclone. The results from each test are shown it Appendix C. A 

lognormal FEC was used to back calculate the slope from the collection efficiency and 

cutpoint as shown in equation 18 (Faulkner et al., 2008): 

   (18) 

where, 

FEC(dp, d50, slope) = collection efficiency of particle with diameter dp, 

d50 = cyclone cutpoint, which is the particle size corresponding to 50% collection 

 efficiency, and 

slope = slope of the FEC. 
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Table 20: The slope was determined by back calculating a FEC given the efficiency 

from testing and cutpoint. The cutpoint was calculated using the TCD cutpoint 

equation 5. 

Cyclone 
Inlet 

Velocity 
Efficiency Cutpoint Slope d15.9 d84.1 

4D 15.4 97.8% 1.1 3.7 0.3 3.3 

6D 30.4 96.9% 0.8 5.5 0.1 7.2 

8D 40.8 97.3% 0.6 6.0 0.1 10.4 

 

 

 The table 20 shows that there was a range of averaged cutpoints from 1.12 to 

0.58 µm with a slope of 3.72 to 5.99 for the 4D and 8D cyclones receptively. Graphical 

representations of each cyclone are shown in the FEC’s in figure 12. It is understood that 

as the inlet velocity increases the cut point will decrease (Cooper and Alley, 2011). 

However, there is no historical cyclone work that show a slope that matches the slopes 

found in this approach.  
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Figure 12: FEC for three cyclones: 4D, 6D, and 8D. d50 found using TCD cutpoint 

equation. As you can see this FEC does not resemble the FEC in figure 4. 

 

 

 Another way to calculate the cutpoint and slope would be from using the PSD of 

the exiting concentration leaving the cyclone. Glass fiber filters were used to capture the 

exciting bio-char from the cyclone. A methanol solution was used to remove the 

accumulated bio-char without damaging the filter. In a PSD 50% of the particles are 

above and below the MMD. An average of the PSD for the three different cyclones is 

shown in figure 13.  
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Figure 13: PSD for three cyclones: 4D, 6D, and 8D. The peak of each test would be 

the cutpoint by following this method. 

 

 

 The peak of each PSD represents the AED MMD of the particles for each test. 

The particles leaving the cyclone had a MMD less than 5 µm. A FEC was calculated by 

using the MMD as the cutpoint. In this approach the slope was determined by back 

calculating a FEC knowing the efficiency of each test and using the MMD for the 

cutpoint. The FEC for the same three tests are shown in figure 14 and the results for this 

approach are shown in table 21. The results from each test are shown it appendix D. 
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Table 21: The Coulter Counter results for the PSD of the exiting gas stream. 

MMD’s are represented in AED and are believed to be a representation of the 

cutpoint for the cyclone. . 

Cyclone 
Inlet 

Velocity 
Efficiency Cutpoint Slope d15.9 d84.1 

Average 4D 15.4 97.8% 3.91 2.30 1.7 0.6 

Average 6D 30.4 96.9% 4.08 2.49 1.7 0.7 

Average 8D 40.8 97.3% 5.85 1.97 3.2 0.4 

 

 

 

 
Figure 14: FEC for three cyclones: 4D, 6D, and 8D. 

 

  

 The results from this approach did not show any correlation between the MMD 

of the exiting bio-char as the cutpoint and the collection efficiency. The cutpoints and 

slopes had variation that could not be explained by an increase in the cyclones inlet 

velocity. The cyclone’s slope could not be described by this approach.  
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 Another method to calculate the cut point for this cyclone is by using Faulkner’s 

model. He found that the cutpoint of a cyclone could be determined based on the 

diameter of the cyclone. The relationship between the cyclone diameter and cutpoint is 

shown with equation 19: 

      (19) 

where, 

d50 = cutpoint (µm),  

D = cyclone diameter (cm), 

a = 2.855, and 

b = 0.076. 

 Applying this equation to this cyclone resulted in a calculated cutpoint of 3.33 

µm. Using this cutpoint, and the efficiencies found in testing, the slope was determined 

again by using a FEC model. The results from this approach can be seen in table 22. The 

results from each test are shown it appendix E. 

 

Table 22: The slope was determined by back calculating a FEC given the efficiency 

and cutpoint. The cutpoint was determined by using equation 19. 

Cyclone 
Inlet 

Velocity 
Efficiency Cutpoint Slope d15.9 d84.1 

4D Average 15.4 97.8% 3.33 1.80 0.5 1.9 

6D Average 30.4 96.9% 3.33 2.07 0.6 1.6 

8D Average 40.8 97.3% 3.33 1.96 0.6 1.7 

 

 

 An average slope of 1.94 was determined to be the best fit for this cyclone. A 

cutpoint of 3.33 µm and a slope of 1.94 were used to calculate the efficiency for this 
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cyclone and tested to be significant at a 95% confidence level. A FEC to represent this 

cyclone is displayed in figure 15.  

 

 
Figure 15: The FEC for all three cyclones with the d50 cutpoint equal to 3.33 and a 

slope of 1.94. 

 

Pressure Drop 

 The pressure drop across the cyclone was recorded for each test. The results were 

grouped by the vortex inverter location and shown in figure 16 – 18. 
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Figure 16: The pressure drop for each 4D cyclone test. 

 

 

 
Figure 17: The pressure drop for each 6D cyclone test. 
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Figure 18: The pressure drop for each 8D cyclone test. 

 

 

 The measured pressure drop was compared to the calculated pressure drop, from 

equation 6 & 11, in figure 19. The calculated pressure drop was statistically significant 

at a confidence level of 95%.  
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Figure 19: Total pressure drop across the cyclones compared to the calculated 

pressure drop. 
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CHAPTER V 

CONCLUSION 

 

 The models used in this research accurately predicted the cyclones’ natural 

length. The method used to measure the number of turns was flawed, and the model was 

used to calculate the number of turns instead. The natural length and number of turns 

were both found to be a function of the cyclones inlet velocity and can be determined as 

follows: 

 Cyclone should be sized to the optimal TCD design velocity at STP of 16.3 m/s 

(3,200 fpm). 

 The total pressure drop for this cyclone is calculated with equations 6-8 and 11. 

- The total pressure drop and K – value is a function of inlet velocity. 

 The number of turns can be determined as a function of the total pressure drop in 

equation 16. 

 The natural length of the cyclone can be determined as a function of the total 

pressure drop and inlet velocity at actual conditions with equation 17 

 Results from this research suggested that the cyclones collection efficiency could 

be calculated. It seems that by extending the cyclones physical length there was no 

interference between the strands. The same cutpoint and slope were found to be 

significant at all inlet velocities. The cutpoint can be determined with equation 19 at all 

inlet velocities tested. The slope was determined to remain constant at all velocities 
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tested. The AED cutpoint for this cyclone is equal to 3.33 µm with a slope of 1.94.

 The method used to calculate the pressure drop across the cyclone could be 

calculated by using the TCD process. The actual inlet velocity should be used to 

calculate the velocity pressure of the inlet and the outlet of the cyclone. The K value is a 

function of inlet velocity at actual conditions. Theoretical pressure drop for FBG at 

actual conditions (high temperatures) are shown in figure 20. 
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Figure 20: Theoretical pressure drop for high temperature gases. 

 

 

 Future cyclones designed with this TCD approach for high temperature gases 

should follow the following steps: 

1. Airflow from actual to standard: 

-  
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2.  Cyclone diameter: 

-  

3.  Vortex inverter location: 

-  

-  

4.  Total pressure drop: 

-  

-  

5.  Cyclone collection efficiency: 

- Cutpoint, d50 = 2.86D
0.076

 

- Slope = 1.94 

 Future work is still needed to determine the carbon content of the bio-char in the 

exiting gas stream. The fine particles not captured by the cyclone could have a high 

carbon content. If that is the case then the exiting bio-char could be consumed into an 

ICE. The carbon content for different particle ranges could help to determine if the 

particles exiting the cyclone could be considered as fuel.  
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APPENDIX A 

 

Turning point 
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of turns) 



61 

Outer vortex strands 

(Number of turns) 

Turning point 



62 

 

APPENDIX B 

 

Appendix B: Tests results for cyclone collection efficiency testing. 

Test # 

Vortex 

Inverter 

Location 

Mass Feed 

Rate (g/m
3
) 

Inlet Velocity 

(m/s) 

Total Pressure 

drop (kPa) 
Efficiency 

2 4D 19.8 14.8 5.3 98.8% 

3 4D 19.6 14.6 5.8 97.9% 

2.1 6D 17.6 30.5 20.9 97.9% 

3.1 6D 18.0 30.5 20.1 98.0% 

8 6D 15.0 30.3 20.4 96.4% 

11 8D 18.9 39.8 33.2 96.8% 

12 8D 17.7 40.7 35.7 97.7% 

13 4D 20.2 15.3 6.0 98.6% 

14 4D 20.2 15.7 5.5 97.5% 

15 4D 19.5 15.4 5.5 97.3% 

17 6D 20.3 30.9 21.5 96.2% 

18 6D 16.0 29.9 20.9 97.3% 

19 8D 18.9 40.9 36.3 97.8% 

20 8D 20.7 40.6 37.5 98.0% 

21 8D 19.2 41.0 38.4 97.9% 

22 6D 16.7 30.6 21.9 96.2% 

23 6D 16.5 30.2 21.7 96.5% 

24 6D 12.6 30.5 21.9 96.5% 

25 4D 22.4 15.8 5.1 97.5% 

26 4D 21.4 15.5 5.8 97.5% 

27 4D 20.6 15.8 5.2 97.3% 

28 8D 25.1 41.0 36.7 96.9% 

29 8D 20.6 41.4 38.6 96.6% 

30 8D 20.6 40.8 37.7 96.6% 
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APPENDIX C 

Appendix C: The slope was determined by back calculating a FEC given the 

efficiency from testing and cutpoint. The cutpoint was determined using the TCD 

cutpoint equation. 

Test # 
Inlet 

Velocity 
Efficiency Cutpoint Slope d15.9 d84.1 

2 14.8 98.8% 1.13 3.07 0.37 2.71 

3 14.6 97.9% 1.14 3.63 0.31 3.19 

13.1 15.3 98.6% 1.12 3.17 0.35 2.82 

14.1 15.7 97.5% 1.12 3.96 0.28 3.55 

15 15.4 97.3% 1.12 4.03 0.28 3.59 

25 15.8 97.5% 1.11 3.93 0.28 3.53 

26 15.5 97.5% 1.12 3.93 0.29 3.51 

27 15.8 97.3% 1.11 4.07 0.27 3.66 

2.1 30.5 97.9% 0.76 4.58 0.16 6.06 

3.1 30.5 98.0% 0.76 4.51 0.17 5.97 

8 30.3 96.4% 0.76 5.89 0.13 7.77 

17 30.9 96.2% 0.75 6.1 0.12 8.14 

18 29.9 97.3% 0.77 5.07 0.15 6.62 

22 30.6 96.2% 0.75 6.08 0.12 8.07 

23 30.2 96.5% 0.76 5.78 0.13 7.60 

24 30.5 96.5% 0.76 5.81 0.13 7.68 

11 39.8 96.8% 0.59 6.4 0.09 10.9 

12 40.7 97.7% 0.58 5.49 0.11 9.50 

19 40.9 97.8% 0.58 5.42 0.11 9.42 

20 40.6 98.0% 0.58 5.23 0.11 9.04 

21 41.0 97.9% 0.57 5.36 0.11 9.34 

28 41.0 96.9% 0.58 6.41 0.09 11.1 

29 41.4 96.6% 0.57 6.72 0.08 11.8 

30 40.8 96.6% 0.58 6.86 0.08 11.9 
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APPENDIX D 

Appendix D: The slope was determined by back calculating a FEC given the 

efficiency from testing and cutpoint. The cutpoint was determined using the MMD 

from the exiting bio-char. 

Test # 
Inlet 

Velocity 
Efficiency Cutpoint Slope d15.9 d84.1 

2 14.8 98.8% 3.76 2.09 1.80 0.55 

3 14.6 97.9% 3.82 2.31 1.65 0.61 

13.1 15.3 98.6% 4.11 2.04 2.01 0.50 

14.1 15.7 97.5% 4.01 2.34 1.71 0.58 

15 15.4 97.3% 3.96 2.40 1.65 0.61 

25 15.8 97.5% 3.98 2.35 1.69 0.59 

26 15.5 97.5% 3.7 2.45 1.51 0.66 

27 15.8 97.3% 3.96 2.40 1.65 0.61 

2.1 30.5 97.9%  3.31   2.50  1.32 0.76 

3.1 30.5 98.0%  3.40   2.44  1.39 0.72 

8 30.3 96.4%  3.65   2.74  1.33 0.75 

17 30.9 96.2%  4.66   2.39  1.95 0.51 

18 29.9 97.3%  5.93   1.88  3.16 0.32 

22 30.6 96.2%  3.42   2.90  1.18 0.85 

23 30.2 96.5%  4.83   2.28  2.12 0.47 

24 30.5 96.5%  3.41   2.83  1.21 0.83 

11 39.8 96.8%  8.27   1.54  5.37 0.19 

12 40.7 97.7%  3.20   2.61  1.23 0.82 

19 40.9 97.8%  5.84   1.82  3.22 0.31 

20 40.6 98.0%  5.21   1.95  2.67 0.37 

21 41.0 97.9%  6.17   1.74  3.55 0.28 

28 41.0 96.9%  8.65   1.47  5.87 0.17 

29 41.4 96.6%  4.54   2.35  1.93 0.52 

30 40.8 96.6%  4.88   2.27  2.15 0.46 
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APPENDIX E 

 

Appendix E: The slope was determined by back calculating a FEC given the 

efficiency and cutpoint. The cutpoint was determined by using Faulkner’s cutpoint 

equation for cyclone diameter (equation 19). 

Test # 
Inlet 

Velocity 
Efficiency Cutpoint Slope d15.9 d84.1 

2 14.8 98.8% 3.33 1.48 0.44 2.25 

3 14.6 97.9% 3.33 1.78 0.53 1.87 

13.1 15.3 98.6% 3.33 1.53 0.46 2.18 

14.1 15.7 97.5% 3.33 1.91 0.57 1.74 

15 15.4 97.3% 3.33 1.95 0.59 1.71 

25 15.8 97.5% 3.33 1.9 0.57 1.75 

26 15.5 97.5% 3.33 1.9 0.57 1.75 

27 15.8 97.3% 3.33 1.96 0.59 1.70 

2.1 30.5 97.9% 3.33 1.78 0.53 1.87 

3.1 30.5 98.0% 3.33 1.76 0.53 1.89 

8 30.3 96.4% 3.33 2.2 0.66 1.51 

17 30.9 96.2% 3.33 2.25 0.68 1.48 

18 29.9 97.3% 3.33 1.96 0.59 1.70 

22 30.6 96.2% 3.33 2.24 0.67 1.49 

23 30.2 96.5% 3.33 2.17 0.65 1.53 

24 30.5 96.5% 3.33 2.17 0.65 1.53 

11 39.8 96.8% 3.33 2.09 0.63 1.59 

12 40.7 97.7% 3.33 1.84 0.55 1.81 

19 40.9 97.8% 3.33 1.81 0.54 1.84 

20 40.6 98.0% 3.33 1.76 0.53 1.89 

21 41.0 97.9% 3.33 1.79 0.54 1.86 

28 41.0 96.9% 3.33 2.07 0.62 1.61 

29 41.4 96.6% 3.33 2.14 0.64 1.56 

30 40.8 96.6% 3.33 2.18 0.65 1.53 

 

 

 

 

 

 




