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ABSTRACT 

 

 This thesis presents a framework known as User Interest Modeling and 

Personalization (UIMAP) which builds a model by identifying and aggregating an 

individual user's interest expressed through their interactions with different applications 

at different times. To do this, we have implemented a content consumer/producer 

architecture. For this thesis, Microsoft Word and PowerPoint are treated as content 

producer applications while a web browser is used as a content consumer application. 

We unobtrusively observe user interactions with these applications as well as the actual 

content consumed/prepared in them. The challenge is to understand the importance of 

each application towards the user's real interest. Based on user activity data in these 

applications, Multilayer Perceptron (MLP), Support Vector Machine (SVM) and 

Weighted K-Nearest Neighborhood (WKNN) techniques are compared in their ability to 

combine these kinds of heterogeneous interest indicators into a single model. Thus, each 

application is weighted differently based on its contributing indicators to predict the 

relevant content for the specific need of an individual. We found that textual content 

from content producer applications plays an equally important role as content from 

consumer applications. Implicit feedbacks from consumer applications also have a major 

role in user's interest. The results indicated that WKNN is preferred if feature weighting 

is the primary goal while SVM is the preferred choice if identifying relevant content is 

the main objective. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Personalized Information Delivery  

 "Information overload" has been used so widely in the literature in the last 

decade that it is on the brink of becoming meaningless. Rather than focus on overall 

quantity of available information, much of the focus has shifted more towards 

personalized information delivery to get users the right information at the right time. 

However, a personalization framework requires an understanding of a user and in 

particular their interests or current information needs. Therefore, it is interesting to first 

discuss what exactly personalized information delivery means and how user interest 

models have evolved to support it.  

 In short, personalized information delivery involves creating user centric systems 

rather than generic user system. These systems can gradually adapt to a user's behavior 

by learning from it and providing visualizations of relevant content that are personalized 

to the user. User interest modeling is the key to the success of these systems. User 

models can be developed by adapting the content consumed or produced by the user, and 

their specific task, background, history and information needs [1]. These models can 

bring user’s attention to more valuable and personalized content of a page rather than the 

entire web page. There are three general approaches to user interest modeling with 

different levels of complexities.  
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1. Hand-authored models [2] - These models are inflexible and cannot be scaled to 

accommodate new features or applications. They also require user input 

whenever information needs change. 

2. Learned models [3, 4] - These models use machine learning algorithms to 

understand the behavioral patterns of the user. They require no action on part of 

the user and are able to adapt to changes in user interest although modeling a new 

user interest can require observation of a significant amount of user interaction. 

3.  Collaborative models [5, 6] - These models take care of the cold-start problem, 

where a new user with virtually no previous interest will be presented with 

information based on interest shown by similar users. Even though they are 

scalable, they implement a shallow model due to their broad generalizations that 

may not hold for specific users. 

 The interest model presented in this thesis belongs to the second category. The next 

question that naturally arises is what actually contributes to the user interest. 

1.2 Multi-Application Interest Model 

 Individuals spend considerable time in multiple applications as they move back 

and forth from consuming content (e.g. in browsing and reading applications) and 

creating content (e.g. creating reports or presentations). In such a context, interaction 

with each application provides unique and useful information about the user's interests. 

A challenge for multi-application user modeling is that the quantity of usage and content 

information obtained from the applications can vary widely. For example, content 

creation applications (e.g. Microsoft word or PowerPoint) are likely to include less 



 

 

3 

 

content than the amount consumed yet it tends to be more indicative of the user’s 

interests. The proposed user interest model called User Interest Model and 

Personalization (UIMAP) includes both spatial and temporal information presented 

within the day-to-day applications such as Microsoft Word, Microsoft PowerPoint and 

Mozilla Firefox browser. It seeks to incorporate the user's activity or preferences in all 

these applications by understanding the actual value contributed from above mentioned 

applications.  

1.3 Implicit and Explicit Features 

 In a multi-application environment, user interest can be recorded either explicitly 

or implicitly. Explicit interest indicators require the user to rate relevant content/page 

after reading or skimming them. They are the most accurate indicator of user interest but 

are hard to obtain. Implicit interest indicators are based on user's actions or behaviors 

rather than explicit relevance judgments. These are collected by unobtrusively observing 

user's interactions (such as mouse/keyboard events, time spent in various activities) with 

the everyday applications and extracting the properties of the used documents. Although 

these are easy to obtain, this information must be interpreted to provide the desired 

interest information. Past research studies [7-9] have already proved that implicit 

feedback can provide valuable feedback. Our proposed frame UIMAP provides a unique 

way of combining these heterogeneous interest indicators to a single model to identify 

relevant content to the user.  
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1.4 Feature Weighting 

 Feature selection assigns binary weights while feature weighting assigns real 

numbered weight values. Thus, the importance of a feature can be quantified and set 

relative to other features. Feature selection algorithms perform best when individual 

features are either highly correlated with the class label or totally irrelevant to it. 

However, feature weighting is more appropriate in cases where features vary in their 

relevance [10]. In our multi-application information environment, there is no particular 

single pattern to the usage of these applications. They vary from one user to another 

because of many factors such as skill level, educational background, task at hand, timing 

constraints, etc. The features extracted from these applications may contribute 

differently towards the interest model from one user to another. Thus, feature weighting 

is necessary to model the importance of individual features in such a heterogeneous 

environment. Feature weighting algorithms can be broadly divided into two categories.  

1. Performance Bias: This is also known as wrapper methods in the machine 

learning community. It uses feedback from a performance function during the 

training phase to include the classifier's bias during weighting. The primary 

advantage of this approach is that the selection of feature weight values is guided 

by how well those values perform in classifier evaluation.  

2. Preset Bias: This is also known as filter methods. This method includes a pre-

determined bias during a pre-process step. It is mainly data driven and weights 

are assigned based on heuristic measure of the data. 
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 Preset bias weighting methods mainly include statistical methods such as 

information gain, entropy, gini index and χ2 statistics. Performance bias weighting 

methods involve observing classifier performance before computing weights for each 

feature. As we intend to suggest relevant content and compute weights of each feature in 

for a variety of user behaviors, performance bias weighting methods are better suited to 

the problem studied in this thesis. Moreover, research has shown that performance bias 

methods perform better than preset bias approaches in many situations [11]. There is no 

single universal weight learning method that can learn optimal weight settings for all 

learning tasks since each task requires different learning biases for optimal performance 

[12]. We have implemented Multilayer Perceptron (MLP), Support Vector Machine 

(SVM) and K-Nearest Neighbor (KNN) classifiers for both identifying relevant and 

irrelevant content as well as deciding the importance of each feature. The main 

contributions of the proposed work are: 

 To the best of our knowledge, this is the first-of-its-kind research where a user 

interest model is built from activity in a web browser, word processor and 

presentation authoring application. 

 Collection of ground truth data set that consists of implicit and explicit feedback 

available in multiple everyday applications during an information-gathering task 

and the users’ post-task relevance assessments. 

 It compares three feature weighting methods that can infer the importance of 

different interest indicators extracted from different applications. 
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 The remainder of the thesis is organized as follows. The research motivation is 

presented formally in the next chapter. A literature review on interest modeling in 

multiple and single application environments and weighting methodologies is discussed 

in Chapter 3. Chapter 4 addresses the prior work on Interest Profile Manager and 

WebAnnotate plug-in. The current approach and system design are discussed in Chapter 

5 while Chapter 6 describes the evaluation methodology and discusses the results. 

Finally, conclusions and directions for future work are presented in Chapter 7.  
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CHAPTER II 

RESEARCH MOTIVATION 

 

 According to a study by Neilsen and Norman Group [13, 14], web users spend 

80% of their time looking at the content above the page fold, i.e., portion of the webpage 

that is visible without scrolling. They tend to read at most 28% of the words during an 

average web page visit. This usually happens because user tend to skim or stop reading 

when they feel what they have is good enough [4]. However, most of the existing 

research in user interest modeling treats documents as a monolithic unit whereas users 

tend to express more granular levels of interest in the form of sub-topics within one 

document. This leads to the question whether we can bring user’s attention to the 

portions of pages of most value by understanding the user's real interest? 

 Modeling user interests to achieve this goal is challenging because users often 

cannot or will not express their interests. Additionally, recognizing user interest based on 

observed user activity is confounded by idiosyncratic work practices. As a result, 

systems that aggregate evidence of user interest from a wide variety of sources are more 

likely to build a robust user interest model. A majority of past studies have focused on 

monitoring only implicit/explicit interest indicators present in a single application, e.g., 

the user’s web browser. However, real world activity spans across many applications. As 

different applications are used to achieve different objectives related to a single 

information seeking task, each application carries its own value and may contribute 

uniquely towards the user's interest. We prepare presentations when we want to put 
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forward our view in a short and concise way, whereas we write a document in cases 

where more explanation is required. Thus, user activity in these content authoring 

applications can help build a better interest model. Explicit and implicit interest feedback 

from these applications can augment the interest observed through browser use to 

improve the understanding of the user interest.  

 However, how do we merge these sources of evidence of user interest? Each 

application can provide multiple forms of user activity and the system needs to balance 

their contribution to the final interest model. Thus, it is important to understand the 

contribution of each of the interest evidence (such as time spent, mouse actions, content 

similarity, etc.) from each application towards the final model. Because each user and 

task can result in a unique work activity, it also helps to understand the value of each 

application with respect to individual users. Because no single set of weights will work 

across diverse work practices, we have implemented various different machine-learning 

approaches to build the user model and extract the weights assigned to individual 

features after classification.  

  The research goal studied in this thesis can be stated as follows: 

To compare alternative machine learning approaches for building a multi-

application user interest model that understands the relative importance of user 

activity in individual applications towards identifying relevant content. 
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CHAPTER III 

LITERATURE REVIEW 

 

 The proposed research work explores issues at the intersection of user modeling, 

personalization, implicit and explicit feedback, multi-application environments and 

feature weighting. This chapter presents a focused review on relevant aspect of each of 

these areas.   

 In past studies, several systems have adopted different machine learning (ML) 

and knowledge based (KB) approaches to build the user interest model. LaboUr [15] 

have proposed a hybrid approach that combines both KB and ML to build a user interest 

model in a web based information system for research funding opportunities. However, 

they consider only positive examples during the learning phase. Probabilistic approaches 

have also been used in the form of Simple Bayesian classifiers (SBC) [16] and "Syskill 

& Webert" [17] to infer the user interest in a corpus of text documents. Both approaches 

require users to rate documents to generate the user interest model. Lam and Mostafa 

(2001) [18] implemented a user interest model based on Bayesian framework. This 

model focused on interest from documents only and tried to detect interest shift over 

time. Our previous research [19] successfully created a semi-explicit feedback based 

user model using Latent Dirichlet Allocation (LDA). But, the model only involved 

interest expressed through the browser and did not consider other applications such as 

Microsoft Word and PowerPoint. 
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 Previous research in our lab has already shown that combining evidence from a 

multi-application environment improves the interest model [20]. There are a variety of 

methods for combining information from various applications. Work in our lab has 

considered a document organizing application known as Visual Knowledge Builder 

(VKB) and document reading application Mozilla Firefox. The current work includes 

additional content producer applications such as Microsoft Word and PowerPoint to 

understand the user interest better. Moreover, the prior work proposed a static 

mathematical interest model while we have explored different machine learning 

algorithms to build an interest model tailored to the individual’s work practices. The 

main purpose here is to understand the user's interests and preferences to provide 

services catered specifically to their needs. Analyzing user interaction records to 

improve support is common. For example, UMEA [21] and Task Tracer [22] record 

information about user's activities with the computer and try to infer task profiles. The 

goal of these systems is to help users access past records of documents and quickly 

restore the historical context. However, they do not explore the importance of the 

individual applications that actually contribute to the user task profile. Closer to our 

approach here, the Watson project [23] included a word processor and browser in their 

system to understand the context of each query and modify queries to produce better 

results. We are not concerned with localized query expansion but modeling user interests 

to adapt the presentation of documents. Another approach to gathering information 

across applications is to look at the text near the user’s focus. IntelliZap [24] made 



 

 

11 

 

context more coherent and focused on a specific topic by extracting lexical meaning of 

user selected text and its vicinity.  

 User interest modeling may either be based on explicit interest indicators (e.g. 

ratings) and implicit indicators, from a single application or multiple applications. In [8], 

the number of hyperlinks and amount of scrolling are used to predict the user interest 

and the learned model based on three layer artificial neural network. In [9], the authors 

used the reading time and the number of scroll events in a browser to determine relevant 

content. The Curious Browser [25] used several features of use such as mouse usage, 

keyboard usage, and time spent viewing the page to predict user interest. These systems 

provide insight into how to combine evidence from different types of data (e.g. different 

features) but do so in the context of a single application, e.g., the web browser. 

 In a multi-application environment, it is important to understand the value of 

each type of user interest evidence in each application. Feature weighting addresses this 

problem by assigning continuous weights to each element in the total feature space. 

Different performance bias algorithms have been used in different classification 

algorithms to compute real valued weights for each feature. Locally Weighted Naive 

Bayes (LWNB) [26] was one of the earliest approaches to understanding feature 

importance in naive Bayes (NB) classifiers. It used the Euclidian distance between the n-

dimensional feature positions as a distance measure. Wang and Zhang (2007) adapted 

this approach by including a probabilistic metric such as Inter Value Difference Metric 

(IVDM) or Minimum Risk Metric (MRM) [27]. An information theoretic method using 

KullBack-Leibler divergence was used in Feature Weighting Naive Bayes (FWNB) [28] 
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to calculate feature weights. All these naive bayes based methods assumed the features 

are independent and  used Fayyad and Irani's discretization [29] approach  in cases 

where conversion from continuous or numerical attributes to nominal features is 

required. Since our features are interdependent, we believe discretization of the feature 

space in Naive Bayes approach would not be suitable for our dataset. Recursive Feature 

Elimination [30] is an excellent method to compute feature ranking in Support Vector 

Machine (SVM). Since it only works well for linear SVM, it would not be a good choice 

for our case due to the high non-linearity decision boundary nature of our data set.  

Salzberg [31] proposed a variant of nearest neighbor algorithm known as EACH to 

compute feature weights. It used leave-one-out process to increment the matched feature 

weights and decrement the mismatched features. Wettschereck et al. presented a good 

summary of other feature weighting methods in his review paper [10]. This work takes 

advantage of this more general research in feature weighting techniques and applies it to 

the domain of multi-application interest modeling. 
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CHAPTER IV 

PRIOR WORK 

 

 Prior work at  Texas A&M University on the Interest Profile Manager (IPM) and 

the WebAnnotate client [32] provides the basic building blocks for the UIMAP 

framework proposed in this work. The IPM is designed to act as the central server for 

aggregating and storing evidence of user interest.  

4.1 Interest Profile Manager (IPM) 

 Each application in the framework acts as a client to the IPM server. This is 

illustrated in Figure 1. IPM has three main modules: (1) Request Handler (RH), (2) User 

Profile Handler (UPF) and (3) Inference Manager (IM). The requests from different 

clients are received and analyzed by the RH. Then the RH invokes the UPF to update the 

user events or document attributes if required and forward the request to the IM. Upon 

receiving a request from the RH, IM interacts with the UPF to get the complete user 

profile and infers various user interests depending on the type of the request. The UPH 

then collects the partial interests of the user as they appear and aggregates them to form 

a complete user profile. It also serializes the entire user profile and saves it in an xml 

format for post processing. Due to the client-server model, IPM can be easily extended 

to support additional applications as clients. For example, a new viewing/reading 

application (e.g. Adobe Acrobat) can be added to enable the user to work with a new 

content type (e.g. PDF). Any new application can become a client in IPM architecture by 

exchanging data about the user in a predefined format. These client applications can be 
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implemented to support one way communication in which they either provide 

information to the IPM or receive information from the IPM, or two way information 

(thus, both providing and receiving information from the IPM). In the prior 

implementation, client extensions were developed for two applications, i.e., VKB3 [33], 

a spatial hypertext workspace for collecting, analyzing and organizing documents and 

Mozilla Firefox, both supporting two-way communication. This work continues to use 

the Firefox extension, called WebAnnotate, which is described next. 

 

 

Figure 1: IPM module interaction with clients 

 

4.2 WebAnnotate 

 For many, the browser is the most commonly used content consumption 

application in today's world. WebAnnotate is a plug-in developed for Mozilla Firefox 
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that provides basic annotation capabilities and collects data on users’ interactions with 

web pages. It can also generate visualizations to help users quickly identify relevant 

portion of the documents. However, the work presented here focuses on building a better 

user interest model rather than visualization. WebAnnotate supports several forms of 

annotation on HTML documents through interaction with the annotation bar (see bottom 

 

 

Figure 2: WebAnnotate tool 
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 of Figure 2). This includes highlighting text in different colors and attaching notes on 

top of the HTML document. WebAnnotate stores the reader’s annotations separately 

from the HTML document in the IPM. 

4.3 Microsoft Word/Power Point Client 

 Apart from email, report and presentation preparation are two of the most 

common content production activities for many users. Microsoft Word and Power Point 

are commonly used applications for these purposes. Add-ins were developed in C# for 

both of these applications [34]. These add-ins  act as a client for the IPM. They parse the 

text content in the document or presentation and record a variety of user interactions 

with the application. At a specified interval, the add-ins send this data to the IPM for 

interest aggregation. This provides the IPM with information about what the user is 

working on so that it can be included in the interest model. The add-ins only support 

one-way communication with the IPM as there is currently no need for the IPM to send 

information about the user’s interests to these applications. 
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CHAPTER V 

APPROACH 

 

 The discussion so far explained the motivation for the research and the prior 

work done on UIMAP. This chapter will focus on specific approaches adopted to solve 

the problem and extensions to the software infrastructure necessary to explore them.  

5.1 System Description 

 The UIMAP framework presents content consumer-producer architecture for 

collecting and processing the user activity data. In an information seeking task 

environment, user interest is distributed in both content-consumer (Browser) and 

content-producer (Word/PowerPoint) applications. Here we define task as a set of user 

activities carried out to achieve a specific goal in mind.  

 

 

Figure 3. UIMAP architecture 
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 The proposed work includes three applications, i.e., Mozilla Firefox, Microsoft 

PowerPoint and Microsoft Word. We have considered Microsoft PowerPoint and Word 

as the content-producer applications and Firefox as the content-consumer application. 

Figure 3 shows the architecture of the UIMAP framework. The IPM acts as the core 

component in UIMAP, which saves different kinds of interest indicators, while the user 

gathers/searches/creates information in multiple applications. A systematic workflow, as 

shown in Figure 4, is designed to make the user interest modeling process accurate and 

scalable.  

Step 1. Preprocess: This step establishes a socket connection between the IPM clients 

such as Web Annotate and the Microsoft Word and PowerPoint plug-ins and the IPM 

server. Individual plug-ins register event handlers for different mouse/keyboard 

interactions. Any webpage loaded in the web browser is parsed and all the scripts, 

advertisements, and dynamic content are removed before text extraction. 

Step 2. Extraction: Each plug-in (WebAnnotate in Firefox and the Microsoft Word and 

PowerPoint plug-ins) is responsible for extracting the user interest evidence from their 

respective applications and communicating this to the IPM. Additionally, they send any 

user-created annotations (for WebAnnotate) and static characteristic of each webpage to 

IPM.  

Step 3. Aggregation: The IPM collects the various user interest evidence data, i.e., both 

implicit and explicit feedback, and converts the data to a common format. It saves all the  
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Figure 4. System workflow 
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data in a profile.xml file for later processing. The data is continued to be updated until 

the IPM server is shut down. 

Step 4. Model learning: The interest evidence data stored in step 3 is parsed and 

segmented by the UIMAP module to separate interest evidences from different tasks for 

a single user. This process also generates the evidence features accepted by the 

classification algorithms used to identify relevant content. The evidence data is used to 

train the model, resulting in attribute weights for the features based on the evidence of 

user interest. 

Step 5. Feature Weight Computation: As each application contributes towards user 

interest via features extracted from it, a learned model can express the application's 

importance in terms of feature weights. Depending on the modeling technique, these 

weights can be observed after the model is trained or can be expressed as a quantitative 

function of features in case the feature space is mapped to a higher/lower dimension 

during classification.  

Step 6. Prediction: Finally, the learned model is used to predict user interest by 

recommending relevant content to the user. 

5.2 Multi-Grade Relevance  

 Content relevance values should be continuous rather than dichotomous [36]. 

Many studies have shown that documents are not always equally relevant to different 

users ; relevant documents are more relevant to some users while they appear to be less 

relevant to others, thus relevance has multiple degrees [35, 36]. This conclusion can be 

naturally extended to the subsections and paragraphs of a document. Thus, user needs 
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and preferences are better identified if multi-graded relevance judgment is considered 

instead of binary relevance judgment [37]. We have adopted a 5-point scale (very 

relevant, relevant, somewhat relevant, only slightly relevant, and non-relevant), 

proposed by Maron and Kuhns (1970) [38], for relevance assessment of the content at 

both paragraph and document level throughout this thesis. From here onwards we denote 

C as the relevance label.  Figure 5 shows the annotation toolbar used to assign ratings to 

each paragraph.  

  

 

Figure 5. Annotation toolbar for rating paragraphs 

 

5.3 Interest Profile 

 An interest profile is made up of the aggregated heterogeneous interest evidence 

collected from the IPM clients. The interest profile is saved in an XML format during 

the information gathering tasks and is then processed later. It broadly contains three 

types of interest indicators, which have been summarized in Table 1. 
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Table 1. Different interest indicators 

Interest 
Category/Application 

Microsoft Word/PowerPoint Browser (Firefox) 

User 
characteristics(UC) 

Click, double click, right 
click, focusIn/Out, total Time, 
edit time, idle time, away time 

Click, double click, right 
click, focusIn/Out, total 

Time, reading time, away 
time, number of scroll, 

number of scrolling 
direction changes 

Document 
characteristics(DC) 

Size, number of characters, 
images, links, last access time, 

last write time, create time, 
number of Slides, text boxes 

Images, links, document 
relevance and readability 

score(explicit) 

Textual characteristics 
(TC) 

Text edited (explicit) Text annotated (explicit) 

 

5.3.1 User Characteristics (UC)  

 These interest indicators are generated by unobtrusively observing the user 

interactions with both content-consumer and content-producer applications. The features 

that belong to this category are derived from implicit feedback data. The application 

plug-ins record different mouse and keyboard interactions such as the number of mouse 

clicks, double clicks, scroll events and scrolling direction changes. The user's 

engagement time with the application is also included. Thus, the applications record the 

total time spent in the application or webpage, the time spent while the application is not 

in focus and the time spent in creating or consuming the content. All these features vary 

from one user to another as they heavily depends on individual practices. The nature of 

the task also leads to different user behavior. 
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5.3.2 Document Characteristics (DC)  

 These features depend on the attributes of a specific document rather than user 

interactions. The web page properties, such as number of links and number of images, 

are constant across users. Features from content-producer applications include file size, 

number of characters, last access time, creation time, number of images, links, slides, 

and text boxes. The above mentioned features are considered implicit feedback as they 

are gathered from the document silently while the user is performing their task. The IPM 

can also collect two types of explicit feedback for each web page visited in the browser. 

Users can volunteer (but in our study the users are asked) to rate the relevance of the 

webpage to the task and the overall readability of the webpage on a 5-point scale. 

5.3.3 Text Characteristics (TC) 

 This class of features is generated from the user’s annotations in consumption 

applications and from the user’s produced content. User annotations reflect the user's 

interest on a topic in a comparatively univocal manner [39]. A similar argument can also 

be made for content produced in content-producer applications. It is expected that we 

can build a better user model by combining these two types of interest indicators. This 

also provides evidence of more focused interest than the general document features in 

the previous categories. As most documents include discussion of several subtopics as 

part of a larger topic, this information allows a content similarity algorithm to identify 

the individual subparts which may be of more interest to the user. As our goal is to help 

users identify the specific parts of documents that are expected to be relevant, such 

focused information is likely to be valuable in this process. Vector space representations 



 

 

24 

 

of text perform well in computing document-to-document similarity in a large corpus of 

documents while topic modeling is more capable of finding subtopics within a 

document. Thus, topic modeling is better suited to identify content for the problem at 

hand. Our previous research [19] has already supported this hypothesis. 

5.4 Interest Representation 

 The different user interest evidences described above are heterogeneous in nature 

and differ from one application to another. A common representation is necessary to 

train our models to learn the idiosyncrasies of the user interest. Before representing in a 

unified format, we need to understand the format of each of these features as extracted 

from their individual applications. 

5.4.1 Interest Extraction (UC & DC) 

 Whenever a document is opened in Microsoft Word or PowerPoint, event 

handlers are registered for different kinds of user events. Event handlers save each 

interaction and their values locally and send them in XML format to IPM. Additionally, 

the content of the document and document characteristics are sent to the IPM at the time 

of closing the document. Similarly, WebAnnotate parses raw text to identify every 

paragraph when a new web page is opened. It also appends mouse and keyboard events 

in a buffer and saves the color and relevance score assigned to each annotation until the 

browser is moved to the background. All the raw information is sent to IPM in an XML 

format at focus out event or at the web page close event. The buffer is reset once the 

focus is brought back to the web page.  
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5.4.2 Interest Extraction (TC) 

 Content Similarity metrics are used to measure the overlap between the textual 

content of the user's previous interactions and any future text content. It is computed 

between the relevant user annotated or produced text from content-consumer/producer 

applications and all other paragraphs consumed in the browser. The similarity score 

represents the user's interest expressed through the textual content. In this work, Latent 

Dirichlet Allocation (LDA) is used to compute content similarity. LDA considers each 

document as a mixture of various topics instead of a single atomic unit. It uses a 

hierarchical probabilistic generative model to express collection of documents by 

number of topics [40]. Given a number of topics K, a document corpus of W distinct 

words, two smoothing parameters α (Dirichlet prior on the per-topic word distribution) 

and β (Dirichlet prior on per-document topic distribution), and prior distribution over 

document corpus, LDA can find the hidden topics as distributions over the words in the 

vocabulary. Here, topics are considered as latent random variable while the words are 

modeled as observed random variable.    

 The LDA parameters such as ∅, θ, K x W matrix of topics and NxK matrix of 

topic weights for each document need to be learned for a corpus of N documents. The 

other parameters α, β and K are chosen as per findings of our previous research [19]. 

Since our corpus is related to specific tasks, the number of topics is kept small. The 

optimal number of topics is found to be 5 in this kind of environment [19]. We have 

estimated ∅ and θ by parameter fitting using collapsed Gibbs Sampling [41].  Two 

additional parameters for the Gibbs sampling are the number of sampling and burn-in 
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iterations, which we set to 1 and 5, respectively. Mallet framework [42] is used for all 

these operations. The other two Dirichlet prior values are set as per below.  

α = 0.01*K  

β = 0.01 

To compute content similarity using LDA requires a probability distribution of source 

content and target content. User generated annotations in the browser and the content 

produced in Microsoft Word and PowerPoint act as the source while any unseen 

paragraphs are treated as targets. The LDA model is created from the source content and 

the topic distribution is saved. The topic probability distributions for the target 

paragraphs are estimated from the already computed LDA model. The similarity 

between two probability distributions is computed using Hellinger Distance metric [43]. 

Figure 6 shows the pseudo code for computing similarity score using LDA.  
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1

()

. ()

1

createTopicModel(numTopics,numIterations)

for i to tList

clearTopicModel

sourceContent contentSrc starts empty

DocumentList docList tList allDoc

for j to







computeContentSimilarityScore(TaskInstanceList tList)

(contentSrc)

1 targetDocList

docList

appendRelevantContent

runLdaModel("source",contentSrc)

srcProbDist= getSourceProbDistribution("source")

for k to

targetProbDist = estTargetProbDist(contentTarget)

simScore = co



mputeSimScore(srcProbDist,targetProbDist)

updateSimScore()

 

  Figure 6. Pseudo code for computing content similarity 

 

5.4.3 Overall Interest Model 

Finally, UIMAP stores all the interest evidence in a vector format where each 

dimension represents a specific interest indicator. All these individual interest evidence 

values have different ranges. For example, number of clicks, scrolls, scrolling direction 

changes, number of images, characters, etc. have real integer numbers while the time 

related features such as total time, idle time, reading time, etc. have much larger values 

in milliseconds. As a result, all the values need to be scaled down to the same range ([0, 
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1]) so that they can be represented in a single vector. We have implemented max-min 

normalization shown in Equation (1)  

 

i
i

x min(x)
y

max(x)- min(x)


  

(1) 

 

where  1 2, ,..., nx x x x  and 
iy is the ith normalized data. The final user interest profile is 

formally represented in a feature vector format in the following way: 

 , , ,TCIP D DC UC  (2) 

 
where 21 n

w p b b bD={d ,d ,d ,d ,..,d }
wd / pd - word/power point document prepared 

by a user, 

{ 21 n

b b bd ,d ,..,d } - set of web pages visited by a user in browser, 

1 2 nDC ={dc ,dc ,.....,dc } - document characteristics of the documents 

consumed/produced by any user, 

1 2 nUC ={uc ,uc ,....,uc } - user characteristics of individual users, 

b w pTC ={tc ,tc ,tc }  - textual characteristics represented by content similarity, 

btc - between relevant annotated text in browser and other unseen paragraphs, 

wtc - between text produced in a report through Microsoft Word application and 

other unseen paragraphs 

ptc - between text produced in a presentation through Microsoft PowerPoint 

application and other unseen paragraphs. 
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5.5 User Model Learning 

 Having described the feature space in the prior sections, we next move on to 

describe the mapping of features to user interest. This thesis explores the use of machine 

learning methods for training the interest model instead of heuristic or rule-based 

approaches to understand the user specific patterns present in the feature space. We do 

so because machine learning methods can easily adapt to new user behavior, new 

applications, and new tasks. Figure 7 shows the interest model architecture. Different 

classifier algorithms, implemented for the proposed interest model, are discussed here. 

Since the feature space has a non-linear decision boundary, we only chose non-linear 

classifiers. Here are the common notations used throughout this section:    

 User interest objects are represented as a real number valued feature space F. 

Unless noted otherwise, it will be assumed that F is a d dimensional vector space,   

i.e. F = ℝ 
d.. A training set T is a collection of labeled data points of F: T = 

{x
1
,x

2
,......,x

n
} 

 Each labeled data point has binary output data C = {c
1
,c

2
,c

3
,c

4
,c

5
} 

where 1~5 represent multi-grade relevance values. We treat them as five separate 

classes. C always denotes the set of class labels.  

 :l X C is a mapping function which maps each instance of x to its class label 

l(x). 

 Since this is a multi-class classification problem, computing weights 

corresponding to individual classes presents a better picture about the importance 

of individual features to specific classes. Attribute weight vectors are represented 
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as W = {wc1, wc2... wcd} where wci is the individual weight of each of the d 

features corresponding to class c {c
1
, c

2
, c

3
, c

4
, c

5}. 

We next describe the three machine learning techniques compared in this thesis: 

multilayer perceptrons, support vector machines, and weighted K-nearest neighbors. 

 

 

Figure 7. Interest model architecture 

 

5.5.1 Multilayer Perceptron (MLP) 

 The universal approximation theorem states that a Multilayer Perceptron (MLP) 

with a single hidden layer and with arbitrary activation function is a universal 

approximator for any kind of dataset [44]. Moreover, MLP is known to be quite noise 
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tolerant. These two considerations motivate the use of a feed forward neural network as 

a classifier in our model. The feed forward neural network used in the proposed work is 

shown in Figure 8. Every Interest indicator from each application appears as a node in 

the input layer while the relevance labels (1~5) represent the output layer. The nodes in 

the hidden layer receive input from the previous layer, apply the network connection 

weights and propagate the value to the next layer. During each epoch, the weights are 

gradually updated by the gradient descent approach known as "back-propagation". In 

back-propagation, the error made by the network at the output is calculated and fed 

backwards to each layer. This error along with a learning rate is used to update the 

weights. This process is carried out until the stopping criterion is reached. Thus, the 

network learns to distinguish between different relevance labels. Due to problems of 

generalization, the number of nodes in the hidden layer and the learning rate are 

adaptively adjusted to obtain optimal results. Details of these parameter selection 

approaches are discussed in Chapter VI. 

5.5.1.1 Training Stopping Criteria 

 One of the major issues with MLP classifier is over-fitting of the data. This 

happens if we continue training based on the total network error computed in the training 

set only. In this case, training set accuracy increases but at the cost of generalization. 

Thus, MLP performs badly on the test set. We have implemented early stopping by 

restraining the training of the network until a minimum error criteria is reached on a 

separate validation set. The original training set is divided such that 80% is used for 

training and 20% of the data is treated as validation set. As per the basic early stopping 
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technique, the training is stopped as soon as the error on validation set starts increasing. 

This method fails for many data sets because real validation error curves usually have 

more than one local minimum. Therefore, we have implemented one of the early 

stopping approaches proposed by Prechelt (1998)  [45].  

 

 

Figure 8. MLP configuration 

# hidden layers are just for indicative purpose only
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 Let E be the mean squared error (MSE) function of the network. Etr be the 

training set error and Eva be the validation set error. During each 5 epochs we compute 

these two errors by taking the average of the error over training set and validation set 

correspondingly.  Now, Eopt(t) is defined as the lowest validation set error computed in 

epochs up to t: 

:opt va
t' < t

E min E (t')
 

(3) 

 

 

 

A new term known as generalization loss at epoch t is defined as the ratio of validation 

error at t to the minimum validation error until t: 

(t) 100 ( 1)
E (t)

vaGL
E (t)

opt

    
(4) 

 

It is evident that the more generalization loss we allow, the more over fitting will 

happen. Thus, we choose the generalization loss threshold value   after which training 

is stopped, i.e., we stopped the training of the network as soon as the total generalization 

loss increases beyond  . The set of network weights of the entire neural network at Eopt 

(t) is always saved while computing the minimum error. This saved weight is used later 

for classification and final feature weight calculation. In this project,   is heuristically 

chosen as 3.  

5.5.1.2 Feature Weight Computation 

 The MLP approach tested includes a variation of the attribute weighting scheme 

proposed by Zeng & Martinez (2004) [46]. The difference is that our algorithm 

computes the weights of each attribute specific to each relevance label rather than one 
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single weight for all the labels, which was proposed originally in [46]. This helps in 

understanding the importance of individual features towards predicting specific 

relevance categories. The rationale behind this algorithm is that important features are 

typically connected to strong links in a MLP and have more effect on the output. After 

the completion of training, the feature weights are extracted from the trained results as 

per equation given below. 

, , c
1
| |

HN

i k kci

k

W CW CW


   

 

(5) 

 
 where  Wci is the attribute weight for input node i for relevance label c 

  CWi,k   is the connection weight from input node i to hidden node k 

  CWk,c  is the connection weight from hidden node k to output node c 

  NH       is the number of hidden nodes from input node i 

After the weight computation from Equation (5), the weights are normalized so that their 

sum is equal to number of features D. 

5.5.2 Support Vector Machine (SVM) 

 Support Vector Machine (SVM) [47, 48] is a classification algorithm developed 

from statistical theory. Empirically, it is proven to be a successful classifier model for 

many domains. The SVM distinguishes between different classes by constructing a 

decision surface, known as hyperplane, in high dimensional space. Out of many possible 

separating hyperplanes, an optimal hyperplane is the one that maximizes the margin 

between different classes. The data points closest to it are called support vectors. In this 

work, we have implemented Radial Basis Function (RBF) kernel using LIBSVM [49]. 
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 Since we deal with a multi-class classification problem, one-against-one is 

chosen as the preferred method over one-against-all due to its lower training time. The 

distance of new data points from the optimal hyperplane is computed during the testing 

phase. The data point is classified to one class or the other based on the sign of the value 

of this distance. The RBF kernel defines two parameters (C and γ). The parameter C 

reflects costs associated with the presence of a data point on the wrong side of the 

hyperplane while gamma (γ) decides the range of the RBF kernel. To find the optimum 

classifier performance, C and γ need to be searched for using cross validation. The 

details are explained in Chapter VI. Even though SVM computes feature weights during 

its computation, these weights represent the importance of attributes projected in high 

dimension. Thus, real weights of input features are hidden under the weights in the 

projected feature space and cannot be computed explicitly. 

5.5.3 Weighted K Nearest Neighbor (WKNN) 

 The k nearest neighbor (KNN) algorithm is one of the most simple yet efficient 

instance learning algorithms used for classification [50]. It is also known as a lazy 

learning algorithm because it only approximates locally and all computations are 

deferred until classification. In particular, KNN is easy to implement since the only 

parameter one needs to choose is k and an appropriate distance metric.  

 As the name of the approach implies, it is based on a simple idea that data points 

with similar feature values should be grouped in the same classes. This classical 

approach does not take into account the feature weighting or distance weighting during 

the estimation. Given a labeled training set (xi, ci) (i = 1,.....,n), where xi 
  ℝ d are the 
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feature vectors , and ci 
{c1,c2,c3,c4,c5} are binary five class labels, the KNN algorithm 

first finds the k nearest data points from the test instance xt
. The Euclidian distance is 

used in this thesis as the distance metric to identify the nearest data points.  

j j

d
2

nw

j=1

d(x,y) = (y - x )  
 

(6) 

 
  where d is the Euclidian distance function between x and y. 

The test instance's label is assigned to the class in which maximum numbers of data 

points in this neighborhood belong. This majority voting without any kind of weighting  

mechanism (NW) can be expressed as: 

 
 

1 5
, ..., (x )i tc c

t i

nw

x d

y argmax I y c


   
 

(7) 

 
  where t

nwy is the estimated class for xt  

   d(x
t
) set of k training instances closest to xt 

1 if cond = true
I(cond)=

0 if cond = false

  
 
  

 

 In the proposed work, we have combined two variants of KNN, i.e., attribute 

weighted and distance weighted KNN to a build our weighted KNN classifier. In the 

classical KNN algorithm, the distance function does not take into account the importance 

of features. Attribute weighted KNN uses a modified distance metric to include each of 

the class-dependent feature weights. The weighted distance function can be expressed 

mathematically as in Equation (8). By introducing a feature weight component in the 

distance metric, the quality of the feature is also considered in the distance function in 

addition to the difference value of the feature. The more useful features will be given 
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more weight while the less useful features will have less weight in the ultimate distance. 

Thus, useful features will have more impact on the distance function compared to 

irrelevant features.  

w(x, y) j j

d
2 2

cj

j=1

d w (y - x )   
 

(8) 

 
  where c = class(x), xF 

   wcj = weight of feature j belonging to class c  

 Another issue with the classical KNN algorithm is that each of the K neighbors 

has equal importance in the majority vote. If the k neighbors vary widely in distance, a 

wrong class may be estimated for the test instance as a result. In this application, the 

distance between test instance and each of the neighbors is used to assign weights to the 

K nearest neighbors to avoid problems due to large distance variance. Thus, we give the 

maximum weight to documents that are most similar to the test instance. Figure 9 

explains this scenario. The modified estimation is expressed as follows: 

 
 

1 5
i tc , ..., c

t i t i

w

 x d( x )

y = argmax I y = c ×1 / d(x ,x )


  
 

(9) 

 
 



 

 

38 

 

  

Figure 9. Weighted KNN classifier with K = 5. The test instance most likely belongs to 
classs B. But, it will be classified as A by majority voting. Distanced weighted KNN can 

avoid this by dimnishing the vote value of instances from A compared to near placed 
training instances from B.  

 

 

5.5.3.1 Feature Weighting Using WKNN 

 Since we intend to learn the individual importance of each feature corresponding 

to each class, we have implemented a normalized version of the class dependent 

RELIEF algorithm proposed in [51] known as NCW-R. Given a training set T, NCW-R 

generates the feature weight vector W. All the feature weight vector values are 

initialized to zero and updated iteratively by processing each data point x in X as per 

Equation (10).  
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The term 
cw  represents the feature weight vector corresponding to class C. The term 

| |x - z indicates the vector of absolute differences between an individual pair of 

corresponding entries in x and z, for x, z F. WKNN (x, c) represents the data points in 

the k nearest neighborhood that belong to the same class as x, e.g., C, while WKNN (x, 

c') represents other neighbor data points that do not belong to C.  Nc is the total number 

instances available for class C.  
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CHAPTER VI 

EVALUATION METHEDOLOGY 

 

 The primary goal here is to understand the importance of heterogeneous interest 

evidence from different content consumer and producer applications when building a 

user interest model in order to recommend new content to users. A key question in 

testing such user interest models concerns the availability of ground truth data. To the 

best of our knowledge, there are no publicly available datasets containing implicit and 

explicit feedback from the browser, Microsoft Word and Microsoft PowerPoint. This 

chapter outlines the details of collecting a corpus of user activity and document 

relevance assessments for testing our proposed models, as well as parameter tuning 

approaches to achieve optimal performance with each model. 

6.1 Ground Truth Data Collection 

 We have conducted a user study to gather data in order to evaluate the 

effectiveness of the UIMAP framework to achieve the above stated goal. This study 

collected the user's interaction with and interest expressed in the web browser and 

Microsoft Word and PowerPoint while performing several information gathering tasks. 

Thirty-one undergraduate and graduate students (24 male and 7 female) were recruited 

via email and flyer. The participants were in the age range of 21-40 and studied or 

worked in various disciplines (Computer Science, Computer Engineering, Electrical 

Engineering, Biological Engineering and Business Administration).  The study was 

conducted in Harvey Right Bright Building (HRBB) Room No. 232 at Texas A&M 
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University. The participants were experienced in the tasks we asked them to perform. All 

participants reported spending at least 1-3 hours daily browsing the Internet and the 

average self-reported expertise of all participants with Microsoft Word and PowerPoint 

was four on a five point scale (1 being lowest and 5 being highest). 

 

 

Figure 10. User study in progress 

 

6.1.1 User Study Design 

 All participants were asked to read eight web pages related to a topic and prepare 

a one half page report in Microsoft Word and a three slide presentation in Microsoft 

PowerPoint on a specific task (Figure 10). A session consisted of four such tasks for 

each participant. During the reading of the selected web pages, participants were asked 

to annotate the paragraphs of the webpage and assign ratings to them using the 

WebAnnotate tool. None of the participants had any prior experience with WebAnnotate 
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tool. Once they completed reading each page, they had to provide a readability score and 

relevance score for that page. The Readability score shows how easy the web page is to 

read while the relevance score represents the relevance of the web page to the 

corresponding task. The Readability score signifies the importance of overall appearance 

and structure of the web page, as well as the language used in the page. On the other 

hand, the relevance score measures the importance of the overall content of the page. 

Before performing any tasks, the participants were given a short 5 minute video training 

session explaining the entire user study procedure along with usage of WebAnnotate tool 

[51]. They were also provided with a Microsoft Word and PowerPoint template for each 

task to save time. The instructions suggested that each task would approximately take 30 

minutes, but they could continue as long as they wanted. 

 Four tasks belonging to four different domains (technology, science, finance, 

sports) were prepared. The task details are given in Table 2. Prior to the user study, we 

issued task related queries to both Bing and Google. Out of the top twenty results from 

both of these search engines, eight web pages were chosen. Selection of web pages 

preferred web pages with more text content rather than pages with image, video or 

dynamic content. Moreover, question/answer websites such as ask.com, 

yahooanswers.com, stackoverflow.com and wikihow.com were not included as they tend 

to provide fairly complete summaries of the specific task, removing the need for 

participants to read the other pages. The selected pages were chosen to include pages 

with varying degrees of relevance to the task. Table 2 reports the average variance of 
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relevance scores for the web pages assigned by participants per task. It shows that each 

task contains both relevant and irrelevant web pages in approximately equal proportions. 

 

 Table 2. Task details 

Task 
No 

Task Name Relevance score 
Variance 

1 How does Google Glass work?? 1.9940 
2 What is mars one project?? 1.1786 
3 How to improve your credit score?? 2.1417 
4 What are the rules of American football?? 2.3155 

 

 

The web pages were saved locally on our own server to ensure consistency of their 

contents across all the participants. We have also ignored text from dynamic scripts 

when processing the textual content of the web pages for the same reason. Figure 11 

shows the web page used by participants to rate the eight web pages after they had 

performed each task.  

6.1.2 Ground Truth Data Preprocessing 

 Data collected during the tasks included all the features originally described. Due 

to experimental setup, this data required preprocessing. For example, as is expected due 

to the data collection process, document features such as last access time, creation time, 

and last write time features are not informative because the tasks lasted approximately 

30 minutes. Thus, these features are not considered during the evaluation process. In 

total, the data captured includes 34 potentially useful features. 
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Figure 11. User study home page 

 

  The primary artificial aspect of the task was the requirement that participants 

annotate and rate individual paragraphs of documents. This was requested so that each 

paragraph in a page could be considered as a unique piece of content with the goal of the 

interest model learning to identify relevant paragraphs in web pages. Preprocessing of 

the data assumes any paragraph that was not explicitly annotated and rated by a 

participant as irrelevant (C = 1). Small paragraphs were also removed from 

consideration; any paragraphs with less than 10 words are ignored from the data set to 

avoid unwanted noise.  

We ignored data collected for task when participants did not generate the 

requested document or slides and for participants that did not annotate at least fifty 

paragraphs across all the tasks. Moreover, some users did not wish to continue after 
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performing three tasks. Since each task is independent of other tasks, we have included 

the data from such participants’ completed tasks provided they adhered to the minimum 

content/annotation rule.  

Finally, since the web pages shown to the participants are real web pages, there 

may be some unwanted paragraphs (comments, page headers) in the content. We 

removed 6247 such data instances during data filtering stage. Finally, we have 33212 

data instances across 104 tasks available for model evaluation, shown in Table 3. 

 

  Table 3. Number of tasks and data points considered in the user study 

Total 
tasks 

performed 

Removed 
tasks 

Final tasks included 
in data 

Total data 
points 

Total data points 
after noise removal 

120 16 104 39459 33212 
 

 Table 4 shows the relevance distribution of the training data. It is evident from 

Table 4 that data instances are heavily imbalanced and biased towards irrelevant content 

(more than 30x). This is because the participants did not annotate all the paragraphs, and 

we treat any non-annotated paragraph as irrelevant.  

 

Table 4. Relevance label wise training data distribution 

Relevance 
Label 

C = 1 
(non-

relevant) 

C = 2 
 ( slightly 
relevant) 

C = 3 
 (somewhat 

relevant) 

C = 4 
(relevant) 

C = 5 
 (very 

relevant) 
No of 

instances 
30300 419 712 925 857 
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There are multiple explanations for why the participants did not annotate all the 

relevant paragraphs. Since the web pages are selected from Google/Bing search results, 

there is overlapping content between them. According to some of the participants, they 

had already seen similar content in earlier web pages and thus did not consider the new 

paragraphs as relevant. Moreover, the user study took 2-2:30 hours on average, which is 

quite tiring. Since the top results of search engines contain wiki pages and other lengthy 

web pages, these pages were likely to have a lot more relevant content than desired for 

this activity. Participants did not annotate all potentially relevant paragraphs in those 

web pages. We observed this common trend in most of the participants.                                      

 The kind of severe imbalance in a dataset shown in Table 4 will lead to poor 

classification results without any data rebalancing [52-54]. Under sampling of the 

majority class is preferred compared to over sampling of minority classes because over 

sampling leads to over fitting [55]. However, under sampling has a drawback of under 

fitting for the majority class (irrelevant class) due to possible loss of valuable 

information. This is not a serious problem in our case as our priority is to identify the 

relevant content more accurately. To train the classifiers, random under sampling was 

used to select a number of data instances of the majority class to balance the dataset. 

6.2 Evaluation Metrics 

 We next describe the evaluation metrics used to assess the quality of the models 

resulting from the three machine learning approaches. 
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6.2.1 Precision and Recall 

 Classification accuracy is not an appropriate evaluation metric in the case of an 

imbalanced data set because high accuracy can be easily obtained by always predicting 

the majority class. Typically, it is more important to predict minority classes more 

correctly than the majority class. Thus, we choose precision, recall and f-measure as one 

of the evaluation criteria for our work. Prior studies [52, 56]  have already proven that 

these measures are independent of class distributions provided that precision and recall 

are measured at the same time. Usually, the output of any classifier is presented in a 

   

 

Figure 12. Confusion matrix 

 

tabular format known as confusion matrix or contingency table as shown in Figure 12. 

The confusion matrix consists of four categories. True Positives (TP) are data instances 
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whose relevance labels are correctly predicted by the proposed model. False Negative 

(FN) refers to the data instances that model falsely predicts to be a wrong label while 

False Positive (FP) are the cases where the data instances are falsely predicted to be 

correct label. Finally, True Negative (TN) corresponds to predictions that are correctly 

predicted not to be the original label. Intuitively, precision measures exactness of the 

system, i.e., out of all predicted data instances for a specific relevance label how many 

are predicted correctly, while recall indicates the completeness of the system, i.e., out of 

all labeled data for a specific a relevance label how many are predicted correctly. 

Precision and Recall often share an inverse relationship between them. Then the 

precision and recall are defined as  

Precision TP
TP FP




  

(11) 

 

Re TP
call

TP FN



  

(12) 

 
2 precision*recall*1F
precision recall




 
 

(13) 

 
F1, shown in Equation (13), measures balance between precision and recall in a single 

value. 

 Additionally, we also compute precision and recall for every individual relevance 

label because of the multi-class classification nature of the problem. We report our final 

precision and recall as a macro-average of precision and recall of each relevance label 

instead of micro-average. The reason for that is the macro-average gives equal weights 

to individual classes while micro-average gives equal weights to individual data points.  
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Thus, large classes dominate the evaluation in macro-averaging if data distribution is 

skewed.   

6.2.2 Average Distance Measure 

 The average distance measure (ADM) [57] is another evaluation metric that is 

more suitable for multi-grade relevance judgment. It measures the average distance 

between the user provided relevance weight (URW) and system predicted relevance 

weight (SPW). It is based on the same fundamental idea of Mean Absolute Error (MAE). 

Relevance weight is denoted as the normalized relevance label. In a more formal way, 

for a given paragraph xi in data set F we can define ADM as  

   | |
1

| |
i

i ix F
SPW x URW x

adm
F




 


 
 

(14) 

 
  where  | F | denotes total number data points in the dataset 

 The ADM score lies between [0...1] range, with 1 being the best performance and 

0 being the worst. ADM is more suitable than precision/recall/f1 measures for the 

proposed work because it provides insight into variation between the user assigned and 

system predicted relevance values. Understanding this difference is important in the 

proposed system since predicting a highly relevant content (C = 5) as non-relevant (C = 

1) or as relevant (C = 4) should not be considered the same. The former prediction leads 

to the wrong result while the latter can be considered reasonably successful. While the 

above metric (Precision/Recall/F1) treats these two cases as the same, ADM 

distinguishes between them, as the penalty is less in the case of the latter. Since the 

purpose of the proposed work is to identify the relevance label of any content rather than 
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ranking the documents, other standard methods such as Mean Precision and Weighted 

Average Precision are not suitable [58]. Another popular evaluation metric is Root Mean 

Square Error (RMSE). Although, RMSE is very similar to ADM, it punishes the larger 

error more severely compared to ADM. That is why we choose ADM as the evaluation 

criteria for parameter and model selection.  

6.3 Parameter Selection 

 It is a common practice to tune the parameters of a classifier to achieve the best 

performance. We next describe the parameter selection methodology adopted for each of 

the classifiers used in the proposed work. We employed a grid search mechanism to 

identify the best parameter combination for optimal result. The entire data set is divided 

  

 

 

Figure 13. Cross validation result for MLP 
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into 70:30 ratio as training and testing sets. The performance for each classifier is 

reported below after a 5-fold cross validation is performed for 40 iterations on the 

training set only. Figure 13 shows the variation of ADM score for the MLP classifier 

when the learning rate is varied from 0.003 to 0.1 (2x step) and the number of units in 

the hidden layer is varied from 24 to 54. The best performance is achieved at 39 (hidden 

units) and 0.006 (learning rate). Similarly, cross validation results for SVM is presented 

in Figure 14. Gamma is varied from 0.00003 to eight while cost parameter (C) is varied 

from 0.03125 to 32768. The optimal result is obtained at 512 (C) and 0.125 (gamma). 

For WKNN, we have only one parameter to select, i.e., the number of data instances to 

be allowed in the neighborhood (K). As the value of K increased from 1 to 10, the 

performance improves until K = 4 and starts to decline afterwards. This trend is shown 

in Figure 15. Thus, our final evaluation of these classifiers employs the parameters, 

shown in Table 5, tuned for the optimal performance. 

 

Table 5. Tuned parameter for optimal result 

Classifier Parameter1 Parameter2 

SVM C = 512 Gamma =0.125 

MLP Hidden Units=39 Learning Rate = 0.006 

WKNN K = 4  
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Figure 14. Cross validation result for SVM 

 

 

 

Figure 15. Cross validation result for WKNN 
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CHAPTER VI 

RESULTS AND DISCUSSION 

 

 This chapter describes the evaluation results of the three classifiers implemented 

in the proposed interest model UIMAP. The results are reported after averaging over 200 

iterations of training the classifiers using a training data set and testing on the test data 

set. The training data set is generated by randomly selecting 70% data points from the 

entire data set and the remainder 30 % is treated as test data set for each iteration. Due to 

the already described inherent imbalance in the data distribution, we randomly under 

sample the data instances from the majority class such that each class has approximately 

the same number of instances in the training data. The minimum sample size is chosen to 

be 1000 because the relevant labels (C = 4 or C = 5) contain close to 1000 data 

instances. Reducing the sample size below 1000 will make the relevant classes majority 

classes, thus leading to a model biased towards relevant classes. We vary the number of 

sampled data points from the majority class between 1000 and 3000 for each 

classification method. Figure 16 shows the performance of the classifiers in terms of 

overall-ADM and relevant-ADM score. The overall-ADM score is defined as the average 

ADM score for all the relevance labels while relevant-ADM score represents the average 

ADM score for only relevant labels. If both overall-ADM and relevant-ADM scores are 

high, then we can conclude that model performed well. As we increase the number of 

samples, there is a steep decrease in average relevant-ADM score while the overall-ADM 

score improved marginally. This is because the classifier becomes biased towards the 
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irrelevant class as the number of samples belonging to that class increases. This bias 

explains why a majority of the test data points were predicted as irrelevant resulting in a 

 

 

Figure 16. The effect of varying training distribution by under sampling  

 

higher overall-ADM score but a lower relevant-ADM score. From here onwards, we 

under sample for 1000 data points from the majority class to alter the original skewed 

distribution towards a more balanced distribution. Among the three classifiers, SVM 

performs better than other two classifiers if overall-ADM is taken into consideration, but 

WKNN marginally performs better than SVM if relevant-ADM score is considered only. 

Overall, MLP performed poorly in both cases. 

 Next we report on the precision, recall, and F1 score for each of the classifiers for 

each of the five relevance levels. Figure 17 shows the precision value comparison while 
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Figure 18 and Figure 19 show the recall and F1 score comparison, respectively. The F1 

score for C = {1, 4, 5} are much higher than C = {2, 3} as expected because the number 

of data points for the latter are quite less compared to the former. Apart from irrelevant 

data instances, SVM has a higher precision than MLP and WKNN. For relevant labels 

only, both precision and recall are around 0.6 for all the three classifiers, which indicates 

 

 

Figure 17. Precision comparison of different classifiers 

 

the robust nature of  our model. For irrelevant label (C = 1), WKNN has the highest 

precision score but the lowest recall score. Overall, MLP did not perform well compared 

to the SVM or WKNN classifiers using these metrics.  

 To provide a better illustration to explain the difference between user assigned 
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Figure 18. Recall comparison for different classifiers 

 

 

 

Figure 19. F1 score comparison for different classifiers 
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distribution of test data points belonging to all possible relevance label difference (RLD) 

values for each classifier. It is evident from Figure 20 that most of the data points belong 

to a RLD range = {-1, 0, 1}. It suggests that our model predicted most of the data points 

almost correctly with a very small margin of error. In addition to that, most of the 

wrongly predicted data points from highly relevant class (C = 5) have a RLD value = -1, 

while the wrongly predicted data points from relevant class (C = 4) have a RLD value = 

1. In other words, our model incorrectly predicted relevance label 5 as 4 or 4 as 5 in 

most of the cases. Since both relevance labels 4 and 5 are relevant, predicting relevance 

C = 4 as 5 or vice versa can be considered as good result. 

 

 

Figure 20. Class wise difference between system predicted and user assigned relevance 
labels 
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computed in non-linear SVM, we present feature weight comparison only between 

WKNN and MLP, shown in Figure 21 and Figure 22, respectively. In WKNN, features 

computed from the content-consumer application clearly have higher weights than the 

features from the content-producer applications except the content similarity feature. 

Other two explicit feedback scores, i.e., readability and relevance score, apart from the  

 

 

Figure 21. Comparison of feature weight computed from WKNN 

 

content similarity, contribute more towards the predicted user interest. Surprisingly, 

image count seems to contribute even more than these two explicit scores. We could not 

reach to any specific hypothesis for such behavior at this point of time. Among user 

characteristics, all scrolling (number of scroll, scroll time and scrolling direction change) 

and time related (total time and reading time) features significantly contribute towards 

the predicted interest. In the browser, the number of focus out events and the total time 
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Figure 22. Comparison of feature weight computed from MLP 

 

spent away from browser have the least effect towards the interest. Since both of these 

features are interrelated, this seems a logical inference. The TC features from all three 

applications have maximum contribution towards user interest. Even though the amount 

of content available in content producer applications is low compared to content 

consumer applications, TC feature weights from the two are similar. This validates our 

initial hypothesis that content producer applications can have a significant contribution 

towards the user interest model. However, UC and DC features of content-producer 

applications contribute the least for both MLP and WKNN classifiers. This is likely due 

to the fact that the content being authored in our experimental setup is clearly relevant, 

and using other features to increase or decrease that relevance generates noise.  
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A similar trend is also observed in feature weights computed in MLP. The top 10 

features in both the classifiers are almost the same. However, the results produced by 

MLP are not very encouraging as the difference between the feature weights are not 

significant and lie in a very small range. Thus, MLP may not be a good choice for 

weight computation. Additionally, it also takes longer time to train due to the gradient 

descent-based back propagation method. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

 In summary, the work presented in this thesis addresses one of the less studied 

approaches to personalizing information delivery. The importance of multiple everyday 

applications and different explicit and implicit interest feedback features are explored 

here to build a common user interest model. Lack of research in this domain leads to the 

unavailability of data sets that represent interest evidence from multiple applications. As 

a result, this thesis presents a method to collect such data through the design and conduct 

of a user study involving common applications. The thesis explored the value of three 

classes of interest feedback from the content consumption and production applications: 

1) User Characteristics, 2) Document Characteristics, 3) Textual Characteristics. Some 

of these are collected implicitly while others are provided by the user explicitly. The 

IPM infrastructure and its clients for Microsoft Word and PowerPoint have also been 

extended to support the collection of additional implicit feedback data. Finally, three 

different classification algorithms, i.e., Multilayer Perceptron, Support Vector Machine 

and Weighted K-Nearest Neighborhood, are used to build the user interest model. We 

also investigated the individual contribution of each interest indicator towards the 

prediction of relevant content by implementing different feature weighting algorithms.  

 It has been noted that with explicit ratings, users read a lot more than they rate 

[59]. We observed a similar pattern during our ground truth data collection. Even though 

the users had spent considerable time reading a specific document, he/she did not rate 
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many of the paragraphs that were relevant. Moreover, relevance is always a subjective 

judgment and varies from one user to another. Considering all these, we believe UIMAP 

model performed reasonably well in predicting personalized relevant content. We have 

evaluated the performance of the three classifiers and compared different feature 

weighting algorithms. Based on the performance results of F1 measure, we found that 

SVM is better than WKNN.  On the other hand based on the ADM score of relevant 

classes (C= {4, 5}), WKNN performed slightly better than SVM while SVM 

outperformed WKNN if the ADM score for all classes (C = {1, 2, 3, 4, 5}) is taken into 

consideration. This is because WKNN is not able to identify the irrelevant class (C = 

{1}) very well. MLP did not show promising results in either of the evaluation metrics. 

Feature weight comparison results indicated that WKNN performed very well in 

understanding the individual importance of user activities in each application while the 

feature weights are hidden in SVM. Even though MLP is able to compute feature 

weights, the relative differences between the weight values are not high and it takes 

longer time to train the neural network. Thus, it is not scalable in the long run. Overall, 

content-consumer applications had stronger weights for implicit feedback data mapping 

to the user's real interest when compared to producer applications. Nevertheless, 

contribution from content-producer applications cannot be ignored as the textual content 

from producer applications contributes nearly equally to the content from consumer 

applications. The nature of the user study likely contributed towards the relative 

distributions of the various features – there was no time for users to multitask as they 

would during real world activities. In conclusion, SVM is preferred if the objective is to 
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only identify the relevant content in a multi-application user interest model. However, if 

feature weighting is equally important as identifying the relevant content then WKNN is 

the preferred choice. 

 Certainly, the User Interest Modeling and Personalization (UIMAP) is only the 

first step towards a personalized information delivery framework which takes into 

account both implicit and explicit feedback from multiple applications. The performance 

of the existing framework can be improved by selecting features with higher weights 

only. Since feature weights provide an insight into which features are more important 

than others, unwanted noise can be avoided by this. Moreover, we did not distinguish 

between implicit and explicit feedbacks in our model. Different experiments can be done 

to use them in a hierarchical manner so that one type of interest indicator can augment 

the other.  

 One of the major strengths of UIMAP framework is its extensibility. The 

framework is designed such that new content consumer/producer applications, e.g., 

Acrobat PDF, Outlook Mail, etc., can be added very easily. One issue with the UIMAP 

is that it does not perform with acceptable accuracy until it sees a relatively large amount 

of data. Thus, it is difficult to predict relevant content for a new user or a new task. 

Adopting collaborative filtering in our framework may help with this problem. This 

approach can use similar interest models from prior tasks for predicting a new user/task 

with insufficient interest information. This method would also be helpful in generating 

community of users who shares the similar interest area or similar reading/writing 

patterns.  
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 In the future, we expect to employ interest drift in interest models. Often users 

move from one interest to another interest seamlessly while doing an information 

gathering task. This interest drift needs to be identified to discount the interest evidence 

obtained from the documents that are no longer in use. All the applications involved in 

this work are only desktop applications. Today, users spend considerable time on mobile 

devices. Thus, smart phone and tablet application clients also can be added to the 

UIMAP infrastructure to build a more robust and dynamic user interest models. 
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