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ABSTRACT

Target localization in wireless systems has experienced a great improvement dur-

ing recent years given the increasing demand for location services by mobile users.

Particularly, localization methods based on received signal strength indicator (RSSI)

are highly attractive because hardware is readily available and cost-effective.

The RSSI-based localization literature generally focuses on the propagation en-

vironment sensitivity and overlooks a major factor in signal strength variability:

the relative orientation between the source and the receiver. With current advance-

ments in hardware, especially low-cost microelectromechanical sensors, most wireless

devices are orientation-aware. This offers an opportunity to enhance the performance

of multi-agent localization systems.

We propose to include orientation knowledge and the typical antenna radiation

pattern asymmetries of the sensing devices into the inference task. We will gather

experimental data using AndroidTM smartphones as sensing devices, implement the

new orientation-aware algorithm and asses the improvements of our approach in

simulations and real-world scenarios.

We compare the new scheme with the standard setting where the orientation is

unknown. The orientation-aware implementation performs significantly better than

the traditional systems in terms of accuracy. These results show that orientation-

awareness capabilities should be accounted for whenever possible in tasks of statis-

tical inference. Furthermore, this idea is likely to find applications beyond source

localization.
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1. INTRODUCTION AND LITERATURE REVIEW

Target localization in wireless systems refers to the problem of accurately estimat-

ing the positions of devices. This topic has been an active research area for years due

to its importance and wide range of applications. In this paradigm, receivers measure

signal parameters such as connectivity, signal strength, angle of arrival and/or time

of arrival [1] [2]. In general, cooperative localization can drastically increase system

performance in terms of both accuracy and coverage [1]. Many algorithms have been

proposed to perform such tasks. Consequently, it is not surprising to find much

literature about the different approaches for target and multi-target localization in

wireless sensor networks (WSNs) [3]. Such networks also introduce new challenges

given the limited amount of resources available at the sensor nodes. These constraints

include limitations on the amount of information that can be exchanged between sen-

sors to achieve a desired level of performance, the computational power dedicated to

cooperative signal processing, and the energy that can be used for computation and

communication [4] [5].

Historically, direction finding and target localization technology have been used

extensively for aero and maritime navigation and for military purposes such as the

location of illegal, secret or hostile transmitters [6]. In recent years, wireless loca-

tion technology has become a key feature for emergency aid and disaster response.

It is widely deployed on aircraft, vessels and places prone to avalanches [7]. When

needed, an emergency beacon transmits a unique identification signal that can aid

in finding the exact location of the source. Other applications involve radio fre-

quency interference detection and wildlife tracking [8]. Over the last decade, a lot of

attention has been given to this area, especially after the Federal Communications
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Commission (FCC) introduced the wireless enhanced 911 (E911) location-accuracy

rules [9]. These rules aim to improve the accuracy and reliability of wireless 911

calls, thereby enabling public safety and emergency personnel to respond more ef-

ficiently and effectively. This requires all wireless carriers to take steps to provide

more precise automatic localization information, specifically the latitude and lon-

gitude coordinates of an emergency 911 call. In addition to emergency services,

there is an increasing interest in using smart antennas to improve system capacity

and expand cellular communication coverage area [10]. In this latter setting, the

objective is to develop an efficient algorithm to control an adaptive antenna that

can direct the maximum radiation toward the intended destination without creating

undue interference to other users. Furthermore, location services create new com-

mercial opportunities for location motivated products such as mobile advertising or

location-based wireless access security [9].

Over the past few years, we have witnessed the rapid development of advanced

mobile technology driven by the advent of the smartphone. Smartphone technology

supports real-time communication and information access, and it offers powerful and

portable computing capabilities with the potential to generate a direct impact on hu-

man development. The global smartphone adoption rate has skyrocketed, growing

faster than any consumer technology in history [11] [12] and demanding an improved

manufacturing process. As a result, mass production processes for this technology

have drastically decreased the cost of high-quality components. Examples of elements

that have benefited from the smartphone revolution include batteries, accelerome-

ters, gyroscopes and compasses. Consequently, it is now reasonable to assume that

advanced wireless sensors have access to similar technology and hence are orienta-

tion aware. This, coupled with the asymmetrical radiation pattern characteristics

of many devices, provides an opportunity for enhanced wireless localization perfor-
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mance relying on existing technology. Notably, the AndroidTM operative system

plays an important role in the mobile industry because it allows manufacturers to

produce quality devices without worrying about software. This makes development

cheaper and gets devices in the hands of more people. The wide availability of a

free, multiplatform mobile operating system is a game changer for mobile applica-

tion developments. The Android software development kit (SDK) offers a rich set of

application programming interface (API) libraries and developer tools necessary to

build, test, and debug Android apps.

Overall, the growing demand for accurate localization capabilities for current and

future applications, coupled with the mobile technology effervescence, sets the way

for the vast ongoing research in this area. Regarding its implementation, target lo-

calization faces challenges, as every other wireless implementation, intrinsic to the

wireless environment. This makes finding the accurate location of an object a difficult

task. Wireless phenomena include channel fading, interference, low signal-to-noise

ratios (SNRs), and multipath conditions [13]. They pose several interesting problems

from a signal processing perspective, and small errors in acquisition can lead to large

errors in location estimates. Signal parameters are crucial in developing accurate lo-

calization systems. Hence, it is fundamental to learn the propagation characteristics

of the medium. Propagation analysis provides a good initial estimate of the signal

characteristics. There are two main approaches to channel modeling described in

the literature, deterministic models and stochastic models [13]. The deterministic

approach, mostly based on ray tracing, describes the channel behavior on the basis of

physical laws, site geometry and known or assumed electrical parameters [14]. They

provide accurate predictions of a system performance in a static environment. On the

other hand, the stochastic approach implies extracting a statistical profile from chan-

nel responses gathered during an extensive measurement campaign [14]. For outdoor
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wireless systems, this has been the preferable approach, producing several models

that are considered crucial and indispensable tools for various applications [14].

Over the years, many approaches for localization algorithms have been proposed

in the literature. They can be divided into two categories: range-based and range-

free approaches [3]. They differ in the information used for the localization task.

The selection of an approach depends on the application requirements.

Range-free approaches estimate the location by exploiting the radio connectiv-

ity information, or proximity, among nearby sensing nodes and anchor nodes with

known position [15]. They were conceived to overcome limitations such as hardware

cost and energy expenditure of the range-based localization schemes. Because of

their simplicity, they are considered an effective and low-cost alternative for use in

resource-constrained environments such as wireless sensor networks. However, these

solutions suffer from low accuracy and their efficacy is a function of the density of

the deployed anchor nodes [15]. Important localization techniques based on range-

free approach include Centroid, APIT, Multidimensional Scaling Map (MDS-MAP),

DV-HOP and Ad-Hoc Positioning System. In addition to the localization schemes

mentioned above, many more have been proposed.

Range-based approaches require distance or angle information to accurately as-

sess the location of an unknown device. Their high accuracy is very desirable in

localization. However, such algorithms require more sophisticated hardware, are

computationally expensive and are subject to uncertainties associated with trans-

mission media and environmental features [16]. The measurements employed for the

estimation process could be any physical reading that indicates distance or relative

position. They are typically angles of arrival or directions of arrival, times of ar-

rival, time differences of arrival or received signal strengths between the source and

receiver. The angles of arrival can be obtained by measuring the difference in re-
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ceived phase between antenna array elements at the receiver [8]. By combining the

angles of arrival estimates of all receivers, an estimate of the target position can be

obtained. Beside the typical sources of error, such as noise and interference, angles

of arrival observations are sometimes corrupted by non-line-of-sight (NLOS) effects

and errors in the angular orientation of the installed antenna arrays [9]. Time based

methods, times of arrival and time differences of arrival record the propagation time

when arriving at different receivers. This can be directly translated into distances,

based on the known signal propagation speed [2]. The measured time of arrival is the

time of transmission plus a propagation-induced time delay. The transmitter-receiver

separation distance can then be directly calculated from the time delay as signals

propagate with a know velocity. One successful implementation of this scheme is

the Global Positioning System (GPS), which is known to provide global location

information with a relatively high degree of accuracy, down to a few meters. Still,

this technology can be expensive in terms of cost, and battery consumption. Here,

the mobile station receives and measures the signal parameters from four or more

satellites in the GPS satellite network. The parameter measured for each satellite

is the time the satellite signal takes to reach the mobile station [9]. One drawback

of methods based on times of arrival is that they require accurate synchronization

between the receivers and source clocks so that time measurements translate directly

into precise distances rather than time differences of arrival measurements where

clock synchronization is avoided [9]. The received signal strength, commonly known

as RSS, measures the power level being received by the antenna [8]. Devices can

measure it during normal data communication and this paradigm does not require

additional bandwidth or energy. Such schemes are fairly simple and inexpensive to

implement. RSS exploits the relation among power loss and the distance between

a source and the destination. In free space, signal power decays with the square of
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the distance between the transmitter and receiver [13]. In terrestrial channels, signal

decay differs by environment due to multipath signals and shadowing effects. This

characteristic of high sensitivity to the propagation environment makes RSSI-derived

distance estimates prone to very large errors at large path lengths, leading many re-

searchers to conclude that RSS is an unreliable method for localization. However,

a weighted approach can be implemented to fully utilize the accuracy of the range

measurements made by the closest devices [17]. Furthermore, some researchers have

recently focused on the estimation of the power-distance gradient or the path-loss

exponent jointly with localization [18].

The estimation of the direction-of-arrival of a narrowband source is the simplest

scenario in a localization context. In the general case, there is no closed-form solu-

tion which implies that a numerical search method is needed. Estimation techniques

are divided into three different types: conventional techniques, subspace based tech-

niques and maximum likelihood techniques. Conventional methods are founded on

the concepts of beamforming and null steering [19] and do not exploit the statistics

of the received signal. Example of these methods are the delay-and-sum method

(DAS) [20] and the Capon Minimum Variance method [21], where several sets of

complex weights can be applied to the antenna elements. The delayed signals are

summed and the power is computed. The direction is then determined by analyzing

the peak of the output power spectrum from all sets of complex weights. On the

other hand, subspace-based direction finding methods exploits the underlying data

model of narrow-band signals in additive noise [22]. This is the basis of Multiple Sig-

nal Classification (MUSIC) [23] and Estimation of Signal Parameters via Rotational

Invariance Techniques (ESPRIT) [22] algorithms. Subspace estimation techniques

are based on the eigenvalue decomposition of the spatial covariance matrix. This

decomposition results in the formation of the signal and noise subspaces. Embedded
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in the signal subspace is the information about where the signals are, while the noise

subspace indicates where they are not [24]. Maximum Likelihood (ML) techniques

have also been widely used and investigated [25] [26]. Problems involving maximum

likelihoods are less popular than suboptimal subspace techniques because of the com-

putational intensive load of the multivariate nonlinear maximization [21]. However,

its high resolution in the determination of parameters such as incident angle, prop-

agation delay and complex amplitude resulted in techniques derived from maximum

likelihood principles with reduce computational load and capable to achieve faster

convergence rates. One of them is the Alternating Projection (AP) algorithm [21],

based on an iterative technique that transforms the multivariate nonlinear maximiza-

tion problem, involved in the Maximum Likelihood estimator, into a sequence of sim-

pler one-dimensional maximization problems. Another closely related method is the

Space Alternating Generalized Expectation maximization (SAGE) algorithm [27],

which generalizes the Expectation-Maximization (EM) algorithm’s idea of data aug-

mentation steps to reduce computational complexity. Rather than estimating all

parameters directly, SAGE breaks down one high-dimensional problem into several

low-dimensional ones and uses the EM principle to sequentially update the parameter

subsets corresponding to each reduced problem while holding the others fixed [28].

As mentioned before suboptimal techniques with reduced computational load have

dominated the field. However, in terms of performance, maximum likelihoods tech-

niques are superior to subspace techniques, especially in low signal-to-noise ratio

conditions [28].

This thesis explores both theoretically and practically how information on sen-

sors orientation can improve the operation of a RSS-based multi-agent localization

system, mainly assessing the gains associated with orientation-aware algorithms in

determining the location of a source. This idea comes from the fact that the re-
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ceived signal strength (RSS) does not only dependent on the distance and channel

attenuation between the source and the receiver, but also on the effective antenna

gain product of their respective orientations. If we assume the source to be omni-

directional, its orientation becomes inconsequential. Contrastingly, due to a variety

of form factors and other design or operational characteristics, wireless devices em-

bedded antennas are subject to directional patterns and thus the orientation of the

sensing device matters. Fig. 1.1 illustrates the effect of rotation on a directional

antenna. Overall, the device orientation has a high influence on the received sig-

Figure 1.1: Effective antenna gain due to rotation.

nal strength used for the estimation process [29]. Orientation have been study in

some scenarios for range-free localization where the emphasis is on improving a ra-

dio frequency fingerprinting technique [30]. Nevertheless, in much of the literature

on range-based localization, this effect is not take into account by itself, instead it

is omitted, or tied to the stochastic models variations associated to the shadowing

effects. Exploiting access to a device’s orientation and combining its directional an-

tenna profile, an algorithm could translate the extra information into better overall
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performance.

With this concept in mind, we set up a basic framework consisting of multiple

sensing nodes, represented by AndroidTM smartphones, trying to pinpoint the lo-

calization of a single omnidirectional source in an outdoor environment using Wi-Fi

technology. The received signal strength indicator (RSSI) and orientation informa-

tion is gathered at every sensing node through the wireless network interface con-

troller and embedded sensors such as GPS, accelerometer and compass. An Android

application, developed using API libraries, is installed on each device to acquire and

manage the aforementioned data. Observations are subsequently stored in an exter-

nal database service for further joint analysis. This schema requires a centralized

server system in charge, not only of holding information, but also of running the esti-

mation algorithms. For estimation purposes, two RSSI-based localization algorithms

using Maximum Likelihood Estimator are implemented; with one of them taking

into account the orientation of the sensing device. It is important to mention that

both algorithms require certain knowledge of the environmental path-loss model and

the new algorithm also requires the antenna profile of each sensing device; this latter

information is collected prior to deployment.

Finally, a quantitative analysis is done to asses both algorithms using localization

error as a performance metric to establish whether the proposed approach is beneficial

or not.
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2. RSS-BASED LOCALIZATION

RSS-based localization methods are attractive because they only require simple

hardware and low network overhead. These methods are based on a standard fea-

ture found in many wireless devices: a received signal strength indicator (RSSI).

This ensures that a broad range of transceivers can be used. However, we must

emphasize that there is no standardized relationship between RSSI values and the

power level received by the antenna [29]. Consequently, the RSSI reported is highly

dependent on the manufacturer and several publications suggest caution about using

RSSI readings for distance estimation. Nevertheless, we can still take advantages of

the information embedded in these readings to obtain estimates under proper cal-

ibration. Throughout this thesis, we assume that the RSSI is proportional to the

power ratio in decibels of the measured power referenced to one milliwatt (dBm).

RSS-based localization generally uses an estimate of the distance between the

emitter and receiver as a primary entity for determining position. This is obtained

from a model describing the relationship between received power and distance. The

localization problem consists then of estimate the source coordinates using every

sensor location and likely distance to the transmitter. Intuitively, the more sensors

found in an area, the more accurate the estimation should be.

In a wireless environment, the received signal power is not only vulnerable to

noise, interference, antenna orientation and other channel obstacles such as multi-

path propagation, fading and shadowing, but these obstacles change over time in

unpredictable ways [13]. Consequently, RSS does not only depend on distance, but

on a multitude of factors. As such, a proper channel model is extremely impor-

tant and must take all these factors in consideration. The following sections present
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the mathematical model and tools available in literature that will be used for the

estimation process in our wireless system.

2.1 Wireless Communication Channel

The wireless radio channel poses a great challenge as a medium for reliable com-

munication. As mentioned before, accurately modeling the behavior of the wireless

channels is essential. Fluctuations in link quality are commonly modeled as a com-

bination of path loss, shadowing, and multipath fading. Path loss is caused by the

dissipation of the power of an RF signal propagating through space as well as the

effects of the propagation channel [13]. Models take this effect into account through

the path loss exponent (PLE), which defines the rate at which the signal power

decays over distance. Typical values range between 2 and 4 depending on the en-

vironment, and it has to be experimentally determined [31]. Shadowing is caused

by obstacles between the transmitter and receiver that affects the wave propagation,

attenuating the signal power through absorption, reflection, scattering, and diffrac-

tion [31]. Multipath fading occurs when multiple transmission paths are combined

either constructively or destructively at the receiver, as a result of the transmitted

signal reflection on objects before reaching the destination [13]. Multipath causes

rapid changes in the RSS that are generally smaller in magnitude than shadowing.

Numerous channel models have been proposed for indoor and outdoor radio en-

vironments, some more accurate and complex than others. An attractive channel

model for RSS-based localization, given its simplicity, is the lognormal shadowing

path loss model; yet other models such as Rayleigh fading and Ricean fading can

also be used [31]. Detailed information about channel modeling for wireless commu-

nication can be found in [19].

A common representation of a wireless environment is given by r(t) = g(d)s(t) +
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w(t), where r(t) represents the received waveform, s(t) is the sent signal, and g(d)

denotes the aggregate channel gain as a function of distance. In this equation,

w(t) captures additive Gaussian noise. Variations in power gain, G(d) = |g(d)|2, are

governed by several factors including the mean path loss, shadow fading and antenna

gain.

The received power for a given distance between transmitter and receiver, assum-

ing a lognormal channel model, can be expressed as

P (d)[dB] = A+B log10(d) + Ls +Ga, (2.1)

where A is a combination of the transmitted signal power and a reference path loss

and B represents ten times the path loss coefficient. Variable Ls is an independent

and identically distributed (iid) Gaussian random variable representing shadow fad-

ing, Ls ∼ N (0, σ2
s ) and Ga designates the antenna gain. We note that the mean of Ls

can be absorbed in A. Thus, without loss of generality, we assume that the shadow

fading component has mean zero. Site-specific values for A and B can be acquired

by applying an estimation method to a reasonably large sample [32].

Several classes of random variables can be employed to model shadow fading, most

notably the log-normal and gamma distributions. Herein, we select the log-normal

density function. Thus, in the logarithmic domain, we get

fLs(`;µs, σ
2
s ) =

1√
2πσs

exp

(
−`− µs

2σ2
s

)
. (2.2)

Paralleling the discussion above, we set µs = 0. The variance parameter can be

estimated through a measurement campaign; the unbiased sample variance is subse-
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quently given by [33]

σ2
s =

1

n− 1

n∑
k=1

(`k − µs)
2 , (2.3)

where n is the sample size, {`k} forms the data set, and points are expressed in the

logarithmic domain.

The objective of the estimation methods is to find the parameters associated to

a mathematical model that best describes a set of data points, in a way that the

model and the data are as close as possible. The most common estimation approach

is the least squares method, which minimizes the sum of the squares of the offsets or

residuals (a residual being the difference between an observed value and the fitted

value provided by a model). The least square method as defined in (2.1) is given by

(A,B) = argmin
a,b

∥∥∥∥∥∥∥∥

p1
...

pn


︸ ︷︷ ︸

p

−


1 log10(d1)
...

...

1 log10(dn)


︸ ︷︷ ︸

M

[
a

b

] ∥∥∥∥∥∥∥∥
2

(2.4)

where p denotes received power at distance d. Then, the optimal coefficients are

given by [
a

b

]
= (MHM)−1MHp. (2.5)

The variance of Ls, the shadow fading component, is computed by normalizing the

residual error,

σ2
s =

1

n− 1
pH
(
I −M(MHM)−1MH

)
p (2.6)

where M is the linear regression matrix defined above.
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2.2 Localization Estimation Problem

Our localization task is to estimate the position of an emitter using a network

of collaborative sensors. The location may be computed relatively to one another,

producing a relative localization; or with respect to the global coordinate system,

yielding an absolute localization.

There exist several RSS-based localization methods. A well known range-free

approach is the Radio Frequency Fingerprint, where the source location is determined

by best matching the obtained RSSI values to a pre-recorded radio map. This radio

map is constructed in a training phase or offline phase and it contains the measured

RSSI at different locations [34]. Techniques for finding the best match include k-

nearest neighbor, Euclidean distance, neural networks, and Bayesian statistics.

Range-based approaches used the RSSI information as a reference for distance

and, subsequently, a geometric interpretation or a probabilistic framework to esti-

mate the source location. The RSS lateration algorithm, a geometric approach, relies

on the fact that this problem is equivalent to pinpointing a location in a 2D or 3D

Cartesian coordinate system. Any point can be defined by distances to a set of known

coordinates, i.e., the intersection of three circles. Figure 2.1 illustrates this concept.

However, the possible errors in the resulting distance estimate cause ambiguity in

the circle intersections and other methods to minimize the error must be used.

A stochastic framework considers the problem of signal processing in the presence

of random noise. Herein, the localization is a statistical analysis to estimate the

position of the source based on a distance estimate from RSS measurements under

the assumed noise model of log-normal shadowing given by (2.1).

Most localization algorithms use models that do not account for antenna charac-

teristics and their effects on received signal strength. Indeed, it is common to find
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Figure 2.1: Lateration techniques use the geometry of circles to determine the source
position.

scenarios where the antenna gain is omitted or implicitly integrated into the varia-

tions produced by the environment. In contrast, our approach considers the antenna

impact. In the absence of orientation information, we assume that the random an-

tenna gain obeys a log-normal distribution with expected value exp(σ2
a/2). In the

logarithmic domain, this corresponds to a zero-mean normal random variable with

variance σ2
a. The noise level is estimated using the unbiased sample variance, as in

(2.3).

The estimation in a stochastic framework is often based upon the principle of

maximum likelihood. The maximum likelihood estimator (MLE) chooses as its so-

lution the parameter that maximizes the likelihood of the observed data [32].

The likelihood of the distance is given by

l(d|p) =
1√

2π(σ2
s + σ2

a)
exp

(
−(p− A−B log10(d))2

2(σ2
s + σ2

a)

)
. (2.7)

In practice, it is frequently more convenient to work with the logarithm of the like-
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lihood function, known as the log-likelihood function, which is equal to

L(d|p) = − ln 2π(σ2
s + σ2

a)

2
− (p− A−B log10(d))2

2(σ2
s + σ2

a)
. (2.8)

Since logarithm is a monotonic, continuously increasing function, the value which

maximizes the log-likelihood function will also maximize its likelihood function. The

maximum likelihood estimator for the location of the source, under the assumption

that the noise components are independent, is given then by

x̂ = argmax
x0

n∑
k=1

L (d(x0,xk)|pk) (2.9)

where xk is the known position of sensor k, x̂ is the estimated position of the source

and d(·, ·) represents Euclidean distance. In this expression, variable x0 ranges over

the set of possible locations.

2.3 Performance Evaluation

Once the localization algorithm is in place, a quantitative measurement of per-

formance is necessary. We will use the empirical mean distance error as a method

to quantify the difference between values implied by an estimator and the true val-

ues. The distance error is defined as an Euclidean distance, that is the length of a

line segment connecting the true target location and the estimated location obtained

from the algorithm. Mathematically, the empirical mean distance error is given by

d̄(x̂,x) =
1

n

n∑
i=1

‖x̂i − xi‖2 (2.10)

where x̂, the estimate parameter, and x, the true value, are vectors representing

locations in a two-dimensional space.
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3. SYSTEM MODEL

3.1 Problem Statement

The system model consists of wireless links which connect the sensing devices to

the source. Each sensing device is gathering three types of data: the received signal

strength indicator (RSSI), the global positioning coordinates (GPS) and the relative

orientation towards the magnetic north. The received power at a sensing device is

governed by the fluctuations in link quality, which are commonly model through a

combination of path loss and shadowing. We will use the approach introduced in

Section 2.1 as reference for distance estimation. The global positioning coordinates

will provide self-positioning for each sensor. The absolute orientation of the phone

will be calculated from the inertial measurement unit embedded in the device. The

inference task is to localize the wireless transmitter using the information provided

by several distributed agents. The system model is shown in Fig. 3.1. Furthermore,

we will characterize the overall performance of a source localization algorithm that

takes into consideration the orientation of the sensing units.

3.2 Orientation

Determine the orientation of a device entails finding the rotation relative to a

fixed frame of reference. Two coordinate systems are defined: the device coordinate

system and the global coordinate system, which represents the reference system. We

adopt the framework used in the Android software development kit (SDK) where the

device’s coordinate frame is define relative to the screen of the phone in its default

orientation; that is, a portrait orientation. The x-axis points to the right, the y-axis

points towards the top of the screen and the z-axis is perpendicular to the front of

the screen, as shown in Fig. 3.2. It is important to understand that the sensor’s

17



Figure 3.1: This figure illustrates the system model.

coordinate system never changes as the device moves.

The global coordinate system, or reference frame, is defined as a direct orthonor-

mal basis. The z-axis points away from the center of the Earth and is perpendicular

to the ground. The xy-plane is tangential to the Earth surface, with y-axis pointing

towards the magnetic north and the x-axis pointing approximately East, as displayed

in Fig. 3.2.

Methods to gain the orientation of moving objects using inertial measurement unit

(IMU) components have been widely study in the field of Inertial Navigation Systems

(INS). Nowadays, low-cost microelectromechanical sensors (MEMs) are integrated in

many devices and can be used in several applications. Accelerometers can provide

an acceleration vector associated with the phenomenon of weight experienced by

the frame of reference, these measurements are given in meters per second squared.

Magnetometers measure the ambient magnetic field in micro-Tesla, and gyroscopes

18



(a) Device’s Coordinate System (b) Global Coordinate System

Figure 3.2: Reference frames

provide angular rotation speed in radians per second; all of them along the x-, y-,

and z-axes of the device.

The device’s orientation may be determined by the local fusion of accelerometer

and magnetometer measurements. Still, both signals are prone to hardware noise

and also the latter is subject to interference by electromagnetic activities nearby. In

addition, orientation systems frequently use the gyroscope’s sensitivity to increase

reliability and accuracy. Orientation in gyros is derived by integrating the speed

measurements over time to calculate a rotation angle. Although gyroscopes are

more accurate, provide rapid response to angle changes and do not have interference

problems, they are prone to bias and integration errors that introduce drift in the

signal. Therefore, one must be cautions while using these values.

3.2.1 Overcoming Hardware Limitations

In practice, there are a few challenges to calculate the orientation, as mentioned

before, due to hardware limitations. However, it is possible to minimize the drift

and noise of the output orientation by implementing data fusion, thereby leveraging
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gyroscope, magnetometer and accelerometer measurements. For instance, to obtain

an accurate and responsive orientation, the gyroscope signal may only be applied for

orientation changes in short time intervals, while the accelerometer and magnetic field

signals are used over long periods of time. This is equivalent to high-pass filtering

the gyroscope and low-pass filtering the accelerometer and magnetometer [35].

Additionally, magnetometer sensors are very sensitive to interference from local

magnetic fields. Once they have been exposed to this interference over a prolonged

period, the sensor will no longer be accurate and will need re-calibrating. User’s help

is needed for the calibration process. It is worth mentioning that new self-calibrating

sensing technology is been developed and implemented. In the near future, calibra-

tion should no longer be a limitation.

3.3 Data Acquisition

RSSI and location information is accessible through the Android API functions.

RSSI can be obtained per request through the WifiManager class. The geographic

location is periodically updated using the GPS unit, and it can be access through

the LocationManager class in GPS-enabled Android devices. In a similar fashion,

the Android API offers very handy functions through the SensorManager class to

get the absolute orientation. The common way to get this information is to use

the SensorManager.getOrientation() method, whose outputs are three orienta-

tion angles, azimuth or yaw (rotation around z-axis), pitch (rotation around x-axis),

and roll (rotation around y-axis). According to the Euler Theorem, the orientation

of a rigid body can be uniquely defined by these three angles, also known as Euler

angles. This Android API method is based on the output data from the accelerom-

eter and magnetometer. The accelerometer provides the gravity vector, the vector

pointing towards the center of the Earth, and the magnetometer functions as a com-
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pass providing a vector that points to the magnetic north. The information from

both sensors is enough to calculate the device’s orientation. Note that the coordinate

systems used in the SensorManager.getOrientation() method are differents, the

x and z axes are inverted. Consequently, azimuth and pitch are positive in the clock-

wise direction for the regular device and world coordinate convention. Furthermore,

to ensure a one-to-one mapping of all possible azimuth-pitch-roll angles to all pos-

sible orientations, one of the rotation angles must be restricted to a 180◦ range. In

Android platforms, pitch is restricted to the range of −90◦ to 90◦. As an alternative,

to increase accuracy, a new Java method for fusing gyroscope, accelerometer and

magnetometer data can be implemented by using a Kalman Filter or the Direction

Cosine Matrix (DCM) algorithm.

The Euler representation (azimuth-pitch-roll) is the simplest method to imple-

ment orientation, but contains ambiguities. These ambiguities are called gimbal

locks. The rotation angles are uniquely determined except for the singular case

when two of the three gimbals are driven into a parallel configuration, losing one

degree of freedom in a three-dimensional mechanism. In our case, the difference

of azimuth and roll is completely undetermined for a pitch of 90◦ or −90◦, corre-

sponding to an upright or a downward position, respectively. Slightly away from

these pitch values, there is a unique solution, yet small changes in orientation may

lead to large changes in azimuth and roll angles separately while keeping changes

to the sum small. Usually, to avoid the gimbal lock problem, the transforma-

tion is represented using rotation matrices or normalized quaternions. Also sup-

ported through the Android API methods SensorManager.getRotationMatrix()

and SensorManager.getQuaternionFromVector() respectively.
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3.4 Simple Case Scenario: Orientation-Aware Localization

In a simplified scenario, we assume that the smartphone is in an up-right position,

meaning pitch and roll will be fixed, and the device will only rotate in azimuth.

Consequently, the relative orientation of the device with respect to the location of the

source is represented by a single angle φ. Due to the gimbal lock problem mentioned

above, the azimuth returned values using the SensorManager.getOrientation()

API function will be prone to errors. Since we will only focus on one angle at this

moment, we can use the function SensorManager.remapCoordinateSystem() to

circumvent this issue. This provides a way to change the natural mapping between

the Earth coordinate system and the device coordinate system. In our case, for

instance, the z-axis of the phone will be mapped to the y-axis of the Earth and the

azimuth will be calculated between these two axes, allowing precise measurements

and avoiding the gimbal lock problem altogether.

3.4.1 Source Estimation

For orientation-aware devices, we use a stochastic framework similar to the one

introduced in (2.8). We modify the log-likelihood function to include the orientation

of the phone towards the source. In this case, the log-likelihood function is given by

L(d|p, φ) = − ln 2πσ2
s

2
− (p− A−B log10(d)−Ga(φ))2

2σ2
s

. (3.1)

When the phone orientation is obtained from the internal sensors, the global MLE

becomes

x̂ = argmax
x0

n∑
k=1

L (d(x0,xk)|pk, φk (x0,xk, φ
′
k)) (3.2)
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where φ′k denotes the absolute orientation of the Sensor k with respect to the global

coordinate system. The relative orientation of the device with respect to a potential

location x0 can be calculated, revealing φk, the proper argument to Ga(·). This

scenario can be better appreciated in Fig. 3.3.

Figure 3.3: This figure illustrates the difference between the absolute orientation
φ′, obtained from the Android API and the relative orientation with respect to the
source φ, the proper argument to Ga(·).

3.4.2 Implementation

Our implementation uses a centralized scheme where all data is gathered in a

single database and jointly processed. The localization algorithm is based on a

maximum likelihood technique implemented in a MATLAB environment.

Two important considerations when implementing an orientation-aware source

localization algorithm are: handling GPS coordinates and establishing a reference

for orientation. First, we interpret the GPS data collected. The Global Positioning

System (GPS) uses the World Geodetic System 1984 (WGS84). Geodetic systems or

geodetic data are used to provide the real location of a point near the surface of the
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Earth. In geodetic coordinates, locations are described in terms of latitude, longitude

and height. These systems are needed because of the imperfect ellipsoid shape of

the earth. This ellipsoid is completely parameterized by the semi-major axis and

the flattening values showed in Table 3.1. In target applications, the local East,

Table 3.1: Constants from WGS84, the coordinate system used by GPS.

Parameter Value
Earth semi-major axis 6378.137 km
Inverse flattening (1/f) 298.2572236

North, Up (ENU) Cartesian coordinate system is far more intuitive and practical

than geodetic coordinates. The local ENU coordinate is formed from a plane tangent

to a fixed point on the Earth’s surface and uses linear X, Y and Z coordinates to

locate elements with respect to the coordinate system origin. By convention the east

axis is labeled X, the north Y and the up Z. Because it assumes a flat earth, it is not a

good coordinate system to use over large distances. To perform the conversion from

geodetic to Cartesian coordinates we rely on the database service implemented. The

centralized server is running PostgreSQL, an open-source object-relational database

management system (ORDBMS), and PostGIS a spatial database extender to add

support for geographic objects. The data obtained from GPS is translated into a

Cartesian coordinate system using the function ST Distance Spheroid, provided by

PostGIS, which returns a linear distance between two latitude/longitude points given

a particular spheroid.

Furthermore, we choose our reference for orientation and specified it into the al-

gorithm. We know that sensors embedded in the sensing device provides orientation
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with respect to the magnetic north and not the true or geographic north. Hence, we

must decide what would be our reference point in the algorithm. To use true north

as reference, we must apply a correction to compass directions. This correction, com-

monly known as magnetic declination, is the angle in degrees between the magnetic

north and the true north. By convention positive means rotated east that much from

true north. This adjustment could be done at the algorithm level or at the sensing

application side. The Android API function GeomagneticField.getDeclination()

provide the means to obtain the magnetic declination value. Alternatively, using the

magnetic north as reference implies defining its geographic location in the algorithm.

The fact is that the strength and direction of the Earth’s magnetic field are con-

stantly changing [36]. Consequently, the location of the geomagnetic poles are not

fixed at specific geographic locations. They moves by a variable amount from day to

day and year to year. However, they can be computed from a main field model, such

as the World Magnetic Model (WMM) or the International Geomagnetic Reference

Field (IGRF). Actually, the Android API function for declination uses the coeffi-

cients and formulas from the technical report: The US/UK World Magnetic Model

for 2010-2015, provided by the National Oceanic and Atmospheric Administration

(NOAA).

Finally, once the position of the sensing devices can be laid out in a Cartesian

coordinate system and the absolute orientation is known, we run the inference task

using the maximum likelihood estimators in (3.2), see Pseudocode 1.
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Pseudocode 1 Orientation-aware source localization

1: for all k receivers do
2: transform GPS location (lat, lon) to Cartesian coordinates (x, y)
3: for all potential location x0 do
4: compute d = ‖x0 − xk‖
5: transform absolute orientation, φ′k, to relative orientation, φ, towards x0

6: calculate loglikelihood[x0] = L(d|pk, φ)
7: end for
8: compute cooperativeLoglikelihood += loglikelihood
9: end for
10: calculate x̂ = max(cooperativeLoglikelihood)
11: return x̂
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4. EXPERIMENTAL SETUP

4.1 Overview

Three measurement campaigns are necessary to assess the orientation-aware lo-

calization method proposed in this work. The first experiment gathers information

to define the receiver’s antenna gain as a function of its orientation. The second ex-

periment seeks to provide statistical evidence for the wireless channel model adopted

throughout. This model is used to determine the characteristics of the environment

that are eventually used for numerical simulations. The third campaign aims to eval-

uate the orientation-aware localization algorithm with actual RSS data under real

conditions.

This chapter details the way the experiments are designed, and explains the

analysis of the gathered information.

4.1.1 Transmitter

The transmitter is a single-antenna access point with a transmit power of 16

dBm. The mounted monopole antenna provides an omni-directional, linear polarized

pattern. The source transmits with a carrier frequency centered at 2.4 GHz. This

band is part of the industrial, scientific and medical (ISM) radio bands and it is used

by Wi-Fi technology.

4.1.2 Receivers

In our case, the sensing devices are embodied by AndroidTM smartphones. These

devices feature Wi-Fi and GPS modules from which the status of the wireless network

and global positioning information can be acquired. The orientation of the device

is obtained using the built-in tri-axis accelerometer and compass components of the
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inertial measurement unit (IMU).

We employed five commercial smartphones during the experiments, three HTC

EvoTM4G and two HTC ThunderBoltTM. An Android application was developed

and installed on each device to collect and store data locally. After each experiment

and once the device is connected to the Internet the data is transferred to a central

server.

4.2 Antenna Characterization

A proper characterization of the received signal strength as function of the device

orientation is critical for the orientation-aware algorithm. A controlled environment

such as an anechoic chamber, designed to absorb reflections of electromagnetic waves,

is the perfect place to avoid multipath and external interference during this charac-

terization.

The function defining the antenna gain is obtained using an access point with

an external linearly polarized antenna. Measurements are gathered from a receiver

mounted on an automated rotation platform that orients the device in different

directions in the azimuth plane. During this process, the application logs the RSSI,

accelerometer and compass readings every 1.8◦ over a full circle. This process is

repeated for each device.

To increase our knowledge of the received signal strength gathered through the

device, we introduce an RF attenuator to reduce the output power at the transmitter.

This mimics the phone being placed at a different distance from the source. Also,

we rotated the device in the azimuth plane in a clockwise and counter clockwise

manner. These additional steps are key in being able to detect non-linearity in the

smartphone’s response.
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4.2.1 Measurements Analysis

The data gathered, see Fig. 4.1, shows that each device presents a particular

antenna pattern. Furthermore, devices of a same type behave alike. Enabling the

antenna characterization to be done by device model.
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Figure 4.1: This plot shows the antenna gain (dBm) as a function of azimuth angle
for two smartphone models (Eθ-polarization, θ = 90◦, 0◦ < φ < 360◦).
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Typically, RSSI is done in the intermediate frequency (IF) stage before the IF

amplifier. Additional steps were taken to try to corroborate this assumption and

rule out the possibility of confounding effects from an automatic gain control. The

latter would be an issue if the RSSI provided by the Android API was being mea-

sured after an amplifier. At this case, in the event of a very weak or strong signal,

the amplifier would compensate for power, thereby changing the measured antenna

behavior. This effect, if present, would have to be taken into account, otherwise the

antenna characterization would be misleading for the orientation-aware algorithm.

Measurements, including a 30 dB attenuator, reveal that the measured RSSI values

are consistent with our hypothesis. That is, the RSSI decreases linearly, preserving

antenna behavior, as shown in Fig. 4.2. In the same way, measurements taken in
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Figure 4.2: This figure shows the antenna behavior with and without a 30dB at-
tenuator attached to the transmitter. The attenuated curve shows two horizontal
straight lines when the connection was drop due to low signal strength.
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clockwise and counter-clockwise rotation, presented in Fig. 4.3, offer evidence that

measurements are memoryless, yielding consistent behavior as desired.
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Figure 4.3: This figure shows the normalized antenna behavior for measurements
taken in clockwise and counter-clockwise rotation.

4.3 Channel Characterization

The experiment is set in a 100 by 100 meters open field area, which is part of

the Texas A&M University campus. Fig. 4.4 offers a satellite image view of the

experiment site. The transmitter is place in the middle of this squared area. RSS

measurements are taken with the sensing device mounted in a plastic 3D printed

structure attached to a PVC section. This aims to avoid potential interference cre-

ated by the way the phone is being held. It also keeps it at a same height during the

entire measurement campaign.

The built-in GPS module, which provides a typical horizontal position accuracy
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Figure 4.4: This figure highlights the site used for the experiments and marks the
transmitter position for the channel characterization.

Source: Google Earth 7.1.2.2041. (February 25, 2013). 30◦37’26.35”N, 96◦20’1.42”W, Eye
alt 1194 ft. Google 2014. http://www.earth.google.com [Accessed February 27, 2014].

of 3 meters in clear sky, makes it capable of recording the geographical positions

associated with each sample. This supports a precise distance determination from

the source. The measurements were taken around the source at every 45 degrees,

with distance ranging from 3 to 70 meters with a single receiver that is moved

around several locations. The receiver’s relative orientation towards the source is also

controlled so that it remains the same during this part of the measurement campaign.

This process is repeated with different smartphones for statistical averaging. A heat

map of the measurements is shown in Fig. 4.5.

4.3.1 Measurements Analysis

In practice, received signal attenuation involves path loss, large-scale or shadow

fading, and small-scale or multipath fading. These effects can be treated as indepen-

dent processes that combine or superpose to produce an overall fading profile [13].
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Figure 4.5: Heat map of the training measurements used for the channel characteri-
zation.

Several abstract models try to predict the path loss in wireless environments, they

are described in the literature. Still the variability and complexity of the radio chan-

nel makes it difficult to accurately obtain a deterministic channel model. In such

scenarios, statistical models are often used.

In our experiments, we assume that the terrain, vegetation, and presence of large

structures in the surroundings result in shadow fading. The immediate vicinities of

the transmitter and receiver are unobstructed. This setting minimizes the effects of

multipath fading. In this scenario, the statistical log-distance model, with log-normal

shadowing, has received much empirical support. It models the variations in received

power in outdoors propagation environments [31].

Earlier, in Section 2.1, we described the wireless channel using a combined path

loss and shadowing model and presented an equation describing the received signal

strength as a function of distance (2.1). The values of A, B and σ2
s fully describe the
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wireless environment. Parameters A and B can be optimized to minimize the sum of

the squares of the error between the model and a wide range of empirical measure-

ments [32]. The difference between the log-distance model and the measurements

determine the error variance, σ2
s .

Herein, the assumption that these errors follow a log-normal distribution [31] is

significative. Therefore, we performed a goodness-of-fit test to determine how well a

set of experimental data fits a normal model. Test statistics are shown in Table 4.1.

One common statistical test for normality, recommended for datasets smaller than

2,000 elements, is the Shapiro-Wilk test where the null hypothesis is that the data is

normally distributed and the alternative hypothesis is that the data is not normally

distributed. From Table 4.1, the p-value or significance value is 0.724. This value

represents the probability of wrongly rejecting the null hypothesis when it is in fact

true. Since the p-value value is greater than the level of significance, α = 0.05, we

can then reject the alternative hypothesis and conclude that the data comes from a

normal distribution at the 5% significance level. The Kolmogorov-Smirnov with esti-

mated parameters test also validates this result. The probability distribution shape

of the data shows a skewness of −0.104 and kurtosis of −0.047. The skewness quan-

tifies how symmetrical the distribution is, a negative skew indicates an asymmetrical

distribution with a long tail to the left. Furthermore, the kurtosis quantifies whether

the shape of the data distribution matches the one of a Gaussian distribution, a

negative kurtosis means a flatter distribution. Nevertheless, none of these values are

substantial and therefore we assume that the error distribution can be treated as

Normal. These results can be observed plotting the normalized empirical distribu-

tion of the error and a Gaussian distribution with σ = 4.79, as shown in Fig. 4.6.

The analysis of the data using the least square method defined in (2.4) leads to a

system with parameters Ā = −47.9, B = −19.5 and noise level due to shadowing
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Table 4.1: This table presents the results from two well-known tests of normality, the
Kolmogorov-Smirnov test and the Shapiro-Wilk test, applied to the error between
the model and the power measurements.

Kolmogorov-Smirnov1 Shapiro-Wilk
Statistic df p-value Statistic df p-value

Data 0.030 531 0.2002 0.998 531 0.724
1 Lilliefors Significance Correction
2 This is a lower bound of the true significance.

σs
2 = 24.25. Figure 4.7 illustrates the received power as a function of distance and

the log-distance model. The parameter A that characterizes the channel is given by

A = Ā−Ga(φ) (4.1)

where Ā is the result from the least square approximation and Ga is the gain of the

antenna at the relative orientation at which the channel characterization measure-

ments where acquired.

4.4 Localization Campaign

Actual RSSI values, devices global coordinates and orientation are employed to

evaluate the performance of the proposed algorithm. This campaign is conducted

at the same place mentioned above for the channel characterization experiment.

The accuracy of the compass information is critical and so the magnetometer sensor

must be calibrated at the beginning of the experiment for better performance. To

re-calibrate, the user must move away from external magnetic fields and wave the

device in a figure 8 pattern or rotate the phone in all 3 axis.

The localization method being evaluated relies on a distributed network of sen-

sors that measure RSS from a single emitter. The source position is unknown and
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Figure 4.6: Empirical distribution of the error and a theoretical Gauss Distribution
with σ = 4.79.

can be anywhere within the boundaries of the uncertainty area. The locations and

orientations of the sensing devices, on the other hand, are known. Several measure-

ments, with random locations and azimuth angles, are taken for each receiver and

the procedure is repeated with different smartphones. All measurements gathered

are considered independent. Figure 4.8 shows the source and a sample set of data

gathered for the evaluation of the algorithm.
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Figure 4.7: Points denote received signal strength as a function of distance from
a source in an outdoor suburban environment. The solid line is the least-squares
approximation.

Figure 4.8: This graph illustrates sample data for the evaluation of the algorithm.
The source and receivers are represented by red and black circles respectively. Each
arrow indicates the smartphone screen direction and colors denote different devices.
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5. PERFORMANCE ANALYSIS

Experimental measurements are used to evaluate the performance of the localiza-

tion algorithm in two ways, numerical simulation and real-life scenarios. To better

understand the impact of information asymmetry in localization, we compare the

new scheme with the standard setting where the orientation is unknown.

5.1 Numerical Simulation Results

In our numerical simulations, we use the antenna and the channel characterization

measurements discussed in Section 4. The area to analyze is a square grid with side

length of 100 meters. With a set resolution of one meter, there exist 10,000 possible

locations for the source and the sensors. For these simulations, we fix the sensors

positions at the corners of the square. In general, the source can be located if and

only if at least three sensors do not lie on a line. We randomly generate the azimuth

values for all sensors and calculate the received signal strength indicator (RSSI) using

the log-normal model from (2.1). To get numerical significance, we run 10,000 trials.

Each iteration randomly assigns the source within the grid according to a uniform

distribution. The estimated location is obtained using the maximum-likelihood al-

gorithms described in (2.9) and (3.2). The error distance is then computed for each

scheme as a function of the number of sensing devices through empirical averaging.

A summary of the simulation parameters appears in Table 5.1. Results are shown in

Table 5.2. From the latter table, it is clear that the orientation-aware implementa-

tion significantly outperforms the standard maximum-likelihood estimator, in terms

of distance error. The average distance improvement is about 12.9 meters. The

output of one iteration is shown in Fig. 5.1.

In Fig. 5.2, we compare the distributions of the residual distances for the classic
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Table 5.1: This table summarizes the simulation parameters.

Parameter Value[units]
Number of iterations 10,000

Number of nodes 3, 4
Uncertainty area 100 x 100 [meters]

A -47.90 [dBm]
B -19.50 [dBm]
σ2
s 7.75 [dBm]
σ2
a 16.73 [dBm]

Table 5.2: This table lists distance errors as functions of the number of nodes. The
orientation-aware implementations perform significantly better than the traditional
systems.

Parameter Average Error Distance (m)
Number of Classic Orientation Aware

Nodes Implementation Sensors
3 41.11 28.66
4 36.01 22.57

and the orientation-aware implementations. This shows the benefits of the orientation-

aware algorithm in terms of accuracy.

The results of the simulations, varying the numbers of receivers, display the

maximum likelihood estimator consistency property. The consistency means that,

having a sufficiently large number of observations, it is possible to find the source

location x with arbitrary precision. In other words, as the number of receivers goes

to infinity the estimator x̂ converges in probability to the true value. From Fig. 5.3,

we can appreciate the decrease of the error distance as we increase the number of

receivers. We note that for these simulations the receivers’ positions do not overlap

with one another or with the source. Furthermore, Fig. 5.3 also shows the impact

of shadowing variance. Increasing the shadowing variance affects both localization
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Figure 5.1: Estimated locations obtained using the two MLE algorithms. The source
is denoted by x, and the circle represents the estimate.

algorithms, although it seems to have a greater impact on the orientation-aware

algorithm.
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Figure 5.2: Percentage distribution of error distance for a simulation using four
receivers.
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Figure 5.3: The graph showcase the estimation behavior as function of the system
parameters.
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5.2 Experimental Results

Experimental results, unlike simulations are derived from actual RSSI, GPS po-

sitioning and azimuth values obtained directly from the sensing devices. The infor-

mation is stored in each device locally and later relayed to a central database.

A single localization trial is a combination of samples, depending on the scenario

we want to study. We run m choose k trials, where m represents the amount of

samples in the data set and k denotes the number of receivers. The parameters used

for the algorithm are shown in Table 5.4 and the results are presented in Table 5.5.

These values support the notion that increasing the information provided to the

algorithm, specifically orientation, leads to a better estimation performance.

A performance comparison of the estimators can be graphically seen in Fig. 5.4.

Herein and via similar to simulations, we can appreciate the orientation impact over

the estimation process. Likewise, we can observe the error distance reduction as we

increase the number of sensing devices. The average unbiased sample variance is

summarized in Table 5.3 .

Table 5.3: This table lists the average unbiased sample variance for 3-7 sensing
devices as function of the device type.

Node

Average Unbiased
Sample Variance

Classic Orientation Aware
Implementation Sensors

Device 1 199.51 180.69
Device 2 46.55 41.08

Figure 5.5 gives more insight on the precision of both algorithms, showing that the

orientation-aware scheme’s precision is superior to that of the classic implementation.

42



Table 5.4: This summarizes the parameters used by the algorithm to evaluate actual
RSSI measurements.

Parameter Value[units]
Number of nodes 3, 4, 5
Uncertainty area 100 x 100 [meters]

A -47.90 [dBm]
B -19.50 [dBm]
σ2
s 24.25∗, 18.30† [dBm]
σ2
a 24.96∗, 5.62† [dBm]

∗ Parameter for Device 1
† Parameter for Device 2.

Table 5.5: This table lists distance errors as functions of system parameters for real
RSSI measurements.

Parameters Average Error Distance (m)

Node
Number of Classic Orientation Aware

Nodes Implementation Sensors

Device 1
3 24.09 21.21
4 21.31 17.95
5 19.26 15.29

Device 2
3 15.84 13.83
4 13.69 11.51
5 12.06 9.84
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Figure 5.4: Estimation behavior using actual RSSI samples.
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Figure 5.6 displays the output of the algorithm for a single trial including 21

receivers. Herein, we can observe the impact of the antenna gain on a heat map.

The error distance for the classic implementation is 5 meters. In comparison, the

orientation-aware implementation is only 1.5 meters away from the source’s true

location.
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Figure 5.5: Cumulative probability function (CDF) of the distance error using four
receivers in a real-world implementation.
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Figure 5.6: Estimated locations obtained using the two MLE algorithms for 21 actual
receivers: (a) presents the source’s location and the sensors’ locations and orienta-
tions (azimuth), (b) and (c) show a heat map of the maximum likelihood estimator;
the source is denoted by x, and the circle represents the estimate.
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6. SUMMARY AND FUTURE RESEARCH

In this thesis, we report on the opportunity to enhance the performance of a

localization system by incorporating orientation information. We employed Android

smartphones as sensing devices and tested the feasibility of using current embed-

ded microelectromechanical sensors to characterize orientation. Although successful,

several challenges such as compass recalibration and sensor behavior considerations

have to be taken into account. We also studied the antenna radiation character-

istics of different devices and demonstrated that antenna patterns are consistent

between smartphones of a same model. In contrast, they are distinct across differ-

ent models. This presents a challenge for an orientation-aware algorithm because

device-dependent antenna patterns must be measured and stored.

A new algorithm that leverages the spherical asymmetry of typical antenna ra-

diation patterns and the devices knowledge of its orientation is introduced. We

analyzed through simulations and experiments the overall system performance of

the new orientation-aware scheme. Using average error distance as a system perfor-

mance metric, we demonstrated that the orientation-awareness of the sensing device

has a positive effect on the accuracy of an RSS-based localization system. Notably,

the orientation-aware implementation demonstrated tangible gains in real systems,

outperforming a standard maximum-likelihood estimator.

Although the real-world test was performed in a controlled environment, given

that it was set to avoid multipath and human presence during the localization pro-

cess, we hope these results provide good insight into the capabilities of orientation-

aware device and expect that this idea can be extended to other systems in the

context of communication such as interference management, precoding MIMO selec-

47



tion, scheduling and hybrid networks.

This work can be extended by implementing an algorithm that uses a three di-

mensional characterization of both the antenna pattern and the orientation of the

sensing device. Also, different computationally attractive methods for computing

estimation can be incorporated. Above all, the goal would be to incorporate con-

siderations of real-life implementation such as localization under human presence

conditions and non-controlled environments where multipath fading may exist, to

prove the viability of applying this type of algorithms in practical communication

systems.
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