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ABSTRACT 

 

Compressive sensing (CS) technique enables a universal sub-Nyquist sampling 

of sparse and compressible signals, while still guaranteeing the reliable signal recovery. 

Its potential lies in the reduced analog-to-digital conversion rate in sampling broadband 

and/or multi-channel sparse signals, where conventional Nyquist-rate sampling are either 

technology impossible or extremely hardware costly.  

Nevertheless, there are many challenges in the CS hardware design. In coherent 

sampling, state-of-the-art mixed-signal CS front-ends, such as random demodulator and 

modulated wideband converter, suffer from high power and nonlinear hardware. In 

signal recovery, state-of-the-art CS reconstruction methods have tractable computational 

complexity and probabilistically guaranteed performance. However, they are still high 

cost (basis pursuit) or noise sensitive (matching pursuit).  

In this dissertation, we propose an asynchronous compressive sensing (ACS) 

front-end and advanced signal reconstruction algorithms to address these challenges. The 

ACS front-end consists of a continuous-time ternary encoding (CT-TE) scheme which 

converts signal amplitude variations into high-rate ternary timing signal, and a digital 

random sampler (DRS) which captures the ternary timing signal at sub-Nyquist rate. The 

CT-TE employs asynchronous sampling mechanism for pulsed-like input and has signal-

dependent conversion rate. The DRS has low power, ease of massive integration, and 

excellent linearity in comparison to state-of-the-art mixed-signal CS front-ends.  
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We propose two reconstruction algorithms. One is group-based total variation, 

which exploits piecewise-constant characteristics and achieves better mean squared error 

and faster convergence rate than the conventional TV scheme with moderate noise. The 

second algorithm is split-projection least squares (SPLS), which relies on a series of 

low-complexity and independent l2-norm problems with the prior on ternary-valued 

signal. The SPLS scheme has good noise robustness, low-cost signal reconstruction and 

facilitates a parallel hardware for real-time signal recovery. 

In application study, we propose multi-channel filter banks ACS front-end for the 

interference-robust radar. The proposed receiver performs reliable target detection with 

nearly 8-fold data compression than Nyquist-rate sampling in the presence of -50dBm 

wireless interference. We also propose an asynchronous compressed beamformer (ACB) 

for low-power portable diagnostic ultrasound. The proposed ACB achieves 9-fold data 

volume compression and only 4.4% contrast-to-noise ratio loss on the imaging results 

when compared with the Nyquist-rate ADCs. 
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CHAPTER I  

INTRODUCTION 

 

I.A. Motivation 

Real-world signals like light, pressure, temperature, voice, etc., naturally appear 

in the analog format. To capture the embedded useful information, various mathematical 

processing like addition, subtraction, multiplication and division are required. Dedicated 

analog circuits are adopted if signal processing needs to be carried out directly in the 

analog domain. Nevertheless, it is more flexible and less expensive to implement them in 

the digital domain, especially when advanced digital signal processing (DSP) are desired.  

Conventional DSP systems take the discrete and quantized samples rather than 

analog waveform as input signals. Conversion from a continuous band-limited signal to 

its discrete format requires a minimum sampling rate of twice of the signal bandwidth in 

order to keep image aliasing free. Such a sampling strategy is known as the famous 

Shannon/Nyquist sampling theorem [1], which is fundamental in modern DSP systems. 

The minimum sampling rate of a band-limited signal is called its Nyquist rate. Sampling 

process generates discrete measurements and quantization process outputs a stream of 

1’s and 0’s to represent the measurements in a digital format. The hardware to fulfill the 

sampling and quantization tasks is analog-to-digital converter (ADC). Depending on 

specific application requirements, state-of-the-art ADCs may have various architectures, 

such as successive approximation register ADC, sigma-delta ADC, pipelined ADC, and 

time-interleaving ADC, etc. Each architecture makes different trade-off between power, 
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speed and resolution. However, all of the aforementioned ADC architectures abide by 

the famous Shannon/Nyquist sampling theorem [2].  

Nyquist-rate ADC architecture has encountered challenges in terms of power and 

area when sampling very wideband and multi-channel signals. For example, wideband 

spectrum sensing in cognitive radio networks looks for an effective sampling rate up to 

several tens of gigahertz [3]. Such a high conversion rate together with a moderate to 

high resolution pushes ADC design to the technology limit [4]. Multi-channel filter-bank 

approach [5], [6] may relax the ADC requirements in each individual channel, but the 

aggregated power is very large. Another illustrating example is diagnostic ultrasound 

imaging system [7], where several hundreds of signal processing channels are designed 

in parallel to accommodate digital beamforming with a large transducer array. Though 

Nyquist-rate sampling of one channel requires typically around 50MHz, the aggregated 

data volume easily goes beyond 300Gbps when 512-channel 12-bit ADCs are employed. 

Excessive data volume in mixed-signal interface requires large power and complicates 

the high-speed data link design between analog front-end and digital processing unit.  

In addition, Nyquist-rate sampling may not be efficient or optimal in some cases. 

Most of natural signals are known to be sparse and/or compressible in a certain domain. 

The mathematical definition on terms “sparse” and “compressible” will be discussed in 

Chapter II. Here, we simply interpret them as the signal’s information rate is lower than 

the Nyquist rate. For example, spectrum sensing signal in cognitive radio networks has 

very broad bandwidth, which means a very large Nyquist rate. However, the spectrum 

coefficients after Discrete Fourier Transform (DFT) may contain most of zeros, which 
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means a very low information rate. Hence, a small set of nonzero spectrum coefficients 

can well describe the original spectrum sensing signal. Similarly, most of natural images 

are compressible in the wavelet domain [8]. It means a small set of most significant 

wavelet coefficients can represent the original image with no significant perceptual loss. 

The fact that there is low information rate in most of natural signals has enabled various 

signal compression algorithms [9–12], to name a few. However, nearly all of them 

require a Nyquist sampling as the first stage. Fig. 1 illustrates the signal processing chain 

in conventional DSP systems, like camera, radar detection, ultrasound imaging, etc. 

It seems to be a great waste in terms of the ADC sampling efforts if we have to 

first capture all measurements but later on discard most of them after signal compression. 

A natural question arises, if we have a prior that signals are sparse/compressible in a 

certain domain, can we achieve compression right at the sampling stage? In other words, 

can we accomplish compressed sampling or sub-Nyquist rate sampling?  

 

Fig. 1.  Block diagram of signal processing chain in conventional DSP systems. 
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Compressive sensing (CS) is a promising technique which enables sub-Nyquist 

sampling of sparse/compressible signals. According to the CS theorem, any sufficiently 

sparse and/or compressible signal can be perfectly reconstructed with an overwhelming 

probability from a much smaller number of incoherent, non-adaptive, randomized linear 

projection samples relative to the conventional Nyquist-rate sampling systems [13], [14]. 

The CS technique successfully integrates signal sampling and compression into one step, 

reducing the sampling rate directly at the analog front-end rather than the digital domain. 

Because of its sub-Nyquist sampling ability, the CS framework has shown its potential 

in many applications where Nyquist sampling is either impossible or very costly, such as 

medical imaging [15], consumer electronics [16], wireless communication [17], 

statistical signal processing [18], and geophysics [19], etc.  

The great potential to wide applications motivates to implement CS technique in 

practical hardware. A general CS framework consists of two parts: incoherent sampling 

and signal reconstruction. The first part fulfills the compressed measurements generation. 

It mainly studies the following questions: (i) what kind of signal is possible for sub-

Nyquist rate sampling or compressed sampling? And how much compression can be 

achieved at the analog front-end relative to the Nyquist rate? (ii) What restrictions are 

placed on the compressed sampling kernel? (iii) How do we design a compressed 

sampling front-end in hardware? (iv) Are there any limitations to non-ideal hardware? If 

so, how do we analyze and address them in CS?  

The second part of CS framework is signal reconstruction. It mainly exploits the 

following areas: (i) is there any algorithm with tractable computational complexity for 
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reliable signal reconstruction from the compressed measurements? (ii) If so, what’s the 

performance metrics of these algorithms? Are there any constraints? (iii) Can we achieve 

better performance than some general reconstruction algorithms if more information is 

available in addition to the signal sparsity? (iv) Can we develop low-complexity signal 

recovery algorithms that are suitable for low-cost hardware implementation and potential 

in real-time signal processing?  

The aforementioned questions motivate the research work in this dissertation.  

I.B. Research Contribution 

The objective of this research work is to develop low-power and low-complexity 

mixed-signal CS front-end together with advanced signal reconstruction algorithms. The 

power and complexity are co-optimized in both of compressed sampling stage as well as 

signal reconstruction stage. Numerical analyses are included in the context of some 

practical applications, such as electrocardiography (ECG) recording in wireless body 

sensor networks, radar detection with in-band wireless communication interference and 

low-power portable diagnostic ultrasound imaging systems. Some highlights of this 

research work are list as follows:  

1. A low-power asynchronous compressive sensing (ACS) front-end scheme is 

proposed, in which asynchronous sampling mechanism is applied for reduced 

duty cycle of power-demanding circuits. 

2. Design considerations on building blocks of the ACS front-end are exploited, 

including continuous-time ternary encoding (CT-TE) scheme and digital 

random sampler (DRS). Two types of DRS are designed.  
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3. A high-performance signal reconstruction algorithm using group-based total 

variation (GTV) is developed, which achieves better mean squared error 

(MSE) and faster convergence rate. Performance of the GTV algorithm is 

evaluated in the context of ECG recording in wireless body sensor networks.  

4. A low-complexity signal reconstruction algorithm using split-projection least 

squares (SPLS) is proposed, which converts the nonlinear and high-cost l1-

norm optimization problem into a series of independent and low-cost least 

squares (LS) problems.  

5. The statistics and computational complexity of the SPLS algorithm are 

analyzed and compared with state-of-the-art signal reconstruction algorithms. 

Hardware of the SPLS for real-time CS signal reconstruction is investigated. 

A k-term approximation method to matrix inversion is studied in fixed point. 

6. Numerical performance of the SPLS algorithm is studied in the context of 

radar target detection with in-band wireless communication interference and 

low-power portable diagnostic ultrasound imaging system. 

I.C. Dissertation Organization 

The rest of dissertation is organized as follows. 

Chapter II reviews the compressive sensing (CS) background, including the 

incoherent sampling, state-of-the-art mixed-signal CS front-ends and conventional signal 

reconstruction algorithms. Both advantages and challenges are investigated.  

Chapter III presents the proposed ACS front-end. Both continuous-time ternary 

encoding (CT-TE) and two types of digital random sampler (DRS) will be discussed in 
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details with signal models and hardware implementation. Comparisons with state-of-the-

art mixed-signal CS front-ends are provided.  

Chapter IV introduces the group-based total variation (GTV) sparse signal 

reconstruction algorithm. Main theorem and computational complexity are analyzed. 

Numerical simulation results are provided in the context of electrocardiography (ECG) 

recording in wireless body sensor networks. 

Chapter V introduces the SPLS signal reconstruction algorithm. Main theorem 

and computational complexity are also analyzed. The SPLS hardware implementation is 

discussed. A k-term approximation method to matrix inversion in least squares (LS) 

estimator is also proposed. Numerical results are compared with the theoretical analyses.  

Chapter VI investigates the proposed ACS front-end and the SPLS scheme in 

two applications: radar detection with in-band wireless communication interference and 

low-power portable diagnostic ultrasound imaging systems. Hardware implementation 

and optimizations are included for each specific application.  

Chapter VII concludes this research work. 
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CHAPTER II  

FUNDAMENTALS OF COMPRESSIVE SENSING 

 

In this chapter, we first define mathematical models for sparse and compressible 

signals used extensively in compressive sensing (CS). Then we briefly review the 

incoherent sampling protocol and state-of-the-art mixed-signal CS front-ends. In the end, 

various CS signal reconstruction algorithms will be discussed.  

II.A. Sparse and Compressible Signals 

An N-dimensional discrete signal x ∈ ℝ𝑁𝑁 is called K-sparse if only a maximum 

of K components out of N are non-zero. Mathematically, we define 

( ) { }0
supp : 0ix x i x= = ≠   ,                                      (2.1) 

where support function returns the set of non-zero valued components in x, ‖ ‖0 is the 

l0-norm which counts the number of non-zero items, and | | function finds the absolute 

value. Then x is K-sparse if we have 

0
x K N≤    .                                                  (2.2) 

Usually signal x is not sparse in its original format but needs some transformation. 

A signal x is called general K-sparse if the number of non-zero coefficients in a certain 

representation basis Ψ is smaller than or equal to K,  

0
,x a a K N= ≤Ψ    ,                                          (2.3) 

where a represents the coefficients of x in basis Ψ. Unless otherwise specified, general 

K-sparse will be denoted as K-sparse for simplicity in this dissertation.  
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Real-world signals are often compressible rather than strictly sparse. Mathema-

tically, a signal x = Ψa is compressible if its coefficient a satisfies power law decay, 

( )
1
q

i
a Ci

−
∗ ≤   ,                                                   (2.4) 

where a* is the sorted sequence of a with descending order, C is a positive constant, and 

0 < q < 1. By Eq. (2.4), we can see that only a small set of coefficients are significant. 

Most lossy compression algorithms utilize the most significant coefficients to represent 

the original signals. Note that the definition of sparse signal is a special case in that of 

the compressible one.  

II.B. Incoherent Sampling 

Conventional Shannon/Nyquist sampling scheme employs a uniform distributed 

Dirac delta streams as the sampling kernel h(t), 

( )
( ), 0,1,2,...

0 , otherwise
t nT n

h t
δ − =

= 


  ,                                   (2.5) 

where T denotes sampling period, which needs to satisfy the Shannon/Nyquist sampling 

criterion [1]. The sampling process can be therefore represented as a multiplication, 

[ ] ( ) ( )x n x t h t= ×   ,                                                (2.6) 

where x[n] represents the discrete sampled sequence of x(t).  

Conventional Shannon/Nyquist sampling scheme requires a sampling rate fully 

dependent on the signal’s Nyquist-rate. Signal compression is performed on the discrete 

samples x[n]. Such a sampling technique has dominated the DSP design for more than 

50 years though it is inefficient in dealing with sparse and compressible signals, where 

only a small set of most significant coefficients are actually used during compression.  
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Recent breakthroughs in compressive sensing (CS) [13], [14] have enabled an 

innovative sampling framework that integrates sampling and compression into one step. 

According to the CS theorem, a sparse/compressible signal can be reconstructed with an 

overwhelming probability from a much smaller number of incoherent, randomized, non-

adaptive linear projection measurements relative to the conventional Nyquist sampling 

systems. In this section, we will introduce incoherent sampling in the context of discrete 

input signal. The mixed-signal CS signal model and analog front-end hardware will be 

discussed in the next section.  

CS theorem employs non-adaptive linear measurements. The easiest way to do so 

is by an inner product of the input signal x ∈ ℝ𝑁𝑁  and the sensing vector ϕ ∈ ℝ𝑁𝑁 . 

Mathematically, the compressed measurements can be represented as the product of an 

M-by-N sensing or measurement matrix Φ and the input signal x,  

y x= Φ   .                                                      (2.7) 

It is implicit by compression that the dimension of sensing matrix of Φ follows, 

M < N, which means a reduced number of measurements compared with the Nyquist 

sampling scheme. It is intuitive to recover the sparse signal via an l0-norm optimization 

problem, that is 

0
min subject to

x
x y x= Φ   .                                       (2.8) 

Here it’s assumed x itself is sparse. We notice that most of CS literatures have adopted 

this assumption when analyzing incoherent sampling and signal reconstruction. However, 

very few papers indeed exploit the results that incorporate a sparse representation basis. 

We refer the interested readers to [20] for more discussions.  
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Problem in Eq. (2.8) involves combinatorial search which is NP-hard [13]. One 

of main contribution of CS theorem is an l1-norm relaxation (2.9) to l0-norm problem, 

1
min subject to

x
x y x= Φ   .                                       (2.9) 

which is convex with tractable complexity when certain conditions are held [13], [14]. 

The equivalence between l0-norm and l1-norm approaches not only requires the sparsity 

of signal x, but also depends on the incoherence of the sensing or measurement matrix Ф.  

Definition 2.1 [21] Let Ф = (𝜙𝜙𝑖𝑖)𝑖𝑖=1𝑛𝑛  be an M-by-N matrix. Then its mutual coherence 

μ(Ф) is defined as 

( )
2 2

,
max i j

i j
i j

φ φ
µ

φ φ≠
=Φ   .                                        (2.10) 

The mutual coherence of a sensing matrix measures the smallest angle between 

any two columns in Ф. The upper and lower bounds of mutual coherence are,  

( ) 1
( 1)

N M
M N

µ−
≤ ≤

−
Φ   .                                       (2.11) 

The mutual coherence of sensing matrix provides a way to quantify the sufficient 

conditions on the equivalence between l0-norm and l1-norm approaches. 

Theorem 2.1 ([22], [23]) Let Ф = (𝜙𝜙𝑖𝑖)𝑖𝑖=1𝑛𝑛  be an M-by-N matrix, and let x ∈ ℝ𝑁𝑁\{0} be 

a solution of Problem (2.8) satisfying,  

( )( )-1

0

1 1
2

x µ< + Φ   .                                          (2.12) 

Then x is the unique solution of Problem (2.8) and Problem (2.9).  
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Another well-known theorem of sufficient condition on the l0-norm and l1-norm 

equivalence is Restricted Isometry Property (RIP), which is firstly introduced in [24]. 

Theorem 2.2 ([24]) Let Ф = (𝜙𝜙𝑖𝑖)𝑖𝑖=1𝑛𝑛  be an M-by-N matrix. Then Ф has the Restricted 

Isometry Property (RIP) of order K, if there exists a δK ∈ (0, 1) such that for all x ∈ ∑K 

( ) ( )2 2 2

2 2 2
1 1K Kx x xδ δ− ≤ ≤ +Φ  

where ∑K is defined as {𝑥𝑥 ∈ ℝ𝑁𝑁:‖𝑥𝑥‖0 ≤ 𝐾𝐾} 

RIP requires the sensing matrix Ф preserves the Euclidean length of all K-sparse 

signals during the dimension decrease. Construction of a sensing matrix satisfying RIP is 

expensive when following a deterministic approach. It is shown in [25] that the number 

of measurement needs to be larger than K2 for RIP condition. However, most of random 

matrices satisfy RIP condition with high probability, as studied in [26], 

Theorem 2.3 [26] Let δ ∈ (0, 1). If the probability distribution generating the M-by-N 

matrices Ф satisfies the concentration inequality with ε = δ, then there exist constants c1 

and c2 such that, with probability ≤ 1 − 2𝑒𝑒−𝑐𝑐2𝛿𝛿2𝑀𝑀, Ф satisfies the RIP of order K with δ 

for all K ≤ 𝑐𝑐1𝛿𝛿2𝑀𝑀/log(𝑁𝑁/𝐾𝐾). 

It is also shown in [26] that random matrices generating from independent and 

identically distributed (i.i.d.) Gaussian and Bernoulli random processes satisfy the RIP 

condition of order K with δ if  

( )logM c K N K≥ ×   ,                                          (2.13) 
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where c is a constant related to δ. The inequality in (2.13) provides a lower bound on the 

number of compressed measurements required for the RIP condition for a given specific 

sparsity. Note that, these random matrices are independent on sparse representation basis 

Ψ and have universality property. It means if Ф has the RIP, then the combination of Ф 

and Ψ, i.e. A = ФΨ, also has the RIP with high probability.  

II.C. Mixed-Signal CS Front-Ends 

As mentioned earlier, the main contribution of CS theorem is the integration of 

sampling and compression into one step. In previous section, we have reviewed the CS 

framework in the digital domain. The related theorems are readily to be extended to 

analog signals. We name the incoherent sampling schemes of analog signals as mixed-

signal CS front-ends.  

A famous mixed-signal CS front-end is random demodulator, which was firstly 

presented in [27], [28], and are employed in various applications, [29–32]. As shown in 

Fig. 2, a random demodulator consists of a pseudorandom number (PN) generator, a 

mixer, and an integrator. The mixer performs randomization by multiplying the input x(t) 

with a PN sequence or chipping sequence pc(t) at continuous time. The analog integrator 

operates as an anti-aliasing filter and also serves as a sub-Nyquist sampling module. The 

mixer output is a continuous-time demodulated signal, 

( ) ( ) ( )cy t x t p t= ×   .                                            (2.14) 

And discrete samples are collected by the integrator at every T seconds, 

[ ] ( )
( 1)1 , 0,1,...
n T

nT
y n y t dt n

T
+

= =∫   .                                (2.15) 
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The chipping sequence is usually drawn from an i.i.d. symmetric Bernoulli 

distribution due to its low-cost implementation with a linear feed-back shift register 

(LFSR) circuit [56]. However, the chipping frequency at the mixer needs to be greater 

than the Nyquist rate for incoherent measurements, resulting in considerable dynamic 

power. Because both the mixer and integrator have to be active in the entire compressed 

measurements generation, random demodulator hardware displays excessive dynamic 

power consumption [34]. Also, dedicated analog circuitries are required to display very 

good linearity in compressed measurements generation, because non-linear distortion is 

difficult to compensate and degrade the signal reconstruction [33]. A recent study also 

shows that the finite rising and falling time of PN sequence limits the mixer sampling 

pc(t)

Integrator
Sub-Nyquist 

Sampling
t

t T−∫

Pseudorandom 
Number Generator

x(t)

Random Demodulator

Input Output

 

Fig. 2.  Block diagram of mixed-signal CS front-end using random demodulator. 
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bandwidth and introduces aperture effect which seriously limits the CS performance 

[116]. This static effect can be compensated by calibration [117].  

A random demodulator based extension was proposed in [35], called parallel 

segmented compressed sensing (PSCS) in Fig. 3. Compressed samples in the PSCS are 

obtained in parallel by calculating the inner product during a known time period. Each 

channel collects the measurements independently. The parallel architecture provides 

design trade-off between the system complexity and the sampling rate of each channel, 

which is attractive when a single ADC in random demodulator is insufficient. Also, the 

PSCS design is known to be flexible for spurious frequency rejection [35]. Nevertheless, 

 

Fig. 3.  Architecture of the parallel segmented compressed sensing scheme. 
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multiple parallel channels in the PSCS scheme complicates the hardware design and 

relies on the symmetry between each channel hardware for reliable signal reconstruction.  

Another popular mixed-signal CS front-end is modulated wideband converter 

(MWC), which was initially presented in [36], [37]. Similar with the PSCS scheme, the 

 

Fig. 4.  Architecture of the modulated wideband converter (MWC) scheme. 
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MWC also has multiple parallel signal processing channels as shown in Fig. 4. However, 

instead of utilizing PN sequence as the mixer input, a series of periodic waveforms are 

employed. With careful adjustments on the number of channels, waveform period, and 

sampling period, the MWC scheme can satisfy the RIP condition with high probability. 

The periodic characteristics provide spectrum spreading features, because the periodicity 

in the time domain implies a series of harmonics in the frequency domain. Therefore, 

time-domain multiplication results in a band shifting in the frequency domain, which can 

be utilized to modulate a band-pass component to baseband. After spectrum spreading, 

the baseband signal is processed by a low-pass filter followed by sub-Nyquist sampling. 

As shown in [37], the number of active channels is required to be no smaller than four 

times of the signal bands, resulting in an increased hardware overhead. As an example in 

[37], 35 channels are employed which is very costly in hardware. In addition, it is also 

challenging to implement the multiple T-periodic waveforms generation.  

We note that the spectrum spreading in the MWC is also similar with the idea of 

ultra-wideband analog to digital conversion via signal expansion which was presented in 

[38] and [39]. The differences between the two are that [38] and [39] are applicable to 

general signals while the MWC scheme is specially optimized for sparse signals.   

II.D. Signal Reconstruction  

Recovering continuous signals from Nyquist-rate samples can be carried out by 

interpolation kernels. The ideal interpolation filter has sinc function as impulse response.  

However, signal reconstruction from the compressed measurements using CS is 

much more complicated. As reviewed in previous section, incoherent sampling protocol 
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enables relaxation from an l0-norm problem, which is NP-hard, to an l1-norm problem. 

Though l1-norm problem is convex, the algorithms to it are highly nonlinear.  

There are mainly two categories of signal reconstruction methods in CS literature 

[24], [40–44]. One group follows basis pursuit principle using linear programming, such 

as [24], [40], [41]. Basis pursuit solves the problem in (2.9) in noiseless situation. If the 

measurements contain observation noise, an additional constraint is required, 

2

1 2
min subject to

x
x x y ε− ≤Φ   ,                              (2.16) 

where ε > 0 is related to the noise. Thus, with a proper regulation parameter λ, Problem 

in (2.16) can be reformulated to an unconstrained version, 

2

2 1

1min
2x

x y xλ− +Φ   .                                      (2.17) 

Problem in (2.17) can be solved by various convex optimization algorithms, for 

example, interior-point method [24], iterative thresholding [45], projected gradient 

method [46], and Dantzig selector [47]. The complexity of these algorithms is tractable 

in polynomial time, but it is still considerably high, usually in the order of cubic of 

problem dimension. The stability of basis pursuit was studied in [48]. 

Theorem 2.4 [48] Let Ф be a measurement matrix satisfying the RIP condition. Then for 

any K-sparse signal x and the corrupted measurements y = Фx + w with ||w||2 ≤ ε, the 

solution 𝑥𝑥� to (2.17) satisfies 

2
ˆ Kx x C ε− ≤   , 

where CK depends only on the RIP constant δ. 
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Theorem 2.4 tells that the signal reconstruction via basis pursuit is correct with 

error proportional to the noise power.  

The other group adopts the greedy principle to find the sparse solution by 

iterations [42–44]. The most famous one is called orthogonal matching pursuit (OMP) 

[42]. The OMP finds the most correlated atom in sensing matrix at each iteration, and 

solves a least squares (LS) estimate for the weight. The OMP is an improved successor 

of matching pursuit [49]. Some extensions on the OMP include CoSaMP [43], stage-

wise OMP (StOMP) [44].  

The stability of the OMP was studied in [42] and [50]. 

Theorem 2.5 [42], [50] Fix δ ∈ (0, 0.36) and let Ф be an M-by-N Gaussian measure-

ment matrix with M ≥ 𝐶𝐶𝐶𝐶 log(𝑁𝑁/𝛿𝛿), where C is a constant. Let x be an arbitrary K-

sparse signal in ℝ𝑁𝑁. With probability exceeding 1–2δ that OMP correctly reconstructs 

the signal x from linear measurements y = Фx.  

Both basis pursuit and matching pursuit schemes mentioned above have tractable 

computational complexity as well as probabilistically guaranteed signal reconstruction 

performance. However, both of them have limitations, and may become sub-optimal in 

some situations. For example, greedy methods like matching pursuit are usually faster 

than convex relaxation and are also friendly to some non-convex constraints. However, 

its performance is sensitive to heavy observation noise [51]. Basis pursuit is known to be 

noise robust. But the algorithm is generally much slower, and the computational cost is 

appreciably greater than direct processing of the Nyquist-rate samples. These drawbacks 
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limit CS to applications where both good noise robustness and low-cost real-time signal 

reconstruction are necessities.  

Some other numerical methods for signal reconstruction are also available in CS 

literature, such as the HHS pursuit [52], Fourier sampling [53], Bayesian compressive 

sensing (Bayesian CS) [54], and smoothed-L0 [55], to name a few.  
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CHAPTER III  

ASYNCHRONOUS COMPRESSIVE SENSING FRONT-END* 

 

In this chapter, we present the proposed low-power asynchronous compressive 

sensing (ACS) front-end. We firstly introduce the overall signal processing chain of the 

proposed ACS front-end. Then we study its building blocks in details, such as the 

continuous-time ternary encoding (CT-TE) and the digital random sampler (DRS). The 

signal model is derived for each module. Block diagram and hardware of each module 

are studied. Practical design considerations for each part are also included in this chapter.  

III.A. Overview  

ADC serves as mixed-signal interface in a DSP system. The mixed-signal CS 

front-ends reviewed in Chapter II can be considered as a special kind of ADCs that 

converts sparse analog signals into discrete and quantized samples at its sub-Nyquist rate. 

A difference between mixed-signal CS front-ends and conventional Nyquist ADCs is 

that CS-based approaches require an additional signal reconstruction stage before any 

further DSP processing. Fig. 5 illustrates the signal processing chain of the proposed 

ACS front-end in a typical mixed-signal system. 

*Part of this chapter is reprinted with permission from “Digital-assisted asynchronous compressive sensing 
front-end” by J. Zhou, M. Ramirez, S. Palermo, and S. Hoyos, Sept. 2012. IEEE J. on Emerging and 
Selected Topics in Circuits and Systems, vol.2, no.3, pp.482 – 492. © [2012] IEEE. This material is posted 
here with permission from the IEEE. Such permission of the IEEE does not in any way imply IEEE 
endorsement of any of Texas A&M University’s products or services. Internal or personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE 
by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of 
the copyright laws protecting it. 
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Unlike conventional ADCs that are applicable to arbitrary band-limited signals, 

the proposed ACS front-end is limited to sparse and compressible RF/analog signals due 

to the sparsity constraints in CS framework. It’s a reasonable assumption that has been 

adopted in state-of-the-art mixed-signal CS front-ends. The sparse RF/analog signal is 

firstly processed by some signal conditioning modules, such as amplifier and filter, etc. 

Amplifier adjusts the input amplitude to full scale before analog-to-digital conversion, 

and filter shapes the signal’s spectrum and removes the out-band components. This step 

is generally mandatory in any ADC design. Their effects to the proposed ACS front-end 

will be discussed in later section. As shown in Fig. 5, the ACS front-end consists of two 

parts: CT-TE module and DRS module. The CT-TE module converts input amplitude 

variations into high-rate ternary timing signal, and the DRS module captures the ternary 

RF/Analog 
Signal CT-TE DRS

Signal 
Reconstruction

Signal 
Conditioning

Integration

Asynchronous Compressive 
Sensing Front-End

DSP
 

Fig. 5.  Signal processing chain of the proposed asynchronous compressive sensing 

(ACS) front-end in mixed-signal systems. 
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timing information by compressed samples at a sub-Nyquist rate. Signal reconstruction 

recovers the ternary timing signal. And the Nyquist-rate samples of RF/analog signal can 

be restored by an integration module, which are ready for further DSP processing.  

The ACS front-end is optimized for pulsed-like signals, which widely present in 

many electronic systems, for example ultrasound imaging, radar detection and ranging, 

sensor network, etc. In this chapter, we will focus on the signal model and architecture 

of the proposed ACS front-end [64]. Chapter IV and Chapter V will introduce two 

advanced signal reconstruction algorithms for the ACS front-end. Application studies 

will be presented in Chapter VI.  

III.B. Continuous-Time Ternary Encoding 

Fig. 6 illustrates the architecture of the continuous-time ternary encoding (CT-TE) 

scheme, which includes two parts: a comparator and a threshold generator. Suppose the 

input signal z(t) has been properly pre-amplified to the full scale with a peak-to-peak 

amplitude U. Vref denotes the reference signal in analog-to-digital conversion. The 

threshold generator divides U equally into 2Q levels based on quantization bit Q. At each 

time, the threshold generator provides a pair of thresholds (Vth,L, Vth,H) to the comparator. 

The difference between Vth,L and Vth,H is fixed to one quantization step Δ. In the ADC 

context, it’s equal to one least significant bit (LSB) in digit representation.  

Visually, one thresholds pair (Vth,L, Vth,H) constructs a comparison window for 

input signal z(t). Initially, the comparison window is adjusted to a quantization level that 

captures the input signal by calculating its running average. When z(t) goes higher than 

Vth,H or lower than Vth,L, the comparator outputs “+1” or “–1”, respectively and the 
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threshold generator will update the comparison window accordingly based on the input 

amplitude variation for the next comparison; otherwise, the comparator outputs “0”, and 

the threshold generator holds the current threshold pair unchanged. As a result, the 

amplitude variations in z(t) are modulated to the ternary timing signal x(t). Without loss 

of generality, we assign unit amplitude “+1” and “–1” to the comparator outputs pulses.  

Mathematically, the operation of the CT-TE module can be modeled by Eq. (3.1) 

to Eq. (3.3), where τ1 and τ2 are finite settling time of the comparator and the threshold 

generator, respectively, when finite hardware response speed is considered. Note that no 

clock is involved in the amplitude variation to the ternary timing information conversion. 

The ternary timing signal and the thresholds pair are fully signal-driven and functions of 

continuous time.  

Threshold 
Generator

Vth,LVth,H

z (t )

x(t )

Comparator

1
2

3
4U Δ 

•••

Vin

Edge 
Detector

1

0

-1

x(t )

t

z (t )

t 1-bit ADC

1-bit ADC

Vref

-Vref  

Fig. 6.  Architecture of the continuous-time ternary encoding (CT-TE) scheme. 
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Fig. 7.  An example of the CT-TE scheme input and output. From top to bottom, the first 

waveform shows the original ECG signal. The second waveform shows the output of the 

CT-TE scheme with Q = 1. The third waveform shows the output of the CT-TE scheme 

when Q = 5. 
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The embedded Schmitt trigger structure [57] in the threshold generator makes the 

proposed CT-TE scheme robust to moderate noise. Although this structure requires one 

additional bit ability in the threshold resolution, we argue that the effective resolution of 

the comparator is still Q-bit. Fig. 7 shows the output of the CT-TE scheme with a typical 

ECG signal at the input. With Q = 1, the pulse in output x(t) concentrates around the 

QRS complex where significant variation occurs. However, x(t) remains 0 for most of 

the other time. Hence, x(t) is a ternary approximation of the original signal with timing 

information that captures the most significant variations. A significant variation refers to 

the one that exceeds the given resolution. By increasing Q, the CT-TE scheme increases 

the ability to detect small variations. As shown in the third plot when Q = 5, the CT-TE 

scheme is able to response to smaller amplitude variations that exceed 5-bit resolution.  

The CT-TE scheme is different from some other modulation methods that also 

convert the amplitude information to timing signals, like the time encoding machine 

(TEM) [58], Delta modulation [59] and integrate-and-fire scheme [60]. Both the TEM 
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and delta modulation include a negative feedback loop to lock the input signal variations. 

Once starting, the entire circuit keeps on flip-flopping, like a sigma-delta modulator 

output with constant input, and firing all the time even when there is no amplitude 

variations at the input. The integrate-and-fire scheme calculates the weighted running 

average and also fires even if no amplitude variation occurs, resulting in unnecessary 

power overhead. Whereas in the CT-TE scheme, the circuits fire only when significant 

variation occurs, which have been shown in Fig. 7. Therefore, the CT-TE scheme has 

less firing overhead in converting the amplitude variations into timing information and 

thus exhibits more power efficiency for pulsed-like signals.  

The CT-TE scheme also introduces quantization noise like the conventional 

ADCs. Obviously, a larger quantization bit Q in DAC provides a higher resolution. 

However, the comparator requires some sufficiently large settling time to provide a 

stable output and the threshold generator also requires time to update the comparison 

window properly. Therefore, the achievable Q is constrained by the slew rate of signal 

and the settling time of the circuitry. Let SR denote the slew rate of the input signal z(t),  

( )max dz tSR
dt

 =  
 

  .                                             (3.4) 

Assume settling time of entire circuitry is τ = τ1+τ2, the maximum allowable Q is 

2log 1UQ
SR τ

≤ −
⋅

  .                                             (3.5) 

If the CT-TE module in Fig. 6 violates (3.5), x(t) cannot provide sufficient pulses 

to represent variations larger than 2Δ due to the ternary output in each comparison. As a 

result, x(t) is not able to track fast variations. It is referred to as overflow distortion.  
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The design constraint in (3.5) tells that the conversion rate of the CT-TE scheme 

should be high enough to satisfy slew rate requirement. Sometimes, the conversion rate 

may be even higher than the Nyquist rate, resulting in oversampling in the ternary timing 

signal. However, we argue that the CT-TE scheme is much simpler in hardware than the 

conventional ADCs. In addition, the conventional ADCs carry out amplitude sampling 

without memory. It means each samples are captured and quantized independent. While 

the CT-TE scheme follows amplitude sampling with memory. The high-rate ternary 

timing signals have low information rate for pulsed-like input. The sparsity motivates the 

usage of an event-driven sampling.  

Fig. 8 shows an illustration of received pulse signal and its corresponding output 

waveform using different amplitude sampling schemes with memory. Delta modulation 

and the CT-TE scheme have 5-bit DAC, Sigma-Delta modulation has 1-bit DAC.  

In addition to the finite response rate, for small input signals the comparator may 

enter into metastable state and fail to resolve within the assigned time. This unpredict-

ability of the comparator can cause errors in the subsequent logic. In order to quantify 

the probability of a metastability error, we analyze the step response of a typical two-

stage open-loop comparator with a DC gain of ADC [61]. Its frequency response is 

( )

1 2

=
+1 +1

DC
v

AA s
s s
p p

  
  
  

  ,                                        (3.6) 

where p1 and p2 are the comparator’s two poles. The step response when p1 ≠ p2 is 

( ) 1 2- -2 1

1 2 1 2

= 1 -
- -

p t p t
out DC in

p pv t A v e e
p p p p

 
+ 

 
  ,                          (3.7) 
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Fig. 8.  An illustration of received pulse signal and its corresponding output waveform 

using different amplitude sampling schemes with memory. Delta modulation and the 

CT-TE scheme have 5-bit DAC, Sigma-Delta modulation has 1-bit DAC. 
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Assuming a uniform input amplitude distribution, the probability of metastability 

error Perr by the end of settling time τ is 

( )
1 2- -2 1

1 2 1 2

2 2 -1
=

1 -
- -

Q
L

err
p p

DC

V
P

p pA U e e
p p p p

τ τ 
+ 

 

,                             (3.8) 

where VL is the valid logic level. Note that a small Q decreases the probability of 

metastability error. 

In order to suppress the metastability in the edge detector unit in Fig. 6, we can 

employ a double pass-transistor logic (DPL) [62] which has potential for high-speed 

design due to its low input capacitance. Also, the DPL provides dual logic paths for 

every logic function. It introduces additional robustness to track amplitude variation. 

Comparator offset is also an important issue. A static offset displays compression 

or extension to each of the piecewise-constant section of x(t), with an extreme case being 

when the offsets in the two 1-bit ADCs reach to one quantization step Δ. In such a case, 

the comparator in Fig. 6 may be unstable. While auto-zeroing technique [63] is able to 

effectively reduce this input offset, ultimately this is limited by circuit non-idealities 

such as charge injection. Hence, the maximum Q is jointly determined by Eq. (3.5), (3.8), 

and offset considerations.  

The block diagram of hardware implementation of the CT-TE scheme is shown 

in Fig. 9. The 1-bit ADCs in Fig. 6 are implemented by comparators. The edge detector 

is implemented by an adder with saturation. Saturation function limits the maximum 

adder output to be ±1. The output of adder is the ternary timing information, which will 

be captured by the digital random sampler introduced in the next section. In Fig. 9, an 
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accumulator is employed to update the DAC input. It is worthy to mentioning that the 

adder and accumulator are designed in combinational logics which are sensitive to input 

changes only. Asynchronous sampling mechanism features a reduced duty cycle, and 

therefore reduced power consumption in capturing pulsed-like signals as only significant 

amplitude variations are captured by the CT-TE scheme. Quantitative analyses in the 

context of ECG recording in wireless body sensor networks are provided in Section D. 

III.C. Digital Random Sampler 

The ternary characteristics of x(t) facilitates digital-assisted CS hardware. Firstly, 

the dedicated analog mixer for multiplication in state-of-the-art mixed-signal CS front-

ends, like random demodulator, PSCS, and MWC, is replaced by a simple register that 
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Fig. 9.  Block diagram of hardware implementation of the CT-TE scheme. 
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adjusts the sign of chipping sequence according to ternary input. Secondly, inner product 

of any chipping sequence with zero-valued input is trivial and can be saved. Thirdly, the 

analog integrator can be replaced by a digital accumulator. The digital circuitry exhibits 

many advantages, such as low power, ease of massive integration and excellent linearity 

in compressed measurements generation.  

Fig. 10 presents the proposed first type digital random sampler (DRS-I), which 

replaces the dedicated analog modules with digital circuitry and optimized for ternary 

input. Note that the CT-TE output is asynchronous to any clock, while the accumulator 

module in DRS-I is synchronous. Therefore, an asynchronous-to synchronous interface 

is required. Typically, first-in-first-out (FIFO) block is designed for this interface, which 

supports asynchronous write, synchronous read and metastability control [65].  

From 
CT-TE

Pseudo-random 
Sequence Generator

Z-1

x(t) 

pc[n] 

y[m] Accumulator

Digital Random Sampler - I

Linear Feedback Shift Register

MUXINV

 

Fig. 10.  Block diagram of the first type digital random sampler (DRS-I). 
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DRS-I can be further optimized by taking the piecewise-constant characteristics 

of ternary input into account, and we name it as DRS-II. Specifically, with a proper Q 

and τ, output of the CT-TE scheme exhibits ternary piecewise-constant characteristics, 

i.e. x(t) = {-1, 0, 1}. A discrete set of time instances, T = {T0, T1, T2,…} represents the 

time instants of each transition edge in x(t). Since x(t) has only three possible values or 

states, two thresholds are sufficient for the transition edge detection. Note that no clock 

is involved in either the CT-TE module or transition time detection. In other words, their 

outputs are fully signal-driven and functions of continuous time. These two circuits are 

operating in an asynchronous mode.  

In this architecture, we explore the time period between two successive transition 

edges rather than T itself. Let Ti→i+1 denote the time period between the ith and (i+1)th 

transition. In the following discussion, we focus on one piecewise-constant section. 

Ti→i+1 can be quantized by counting the elapsed clock cycles Ci running at a predefined 

frequency fc,  

1= i i
i

TC
t

→ + 
 ∆ 

  .                                                   (3.9) 

where Δt = 1/ fc. Usually fc is higher than the Nyquist rate of the input signal to provide 

sufficient timing resolution. 

As reviewed in Chapter II, CS front-end modulates sparse signals into incoherent 

measurements by linear projections and later recovers them from a reduced number of 

measurements relative to a Nyquist sampling system. The CS measurements generation 

involves inner product calculation, which includes two operations: randomization and 
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integration. For a piecewise-constant signal, we have following transformation in each 

constant section, 

[ ] [ ] [ ] [ ]
1 1

1
i iC C

c c
n n

x n p n x p n
= =

⋅ = ⋅∑ ∑   .                                 (3.10) 

where pc[n] stands for chipping sequence from the pseudo-random number generator 

(PRNG), x[n] is the discrete sample from x(t) at the same sampling rate as that in PRNG, 

which is higher than the Nyquist rate [50]. In the random demodulator, the mixer and 

integrator have to operate continuously during the entire CS measurements generation. 

By Eq. (3.10), such an operation can be simplified to the accumulation of the chipping 

sequence followed by a single multiplication with the first sample of each piecewise-

constant section x[1]. Additionally, x[n] is ternary, i.e. x[n] ∈ {-1, 0, 1}, Eq. (3.10) can 

be further simplified to (3.11). 

[ ] [ ] [ ]( ) [ ] [ ]
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1

sign 1 ,     if 1 0 
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0,                                    if 1 0

i

i

C
C

c
nc

n

x p n x
x p n

x
=

=


⋅ ≠⋅ = 

 =

∑∑   .                (3.11) 

Equation (3.11) is more favorable in circuit design because the CS measurements 

generation can be efficiently implemented by digital accumulator rather than a dedicated 

analog mixer and an integrator in random demodulator (Fig. 2). As shown in [34], the 

PN sequence demands significant buffering effort before being applied to the mixer, 

resulting in significant static power overhead. Also, the nonlinear analog mixing greatly 

affects the signal reconstruction performance [33]. By leveraging the piecewise-constant 

property, the proposed DRS-II enjoys the advantages of digital circuitry scaling, such as 

smaller area, lower static power consumption, and excellent linearity, etc.  

34 

 



 

Moreover, power can be further optimized by shutting down the PRNG during 

the time period when x[n] = 0. As shown in Eq. (3.11), the inner product of 0 with any 

sequence is trivial. Therefore, we can optimize the PRNG in the DRS-II to be active only 

for nonzero-valued sections; otherwise it is deactivated. Such a reduced duty cycle of 

randomization scheme optimizes the operating time of the PRNG. As reported in [34], 

the combination of PRNG and randomization procedure accounts for nearly half of the 

entire power in a random demodulator. A smaller duty cycle of high-power modules 

directly decreases the on-chip power during the CS measurements generation. 

Though the aforementioned reduced duty cycle in randomization is attractive, it 

may prohibit the recovery of the original signal as we abandon all zero-valued sections 

of x[n] in measurements. Actually, randomization is performed on a concatenated signal 

with all nonzero-valued sections of x[n] rather than the original one. As a consequence, 

the timing signal with zero-valued sections is missing in the random sampling stage. The 

detailed timing information of all zero-valued sections must be included in the CS 

measurements in order to ensure an exact reconstruction of the original signal. 

Recall that x[n] is ternary piecewise-constant with unit amplitude in nonzero-

valued sections. The length of a certain zero-valued section (for example ith section) in 

x[n] can be modulated to the amplitude of its next ((i+1)th section) nonzero-valued 

section without blurring any amplitude information. Mathematically, the output of CS 

measurements can be denoted as, 

[ ] [ ]( ) [ ]
1

1
1

sign 1
iC

i c
n

y m x A p n
+

+
=

= ⋅ ⋅∑   .                               (3.12) 
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  .                            (3.13) 

where m denotes the measurement index, Ci and Ci+1 denotes the length of the current 

zero-valued section (ith section) and that of the next nonzero-valued section ((i+1)th 

section), respectively. Ai+1 is the amplitude of (i+1)th section.  

Fig. 11 shows the block diagram of the proposed second type digital random 

sampler (DRS-II) in the ACS random sampling stage. The edge detector locates each 
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Fig. 11.  Block diagram of the proposed second type digital random sampler (DRS-II). 
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transition edge in the input x(t). Depending on the values of piecewise-constant sections, 

the proposed DRS-II has two operating periods, 𝜙𝜙 and 𝜙𝜙�.  

In period 𝜙𝜙, when nonzero-valued sections are detected, the PRNG is enabled to 

generate PN sequence while the counter is disabled to save power.  

In period 𝜙𝜙�,  when zero-valued sections are detected, the PRNG is disabled while 

the counter is enabled to quantize the length of the current zero-valued section. It means 

that the PRNG and the accumulator are operating at period 𝜙𝜙 only.  

Suppose Ti and Ti+1 stand for the leading and lagging transition time of a zero-

valued section. The DRS-II enters period 𝜙𝜙�  at Ti. The quantized length of this zero-

valued section, Ci as shown in Eq. (3.9), is prepared to be modulated to the amplitude of 

its next nonzero-valued section. In the circuit design, it is equivalent to feed Ci and the 

accumulated PN sequence to the Multiplier 1 in Fig. 11 according to (3.12). Meanwhile, 

the PRNG stops and holds the state at Ti in period 𝜙𝜙�.  

The DRS-II enters period 𝜙𝜙 at Ti+1. The amplitude modulation is carried out by 

Multiplier 1, and the counter is reset to 0 for the next zero-valued section. The PRNG 

may resume working or continue holding its current state depending on the value of the 

upcoming piecewise-constant section. Multiplier 2 adjusts the sign of measurements and 

finalizes the CS measurements generation. In hardware implementation, Multiplier 2 can 

be efficiently implemented by a single register that adjusts the input sign. The following 

Table 1 summarizes the operation of the proposed DRS-II for the ACS front-end.  
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Table 1.  Pseudo-code for the DRS-II operation. 

Pseudo Code for the DRS-II Operation 

INPUT: the ternary timing information x(t), the PN sequence Pc. 

OUTPUT: the CS measurements y[m].  

PROCEDURE:  

1. Initialize counters i and m to 1, section amplitude Ai+1 = 1. 

2. while signal x(t), do 

3.     Edge detection to identify ith piecewise-constant section, x[n], n = 1, 2,…, Ci. 

4.     if the section value x[1] equals to 0. 

5.         𝜙𝜙�: The amplitude of next nonzero-valued section is Ai+1 = Ci, output halts. 

6.     else  

7.         𝜙𝜙: The CS measurements [ ] [ ]( ) [ ]
1

1
1

sign 1
iC

i c
n

y m x A p n
+

+
=

= ⋅ ⋅∑ , reset Ai+1 =1, 

increment m. 

8.     end if 

9.     Increment i. 

10. end while 

11. return y 
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Fig. 12.  An example of the equivalent signal in the proposed DRS-II. (a) The original 

ternary piecewise-constant signal; (b) The equivalent compact signal for randomization. 
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Since the randomization in the proposed DRS-II is performed on a concatenated 

signal rather than the original one x[n], it is worthy to look at the equivalent signal xeq[n] 

in the CS measurements. We refer to xeq[n] as the equivalent compact form of x[n], 

shown in Fig. 12. Suppose the output of the CT-TE scheme x(t) has a waveform shown 

in Fig. 12 (a). Then the edge detector finds each transition edge in x(t). In this paper, we 

assume the edge detector has been properly designed to detect all transition edges. For 

convenience, we mark them from a to g. The DRS-II enters operating period 𝜙𝜙 during 

the nonzero-valued sections. At this time, the counter keeps silent and the equivalent 

compact signal xeq[n] just copies the input to output, like sections (a, b) and (b, c). When 

zero-valued section (c, d) comes, the DRS-II enters operating period 𝜙𝜙� and the counter 

starts calculating its length Tc→d, which is later on modulated to the amplitude of its next 

nonzero-valued section (d, e), as shown in Fig. 12 (b). Similar operations are carried out 

on section (f, g). The final equivalent compact signal xeq[n] is shown in Fig. 12 (b). Note 

that, the equivalent compact signal xeq[n] is no longer a ternary-valued signal like x[n]. 

However, xeq[n] is still piecewise-constant and includes all information of the original 

x[n] in the CS measurements generation.  

In order to quantify the duty cycle reduction, we introduce a metric for duty cycle 

reduction or part-time ratio, and define it as the ratio of total randomization time of the 

equivalent compact signal xeq[n] over that of the original ternary signal x[n], 

eq
1

duty cycle
1

i ii x

i ii x

T
r

T
→ +∈

→ +∈

=
∑
∑

  .                                         (3.14) 
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It is worthy to point out that the ACS front-end has very high power efficiency 

for pulsed-like signals, e.g. ECG signal, ultra-wide band (UWB) pulse signal, radar 

signal, ultrasound signal, etc. This is because the ACS front-end targets at the amplitude 

variations and optimizes the duty cycle of power-demanding modules which otherwise 

should be always on, such as the ones in random demodulator. Besides, the proposed 

ACS front-end is not restricted to time-sparse signals only. For example, tone signals 

also have equivalent compact signals xeq[n] with the ACS front-end. Then, all signal 

processing presented previously can be directly applied. However, the power efficiency 

decreases when a signal is sparse in other domain rather than time domain, because the 

duty cycle of power-demanding modules increases as the signal activity increases.  

III.D. Design Considerations 

To analyze the performance of the ACS front-end, a 1-channel version (Fig. 5) is 

constructed. A typical ECG signal from the MIT-BIH Arrhythmia Database [66] is used 

as input signal for illustration. In the following simulations, one complete cycle of ECG 

signal is adopted.  

Recall that the CT-TE module operates in an asynchronous mode, and there is no 

explicit sampling and hold clock. The finite settling time of comparator and DAC limits 

both the maximum response rate to input variation and the maximum resolution. From 

(3.5), Q is upper-bounded by the signal’s slew rate and circuit settling time τ. Assuming 

a comparison rate of 1/τ and a full-scale ECG signal of 2 Vpp and 100 V/s slew rate, the 

relationship between the minimum comparison rate and the quantization bit Q is shown 

in Fig. 13. As Q increases, the required comparison rate of the CT-TE module increases 
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exponentially. Therefore, a high-speed CT-TE circuitry is required for a high-resolution 

ACS front-end. For example, if the comparison rate is set to 100 KHz, the maximum 

quantization bit Q can be 10. In order to focus on the performance of the proposed ACS 

front-end, the following analysis assumes that the CT-TE circuitry supports a maximum 

of 10-bit resolution.  

 

Fig. 13.  The relationship between minimal comparison rate and quantization bits for 

typical ECG signals from MIT-BIH Arrhythmia Database. 
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As shown previously in Fig. 7, the number of significant variations increases as 

the quantization bit Q goes up due to the comparison window becoming narrow when Q 

goes large. The part-time randomization strategy discussed in the DRS-II is applicable to 

the zero-valued sections and thus it is informative to investigate the relationship between 

the part-time ratio and quantization bit. Fig. 14 shows that the part-time ratio or duty 

 

Fig. 14.  The relationship between part-time ratio and quantization bits in the proposed 

ACS front-end for ECG signal.  
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cycle increases as Q increases due to the detection of small amplitude variations. As the 

resolution approaches the noise floor, this also increases the part-time ratio. However, 

even with 10-bit quantization, the part-time ratio is still around 0.1 for the typical ECG 

signal; suggesting a very efficient ACS front-end implementation.  

The highly-digital ACS front-end provides multiple attractive properties for 

current and future applications. By replacing the dedicated analog modules in random 

demodulator, such as the mixer and integrator, with their digital counterparts, the ACS 

front-end will scale well with CMOS processes and provide increased robustness to 

nonlinearity and aperture effect. The primary advantage of the proposed ACS front-end 

compared to other digital-assisted CS hardware designs [67] results from the part-time 

randomization which optimizes the PN generator operation, which is typically the 

highest-power digital block. In [67], the accumulator keeps on active during the entire 

CS measurements generation. While in the ACS front-end, accumulator is shut down for 

all zero-valued sections. Instead, a counter working at the same rate is employed. If 

accumulator and counter in Fig. 11 have the similar toggling rate, they have comparable 

power consumption. Then, the reduced duty cycle of PN generator reduces the overall 

on-chip power consumption. The small part-time ratio result shown in Fig. 14 suggests 

the potential on power savings in the ACS front-end for pulsed-like input signal. 

Focusing on the most significant amplitude variations in ECG signal, Fig. 15 

illustrates the original QRS complex and its ternary timing signal x[n] after the CT-TE 

scheme when Q = 1. As shown in Fig. 15, the sparse ternary-valued timing signal can be 

captured by the DRS-I or DRS-II efficiently at a low sampling rate.  
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Fig. 15.  Original signal waveform of QRS complex in ECG recording and its ternary 

approximation by 1-bit quantization in the CT-TE scheme. 
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III.E. Summary 

In this chapter, we introduced the ACS front-end. Two essential building blocks, 

continuous-time ternary encoding (CT-TE) scheme and two types of digital random 

sampler (DRS) are discussed. The CT-TE scheme employs asynchronous sampling 

mechanism to convert amplitude variations into high-rate ternary timing signals. DRS 

captured the ternary timing signals at a sub-Nyquist rate by CS framework. The DRS-I 

has relatively low cost and is ideal for a massive integration. The DRS-II has a reduced 

duty cycle of energy-hungry circuits in CS measurements generation.   
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CHAPTER IV  

GROUP-BASED TOTAL VARIATION*  

 

In this chapter, we propose group-based total variation (GTV) for the ACS front-

end. Algorithm descriptions and main theorem are presented. Numerical results are 

provided in the context of ECG recording in wireless body sensor networks (WBSN).  

IV.A. Description  

The ACS front-end in Chapter III firstly converts input amplitude variations into 

ternary timing information by the CT-TE scheme, and then employs DRS-I or DRS-II to 

capture the ternary timing signal or its equivalent compact signal at a sub-Nyquist rate, 

respectively. Both ternary timing signal and equivalent compact signal are piecewise-

constant, which implies sparsity in the gradient domain. For illustration, Fig. 16 shows 

an example of an equivalent compact signal in the DRS-II and its first-order derivative.  

Among many regularization terms on derivative function, total variation (TV) 

[68] shows some great potential, primarily due to its convexity, discontinuity tolerance 

and edge-preserving ability [69–73]. The standard TV regularization method was first 

introduced by Rudin-Osher and Fatemi in [68]. Various follow-ups were proposed that 

*Part of this chapter is reprinted with permission from “Digital-assisted asynchronous compressive sensing
front-end” by J. Zhou, M. Ramirez, S. Palermo, and S. Hoyos, Sept. 2012. IEEE J. on Emerging and 
Selected Topics in Circuits and Systems, vol.2, no.3, pp.482 – 492. © [2012] IEEE. This material is posted 
here with permission from the IEEE. Such permission of the IEEE does not in any way imply IEEE 
endorsement of any of Texas A&M University’s products or services. Internal or personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE 
by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of 
the copyright laws protecting it. 
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either improved the signal recovery and/or extended the TV method to different kinds of 

signals [74–79]. Some recent work on the combination of TV framework and CS signal 

recovery have been reported for image restoration from incomplete samples [80–82].  

However, the penalty term in most of existing TV methods mentioned above is 

element-based and neglected the internal signal structures. Leveraging on the piecewise-

 
(a) 

 

 
(b) 

Fig. 16.  An illustration of (a) piecewise-constant equivalent compact signal in the DRS-

II, and (b) its first-order derivative. 
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constant characteristics of ternary timing signal, we introduce a group-based TV (GTV) 

penalty and so-called GTV signal reconstruction algorithm for the sparse signal recovery 

in this chapter. The idea comes from a fact that pulsed-like signals can be approximated 

by a piecewise-constant ternary timing signal after the CT-TE scheme processing. The 

GTV term in the penalty function offers additional benefits to the signal recovery from 

the incomplete and noise corrupted measurements.   

IV.B. Main Theorem 

The problem of conventional TV regularization can be formally formulated in Eq. 

(4.1) [68],  

( )2

2

1ˆ arg min TV
2xx y x xα = − +  

Φ   .                             (4.1) 

In (4.1), Ф is sensing matrix which can be viewed as a bounded linear operator, 

and α is the regularized factor that controls the weight between the data fidelity term 

2

2
y x−Φ  and the TV term TV(x). TV(x) is defined as below, 

( )TV x x du
Ω

= ∇∫   ,                                           (4.2) 

where Ω is feasible set of x. TV(x) measures the variations of x without penalizing the 

discontinuities, and is also capable of preserving edge information. As shown in (4.2), 

the conventional TV regularization is element-wise based in the feasible set. It neglects 

additional the piecewise-constant characteristics in the ternary timing signal output from 

the CT-TE scheme.  

Before introducing the proposed group-based TV (GTV) scheme, we first define 

the concept of “group” adopted in the GTV algorithm.  
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Definition 4.1: In the discrete setting, group is a collection of consecutive points that 

have the same quantized amplitude information. 

S-member means the maximum group size is S. Including both the inter-group 

and intra-group total variation of x ∈ ℝ𝑁𝑁, our goal is to minimize the objective function 

in (4.3) during the signal reconstruction. 

( ) ( ) ( ) 2

2
TV GTV ,J x x x S y xα γ= + + −Φ   .                          (4.3) 

Thus, we have the following optimization problem, 

( )min
x

J x   ,                                                    (4.4) 

subject to the following constraints, 
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where D is the gradient matrix, α and γ are tuning parameters that balance TV and GTV 

penalties, 𝑥𝑥𝑖𝑖
𝑗𝑗  means the string comprising samples i through j within x, gi is the group 

size seeing from the ith sample, and TH is the threshold for similarity. 

We adopt the iteratively reweighted least squares (IRLS) method [83] in sparse 

recovery. As shown in [83], an lp-norm (p ≥1) can be approximated by the reweighted l2-

norm at each iteration step. Hence, the optimization problem (4.4) can be approximated 

by a least squares (LS) problem in each iteration. Note that, even with a linear problem 

in each iteration, the IRLS is highly nonlinear due to its adaptive algorithm nature.  
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Comparing with the conventional TV-based method, the S-GTV includes a new 

regularization term GTV(x, S) that measures the intra-group total variation. Since it’s the 

summation of a set of l1-norm terms, each one can be approximated independently. The 

difference lies in the weights calculation. In the proposed S-GTV scheme, each sample 

in x has S weights corresponding to its S neighbors. Depending on the limit of group size 

and signal characteristics, the actual number of neighbors involved in the group-based 

TV calculation may vary among different elements. Therefore, each point will find its 

neighbors depending on the criterion shown in (4.5). The S-GTV algorithm is described 

in Algorithm 4.1 in Table 2.  

In initialization, the weight series W j(i) for the jth neighbor are set to 1, where 

i=1, 2, …, N and j=1, 2, …, S. In each iteration, an equivalent total variation Wtotal is 

calculated by least squares approximation. Note that Wtotal includes both the inter-group 

and intra-group total variation described in (4.5). By tuning the parameters α and γ, we 

can control the direction of optimization. Specifically, a smaller γ gives more freedom to 

the optimizer to seek the significant point-wise variations or local variations; while a 

larger γ leads the optimizer to the piecewise-constant sections or global variations.  

It is worthy to point out the sparse recovery of problem (4.4) is xeq[n] rather than 

x[n] when DRS-II is employed in the ACS front-end. After amplitude compensation, the 

equivalent compact signal (a*xeq[n]) should have integer-valued amplitude because both 

∑pc and Ti→i+1 are integers by default. Therefore, (a*xeq[n]) is rounded to integers to 

reconstruct the original ternary piecewise-constant signal x[n]. If the absolute amplitude 

of a certain piecewise-constant section is larger than 1, i.e. |a*xeq[i]|>1, it implies there is 
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a zero-valued section before it. Also, the length of that zero-valued section is equal to 

|a*xeq[i]| with the same sign of (a*xeq[i]). For those sections with unit amplitude, they are 

copied to the output directly. 

Accurate recovery of zero-valued sections is important, as a small error results in 

a shift of the peak (e.g. the QRS complex), and may cause a large overall reconstruction 

error. This work proposes two compensation techniques to ensure sufficient recovery 

performance. The first technique relies on the intra-group TV penalty in the S-GTV 

scheme. Recall that the iteration process in Algorithm 4.1 starts from randomized 

measurements. It is reasonable to use a smaller γ in the first several iterations to figure 

out a “contour” of the piecewise-constant approximation. After that, a larger γ will help 

smooth out observation noise and simultaneously expedite the convergence rate. The 

second technique leverages the property that the PN generator clock rate is larger than 

the input Nyquist rate. If we have an H times higher clock rate, a single activity in the 

CT-TE scheme (“+1” or “-1”) results in at least H discrete samples and each piecewise- 

constant section in x(n) should have a minimum of H samples. As will be shown in next 

section numerical results, it is possible to correct some outliers in the reconstruction 

result with compensation. 
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Table 2.  S-member group-based total variation 

Algorithm 4.1: S-member Group-Based Total Variation 

INPUT: randomization matrix Φ , received signal y, the threshold TH, the maximal 

group size S, the maximal iteration number imax, and the tuning parameters α and γ. 

OUTPUT: the estimation of piecewise-constant signal 𝑥𝑥�  

PROCEDURE:  

1. Initialize the estimate signal xt-1 = 0, the weight 𝑊𝑊𝑡𝑡−1
𝑗𝑗 = 1 for jth neighbor, and the 

iteration count t = 1. 

2. while t ≤ imax,  do  

3.     Find the gradient of x, x′ = Dx. 

4.     Perform thresholding, find group size for each sample, 

    𝑔𝑔𝑖𝑖= min{S, arg max g |𝑥𝑥′𝑖𝑖
𝑖𝑖+𝑔𝑔|∞ ≤ 𝑇𝑇𝑇𝑇 < |𝑥𝑥′𝑖𝑖

𝑖𝑖+𝑔𝑔+1|∞}. 

5.     Calculate the weight for the least squares approximation, 

    𝑊𝑊total(𝑖𝑖) = 𝛼𝛼𝐷𝐷′𝑊𝑊𝑡𝑡−1
1 (𝑖𝑖)𝐷𝐷 + 𝛾𝛾 ∑ 𝐷𝐷𝑗𝑗′𝑊𝑊𝑡𝑡−1

𝑗𝑗 (𝑖𝑖)𝐷𝐷𝑗𝑗
𝑔𝑔𝑖𝑖
𝑗𝑗=1 , where Dj is j-shifted 

gradient matrix. 

6.     Calculate the least squares solution for current iteration,  

    xt = (Φ′ ∗Φ+Wtotal)-1∗Φ′y 

7.     Update the weight of all neighbors, 𝑊𝑊𝑡𝑡
𝑗𝑗= 2*diag(1/Djxt) 

8.     Increment t 

9. end while 

10. return 𝑥𝑥� ← xt 
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IV.C. Numerical Results 

In order to evaluate the sparse recovery of conventional TV-based methods and 

the S-GTV algorithm, a typical ECG signal from the MIT-BIH Arrhythmia Database [66] 

is used as a case study for illustration. In the following simulations, one complete cycle 

is simulated, and we utilize the QRS complex which represents the region with the most 

significant variations in an ECG signal. Here we define the Sub-Nyquist Sampling Ratio 

(SSR) in Eq. (4.6), where fNyq is the Nyquist rate and fs is the actually sampling rate. 

Nyq

SSR= sf
f

  .                                                   (4.6) 

Setting the SSR to 0.18, from Fig. 17 to Fig. 19, we shows the sparse recovery of 

the equivalent compact signal xeq[n] using the conventional TV method and the proposed 

S-GTV scheme at different signal-to-noise ratios (SNRs). In the noise-free case, Fig. 17 

(a) shows that both the conventional TV method and the S-GTV scheme can exactly 

recover xeq[n]. However, as shown in Fig. 17 (b), by evaluating the mean squared error 

(MSE) at each iteration step, the proposed S-GTV scheme exhibits a faster convergence 

relative to the conventional TV approach. This is because as the minimizer approaches 

to the optimum, the GTV term regularizes the objective function to a direction that 

favors the piecewise-constant estimation, expediting the convergence rate. In Fig. 17 (b), 

an error floor is observed in both the conventional TV and S-GTV scheme due to the 

small additive offset introduced in matrix inversion in Step 6 of Algorithm 4.1 that 

ensures the inverse operation is tractable in the numerical calculation. 
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(a) 

 
(b) 

Fig. 17.  Sparse recovery of piecewise-constant signal xeq[n] by TV-based method and S-

GTV scheme in noise-free case. (a) Waveform recovery; (b) MSE versus iteration time. 
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(a) 

 
(b) 

Fig. 18.  Sparse recovery of piecewise-constant signal xeq[n] by TV-based method and S-

GTV scheme when SNR=40dB. (a) Waveform recovery; (b) MSE versus iteration time. 
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(a) 

 
(b) 

Fig. 19.  Sparse recovery of piecewise-constant signal xeq[n] by TV-based method and S-

GTV scheme when SNR=20dB. (a) Waveform recovery; (b) MSE versus iteration time. 
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Fig. 18 shows that the S-GTV algorithm exhibits better MSE performance in 

comparison to the conventional TV-based method when SNR decreases to 40dB. This 

difference results from the combination of intra-group and inter-group TV penalties in 

the S-GTV scheme. Although group TV penalty cannot eliminate outliers completely in 

the piecewise-constant sections due to noise, the proposed compensation techniques 

ensure an accurate recovery of the equivalent compact signal xeq[n]. In Fig. 18, MSE 

displays an 11.3dB improvement with the S-GTV scheme with compensation. 

Fig. 19 shows that both the conventional TV approach and the S-GTV algorithm 

have very limited MSE performance without compensation when noise increases to 

20dB SNR. Compared to the conventional TV approach, the S-GTV scheme is good at 

recovering large piecewise-constant sections. While outliers do exist in the sparse 

recovery result, the S-GTV scheme with compensation is able to guarantee the 

demodulation process of ternary timing information. By exploiting the characteristics of 

the equivalent compact signal, we can roughly categorize the entire recovery into three 

groups: one group with amplitude less than -1, one group with amplitude larger than 1, 

and one that includes all others. For the first two groups, the amplitude of consecutive 

samples can be averaged, which represents the length of the zero-valued section before it. 

While for the third group, the amplitude is around 1 or -1.  

Fig. 20 illustrates the sparse recovery with the compensation technique when 

SNR=20dB and the ideal noise-free case. These results suggest that the proposed S-GTV 

scheme achieves an accurate sparse signal recovery of ternary timing information with 

the compensation techniques. Once the ternary timing signal is obtained, the original 
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signal can be reconstructed by integration followed by advanced smoothing techniques 

because of bandlimited ECG signal. For illustration, we adopt an accumulator for digital 

integration followed by low-pass filter (LPF) in the following simulations. 

Fig. 21 shows the waveform reconstructions of the QRS complex by the ACS 

front-end with 3-bit and 5-bit CT-TE schemes, respectively. In the proposed ACS front-

 

Fig. 20.  Recovery of ternary timing signal x[n] from the equivalent compact signal 

xeq[n] with compensation techniques. 
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end, the CT-TE scheme also introduces quantization noise similar to the conventional 

ADCs. The differences between ideal ECG waveform and the reconstructed ones are 

caused by the quantization noise and observation noise. Increasing the CT-TE resolution 

improves the QRS waveform reconstruction. In Fig. 21, the MSE of reconstruction is 

 

Fig. 21.  Reconstruction of QRS complex waveform by the proposed ACS front-end 

with different number of quantization bits in the CT-TE scheme. 
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0.429 and 0.062 for 3-bit and 5-bit CT-TE scheme, respectively, with a SSR of 0.18, i.e. 

6-fold data volume reduction compared with the Nyquist-rate sampling scheme.    

Heart rate detection is a basic function in ECG recording systems and many heart 

diseases like arrhythmia can be identified from an abnormal heart rate. In Fig. 22, a 

sequence of 3 heart beat cycles is adopted to evaluate the heart rate detection with 3-bit 

and 5-bit CT-TE scheme in the ACS front-end when SSR is set to 0.18 and SNR is 20dB. 

As shown in Fig. 22, both the 3-bit CT-TE and 5-bit CT-TE scheme of the ACS front-

end enable sub-Nyquist sampling with a CS technique and the sparse reconstructions 

provide reliable heart rate detection with a simple thresholding scheme. It is worthy to 

point out that the proposed ACS front-end can be initialized to 3-bit quantization to 

enable heart rate detection at a very low data rate, as suggested by Fig. 14, which shows 

the duty cycle reduction at different CT-TE resolution. Once an abnormal heart rate is 

identified, more quantization bits can be dynamically assigned to increase the resolution 

for further analysis. Such a need-based strategy increases the autonomy of the ACS 

front-end in an ECG recording system and optimizes the power consumption from a 

system perspective. 

IV.D. Summary 

We present the proposed group-based total variation (GTV) signal reconstruction 

scheme in this chapter. The newly introduced GTV penalty in the objective function 

provides better signal reconstruction and faster convergence rate when compared with 

conventional TV approach. The performance of GTV algorithm is studied in the ECG 

recording of wireless body sensor networks.  
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Fig. 22.  Reconstruction of 3-cycle ECG waveform by the proposed ACS front-end with 

different number of quantization bits in the CT-TE scheme. 
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CHAPTER V  

SPLIT-PROJECTION LEAST SQUARES 

 

In this chapter, we present a low-complexity sparse signal reconstruction scheme 

called split-projection least squares (SPLS) for the proposed ACS front-end. Algorithm 

descriptions are provided in Section A. Main theorem, including derivations of statistics 

of the SPLS estimator and optimal threshold for ternary-valued amplitude detection is 

presented in Section B. Section C compares the computational complexity with state-of-

the-art CS signal reconstruction schemes. And Section D discusses the hardware design. 

Numerical simulations are provided in Section E. Finally, Section F makes conclusions.  

V.A. Description  

In Chapter II, Section D, we briefly reviewed two popular signal reconstruction 

approaches in CS framework, i.e. basis pursuit and matching pursuit. Both approaches 

are equivalent to an l1-norm optimization problem that is known to have computational 

complexity in polynomial time and probability guaranteed performance in the signal 

reconstruction. However, both of them have some known limitations. For example, 

greedy methods like matching pursuit are usually faster than convex relaxation and also 

friendly to some non-convex constraints. However, its performance is sensitive to heavy 

observation noise [51]. Basis pursuit is more noise robust. But the algorithm is generally 

much slower, and the computational cost is appreciably greater than direct processing of 

the Nyquist-rate samples. These drawbacks limit the CS technique to applications where 

both good noise robustness and low-cost real-time signal reconstruction are necessities, 
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for example, high-performance but low-power diagnostic ultrasound imaging and radar 

detection, etc.  

Scrutiny to basis pursuit and matching pursuit reveals that they both are general 

signal recovery approaches and are applicable to any kind of sparse signals, structured or 

unstructured, without a requirement on knowledge of sparse signal support and/or 

amplitude. However, we do have a prior on the amplitude of ternary timing signal, i.e. 

{+1, 0, –1}, when the proposed CT-TE scheme is employed together with the DRS-I in 

the ACS front-end. The ternary amplitude prior motivates the development of following 

low-complexity split-projection least squares (SPLS) algorithm, which reconstructs the 

ternary timing signal from compressed measurements generated by the DRS-I.  

V.B. Main Theorem 

Let us denote x to be a K-sparse ternary signal from ℝ𝑁𝑁, and y ∈ ℝ𝑀𝑀 to be the CS 

measurements y = Φx + w, where Φ is an M × N (M << N) sensing matrix, Φ = [φ1, φ2, 

φ3,…, φN], and φi denotes the ith column of Φ. Here, w is Gaussian noise, w ~ 𝒩𝒩(0, 𝜎𝜎2).  

Define a window Ω of length L to sweep along the columns of Φ. At each time, a 

windowed portion of the columns is selected. Let Φ be split into (𝑁𝑁 𝐿𝐿⁄ )  mutually 

exclusive sub-matrices, 

( ) ( ) ( )( )1 2 /, , , N L=Φ Φ Φ Φ   .                                     (5.1) 

For the ith sub-matrix in (5.1), Φ can be represented by two M×N matrices 𝚽𝚽Ω
(𝑖𝑖) 

and 𝚽𝚽Ω�
(𝑖𝑖) according to the specific window Ω = {S, S+1,…, S + L – 1}, S ∈ [1, N – L+1]. 

We drop the index i for convenience, then 
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𝚽𝚽 = 𝚽𝚽Ω + 𝚽𝚽Ω�   ,                                                  (5.2) 

( ) [ ] ( )( )21 1         M S M N S LM LΩ × − × − − +×
=Φ 0 B 0   ,                          (5.3) 

[ ] ( ) [ ] ( )( )1 31 1   M LM S M N S L×Ω × − × − − +
=Φ B 0 B   ,                            (5.4) 

where sub-matrices B1, B2, and B3 are formed from the columns of Φ according to Ω. 

Fig. 23 illustrates a matrix is split into two complementary matrices by a window.  

Similarly, we also segment x based on Ω, yielding 

( ) ( )( )1 2 31 1 1 1 1

T
T T T

S L N S L
x x x x

× − × × − − +
     =         .                        (5.5) 

Combining Eqs. (5.2)-(5.5), the measurement can be rewritten as, shown in Fig. 24. 

( )2 2 1 1 3 3y x x x w= + + +B B B   ,                                    (5.6) 

At each time, the windowed unknowns in x2 are estimated. Note that Φ has full 

column rank due to the RIP constraint on the sensing matrix [24]. 𝐁𝐁2𝑇𝑇𝐁𝐁2 is invertible 

when L ≤ M. The first derivative of the log-likelihood function with respect to x2 is,  

 

Fig. 23.  An illustration of matrix splitting. A sensing matrix is split into two 

complementary matrices by a sweeping window.  
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( ) ( ){ }2
2

2

12 2
2 2 22

ln Pr ; T
T Ty

y
x

x
x σ

−∂
= ⋅ −

∂
B B B B B    ,                          (5.7) 

where 𝑥𝑥�2 = 𝑥𝑥2 + (𝐁𝐁2𝑇𝑇𝐁𝐁2)−1𝐁𝐁2𝑇𝑇(𝐁𝐁1𝑥𝑥1 + 𝐁𝐁3𝑥𝑥3) is the expectation of the estimator 𝑥𝑥�2 =

(𝐁𝐁2𝑇𝑇𝐁𝐁2)−1𝐁𝐁2𝑇𝑇𝑦𝑦. Note that if 𝐁𝐁2𝑇𝑇𝐁𝐁1 and 𝐁𝐁2𝑇𝑇𝐁𝐁3 are 0, or x1 and x3 are 0, the proposed SPLS 

estimator becomes a minimum-variance unbiased (MVU) estimator, which is unbiased 

and whose variance achieves the Cramér–Rao Lower Bound (CRLB), well known to be, 

( ) ( ) ( )
2 2

-1 12
2 2 2ˆCRLB    where T

x xx I I σ
−

= = B B，   .                        (5.8) 
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Fig. 24.  An illustration of split projection on sensing matrix in the CS front-end. 
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Table 3.  Split-projection least squares (SPLS) 

Algorithm 5.1: Split-Projection Least Squares (SPLS) 

INPUT: sensing matrix Φ , compressed signal y, the length of window L, and the 

dimension of input sparse signal N. 

OUTPUT: the estimate of input sparse signal 𝑥𝑥�  

PROCEDURE:  

1. Initialize the first split by setting S=1. The column indexes in the window is Ω={S, 

S+1,…, S+L－1}, and initialize the estimate of input signal 𝑥𝑥� = ∅. 

2. while S < N  

3.      Draw sub-matrix B2 from Φ  based on the window Ω.  

4.      Obtain the SPLS estimate, 𝑥𝑥�2 = (𝐁𝐁2𝑇𝑇𝐁𝐁2)−1𝐁𝐁2𝑇𝑇𝑦𝑦.  

5.      Amplitude detection, 𝑥̅𝑥2 = TH(𝑥𝑥�2) 

6.      Prune interference, 𝑦𝑦 = 𝑦𝑦 − 𝐁𝐁2𝑥̅𝑥2. 

7.      Stack the section estimate, 𝑥𝑥� = [𝑥𝑥�;   𝑥̅𝑥2]. 

8.      Update the starting point of window, S = S + L. 

9. end while and return 𝑥𝑥� 

 

Equation (5.8) assumes all nonzero signal elements fall inside of the window Ω. 

It is generally not true. We continue the discussion for when 𝐁𝐁2𝑇𝑇𝐁𝐁1 and 𝐁𝐁2𝑇𝑇𝐁𝐁3 are not 0, 

or x1 and x3 are not 0 in next section. The entire signal estimate is formed by stacking 

each section estimate along the signal dimension. Note that each section estimate is non-
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adaptive, and they are independent to each other, which is fundamentally different from 

the iteratively reweighted least squares (IRLS) algorithm [83]. The independence of each 

section recovery enables a fully parallel architecture in hardware implementation for 

real-time signal reconstruction. To further lower down interference from the nonzero 

elements outside of the projection window, we may prune the detected nonzero elements 

(interference) from the measurements before the recovery of remaining sections, as 

shown in Step 6 in Table 3, Algorithm 5.1. We will compare the performance difference 

of the SPLS algorithm with and without interference prune in Section E. 

V.C. Statistics of the Estimator 

In general, 𝐁𝐁2𝑇𝑇𝐁𝐁1 and 𝐁𝐁2𝑇𝑇𝐁𝐁3 are not 0, or x1 and x3 are not 0. Let B2 be M×L, B1 

be M×P, B3 be M×R, where N = L+P+R. 

Suppose Φ is taken from a Gaussian process, Φ ~𝒩𝒩(0, 𝜎𝜎Φ2). According to (5.7), 

the SPLS estimator is biased in general due to the interference from nonzero elements 

outside of the split projection window. However, incoherent sampling principle in the 

CS framework constrains the absolute value of any two different column inner products 

in the sensing matrix Φ. We adopt a conservative assumption for analysis, given by, 

2 ,             if 
,

,                if i j
ij

M i j
d i j
σ

ϕ ϕ
ε

Φ ==  ≠
  ,                                    (5.9) 

where ε is a small value, and dij = ±1 is the sign indicator for correlation. Suppose Φ is 

taken from a Gaussian process, i.e., Φ ~𝒩𝒩(0, 𝜎𝜎Φ2). In [84], the authors have shown the 

product of two independent Gaussian variables, Z = XY, X~𝒩𝒩(0,𝜎𝜎𝑋𝑋2), Y~𝒩𝒩(0,𝜎𝜎𝑌𝑌2), has 

the following distribution, 
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( ) 02 2
2 2

Z
X Y X Y

Z Zf Z K
πσ σ σ σ

 
= ⋅  

 
  ,                                    (5.10) 

where K0(Z) is the first kind modified Bessel function with order 0. The expectation and 

variance of the product are also given by [84],  

( ) 0E Z =            ( ) 2 2Var X YZ σ σ=  

Therefore, 𝐁𝐁2𝑇𝑇𝐁𝐁2 can be rewritten as,  

2 22

2 2

22 2

ij
T

ij

M

M

d

d

σ

σ

ε

ε

Φ

Φ

 
 

=  
  
 

B B   

( )2 2,2
L L LMσ εΦ= ⋅ + − ⊗I 1 I D   ,                       (5.11) 

where IL is L×L identify matrix, 1L is an L×L matrix with all elements equal to 1, D2,2 

is the sign indicator matrix for the matrix product of 𝐁𝐁2𝑇𝑇 and 𝐁𝐁2, and ⨂ denotes element-

wise matrix multiplication. The inverse of Eq. (5.11) is 

( ) ( )

( ) ( )

( )

11 2 2,2
2 2

1
12,2 2

2

1
2,2

2 2

              

1              

T
L L L

L L L L

L L L L

M

M
M

M M

σ ε

ε σ
σ

ε
σ σ

−−

Φ

−
−

Φ
Φ

−

Φ Φ

 = ⋅ + − ⊗ 

 
= + − ⊗ ⋅ ⋅ 
 

 
= + − ⊗ ⋅ 
 

B B I 1 I D

I 1 I D I

I 1 I D I

 

( ) 2,2
2 2

1              L L L LM M
ε
σ σΦ Φ

 
≈ − − ⊗ ⋅ 
 
I 1 I D I   .                        (5.12) 

The last approximation is valid for small ε, because 

( ) 2,2
2 ,  as 

n

L L n
M
ε
σΦ

 
− ⊗ → →∞ 

 
1 I D 0  
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Similarly for 𝐁𝐁2𝑇𝑇𝐁𝐁1 and 𝐁𝐁2𝑇𝑇𝐁𝐁3, we have the expectation of the SPLS estimator, 

( ) ( ) ( )

( ) ( )

( ) ( )

1

2 2 2 2 2 1 1 3 3

2,2 2,1 2,3
2 1 32 2

2,1 2,3 2
2 1 32

ˆ

1

T T

L L L L P L Q

L P L Q

E x x x x

x x x
M M

x x x O
M

ε ε ε
σ σ
ε ε
σ

−

× ×
Φ Φ

× ×
Φ

= + +

 
= + ⋅ − − ⊗ ⋅ ⋅ ⋅ + ⋅ ⋅ 

 

= + + +

B B B B B

I 1 I D D D

D D

 

( ) ( )2
2 1 32 0 0

x x x O
M
ε ε
σΦ

≤ + + +   .                                                      (5.13) 

Therefore, with projection window Ω, the expectation bias is upper-bounded by 

( ) ( )2
2 0

ˆE x x x O
M
ε ε
σΩ Ω Ω

Φ

− ≤ ⋅ +   .                             (5.14) 

For small ε, the expectation of the SPLS estimator is asymptotically approaching 

the true value x2 or xΩ as M increases. 

We now analyze the covariance of the SPLS estimator which is expressed by, 

( ) ( )
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2 2 2 2 1 1 1 1 3 3 3 3 1 1 3 3
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3 3 1 1 2 2 2
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The terms, 𝐸𝐸(𝐁𝐁1𝑥𝑥1𝑥𝑥1𝑇𝑇𝐁𝐁1𝑇𝑇), 𝐸𝐸(𝐁𝐁3𝑥𝑥3𝑥𝑥3𝑇𝑇𝐁𝐁3𝑇𝑇), 𝐸𝐸(𝐁𝐁1𝑥𝑥1𝑥𝑥3𝑇𝑇𝐁𝐁3𝑇𝑇), and 𝐸𝐸(𝐁𝐁3𝑥𝑥3𝑥𝑥1𝑇𝑇𝐁𝐁1𝑇𝑇) are 

all M×M, representing the contribution of the nonzero elements outside of the chosen 

window to the CS measurements. Two extreme cases are considered to derive the upper 

and lower bounds of the covariance for a K-sparse input.  

(1) All K nonzero elements fall inside of the window Ω. 

In this case, the SPLS estimator is MVU as shown in (5.8), and it follows that, 

( ) ( ) ( )1 12
2 2 2 2 2 2 2ˆCOV T T T

M Mx σ
− −

×= ⋅ ⋅ ⋅B B B I B B B  
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(2) All K nonzero elements fall outside of the window Ω. 

Without losing generality, we assume that there are k1 and k3 nonzero elements in 

x1 and x3, respectively, with k1 + k3 = K. Let supp{x1} denote the indices of nonzero 

elements in x1. The cardinality of supp{x1}, |supp{x1}|, is k1. Now, consider  
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The last equation holds for ternary output as adopted in the ACS front-end with 

DRS-I. The derivation above can be extended to the general case when x comes from a 

finite set, such as QPSK, 16-QAM, and so on. We have, 
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L L LE x x k
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εσ
σΦ

Φ
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B B I 1 I D   .                  (5.18) 

Equation (5.18) holds if x has 0 mean. Similarly, 
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( ) ( )1 1 3 3 3 3 1 1
T T T TE x x E x x= =B B B B 0  

71 

 



 

Therefore, the covariance of the SPLS estimator is 

( ) ( ) ( ) ( )
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Based on Eq. (5.19), the variance of the SPLS estimator for the case when there 

are k nonzeros outside of the window is,  

( ) [ ]
2 2
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ˆVar ,   where 0, .k k K
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+
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Therefore, the variance of the SPLS estimator is bounded by 
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2 2 2

2 2ˆVar Kx
M M
σ σ σ
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Φ Φ

+
≤ ≤   ,                                    (5.21) 

where K is the number of nonzero elements in x. 

We perform amplitude detection on the estimate 𝑥𝑥� to exploit its ternary structure, 

i.e. x ∈ {-1, 0, 1}. We derive an appropriate threshold in the following. With Gaussian 

noise, p estimates of x, (x)1, (x)2, (x)3, … , (x)p, are normal with mean 𝑥̅𝑥𝑝𝑝, and standard 

deviation Std(xp). Consider the t-value given by [85], [86],  

( )Std /
p

p

x x
t

x p
−

=   .                                             (5.22) 

The new test statistic t in Eq. (5.22) follows a Student’s t-distribution with (p－1) 

degree of freedom. The probability density function of t is  
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where Γ is the gamma function. A number Tα can be chosen to have a 100(1－α)% 

confidence interval, i.e., Pr(-Tα < t < Tα) = 1－α, 

( ) ( )Std Std
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x x
x T x x T

p pα α α
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  .                  (5.24) 

The endpoints of this confidence interval and the resulting optimal thresholds TH 

for hypothesis testing are then obtained as  

( )Std p
p

x
TH x T

pα= ± ⋅   .                                         (5.25) 

V.D. Complexity and Hardware  

As shown in Algorithm 5.1, the SPLS scheme yields an over-determined least 

squares (LS) problem in each section estimate, which offers good noise robustness as 

will be demonstrated in numerical simulations in Section E. The SPLS scheme achieves 

low complexity as shown in Table 4, where various state-of-the-art CS estimators, such 

as basis pursuit [24], orthogonal matching pursuit (OMP) [42], stage-wise OMP 

(StOMP) [44], Bayesian compressive sensing (Bayesian CS) [54] and smoothed-L0 [55] 

are compared. The SPLS estimator has three matrices multiplications with complexity of 

𝑂𝑂(𝑀𝑀𝐿𝐿2), 𝑂𝑂(𝐿𝐿2), 𝑂𝑂(𝑀𝑀𝑀𝑀), respectively, and one matrix inverse calculation of complexity 

of 𝑂𝑂(𝐿𝐿3). Noting that M << N and L < M, the complexity of the SPLS estimator is 

𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁), which exhibits a low computational complexity among state-of-the-art CS 
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estimators. Note that the SPLS algorithm is not a general CS signal reconstruction 

algorithm, being specialized to sparse ternary-valued signals, which enables the low 

complexity reconstruction. In this paper, these ternary-valued signals are output of the 

DRS-I in the ACS front-end. It’s worthy to point out that some other time-to-information 

conversion schemes also have ternary-valued outputs, such as time encoding machine 

(TEM) [58], Delta modulation [59], and integrate-and-fire scheme [60], to name a few.  

Fig. 25 provides the block diagram of the SPLS scheme, where multiple parallel 

least squares (LS) estimators are employed to offer a good balance between complexity 

and real-time processing requirements. This is a unique feature in the SPLS scheme 

enabled by the independence between each window-based section recovery. In addition, 

Table 4.  Complexity comparison of state-of-the-art CS signal reconstruction algorithms. 

Algorithm Name Computational Complexity 

l0 optimization NP hard 

Basis Pursuit (BP) 𝑂𝑂(𝑁𝑁3) 

Orthogonal Matching Pursuit (OMP) 𝑂𝑂(𝑁𝑁𝐾𝐾2) 

Stage-wise OMP (StOMP) 𝑂𝑂(𝑁𝑁log(𝑁𝑁)) 

Bayesian CS (BCS) 𝑂𝑂(𝑁𝑁𝑀𝑀2) 

Smoothed-L0 (SL0) 𝑂𝑂(𝑁𝑁2) 

Split-Projection Least Squares (SPLS) 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁) 
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the recovered sections are used to prune the interference in estimating the remaining 

sections.  

LS estimator is the most computation-intensive block in Fig. 25, which involves 

multiple matrix multiplications and one matrix inversion. Due to the RIP condition, the 

matrix for inversion is Hermitian and positive-definite. In literature, some popular very-

large-scale integration (VLSI) architectures for inversion of a Hermitian, positive-

definite matrix include QR decomposition [87], Cholesky decomposition [88], etc. We 

are inspired by the recent work in large-scale multiple-input multiple-output (MIMO) 

LS Estimator #N

LS Estimator #1

Measurement 
Matrix

Am
pl

itu
de

 
D

et
ec

tio
n

In
pu

t B
uf

fe
r

O
ut

pu
t B

uf
fe

r

Interference Prune

2B
Ω

y 2x̂ 2x x

Columns 
Selector

TH

2 2xB

Ω

2B

 

Fig. 25.  Block diagram of the SPLS signal reconstruction scheme. 
 

75 

 



 

system [89] that our matrix 𝐀𝐀 = 𝐁𝐁2𝑇𝑇𝐁𝐁2 has a main diagonal and small value on all off-

diagonal elements. It motivates the following k-term approximation to matrix inversion. 

Let us define A = D+E, where D is diagonal matrix and E is off-diagonal matrix. 

We have the following Eq. (5.26) if En→0, when n→∞. 
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( )
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−−
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= −∑ D E D   .                                            (5.26) 

Denote the k-term approximation as 

( )
1

1 1 1

0

k n

k
n

−
− − −

=

= −∑Α D E D   .                                            (5.27) 

As an example, we have 𝐀𝐀�1−1 = 𝐃𝐃−1 for 1-term approximation. And for 2-term 

approximation, it is 𝐀𝐀�2−1 = 𝐃𝐃−1 − 𝐃𝐃−1𝐄𝐄𝐃𝐃−1. 

The residual error due to a general k-term approximation is 
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( )1 1k− −= −D E A   .                                                  (5.28) 

Hence, the LS estimate of x2 with k-term approximation to matrix inversion is, 
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( ) 2ˆk x= −ΘI A   .                                                      (5.29) 

Equation (5.29) shows that the approximation error on LS estimate depends on 

the residual error term ΘkA. The following theorem upper bounds the probability that a 

k-term approximation error exceeds a given threshold α, where α > 0. 

Theorem 5.1 Let 𝐁𝐁2 ∈ ℝ𝑀𝑀×𝐿𝐿 follow i.i.d. real standard normal distributed. Then, for an 

integer k > 0 and any α > 0, we have 

( ) ( )2
2

12

3 2
Pr k F k

L M

M
α

α

+
Θ > ≤A   ,                                   (5.30) 

where ‖∙‖𝐹𝐹 denotes Frobenius norm. 

Proof. The expect value of squares of Frobenius norm of the residual error term ΘkA is 

( ) ( ) ( )2 22 1 1( ) ( )k k
k F F F

− −Θ = − =E A E D E E D E  

( )21 k

F

−≤ E D E   .                                                            (5.31) 

The last inequality in (5.31) is true according to the sub-multiplicative property 

of Frobenius norm. Recall D is a real diagonal matrix,  

T
ii i id ϕ ϕ=   .                                                        (5.32) 

Similarly, E is a real matrix with each element is, 

,T
ij i je i jϕ ϕ= ≠   .                                                  (5.33) 
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Therefore, Eq. (5.31) can be rewritten as 
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The last equation follows the Cauchy-Schwarz inequality. Since B2 is from real 

standard normal distribution, dii follows Chi-squared distribution with M degrees of 

freedom, i.e. 𝑑𝑑𝑖𝑖𝑖𝑖 ∼ 𝜒𝜒𝑘𝑘2 . For 1-term approximation, i.e. k = 1, we have the following 

expectation according to the moment generating function,  

( ) ( ) ( ) ( )4| | 2 4 6T
i i M M M Mϕ ϕ = + + +E  

( ) ( )4| | 3 2T
i j M Mϕ ϕ = +E  

Hence, for 1-term approximation, Eq. (5.34) can be rewritten as 
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According to Markov’s inequality, for any α > 0, we have, 
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Theorem 5.1 suggests that it’s possible to constrain the probability of a large 

residual error caused by inversion approximation to arbitrarily small by increasing the 

sampling rate M. Recall that in the SPLS estimator, L is set smaller than M. The k-term 

approximation approach in matrix inversion has bounded error probability when M 

scales faster than L2. 

Now we calculate the hardware cost for the SPLS. The 2-term approximation 

method has L divisions, and 2*(L2 – L) multiplications without an addition. As a low-

cost matrix inversion scheme, Cholesky decomposition is selected for comparison which 

has L divisions, 1/3*L*(L2 – 1) multiplications and 1/3*L*(L2 – 1) additions. It is clear 2-

term approximation has much lower computational complexity (and thus lower hardware 

cost) compared with Cholesky decomposition.  

 

 

79 

 



 

V.E. Numerical Results 

Define signal-to-noise ratio (SNR) as the ratio of signal power Psignal and noise 

power Pnoise. Also, define the sub-Nyquist sampling ratio (SSR) as the ratio of the actual 

sampling rate fs to the Nyquist rate fNyquist,  

signal

noise

SNR
P
P

=   .                                               (5.36) 

SSR s

Nyquist

f
f

=   .                                              (5.37) 

A ternary timing signal with a sparsity of 0.2% is captured by the DRS-I to 

examine the statistics of the SPLS estimator. According to the reliable sampling rate in 

CS framework formulated in Eq. (2.13), we sweep the SSR from 4% to 7% and observe 

the resulting signal reconstruction performance. Fig. 26 compares the analyzed bias and 

variance to the simulation at 0dB SNR, which can be typical in radar detection and 

ultrasound imaging systems. Simulation results illustrate an inverse relationship between 

the bias and variance of the estimator and the sampling rate, which matches the analysis 

in Section C. The difference is caused by the worst case assumption made in the 

theoretical analysis. Fig. 26 also indicates a small bias and variance even with heavy 

observation noise. It is because the SPLS scheme converts each section recovery to an 

over-determined LS problem, which is known to be noise robust. Although interference 

from nonzero elements outside of the projection window presents in the LS estimate, it is 

small compared with the unit amplitude, which supports ternary amplitude detection.  
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Fig. 26.  Comparison of analysis and simulated bias and variance of the proposed SPLS 

scheme at 0dB SNR for a sparse ternary timing signal with a sparsity of 0.2%. 
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For low SNR applications, we simulate the signal recovery in an SNR of 5dB. A 

ternary sparse signal with a dimension of 10000, and a sparsity of 0.38% is simulated. M 

is set to 1300, i.e. an equivalent SSR of 13%. Fig. 27 shows the SPLS estimation result 

from compressed and noise-corrupted measurements. As a reference, the maximum bias 

on expectation and optimal ternary-valued amplitude detection threshold are also shown 

using black and red line, respectively. In Fig. 27, the maximum bias on expectation 

decreases along the signal dimension due to the interference prune step which reduces 

the interference from nonzeros outside of current projection window. The variance of 

each section estimate also decreases along the signal dimension. The optimal ternary 

amplitude detection is derived from Eq. (5.25). In Fig. 27, the SPLS scheme reconstructs 

the original ternary sparse signal after amplitude detection even with heavy noise. It is 

because the SPLS estimator utilizes a “tall” matrix ΦΩ which leads to an over-

determined problem in each section recovery, and thus is robust to the heavy noise.  

Amplitude detection can be performed on each section estimate when the input 

comes from a finite set, i.e. x ∈ {-1, 0, 1}. The thresholds in (5.25) are selected for the 

SPLS estimator. For comparison, the threshold is set to ±0.5 for the conventional sparse 

recovery algorithms as these CS estimators are able to yield an exact (but noisy) signal 

recovery with high probability. In other words, they are unbiased with a high probability, 

allowing simple choice of threshold following reconstruction. It has been demonstrated 

in [90], both theoretically and numerically, that the basis pursuit de-noise (BPDN), the 

Dantzig selector, and the OMP all have MSE proportional to the oracle estimator MSE 

which coincides with the unbiased Cramer-Rao bound for exactly K-sparse deterministic 
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signals. The oracle estimator performs an optimal least squares estimate by including the 

prior knowledge of the sparse signal support [91].  

The ternary sparse signal comes from the proposed CT-TE scheme. To study the 

effectiveness of the SPLS signal reconstruction scheme in recovering different kinds of 

 

Fig. 27.  SPLS estimation result at 5dB SNR with a sub-Nyquist sampling ratio of 13% 

for ternary input with sparsity of 0.38%. 
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ternary sparse signals from the compressed samples, we introduce a clustering parameter 

(CP) as the minimum number of nonzero elements in a cluster. By varying CP, different 

ternary signals are emulated, e.g., dense and scattered distribution signal models. We set 

the signal dimension to be 10,000, with a sparsity of 0.2%. The SSR is set to 0.08. Three 

window sizes L equal to 10, 20 and 40 are simulated. 100,000 iterations are carried out 

for Monte Carlo simulations.  

Fig. 28 illustrates the error rate (ER) vs. CP parameterized by different window 

sizes in the split projection. The ER improves slightly when CP increases in both the 

noise free and 5dB SNR cases. The improvement is due to the fact that a larger CP has a 

more concentrated distribution of the nonzero elements. This helps reduce the possibility 

of a large number of nonzero elements falling outside of a selected split projection 

window, and therefore reduces the probability of large interference. Similar results are 

observed from different split projection window sizes, i.e., ER improves as L increases.  

Nevertheless, the CP influence on ER is marginal in the SPLS scheme as shown 

in Fig. 28. The ER performance remains almost unchanged even for CP = 1, which has 

the most scattering distribution of nonzero elements. This indicates that the SPLS 

scheme is not constrained on the clustering signal model, and can be applied to the 

general ternary output of the CT-TE scheme, even though additional benefit does occur 

for cases with more concentrated nonzero elements. 
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Fig. 28.  Error rate (ER) performance parameterized by different clustering parameters 

(CP) and window sizes in the Split-Projection Least Squares (SPLS) scheme. 
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The split projection window size has a relatively larger impact on ER compared 

with CP, especially for the noisy case. This is because both noise and interference affect 

the ER performance. Consider each column of the measurement matrix as a signal 

representation atom. A larger L has some benefits. For example, it provides a larger 

dictionary to interpret the compressed measurements in each split projection recovery, 

which reduces the possibility of fitting noise and interference. When both the noise and 

interference are strong, fitting them degrades the ER performance, and also reduces the 

interference caused by the nonzero elements outside of the split projection window.  

Note that the computational complexity of the SPLS scheme is O(MNL). A larger 

L naturally increases the computational cost.  

Fig. 29 shows the ER performance after amplitude detection. For conventional 

signal recovery algorithms, the threshold is set to ±0.5 due to ternary amplitude. While 

for the SPLS estimator, the threshold is determined by (5.25). Fig. 29 demonstrates the 

SPLS scheme has the best ER after amplitude detection among all the other CS signal 

recovery schemes in low SNR region because each section recovery is a local over-

determined problem which is robust to heavy observation noise. 

We next examine the finite word-length effect (also known as fixed-point effect) 

to the SPLS scheme. Finite word-length effect stems from the quantization process of 

coefficients and internal results in a DSP system. Quantization is a necessary step when 

implementing a floating-point algorithm into a fixed-point hardware, for example, field-

programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc. 

Fixed-point quantization degrades system performance and needs careful investigation.   
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Fig. 29.  ER of recovered ternary signal after amplitude detection at a SSR of 6%. 10000 

independent simulations of a ternary sparse signal with dimension of 10000. Popular CS 

signal reconstruction algorithms are compared.  
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The proposed SPLS scheme employs standard LS estimator for each independent 

section recovery. As discussed in Section B, the SPLS is an MVU estimator when the 

projection window includes all nonzero elements. We study the k-term approximation to 

matrix inversion in a stand-alone LS problem.  

Let’s choose B2 from standard normal distribution with a dimension of 10000 by 

100. And follow LS approach to solve the linear problem, y = B2x + w, where x is a 

random ternary signal, w is Gaussian noise, with distribution w ~ 𝒩𝒩(0, 𝜎𝜎2). 

Fig. 30 shows the Mean Squared Error (MSE) of LS estimate parameterized by 

the number of quantization bits Q at a 10dB SNR, which is defined in (5.36). Cholesky 

decomposition and floating point result are included for comparison. In Fig. 30, we can 

see that fixed-point Cholesky decomposition achieves floating point performance when 

Q is larger than 13 at a 10dB SNR. While error floors appear in the k-term approxima-

tion method when Q is larger than 10. It is because a finite term approximation in (5.27) 

introduces residual error. And a higher k results in less residual error and less MSE. 

However, Fig. 30 indicates that the MSE improvement by using more approximation 

terms becomes marginal when k is larger than 2. 

Fig. 31 shows the MSE of LS estimate versus SNR when using 10-bit word 

length in fixed-point representation. At relatively high SNR (SNR ≥ 10dB), 10-bit 

quantization is insufficient to keep the MSE performance as both approximation scheme 

and Cholesky decomposition have error floors on the MSE of LS estimate. However, at 

low SNR region (SNR ≤ 10dB), 2-term approximation has a similar MSE performance 

in comparison to Cholesky decomposition. 

88 

 



 

 

 

Fig. 30.  Mean squared error (MSE) of least squares estimate parameterized by the 

number of quantization bits Q at 10dB signal-to-noise ratio (SNR).  
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Fig. 31.  MSE of LS estimate versus SNR when using 10-bit word length in fixed-point 

representation. 
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Combining Fig. 30 and Fig. 31, a 2-term approximation can be a good alternative 

to Cholesky decomposition at low SNR region considering it has quadratic (rather than 

cubic) multiplication growth to the problem size and no addition. In the rest simulations 

we adopt 10-bit 2-term approximation to matrix inversion. 

Fig. 32 illustrates the error rate versus CP parameterized by different windowing 

sizes in the split projection when 2-term approximation to matrix inversion is applied. 

The error rate improves slightly when CP increases in both the noise free and 5dB SNR 

cases. The improvement is due to the fact that a larger CP has a more concentrated 

distribution of nonzero elements. This helps reduce the possibility of a large number of 

nonzero elements falling outside of a selected split projection window, and reduces the 

probability of large interference in LS estimate. Similar results are also observed from 

different window sizes, i.e., the error rate performance improves as L increases. For 

comparison, orthogonal matching pursuit (OMP) in [42] is also included. OMP has 

identical error rate among different CPs. 

V.F. Summary 

In this chapter, we proposed a low-complexity signal reconstruction algorithm 

called split-projection least squares (SPLS). The SPLS exploits the ternary amplitude 

prior and the nonlinear splits CS signal reconstruction into a series of independent LS 

problems. We derived the statistics of the SPLS estimator and analyzed computational 

complexity. In hardware implementation, we presented a k-term approximation method 

to matrix inversion that exhibits lower cost but comparable performance when compared 

with conventional Cholesky decomposition.  
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Fig. 32.  Error rate performance parameterized by different clustering parameters and 

windowing sizes in split-projection least squares when 2-term approximation to matrix 

inversion is applied.  
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CHAPTER VI  

APPLICATION EXPERIMENTS* 

 

In this chapter, we study the performance of the proposed ACS front-end and 

SPLS signal reconstruction algorithm in two low-power and noise-sensitive applications. 

The first one is interference-robust radar system with in-band wireless communication 

interference. We propose a multi-channel filter banks ACS scheme for the interference-

robust radar front-end. The related work is published in [95], [101], [105]. The second 

application is portable diagnostic ultrasound imaging system. We propose a compressed 

ultrasound beamformer to support a large transducer array in a low-power diagnostic 

ultrasound system. The related work is published in [106]. 

VI.A. Interference-Robust Radar with In-Band Interference 

VI.A.1. Radar Background 

We first review the background of conventional monostatic pulsed radar system. 

Monostatic radar indicates that the same antenna is used to transmit and receive. Pulsed 

radar means the transmitting signal is discrete pulse rather than continuous waveform. 

The block diagram of a monostatic pulsed radar system is shown in Fig. 33 [93]. T/R 
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and Microwave Circuits and Systems, pp.1–4. © [2013] IEEE.   
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from the IEEE by writing to pubs-permissions@ieee.org. By  choosing to  view this  material, you  agree to 
all provisions of the copyright laws protecting it.
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switch alternately switches the antenna between the transmitter and receiver so that only 

one antenna needs to be used. In the receive signal chain, receiver module contains low-

noise preamplifier, mixer, IF amplifier.  

Target ranging is formulated by a time-delay problem in radar systems. Suppose 

a monostatic pulsed radar transmits a pulse at time t0. The echo pulse is received at time 

t1 with a time delay of TR = t1 – t0. For a monostatic pulsed radar system, the distance 

between radar and target can be estimated by 

/ 2RR c T= ∗   ,                                                 (6.1) 

where c is the velocity of light in free space. Fig. 34 illustrates the signal waveform in 

the time delay ranging process of a pulsed radar system [92]. 

 

Fig. 33.  Block diagram of a monostatic pulsed radar system. Taken from [93]. 
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Generally, a pulsed radar transmits and receives a train of pulses, as illustrated by 

Fig. 35. Inter-pulse period (IPP) is T, and pulse width is τ. The distance corresponding to 

the two-way time delay is known as the radar unambiguous range Ru = c*T/2.  

Range resolution ΔR is a radar metric that describes its ability to detect targets in 

close proximity to each other as distinct objects. Radar systems are normally designed to 

operate between a minimum range Rmin, and maximum range Rmax. The distance between 

Rmin and Rmax is divided into I range bins or gates, each of width ΔR. 

 

Fig. 34.  Illustration of the signal waveform in the time delay ranging process of a pulsed 

radar system. Taken from [92]. 

 

 

Fig. 35.  Transmitted and received pulses in a pulsed radar system. Taken from [92]. 
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max min= R RR
I
−

∆   .                                                 (6.2) 

Targets separated by at least ΔR will be completed resolved in range. Targets 

within the same range bin can be resolved in cross range (azimuth) utilizing signal 

processing techniques. In a two-way system, ΔR should be greater or equal to c*τ/2. 

Since the radar bandwidth B is equal to 1/τ, we have 

2 2
c cR

B
τ

∆ = =   ,                                                  (6.3) 

As suggested by Eq. (6.3), in order to achieve fine range resolution one must 

minimize the pulse width τ. However, this will reduce the average transmitted power and 

increase the operating bandwidth. Achieving fine range resolution while maintaining 

adequate average transmitted power can be accomplished by using pulse modulation 

techniques. One example is linear-frequency modulated (LFM) pulse, whose bandwidth 

is determined by the highest chirp frequency rather than pulse width. Fig. 36 shows a 

LFM pulse example with 6.67μs pulse width and 3MHz bandwidth. 

Since the transmitted pulses are known at the receiver side, target detection in a 

monostatic pulsed radar can be considered as the deterministic signal detection with 

unknown arrival time n0, or equivalently the pulse delay. A generalized likelihood ratio 

test (GLRT) might be employed as a detector. We now consider the detection problem, 

[ ] [ ]

[ ] [ ] [ ]
0

1 0

:

:

H x n w n

H x n s n n w n

=

= − +
  ,                                     (6.4) 

where n = 0, 1,…, N – 1 is the observation interval, s[n] is a known deterministic signal 

that is nonzero over the interval [0, M – 1], n0 is the unknown delay, and w[n] is white 
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Gaussian noise (WGN) with variance σ2. Suppose the observation interval should 

include the signal for all possible delays. A GLRT would decide H1 if 

( ) ( )
( )

0 1

0

ˆ; ,
;

p x n H
L x

p x H
γ= >   ,                                         (6.5) 

where 𝑛𝑛�0 is maximum likelihood estimator (MLE) by solving (6.6) over all possible n0, 

[ ] [ ]
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= −∑   .                                  (6.6) 

The threshold γ is found from a specified probability of false alarm PFA, 

( )
( ){ } 0:

;FA x L x
P p x H dx

γ
α

>
= =∫   .                                     (6.7) 

Hence, we decide H1 if 
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Taking logarithms we have test statistic T(x) and we decide H1 if 

( )
[ ]

[ ] [ ]
0

0
0

1

00,
max '

n M

n N M n n
T x x n s n n γ

+ −

∈ −
=

= − >∑   .                           (6.9) 

If H1 is claimed, the n0 yielding maximum T(x) is the time-delay estimation; 

otherwise H0 is claimed, and no target is found. Note that T(x) in (6.9) is uniformly most 

97 

 



 

powerful (UMP). It is a derivation of estimator-correlator, and therefore it is suboptimal 

in Neyman-Pearson (NP) sense as it incoherently combines the data. 

The case of unknown arrival time n0 and unknown amplitude A can also be 

derived. It is usually the case when target’s radar cross section (RCS) is fluctuating. The 

test statistic in this case is shown in Eq. (6.10). We decide H1 if T(x) > 𝛾𝛾′.  

( )
[ ]

[ ] [ ]
0

0
0

1

00,
max

n M

n N M n n
T x x n s n n

+ −

∈ −
=

= −∑   .                              (6.10) 

Note that (6.10) is not UMP as T(x) depends on A. Also, it is suboptimal in the NP sense. 

VI.A.2. Multi-Channel Filter Banks ACS Front-End 

We now study the performance of the ACS front-end in radar system. Equation 

(6.3) suggests that the radar range resolution is proportional to the transmitted signal 

bandwidth. However, a high bandwidth pulse requires a very high sampling rate that 

introduces significant design challenges, such as high power consumption in the high-

speed ADC, large volumes of data to be stored, transmitted and processed in a real-time. 

Noise is another fundamental limitation to the accurate radar measurements. There are 

two types of noise inevitable in any radar systems, thermal noise and quantization error.  

Let z denote the received baseband radar signal, which consists of a pulsed 

reflection signal s, thermal noise n, and quantization error q. Thus we have, 

z s n q= + +   .                                                (6.11) 

In order to quantify the accuracy of the time-delay estimation, we investigate the 

root mean square (rms) of the difference between the estimated value and the true one. It 

has been shown in [94] that rms error in a time-delay measurement can be expressed as, 
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(a) 

 
(b) 

Fig. 36.  Linear-frequency modulated (LFM) pulse with 6.67μs pulse width and 3MHz 

bandwidth (a) real part; (b) imaginary part.  
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( )rms 1/2
0

1
2 /

T
E Nβ

=   .                                          (6.12) 

where E and N0 is signal and noise power, β is the effective bandwidth defined as, 
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  .                                      (6.13) 

and S(f) is the spectrum of pulse signal. In an ideal ADC, quantization error is uniformly 

distributed between –Δ/2 and +Δ/2. In this case, the quantization error is modeled as the 

white noise with a power spectrum density (PSD) of 

( )
2

PSD
12 s

q
f

∆
=   .                                               (6.14) 

Note that thermal noise n and quantization error q are independent. We have rms 

of time-delay measurement in Eq. (6.15) where Q0 is quantization noise power. 

( ) ( )
0 0

rms 222 2

N QT
f S f dfπ

∞
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+
=

∫
  .                                     (6.15) 

Based on Eq. (6.15), an accurate time delay measurement implies increasing the 

frequency of transmitted pulses and/or decreasing the thermal and quantization noise. 

Equation (6.14) shows one can decrease the quantization noise by either increasing the 

sampling rate fs or decreasing the quantization step Δ. Specifically, increasing the ADC 

resolution by 1 bit can decrease the quantization noise power by 6 dB. Also, doubling 

the oversampling rate decreases the quantization noise power by 3dB.  

Comparing to the conventional ADCs, the ACS provides an alternative way to 

sample the radar signals. In the random sampling stage, the proposed CT-TE scheme 
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modulates pulse variations into high-speed ternary timing signals. Since CT-TE scheme 

gives the sampling efforts to the signal with most significant variations, it is efficient for 

the pulsed radar signals that are sparse in time domain. The oversampling architecture 

helps mitigate the quantization error generated by the low (ternary) resolution ADC. In 

addition, the asynchronous comparators allow the analog-to-digital conversion to be free 

from the clock jitter which is a fundamental limitation for high-speed ADCs. The large 

data resulted from the oversampling is reduced by a simplified digital CS technique. 

This results in excellent linearity and an overall sub-Nyquist sampling in the ACS front-

end. The power consumption of the random sampler is also optimized by digital-assisted 

circuits and small duty cycle of power-demanding modules. In the reconstruction stage, 

the SPLS scheme recovers the ternary timing signals. After that, a linear detector or 

square law detector is selected depending on different target models. Fig. 37 shows the 

block diagram of radar system using ACS with an emphasis on the receive signal chain. 

Fig. 38 shows the quantitative effect of thermal noise and quantization error on 

Trms. A LFM pulse with 3MHz bandwidth and 6.7μs pulse width (Fig. 36) is simulated. 

Fig. 38 (a) and (b) show two cases when thermal noise and quantization noise are 

dominant, respectively. A Nyquist ADC and the CT-TE scheme with an oversampling 

ratio (OSR) of 1000 are simulated. For fair comparison, Trms of the Nyquist ADC with 

OSR adjustment is also provided. In Fig. 38 (a), Trms decreases by 1dB when the SNR 

increases by 2dB in both schemes. Fig. 38 (b) shows that increasing one quantization bit 

will reduce Trms by 3dB. These results are expected given (6.15). This work is originally 

published in [95]. 
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Fig. 37.  Block diagram of radar receive signal chain using the proposed ACS front-end.  

 

 
(a)                                                                                  (b) 

Fig. 38.  Quantitative effect of thermal noise and quantization noise on the rms error of 

time-delay estimation, GLRT detector is employed in both cases: (a) thermal noise is 

dominant; (b) quantization error is dominant. 
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The growing use of radar and communications motivates the development of a 

system that allows co-existence of both radar and wireless communications in the same 

spectrum allocation. Secure, resilient, and innovative spectrum-sharing technologies are 

necessary to enable new capabilities in wireless broad-band communications for general 

public and enhance spectrum availability for essential government services. Efficient 

coexistence of wireless data communications with the radar systems is imperative for 

public safety, homeland security, and national defense purposes [96].  

A proper receiver architecture shall allow the coexistence of broadband wireless 

data communications with high-performance radar, enabling simultaneous vehicle-to-

vehicle/internet broadband communications and collision avoidance (shown in Fig. 39), 

target/threat acquisition for military environments, and ultimately the potential for wide-

spread autonomous vehicle transportation.  

Proposed receiver solutions include parallel architectures such as filter banks to 

notch out the undesired interference [97], and advanced signal processing algorithms 

like spatial signal processing via MIMO [98]. Both solutions face challenges related to 

the power and complexity of the front-end implementation due to the multiple parallel 

signal processing channels. Given that a high-resolution radar system requires broadband 

transmit signals, and that the Shannon sampling theorem orders a sampling rate of at 

least twice the signal’s bandwidth to avoid image aliasing, an excessive data volume 

appears at the outputs of conventional Nyquist-rate ADCs, which not only imposes 

challenges in the integration of a very large number of high-speed, high-resolution, and 

low-power ADCs, but also in the high-speed data links for digital processing. 
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Some compressive sensing (CS) based data compression schemes are reported 

for radar systems [99], [100]. A random demodulator front-end is implemented in [99], 

which consists of a dedicated mixer and an integrator. In this architecture the mixer must 

operate at or above the Nyquist rate for sufficient randomization, resulting in significant 

dynamic power. Also, the integrator also produces considerable static power during the 

 

Fig. 39.  Radar system with arbitrarily-spaced antennas in a vehicle-to-vehicle communi-

cations and collision avoidance application.   
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charge accumulation stage. Since both of the mixer and integrator are active throughout 

measurement generation, the random demodulator approach consumes an excessive 

amount of power. In addition, the dedicated analog circuitry has to display high linearity, 

as non-linear distortion affects the reconstruction performance in the sparse recovery 

stage [33]. An alternative underspread linear system [100] also achieve sub-Nyquist 

sampling in radar system at expense of an active channel count of no fewer than four 

times the band number, resulting in increased overhead. Besides, challenges are faced in 

the T-periodic waveforms generation hardware. 

In this section, a low-power filter-bank multi-channel ACS front-end is presented 

for an interference-robust radar with reduced data volume at the mixed-signal interface. 

Asynchronous operation exploits sparsity of the received signal when using pulsed radar 

signals. The integration of CS technique achieves sub-Nyquist sampling at the front-end. 

For signal recovery, the SPLS algorithm is adopted that exhibits very low complexity 

and good noise robustness compared with state-of-the-art CS estimators. Because low 

latency data processing is very important in all collision avoidance technologies, the 

above advantages let the SPLS algorithm become a strong candidate in a vehicle-to-

vehicle collision avoidance radar system with in-band wireless interference. Numerical 

results demonstrate the proposed radar receiver is robust to the in-band interference and 

achieves 8-fold data compression compared with conventional Nyquist-rate ADCs. 

Although this paper studies the filter-bank based approach for interference-robust single 

antenna radar, the proposed ACS as a generic sub-Nyquist ADC is also applicable to 

MIMO radars that have an inherent multi-channel architecture. 
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VI.A.3. Numerical Results 

In order to convey the architecture and signal processing ideas, and to facilitate 

comparison with alternative approaches, we consider some specific representative radar 

and communications parameters. The related work is original published in [101],  

A maximum unambiguous range of 90 meters is chosen for the braking/stopping 

distance at a speed of 100km/hour, which is around 80 meters [102]. Meanwhile, a range 

resolution of 0.02m is desired in city parking, demanding an 8GHz bandwidth LFM 

pulse. With a detection probability (Pd) of 0.9 and a false alarm probability (Pfa) of 10-6, 

the parameters of the proposed collision avoidance vehicle-to-vehicle radar system are 

listed in Table 5. A 6GHz carrier frequency expands the radar pulse in a 2GHz~10GHz 

Table 5.  Specifications for vehicle-to-vehicle collision avoidance radar systems. 

Parameter Value 

MAX Unambiguous Range 90 meter 

Range Resolution 0.02 meter 

Transmit Pulse 
LFM: 8GHz bandwidth 

1.25ns pulse width 

Peak Transmit Power 70mW 

Carrier Frequency 6GHz 

Target Type Swerling-2 type 

In-band Interference Power -50dBm ~ -70dBm 
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spectrum where wireless communication signals (such as WLAN and cellular) are also 

present as interference with an assumed power level from -50dBm to -70dBm.  

Analog filter banks are employed to notch out wireless interference while 

providing multiple channels for parallel processing. The filter bank consists of 20 2nd-

order filters that divide signal bandwidth into 20 equally spaced sub-bands of 400MHz 

each. Fig. 40 illustrates the filter bank spectrum response and output waveforms of each 

channel when radar signals and wireless interference are present simultaneously. For 

illustration, Fig. 40 shows the interference is falling in the 19th channel with a power 

much stronger than the radar signals. The output of the 19th channel and its neighbors are 

contaminated, whereas channels far away from the interference, e.g., the 1st~17th 

channels, are not strongly affected by the interference. The analog filter bank is also 

robust to clock jitter which is a fundamental limitation in high bandwidth systems [103]. 

We develop the ACS scheme as a sub-Nyquist sampling module [64] for pulsed-

type broadband radar signals, which includes the CT-TE scheme and DRS-I. Fig. 41 

shows the front-end architecture with emphasis on the mixed-signal interface. Fig. 9 

shows the CT-TE scheme, where z(t) and y[n] are the input and output, respectively, and 

pc[n] is a pseudorandom sequence for CS. The CT-TE scheme is employed to convert 

the signal variations into high-speed ternary timing signals [64]. Asynchronous operation 

exploits the sparsity of radar echoes in a sparsely scattering environment. Power 

efficiency is improved by decreasing the circuit’s duty cycle with on-demand activation. 

In addition, the adder and accumulator in DRS-I (Fig. 10) are asynchronous logic that 

exhibit reduced duty cycle in capturing the impulsive signals as shown in Fig. 40. 
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Fig. 40.  Response of a 20-channel analog filter bank when pulsed radar signals and 

interference from wireless communication systems are present simultaneously. Wireless 

interference is in the 19th channel.  
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Fig. 41.  Front-end architecture of the proposed interference-robust radar with emphasis 

on the mixed-signal interface. 
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An interference-robust radar with parameters in Table 5 is simulated. To evaluate 

the interference robustness, we define the signal-to-interference ratio (SIR) as the power 

ratio of interference to signal.  

Fig. 42 compares error rate (ER) of ternary timing signal recovery via different 

CS reconstruction algorithms (basis pursuit [24], orthogonal matching pursuit (OMP) 

[42], stage-wise OMP (StOMP) [44], Bayesian compressive sensing (Bayesian CS) [54] 

and smoothed-L0 [55]) in a heavy noise radar scenario (0dB~5dB SNR). The ternary 

timing signal from the CT-TE scheme has an average sparsity of 0.38%, with an SSR of 

0.13 in the simulations, or approximate 8-fold data volume compression. In Fig. 42, the 

SPLS estimator has the best ER performance over the entire SNR range. This important 

performance advantage comes from the use of a “tall” matrix B2 in each recovery which 

leads to an over-determined problem for each section estimate, yielding good noise 

robustness. The optimal thresholds in (5.25) are selected for the SPLS estimator. The 

threshold is ±0.5 for the conventional sparse recovery algorithms because these CS 

estimators are able to yield an exact signal recovery with high probability. In other 

words, they are unbiased with a high probability.  

Fig. 43 shows the RMS of time-delay estimation error in the proposed 

interference-robust radar receiver as a function of the number of channels, with different 

wireless interference strengths parameterized by SIR. Fig. 44 shows the radar curves 

when the SNR is 6dB. The figures show that there is an optimal number of channels for 

a given interference strength to achieve an optimal time-delay estimation error, and the 

corresponding joint of probability of detection (Pd) and probability of false alarm (Pfa). 
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Fig. 42.  Error rate (ER) of the recovered signal after amplitude detection using different 

CS signal reconstruction algorithms at a sub-Nyquist sampling ratio (SSR) of 13%. 
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Fig. 43.  RMS time delay estimation error performance as a function of the number of 

channels used, parameterized by the radar signal to interference power ratio (SIR). 
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Fig. 44.  Probability of detection (Pd) vs. Probability of false alarm (Pfa) parameterized 

by radar signal power to communication interference power ratio (SIR) and the number 

of filters (FltNum) used from the receiver filter-bank.  
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Fig. 43 and Fig. 44 show that there is an optimal number of channels for a given 

interference and SNR levels to achieve a desired Trms and combination of Pd and Pfa. 

The probability of false alarm will be reduced by taking at least 6 detections (which 

brings the Pfa from 0.1 (see Fig. 44) to the target Pfa of 10-6 (see Table 5). This can be 

easily accomplished in practice in a multi-antenna radar configuration where all the 

antennas independently obtain range estimates. Better performance can also be obtained 

in MIMO radar as it is well explained in the extensive study [104] that reveals that the 

Pfa will be improved by at least two orders of magnitude by a simple 4-by-4 MIMO 

setting. These enhanced techniques will be essential in a vehicle-to-vehicle radar system 

with fast changing scenarios. 

VI.B. Low-Power Portable Diagnostic Ultrasound Imaging  

VI.B.1. Ultrasound Imaging Background 

Diagnostic ultrasound imaging systems have many important advantages, for 

example, wide view angle, and they are noninvasive with no radiation [107], in contrast 

with other popular medical imaging techniques such as endoscopy, tomography, and x-

rays. However, the ultrasound acoustic wave propagation experiences considerable 

attenuation and speckle distortion when imaging human tissues, resulting in a very low 
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signal-to-interference-plus-noise ratio (SINR). To accomplish high-quality imaging, 

conventional diagnostic ultrasound systems usually employ a large transducer array and 

a beamformer in both the transmitter and receiver [107]. While digital beamforming at 

the receiver is inherently more flexible and potentially more accurate, this requires 

Nyquist sampling over all sensors, and fine time resolution for time-delay compensation 

in the beamformer. Fig. 45 illustrates the architecture of a conventional digital 

beamformer with interpolation filters. Some commercial ultrasound analog front-ends 

employ sigma-delta ADCs, which include oversampling technique in the sampling stage. 

This architecture is typically implemented in a relatively large form factor and has high 

power consumption [107].   

The growing use of ultrasound in daily clinical imaging and emergency 

healthcare motivates the development of portable and low-cost diagnostic ultrasound 

systems. State-of-the-art solutions are restricted to a small transducer array (≤ 32 

elements) and a low carrier frequency (≤ 4MHz) [108]. Imaging quality in portable 

ultrasound reflects the fact that the carrier frequency limits both lateral and axial 

resolution, and that the transducer size limits the maximum angular resolution [109]. 

The multiple parallel data channels architecture requires high power for data 

conversion and presents an excessive data volume at the mixed-signal interface. Nyquist 

rate sampling of each transducer element is compulsory in a conventional digital 

beamforming architecture, and a high carrier frequency requires high-speed ADCs to 

avoid image aliasing. As a result, the aggregated data volume becomes formidable for a 

portable ultrasound system, and it is a significant challenge to increase the image quality 
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in such systems. For example, data volume at the ADC outputs easily exceeds 30Gbps in 

an ultrasound system with 128 transducers, 10MHz carrier frequency and 12-bit ADCs. 

This very high data rate requires high-speed links between the analog front-end and 

digital processing unit, which further increases the system power and circuit area.  

Various approaches to front-end data volume compression have been reported for 

ultrasound imaging systems [110–112], [106]. The authors in [110] exploit the fact that 

ultrasound signals are modulated onto a carrier so sampling of its baseband equivalent 

reduces the data volume; this approach requires two signal processing channels for I/Q 

processing for every transducer element and is subject to the Nyquist criterion. In [111], 

the authors compressed the raw RF ultrasound data and/or the baseband data using JPEG 

and JPEG2000 techniques. This technique also requires Nyquist sampling as the first 

stage. In [112], a sub-Nyquist sampling front-end was proposed by modeling ultrasound 
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Fig. 45.  Architecture of the digital ultrasound beamformer with interpolation filters.  
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signals in a finite rate innovation framework. This achieves 8-fold data compression at 

the expense of a collection of dedicated pre-conditioning filters ahead of the ADCs. In 

[106], the authors adopt compressive sensing for the ultrasound signals, utilizing a 

group-based total variation signal reconstruction algorithm that is relatively high-cost 

and adds considerable computational overhead if used with a large transducer array. 

VI.B.2. Asynchronous Compressed Beamformer 

In this sub-section, we present a low-complexity low-power asynchronous 

compressed beamformer (ACB) for portable diagnostic ultrasound. Fig. 46 illustrates the 

architecture of the proposed ACB. Leveraging the asynchronous sampling and CS 

framework, we optimize the hardware complexity and power consumption of the entire 

signal processing chain, including front-end sampling, mid-end beamforming, and back-

end signal recovery for image display. Specifically, asynchronous sampling improves 

energy efficiency by reducing the duty cycle of the front-end circuits as the hardware is 

only active on demand. The CT-TE (shown in Fig. 9) scheme converts signal variations 

to high-rate ternary timing signals [64], which eliminates interpolation filters and/or 

CORDIC units needed in a conventional digital beamformer. The DRS-I is employed 

and optimized to exploit the sparsity of the ultrasound echoes, which exhibits many 

advantages such as low power, ease of massive integration, and excellent linearity 

compared with other popular CS front-ends [37], [50]. A signal reconstruction algorithm 

is also introduced called split-projection least squares (SPLS). This avoids the typical 

CS-based high-cost and nonlinear signal reconstruction, and relies instead on a series of 

low-complexity and independent l2-norm problems that are easily solved via LS 

117 

 



 

estimators. The SPLS algorithm significantly decreases the computational cost in signal 

reconstruction, as is desired for real-time ultrasound signal processing and display.  

Diagnostic ultrasound systems employ a large transducer array and beamforming 

for good imaging quality. In every scan, part or all of the transducer elements are 

stimulated to emit ultrasound. The geometry of the ultrasound transducers is such that 

each element hears from a particular focus point at different time instants. Before 

beamforming via coherent summation, these delay variances are compensated based on 
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Fig. 46.  Architecture of the proposed asynchronous compressed beamformer (ACB) for 

portable diagnostic ultrasound imaging systems.  
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the Euclidian distance difference. Let zi(t) and tDi denote the signal from the ith 

transducer element and the associated delay compensation, respectively. Then, the 

beamformed signal is 

( ) ( )BF i Dii
z t z t t= −∑   .                                          (6.16) 

Equation (6.16) is commonly implemented in digital circuits in a modern 

diagnostic ultrasound system where dedicated digital modules should be employed for 

fine timing resolution before time delay compensation, such as interpolation filters [107], 

or CORDIC units [110]. The number of these digital modules is proportional to the 

transducer array size. Therefore, a large number of parallel channels complicates the 

digital design and increases power consumption. 

Recently, the CT-TE scheme has been proposed to convert the pulsed signal 

variations to high-speed ternary timing signals, that results in a low sampling rate by 

exploiting sparsity in time [64], [106]. The adder and accumulator in the DRS-I (Fig. 10) 

are both asynchronous logic. As studied in [64], the CT-TE scheme works at a high rate 

to satisfy the signal slew rate requirement. Such a high-speed operation, potentially even 

higher than the Nyquist rate, is an excellent fit for diagnostic ultrasound because the 

resulting high-rate timing signals remove the need for interpolation filters or CORDIC 

units processing.  

The high-rate ternary timing signal actually has a low information rate due to the 

sparsity of ultrasound echo signals in a scattering environment. Thus the CS framework 

can be integrated into the front-end for data compression. Due to the ternary state of x(t), 

a multi-channel DRS-I is employed and optimized in the proposed ACB, which is shown 
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in Fig. 47. Specifically, the inner product of ternary timing signal x(t) and chipping 

sequence pc[n] is implemented by a shift register and an accumulator. This brings the 

scaling benefits of digital circuitry, including low power, ease of massive integration, 

and excellent linearity, and is considerably less complex that other CS sampling schemes 

such as the random demodulator [50] or modulated wave converter [37].  We emphasize 

that the time delay compensation is carried out on pc[n] rather than x(t) in the proposed 

ACB scheme. This can be implemented via a first-in-first-out (FIFO) module to store the 

random sequence output from the linear feedback shift registers (LFSR). The delay 

compensator in each transducer selects the correct tap for the chipping sequence. This 

architecture enables an identical randomized measurement matrix Ф across the entire 

transducer array. This unique feature offers dramatic savings in computational cost for 

multi-channel CS signal recovery, which will be analyzed in detail in the following.  

The proposed DRS-I employs a FIFO module to buffer the high-rate chipping 

sequence and to adjust the proper time delay between each transducer element. The 

FIFO depth should be sufficiently large to accommodate the largest possible time delay 

between any two transducer elements during the dynamic focusing. Denoting Δr as the 

largest possible difference in path length between any two transducer elements during 

the dynamic focusing, the required FIFO depth is  

1
1

1FIFO depth 1 OSRNyquist
r r f

c T c
∆ ∆

= ⋅ = ⋅   ,                        (6.17) 

where c is ultrasound speed which is assumed to be a constant for analysis, T1 is the 

clock period of the chipping sequence, fNyquist is the Nyquist sampling rate, and OSR1 is 
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the oversampling ratio applied in the high-rate CT-TE scheme relative to fNyquist. As will 

be discussed in next sub-section, an OSR1 of 500 is generally sufficient for a 12-bit CT-

TE ultrasound scheme. The conventional digital ultrasound beamformer in Fig. 45 

employs an interpolation filter and a FIFO module in each channel for time-delay 

compensation, which requires an accumulated FIFO depth of  

2
2

1FIFO depth 2 OSRNyquist
r rNum f Num

c T c
∆ ∆

= ⋅ ⋅ = ⋅ ⋅   .             (6.18) 

where OSR2 is the interpolation rate and Num is the number of transducer elements. 

OSR2 has a rule of thumb value of 16 or larger for fine timing resolution [107]. 

Comparing Eqs. (6.17) and (6.18), we see that the proposed multi-channel DRS-I has 
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Fig. 47.  Block diagram of the multi-channel first type digital random sampler (DRS-I) 

in the proposed asynchronous compressed beamformer.  
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better trade-off in terms of FIFO hardware cost when employing a large transducer 

array, e.g., say the number of transducer elements is larger than or equal to 32. 

The optimized DRS-I module is even more promising for a multi-channel 

compressive sensing ultrasound system as only one matrix inverse, e.g., (𝐁𝐁2𝑇𝑇𝐁𝐁2)−1, is 

mandatory in each section recovery for the entire transducer array, whereas complexity 

increases linearly with the number of transducer elements for other CS sampling 

schemes [111], [112], [106]. This is because the proposed multi-channel DRS-I applies 

time-delay compensation to the random sensing matrix rather than the input, resulting in 

an identical measurement matrix Ф for different transducer elements, as illustrated in 

Fig. 47.  

VI.B.3. Numerical Results 

The point spread function (PSF) and contrast-to-noise ratio (CNR) of an 

ultrasound imaging system using the CT-TE scheme and the DRS-I are evaluated using 

the Field II MATLAB toolbox [113], [114]. We choose a transducer center frequency of 

3MHz, a sampling rate of 100MHz, 128 transducer elements with kerf of 0.1mm, 

element height of 5mm, and element width of one wavelength. The gap between two 

adjacent transducer elements is called kerf. Define the sub-Nyquist sampling ratio (SSR) 

as the ratio of the actual sampling rate in the DRS-I to the Nyquist sampling rate, given 

by SSR = fs / fNyquist. We define the signal-to-noise ratio (SNR) as the power ratio of the 

signal and the observation noise.  
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Fig. 48 shows the duty cycle in percentage versus the sub-Nyquist sampling ratio 

(SSR) of the DRS for different number of quantization bits in the CT-TE, when imaging 

5-point phantoms placed with a distance of 20 mm starting at 30 mm from the transducer 

surface. The oversampling rate in the CT-TE scheme is 100 to accommodate the slew 

rate requirement in a (maximum) 12-bit CT-TE scheme. Fig. 49 compares the ultrasound 

imaging of a 5-point phantom by 12-bit ADC, and the proposed ACB with a 3-bit and a 

 

Fig. 48.  Duty cycle versus sub-Nyquist sampling ratio (SSR) in the DRS-I for different 

quantization bits in the CT-TE. The imaging target consists of 5-point phantoms.   
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5-bit CT-TE scheme. In Fig. 49 (b), we observe tiny “spikes” in the middle of the point 

phantom, which is distortion introduced by the granular noise effect in the CT-TE when 

the number of quantization bits is small. By increasing it to 5, the “spike” is significantly 

suppressed, as seen in Fig. 49 (c). As shown in Fig. 48, the 5-bit CT-TE scheme has a 

duty cycle of 0.15% and an SSR of 0.059 in capturing 5-point phantom signals.  

The CNR is a useful metric for describing the signal amplitude relative to the 

ambient noise in an image [115]. Fig. 50 shows ultrasound imaging results of a disk-

shape object with a scattering coefficient 10 times higher than that of the background 

medium, which is assumed to be standard normally distributed. The scan is fulfilled by a 

192-element transducer, using 64 active elements with a Hanning apodization in both 

transmit and receive. The transducer element height is 5mm, the width is a wavelength 

and the kerf 0.05mm. The definition of CNR metric is described in [115] and given by  

CNR t bg

bg

x x
σ
−

=   ,                                             (6.19) 

where 𝑥̅𝑥𝑡𝑡 and 𝑥̅𝑥𝑏𝑏𝑏𝑏 is the averaged gray scale of a region of interest (ROI) in the disk, and 

that in an ROI in the background, respectively, and 𝜎𝜎𝑏𝑏𝑏𝑏 is the standard deviation of the 

background noise. Fig. 50 (a) and (b) show the imaging result using a 12-bit 100MHz 

sampling rate ADC and 5-bit CT-TE scheme, respectively. The CNR is calculated to be 

2.93 in (a), and 2.80 in (b), respectively, according to Eq. (6.19). The proposed 5-bit CT-

TE scheme introduces some granular effects in Fig. 50 (b) but maintains comparable 

(less than 5% difference) CNR performance and exhibits a 12-fold data volume 

reduction when compared to a 12-bit conventional ADC due to an SSR of 0.081. 
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(a)                                    (b)                                   (c) 

Fig. 49.  Ultrasound imaging of 5-point phantoms with a spacing of 20 mm starting at 30 

mm from the transducer surface: (a) conventional 12-bit 100MHz sampling rate ADC; 

(b) 3-bit quantization in the CT-TE, SSR = 0.016; (c) 5-bit quantization in the CT-TE, 

SSR = 0.059.   
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(a)                                                                  (b) 

Fig. 50.  Ultrasound imaging of a highly scattering disk-shape object: (a) conventional 

12-bit 100MHz sampling rate ADC, CNR = 2.93; (b) 5-bit quantization in the CT-TE, 

CNR = 2.80, SSR = 0.081.   
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In addition to the simple objects like the point phantom and disk-shape phantom, 

the proposed ACB shown in Fig. 46 is also tested with experimentally captured 

ultrasound data using a 64-element transducer array at 7.5MHz carrier frequency. The 

ultrasound signals were saved with a 30MHz sampling rate and 12-bit integer format. A 

clock rate of 500 times the ultrasound Nyquist rate is adopted in the proposed multi-

channel DRS-I to accommodate the slew rate requirement in a (maximum) 12-bit CT-TE 

scheme. Fig. 51 illustrates the duty cycle in percentage versus SSR of the DRS-I when a 

quantization bit in the CT-TE scheme changes. The resulting ternary timing signals have 

an average sparsity of 0.13% in 8-bit CT-TE. As analyzed in Chapter III, the inner 

product calculation becomes trivial for all zero-valued inputs as a finite input 

multiplying zero always returns zero. Therefore, the duty cycle of the digital 

accumulator in the DRS-I is 0.13%. The sparsity increases as the number of quantization 

bits in the CT-TE scheme increases, as does the duty cycle. But, as shown in Fig. 51, the 

duty cycle remains small even for a 12-bit CT-TE, yielding 2.13%. The sparse ternary 

signals enable a sub-Nyquist sampling even with the 500 time oversampling clock. Fig. 

51 also shows a duty cycle of 0.04% for 5-bit CT-TE and an SSR of 0.11, i.e., a 9-fold 

data compression compared with Nyquist sampling. 

Note that a 5-bit CT-TE with an oversampling ratio of 500 have the same in-band 

quantization noise power as a 13-bit Nyquist-rate ADC because oversampling spreads 

the quantization noise into a much broader bandwidth. From these results, we adopt the 

5-bit CT-TE and SSR of 0.11 in the following numerical results.  
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Fig. 51.  Duty cycle versus the sub-Nyquist sampling ratio (SSR) of the multi-channel 

DRS-I for different number of quantization bits in the CT-TE scheme.    
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Fig. 52 compares the error rate of the ternary timing signal’s recovery using 

different CS estimators in heavy noise (0dB-5dB SNR). The optimal thresholds in (5.25) 

are selected for the SPLS estimator. For comparison, the threshold is set to ±0.5 for the 

conventional sparse recovery algorithms as these CS estimators are able to yield an exact 

(but noisy) signal recovery with high probability. In other words, they are unbiased with 

a high probability, allowing simple choice of threshold following reconstruction.  

10,000 independent simulations are carried out for the Monte-Carlo analysis. In 

Fig. 52, the SPLS estimator achieves the lowest error rate in the low SNR range, where 

ultrasound signals often reside. This occurs because SPLS employs a “tall” matrix B2 for 

each section estimate leading to an over-determined problem which is robust to heavy 

noise, and hence a good fit for this application. In addition, the performance difference 

between the SPLS algorithm with and without interference pruning does not appear until 

the SNR increases. This is because in the low SNR region, noise dominates the error rate. 

As the SNR increases, interference from the nonzero elements outside of the projection 

window influences both bias and variance of the SPLS estimator, as presented in (5.14) 

and (5.21). Nevertheless, Fig. 52 confirms the performance difference between the SPLS 

algorithm with and without interference pruning is small. The proposed SPLS algorithm 

functions well even in the data recovery from the first section, which can be considered 

to have a maximum interference from nonzero elements. However, due to the low 

complexity of the interference pruning step (a subtraction of sign adjusted measurement 

matrix from the measurements) and the resulting improved error rate at high SNR, we 

include the interference pruning step in Algorithm 5.1, as reflected in Fig. 25. 
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Fig. 52.  Error rate of the recovered ternary signal after amplitude detection versus 

signal-to-noise ratio (SNR), with a sub-Nyquist sampling ratio (SSR) of 0.11.    
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Fig. 53 illustrates the reconstructed B-mode ultrasound image (2D gray-scale 

imaging). Signal processing modules including apodization, clutter filtering, envelop 

detection and log compression, were implemented [107]. As shown in Fig. 53, the 

ultrasound signal reconstructed from the compressed measurements achieves a DR of 

more than 70dB, which confirms the 12-bit dynamic range ability in a 5-bit CT-TE 

scheme with a 500 times oversampling rate. In Fig. 53, a section of blood vessel can be 

distinguished from the neighboring tissues in the axial distance from 50mm to 60mm. 

 

Fig. 53.  B-mode ultrasound image with the proposed asynchronous compressed 

beamformer, 5-bit quantization in CT-TE, and the SSR is 0.11.    
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Fig. 55 illustrates the reconstructed color Doppler ultrasound image (2D Doppler 

imaging) from 7 frames of data. The velocity is calculated based on an auto-correlation 

technique and averaged between 7 frames for final display. The clear belt section 

appearing in the axial distance from 50mm to 60mm indicates that there is flowing liquid 

at an averaged velocity of 0.2mm/sec. Together with the B-mode image in Fig. 53, we 

may conclude that a section of blood vessel is present in the axial distance from 50 to 

60mm, and the inside blood flow at a velocity of 0.2mm/sec. 

 

Fig. 54.  B-mode ultrasound image with 12-bit Nyquist rate ADCs.    
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For comparison, Fig. 54 and Fig. 56 show the B-mode and color Doppler 

ultrasound image with 12-bit Nyquist rate ADCs, respectively. There is little perceivable 

difference from the images processed via the proposed ACB and the SPLS algorithm. 

Color Doppler ultrasound imaging in Fig. 56 confirms an averaged velocity of 

0.2mm/sec in the same area as that in Fig. 55. However, compared with full 12-bit 

Nyquist sampling, the proposed method exhibits a 9-fold data volume compression at the 

mixed-signal interface, and employs a 5-bit CT-TE that will require only 0.04% duty 

cycle of the digital accumulator in the DRS-I. 

 

Fig. 55.  Color Doppler ultrasound image with the proposed asynchronous compressed 

beamformer, 5-bit quantization in CT-TE, and SSR equal to 0.11.    
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Fig. 56.  Color Doppler ultrasound image with 12-bit Nyquist rate ADCs.    
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CHAPTER VII  

CONCLUSIONS 

 

Conventional analog-to-digital converters (ADCs) are restricted to the Shannon/ 

Nyquist sampling theorem and have to operate at or above the Nyquist rate in order to 

avoid image aliasing. As a result, sampling of very broadband signals can be extremely 

power-demanding or even technology impossible. Though many advanced digital signal 

processing (DSP) algorithms is capable of compressing the discrete samples volume, it is 

carried out at the digital domain which requires Nyquist-rate sampling as the first stage 

at the mixed-signal interface.  

Compressive sensing (CS) technique integrates sampling and compression into 

one step as compressed sensing and facilitates a sub-Nyquist rate sampling of sparse and 

compressible signals. The original signals can be restored from compressed samples by a 

convex optimization problem. The existing CS framework has proved that it is reliable 

with probabilistic guaranteed signal reconstruction performance and universal to any 

sparse/compressible signals.  

Nevertheless, there are challenges in hardware implementation of CS front-end 

and signal reconstruction algorithms in terms of power, performance and complexity. In 

this dissertation, we propose an asynchronous compressive sensing (ACS) front-end and 

two advanced signal reconstruction algorithms to address them. The ACS front-end 

includes a continuous-time ternary encoding (CT-TE) scheme and a digital random 

sampler (DRS). The CT-TE scheme converts amplitude variations into high-speed 
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ternary timing signals. And the DRS captures the ternary timing signals at sub-Nyquist 

rate by exploiting the sparsity of impulse-like signals. The ACS front-end exhibits many 

advantages such as low power, ease of massive integration, and excellent linearity in 

comparison to state-of-the-art CS front-ends, such as random demodulator, modulated 

wideband converter, etc.  

In the signal reconstruction part, we propose two advanced signal reconstruction 

algorithms with different features. The first algorithm is group-based total variation 

(GTV). It follows the principle of total variation (TV) but introduces a regularized 

group-based total variation penalty in the objective function, which provides smaller 

mean squared error (MSE) and faster convergence rate than conventional TV schemes. 

The second algorithm is called split-projection least squares (SPLS). The SPLS avoids 

the typical CS-based high-cost and nonlinear signal reconstruction, and relies instead on 

a series of low-complexity and independent l2-norm problems that are easily solved via 

least squares (LS) estimators. With the prior on ternary-valued amplitude, the proposed 

SPLS scheme significantly decreases the computational cost in signal reconstruction, as 

is desired for real-time CS signal processing and display.  

In experiment study, we exploit performance of the ACS front-end and the SPLS 

scheme in two practical applications where compressed sampling at the mixed-signal 

interface is critical. The proposed ACS front-end has been further optimized depending 

on the actual requirements. Specifically, in the first application, we proposed multi-

channel filter banks ACS front-end for the interference-robust radar with in-band 

wireless communication interference. With the presence of strong wireless interference, 
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the propose radar receiver performs reliable target detection with nearly 8-fold data 

volume compression compared with the Nyquist-rate ADCs. In the second application, 

we propose an asynchronous compressed beamformer (ACB) for low-power portable 

diagnostic ultrasound imaging systems. The ACB takes the advantages of the high-speed 

CT-TE scheme and achieves low-complexity compressed digital beamforming. The 

ACB scheme is tested with point phantom, disk phantom as well as the experiment data, 

which confirms a 9-fold data volume reduction in comparison to the Nyquist-rate ADCs, 

without significant perceptual loss on imaging results.  

The theoretical analyses and numerical results presented in this dissertation have 

been published or currently under review in several IEEE journals and conference papers.  
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