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ABSTRACT

As a probabilistic statistical classification model, logistic regression (or logit re-

gression) is widely used to model the outcome of a categorical dependent variable

based on one or more predictor variables/features. We study two problems related

to logistic regression with applications in biostatistics.

In the first problem, we study multivariate disease classification in the presence

of partially missing disease traits. In modern cancer epidemiology, diseases are clas-

sified based on pathologic and molecular traits, and different combinations of these

traits give rise to many disease subtypes. The effect of predictor variables can be

measured by fitting a polytomous logistic model to such data. The differences (het-

erogeneity) among the relative risk parameters associated with subtypes are of great

interest to better understand disease etiology. Due to the heterogeneity of the rel-

ative risk parameters, when a risk factor is changed, the prevalence of one subtype

may change more than that of another subtype does. Estimation of the heterogeneity

parameters is difficult when disease trait information is only partially observed and

the number of disease subtypes is large. We consider a robust semiparametric ap-

proach based on the pseudo conditional likelihood for estimating these heterogeneity

parameters. Through simulation studies, we compare the robustness and efficiency

of our approach with the maximum likelihood approach. The method is then applied

to analyze data from the American Cancer Society Cancer Prevention Study (CPS)

II Nutrition Cohort. Weight gain was associated with the risk of breast cancer and

the association varies by disease subtype.

In the second problem, we use a semiparametric Bayesian method to handle mea-

surement errors. In nutritional epidemiological studies, nutrient intakes are often
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measured via food frequency questionnaires and 24-hour dietary recalls. Due to self

reporting, recall error, and other reasons, the measured nutrient intakes can involve

a substantial amount of noise. While independence assumption between the mea-

surement error and the true predictor is likely to be a reasonable assumption for the

main effect of the predictors, this assumption is not tenable for the interaction effect

of two predictors measured with error. Although there are a number of flexible meth-

ods for handling additive, homogeneous measurement error in predictors in logistic

regression models, relatively less attention has been paid to handling measurement

error that depends on the unobserved predictor. Therefore, we propose a semipara-

metric Bayesian method for handling this unorthodox measurement error scenario

in logistic regression models in the presence of the interaction term. The proposed

method is also designed to handle partially missing values for the error-prone surro-

gate variables. Through simulation studies, we assess some operating characteristics

of the proposed method and compare it with the simulation extrapolation and the

regression calibration method. Our method has smaller biases than the other meth-

ods. In addition, we analyze the NHANES data and assess the association between

some important nutrients and high cholesterol level. Total fat and protein reinforce

each other’s association with the risk of having high cholesterol level.
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1. OVERVIEW OF LOGISTIC REGRESSION

A categorical variable, as its name suggests, has a measurement scale of a set of

categories, and examples include gender (male vs. female) and disease status (case vs.

control). A categorical variable is said to be ordinal if an ordering is present among

the levels of the variable, and an example would be education level (high school or

below vs. associate or bachelor degrees vs. advanced degrees). A categorical variable

is classified as nominal when no ordering is present among the levels. Categorical

scales are widely used in the social sciences and medical sciences.

As a probabilistic statistical classification model, logistic regression (or logit re-

gression) is widely used to explain/predict the outcome of a categorical dependent

variable based on one or more predictor variables/features. The predictor vari-

ables/features themselves can be categorical or continuous. Logistic regression seems

to be very popular in different industries as well as in scientific research. For exam-

ple, social and behavioral researchers interested in obesity prevention may use it to

find out what factors influence whether or not a child actively commutes to school;

a bank may use it to predict whether a credit card transaction is valid or fraudulent;

and an insurance company may use it to predict whether a customer will stay with

them or switch to a competitor.

Depending on the number of possible values of the outcome variable, different

variants of logistic regression can be used, including (1) the binary/binomial logistic

model for a binary (e.g., true vs. false) outcome and (2) the polytomous/multinomial

logistic model for an outcome with more than two levels (e.g., no change vs. better

vs. worse).
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1.1 Why Logistic Regression

Linear regression is perhaps the most used method to explain/predict an outcome

based on predictor variables. However, linear regression may not work well when the

outcome is categorical. For example, when modeling the probability that a student

will complete college within 4 years, a linear model may give predictions outside

the range of 0 to 1; in addition, the error terms may violate linear regression’s

assumptions of equal variance and normal distribution. Logistic regression, on the

other hand, is designed to handle categorical outcomes.

The following properties may have contributed to the popularity of logistic regres-

sion: (1) elegant interpretation: unlike methods such as neural networks and decision

trees, logistic regression’s parameters can be elegantly interpreted as the log odds

ratio associated with every 1-unit increase in the corresponding predictor variable;

(2) easy estimation and inference: as a member of the exponential family, logistic

regression’s estimation and statistical inference are straightforward and computa-

tionally fast; (3) a fairly complete toolbox: various methods have been developed for

logistic regression’s model selection, model diagnostics, etc.

1.2 Logistic Models Related to This Dissertation

In binary logistic regression, the outcome Y is usually coded as“0” for a negative

result and “1” for a positive result for convenience in interpretation and mathematical

derivations. For a length-P vector of predictor variables X, which includes as its

first element a 1 for the intercept term, the logistic model is π(X) = Pr(Y = 1|X) =

1 − Pr(Y = 0|X) = {1 + exp(−(XTβ))}−1. This way, π(X) is guaranteed to be in

the range of 0 to 1. An alternative way to express the model is logit(Pr(Y = 1|X)) =

XTβ.

The interpretation of β is straightforward: If we let Xp be the p-th component of
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X and βp be the corresponding element in β, then it is easy to see that the logit, or log

odds ratio, of π(X) increases by βp with every 1-unit increase in Xp. An equivalent

but more commonly used interpretation is that the odds increase multiplicatively be

exp (βp) with every 1-unit increase in Xp.

Parameter estimation and statistical inference for binary logistic regression can

be done with the usual maximum likelihood mechanics. With a sample size of n, the

likelihood function is simply the product of n binomial probability mass functions,

i.e., L(β) =
∏n

i=1 π(xi)
yi(1− π(xi))

1−yi . The corresponding log likelihood is l(β) =

log(L(β)) =
∑n

i=1 x
T
i β −

∑n
i=1 log(1− π(β;xi)). Then, the score equations can be

obtained by setting the derivatives of the log likelihood with respect to β to zero,

i.e.,

S(β) =
n∑
i=1

(yi − π(β;xi))x
T
i .

The solution to score equations is the maximum likelihood estimate (MLE), which

can be found numerically since an analytical form does not exist. One of the numeric

tools can be used is Newton’s method (also known as the Newton-Raphson method),

which in the context of logistic regression has a new name “Iterative Weighted Least

Squares” (IWLS). The variance/covariance of the estimate is just the inverse of the

Fisher information matrix.

For an outcome with J nominal levels, where J > 2, a polytomous logistic model

with a reference category specified by the user can be fit. For example, suppose we

are interested in the result of cancer screening in women and the possible outcomes

include breast cancer (J = 1), lung cancer (J = 2), colorectal cancer (J = 3), and

no cancer (J = 4), we can use no cancer as the reference category and model J − 1

probabilities Pr(Y = 1), . . . ,Pr(Y = J − 1). Formally, log(Pr(Y = j|X)/Pr(Y =

3



J |X)) = XTβj, j = 1, . . . , J − 1. The probabilities for the outcomes are Pr(Y =

j|X) = {
∑J

k=1X
T (βk−βj)}−1 with βJ = 0. Its parameter estimation and statistical

inference can be done in a similar fashion as in binary logistic regression.

1.3 Organization of Dissertation

In Section 2, a method will be proposed to handle multivariate disease classi-

fication data in the presence of partially missing disease traits, and the method

will be used to analyze the associations between weight gain and the risk of breast

cancer subtypes using data from the American Cancer Society Cancer Prevention

Study (CPS) II Nutrition Cohort. In Section 3, we will address a non-standard mea-

surement error problem with a semiparametric Bayesian method and analyze the

NHANES data to assess the effects of some important nutrients on high cholesterol

level. A summary and some discussions on future work will be contained in Section

4.
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2. ANALYSIS OF MULTIVARIATE DISEASE CLASSIFICATION DATA IN

THE PRESENCE OF PARTIALLY MISSING DISEASE TRAITS

2.1 Motivating Data and Problem to Solve

While disease trait information has been used in understanding survival of pa-

tients, relatively less research has been done on incorporating disease trait informa-

tion into etiologic investigations. In this section, we analyze data from the Amer-

ican Cancer Society’s Cancer Prevention Study (CPS) II Nutrition Cohort (Calle

et al. 2002) to investigate whether the association between weight gain and risk

of breast cancer varies among different disease trait subtypes in women not using

postmenopausal hormones, adjusting for important risk factors. If the association

of a predictor variable varies across the subtypes, we examined how much of this

variation is due to each of the disease traits. Understanding “etiologic heterogene-

ity” of a risk factor sheds light on the pathogenesis of disease (Morton et al. 2008).

In the CPS-II Nutrition Cohort, there are 5 tumor characteristics, including stage

(2 levels), histology (3 levels), estrogen receptor (2 levels), progesterone receptor (2

levels), and grade (3 levels), leading to 72 (i.e., 2 × 3 × 2 × 2 × 3) different disease

subtypes.

To examine the effect of risk factors on different disease subtypes, we consider

the polytomous logistic regression, which is commonly used for handling multino-

mial data (Fagerland et al. 2008; Engel 1998; Hosmer 2000). There are two variants

of the model: one for nominal and one for ordinal scale outcomes (Goeman and le

Cessie 2006), and we focus on modeling nominal outcomes. For each disease sub-

type, we have a set of disease-predictor association/regression parameters and a set

of nuisance intercept parameters. The etiologic heterogeneity will be measured via
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differences among the regression parameters across subtypes. The number of re-

gression parameters can be large when several disease characteristics (traits) are of

interest and each characteristic has multiple levels. In this context, a second-stage

model was proposed to reduce the dimension of the heterogeneity parameters when

all disease traits are observed (Chatterjee 2004). The problem becomes even more

challenging when the disease traits are partially missing, which was not address in

Chatterjee (2004). In the CPS-II Nutrition Cohort data, the missingness percent-

ages for the five traits are 23.2%, 21.2%, 0.0%, 30.0%, and 33.6%, respectively. In

particular, among the cases, approximately 45.5% had at least one missing trait.

While estimation of the heterogeneity parameters was considered in the Cox

regression model in the presence of partially missing disease traits (Chatterjee et al.

2010), the same issue has not been considered before in the context of polytomous

logistic model, which will be considered in this section. We will propose a method

to estimate the heterogeneity parameters using a pseudo conditional likelihood. We

would like to point out that in the presence of missing data, the pseudo conditional

likelihood is not free from the nuisance intercept parameters. For estimating these

nuisance parameters, we use a different type of pseudo conditional likelihood. For

handling the large dimension of the nuisance parameters, we adopt another second-

stage model, and estimate them from another objective function. The idea of using

two objective functions, one for the main parameters of interest and the other for

the nuisance parameters, was inspired by Goetghebeur and Ryan (1995).

Alternative to the proposed approach, one could consider a maximum likelihood

based inference for the heterogeneity parameters using the full likelihood of the data.

However, misspecification of the model for the intercepts will have less bearing on

our inference than on the full likelihood based approach. This robustness property

of our approach will be demenstrated through simulation studies. Our inference is
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based on an artificially constructed pseudo conditional likelihood function. To show

its validity, we derive the large sample properties of the resulting estimator.

2.2 Model and Notation

For each subject in a cohort of n subjects, when no missingness occurs we observe

(D, Y,X), where D takes on one or zero according to whether the subject is diagnosed

with the disease or not during the follow-up period. For the sake of simplicity and

easy understanding, we first consider only two disease traits (i.e., K = 2) and assume

that X is a scalar covariate (i.e., P = 1). The general case of K > 2 and P > 1 can

be derived in the same fashion. Thus, Y = (Y1, Y2)
T carries information on 2 disease

traits. For a disease-free subject, we have D = 0 and Y = (0, 0)T . If the k-th trait

has Mk levels, then there are a total of M = M1 ×M2 disease subtypes. Our model

is

pi,(y1,y2) ≡ pr(Di = 1, Yi = (y1, y2)|Xi) =
exp(α(y1,y2) + β(y1,y2)Xi)

1 +
∑

(y1,y2) exp(α(y1,y2) + β(y1,y2)Xi)
,

pr(Di = 0|Xi) =
1

1 +
∑

(y1,y2) exp(α(y1,y2) + β(y1,y2)Xi)
, (2.1)

for i = 1, . . . , n, where β(y1,y2) denotes the log-odds ratio parameter of the disease

subtype (y1, y2) for the covariate, α(y1,y2) denotes the nuisance intercept parameter,

and
∑

(y1,y2) means summing over all M subtypes of the disease.

For a scalar continuous covariate scenario, there are M main regression (log-odds

ratio) parameters of interest along with M intercept parameters, which are not the

main interest. Etiologic heterogeneity is measured via the differences among the

regression parameters for a given covariate, and our focus is on the estimation of the

heterogeneity parameters.

To measure heterogeneity and reduce the dimension of subtype-specific regression
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parameters, following Chatterjee (2004) we use the following second-stage model for

the log-odds ratio parameters in model (2.1):

β(y1,y2) = θ(0) + θ
(1)
1(y1) + θ

(1)
2(y2) + θ

(2)
12(y1,y2), (2.2)

where θ(0) is the regression coefficient corresponding to the reference subtype of the

disease, and the first-order and second-order parameter contrasts are respectively

represented by θ
(1)
k(yk)

, k = 1, 2, and θ
(2)
12(y1,y2). By assuming certain contrasts to be

zero, we can reduce the number of parameters. In addition, these assumptions can

be tested. Assuming the second- and higher-order contrasts are equal to zero, which

we call a second-stage additive model, θ
(1)
1(y) − θ

(1)
1(y∗) tells us the degree of etiologic

heterogeneity with respect to the first trait, regardless of the levels of other traits.

For identifiability, we set θ
(1)
1(1) = θ

(1)
2(1) = 0, and θ

(2)
12(1,y2) = θ

(2)
12(y1,1) = 0. More

elaborately, the heterogeneity of the log-odds ratio parameters due to the first trait

can be measured via the contrasts θ
(1)
1(2), . . . , θ

(1)
1(M1). By assuming the second-order

contrast parameters to be zero, we reduce the dimension of regression parameters

from M1 ×M2 to 1 +M1 − 1 +M2 − 1 = M1 +M2 − 1.

To simplify the notation in the second-stage model, we use a design matrix B to

relate the coefficient β that contains all the β(y1,y2) parameters of the unstructured

polytomous model to the parameters θ of the second-stage model (2.2) as β = Bθ.

In particular, βT(y1,y2) = BT(y1,y2)θ, where B(y1,y2) denotes the row of B corresponding

to disease subtype (y1, y2). Also, using a second-stage model we can write α = Aξ,

where α is a length-M vector of all α(y1,y2) parameters. We use ξ to denote the

second-stage parameters for the nuisance intercept parameters. For clarity, we write

α(y1,y2) = AT(y1,y2)ξ, where AT(y1,y2) denotes the row of A that corresponds to disease

subtype (y1, y2).

8



Note that the use of the second-stage model for the regression parameters is

not just for dimension reduction. More importantly, these second-stage model pa-

rameters are our main interest. As mentioned previously, these parameters directly

measure the heterogeneity in the log-odds ratio parameters due to each of the dis-

ease trait. For the purpose of dimension reduction we set second- and higher-order

contrasts to be zero.

We introduce non-missing value indicator variables, Ri = (Ri1, Ri2)
T , whereRik =

1 (k = 1, 2) if the k-th trait is observed for diseased subject i and 0 otherwise. Since

for a non-diseased subject there is no relevance of disease traits, for all non-diseased

subjects we set R = (1, 1)T for convenience. Note that there are at most 22 types

of missing data patterns: (0, 0), (0, 1), (1, 0), and (1, 1), with (1, 0), for example,

meaning the first trait was observed but the second trait was not observed. We

assume that the probability of observing missingness pattern r, pr(R = r|Y,X) =

π(r,X), does not depend on the disease traits. However, we not only allow the

missingness probabilities to depend on X (a case of missing at random, MAR, Little

1998; Rubin 1976) but also allow the missingness indicators of different traits, R1

and R2, to be dependent on each other.

We introduce some additional notations to be used in the following subsections.

For the i-th subject, whose missing data pattern is r, we partition its vector of disease

traits into the observed traits yori and the missing traits ymri . Similarly, we will use∑
ymri

to sum over all the possible values of ymri . For example, if Y1 = y1 but Y2

is missing, then r = (1, 0), yor = y1, y
mr = Y2, whose value is missing, and

∑
ymr

means summing over all the terms corresponding to (Y1 = y1, Y2 = 1), (Y1 = y1, Y2 =

2) . . . , (Y1 = y1, Y2 = M2). When both traits are observed,
∑

ymr just uses the term

corresponding to (Y1 = y1, Y2 = y2).

9



2.3 Estimation Methodology

2.3.1 Maximum likelihood method in the context of missing data

To estimate θ, one can use the maximum likelihood estimator (MLE), which is

obtained by maximizing the full likelihood

L =
n∏
i=1

[{ 1

1 +
∑

(y1,y2) exp(AT(y1,y2)ξ +XiBT(y1,y2)θ)

}1−Di

×
∏
r

{ ∑
ymri

exp(AT(yori ,ymri )ξ +XiBT(yori ,ymri )θ)

1 +
∑

(y1,y2) exp(AT(y1,y2)ξ +XiBT(y1,y2)θ)

}I(Ri=r)Di]
.

The resulting score functions for θ and ξ can be compactly written as the following:

Sθ≡
∂log(L)

∂θ
=

n∑
i=1

{
DiXi

∑
r

I(Ri=r)
∑
ymri

B(yori ,ymri )ω(yori ,ymri ,Xi)−Xi

∑
(y1,y2)

B(y1,y2)pi,(y1,y2)

}
,

Sξ≡
∂log(L)

∂ξ
=

n∑
i=1

{
Di

∑
r

I(Ri=r)
∑
ymri

A(yori ,ymri )ω(yori ,ymri ,Xi)−
∑

(y1,y2)

A(y1,y2)pi,(y1,y2)

}
,

where

ω(yori ,ymri ,Xi) =
exp(AT(yori ,ymri )ξ +XiBT(yori ,ymri )θ)∑
ymri

exp(AT
(yori ,ymri )

ξ +XiBT(yori ,ymri )
θ)
,

pi,(y1,y2) =
exp(AT(y1,y2)ξ +XiBT(y1,y2)θ)

1 +
∑

(y1,y2) exp(AT(y1,y2)ξ +XiBT(y1,y2)θ)
.

We have some model assumptions:

Let Sn(η) = n−1(ST
EE,θ(1)

, . . . , ST
EE,θ(P ) , S

T
EE,ξ)

T .

C1. The parameter space for η is a compact subset of an Euclidean space.

C2. 0 < exp(
∑p

p=1XpB(p)
y θ(p)) <∞ for all θ(p) and y.

C3. 0 < exp(Ayξ) <∞ for all ξ and y.

C4. The elements of the second-stage design matrices B and A remain uniformly

10



bounded in absolute value by constants, say CB and CA, respectively.

C5. The information matrix Hn is positive definite.

C6. The deterministic equation E{Sn(η)} = 0 has only one root in the neighborhood

of the true parameters.

Conditions C1-C4 are required for uniform convergence, i.e., supη ||Sn(η)−E{Sn(η)}|| P→

0. Condition C5, C6 (identifiability) and the asymptotic unbiasedness of Sn(η) for

zero (to be proved) together imply convergence of the estimator in probability to-

wards the true value (Theorem 5.9 of van der Vaart 1998).

If the model assumptions above hold, then under standard regularity conditions

given in Theorem 5.41 of van der Vaart (1998), the MLE η̃ = (θ̃T , ξ̃T )T asymptotically

follows a normal distribution with mean η = (θT , ξT )T , and the asymptotic variance

can be obtained by inverted the Fisher information matrix.

As evident from the above discussion, the inference of the heterogeneity param-

eters, θ, depends on the intercept parameters α and their model α = Aξ. Next

we discuss an alternative inference for the heterogeneity parameters, which is more

robust against the misspecification of the second-stage model for α.

2.3.2 Pseudo conditional likelihood in the context of missing data

In order to form a pseudo conditional likelihood (PCL), for every subject with

disease, we define a matched set S consisting of the subject itself and all subjects

without the disease. Thus, if Di = 1, then Si = {i} ∪ {j : Dj = 0}. If there are

n0 controls, then the cardinality of Si is (n0 + 1). We form the pseudo conditional

likelihood LPCL,i such that the i-th subject has a disease of subtype (yori , y
mr
i ) given

that there is only one subject with disease (yori , y
mr
i ) in the set Si:

LPCL,i=
∏
r

{∑
ymri

pr(Di=1, Yi=(yori , y
mr
i )|Xi)

∏
j∈Si\{i} pr(Dj =0|Xj)∑

k∈Si

∑
ymri

pr(Dk=1, Yk=(yori , y
mr
i )|Xk)

∏
j∈Si\{k} pr(Dj=0|Xj)

}I(Ri=r)

11



=
∏
r

{ ∑
ymri

exp(AT(yori ,ymri )ξ +XiBT(yori ,ymri )θ)∑
j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +XjBT(yori ,ymri )
θ)

}I(Ri=r)
.

Then the pseudo conditional likelihood is defined as the product of LPCL,i over i, i.e.,

LPCL =
∏n

i=1 LPCL,i, and the estimating functions are defined as the derivatives of

log(LPCL) with respect to θ:

SEE,θ ≡
∂log(LPCL)

∂θ
=

n∑
i=1

Di

∑
r

I(Ri = r)

{
Xi

∑
ymri

B(yori ,ymri )ω(yori ,ymri ,Xi)

−
∑

j∈Si Xj

∑
ymri

exp(AT(yori ,ymri )ξ +XjBT(yori ,ymri )θ)B(yori ,ymri )∑
j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +XjBT(yori ,ymri )
θ)

}
= 0.

Note that LPCL is free from ξ (or αy) if there are no missing disease traits for any

of the diseased subjects. Therefore, LPCL contains somewhat limited information

regarding ξ. Hence, we shall estimate ξ from another set of estimating equations.

Goetghebeur and Ryan (1995) first introduced two different sets of estimating equa-

tions in the context of missing causes of failure in the competing risk model. Here,

to estimate ξ we consider another pseudo conditional likelihood L∗PCL,i such that the

i-th subject has a disease of subtype (yori , y
mr
i ) given that there is only one diseased

subject in Si without specifying the observed disease subtype. It is given as

L∗PCL,i ≡
∏
r

{ ∑
ymri

pr(Di = 1, Yi = (yori , y
mr
i )|Xi)

∏
j∈Si\{i} pr(Dj = 0|Xj)∑

k∈Si

∑
(y1,y2) pr(Dk = 1, Y = y|Xk)

∏
j∈Si\{k} pr(Dj = 0|Xj)

}I(Ri=r)

=
∏
r

[ ∑
ymri

exp(ATyori ,ymri
ξ +XiBT(yori ,ymri )θ)∑

j∈Si

∑
(y1,y2) exp(AT(y1,y2)ξ +XjBT(y1,y2)θ)

]I(Ri=r)
.

Hence, by defining L∗PCL =
∏n

i=1 L∗PCL,i, the estimating equations for ξ is

SEE,ξ ≡
∂log(L∗PCL)

∂ξ
=

n∑
i=1

Di

{∑
r

I(Ri = r)
∑
ymri

Ayori ,ymri
ωyori ,ymri

12



−
∑

j∈Si

∑
(y1,y2) exp(AT(y1,y2)ξ +XjBT(y1,y2)θ)AT(y1,y2)∑

j∈Si

∑
(y1,y2) exp(AT(y1,y2)ξ +XjBT(y1,y2)θ)

}
= 0.

We estimate θ and ξ by solving SEE,θ = 0 and SEE,ξ = 0 simultaneously. Denote the

resulting estimates as η̂ = (θ̂T , ξ̂T )T .

The estimating equations are asymptotically unbiased, which we will show in the

next subsection. The asymptotic distribution of the estimators is a multivariate nor-

mal with the asymptotic covariance of η̂ given by a sandwich estimator. The middle

component of the sandwich estimator is obtained via a linearization technique applied

to the estimating equations. The left and right multipliers of the sandwich estimator

are the derivative of the estimating equations with respect to the parameters.

2.4 General Case and Asymptotics

2.4.1 General case

Suppose that X = (X1, . . . , XP ) is a vector of P covariates, and Y = (Y1, . . . , YK)

carries information on K disease traits, and M = M1 × M2 × . . . × MK is the

total number of disease subtypes, based on all possible combinations of the various

traits. We will use y for (y1, . . . , yK). Our model is pi,y ≡ pr(Di = 1, Yi = y|Xi) =

exp(αy +
∑P

p=1 β
(p)
y Xi,p)/{1 +

∑
y exp(αy +

∑P
p=1 β

(p)
y Xi,p)}, and pr(Di = 0|Xi) =

1/{1+
∑

y exp(αy+
∑P

p=1 β
(p)
y Xi,p)}, for i = 1, . . . , n. ForM disease subtypes, we have

M × P main regression parameters of interest along with M intercept parameters.

The second-stage model for the log-odds ratio parameter is

β
(p)
(y1,...,yK) =θ(0)(p)+

K∑
k=1

θ(1)(p)

k(yk)
+

K∑
k=1

K∑
k′≥k

θ(2)(p)

kk′ (yk,yk′ )
+· · ·+θ(K)(p)

12...K(y1,...,yK). (2.3)

Suppose that β(p) is the set of log-odds ratio parameter corresponding to Xp, then

the second-stage model can be written as β(p) = B(p)θ(p). From here on, we denote
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(θ(1)T , . . . , θ(P )T )T by θ. For each subject we introduce a vector of binary variables

R = (R1, . . . , RK)T , where Rk = 1 if the kth trait is observed and 0 otherwise.

For our convenience, we set R = (1, . . . , 1)T for a non-diseased subject. Using our

methodology the estimating functions for θ are

SEE,θ(p)≡
∂log(LPCL)

∂θ(p)
=

n∑
i=1

Di

∑
r

I(Ri = r)

{
Xi,p

∑
ymri

B(p)

(yori ,ymri )
ω(yori ,ymri )

−
n−1

0

∑
ymri

exp(AT(yori ,ymri )ξ+
∑P

p=1Xi,pB(p)T

(yori ,ymri )
θ(p))Xi,pB(p)

yori ,ymri
+M(1)

yori ,p
(Q0n)

n−1
0

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xi,pB(p)T

(yori ,ymri )
θ(p)) +M(0)

yori ,p
(Q0n)

}
,

where for k = 0, 1,

M(k)

yori ,p
(Q0n) = n−1

0

∑
j∈Si/{i}

exp(AT(yori ,ymri )ξ +
P∑
p=1

Xj,pB(p)T

(yori ,ymri )
θ(p))(Xj,pB(p)

yori ,ymri
)⊗k

=

∫ ∑
ymri

exp(AT(yori ,ymri )ξ+
P∑
p=1

XpB(p)T

(yori ,ymri )
θ(p))(XpB(p)

(yori ,ymri )
)⊗kdQ0n(X),

andQ0n(x) = n−1
0

∑n
i=1 I(Di = 0, Xi = x) denotes the empirical distribution function

of X among the controls which converges in probability to the true distribution of

X among the controls denoted by Q0(x). Here a⊗k = 1, a, aaT for k = 0, 1, 2,

respectively. We want to clarify that
∑

r in SEE,θ(p) signifies a summation over all

possible values of the indicator vector r. If there are three traits, then the possible

values of r are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1) and (1, 1, 1).

The estimating functions for ξ are

SEE,ξ ≡
∂log(L∗PCL)

∂ξ
=

n∑
i=1

Di

{∑
r

I(Ri = r)
∑
ymri

Ayori ,ymri
ωyori ,ymri

−
n−1

0

∑
y exp(ATy ξ +

∑P
p=1Xi,pB(p)T

y θ(p))ATy +N (1)(Q0n)

n−1
0

∑
y exp(ATy ξ +

∑P
p=1Xi,pB(p)T

y θ(p)) +N (0)(Q0n)

}
,
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where for k = 0, 1,

N (k)(Q0n) = n−1
0

∑
j∈Si/{i}

∑
y

exp(ATy ξ +
P∑
p=1

Xj,pB(p)T
y θ(p))A⊗ky

=

∫ ∑
y

exp(ATy ξ +
P∑
p=1

XpB(p)T
y θ(p))A⊗ky dQ0n(X).

We estimate θ(p), p = 1, . . . , P , and ξ by solving SEE,θ(p) = 0, p = 1, . . . , P , SEE,ξ = 0

simultaneously. Denote the resulting estimator as η̂ = (θ̂T , ξ̂T )T .

2.4.2 Asymptotic properties

In this section, we discuss the large sample properties of η̂. We show that

n−1SEE,θ(p) → 0 (p = 1, . . . , P ) and n−1SEE,ξ → 0 in probability, i.e., the estimating

equations are asymptotically unbiased.

Here we first show asymptotic unbiasedness, i.e., n−1SEE,θ(p)
P→ 0 as n → ∞ at

the true parameter value. Due to the law of large numbers, n−1SEE,θ(p) converges to

its expectation. In order to calculate this expectation, we shall use the conditional

probability that the i-th subject has disease of type y = (yori , y
mr
i ) given that there

is one diseased subject in the matched set Si with this disease type. Hence,

E

(
SEE,θ(p)

n

)
= E

[∑
r

∫
yori

∑
k∈Si

∑
ymri

exp(AT(yori ,ymri )ξ +
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))π(r,Xk)∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))

×
{∑

ymri
exp(AT(yori ,ymri )ξ+

∑P
p=1Xk,pBT(yori ,ymri )θ

(p))Xk,pB(yori ,ymri )∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xk,pBT(yori ,ymri )
θ(p))

−
M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

}
dµ(yori )

]
+o(1).

Now, the first term on the right hand side above is

E

[∑
r

∫
yori

∑
k∈Si

∑
ymri

exp(AT(yori ,ymri )ξ +
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))π(r,Xk)∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))
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×
∑

ymri
exp(AT(yori ,ymri )ξ +

∑P
p=1Xk,pBT(yori ,ymri )θ

(p))Xk,pB(yori ,ymri )∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xk,pBT(yori ,ymri )
θ(p))

dµ(yori )

]

= E

[∑
r

∫
yori

∑
k∈Si

∑
ymri

exp(AT(yori ,ymri )ξ+
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))Xk,pB(yori ,ymri )π(r,Xk)∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))

dµ(yori )

]
,

and the second term is

E

[∑
r

∫
yori

∑
k∈Si

∑
ymri

exp(AT(yori ,ymri )ξ+
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))π(r,Xk)∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))

×
M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

dµ(yori )

]
.

The difference between the two terms is easily seen to be asymptotically the expected

weighted conditional covariance between π(r,X) and X·,pB(yori ,ymri ) with weight

exp(AT(yori ,ymri )ξ +
∑P

p=1Xj,pBT(yori ,ymri )θ
(p))∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))

.

Let

covw{π(r,X), X·,pB(yori ,ymri )}

=
∑
j∈Si

∑
ymri

exp(AT(yori ,ymri )ξ +
∑P

p=1Xj,pBT(yori ,ymri )θ
(p))∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ+
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))
{π(r,Xj)−π̄(r,X)}

×
(
Xj,pB(yori ,ymri ) −

M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

)
,

where

π̄(r,X) =
∑
j∈Si

∑
ymri

exp(AT(yori ,ymri )ξ +
∑P

p=1Xj,pBT(yori ,ymri )θ
(p))π(r,Xj)∑

j∈Si

∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xj,pBT(yori ,ymri )
θ(p))

.
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Then, we can write

E

(
SEE,θ(p)

n

)
= E

[∑
r

∫
yori

covw{π(r,X), X·,pB(yori ,ymri )}dµ(yori )

]
+o(1) = o(1),

where the last equality follows due to the fact that
∑

r π(r,X) = 1.

Similarly, due to the law of large numbers, n−1SEE,ξ converges to its expectation.

In order to calculate this expectation, we shall use the conditional probability that

the i-th subject has disease of type y = (yori , y
mr
i ) given that there is one diseased

subject in the matched set Si but without specifying any disease subtype information.

Hence,

E

(
SEE,ξ

n

)
=E

[∫
yori

∑
r

∑
k∈Si

π(r,Xk)

∑
ymri

exp(AT(yori ,ymri )ξ +
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))∑

j∈Si

∑
y exp(ATy ξ +

∑P
p=1Xj,pBTy θ(p))

×
{∑

ymri
exp(AT(yori ,ymri )ξ+

∑P
p=1Xk,pBT(yori ,ymri )θ

(p))A(yori ,ymri )∑
ymri

exp(AT
(yori ,ymri )

ξ +
∑P

p=1Xk,pBT(yori ,ymri )
θ(p))

−N
(1)(Q0)

N (0)(Q0)

}
dµ(yori )

]
+o(1)

=E

[∑
r

∑
k∈Siπ(r,Xk)

∫
yori

∑
ymri

exp(AT(yori ,ymri )ξ+
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))A(yori ,ymri )dµ(yori )∑

j∈Si

∑
y exp(ATy ξ +

∑P
p=1Xj,pBTy θ(p))

−

∑
r

∑
k∈Siπ(r,Xk)

∫
yori

∑
ymri

exp(AT(yori ,ymri )ξ+
∑P

p=1Xk,pBT(yori ,ymri )θ
(p))dµ(yori )∑

j∈Si

∑
y exp(ATy ξ +

∑P
p=1Xj,pBTy θ(p))

×N
(1)(Q0)

N (0)(Q0)

]
+o(1)

=E

[∑
r

∑
k∈Si π(r,Xk)

∑
y exp(ATy ξ +

∑P
p=1Xk,pBTy θ(p))Ay∑

j∈Si

∑
y exp(ATy ξ +

∑P
p=1Xj,pBTy θ(p))

−
∑

r

∑
k∈Si π(r,Xk)

∑
y exp(ATy ξ +

∑P
p=1Xk,pBTy θ(p))∑

j∈Si

∑
y exp(ATy ξ +

∑P
p=1Xj,pBTy θ(p))

× N
(1)(Q0)

N (0)(Q0)

]
+o(1).

Now using the facts that
∑

r π(r,Xk) = 1 and

∑
k∈Si

∑
y exp(ATy ξ +

∑P
p=1Xk,pBTy θ(p))Ay∑

j∈Si

∑
y exp(ATy ξ +

∑P
p=1Xj,pBTy θ(p))

P−→ N
(1)(Q0)

N (0)(Q0)
,
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we obtain that n−1SEE,ξ
P−→ 0.

Now, we prove symptotic normality. Note that for large n

1√
n
SEE,θ(p) =

1√
n

n∑
i=1

Di

∑
r

I(Ri=r)

{
Xi,p

∑
ymri

B(yori ,ymri )ω(yori ,ymri ,Xi)−
M(1)

yori ,p
(Q0n)

M(0)

yori ,p
(Q0n)

}
+o(1)

=
1√
n

n∑
i=1

Di

∑
r

I(Ri=r)

{
Xi,p

∑
ymri

B(yori ,ymri )ω(yori ,ymri ,Xi)−
M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

}

− 1√
n

n∑
i=1

Di

∑
r

I(Ri=r)

{M(1)

yori ,p
(Q0n)

M(0)

yori ,p
(Q0n)

−
M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

}
+op(1). (2.4)

Let âi =M(1)

yori ,p
(Q0n) and b̂i =M(0)

yori ,p
(Q0n). Then using the fact that

âi

b̂i
− ai
bi

=
âi − ai
bi

− ai
b2i

(b̂i − bi) + op(n
−1/2),

the summand of the second term of (2.4) is

M(1)

yori ,p
(Q0n)

M(0)

yori ,p
(Q0n)

−
M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

=
1

nM(0)

yori ,p
(Q0)

n∑
j=1

(1−Dj)
∑
ymri

exp(AT(yori ,ymri )ξ+
P∑
p=1

Xj,pBT(yori ,ymri )θ
(p))

×
{
Xj,pB(yori ,ymri ) −

M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

}
+op(n

−1/2). (2.5)

Plugging (2.5) into (2.4) and changing the order of the two summations in the second

term, we have

1√
n
SEE,θ(p) =

1√
n

n∑
i=1

∑
r

I(Ri = r)Di

{
Xi,p

∑
ymri

B(yori ,ymri )ω(yori ,ymri ,Xi) −
M(1)

yori ,p
(Q0)

M(0)

yori ,p
(Q0)

}
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− 1√
n

n∑
i=1

(1−Di)
1

n

n∑
j=1

∑
r

I(Rj = r)Dj
1

M(0)

yorj ,p
(Q0)

∑
ymrj

exp(AT(yorj ,ymrj )ξ

+
P∑
p=1

Xi,pBT(yorj ,ymrj )θ
(p)){Xi,pB(yorj ,ymrj ) −

M(1)

yorj ,p
(Q0)

M(0)

yorj ,p
(Q0)

}+ op(1).

Finally, applying the strong law of large numbers and the Slutsky’s Theorem, we

obtain n−1/2SEE,θ(p)
d
= n−1/2

∑n
i=1 Φi,θ(p)(θ, ξ) asymptotically. Similarly, for large n,

1√
n
SEE,ξ =

1√
n

n∑
i=1

∑
r

I(Ri = r)Di

{∑
ymri

ω(yori ,ymri ,Xi)A(yori ,ymri ) −
N (1)(Q0n)

N (0)(Q0n)

}
+o(1)

=
1√
n

n∑
i=1

∑
r

I(Ri = r)Di

{∑
ymri

ω(yori ,ymri ,Xi)A(yori ,ymri ) −
N (1)(Q0)

N (0)(Q0)

}

− 1√
n

n∑
i=1

∑
r

I(Ri = r)Di

{
N (1)(Q0n)

N (0)(Q0n)
− N

(1)(Q0)

N (0)(Q0)

}
+op(1). (2.6)

Employing the same technique as that used in (2.5), we can write

N (1)(Q0n)

N (0)(Q0n)
− N

(1)(Q0)

N (0)(Q0)
=

1

nN (0)(Q0)

n∑
j=1

(1−Dj)
∑
y

exp(ATy ξ +
P∑
p=1

Xj,pBTy θ(p))

×
{
Ay −

N (1)(Q0)

N (0)(Q0)

}
+op(n

−1/2). (2.7)

Plugging (2.7) into (2.6) and changing the order of the two summations in the second

term, we have

1√
n
SEE,ξ

=
1√
n

n∑
i=1

∑
r

I(Ri = r)Di

{∑
ymri

ω(yori ,ymri ,Xi)A(yori ,ymri ) −
N (1)(Q0n)

N (1)(Q0n)

}
− 1√

n

n∑
i=1

(1−Di)

×
n∑
j=1

∑
r

I(Rj = r)Dj
1

nN (0)(Q0)

∑
y

exp(ATy ξ+
P∑
p=1

Xi,pBTy θ(p))

{
Ay−

N (1)(Q0)

N (0)(Q0)

}
+op(1)
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d
=

1√
n

n∑
i=1

∑
r

I(Ri = r)Di

{∑
ymri

ω(yori ,ymri ,Xi)A(yori ,ymri ) −
N (1)(Q0n)

N (1)(Q0n)

}
− 1√

n

n∑
i=1

(1−Di)

×E
[∑

r

I(Rj=r)D1
1

N (0)(Q0)

∑
y

exp(ATy ξ+
P∑
p=1

Xi,pBTy θ(p))

{
Ay−
N (1)(Q0)

N (0)(Q0)

}]
+op(1).

The last equality follows due to the application of the strong law of large numbers

and Slutsky’s Theorem. Thus we have shown that SEE,θ and SEE,ξ are approximately

a sum of asymptotically independent random variables whose means are zero. Now,

√
n

 θ̂ − θ

ξ̂ − ξ

 = H−1
n

1√
n
Sn(η) + op(1) = H−1 1√

n

n∑
i=1

 Φi,θ(θ, ξ)

Φi,ξ(θ, ξ)

+ op(1),

where θ = (θ(1)T , · · · , θ(p)T )T ,

H =



H11 H12 · · · H1P H1ξ

...

HP1 HP2 · · · HPP HPξ

Hξ1 Hξ2 · · · HξP Hξξ


= lim

n→∞
Hn, Hn ≡ −

1

n

 ∂SEE,θ

∂θ

∂SEE,θ

∂ξ

∂SEE,ξ

∂θ

∂SEE,ξ

∂ξ

 ,

and the asymptotically independent terms are Φi,θ(θ, ξ) = (ΦT
i,θ(1)

(θ, ξ), . . . ,ΦT
i,θ(P )(θ, ξ),

ΦT
i,ξ(θ, ξ))

T . Also,

Φi,θ(p)(θ, ξ) =
∑
r

I(Ri = r)Di

{∑
ymri

ω(yori ,ymri ,Xi)Xi,pB(yori ,ymri ) −
M(1)

yor ,p(Q0)

M(0)
yor ,p(Q0)

}

−(1−Di)E

[∑
r

I(R = r)× D

M(0)
yor (Q0)

∑
ymr

exp(AT(yor ,ymr )ξ

+
P∑
p=1

Xi,pBT(yor ,ymr )θ(p))

{
Xi,pB(yor ,ymr ) −

M(1)
yor ,p(Q0)

M(0)
yor ,p(Q0)

}
|Xi

]
,
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Φi,ξ(θ, ξ) =
∑
r

I(Ri = r)Di

{∑
ymri

ω(yori ,ymri ,Xi)A(yori ,ymri ) −
N (1)(Q0)

N (0)(Q0)

}

−(1−Di)E

[∑
r

I(R=r)
D

N (0)(Q0)

∑
y

exp(ATy ξ+
P∑
p=1

Xi,pBTy θ(p))

{
Ay−
N (1)(Q0)

N (0)(Q0)

}
|Xi

]
,

where Q0 represents the true distribution of X among the controls.

So the asymptotic covariance of η̂ can be consistently estimated by

H−1
n

n∑
i=1

 Φ̂i,θ(θ̂, ξ̂)

Φ̂i,ξ(θ̂, ξ̂)


⊗2

H−Tn ,

where Φ̂T
i,θ(θ̂, ξ̂) and Φ̂T

i,ξ(θ̂, ξ̂) are obtained by replacing the expectations by the em-

pirical averages, Q0 by Q0n, and the true parameters by their consistent estimators.

2.5 Simulation Studies

2.5.1 Simulation design and methods of analysis

One of main goals of this numerical investigation was to show how robust our

method is towards a misspecification of the intercept model in the presence of par-

tially missing disease traits. We simulated cohort data of size n = 5, 000 by simulat-

ing (X, Y,D). The scalar covariate X was simulated from a Normal(0, 1) distribution.

We considered two scenarios each with 3 traits. First with 8 (= 2 × 2 × 2) disease

subtypes, and second with 30 (= 2 × 3 × 5) disease subtypes. For each scenario we

considered a correctly specified (denoted by a) second-stage model and a misspeci-

fied one (denoted by b) for the intercepts. We created missing values in each trait

where missingness probabilities depended on X. Two mechanisms were used: M1)

the missingness probabilities were dependent on X but the missingness of different

traits was independent; and M2) the missingness probabilities were dependent on X
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and the missingness of different traits was dependent. Overall disease probability lies

between 6% and 9%. The details of the simulation designs are given in Appendix C.

For scenario 1, we considered three disease characteristics each with two levels,

resulting in 2× 2× 2 = 8 disease subtypes. Assuming that the second- and higher-

order contrasts for the relative risk parameters are negligible, we write

β = Bθ, β =



β(1,1,1)

β(1,1,2)

β(1,2,1)

β(1,2,2)

β(2,1,1)

β(2,1,2)

β(2,2,1)

β(2,2,2)



, B =



1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1



, θ = (θ(0), θ
(1)
1(2), θ

(1)
2(2), θ

(1)
3(2))

T ,

and we chose θ = (0.35, 0.15, 0, 0.5)T . Thus the disease subtypes were generated using

the model pr(Y=(y1, y2, y3)|X)=exp(α(y1,y2,y3)+β(y1,y2,y3)X){1+
∑

(y1,y2,y3) exp(α(y1,y2,y3)+

β(y1,y2,y3)X)}−1. We chose α(y1,y2,y3) to follow the same model as β(y1,y2,y3) with A = B

and ξ = (−5, 0, 0, 0)T (scenario 1a). In addition, to study the robustness of the ap-

proach against the misspecification of the model for the intercepts (scenario 1b),

we used α = (−5.193,−4.477,−5.297,−5.033,−5.170,−5.160,−4.340, −5.330)T by

adding vector (−5,−5,−5,−5,−5,−5,−5,−5)T in the column space of B, which is

the correctly specified part, to vector (−0.193, 0.523,−0.297,−0.033,−0.170,−0.160,

0.660,−0.330)T perpendicular to the column space, which is the misspecified part.

Finally, we created missing values in the diseases traits using two mechanisms.

For M1, the missing probabilities for each of the traits were allowed to depend on X
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through the logistic function exp(−1.5 + 0.5X){1 + exp(−1.5 + 0.5X)}−1, resulting

in missingness probabilities of around 0.2 for each disease trait. For M2, 3 traits

had 23 = 8 possible missingness patterns. For each case subject these patterns were

generated from a multinomial distribution with the following probabilities pr{R =

(1, 0, 0)|X} = d−1 exp(γ1 + 0.5X), pr{R = (0, 1, 0)|X} = d−1 exp(γ2 + 0.5X), pr{R =

(1, 1, 0)|X} = d−1 exp(γ3 + 0.5X), pr{R = (0, 0, 1)|X} = d−1 exp(γ4 + 0.5X), pr{R =

(1, 0, 1)|X} = d−1 exp(γ5 + 0.5X), pr{R = (0, 1, 1)|X} = d−1 exp(γ6 + 0.5X), pr{R =

(1, 1, 1)|X} = d−1 exp(γ7 + 0.5X), where d = 1 +
∑7

i=1 exp(γi+ 0.5X), and γ1, . . . , γ7

were chosen so that marginally each trait had about 20% missing values.

For scenario 2, we considered three disease traits with numbers of levels 2, 3, and

5, resulting in 2×3×5 = 30 disease subtypes. With the corresponding A = B defined

by the second-stage additive model, we took θ = (0.35, 0.15, 0, 0.5, 0.35, 0.15, 0, 0.5)T

and ξ = (−5, 0, 0, 0, 0, 0, 0, 0)T (scenario 2a). For scenario 2b, we chose α the same

way as in scenario 1b.

Finally, we created missing values in the disease traits. For mechanism one, the

missingness probabilities were allowed to depend on X through the logistic function

exp(γk+0.5X){1+exp(γk+0.5X)}−1, where γk was chosen to be (−1.5,−1.5,−0.85)T ,

resulting in missing probabilities of around 0.2, 0.2 and 0.3 for the three disease traits,

respectively. For mechanism two, we allowed the missingness probalilities to depend

on each other in a similar pattern as in scenario 1.

Each of the simulated datasets was analyzed by the maximum likelihood approach

(MLE) and by the pseudo conditional likelihood method (PCL). Furthermore, we

analyzed the data considering only the subjects without any missing disease traits

using the maximum likelihood approach, and we refer to it as the complete-case

maximum likelihood estimator (CMLE). In all these analyses, we adopted the second-

stage additive models for the regression and intercept parameters, β = Bθ and
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α = Aξ.

We present mean, median, median absolute deviation (MAD), empirical standard

errors (Emp. SE), estimated standard errors (Est. SE), 95% coverage probabilities,

and root mean square errors (RMSE) of all the methods based on 2,000 replica-

tions. To assess asymptotic bias, we present B.score =
√

2000(mean estimate −

truth)/Emp.SE.

2.5.2 Results of the simulation studies

To save space, in both scenarios we omit the results for missingness mechanism

two, which are very similar to those for mechanism one. Also, we leave out results

for the correctly specified intercept model case in scenario two. The conclusions that

could be drawn from the results not presented were not different from those presented

here. We would be happy to provide these omitted results upon request.
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Table 2.2: Simulation results for the MLE, complete-case MLE, and the pseudo con-
ditional likelihood method. Here MAD, Emp. SE, Est. SE, Bias, B. Score, RMSE,
and CP denote median absolute deviation, empirical standard error, estimated stan-
dard error, root mean squared error, bias, bias score, root mean squared error, and
95% coverage probability based on the Wald-type confidence intervals, respectively.
The results were based on 2,000 runs. There were 2×3×5 = 30 disease subtypes. The
model for the intercepts was misspecified. The missingness probabilities depended
on the covariate. This is Scenario 2b.

θ(0) =0.35 θ(1)
1(2) =0.15 θ(1)

2(2) =0 θ(1)
2(3) =0.5 θ(1)

3(2) =0.35 θ(1)
3(3) =0.15 θ(1)

3(4) =0 θ(1)
3(5) =0.5

MLE
Mean 0.474 0.153 0.006 0.428 0.252 0.012 −0.148 0.402
Median 0.474 0.150 0.005 0.428 0.252 0.008 −0.148 0.402
MAD 0.139 0.102 0.133 0.120 0.171 0.172 0.185 0.170
Emp. SE 0.144 0.101 0.136 0.126 0.171 0.176 0.182 0.168
Est. SE 0.147 0.102 0.139 0.126 0.171 0.178 0.181 0.166
Bias 0.124 0.003 0.006 −0.072 −0.098 −0.138 −0.148 −0.098
B. Score 38.546 1.148 1.919 −25.553 −25.665 −35.047−36.248 −26.070
RMSE 0.190 0.101 0.136 0.146 0.197 0.223 0.235 0.194
CP 0.881 0.959 0.954 0.910 0.909 0.886 0.864 0.902

Complete-case MLE
Mean 0.475 0.154 0.004 0.425 0.251 0.017 −0.145 0.407
Median 0.473 0.154 0.004 0.426 0.252 0.014 −0.144 0.411
MAD 0.184 0.134 0.180 0.166 0.209 0.204 0.218 0.212
Emp. SE 0.185 0.131 0.178 0.164 0.214 0.217 0.221 0.207
Est. SE 0.190 0.134 0.182 0.166 0.209 0.217 0.221 0.204
Bias 0.125 0.004 0.004 −0.075 −0.099 −0.133 −0.145 −0.093
B. Score 30.220 1.249 1.066 −20.372 −20.787 −27.353−29.367 −20.149
RMSE 0.223 0.131 0.178 0.180 0.236 0.254 0.265 0.227
CP 0.910 0.954 0.960 0.930 0.917 0.911 0.900 0.920

Pseudo Conditional Likelihood Method
Mean 0.381 0.160 0.001 0.476 0.327 0.119 −0.039 0.478
Median 0.379 0.156 −0.000 0.473 0.330 0.115 −0.039 0.479
MAD 0.156 0.108 0.138 0.131 0.177 0.173 0.190 0.178
Emp. SE 0.157 0.108 0.139 0.132 0.179 0.180 0.191 0.177
Est. SE 0.164 0.111 0.141 0.165 0.192 0.188 0.188 0.208
Bias 0.031 0.010 0.001 −0.024 −0.023 −0.031 −0.039 −0.022
B. Score 8.836 4.061 0.426 −8.187 −5.687 −7.594 −9.079 −5.497
RMSE 0.160 0.108 0.139 0.135 0.181 0.183 0.195 0.178
CP 0.952 0.964 0.957 0.962 0.952 0.955 0.947 0.963
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The results for scenarios 1a (top panel of Table 2.1) indicate that when the inter-

cept model is correctly specified: (1) all three methods are asymptotically unbiased;

(2) the standard errors of the PCL method were slightly larger than that of the MLE

method, but smaller than that of the CMLE method, which suggests that the PCL’s

efficiency is close to that of the MLE method; (3) similar to the standard errors,

the RMSEs of the PCL method were slightly larger than that of the MLE method,

but smaller than that of the CMLE method; (4) the estimated standard errors of the

PCL method were close to that of the empirical standard errors; and (5) all methods’

coverage probabilities were close to the nominal level (95%). The trend of the results

remain the same for scenario 2a.

The results for scenarios 1b (bottom panel of Table 2.1) and 2b (Table 2.2)

indicate that when the intercept model is misspecified: (1) the biases of both the

MLE and the CMLE methods were prominent, but the biases of the PCL method

were far less serious; (2) the comparisons of the three methods in terms of standard

errors, RMSEs and estimated and empirical standard errors agreement were similar

to those in the model with correctly specified model for the intercepts; and (3) the

coverage probabilities of the MLE and the CMLE methods deviated from the nominal

level, but the coverage probabilities of the PCL stayed close to the nominal level.

Finally the PCL method was almost as efficient as the MLE method in all scenarios.

The bias of the CMLE method can be attributed to model misspecification of the

model for the intercepts and ignoring the subjects with missing traits. However, the

main source of bias in the MLE method is due to model misspecification.

2.6 Analysis of the CPS-II Data

We now report the results of analysis by our method of the data from the CPS-II

Nutrition Cohort that motivated our research. For comparison purposes, it is useful
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to examine the same dataset as that used in (Chatterjee et al. 2010).

Table 2.3: Results of the CPS-II Nutrition Cohort data analysis with five disease
traits. In this analysis, we used weight gain as the only covariate. EST, estimate;
SE, standard error; PRED, predictor; METH, method; ER, estrogen receptor; PR,
progesterone receptor; WG, weight gain.

P M Grade Stage Histogoly ER PR
R E Ref. (Well) (Localized) (Ductal) (ER+)(PR+)
E T Moderate Poor Distant Lobular Other ER− PR−
D H %missing 23.2 21.2 0.0 30.0 33.6

θ(0) θ
(1)
1(2) θ

(1)
1(3) θ

(1)
2(2) θ

(1)
3(2) θ

(1)
3(3) θ

(1)
4(2) θ

(1)
5(2)

Analysis One: without controlling for effects of other covariates
CMLE EST 1.312 −0.160−0.033 0.703 −0.652 0.379−0.126−0.879

SE 0.357 0.386 0.415 0.354 0.443 0.523 0.420 0.339
p-value < 0.001 0.679 0.937 0.047 0.142 0.469 0.764 0.009

WG MLE EST 0.961 0.040 0.268 0.795 −0.666 0.404 0.233−0.693
SE 0.305 0.332 0.357 0.263 0.307 0.349 0.376 0.308
p-value 0.002 0.904 0.452 0.003 0.030 0.246 0.535 0.025

PCL EST 1.066 0.025 0.128 0.810 −0.685 0.368 0.883−1.222
SE 0.273 0.317 0.346 0.261 0.303 0.351 0.439 0.359
p-value < 0.001 0.937 0.711 0.002 0.024 0.294 0.045 0.001

The CPS-II Nutrition Cohort is a prospective study of cancer incidence and

mortality in 86,402 men and 97,786 women and has been described in detail elsewhere

(Calle et al. 2002). Briefly, the Nutrition Cohort is a subgroup of the approximately

1.2 million participants of the CPS-II Cohort, a prospective study of cancer mortality

established by the American Cancer Society in 1982 (Garfinkel 1985). Nutrition

Cohort participants resided in 21 states with population-based cancer registries, were

aged 50-74 years, and completed a 10-page confidential, self-administered mailed

questionnaire at enrollment in 1992 or 1993.

Excluded from this analysis were Nutrition Cohort participants who were men
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(n = 86, 402); women who were using hormone replacement therapy (n = 33, 407),

not post-menopausal (n = 3, 514), lost to follow-up (i.e., alive at the first follow-

up questionnaire in 1997 but did not return the 1997 or any subsequent follow-

up questionnaires) (n = 2, 178), reported a personal history of cancer other than

nonmelanoma skin cancer in 1992 (n = 9, 520), reported a diagnosis of breast cancer

on the first survey that could not be verified through medical or cancer registry

records or an in situ breast cancer (n = 174), or the subjects with missing values

in any of the predictor variables or whose weight gain was more than 100 lbs (n =

7, 979). Included in the analysis were 41,014 women. There were 1,555 incident

cases of breast cancer (International Classification of Disease for Oncology, Second

and Third Editions site code C50) that occurred between the date of the baseline

questionnaire and June 30, 2007.

We considered four predictors (covariates) in the analysis: (1) total weight change

since age 18 to 1992 (WG), (2) number of live births (LB) with three categories: no

live birth, 1-2 live births, 3 or more live births; (3) age at menarche (MC) with three

categories: ≤ 11, 12−13, and > 13; (4) age at menopause (MP) with four categories:

< 44, 44− 49, 50− 54, and > 54.

Using (y1, . . . , y5) to represent levels of the five traits, stage (2 levels), histology

(3 levels), estrogen receptor (2 levels), progesterone receptor (2 levels), and grade (3

levels), we can write the polytomous logistic model and the corresponding second-

stage additive model as

pr(Di = 1, Yi = (y1, . . . , y5)|Xi) =
exp(α(y1,...,y5) +

∑P
p=1 β

(p)
(y1,...,y5)Xi,p)

1 +
∑

y exp(α(y1,...,y5) +
∑P

p=1 β
(p)
(y1,...,y5)Xi,p)

,

pr(Di = 0|Xi) =
1

1 +
∑

(y1,...,y5) exp(α(y1,...,y5) +
∑P

p=1 β
(p)
(y1,...,y5)Xi,p)

,
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and

β
(p)
(y1,...,y5) = θ(0)(p) + θ(1)(p)

1(y1) + θ(1)(p)

2(y2) + θ(1)(p)

3(y3) + θ(1)(p)

4(y4) + θ(1)(p)

5(y5),

for i = 1, . . . , n.

First, we used weight gain as the only covariate (P = 1) since it has been shown

to be related to risk of breast cancer in previous studies (e.g., Chatterjee et al. 2010;

Zaman et al. 2010; McCullough et al. 2012), and the results are presented in Table

2.3.

Predictor WG was re-scaled to be between 0 and 1. We used the second-stage ad-

ditive models for both the intercepts and regression parameters for all three methods.

For the MLE and PCL methods, we used all 1,555 cases. For the CMLE approach,

we used 848 cases, whose disease traits information was complete.

The results due to the PCL method indicate that (1) the estimate of θ(0) due

to weight gain is positive and statistically significant at the 5% level. The odds

ratio for the incidence of breast cancer with well differentiated grade, localized stage,

histology ductal, ER status positive and PR status positive for the 3rd quartile (45

lbs, re-scaled to be 0.476) of weight gain versus 1st quartile of weight gain (15 lbs, re-

scaled to be 0.190) was 1.356 (exp{(0.476− 0.190)× 1.066}, 95% confidence interval

(CI): 1.164–1.580); (2) the PCL method produced statistically significant estimates

of θ
(1)
2(2), θ

(1)
3(2), θ

(1)
4(2), and θ

(1)
5(2) for the covariate weight gain, which can be interpreted

as follows. For a women who gained 45 pounds versus one who gained 15 pounds,

the odds ratio of the disease with distant tumor is 1.260 (95% CI: 1.089–1.459) times

the odds ratio of the disease with localized tumor, keeping all other traits fixed; the

odds ratio of the disease with lobular histology is 0.822 (95% CI: 0.694–0.974) times

the odds ratio of the disease with ductal histology, keeping all other traits fixed; the
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odds ratio of the disease with ER− status is 1.287 (95% CI: 1.006–1.646) times the

odds ratio of the disease with ER+ status, keeping all other traits fixed; the odds

ratio of the disease with PR− status is 0.705 (95% CI: 0.577–0.862) times the odds

ratio of the disease with PR+ status, keeping all other traits fixed.

In the second analysis, we again examined weight gain but included 3 additional

covariates (age at menopause, age at menarche, and number of live births), all of

which have been shown to be related to risk of breast cancer (e.g., Goldman and

Hatch 2000; Orgéas et al. 2008). Thus here P = 4. While additional factors are

known to be associated with breast cancer, we chose only 3 for the purposes of this

example to illustrate the ability of this method to simultaneously adjust for multiple

predictors.

The associations with age at menopause, age at menarche, and number of live

births in this analysis may be of etiologic relevance; however, caution should be

exercised when interpreting these results since the sub-population of CPS-II was

selected mainly to examine the effect of weight gain.

In analysis two (Table 2.4), the estimates of θ(0) due to weight gain are positive

and statistically significant at the 5% level in all three methods. Based on the PCL

method, the odds ratio for the incidence of breast cancer with well differentiated

grade, localized stage, histology ductal, ER status positive and PR status positive

for the 3rd quartile (45 lbs, re-scaled to be 0.476) of weight gain versus 1st quartile

of weight gain (15 lbs, re-scaled to be 0.190) was 1.374 (exp{(0.476−0.190)×1.110},

95% confidence interval (CI): 1.179–1.600). Although weight gain was associated with

the overall risk of breast cancer, there was not enough evidence to show that this

association varied across the subtypes, controlling for the effects of age at menopause,

age at menarche, and number of live births.
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Table 2.4: Results of the CPS-II Nutrition Cohort data analysis with five disease
traits and four covariates. ER, estrogen receptor; PR, progesterone receptor; WG,
weight gain; LB, number of live births; MC, menarche; MP, menopause.

P M Grade Stage Histogoly ER PR
R E Ref. (Well) (Localized) (Ductal) (ER+)(PR+)
E T Moderate Poor DistantLobular Other ER- ER+
D H %missing 23.2 21.2 0.0 30.0 33.6

θ(0) θ
(1)
1(2) θ

(1)
1(3) θ

(1)
2(2) θ

(1)
3(2) θ

(1)
3(3) θ

(1)
4(2) θ

(1)
5(2)

CMLE EST 1.313 −0.074 0.107 −0.038−0.173 0.003 0.274 0.076
SE 0.358 0.319 0.302 0.208 0.242 0.255 0.230 0.286
p-value < 0.001 0.816 0.722 0.853 0.475 0.990 0.233 0.791

WGMLE EST 0.988 0.095 0.041 −0.019 0.010 0.078 0.297 0.252
SE 0.306 0.270 0.258 0.179 0.203 0.218 0.196 0.238
p-value 0.001 0.725 0.873 0.914 0.963 0.719 0.129 0.290

PCL EST 1.110 0.027 0.012 −0.019 0.083 0.129 0.308 0.228
SE 0.273 0.260 0.248 0.168 0.192 0.214 0.182 0.226
p-value < 0.001 0.918 0.962 0.910 0.665 0.546 0.091 0.312

CMLE EST −0.141 −0.024−0.166 0.054 0.024−0.114 0.050 0.436
SE 0.387 0.335 0.316 0.224 0.260 0.279 0.252 0.309
p-value 0.715 0.943 0.600 0.810 0.926 0.682 0.844 0.158

LB MLE EST 0.031 −0.013−0.087 −0.013−0.091−0.161−0.111 0.169
(2) SE 0.332 0.288 0.275 0.194 0.220 0.237 0.213 0.257

p-value 0.925 0.964 0.751 0.945 0.679 0.498 0.600 0.511
PCL EST −0.002 0.051−0.046 0.025−0.110−0.212−0.151 0.110

SE 0.316 0.308 0.297 0.199 0.225 0.252 0.211 0.259
p-value 0.996 0.869 0.877 0.900 0.624 0.399 0.475 0.671

CMLE EST 0.008 0.237−0.082 0.239 0.234−0.307−0.060 0.175
SE 0.416 0.366 0.349 0.247 0.284 0.298 0.266 0.330
p-value 0.986 0.517 0.815 0.333 0.411 0.304 0.821 0.595

LB MLE EST 0.279 0.118−0.108 0.172−0.037−0.184−0.137−0.124
(3) SE 0.357 0.311 0.299 0.212 0.243 0.254 0.227 0.281

p-value 0.436 0.706 0.718 0.418 0.877 0.467 0.545 0.658
PCL EST 0.106 0.265−0.043 0.232−0.128−0.314−0.195−0.168

SE 0.345 0.350 0.342 0.229 0.265 0.286 0.238 0.296
p-value 0.758 0.450 0.899 0.311 0.629 0.273 0.411 0.570

CMLE EST 0.740 −0.331−0.547 −0.234−0.134 0.328 0.318 0.552
SE 0.354 0.288 0.275 0.207 0.239 0.274 0.247 0.282
p-value 0.037 0.250 0.047 0.257 0.575 0.231 0.199 0.050

MCMLE EST 0.805 −0.507−0.575 −0.290−0.098 0.213 0.154 0.335
(2) SE 0.264 0.216 0.206 0.153 0.174 0.191 0.175 0.205

p-value 0.002 0.019 0.005 0.059 0.574 0.266 0.380 0.101
PCL EST 0.819 −0.534−0.571 −0.325−0.090 0.256 0.184 0.378

SE 0.260 0.222 0.211 0.158 0.179 0.196 0.179 0.208
p-value 0.002 0.016 0.007 0.039 0.615 0.192 0.305 0.070
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Table 2.4 Continued

P M Grade Stage Histogoly ER PR
R E Ref. (Well) (Localized) (Ductal) (ER+)(PR+)
E T Moderate Poor DistantLobular Other ER- ER+
D H %missing 23.2 21.2 0.0 30.0 33.6

θ(0) θ
(1)
1(2) θ

(1)
1(3) θ

(1)
2(2) θ

(1)
3(2) θ

(1)
3(3) θ

(1)
4(2) θ

(1)
5(2)

CMLEEST −0.610 −0.311−0.471 −0.046 0.051−0.042 0.350 0.527
SE 0.444 0.337 0.321 0.255 0.292 0.347 0.297 0.335
p-value 0.169 0.355 0.142 0.856 0.861 0.903 0.239 0.115

MCMLE EST −0.655 −0.039−0.060 −0.142−0.134 0.095 0.226 0.245
(3) SE 0.308 0.257 0.247 0.172 0.197 0.217 0.194 0.228

p-value 0.033 0.879 0.809 0.407 0.498 0.661 0.244 0.283
PCL EST −0.669 −0.026−0.018 −0.123−0.090 0.114 0.232 0.201

SE 0.303 0.264 0.255 0.175 0.201 0.220 0.198 0.231
p-value 0.028 0.920 0.944 0.483 0.655 0.604 0.242 0.384

CMLEEST 0.384 0.425 0.212 −0.224 0.087−0.044−0.092−0.424
SE 0.525 0.508 0.495 0.309 0.346 0.368 0.331 0.431
p-value 0.465 0.403 0.668 0.469 0.801 0.906 0.780 0.325

MPMLE EST 0.424 0.071−0.035 −0.021−0.121 0.221 0.190−0.049
(2) SE 0.350 0.310 0.299 0.206 0.241 0.249 0.229 0.285

p-value 0.225 0.818 0.906 0.918 0.615 0.374 0.406 0.863
PCL EST 0.386 0.051−0.056 −0.033−0.144 0.214 0.178−0.038

SE 0.348 0.308 0.296 0.206 0.242 0.251 0.228 0.284
p-value 0.268 0.867 0.849 0.873 0.551 0.394 0.436 0.895

CMLEEST −0.113 0.283 0.379 0.158 0.313 0.365 0.057−0.344
SE 0.422 0.393 0.376 0.258 0.289 0.299 0.277 0.350
p-value 0.789 0.472 0.314 0.539 0.280 0.222 0.838 0.326

MPMLE EST 0.243 −0.017 0.213 0.154 0.377 0.083−0.062−0.392
(3) SE 0.378 0.337 0.317 0.237 0.261 0.264 0.242 0.308

p-value 0.521 0.959 0.502 0.515 0.149 0.755 0.798 0.203
PCL EST 0.925 0.094 0.314 0.110 0.510 0.171 0.178−0.110

SE 0.465 0.505 0.463 0.278 0.328 0.350 0.308 0.374
p-value 0.047 0.852 0.497 0.694 0.120 0.624 0.563 0.769

CMLEEST −0.884 −0.238−0.179 0.002 0.047 0.268−0.038−0.206
SE 0.340 0.277 0.263 0.195 0.225 0.238 0.216 0.261
p-value 0.009 0.390 0.497 0.991 0.836 0.260 0.858 0.429

MPMLE EST −0.707 −0.175 0.037 0.033 0.072 0.043−0.152−0.330
(4) SE 0.310 0.263 0.249 0.181 0.207 0.214 0.194 0.238

p-value 0.022 0.505 0.882 0.857 0.728 0.840 0.435 0.165
PCL EST −1.248 −0.222−0.056 −0.051−0.148 0.004−0.205−0.243

SE 0.372 0.368 0.335 0.204 0.250 0.268 0.229 0.279
p-value 0.001 0.547 0.867 0.804 0.554 0.988 0.369 0.384
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2.7 Discussion

In this section, we have addressed an multivariate classification problem compli-

cated with missing data. The two-stage model is an efficient and flexible way to

measure heterogeneity of the odds ratios, and it allows a sensible way to dimension

reduction. For parameter estimation of the second-stage model, one can use the

MLE, PCL, or the CMLE methods. Compared with the MLE method, our method

reduces the effects of the intercepts on the estimation of the regression parameters,

and thus it is more robust against the misspecification of the model for the intercepts.

When the model is correct, the PCL method is asymptotically unbiased. In

addition, our simulations suggest (1) when the second-stage model for the intercepts

is misspecified, our bias is usually smaller than that of either the MLE method or

the CMLE method, and (2) with either correctly specified or misspecified model for

the intercepts, our method can usually achieve efficiency that is very close to the

MLE method.
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3. SEMIPARAMETRIC BAYESIAN ANALYSIS OF LOGISTIC MODELS

WITH NON-STANDARD MEASUREMENT ERRORS

3.1 Brief Overview of Measurement Error Problems

Statistics is often defined as the study of the collection, organization, analysis,

interpretation and presentation of data (Dodge 2006). Statistics without “good”

data is just like cooking without good ingredients. Two of the commonly seen data

quality issues are missing data and measurement error in data. While both issues

can lead to bad consequences, the latter can be more devastating since missing data

can be easily seen but measurement error problems may easily go unnoticed and

neglected.

Measurement error is simply the difference between the measured value and the

true value. Measurement error can be introduced into the data in many ways, in-

cluding self-reporting, recall error, processing error, and instrument error. Both

categorical and continuous variable can be measured with error, and in regression

type of analysis, measurement errors can potentially be seen in both the indepen-

dent/predictor variables as well as in the dependent/outcome variables.

Measurement errors, if neglected, can jeopardize the validity of any statistical

analysis. Unfortunately, the problem created by measurement errors are ignored in

the majority of statistical analysis (Schwartz 1985). The theory for measurement

error in the continuous variables are fairly well developed, but the problem of mea-

surement error in the categorical variables, which is typically more difficult to handle,

seems to have drawn less attention although its consequences might be as bad as, if

not worse than, the continuous case.

We will address the error in the continuous covariates case here since the error
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in the outcome problem can be easy to handle; for example, in linear regression the

error in the outcome variable will be absorbed in the error term.

We now use an simple linear regression example to demonstrate that ignoring

measurement error could bias the slope estimate. Data were generated from the

model Y = β0 + β1X + ε, where β0 = beta1 = 1, X came from the standard normal

distribution, and ε came from a Normal(mean =0, sd =0.5) that was independent of

X. Instead of observingX, we observeW = X+U , and U came from a Normal(0, 0.5)

that was independent of X, which is the classical measurement error model. The

sample size used was 20, and the simulation was done 1,000 times to evaluate the

bias in the slope estimate.

The mean bias of the model regressing Y on X was 0.008, but the mean bias of

the modeling regressing Y on W , which is called the naive model, was −0.194. The

phenomenon where ignoring the measurement error biases the slope estimate in the

direction of zero is commonly referred to as attenuation or attenuation to the null.

Please note that ignoring the measurement error has other consequences, such as

increased/decreased standard errors and loss of statistical power, although only the

bias in the slope estimate is discussed in this example. Result of one replication in

the simulation is displayed in Figure 3.1.

Various methods have been proposed to eliminate or reduce bias caused by mea-

surement error. See Fuller (1987) for a summary of methods for linear regression

and Carroll et al. (2006) for a summary of more recent methods with an emphasis

on nonlinear models. Those methods fall into two broad categories — structural

methods and functional methods. Structural methods rely on distributional assump-

tions on the true predictors X, which are not observed; functional methods, on the

other hand, make no such assumptions, meaning that X could be fixed (the usual

definition) or random (Carroll 1998). There is no consensus on which methods are
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Figure 3.1: Attenuation caused by measurement error. When X is observed with
additive error, the slope of the regression line is less steep in a phenomenon called
attenuation.

better. In functional methods, since no assumptions are made about X, there is no

need to worry about model misspecification for X, and those methods are generally

applicable. Many such methods are based on rather intuitive ideas and often easy

to implement.

In structural methods, specification of a parametric distribution forX is required,

and issue of model misspecification naturally arise. However, they allow for maximum

likelihood estimation-based inference and can yield gains in efficiency if the model

for X is correct. In addition, structural approaches can be easily tailored to handle

complicated epidemiological designs,

If a wrong model is assumed for X, then the parameter estimation could become

inconsistent, which is one reason why structural approaches are criticized. Methods
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have been proposed to evaluate the effects of model misspecification in structural

measurement error models (Huang et al. 2006). One way to avoid model misspec-

ification is to flexible models (e.g., Roeder et al. 1996; Richardson et al. 2002;

Bolfarine and Lachos 2007; Hossain and Gustafson 2009). What we are proposing

in this dissertation is one such method. We assume distributions for X as well as

U and use very flexible models to avoid the consequences of model misspecification.

The problem we are addressing is unique in that we allow for an interaction effect

between variables measured with errors.

3.2 Motivating Data and Problem to Solve

Regression models with main effects and interaction effects of potential predictors

are common in epidemiological studies that help to understand how the association

between the response and one predictor changes with the values of the other predic-

tors. The motivating example comes from the National Health and Nutrition Exam-

ination Survey (NHANES, CDC 2013) where we wish to study how high cholesterol

level is associated with total fat and protein.

Although fat’s and protein’s roles have been investigated in many studies (e.g.,

Mensink and Katan 1989; Appel et al. 2005), we have noticed a lack of investigation

on their interaction effect. Here we aim to evaluate the interaction effect along with

the main effects. The main difficulty is that these nutrient intakes are measured via

recalls that involve substantial amount of measurement error. Nonetheless, estima-

tion of the main effect and interaction effect association parameters while covariates

are measured with errors has not drawn much attention. In this paper, we aim to

fill the gap and propose a semiparametric Bayesian method of estimation logistic

regression models.

To be more specific, we use Y , Z and X to denote the binary response variable
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(high cholesterol level in our data example), the control covariates measured without

any error, and the nutrient intakes that are not recorded in the data, respectively.

Instead ofX, an error-prone surrogate forX is observed, and we denote the surrogate

by W . Suppose that there are two nutrient intakes, i.e., X = (X1, X2)
T , and the

regression model is

logit{pr(Y = 1|X,Z)} = β0 + β11X1 + β12X2 + β2X1X2 + βT3Z,

While the nutrient intakes are generally non-negative and the product of two non-

negative variables is correlated with each of the two, the intakes are usually centered

in numerical analysis to reduce multicollinearity. Our interest is in estimating the

regression parameters. In our data example, X1 and X2 will denote the true fat and

protein intakes that were not observed. The term X1X2 is included in the model to

capture the potential interaction effect, and for a non-zero β2, (β11 +β2X2) measures

the degree of association between the response and X1 while X2 is fixed. If the

interaction parameter is non-zero, any analysis ignoring the interaction term may

lead to erroneous conclusions.

HereW = (W1,W2)
T . We assume an additive non-differential measurement error

model, that is, for j = 1, 2, Wj = Xj+Uj, where the measurement error Uj is assumed

to be independent of X, Z and Y and have mean zero and finite (homogeneous)

variance. Then W1W2 = X1X2 + U12, where U12 = X1U2 + X2U1 + U1U2. Hence,

the measurement error U12 is not independent of X1X2, resulting in heteroscedastic

measurement errors that depend on the unobserved truth, X1 and X2.

Two widely used measurement error methods are regression calibration (RC),

which replaces X with an estimate based on other covariates but not on Y (Spiegel-

man et al. 1997), and simulation extrapolation (SIMEX), which adds artificial errors
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to the observed values and then extrapolates back to the error-free case (Stefanski

and Cook 1995). Both of the methods are consistent in special cases such as linear

regression and loglinear mean models, but they are not consistent in general (Carroll

et al. 2006; Gustafson 2004). Murad and Freedman (2007) considered the estimation

of interaction parameter in linear regression models, but their method does not apply

to the logistic regression case.

Two examples of the functional approach are the conditional-score method (Ste-

fanski and Carroll 1987) and the corrected-score method (Nakamura 1990). The

corrected score and conditional score methods deal with the linear logistic model

(i.e., only the main effects are present), and they make no assumptions on the distri-

bution of the unobserved X. These methods critically depend on the linear logistic

structure of the model and the additive structure of the measurement error, so they

methods are not applicable in our context. Even more, the conditional score ap-

proach critically depends on the normal distribution assumption of the measurement

error.

To develop a unified method for handling measurement error and partially miss-

ing surrogate variables, we consider a flexible structural model which, we believe,

is lacking in the literature. The model is flexible in the sense that both the dis-

tribution of the measurement error and the unobserved true nutrients are modeled

nonparametrically using a mixture of Dirichlet process prior (DPP). By modeling

the distribution of X as a Dirichlet process mixture of a multivariate normal kernel,

we in principle can capture any continuous distribution. We model the distribu-

tion of the measurement error as a Dirichlet process mixture of a symmetric kernel,

which is again a flexible model to capture any distribution symmetric about zero.

For efficient computation, we adopt Ishwaran and James’ (2001) approximation of

the stick-breaking presentation of the Dirichlet process prior. All model parameters
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are estimated in a fully Bayesian framework using the Markov Chain Monte Carlo

(MCMC) method. Although the DPP has been used previously in the measurement

error context (Johnson et al. 2007; Sinha et al. 2010), use of DPP in modeling the

distributions of X as well as U , the symmetric measurement errors, is completely

new. Above all, this is the first attempt to investigate the effect of measurement er-

rors on the estimation of the interaction parameter in non-linear models. In addition,

the proposed flexible method can handle missing values in the surrogate variable.

3.3 Model and Notation

In general, the observed data can be presented as (Yi,W
(1)
i , . . . ,W

(R)
i ,Zi,∆

(1)
i , . . . ,

∆
(R)
i ) for i = 1, . . . , n, where Yi is the binary response variable and Zi is a length-Q

vector of control variables for the ith subject. X = (X1, . . . , XP )T represents the true

intakes of P nutrients of interest. SinceX is not actually measured, some proxy ofX

is measured via up to R 24-hour food recalls, which are denoted by W (1), . . . ,W (R).

In the NHANES data, for example, each subject had 2 recalls, so R = 2.

The dimensions of X and W (1), . . . ,W (R) are all equal to P . The missing-

ness indicators ∆
(r)
ip , for r = 1, . . . , R and p = 1, . . . , P , are defined as 1 if the pth

component of the rth recall is available for the ith subject and 0 otherwise, with

∆
(r)
i = (∆

(r)
i1 , . . . ,∆

(r)
iP ). We assume that missingness mechanism does not depend

on the value of the missing variable X or the regression parameters β0, β1, β2, and

β3. Note that W (1), . . . ,W (R) are considered to be unbiased surrogates for the ac-

tual long-term intake X. We assume that conditional on X, W (r) is independent

of Z, for r = 1, . . . , R, and write W
(r)
i = X i + U

(r)
i , where U

(1)
i , . . . ,U

(R)
i are in-

dependent and identically distributed (iid) copies of U , which follows a distribution

with mean 0 and finite variance. We assume that the error is non-differential, i.e.,

its distribution does not depend on Y if X were observed. Moreover, we denote the
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observed parts of W
(r)
i as W

(r)
iobs and its un-observed parts as W

(r)
imiss for i = 1, . . . , n,

and r = 1, . . . , R. The assumed model for Y given X and Z is

pr(Y = 1|X,Z) = H(β0 +
P∑
p=1

β1pXp +
P∑

p1=1

P∑
p2=p1+1

β2p1p2Xp1Xp2 +

Q∑
q=1

β3qZq), (3.1)

where H(u) = {1 + exp(−u)}−1. Here β0 is the intercept term, β1 = (β11, . . . , β1P )T

represents the main effects ofX, β2 is the vector of all β2p1p2 ’s where β2p1p2 represents

the two-factor interaction of Xp1 and Xp2 for p2 > p1, and β3q represents the effect

of the control variable Zq for q = 1, . . . , Q. Under this model, the odds ratio of the

disease for changing Xp from X∗p to X∗∗p by holding Xk fixed to X∗k for k 6= p is

exp{β1p(X
∗∗
p −X∗p ) + (X∗∗p −X∗p )

p−1∑
k=1

β2kpX
∗
k + (X∗∗p −X∗p )

P∑
k=p+1

β2pkX
∗
k}.

Note that this odds ratio depends on the values of X∗k (k 6= p) as well as the change

in Xp.

Our analysis setting has some nonstandard features. First, this is a problem of

errors-in-covariates. We have internal calibration data as we have repeated measure-

ments of the erroneous surrogate for X. In addition, we face the problem of missing

data as some of the subjects do not have information on every recall. In particular,

here we face a monotone missing data pattern. Following the terminology of mea-

surement error literature, our approach is “structural” by assuming a distribution

for X. However, our modeling techniques can potentially capture any continuous

distribution for X, resulting in a robust procedure.
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3.4 Likelihood and Priors

The key component of the Bayesian inference is the likelihood. For our design

the observed data likelihood is

Lo =
n∏
i=1

∫
pr(Yi|X i,Zi)

{ R∏
r=1

∫
f(W

(r)
iobs,W

(r)
imiss|X i,Zi)dW

(r)
imiss

}
f(X i|Zi)dX i.

Modeling the distribution of X given Z is challenging as any mispecification of

this model may result in biased parameter estimates. To circumvent the issue of

robustness, we model this distribution as a Dirichlet Process (DP) mixture of mul-

tivariate normal distributions. Using the stick-breaking presentation, DP can be

seen as a discrete probability measure with infinitely many random mass points with

random probability masses. Thus, the conditional distribution of X given Z is

a mixture of infinitely many multivariate normals. However, Ishwaran and James

(2001) showed that a DP with infinitely many random mass points can be reason-

ably approximated by a discrete measure with finitely many random mass points.

That means if a probability measure P follows a DP with base measure H and

precision parameter α, denoted by P ∼ DP (αH), then following the Ishwaran and

James approximation we can write P(·) ≈
∑K

i=1 pkδVk(·) for some sufficiently large

K, where δVk(·) denotes a measure concentrated at Vk, Vk are iid from a distribution

H, and p′ks are random probabilities such that 0 ≤ pk ≤ 1 and
∑K

k=1 pk = 1. When

(p1, . . . , pK) ∼ Dirichlet(α/K, . . . , α/K), P is called a finite-dimensional Dirichlet

process prior (Ishwaran and Zarepour 2002), and the approximated DP is denoted

by DPN(αH). Theorem 2 of Iswaran and Zarepour (2002) states that for any real

valued measurable integrable function g, DPK(αH)(g)→DP (αH)(g) in distribution

as K →∞. They also described a convenient mechanism of selecting K. For nota-

tional convenience, we add a scalar 1 to the beginning of Z and denote it Z∗.
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We assume that [X|Z∗,µx,Σx] ∼ Np(ΓZ
∗ + µx,Σx), and then

X|µx,Σx
indep∼ 1

(2π)P/2|Σx|0.5

[
exp{−0.5(X − µx − ΓZ∗)TΣ−1

x (X − µx − ΓZ∗)}
]
,

µx,Σx|Px
iid∼ Px,

Px ∼ DPL(αxHx) for large integer L.

Hence we can write

fx(X|p1x, . . . , pLx) =
L∑
k=1

pkx
1

(2π)P/2|Σkx|0.5

×
[
exp{−0.5(X − µkx − ΓZ∗)TΣ−1

kx (X − µkx − ΓZ∗)}
]
,

(p1x, . . . , pLx) ∼Dirichlet(αx/L, . . . , αx/L),

µkx,Σkx
iid∼Hx.

Under the base probability measure Hx, we assume that µx follows a multivari-

ate normal with mean mx and variance Diag(τ
1/2
x )ΣxDiag(τ

1/2
x ), and Σx follows an

Inverse-WishartP (νx, Dx), i.e., f(Σx|νx, Dx) = |Dx|−νx/22−νxP/2{ΓP (νx/2)}−1

|Σx|−(νx+P+1)/2) exp{−0.5tr(D−1
x Σ−1

x )}, where ΓP ( ) is the multivariate gamma func-

tion. The DP mixture model results in the marginal density of X as a finite dimen-

sional Dirichlet process mixture of the kernel f(x|µx,Σx), where the parameters of

the component density are coming from Hx.

Now we model the distribution of U as a finite dimensional Dirichlet process

mixture of a symmetric kernel. That means

U |µu,Σu
indep∼ 1

2(2π)P/2|Σu|0.5

[
exp{−0.5(U + µu)

TΣ−1
u (U + µu)}+

exp{−0.5(U − µu)TΣ−1
u (U − µu)}

]
,
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µu,Σu|Pu
iid∼ Pu,

Pu ∼ DPM(αuHu) for large integer M.

Hence we can write

fu(U |p1u, . . . , pMu) =
M∑
k=1

pku
2(2π)P/2|Σku|1/2

[
exp{−0.5(U + µku)

TΣ−1
ku (U + µku)}+

exp{−0.5(U − µku)TΣ−1
ku (U − µku)}

]
,

(p1u, . . . , pMu) ∼ Dirichlet(αu/M, . . . , αu/M),

µku,Σku
iid∼ Hu.

Under the base probability measure Hu, we assume that µu follows a multivari-

ate normal with mean mu and variance Diag(τ
1/2
u )ΣuDiag(τ

1/2
u ), and Σu follows an

Inverse-WishartP (νu, Du), i.e., f(Σu|νu, Du) = |Du|−νu/22−νuP/2{ΓP (νu/2)}−1

|Σu|−(νu+P+1)/2) exp{−0.5tr(D−1
u Σ−1

u )}. The DP mixture model results in the marginal

density of U as a finite dimensional Dirichlet process mixture of the symmetric kernel

f(U |µu,Σu), where the parameters of the component density are coming from Hu.

We put normal(0, σ2
β0

), normal(0, σ2
β1
IP ), normal(0, σ2

β2
IP (P−1)/2), normal(0, σ2

β3
IQ)

priors on β0, β1, β2 and β3, respectively. On each row of Γ, say Γj, we use normal(µγ,

σ2
γIQ) distribution, for j = 1, . . . , P . On αx and αu, we use Gamma(aγ, bγ) prior.

We further assume that a priori each component of τ x ∼ IG(gx, hx), each com-

ponent of τ u ∼ IG(gu, hu), where IG means inverse gamma and π(τpx|gx, hx) =

g−hxx τ−hx−1
px exp {−(gxτpx)

−1}

/Γ(hx) for p = 1, . . . , P . For the scale matrices Du and Dx, we put IW(P, IP ) priors.

The values of the prior parameters can be specified by practitioners or one may put

hyper-prior on these prior parameters. We shall fix the values of σ2
β0

, σ2
β1

, σ2
β2

, σ2
β3
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gu, hu, gx, hx, µγ, mx, and mu.

Remark 1. Now we model the distribution of U as a finite dimensional Dirichlet

process mixture of a symmetric kernel. The symmetry assumption on the distribution

ofU is the sufficient condition for identifiability of the distribution ofX if the number

of replicated measurements of the error-prone surrogate is at least 2. Let χu, χw, χx

be the characteristic functions of U , W , and X, respectively. Then χx = χw/χu.

In principle, χw is directly estimable from the data, and E[exp{it(W (1)−W (2))}] =

E[exp{it(U (1) −U (2))}] = χ2
u under the symmetry of U where i =

√
−1. Hence χx

is estimable, so is the density of X.

3.5 Posterior Computation

Inference of the parameters is based on the posterior distribution, and the sum-

maries of the posterior distribution are made by drawing random numbers from the

posterior distribution using the Markov chain Monte Carlo method. The symmetric

kernel used in modeling the distribution of U i is written as

f(U |Σu,µu) =
1

2
f(U |Σu,µu, ψ = 1) +

1

2
f(U |Σu,µu, ψ = −1),

where

f(U |Σu,µu, ψ) =
1

(2π)P/2|Σu|0.5
exp{−0.5(U − ψµu)TΣ−1

u (U − ψµu)}.

For consistency, the same i, p, r notations introduced for ∆ will be used for W , U and

ψ. The posterior computation is done by drawing each of the parameters and the

latent unobserved variables X i, i = 1, . . . , n from their full conditional distributions.

In addition, if ∆
(r)
iq = 0, we sample W

(r)
iq from its full conditional distribution.

For X, define Θ = (θ1, . . . , θn), where θ = (µx,Σx). Let φ contain the distinct
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elements of Θ, which makes φ a list of L distinct elements. Let s be an n-vector of

configuration indicators, i.e., si = j if θi = φj, j = 1, . . . , L. We also define mj as

the number of si’s equal to j. Therefore,
∑L

j=1mj = n. Since knowing s and φ is

equivalent to knowing Θ, Θ is updated via resampling s and φ.

Similarly, for handling (µu,Σu), we define N = R × n, Υ = (ϑ1, . . . , ϑN), where

ϑ = (µu,Σu), and suppose that ϕ contains distinct elements of Υ. The N -vector of

configuration indicators t is defined for U . Also we define nj as the number of ti’s

equal to j. Therefore,
∑M

j=1 nj = N .

We propose the following 17-step algorithm to sample from the posterior distri-

bution.

Step 0. We initialize all the parameters and the unobserved X i, i = 1, . . . , n.

Step 1. Update the β parameters using the Metropolis Hastings (MH) algorithm.

Draw proposed values (β∗) from a (multivariate) normal distribution with the cur-

rent value as the mean and the variance/covariance of the naive estimate as the vari-

ance/covariance. For each β, accept the proposed value with probability min{1, fβ(β∗|rest)

/fβ(β|rest)}, where fβ is proportional to the product of the prior density of β and∏n
i=1 exp(Yiηi)/{1+exp(ηi)} with ηi = β0+

∑P
p=1 β1pXip+

∑P
p1=1

∑P
p2=p1+1 β2p1p2Xip1Xip2

+
∑Q

q=1 β3qZiq.

Step 2. Update X i using the Metropolis algorithm. Draw proposed value X∗i from

a multivariate normal distribution with mean X i, which is the current value, and

covariance cov(W (1))− cov(W (1) −W (2))/2. Accept the proposed value with prob-

ability min{1, fx(X∗i |rest)/fx(X i|rest)}, where

fx(X i|rest) ∝ exp(Yiηi)

1 + exp(ηi)

× 1

(2π)P/2|Σxi |0.5

[
exp{−0.5(X i − µxi − ΓZ∗i )

TΣ−1
xi

(X i − µxi − ΓZ∗i )}
]

47



×
R∏
j=1

1

(2π)P/2|Σ
u
(r)
i
|0.5

× exp{−0.5(W
(r)
i −X i − ψijµu(r)

i
)TΣ−1

u
(r)
i

(W
(r)
i −X i − ψijµu(r)

i
)}.

Step 3. Sample ψ
(r)
i from the following distribution

pr(ψ
(r)
i = 1|rest) = 1− pr(ψ

(r)
i = −1|rest)

=
exp{−0.5(W

(r)
i −X i − µu(r)

i
)TΣ−1

u
(r)
i

(W
(r)
i −X i − µu(r)

i
)}∑

k=−1,1 exp{−0.5(W
(r)
i −X i − kµu(r)

i
)TΣ−1

u
(r)
i

(W
(r)
i −X i − kµu(r)

i
)}

for i = 1, . . . , n and r = 1, . . . , R.

Step 4. If ∆
(r)
ij = 0, sample W

(r)
ij from the Normal{(Xij+ψ

(r)
i µ

u
(r)
ij

),Σ
u
(r)
jj
} distribution

for r = 1, . . . , R, i = 1, . . . , n, and j = 1, . . . , P .

Step 5. Sample Γp from a normal distribution with mean and variance

m = v

{
−

n∑
i=1

Z∗i

P∑
k=1,k 6=p

Ai,pk[ΓkZ
∗
i − (Xi,k − µXik)] +

n∑
i=1

Z∗iAi,pp(Xip − µxip)

}
,

v =

{ n∑
i=1

Ai,ppZiZ
T
i +

IQ
σ2
γ

}−1

,

for p = 1, . . . , P . Here Ai ≡ Σ−1
Xi

, and the (p, k)th component of Ai is denoted by

Ai,pk.

Step 6. Precision parameter αx is drawn from its full conditional

π(αx|rest) ∝ Γ(αx)

{Γ(αx/L)}L
(p1x)

αx/L−1 · · · (pLx)αx/L−1π(αx).

To draw αx we shall use a Metropolis-Hastings algorithm with π(αx) as the proposal
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density. Suppose that at the tth iteration we draw α
(new)
x from π(αx). Then

α(t+1)
x =

 α
(new)
x with probability ρ(α

(new)
x , α

(t)
x )

α
(t)
x otherwise

,

where

ρ(α(new)
x , α(t)

x ) =
(p1x)

α
(new)
x /L−1 × · · · × (pLx)

α(new)x/L−1Γ(α
(new)
x )/{Γ(α

(new)
x /L)}L

(p1x)α
(t)
x /L−1 × · · · × (pLx)α

(t)
x /L−1Γ(α

(t)
x )/{Γ(α

(t)
x /L)}L

.

Step 7. Similarly, draw αu from

π(αu|rest) ∝ Γ(αu)

{Γ(αu/M)}M
(p1u)

αu/M−1 · · · (pMu)
αu/M−1π(αu).

Step 8. Sample si from Multinomial(p∗1x, · · · , p∗Lx), where

(p∗1x, · · · , p∗Lx) ∝ (p1xfx(X i|Zi,Γ, φ1), . . . , pLxfx(X i|Zi,Γ, φL))

and fx(Xi|Zi,Γ, φj) = (2π)−P/2|φj,2|−0.5[exp{−0.5(X − φj,1 − ΓZ)Tφ−1
j,2(X − φj,1 −

ΓZ)}].

Step 9. Sample (p1x, . . . , pLx) from Dirichlet(αx/L+m1, . . . , αx/L+mL).

Step 10. If mj > 0, sample φj from

π(φj|rest) ∝
∏
si=j

1

2(2π)P/2|φj,2|0.5

×
[
exp{−0.5(X − φj,1 − ΓZ)Tφ−1

j,2(X − φj,1 − ΓZ)}
]
Hx(φj),
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which is equivalent to drawing φj,2 from

IW

(
νx +mj + 1, [

∑
i:si=j

(X i − φj,1 − ΓZi)(X i − φj,1 − ΓZi)
T +

Diag(τ
−1/2
x )(φj,1 −mx)(φj,1 −mx)

TDiag(τ
−1/2
x ) +D−1

x ]−1

)

and then drawing φj,1 from a normal distribution with mean and variance

m = v

{
Diag(τ−1/2

x )φ−1
j,2Diag(τ−1/2

x )mx + φ−1
j,2

∑
i:si=j

(X i − ΓZi)

}
,

v = {Diag(τ−1/2
x )φ−1

j,2Diag(τ−1/2
x ) +mjφ

−1
j,2}−1.

If mj = 0, sample φj from π(φj|rest) ∝ Hx(φj) for j = 1, . . . , L.

Step 11. Sample tl from Multinomial(p∗1u, . . . , p
∗
Mu), where

(p∗1u, . . . , p
∗
Mu) ∝ (p1ufu(W

(r)
i −X i|ϕj, ψ(r)i), . . . , (pMUfu(W

(r)
i −X i|ϕM , ψ(r)i))

and

fu(W
(r)
i −X i|ϕj, ψ(r)

i ) =
1

(2π)P/2|ϕj,2|1/2

× exp

{
−0.5(W

(r)
i −X i−ψ(r)

i ϕj,1)
Tϕ−1

j,2(W
(r)
i −X i−ψ(r)

i ϕj,1)

}
.

Step 12. Sample (p1u, . . . , pMu) from a Dirichlet(αu/M + n1, . . . , αu/M + nM).

Step 13. If nj > 0, sample ϕj from

π(ϕj|rest) ∝
∏
tl=j

1

(2π)P/2|ϕj,2|1/2

× exp

{
−0.5(W

(r)
i −X i−ψ(r)

i ϕj,1)
Tϕ−1

j,2(W
(r)
i −X i−ψ(r)

i ϕj,1)

}
Hu(ϕj),
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which is equivalent to drawing ϕj,2 from

IW

(
νu + nj + 1, [

∑
i,r:t

(r)
i =j

(W
(r)
i − ψ

(r)
i ϕj,1 −X i)(W

(r)
i − ψ

(r)
i ϕj,1 −X i)

T +

Diag(τ
−1/2
u )(ϕj,1 −mu)(ϕj,1 −mu)

TDiag(τ
−1/2
u ) +D−1

u ]−1

)

and then drawing ϕj,1 from a normal distribution with mean and variance

m = v

{
Diag(τ−1/2

u )ϕ−1
j,2Diag(τ−1/2

u )mu + ϕ−1
j,2

∑
i,r:t

(r)
i =j

ψ
(r)
i (W

(r)
i −X i)

}
,

v = {Diag(τ−1/2
x )ϕ−1

j,2Diag(τ−1/2
u ) + njϕ

−1
j,2}−1.

If nj = 0, sample ϕj from π(ϕj|rest) ∝ Hu(ϕj) for j = 1, . . . ,M .

Step 14. For p = 1, . . . , P , draw the pth component of τ x from IG(gx, hx) and

denote the value as τ ∗px and the new vector as τ ∗x, while the same notations with-

out ∗ are used for the current values. We accept the new vector with probability

min{1, fτ x(τ ∗x|rest)/fτ x(τ x|rest)}, where

fτ x(τ x|rest) ∝g−hxx τ−hx−1
px

exp {−(gxτpx)
−1}

Γ(hx)

L∏
j=1

1

(2π)P/2|τ x|0.5

×
[
exp{−0.5(φj,1 −mx)

TDiag(τ−1/2
x )φ−1

j,2Diag(τ−1/2
x )(φj,1 −mx)}

]
.

Step 15. Draw Dx from the conditional distribution

IW

(
p+ νx

L∑
j=1

I(mj > 0), [IP +
L∑
j=1

I(mj > 0)φ−1
j,2 ]−1

)
.

Step 16. For p = 1, . . . , P , draw the pth component of τ u from IG(gu, hu) and

denote the value as τ ∗pu and the new vector as τ ∗u, while the same notations with-
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out ∗ are used for the current values. We accept the new vector with probability

min{1, fτ u(τ ∗u|rest)/fτ u(τ u|rest)}, where

fτ u(τ u|rest) ∝g−huu τ−hu−1
pu

exp {−(guτpu)
−1}

Γ(hu)

M∏
j=1

1

(2π)P/2|τ u|0.5

×
[
exp{−0.5(ϕj,1 −mu)

TDiag(τ−1/2
u )ϕ−1

j,2Diag(τ−1/2
u )(ϕj,1 −mu)}

]
.

Step 17. Draw Du from the conditional distribution

IW

(
p+ νu

M∑
j=1

I(nj > 0), [IP +
M∑
j=1

I(nj > 0)ϕ−1
j,2 ]−1

)
.

3.6 Simulation studies

3.6.1 Simulation design and method of analysis

Simulation studies were conducted by generating cohort data consisting of (Y, Z,

W (1),W (2)), where Z followed a Normal(0, 1) distribution. The erroneous surrogates

were obtained by setting W (1) = X +U (1) and W (2) = X +U (2).

Here, we considered 7 different scenarios. For scenario 1, X|Z ∼ Normal2{(0.1 −

0.1)TZ, I2), and U1, U2 ∼ Normal(0,
√

0.5
2
), for scenario 2, X|Z ∼ Normal2{(0.1 −

0.1)TZ, I2), and U1, U2 ∼ Uniform(−
√

1.5,
√

1.5), for scenario 3, X|Z ∼ (0.1 −

0.1)TZ + [Unif(−
√

3,
√

3) Unif(−
√

3,
√

3)], and U1, U2 ∼ Normal(0,
√

0.5
2
), for sce-

nario 4, X|Z ∼ (0.1 − 0.1)TZ + [Unif(−
√

3,
√

3) Unif(−
√

3,
√

3)], and U1, U2 ∼

Uniform(−
√

1.5,
√

1.5), for scenario 5, X ∼ Normal2{(0.1 − 0.1)TZ,Σ), and where

Σ =

 1 0.25

0.25 1

 ,
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and U ∼ 0.5Normal2[(0.5 0.5), 0.25Σ] + 0.5Normal2[(−0.5 − 0.5), 0.25Σ], and sce-

narios 6 and 7 were the same as scenarios 1 and 2 with some differences that will be

pointed later. Here Normal2 and I2 denote bivariate normal distribution and identity

matrix of order 2, and Unif(a, b) stands for uniform distribution between a and b.

For all scenarios, the variance of the measurement error was 50% of the variance of

X given Z.

Finally, Y was simulated from a Bernoulli distribution with success probability

satisfying logit{pr(Y = 1|X, Z) = −3 +X1 +X2 + 0.5X1X2 + Z, resulting in about

10% cases on average. We considered the cohort size of n = 5, 000.

Each simulated dataset was analyzed using the naive method (NV) method, where

unobserved X = (X1, X2)
T was replaced by W = (W 1,W 2) = (1/2)(W (1) +W (2)),

the regression calibration method [?] where the unobserved X is replaced by

X̂ = E(X|W ,Z) = Γ̂Z + Σ̂x(Σ̂u/2 + Σ̂x)
−1(W − Γ̂Z), (3.2)

where the quantities with ̂ are empirically estimated, the simulation extrapolation

(SIMEX) method [?], and the semiparametric Bayesian (SPB) method. In the first

set of simulations (scenarios 1-5), we assumed both W (1) and W (2) are observed for

all subjects. In the second set of simulations (scenarios 6 and 7), we evaluated perfor-

mance of the methods with missing data, where W (2) had 90% missing values. The

missing values were created by the missing completely at random (MCAR) mecha-

nism. For the naive method, we replaced X i by W
∗

=
∑2

r=1(W
(r)∆(r))/

∑2
r=1 ∆(r).

For the RC, X i was replaced by X̂ i given in (3.2), where Σ̂u was obtained based on

the subjects with both W (1) and W (2) observed, W
∗

was used in place of W , and

everything else was based on only W (1). For the SIMEX, Σ̂u was obtained based on

subjects where both W (1) and W (2) were observed and everything else was based on
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only W (1).

For SPB, we used 10,000 MCMC iterations, and the posterior inference is based

on the last 5,000 MCMC samples, and the mean and median of the MCMC chain

were used as the point estimates. We used aγ = bγ = 1,σ2
β0

= σ2
β1

= σ2
β2

= σ2
β3

= 5,

µγ = 0, σ2
γ3

= 1 gu = hu = gx = hx = 1, mu = 0, mx = 0, and IW(P, IP ) as prior

for Dx and Du. For all scenarios, we present mean bias (MB), median bias (MEDB),

median absolute deviation (MAD), empirical standard error (SE), and root mean

squared error (RMSE) based on 1,000 replications.

3.6.2 Results of the simulation study

Tables 3.1, 3.2, 3.3, and 3.4 contain the results for scenarios 1 and 2, scenarios 3

and 4, scenario 5, and scenarios 6 and 7, respectively.

In all scenarios, the SPB results based on the posterior mean and median were

fairly close, and occasionally the median based results were slightly better than the

mean based results. Overall, the naive method was obviously very biased. RC and

SIMEX had smaller biases than the naive method. However, their biases were still

highly significant in terms of the bias score
√

1, 000(mean estimate−truth)/SE. The

proposed method had the smallest biases and was competitive in terms of RMSE.

Now, we first examine the X related parameters.

When both replicates were observed for all observations, which was the case

without missing data (Tables 3.1, 3.2, and 3.3), SPB was the clear winner with the

smallest bias for each of the parameters than other methods. SPB is not expected

to achieve the smallest standard errors, since we have to sacrifice some efficiency to

obtain more robustness. However, comparisons based on RMSE, which incorporates

both the variance of an estimator and its bias, might still give some insights. Based

on RMSE, SPB seemed to be close to or better than SIMEX in the uniform X case
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(scenarios 3 and 4); in the bivariate normal X case (scenarios 1, 2, 5, 6, and 7), SPB

had the smallest RMSE for the interaction effect. With partially missing data (Table

3.4), SPB was again the winner with the smallest biases for almost all parameters.

RC seemed competitive in estimating the X related main effect parameters, but

it had large biases for the intercept and βZ , and those biases were as bad as those of

the naive method. Summarizing all results, the proposed method had the smallest

biases for all parameters and often the smallest RMSEs for the intercept and βZ .
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Table 3.1: Results of the simulation study based on 1,000 replications with sample
size n = 5, 000, where X|Z followed a bivariate normal distribution with uncorre-
lated components. Here MB, MEDB, MAD, SE, and RMSE denote the mean bias,
median bias, median absolute deviation, empirical standard error, and root mean
squared error, respectively. NV, RC, SIMEX, SPB-mean, and SPB-median denote
the naive method, regression calibration, simulation extrapolation, the semiparamet-
ric Bayesian method based on the posterior mean and median, respectively.

U1, U2 ∼ Normal U1, U2 ∼ Uniform
Method βint βZ βX1 βX2 βX1X2 βint βZ βX1 βX2 βX1X2

NV MB×10 1.99−0.87−2.23−2.15 −2.45 2.00−0.88−2.24−2.12 −2.49
MEDB×10 2.00−0.89−2.26−2.16 −2.45 2.05−0.90−2.25−2.15 −2.50
MAD×10 0.70 0.56 0.54 0.60 0.50 0.75 0.56 0.53 0.58 0.50
SE×10 0.73 0.56 0.54 0.58 0.51 0.73 0.56 0.55 0.58 0.50
RMSE×10 2.12 1.03 2.30 2.23 2.51 2.13 1.04 2.31 2.20 2.54

RC MB×10 2.01−0.86−0.24−0.21 −1.05 2.02−0.87−0.25−0.17 −1.10
MEDB×10 2.02−0.89−0.26−0.24 −1.05 2.05−0.89−0.28−0.18 −1.13
MAD×10 0.69 0.56 0.67 0.75 0.78 0.76 0.57 0.67 0.74 0.80
SE×10 0.73 0.56 0.68 0.73 0.80 0.73 0.57 0.69 0.73 0.78
RMSE×10 2.14 1.03 0.72 0.76 1.31 2.14 1.04 0.73 0.75 1.35

SIMEX MB×10 0.43−0.21−0.39−0.35 −0.93 0.44−0.23−0.41−0.31 −0.99
MEDB×10 0.44−0.23−0.42−0.37 −0.93 0.50−0.26−0.43−0.35 −1.00
MAD×10 0.85 0.63 0.73 0.84 0.81 0.89 0.63 0.71 0.81 0.84
SE×10 0.87 0.62 0.74 0.80 0.82 0.87 0.63 0.74 0.79 0.81
RMSE×10 0.97 0.66 0.84 0.87 1.24 0.97 0.67 0.85 0.85 1.28

SPB-mean MB×10 −0.18 0.08 0.09 0.07 0.15−0.13 0.06 0.04 0.09 0.09
MEDB×10−0.17 0.07 0.04 0.05 0.14−0.08 0.02 0.02 0.05 0.04
MAD×10 0.91 0.66 0.81 0.90 0.98 0.92 0.66 0.80 0.88 0.96
SE×10 0.93 0.65 0.80 0.88 1.00 0.94 0.66 0.81 0.86 0.98
RMSE×10 0.94 0.66 0.81 0.88 1.01 0.95 0.67 0.81 0.86 0.99

SPB-median MB×10 −0.16 0.08 0.08 0.06 0.14−0.11 0.06 0.03 0.08 0.08
MEDB×10−0.14 0.06 0.02 0.03 0.13−0.07 0.01 0.01 0.05 0.03
MAD×10 0.91 0.66 0.81 0.90 0.99 0.92 0.66 0.80 0.88 0.96
SE×10 0.93 0.65 0.80 0.88 1.00 0.94 0.66 0.81 0.86 0.99
RMSE×10 0.94 0.66 0.81 0.88 1.01 0.95 0.66 0.81 0.86 0.99
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Table 3.2: Results of the simulation study based on 1,000 replications with sample
size n = 5, 000, where conditional distributions of X1 and X2 given Z were uniform.
Here MB, MEDB, MAD, SE, and RMSE denote the mean bias, median bias, median
absolute deviation, empirical standard error, and root mean squared error, respec-
tively. NV, RC, SIMEX, SPB-mean, and SPB-median denote the naive method, re-
gression calibration, simulation extrapolation, the semiparametric Bayesian method
based on the posterior mean and median, respectively.

U1, U2 ∼ Normal U1, U2 ∼ Uniform
Method βint βZ βX1 βX2 βX1X2 βint βZ βX1 βX2 βX1X2

NV MB×10 2.22−0.91−2.21−2.12 −2.18 2.23−0.92−2.22−2.13 −2.19
MEDB×10 2.26−0.91−2.23−2.13 −2.18 2.26−0.90−2.24−2.14 −2.20
MAD×10 0.75 0.56 0.55 0.54 0.48 0.71 0.55 0.55 0.57 0.49
SE×10 0.75 0.56 0.54 0.55 0.47 0.74 0.56 0.54 0.55 0.49
RMSE×10 2.35 1.07 2.28 2.19 2.23 2.35 1.08 2.28 2.20 2.24

RC MB×10 2.24−0.91−0.20−0.19 −0.62 2.25−0.91−0.21−0.20 −0.63
MEDB×10 2.29−0.90−0.21−0.19 −0.62 2.28−0.90−0.23−0.22 −0.64
MAD×10 0.74 0.57 0.68 0.70 0.73 0.72 0.55 0.68 0.71 0.75
SE×10 0.75 0.57 0.68 0.70 0.74 0.74 0.57 0.67 0.69 0.77
RMSE×10 2.36 1.07 0.71 0.73 0.96 2.37 1.07 0.71 0.72 0.99

SIMEX MB×10 0.51−0.24−0.37−0.32 −0.67 0.52−0.25−0.38−0.33 −0.70
MEDB×10 0.57−0.25−0.39−0.33 −0.66 0.56−0.24−0.40−0.34 −0.72
MAD×10 0.87 0.63 0.76 0.77 0.79 0.84 0.62 0.77 0.80 0.78
SE×10 0.90 0.63 0.76 0.79 0.76 0.88 0.63 0.75 0.78 0.80
RMSE×10 1.03 0.67 0.84 0.85 1.02 1.02 0.68 0.84 0.84 1.06

SPB-mean MB×10 −0.22 0.03 0.14 0.07 0.16−0.16 0.01 0.08 0.07 0.08
MEDB×10−0.16 0.04 0.13 0.03 0.13−0.13 0.01 0.04 0.05 0.09
MAD×10 0.97 0.65 0.86 0.86 0.98 0.94 0.64 0.83 0.91 1.00
SE×10 0.98 0.65 0.88 0.91 0.99 0.96 0.66 0.87 0.90 1.03
RMSE×10 1.00 0.65 0.89 0.92 1.00 0.98 0.66 0.87 0.90 1.03

SPB-median MB×10 −0.20 0.02 0.13 0.06 0.16−0.14 0.00 0.07 0.05 0.08
MEDB×10−0.14 0.03 0.12 0.01 0.12−0.12 0.00 0.03 0.03 0.09
MAD×10 0.96 0.65 0.86 0.88 0.98 0.93 0.65 0.84 0.91 1.00
SE×10 0.98 0.65 0.88 0.91 0.98 0.96 0.66 0.87 0.89 1.02
RMSE×10 1.00 0.65 0.88 0.91 1.00 0.97 0.66 0.87 0.90 1.03
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Table 3.3: Results of the simulation study based on 1,000 replications with sam-
ple size n = 5, 000, where X given Z followed a bivariate normal distribution with
correlated components and U followed a mixture of two bivariate normal distribu-
tions each with correlated components. Here MB, MEDB, MAD, SE, and RMSE
denote the mean bias, median bias, median absolute deviation, empirical standard
error, and root mean squared error, respectively. NV, RC, SIMEX, SPB-mean, and
SPB-median denote the naive method, regression calibration, simulation extrapola-
tion, the semiparametric Bayesian method based on the posterior mean and median,
respectively.

Method βint βZ βX1 βX2 βX1X2

NV MB×10 3.07 −1.29 −2.95 −2.79 −2.84
MEDB×10 3.09 −1.30 −2.98 −2.79 −2.84
MAD×10 0.68 0.53 0.55 0.53 0.49
SE×10 0.67 0.54 0.52 0.54 0.47
RMSE×10 3.14 1.40 2.99 2.84 2.88

RC MB×10 3.37 −1.29 −0.48 −0.39 −1.50
MEDB×10 3.38 −1.30 −0.52 −0.39 −1.49
MAD×10 0.68 0.53 0.68 0.65 0.79
SE×10 0.67 0.54 0.66 0.69 0.76
RMSE×10 3.44 1.40 0.81 0.79 1.68

SIMEX MB×10 0.88 −0.46 −0.84 −0.74 −1.28
MEDB×10 0.91 −0.48 −0.90 −0.75 −1.27
MAD×10 0.86 0.61 0.75 0.72 0.80
SE×10 0.85 0.62 0.71 0.75 0.79
RMSE×10 1.23 0.77 1.11 1.06 1.50

SPB-mean MB×10 −0.24 0.04 0.31 0.03 0.05
MEDB×10 −0.20 0.01 0.27 0.01 0.07
MAD×10 1.01 0.65 0.85 0.81 0.98
SE×10 1.00 0.68 0.84 0.86 1.01
RMSE×10 1.03 0.68 0.90 0.86 1.01
RMSE×10 1.03 0.68 0.90 0.86 1.01

SPB-median MB×10 −0.22 0.03 0.30 0.01 0.05
MEDB×10 −0.18 0.01 0.25 −0.00 0.06
MAD×10 1.01 0.65 0.85 0.81 0.99
SE×10 1.00 0.67 0.84 0.85 1.01
RMSE×10 1.03 0.67 0.89 0.85 1.01
RMSE×10 1.03 0.68 0.89 0.86 1.01
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Table 3.4: Results of the simulation study based on 1,000 replications with sample
size n = 5, 000, whereX|Z followed a bivariate normal distribution with uncorrelated
components and the second replicate had a missingness probability of 90%. Here MB,
MEDB, MAD, SE, and RMSE denote the mean bias, median bias, median absolute
deviation, empirical standard error, and root mean squared error, respectively. NV,
RC, SIMEX, SPB-mean, and SPB-median denote the naive method, regression cal-
ibration, simulation extrapolation, the semiparametric Bayesian method based on
the posterior mean and median, respectively.

U ∼ Bivariate Normal U ∼ Bivariate Uniform
Method βint βZ βX1 βX2 βX1X2 βint βZ βX1 βX2 βX1X2

NV MB×10 3.06−1.30−3.52−3.42 −3.41 3.06−1.32−3.52−3.39 −3.47
MEDB×10 3.08−1.31−3.53−3.45 −3.39 3.12−1.33−3.51−3.41 −3.47
MAD×10 0.67 0.54 0.46 0.52 0.39 0.65 0.53 0.49 0.51 0.39
SE×10 0.67 0.53 0.48 0.51 0.41 0.70 0.55 0.49 0.52 0.39
RMSE×10 3.14 1.40 3.56 3.46 3.43 3.14 1.43 3.56 3.43 3.49

RC MB×10 3.17−1.32−0.39−0.35 −1.60 3.18−1.34−0.38−0.28 −1.73
MEDB×10 3.18−1.34−0.40−0.37 −1.60 3.21−1.34−0.41−0.31 −1.77
MAD×10 0.68 0.55 0.76 0.87 0.88 0.68 0.55 0.79 0.82 0.84
SE×10 0.68 0.54 0.79 0.84 0.89 0.70 0.56 0.83 0.86 0.85
RMSE×10 3.25 1.43 0.88 0.91 1.83 3.25 1.45 0.91 0.90 1.92

SIMEX MB×10 1.27−0.62−1.28−1.19 −2.17 1.25−0.65−1.26−1.11 −2.30
MEDB×10 1.30−0.63−1.29−1.20 −2.18 1.31−0.64−1.29−1.14 −2.32
MAD×10 0.82 0.60 0.70 0.77 0.72 0.83 0.64 0.76 0.78 0.68
SE×10 0.83 0.61 0.72 0.78 0.74 0.87 0.63 0.75 0.80 0.69
RMSE×10 1.52 0.87 1.47 1.42 2.29 1.52 0.91 1.47 1.37 2.40

SPB-mean MB×10 −0.39 0.18 0.22 0.30 0.37−0.33 0.12 0.24 0.29 0.16
MEDB×10−0.33 0.16 0.21 0.26 0.32−0.22 0.09 0.22 0.30 0.09
MAD×10 1.08 0.71 1.03 1.17 1.32 1.07 0.73 1.06 1.11 1.19
SE×10 1.09 0.71 1.06 1.15 1.34 1.10 0.73 1.08 1.15 1.22
RMSE×10 1.16 0.73 1.08 1.19 1.39 1.15 0.74 1.11 1.19 1.23

SPB-median MB×10 −0.35 0.17 0.18 0.26 0.33−0.30 0.11 0.21 0.26 0.13
MEDB×10−0.31 0.15 0.19 0.23 0.29−0.18 0.08 0.18 0.28 0.06
MAD×10 1.08 0.70 1.03 1.16 1.31 1.04 0.73 1.06 1.12 1.21
SE×10 1.09 0.71 1.05 1.15 1.34 1.09 0.73 1.08 1.14 1.23
RMSE×10 1.14 0.73 1.07 1.18 1.38 1.13 0.73 1.10 1.17 1.23
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3.7 Analysis of the NHANES Data

3.7.1 Background and method of analysis

In the National Health and Nutrition Examination Survey, participants were

recruited as a representative sample of the noninstitutionalized US population. In

this analysis, we focus on data from 2003 to 2010.

To avoid confounding, we looked at a homogeneous group of non-Hispanic White

male who at least 20 years of age with an education level of above high school. High

cholesterol level was considered as the binary response variable Y . The predictors

of interest were calorie-adjusted total fat (gm per kcal) and calorie-adjusted dietary

protein (gm per kcal), both were measured with errors. For numerical stability, we

applied the following transformation: 100× log(1+predictor) on the 24 hours recalls;

the corresponding re-centered true values are denoted as pFat and pProtein. Also,

we used age as the control variable Z.

The data set was analyzed by the four methods described in the simulation sec-

tion, and the results are summarized in Table 3.5. For SPB, we used the same priors

as used in the simulation study.

3.7.2 Results of analysis

Out of the 2025 subjects included in our analysis, 910 (45%) reported having

ever been told by a doctor or other health professional that their blood cholesterol

level was high. In the logistic models, the interaction parameter between pFat and

pProtein as well as the main effect parameters came out to be statistically significant

in all methods. In addition, the results of all methods indicate that higher risks were

associated with older age. However, caution should be exercised in concluding causal

relationships as the dataset was obtained from an observational study.
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Since the interaction effect was significant, the main effects could not be inter-

preted on their own. Instead, the effect of increasing pFat from its first quartile to the

third quartile should be examined with the value of pProtein fixed. With pProtein

fixed at its first or second quartile, the effect of increasing pFat was not significant as

all confidence/credible intervals of the odds ratios contained one (left panel of Figure

3.2) except for the confidence interval by RC with pProtein fixed at its first quartile.

However, with pProtein fixed at its third quartile, the effect of increasing pFat was

significant with all confidence/credible intervals above one. Similarly, the effect of

increasing pProtein from its first quartile to the third quartile should be examined

with the value of pFat fixed. The effect of increasing pProtein was not statistically

significant judged by all methods when pFat was at its first quartile (right panel

of Figure 3.2), but it was significant when pFat was at its second or third quartile.

In summary, pFat’s and pProtein’s associations with the outcome seem to reinforce

each other.

In addition to parameter estimation and statistical inference, the SPB method

can provide other useful information. For example, we can obtain the posterior

distribution of (µx,Σx). To get that distribution we randomly draw (µx,n+1,Σx,n+1)

from

αx{1−
∑L

j=1 I(mj > 0)/L}
(αx + n)

Hx(µx,n+1,Σx,n+1)

+
L∑
j=1

(mj + αx/L)

(αx + n)
I(mj > 0)δ(φj,1,φj,2)(µx,n+1,Σx,n+1)

in every iteration of the MCMC chain. Similarly, we obtain the posterior distribution

of (µu,Σu) by simulating (µu,2n+1,Σu,2n+1) (as we condition on 2 replicated surrogate
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for each subject) from the following mixture distribution

αu{1−
∑L

j=1 I(nj > 0)/M}
(αu + 2n)

Hu(µu,2n+1,Σu,2n+1)

+
M∑
j=1

(nj + αu/M)

(αu + 2n)
I(nj > 0)δ(ϕj,1,ϕj,2)(µu,2n+1,Σu,2n+1)

in every iteration of the MCMC chain. The posterior distributions of µx and µu are

given in the 3D plots of Figure 3.3 along with the marginals of each components.

The plots clearly indicate that a single biviariate normal distribution would not

adequately capture the features of the distributions, which suggests that flexible

models like ours are needed to avoid misspecification and the related bias.

3.8 Discussion

In this section, we have proposed a semiparametric Bayesian method to handle

measurement error of covariates in a logistic regression model. The novelty of the

method is the estimation of the interaction effect along with the mail effects while

the predictors are measured with error. In addition, the method is able to handle

missing values in the variables measured with error in an easy and natural way.

The simulation studies suggest that the proposed method outperforms RC and the

SIMEX in terms of bias in all the simulation settings. In particular, we see that the

SIMEX approach has a large bias in estimating the interaction term. In estimating

the intercept and βZ , the proposed method consistently beat the RC. Although

any method that properly takes into account measurement error is accompanied by

relatively large uncertainties, the uncertainties (as measured via standard errors) of

the proposed method are comparable with the SIMEX approach.

As a Bayesian method, the SPB can easily incorporate prior knowledge when

such knowledge exists and thus lead to better estimates. Some of the byproducts can
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Figure 3.2: Estimates and confidence/credible intervals of odds ratios for the naive
(blue), the RC (red), the SIMEX (green), and the SPB method (purple). The plot on
the left shows the odds ratios corresponding to increasing pFat from its first quartile
to its third quartile with the value of pProtein fixed to the first, second, and third
quartiles. The plot on the right shows the odds ratios corresponding to increasing
pProtein from its first quartile to its third quartile with the value of pFat fixed to
the first, second, and third quartiles.
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be useful. For example, we can obtain information on the distributions on the true

unobserved variables, the latent clusters, and get a clear idea about the measurement

error distribution.

The proposed approach tries to avoid model misspecification by using the Dirich-

let process mixture on the distribution of the unobserved covariates and the mea-

surement error, which is flexible enough to model otherwise difficult distributions.

At the same time, to lighten the computational burden we use a finite dimensional

approximation of the full Dirichlet process.

One of the most important components of the current paper is the analysis of the

NHANES data. To the best of our knowledge, this represents the first attempt to si-

multaneously address the main effects of fat and protein, their interaction effect, and

the measurement error problem. The interaction was significant by all four methods,

and we recommend that the interaction between fat and protein be considered in

future research.
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4. CONCLUSIONS

4.1 Summary

In Section 2, we have used the two-stage model to incorporating breast cancer

trait information into etiologic investigations. In addition to reducing the dimension

of the polytomous logistic regression, the model provides a convenient evaluation of

the heterogeneity of the odds ratios.

For parameter estimation of the second-stage model, we have proposed a pseudo

conditional likelihood method, which artificially matches each case with all the con-

trols. As a result of the matching process, our method reduces the effects of the

intercepts on the estimation of the regression parameters, which explains its robust-

ness against the misspecification of the intercept model.

We’ve established the method’s unbiasedness and asymptotic properties, which

have been demonstrated by simulation studies. Compared with alternative methods

of parameter estimation (i.e., the MLE and the CMLE), our method usually has

smaller biases when the second-stage intercept model is misspecified. In terms of

efficiency, our method is superior to the CMLE and very close to the MLE method.

Although the motivating example is a breast cancer classification problem, our

methodology may have applications in other areas. For example, the method may be

used to identify factors associated with whether a student can finish college education

within four years, and the possible traits of interest may include honor status (no

honor, Cum Laude, Magna Cum Laude, or Summa Cum Laude), job seeking outcome

within 3 months of graduation (no job offer, 1-2 job offers, 3 or more job offers), etc.

In Section 3, we have addressed a measurement error problem, which is common

in nutritional epidemiological studies. A few features make the problem challenging,
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including the missing data problem, the non-linearity of the model, and the potential

interaction between nutrients measured with errors.

Compared with functional methods, structural methods are flexible enough to

handle various problems but at the same time susceptible to mode misspecifica-

tion. To guard against misspecification, we’ve proposed a semiparametric Bayesian

method that uses flexible models for the unobserved true nutrient intakes as well

as the measurement errors. Flexibility is achieved by using the finite dimensional

Dirichlet process mixture distributions, which can well approximate any continuous

distributions in principle.

We have compared the finite sample performance of the proposed method with the

popular RC and SIMEX methods through simulation studies. The results indicate

that our method has the smallest biases in parameter estimation. We have also

applied the method to the NHANES data to assess the effects of total fat and protein

on high cholesterol. Our results point to two possible reasons why some studies failed

to find associations between nutrient intakes and certain diseases: they may have (1)

ingnored the measurement errors or (2) neglected the interactions between nutrients.

4.2 Future Research

In Section 2, we assumed that the second- or higher-order contrasts in the second

stage model were zero, which could be formally tested as hypotheses. But there could

be more convenient approaches. One possibility is to use model selection methods.

Instead of making assumptions, we can use lasso (Tibshirani 1997) or other types of

model selection procedures to decide which of the higher-order contrasts should be

included in the model. The advantage of modeling selection is that the whole process

can be automated, and the price to pay is that the computational burden might be

heavier.
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In Section 3, we assumed that the observed surrogates were missing completely at

random, which is a fairly strong assumption. It would be interesting to see whether

this assumption can be relaxed to allow for some dependence between missingness

and the covariates and/or the binary response variable.
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Orgéas CC, et al. (2008). The influence of menstrual risk factors on tumor char-

acteristics and survival in postmenopausal breast cancer. Breast Cancer Res,

10(6): R107.

Richardson S, Leblond L, Jaussent I, and Green PJ. Mixture models in measurement

error problems with reference to epidemiological studies. Journal of the Royal

Statistical Society, Series A, 165(3): 549–566.

Roeder K, Carroll RJ, and Lindsay BG. (1996). A semiparametric mixture approach

to case-control studies with errors in covariables. Journal of the American Sta-

tistical Association, 91(434): 722-732.

Rubin DB. (1976). Inference and missing data. Biometrika, 63(3): 581–592.

Schwartz, JE. (1985). The neglected problem of measurement error in categorical

data. Sociological Methods & Research, 13(4): 435–466.

Sinha S, Mallick BK, Kipnis V, and Carroll RJ. (2010). Semiparametric bayesian

analysis of nutritional epidemiology Data in the presence of measurement error.

Biometrics, 66(2): 444–454.

Spiegelman D, McDermott A, and Rosner B. (1997). Regression calibration method

for correcting measurement-error bias in nutritional epidemiology. The American

Journal of Clinical Nutrition, 65(4): 1179S–1186S.

Stefanski LA and Carroll RJ. (1987). Conditional scores and optimal scores in gen-

eralized linear measurement error models. Biometrika, 74(4): 703–716.

73



Stefanski LA and Cook JR. (1995). Simulation-extrapolation: the measurement error

jackknife. Journal of the American Statistical Association, 90(432): 1247–1256.

Tibshirani R. (1997). The lasso method for variable selection in the Cox model.

Statistics in Medicine, 16(4): 385–395.

van der Vaart AW. (1998). Asymptotic Statistics. Cambridge, UK: Cambridge

University Press.

Zaman K, Bodmer A, Pralong F, Castiglione-Gertsch M. (2010). Breast cancer and

obesity, a dangerous relation. Rev Med Suisse, 8(342): 1101–1104.

74




