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ABSTRACT

In this dissertation, we develop geometric multigrid methods for the finite element

approximation of flow problems (e.g., Stokes, Darcy and Brinkman models) in highly

heterogeneous porous media. Our method is based on Hdiv-conforming discontinuous

Galerkin methods and the Arnold-Falk-Winther (AFW) type smoothers. The main

advantage of using Hdiv-conforming elements is that the discrete velocity field will be

globally divergence-free for incompressible fluid flows. Besides, the smoothers used

are of overlapping domain decomposition Schwarz type and employ a local Helmholtz

decomposition.

Our flow solvers are the combination of multigrid preconditioners and classical

iterative solvers. The proposed preconditioners act on the combined velocity and

pressure space and thus does not need a Schur complement approximation. There

are two main ingredients of our preconditioner: first, the AFW type smoothers can

capture a meaningful basis on local divergence free subspace associated with each

overlapping patch; second, the grid operator does not increase the divergence from

the coarse divergence free subspace to the fine one as the divergence free spaces are

nested.

We present the convergence analysis for the Stokes’ equations and Brinkman’s

equations ( with constant permeability field ), as well as extensive numerical ex-

periments. Some of the numerical experiments are given to support the theoretical

results. Even though we do not have analysis work for the highly heterogeneous and

highly porous media cases, numerical evidence exhibits strong robustness, efficiency

and unification of our algorithm.
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1. INTRODUCTION

Flow through porous media occurs in many real-world applications (e.g., hydrol-

ogy, ecology, industrial filters and oil exploration, thermal insulation engineering,

etc) and this has attracted substantial attention throughout both academic and in-

dustrial communities in the last century. With the advent of the computers and due

to their capabilities for large scale simulations the research has focused on better

mathematical models and efficient numerical methods describing the flow processes

in porous media. All these processes have multi-scale phenomena and could involve

multiple phases, species, and have multi-physics nature.

On a macro level the most popular mathematical model is represented by conser-

vation of mass and Darcy’s law that relates the gradient of the macroscopic pressure

with the macroscopic fluid velocity. Currently, Darcy’s law is still the most popular

model for fluid flows with relatively small Reynolds number and for media with rela-

tively small porosity. The main deficiency of Darcy’s law is disregarding the viscous

effects in the flow, a fact that is not always appropriate to neglect on the fluid’s prop-

erties and the corresponding pore size distribution. In response to the limitations of

Darcy’s law, in 1947 Brinkman proposed a phenomenologically more adequate model

(cf. [23]), considered as an extension of Darcy’s Law, which takes into account the

viscous effects of the fluid. Experimentally, Brinkman’s model has shown to better

describe for fluid flows in highly porous media (especially, for porosity for more than

0.8). Theoretically, Brinkman model can be rigorously derived from Stokes’ flows in

a media with periodically arranged obstacles through Allaire’s homogenization the-

ory (cf. [2]) under proper assumptions, which are close to media of low solid volume

fraction (i.e. highly porous media).
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Remark 1. (Comments about homogenization theory in [2]) The obvious limitation

of the homogenization theory is that it can be used only for periodic or statistically ho-

mogeneous porous media. For such media the theory delivers complete and practically

useful results. However, for highly heterogeneous media the theory is not applicable,

but it could be used as a guiding tool in modeling and simulations.

1.1 Mathematical models of flow in porous media

Now, we use mathematical language to express the physical relations into a system

of partial differential equations for the macroscopic characteristics of the flow, the

pressure p and the fluid velocity u. For Ω being a bounded Lipschitz domain in Rd

with dimension d = 2, 3, the steady-state Brinkman model reads:

−µ4u+ κu+∇p = f, in Ω

∇·u = 0, in Ω

u = uB, on ∂Ω

(1.1)

The coefficient µ is the fluid viscosity and the coefficient κ(x) = K−1(x), where

K(x) is the permeability of the porous medium. In general, K(x) is symmetric and

uniformly in Ω positive definite d× d matrix. However, for our purposes it is enough

to consider it as a diagonal matrix and in most of the cases as an identity matrix

scaled by a scalar function, i.e. K(x) = diag{K11(x), . . . , Kdd(x)}. Depending on the

viscosity µ and the inverse permeability κ, we distinguish different types of flows in

various subdomains 
κ= 0 6=µ in ΩS Stokes flow,

κ 6= 0 =µ in ΩD Darcy’s flow,

κ 6= 0 6=µ in ΩB Brinkman flow.

2



The numerical methods (finite difference, finite volume and finite element - con-

forming, nonconforming and mixed - methods) for Stokes’ and Darcy’s equations are

by now well understood and quite mature. From the finite element point of view,

there are many stable elements available for them in current literature. Therefore,

one natural approach in approximation of Brinkman’s equations (1.1) is to modify

these stable elements. In fact, there are a great many works following this nature

approach, for instance, modifications based on Stokes elements with various sta-

bilization techniques (e.g., [7, 25, 32, 46, 47, 68]), modifications based on Darcy

elements (e.g., [68, 71, 97]) and solving the coupling of Stokes and Darcy flows (e.g.,

[26, 63, 69, 73]), etc. Besides, there are also other elements directly constructed for

Brinkman’s equations (cf. [24, 98]). A high proportion of these works have been

developed on topologically simple geometries associated with constant or smoothly

varying permeability coefficients.

Understandably, we are not satisfied with just idealized geometries and simple

permeability fields. Specifically, we aim at the numerical simulation of flows in the

heterogeneously porous media such as glass wool (one of heat insulators, see Fig-

ure 1.1), open foam (one of industrial filters,see Figure 1.2), and natural reservoirs

(see Figure 1.3), etc.

3



Figure 1.1: Microstructure and Macrostructure of glass wool (cf. [55])

Figure 1.2: Microstructure of industrial foams (cf. [55])

4



Figure 1.3: 3-D logarithmic plots of the horizontal and vertical permeability coeffi-
cients of SPE 10 benchmark dataset (cf. [28]). Note that there are 85 distinct layers in
this natural reservoir model and the coefficient field admits the large jumps between
different cells with contrast up to 108.

Remark 2. (Comments about Figure 1.1-1.3) The porous mediums in Figure 1.1-1.3

usually refer to highly heterogeneous and/or highly porous media. The heterogeneity

often means that these media contain different composites which may be randomly dis-

tributed inside the matrix. Another issue with this type of materials is the size of per-

meability. Take 3-D the SPE 10 benchmark natural reservoir dataset (Figure 1.3) for

example, the dimensions of the fine scale geological model are 1200× 2200× 170 (ft).

A fine scale grid size of 1× 1× 1 (ft) will produce over 40 million cells, which would

require tremendous computational effort even with modern supercomputers. More-

over, the discrete system obtained from finite element approximation of Brinkman’s

equations in this case will be extremely ill-conditioned due to significantly varying

permeability coefficients.
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Due to the heterogeneity of the media at different scales (e.g., micro-scale and

macro-scale) fast and accurate numerical solution of Brinkman’s equations is still a

challenging task. More precisely, it is very demanding to simultaneously resolve all

structural features that are at different length scales. Additionally, according to the

example in Remark 2, the high variability of the permeability negatively affects the

condition number of the corresponding discrete system. These ill-conditioned systems

have posed an enormous challenge for developing efficient solvers.

As we pointed out in Remark 1, the homogenization theory ([2]) may not work

well for the cases where the geometries are rather complex such as highly hetero-

geneous and highly porous media. Despite this, the main ideas have been imported

to several numerical upscaling approaches. Here, by upscaling we mean the method

to compute the finite element basis functions on the coarse grids based on the in-

formation on the fine grid. To tackle these ill-condition systems arising from the

approximation of Brinkman’s equations in heterogeneous porous media, the follow-

ing two major approaches have been heavily used in the existing literature:

1. Multiscale methods (MS): MS finite volume by Jenny, Lunati and Hajibeygi [17,

45, 57];Galerkin MS finite element method by Hou and Efendiev [39, 38]; MS

mortar finite element by Arbogast, Pencheva, Wheeler and Yotov [8, 9]; subgrid

method by Arbogast [6], and Illiev, Lazarov and Willems [54, 95];

2. Algebraic multigrid method (AMG), by Efendiev, Galvis, and Vassilevski [36,

37, 90, 91] and Villa [92].

Furthermore, a number of other approaches that have emerged in the resent years

and were used in this area: mixed discontinuous Galerkin method by Konno and

Stenberg [68], pressure Schur complement preconditioning by Popov [79] and weak

Galerkin FEM by Mu, Wang and Ye [72], to name a few.
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However, up to our best knowledge, the Geometric Multigrid Method (GMG),

known as a powerful tool for fast solution of linear systems arising the finite element

approximations, has not been applied in this field. In fact, the author could not find

any work with GMG for flows problems in highly heterogeneous and highly porous

media in current literature. One may wonder why? There are two major reasons for

it: first, the performance of GMG on problems with variable coefficients often has not

been quite satisfactory, as pointed out by many investigators in classical multigrid

textbooks (e.g., [86, 22]); additionally, GMGs with traditional smoothers are not

suitable for discrete system arising from the popular Hdiv-conforming discretization

for Brinkman’s model (e.g., [27, 61, 62]). To some extent, this dissertation shows

that this situation could be largely improved: with certain modifications, GMG could

regain the power of efficiency for this class of problems.

1.2 Dissertation outline

In this dissertation, we propose and analyze an efficient solver for the finite ele-

ment approximation of the Brinkman system, which is based on Geometric Multigrid

Method (with Arnold-Falk-Winther (AFW) type smoothers) and Hdiv-conforming

discontinuous Galerkin methods. (Note: by solver in this dissertation we refer to the

combination of the multigrid preconditioner and classical iterative solver).

The main goals of this dissertation are to:

(a) derive, analyze, and numerically test solvers for the finite element approximation

of the Brinkman system used as a model of flows in highly heterogeneous porous

media with high porosity; here the objective is to develop a robust and efficient

solver that is independent of mesh size and of the distribution of the permeability.

(b) improve the computational performance with two objectives: first, rapidly con-

vergent method (most existing algorithms converge at a very slow rate and are

7



very time consuming); second, perform simulations of flows in porous media on

very fine scale, e.g. on meshes with 2048 × 2048 (for RT0) or 512 × 512 (for

RT1) grid-blocks in two spacial dimensions; note that these meshes represent

well the original geological benchmark dataset for natural reservoirs, e.g., shown

on Figure 1.3 and will lead to a significant improvement in the numerical results.

Most of current algorithms are applied to 128× 128 or even coarser grids.

(c) unify the implementation of dimension and the polynomial order of the finite

elements. The first objective is to make the implementation easily extendable

to two or three dimension. The second objective is to implement finite elements

with any order (many of the current algorithms are only limited to certain order

of finite element and two dimensional mesh).

As a byproduct of the Brinkman solver, we also obtained efficient Stokes and

Darcy solvers under the same multigrid framework. For the readers’ benefit, we start

with Stokes solver. Then, we add Darcy flow region into the Stokes model by a topo-

logically simple way and build a solver for the coupling Stokes-Darcy flow. Finally,

we present the Brinkman solver as well as Darcy solver in heterogeneously porous

media. All proposed numerical algorithms are implemented in the open source soft-

ware Deal.II - a Finite Element Differential Equations Analysis Library of Bangerth,

Heister and Kanschat [15]; in particular, the multilevel support by Kanschat based

on [56].

The dissertation is organized as follows.

1. In Section 2, we introduce the Hdiv-conforming discontinuous Galerkin dis-

cretization (cf. [30, 64]) for the Stokes’ equations and present the idea of geo-

metric multigrid preconditioners (cf. [11, 12]). Particular emphasis are put on

the overlapping domain decomposition Schwarz smoothers (additive and mul-

8



tiplicative). We then prove the convergence analysis for the proposed method.

Numerical results of different Schwarz smoothers and conclusion are provided

at the end of this section.

2. In Section 3 we study the coupling of Stokes-Darcy flow model with Beavers-

Joseph-Saffman interface boundary conditions (cf. [16]). Next, we apply a

Hdiv-conforming discontinuous Galerkin discretization with interior penalty

method for the proposed model problem (cf. [63]). The multigrid precondi-

tioning method is presented and relevant discussion on the smoother choice is

given. We conclude this section with numerical experiments on two setups.

3. In Section 4, we present a brief introduction of the Brinkman model in hetero-

geneously porous media (cf. [3, 4]). We then derive and analyze a mixed finite

element discretization for the Brinkman’s equations. The multigrid method

and convergence analysis are followed. Substantial numerical results on differ-

ent heterogeneous porous media geometries are presented, followed by a brief

conclusion.

4. Finally, summary of the dissertation and comments on some future work are

reported in Section 5.
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2. THE STOKES’ EQUATIONS

The presentation and numerical experiments in this section closely follow the

manuscript [61]

∗

.

2.1 Introduction

The efficient solution of the Stokes’ equations is an important step in the de-

velopment of fast flow solvers. In this section we present analysis and numerical

results for a multigrid method with subspace correction smoother, which performs

very efficiently on divergence-conforming discretizations with interior penalty. We

obtain convergence rates for the Stokes problem which are comparable to those for

the Laplacian.

Multigrid methods are known to be the most efficient preconditioners and solvers

for diffusion problems. Nevertheless, for Stokes equations, the divergence constraint

makes the solution process more complicated. A typical solution employs the use

of block preconditioners, e. g. [40, 66, 74, 59], but their disadvantage is, that their

performance is limited by the inf-sup constant of the problem. This could be avoided,

if the multigrid method operated on the divergence free subspace directly, and thus

would not have to deal with the saddle point problem at all. Such methods have

been developed in different context and have proven very successful as reported for

instance by Hiptmair [50] for Maxwell equations and by Schöberl [83] for incompress-

ible elasticity with reduced integration.

The main ingredients into such a method are a smoother which operates on the

divergence free subspace and a grid transfer operator from coarse to fine mesh which

∗Reprinted with permission from ”Multigrid methods for Hdiv-conforming discontinuous
Galerkin methods for the Stokes equations ” by Guido Kanschat and Youli Mao, 2014. Journal
of Numerical Mathematics, accepted for publication, Copyright [2014] by De Gruyter.
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maps the coarse divergence free subspace into the fine one. The second objective

can be achieved by using a mixed finite element discretization for which the weakly

divergence free functions are point-wise divergence free. For such a discretization,

the natural finite element embedding operator from coarse to fine mesh does not

increase the divergence of a function. Discretizations of this type are available, such

as for instance in Scott and Vogelius [85, 93], Neilan and coauthors [44, 41] and

Zhang [99, 100]. Here, we focus on the divergence conforming discontinuous Galerkin

(DivDG) method of Cockburn, Kanschat, and Schötzau [30] due to its simplicity.

Following the approach by Schöberl [83], in order to study smoothers for the

Stokes’ equations, we first consider a problem on the velocity space only with penalty

for the divergence. This leads to a singularly perturbed problem with an operator

with a large kernel. When it comes to smoothers for such operators, there are two

basic options. One approach is to smooth the kernel of the Hdiv space explicitly, as

proposed for instance by Hiptmair [50] and Xu in [51]. The other option was presented

by Arnold, Falk, and Winther in [11, 12] and smoothens the kernel implicitly, while

never employing an explicit description of it.

We follow the implicit approach and use the same domain decomposition principle

(i.e additive and multiplicative Schwarz methods and vertex patches), but instead of

the Maxwell or divergence dominated mass matrix as in [11, 12] apply it to the Di-

vDG Stokes discretization. Then, we prove the convergence of the multigrid method

with respect to variable V-cycle scheme for the singularly perturbed problem. The

second pillar we rest on is the equivalence between singularly perturbed, divergence

dominated elliptic forms and mixed formulations established by Schöberl in [83, 82].

This equivalence allows us to apply the smoother to a mixed formulation of nearly

incompressible elasticity and then to proceed to the Stokes limit. As far as we know,

the combination of these techniques has not been applied the DivDG method in [30].
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Since our analysis is based on domain decomposition, fundamental results are also

drawn from the seminal paper by Feng and Karakashian [42] on domain decomposi-

tion for discontinuous Galerkin methods for elliptic problems.

There is a close relation between our technique and the smoother suggested by

Vanka in [89] for the MAC scheme: the MAC scheme can be considered the lowest

order case of the DivDG methods (see [60]). In this case, the subspace decomposi-

tion structure of Vanka smoother corresponds to Neumann problems on cells, while

our smoother is based on Dirichlet problems for vertex patches. Generalizations of

the Vanka smoother have been applied successfully to different other discretizations

albeit their velocity-pressure spaces are not matched in the sense of (2.2) (see for

instance[87, 96] and literature cited there).

Recently, an alternative preconditioning method for Stokes discretizations of the

same type as here has been introduced in [14] by Ayuso et al. Their method is based

on auxiliary spaces introduced by Hiptmair and Xu in [51]. The exact sequence

property of the divergence-conforming velocity element plays a crucial role as in

our scheme, but their preconditioner uses a multigrid method for the biharmonic

problem to solve the Stokes problem. As a consequence, it is not possible to use

the preconditioning method for no-slip boundary conditions. On the other hand, it

has been demonstrated in [65] that the multigrid method here can be lifted to the

biharmonic problem, providing an efficient method for clamped boundary conditions.

This section is organized as follows. In Subsection 2.2 we present the model

problem and the DG discretization. The multigrid method and domain decomposition

smoother are derived in Subsection 2.4. Subsection 2.7 is devoted to the convergence

analysis of our preconditioning technique with the main result in Theorem 1 on

page 26. Numerical results for additive and multiplicative Schwarz smoothers of our

multigrid method are presented in Subsection 2.8.
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We consider discretizations of the Stokes’ equations

−4u + ∇p = f in Ω,

∇·u = 0 in Ω,

u = uB on ∂Ω,

(2.1)

with no-slip boundary conditions on a bounded and convex domain Ω ⊂ Rd with

dimension d = 2, 3. The natural solution spaces for this problem are V = H1
0 (Ω;Rd)

for the velocity u and the space of mean value free square integrable functions Q =

L2
0(Ω) for the pressure p, although we point out that other well-posed boundary

conditions do not pose a problem.

In order to obtain a finite element discretization, we partition the domain Ω into

a hierarchy of meshes {Tj}j=0,...,L of parallelogram and parallelepiped cells in two and

three dimensions, respectively. In view of multilevel methods, the index j refers to

the mesh level defined as follows: let a coarse mesh T0 be given. The mesh hierarchy

is defined recursively, such that the cells of Tj+1 are obtained by splitting each cell

of Tj into 2d congruent children (refinement). These meshes are nested in the sense

that every cell of Tj is equal to the union of its four children. We define the mesh

size hj as the maximum of the diameters of the cells of Tj. Due to the refinement

process, we have hj = 2−jh0.

By construction, these meshes are conforming in the sense that every face of

a cell is either at the boundary or a whole face of another cell; nevertheless, local

refinement and hanging nodes do not pose a particular problem, since they can be

treated following [56, 58]. By Fj we denote the set of all faces of the mesh Tj, which

is composed of the set of interior faces Fij and the set of all boundary faces F∂j .
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We introduce a short hand notation for integral forms on Tj and on Fj by

(
φ, ψ

)
Tj

=
∑
T∈Tj

∫
T

φ� ψ dx,
〈
φ, ψ

〉
Fj

=
∑
F∈Fj

∫
F

φ� ψ ds,

∥∥φ∥∥Tj =

(∑
T∈Tj

∫
T

|φ|2 dx
) 1

2

,
∥∥φ∥∥Fj =

(∑
F∈Fj

∫
F

|φ|2 ds
) 1

2

,

The point-wise multiplication operator φ � ψ refers to the product φψ, the scalar

product φ·ψ and the double contraction φ : ψ for scalar, vector and tensor arguments,

respectively. The modulus |φ| =
√
φ� φ is defined accordingly.

In order to discretize (2.1) on the mesh Tj, we choose discrete subspaces Xj =

Vj ×Qj, where Qj ⊂ Q. Following [30], we employ discrete subspaces Vj of the space

Hdiv
0 (Ω), where

Hdiv(Ω) =
{
v ∈ L2(Ω;Rd)

∣∣∇·v ∈ L2(Ω)
}
,

Hdiv
0 (Ω) =

{
v ∈ Hdiv(Ω)

∣∣v ·n = 0 on ∂Ω
}
.

Here, we choose the well-known Raviart–Thomas space[81], but we point out that

any pair of velocity spaces Vj and pressure spaces Qj is admissible, if the key relation

∇·Vj = Qj (2.2)

holds. The details of constructing the Raviart–Thomas space follow.

Each cell T ∈ Tj can be obtained as the image of a linear mapping ΨT of the

reference cell T̂ = [0, 1]d. On the reference cell, we define two polynomial spaces: first,

Q̂k, the space of polynomials in d variables, such that the degree with respect to each

variable does not exceed k. Second, we consider the vector valued space of Raviart–

Thomas polynomials V̂k = Q̂d
k +xQ̂k. Polynomial spaces VT and QT on the mesh cell
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T are obtained by the pull-back under the mapping ΨT (see for instance [13]). The

polynomial degree k is arbitrary, but chosen uniformly on the whole mesh. Thus, we

will omit the index k from now on. Concluding this construction, we obtain the finite

element spaces

Vj =
{
v ∈ Hdiv

0 (Ω)
∣∣∀T ∈ Tj : v|T ∈ VT

}
,

Qj =
{
q ∈ L2

0(Ω)
∣∣∀T ∈ Tj : q|T ∈ QT

}
.

2.2 Discontinuous Galerkin discretization

While the fact that Vj is a subspace of Hdiv
0 (Ω) implies continuity of the nor-

mal component of its functions across interfaces between cells, this is not true for

tangential components. Thus, Vj 6⊂ H1(Ω;Rd), and it cannot be used immediately

to discretize (2.1). We follow the example in for instance [30, 64, 63] and apply a

DG formulation to the discretization of the elliptic operator. Here, we focus on the

interior penalty method[10, 75]. Let T1 and T2 be two mesh cells with a joint face F ,

and let u1 and u2 be the traces of a function u on F from T1 and T2, respectively.

On this face F , we introduce the averaging and the jump operator

{{u}} =
u1 + u2

2
, and [[u]] = u1 − u2 (2.3)

In this notation, the interior penalty bilinear form reads

aj(u, v) =
(
∇u,∇v

)
Tj

+ 4
〈
σJ{{u⊗ n}}, {{v ⊗ n}}

〉
Fij

− 2
〈
{{∇u}}, {{n⊗ v}}

〉
Fij
− 2
〈
{{∇v}}, {{n⊗ u}}

〉
Fij

+ 2
〈
σJu, v

〉
F∂j
−
〈
∂nu, v

〉
F∂j
−
〈
∂nv, u

〉
F∂j
.

(2.4)

15



The operator “⊗” denotes the Kronecker product of two vectors. We note that the

term 4{{u⊗ n}} : {{v ⊗ n}} actually denotes the product of the jumps of u and v.

The discrete weak formulation of (2.1) reads now: find (uj, pj) ∈ Vj × Qj, such

that for all test functions vj ∈ Vj and qj ∈ Qj there holds

Aj


uj
pj

 ,

vj
qj


 ≡ aj(uj, vj)−

(
pj,∇·vj

)
−
(
qj,∇·uj

)
= F(vj, qj) ≡

(
f, vj

)
.

(2.5)

Discussion on the existence and uniqueness of such solutions can be found for

instance in [30, 31, 48, 63]. Here, we summarize that the discrete system (2.5) is

symmetric. If σJ is sufficiently large, the form aj(., .) is positive definite independently

of the multigrid level j ∈ [0, L], and that thus we can define a norm on Vj by

∥∥vj∥∥Vj =
√
aj(vj, vj). (2.6)

In order to obtain optimal convergence results and to satisfy Proposition 3 below,

σJ is chosen as σ/hJ , where hJ is mesh size on the finest level J and σ is a positive

constant depending on the polynomial degree. By this choice, the bilinear forms on

lower levels are inherited from finer levels in the sense, that

aj(uj, vj) = aJ(uj, vj), ∀ uj, vj ∈ Vj. (2.7)

A particular feature of this method is (see [29, 30]), that the solution uj is in the

divergence free subspace

V 0
j =

{
vj ∈ Vj

∣∣∇·vj = 0
}
, (2.8)
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where the divergence condition is to be understood in the strong sense.

Proposition 1 (Inf-sup condition). For any pressure function q ∈ Qj, there exists

a velocity function v ∈ Vj, satisfying

sup
v∈Vj

(
q,∇·v

)∥∥v∥∥
Vj

≥ γj
∥∥q∥∥

L2(Ω)
> 0 (2.9)

where γj = c
√

hJ
hj

= c
√

2j−J and c is a constant independent of the multigrid level j.

Proof. The proof of this proposition can be found in [84, Section 6.4]. Indeed, a

different result is proven there, with γj ≈ 1/k, where k is the polynomial degree in

the hp-method. Thorough study of the proof though reveals, that this k-dependence

is due to the penalty parameter of the form σj ≈ k2/hj. In our case, the penalty

parameter depends on the fine mesh, not on hj, such that σj ≈ (hj/hJ)/hj, and that

the role of the k2 in the penalty is taken by the factor hj/hJ .

For any u ∈ Vj, we consider the following discrete Helmholtz decomposition:

u = u0 + u⊥ (2.10)

where u0 ∈ V 0
j is the divergence free part and u⊥ belongs to its aj(., .)-orthogonal

complement. For functions from this complement holds the estimate:

Lemma 1. Let u⊥ ∈ Vj be aj(., .)-orthogonal to V 0
j , that is,

aj(u
⊥, v) = 0 ∀ v ∈ V 0

j .
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Then, there is a constant α > 0 such that

α

d2

∥∥∇·u⊥∥∥2 ≤ aj(u
⊥, u⊥) ≤ 1

γ j

∥∥∇·u⊥∥∥2
, (2.11)

γj is the inf-sup constant from inequality (2.9).

Proof. On the left side, we already argued above that σJ is chosen large enough such

that aj(., .) is uniformly positive definite. Thus, we have with a positive constant α

α‖∇u⊥‖2
Tj ≤ aj(u

⊥, u⊥).

But then,

(
∇·u⊥,∇·u⊥

)
Ω
≤ d2

(
∇u⊥,∇u⊥

)
Tj
≤ d2

α
aj(u

⊥, u⊥),

On the right side, let q = ∇· u⊥. Then q ∈ Qj due to (2.2). From (2.9), we conclude

that there is u ∈ Vj such that ∇·u = q and
∥∥u∥∥

Vj
≤ 1/γj‖q‖. On the other hand,

u⊥ is the error of the orthogonal projection into V 0
j . Thus, u⊥ must be the element

with minimal norm, and in particular
∥∥u⊥∥∥

Vj
≤
∥∥u∥∥

Vj
.

2.3 The nearly incompressible problem

We are going to prove convergence uniform with respect to the refinement level j

of the proposed multigrid method for the Stokes problem by deviating twice. First, we

provide estimates robust with respect to the parameter ε of the nearly incompressible

problem: find (uj, pj) ∈ Vj ×Qj such that for all (vj, qj) ∈ Vj ×Qj there holds

Aj


uj
pj

 ,

vj
qj


+ ε

(
pj, qj

)
= F(vj, qj). (2.12)
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This problem is connected with the simpler penalty bilinear form (see for instance

also [48])

Aj,ε(uj, vj) ≡ aj(uj, vj) + ε−1
(
∇·uj,∇·vj

)
(2.13)

and the singularly perturbed, elliptic problem: find uj ∈ Vj such that for all vj ∈ Vj

there holds

Aj,ε(uj, vj) =
(
f, vj

)
. (2.14)

Lemma 2. Let (um, pm) be the solution to (2.12) and ue be the solution to (2.14).

Then, if (2.2) holds, the following equations hold true:

um = ue, and εpm = ∇·um = ∇·ue.

Proof. Testing (2.12) with vj = 0 and qj ∈ Qj yields

−
(
∇·um, qj

)
+ ε(pm, qj) = 0 ∀ qj ∈ Qj.

Due to (2.2), this translates to the point-wise equality εpm = ∇· um. Substituting

pm in (2.12) and testing with the pair (vj,∇·vj), which is possible again due to (2.2),

we obtain that um solves (2.14).

If on the other hand ue solves (2.14), we introduce pe = 1
ε
∇·ue, which translates

to

−
(
∇·ue, qj

)
+ ε(pe, qj) = 0 ∀ qj ∈ Qj,
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corresponding to (2.12) tested with (0, qj). On the other hand, (2.12) tested with

(vj, 0) is obtained directly from (2.14) substituting pe. Thus, the equivalence is

proven.

In order to help keeping the notation separate, we adopt the following convention:

the subscript ε is dropped wherever possible. Furthermore, curly letters refer to the

mixed form, while straight capitals refer to operators on the velocity space only.

Thus:

aj(u, v) the vector valued interior penalty form

Aj(u, v) the form of the singularly perturbed, elliptic problem (2.14)

Aj


u
p

 ,

v
q


 the mixed bilinear form (2.12)

Similarly, capital letters like in Rj for the smoother (2.26) refer to the singularly

perturbed, elliptic problem, while Rj is the corresponding symbol for the Stokes

smoother (2.24). Additionally, we associate operators with bilinear forms using the

same symbol:

Aj,ε : Vj → Vj
(
Aj,εu, v

)
= Aj,ε

(
u, v
)

= Aj(u, v) = AJ(u, v) ∀u, v ∈ Vj

Aj,ε : Xj → Xj

(
Aj,εx, y

)
= Aj,ε

(
x, y
)

= Aj(x, y) = AJ(x, y) ∀x, y ∈ Xj

2.4 Multigrid method for Stokes

In Subsection 2.2, we introduced hierarchies of meshes {Tj}. Due to the nested-

ness of mesh cells, the finite element spaces associated with these meshes are nested
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as well:

V0 ⊂ V1 ⊂ . . . ⊂ VJ ,

Q0 ⊂ Q1 ⊂ . . . ⊂ QJ .

X0 = V0 ×Q0 ⊂ X1 ⊂ . . . ⊂ VJ ×QJ = XJ .

This relation also extends to the divergence free subspaces, see for instance [65]:

V 0
0 ⊂ V 0

1 ⊂ . . . ⊂ V 0
J . (2.15)

The nestedness of the spaces implies that there is a sequence of natural injections

Ij : Xj → Xj+1 of the form Ij(vj, qj) = (Ij,uvj, Ij,pqj), such that

Ij,u : Vj ↪→ Vj+1, Ij,p : Qj ↪→ Qj+1, (2.16)

Ij,u : V 0
j ↪→ V 0

j+1. (2.17)

The L2-projection from Xj+1 → Xj is defined by Itj(vj, qj) = (I tj,uvj, I
t
j,pqj) with

(
vj+1 − I tj,uvj+1, wj

)
= 0 ∀wj ∈ Vj

(
qj+1 − I tj,pqj+1, rj

)
= 0 ∀rj ∈ Qj. (2.18)

The A-orthogonal projection Pj from (VJ ×QJ)→ (Vj ×Qj) is defined by

AJ
(
Pj

u
p

 ,

vj
qj

) = AJ
(u

p

 ,

vj
qj

) (2.19)

for all (u, p) ∈ (VJ ×QJ), (vj, qj) ∈ Vj ×Qj. Similarly, The A-orthogonal projection
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Pj from VJ → Vj is defined by

AJ(Pju, vj) = AJ(u, vj) (2.20)

for all u ∈ VJ , vj ∈ Vj.

2.5 The variable V-cycle algorithm

In this subsection we define V-cycle multigrid preconditioners Bj,ε and Bj,ε for

the operators Aj,ε and Aj,ε, respectively. For simplicity of the presentation, we drop

the index ε.

First, we define the action of the multigrid preconditioner Bj : Xj → Xj recur-

sively as the multigrid V-cycle with m(j) ≥ 1 pre- and post-smoothing steps. Let Rj

be a suitable smoother. Let B0 = A−1
0 . For j ≥ 1, define the action of Bj on a vector

Lj = (fj, gj) by

1. Pre-smoothing: begin with (u0, p0) = (0, 0) and let

ui
pi

 =

ui−1

pi−1

+Rj

Lj −Aj
ui−1

pi−1


 i = 1, . . . ,m(j), (2.21a)

2. Coarse grid correction:

um(j)+1

pm(j)+1

 =

um(j)

pm(j)

+ Bj−1Itj−1

Lj −Aj
um(j)

pm(j)


 , (2.21b)
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3. Post-smoothing:

ui
pi

 =

ui−1

pi−1

+Rj

Lj −Aj
ui−1

pi−1


 , i = m(j) + 2, . . . , 2m(j) + 1

(2.21c)

4. Assign:

BjLj =

u2m(j)+1

p2m(j)+1

 (2.21d)

We distinguish between the standard and variable V-cycle algorithms by the

choice

m(j) =


m(J) standard V-cycle,

m(J)2L−j variable V-cycle,

where the number m(J) of smoothing steps on the finest level is a free parameter.

We refer to BJ as the V-cycle preconditioner of AJ . The iteration

uk+1

pk+1

 =

uk
pk

+ BJ

LJ −AJ
uk
pk


 (2.22)

is the V-cycle iteration.

The definition of the preconditioner Bj : Vj → Vj for the elliptic operator Aj

follows the same concept, but dropping the pressure variables.
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2.6 Overlapping Schwarz smoothers

In this subsection, we define a class of smoothing operators Rj based on a sub-

space decomposition of the space Xj. LetNj be the set of vertices in the triangulation

Tj, and let Tj,υ be the set of cells in Tj sharing the vertex υ. They form a triangulation

with N(N > 0) subdomains or patches which we denote by {Ωj,υ}Nυ=1.

The subspace Xj,υ = Vj,υ × Qj,υ consists of the functions in Xj with support in

Ωj,υ. Note that this implies homogeneous slip boundary conditions on ∂Ωj,υ for the

velocity subspace Vj,υ and zero mean value on Ωj,υ for the pressure subspace Qj,υ.

The Ritz projection Pj,υ : Xj → Xj,υ is defined by the equation

Aj
(
Pj,υ

uj
pj

 ,

vj,υ
qj,υ

) = Aj
(uj

pj

 ,

vj,υ
qj,υ

) ∀

vj,υ
qj,υ

 ∈ Xj,υ. (2.23)

Note that each cell belongs to not more than four (eight in 3D) patches Tj,υ, one for

each of its vertices.

Then we define the additive Schwarz smoother

Ra,j = η
∑
υ∈Nj

Pj,υA−1
j (2.24)

where η ∈ (0, 1] is a scaling factor, Ra,j is L2 symmetric and positive definite.

Similarly, we define smoothers of the singularly perturbed elliptic operator Aj,

namely, Pj,υ : Vj → Vj,υ is defined as

Aj
(
Pj,υuj, vj,υ

)
= Aj

(
uj, vj,υ

)
∀vj,υ ∈ Vj,υ, (2.25)

and the corresponding additive Schwarz smoother for the singularly perturbed prob-
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lem is defined as follows:

Ra,j = η
∑
υ∈Nj

Pj,υA
−1
j . (2.26)

Here, we also define the symmetric multiplicative Schwarz smoother Rm,j associated

with the spaces Xj,υ, defined by

Rm,j = (I − EjE∗j )A−1
j , (2.27)

Ej = (I − Pj,1) . . . (I − Pj,N) . (2.28)

then by multiplying Aj on both side of (2.27), we get

I −Rm,jAj = EjE∗j (2.29)

(Note that E∗j is the adjoint of Ej with respect to the inner product Aj(·, ·)).

And corresponding multiplicative the smoother of the singularly perturbed elliptic

operator Aj, namely, Pj,υ : Vj → Vj,υ is defined as

Rm,j = (I − Ej)A−1
j , (2.30)

Ej = (I − Pj,1) . . . (I − Pj,N) . (2.31)

Similarly,

I −Rm,jAj = EjE
∗
j (2.32)

(Note that E∗j is the adjoint of Ej with respect to the inner product Aj(·, ·)).
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2.7 Convergence analysis

In this section, we provide a proof of the convergence for the variable V-cycle

iteration with additive and multiplicative Schwarz preconditioning methods. Our

proof is based on the assumption that the domain Ω is bounded and convex, which

will be omitted for simplicity in the statement of following theorems and propositions.

The structure of the proof follows [83] in that we first consider a singularly per-

turbed elliptic problem (2.14) related to (2.12) in Subsection 2.7.1 and obtain uniform

estimates with respect to ε in Theorem 2. Then, in Subsection 2.7.2, equivalence of

the methods for the elliptic problem and the mixed problem is established. Finally,

the estimate uniform in ε for (2.12) allows us to proceed to the limit ε→ 0 to obtain

the main convergence result, namely.

Theorem 1. The multilevel iteration I−BJAJ with the Variable V-cycle operator BJ

defined in Section 2.5 employing the smoother Rj is a contraction with contraction

number independent of the mesh level J .

Proof. Under the hypotheses of Theorem 2 , the error operator I−BJAJ is a positive

definite contractions on VJ independent of mesh level J . Following Theorem 3, we

get the two multigrid algorithms for singularly-perturbed and mixed problems are

equivalent in terms of velocity u(u ∈ VJ). Then, the estimate uniform in ε for (2.12)

gives us that I − BJAJ is also a contraction with contraction number independent

of the mesh level J when ε→ 0.

2.7.1 The singularly perturbed problem

Theorem 2. Let Rj be the smoother defined in Section 2.6. Then, the multilevel

iteration I − BJAJ with the variable V-cycle operator BJ defined in Section 2.5

is a contraction with contraction number independent of the mesh level J and the

26



parameter ε.

The proof of this theorem relies on

Proposition 2. If a smoother Rj satisfies the conditions:

AJ
(
(I −RjAj)w,w

)
≥ 0, ∀w ∈ Vj (2.33)

and

(R−1
j [I − Pj−1]w, [I − Pj−1]w) ≤ βjAJ([I − Pj−1]w, [I − Pj−1]w), ∀w ∈ Vj (2.34)

where βj = O( 1
γj

) defined in the proof of Theorem 2. . Then

0 ≤ AJ
(
(I −BjAj)w,w

)
≤ δAJ(w,w), ∀w ∈ Vj (2.35)

where δ = Ĉ

1+Ĉ
(Ĉ defined in Lemma 5)

Proof. In the case of self-adjoint operators Aj which are inherited from a common

bilinear form a(., .), this proposition is part of the standard multigrid theory and its

proof can be adapted from similar theorems in [18, 19, 11].

Following the proof in [11], we want to show it by induction on i that

0 ≤ AJ((I −BiAi)u, u) ≤ δAJ(u, u), ∀u ∈ Vj (2.36)

For i = 1 is obvious since B1 = A−1
1 . Now check if the above inequality hold for

i = j − 1. Recall the relaxation operator Kj = I −RjAj and the recurrence relation
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introduced in [19]:

I −BjAj = K
m(j)
j [(I − Pj−1) + (I −Bj−1Aj−1)Pj−1]K

m(j)
j (2.37)

The lower bound easily follows from the inductive hypothesis and the above identity.

For the upper bound, we use the induction hypothesis to obtain

AJ((I −BjAj)u, u) ≤ AJ([I − P
j−1]Km(j)

j
u,Km(j)

j
u) + δAJ(Pj−1K

m(j)
j

u,Km(j)
j

u)

(2.38)

= (1− δ)AJ([I − P
j−1]Km(j)

j
u,Km(j)

j
u) + δAJ(Km(j)

j
u,Km(j)

j
u)

(2.39)

Now by the orthogonality from 2.20

AJ([I − P
j−1]Km(j)

j
u, [I − P

j−1]Km(j)
j

u) (2.40)

= AJ([I − P
j−1]Km(j)

j
u,Km(j)

j
u) (2.41)

= ([I − P
j−1]Km(j)

j
u,A

j
Km(j)

j
u) (2.42)

= (R−1
j

[I − P
j−1]Km(j)

j
u,R

j
A
j
Km(j)

j
u) (2.43)

≤ (R−1
j

[I − P
j−1]Km(j)

j
u, [I − P

j−1]Km(j)
j

u)
1
2 (R

j
A
j
Km(j)

j
u,A

j
Km(j)

j
u)

1
2 (2.44)

≤
√
βj([I − Pj−1]Km(j)

j
u, [I − P

j−1]Km(j)
j

u)
1
2 (R

j
A
j
Km(j)

j
u,A

j
Km(j)

j
u)

1
2 (2.45)
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Hence, we get

AJ([I − P
j−1]Km(j)

j
u,Km(j)

j
u) ≤ βj(Rj

A
j
Km(j)

j
u,A

j
Km(j)

j
u) (2.46)

= βjAJ([I −K
j−1]K2m(j)

j
u, u) (2.47)

It follows from the positive semidefiniteness and (2.33). Therefore, we have

AJ([I −K
j−1]K2m(j)

j
u, u) ≤ AJ([I −K

j−1]Ki
j
u, u), for i ≤ 2m(j) (2.48)

whence

AJ([I −K
j−1]K2m(j)

j
u, u) ≤ 1

2m(j)

2m(j)−1∑
i=0

AJ([I −K
j
]Ki

j
u, u) (2.49)

=
1

2m(j)
AJ([I −K

j
]K2m(j)

j
u, u) (2.50)

Combining 2.38 and 2.48 and following Lemma 5, we get

AJ((I −BjAj)u, u) ≤ (1− δ) βj
2m(j)

AJ([I −K2m(j)]u, u) + δAJ(Km(j)
j

u,Km(j)
j

u)

(2.51)

≤ (1− δ)ĈAJ([I −K2m(j)]u, u) + δAJ(Km(j)
j

u,Km(j)
j

u) (2.52)

= (1− δ)ĈAJ(u, u) + [δ − (1− δ)Ĉ]AJ(Km(j)
j

u,Km(j)
j

u) (2.53)

The results now follows by choosing :

δ = (1− δ)Ĉ, i.e, δ =
Ĉ

1 + Ĉ
(2.54)
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2.7.1.1 Proof for additive Schwarz smoother

In this subsection, we use several propositions and lemmas to establish our

smoother Ra,j satisfies the assumptions of Proposition 2. For u ∈ (I−Pj−1)w,w ∈ Vj,

it follows from the discrete Helmholtz decomposition in 2.2 and the projection oper-

ator Pj,υ in 2.6 that u admits a local discrete Helmholtz decomposition

uυ = u0
υ + u⊥υ (2.55)

Lemma 3. Given L2-symmetric positive definite Ra,j defined in 2.6 and symmetric

positive definite AJ(·, ·) defined in (2.13) , there exists a scaling constant η ( defined

in (2.24)) independent of j such that

η(R−1
a,ju, u) = inf

uυ∈Vj,υ
Συuυ=u

∑
υ∈Nj

AJ(uυ, uυ) (2.56)

Proof. The following proof can be found in [11]. We copy it here to ascertain that it

does not depend on the actual structure of the operator AJ since it is purely algebraic.

Thus, it applies to the operator AJ in this paper as it applies to the different operator

applied there. Recall that

Ra,j = η
∑
υ∈Nj

Pj,υA
−1
j = η

∑
υ∈Nj

Pj,υA
−1
J (2.57)

and

u =
∑
υ∈Nj

uυ (2.58)
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we get

η(R−1
a,ju, u) = η

∑
υ∈Nj

(R−1
a,ju, uυ) (2.59)

= η
∑
υ∈Nj

(AJA
−1
J R−1

a,ju, uυ) (2.60)

= η
∑
υ∈Nj

(AJPj,υA
−1
J R−1

a,ju, uυ) (2.61)

≤ η
∑
υ∈Nj

(AJPj,υA
−1
J R−1

a,ju, Pj,υA
−1
J R−1

a,ju)
1
2 (AJuυ, uυ)

1
2 (2.62)

≤ η
∑
υ∈Nj

(AJPj,υA
−1
J R−1

a,ju, Pj,υA
−1
J R−1

a,ju)
1
2 (AJuυ, uυ)

1
2 (2.63)

≤ η

∑
υ∈Nj

(AJPj,υA
−1
J R−1

a,ju,A
−1
J R−1

a,ju)


1
2
∑
υ∈Nj

(AJuυ, uυ)


1
2

(2.64)

= η
1
2

∑
υ∈Nj

(AJηPj,υA
−1
J R−1

a,ju,A
−1
J R−1

j u)


1
2
∑
υ∈Nj

(AJuυ, uυ)


1
2

(2.65)

= η
1
2

{
(AJu,A

−1
J R−1

a,ju)
} 1

2

∑
υ∈Nj

(AJuυ, uυ)


1
2

(2.66)

= η
1
2

{
(u,R−1

a,ju)
} 1

2

∑
υ∈Nj

(AJuυ, uυ)


1
2

(2.67)

The above inequality works for arbitrary splitting, hence we have

η(R−1
a,ju, u) ≤

∑
υ∈Nj

AJ(uυ, uυ) (2.68)
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For the choice uυ = Pj,υPjA
−1
J R−1

a,ju we get

η(R−1
a,ju, u) = inf

uυ∈Vj,υ
Συuυ=u

∑
υ∈Nj

AJ(uυ, uυ) (2.69)

Lemma 4. Given the local Helmholtz decomposition in (2.55). For any u⊥υ ∈ Vj,υ ,

there exists constant C1 independent of multigrid level satisfying:

∑
υ∈Nj

∥∥∇·u⊥υ ∥∥2 ≤ C1

∑
υ∈Nj

aj(u
⊥
υ , u

⊥
υ ) (2.70)

Proof. It follows from Lemma 1 that the estimate
∥∥∇·u⊥∥∥2 ≤ Caj(u

⊥, u⊥) hold for

all u⊥ ∈ Vj. It is easy to see that Vj,υ is a subspace of Vj for any υ, so the estimate are

also valid on any patch. In 2-D case, one cell could at most be sharing by four patches

(eight patches in 3D). Hence there exists a constant C1 independent of multigrid level

such that the estimates holds for the summation of local estimates.

Proposition 3. Assume σj is chosen sufficiently large, the following estimate holds

on each level j. Given the overlapping subspace decomposition of Vj in 2.6 and the

interior penalty bilinear form aj(u, v) in (2.4). For any u ∈ Vj, there is a constant

C2 which is independent of multigrid level such that

∑
υ∈Nj

aj(uυ, uυ) ≤ C2aj(u, u) (2.71)

Proof. For a fixed J , the penalty constant σj is of order 1
hJ

which is chosen large

enough on each level j to satisfy the requirement in the proof this lemma. The details

can be found in [42, p. 1361].
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Proof of Theorem 2. Recall the definition of AJ -orthogonal projection Pj and Pj,ν

which restrict the projection on Ωj,ν (zero elsewhere). Following [11], we show that

if 0 < η ≤ 1/4 , the smoother Ra,j satisfies the first condition in Theorem 2.

For w ∈ Vj

AJ([I −RjAj]w,w) = AJ(w,w)− η
∑
υ∈Nj

AJ(Pj,υw,w) (2.72)

but

AJ(Pj,υw,w) = AJ(Pj,υw,Pj,υw) ≤ AJ(w,w)
1
2AJ(Pj,υw,Pj,υw)

1
2 (2.73)

so

∑
υ∈Nj

AJ(Pj,υw,w) ≤
∑
υ∈Nj

AJ(w,w) ≤ 4AJ(w,w) (2.74)

Hence the first hypothesis holds.

Thus, it remains to check the second condition which could be reduced to the

following problem: for u = (I − Pj−1)w (where w ∈ Vj) with the decomposition

u =
∑

υ uυ, there is a constant Ca such that

∑
υ∈Nj

AJ(uυ, uυ) ≤ CaAJ(u, u) (2.75)
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Following Lemmas 1, 3, 4 and Proposition 3, we get:

∑
υ∈Nj

AJ(uυ, uυ) =
∑
υ∈Nj

{
aj(uυ, uυ) + ε−1(∇ · uυ,∇ · vυ)

}
(2.76)

=
∑
υ∈Nj

{
aj(uυ, uυ) + ε−1(∇ · u⊥υ ,∇ · u⊥υ )

}
(2.77)

≤ C2aj(u, u) +
∑
υ∈Nj

C1
1

α
ε−1aj(u

⊥
υ , u

⊥
υ ) (2.78)

≤ C2aj(u, u) + ε−1C1
1

α
aj(u

⊥, u⊥) (2.79)

≤ C2aj(u, u) + ε−1C1
1

α

1

γ j
(∇·u⊥,∇·u⊥) (2.80)

= C2aj(u, u) + ε−1C1
1

α

1

γ j
(∇·u,∇·u) (2.81)

≤ max

{
C2, C1

1

α

1

γ j

}
AJ(u, u) (2.82)

= CaAJ(u, u) (2.83)

where Ca = max
{
C2, C1

1
α

1
γ j

}
.

Now set

β =
1

η
Ca (2.84)

We have verified the two conditions in Proposition 2.

Lemma 5. Given βj above and m(j) defined in 2.5, there is a constant Ĉ such that

βj
2m(j)

≤ Ĉ (2.85)
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Proof. We will discuss this inequality in two cases: first, if βj = 1
η
C2, then

βj
2m(j)

=

1
η
C2

2m02J−j
≤

1
η
C2

2m0

=: Ĉ (2.86)

On the other hand, if β = 1
η
C1

1
α

1
γ j

βj
2m(j)

=
C1

1
α

1
c

√
2J−j

2m02J−j
=

C1
1
α

1
c

2m0

√
2L−j

≤
C1

1
α

1
c

2m0

=: Ĉ (2.87)

2.7.1.2 Proof for multiplicative Schwarz smoother

In this subsection, we will check the two conditions in Proposition 2 for mul-

tiplicative smoother Rm,j based some proposition and results in additive Schwarz

smoother proof.

Proposition 4. Given the additive smoother Ra,j(defined in (2.26)) and muliiplica-

tive smoother Rm,j(defined in (2.30)), there is a constant ζ such that:

(Ra,jv, v) ≤ ζ(Rm,jv, v) for all v ∈ Vj (2.88)

where ζ is a constant only depends on the overlap between the patches.

Proof. The proof of this proposition can be found in [11, p. 972].

Now we show that the smoother Rm,j satisfies the first condition in Theorem 2.

Recall the definition of AJ -orthogonal projection Pj, Pj,ν which restrict the projection

on Ωj,ν (zero elsewhere) and the equation (2.32) given in Section 2.6. For w ∈ Vj

AJ([I −Rm,jAj]w,w) = AJ(E∗jEjw,w) = AJ(Ejw,Ejw) ≥ 0 ∀w ∈ Vj (2.89)
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So the first hypothesis holds.

Thus, it remains to check the second condition: for u = (I − Pj−1)w (where

w ∈ Vj) with the decomposition u =
∑

υ uυ, there is a constant Cm independent of

multigrid level j such that

(R−1
m,ju, u) ≤ CmAJ(u, u) (2.90)

Here we give a proof based on Proposition 4 and the additive smoother conver-

gence result (2.75):

(R−1
m,ju, u) =

∑
υ∈Nj

AJ(Pj,υA
−1
j R−1

m,ju, uυ) (2.91)

≤

∑
υ∈Nj

AJ(Pj,υA
−1
j R−1

m,ju,A
−1
j R−1

m,ju)


1
2
∑
υ∈Nj

AJ(uυ, uυ)


1
2

(2.92)

= η−
1
2 (Ra,jR

−1
m,ju,R

−1
m,ju)

∑
υ∈Nj

AJ(uυ, uυ)


1
2

(2.93)

≤ ζ−
1
2 (R−1

m,ju, u)
1
2AJ(u, u)

1
2 . (2.94)

Then, we take the square on both side of the above inequality and get

(R−1
m,ju, u) ≤ ζ

η
AJ(u, u) = CmAJ(u, u). (2.95)

where Cm = ζ
η
.

We have verified the two conditions in Proposition 2, thus Theorem 2 holds for

multiplicative smoother Rm,j.
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2.7.2 The mixed problem

Secondly, we will discuss the Stokes’ equation in mixed variables (2.5). Set Xj,ε :=

{(uj, pj) ∈ Xj : ∇·uj = εpj}. Now, it remains to show the equivalence between the

multigrid algorithms.

Proposition 5. The multigrid components fulfill the following properties:

1. The smoother Rj for the mixed problem defined in subection 2.6 preserves Xj,ε.

On the subspace it is equivalent to the smoother Rj in primal variables. This

means for (uj, pj) ∈ Xj,ε and

ûj
p̂j

 = Rj

uj
pj

 (2.96)

there holds (ûj, p̂j) ∈ Xj,ε and

ûj = Rjuj (2.97)

2. The prolongation Ij−1 maps Xj−1,ε into Xj,ε. On the subspace it is equivalent

to the prolongation Ij in primal variables. This means for (uj−1, pj−1) ∈ Xj−1,ε

and ûj
p̂j

 = Ij

uj−1

pj−1

 (2.98)

there holds (ûj, p̂j) ∈ Xj,ε and

ûj = Ij(uj−1) (2.99)
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3. The coarse grid solution operator maps Xj−1,ε into Xj,ε. On the subspace it is

equivalent to the coarse grid solution operator in primal variables. This means

for (uj, pj) ∈ Xj,ε and

ûj−1

p̂j−1

 = A−1
j−1[Ij−1]tAj

uj
pj

 (2.100)

there holds (ûj−1, p̂j−1) ∈ Xj−1,ε and

ûj−1 = A−1
j−1[Ij−1]tAjuj (2.101)

Proof. The proof of this proposition can be found for the operators there in [83, p.

93]. We do not provide it here since the arguments are purely linear algebra, and

thus apply independent of the actual bilinear form.

Theorem 3. The multigrid algorithm in mixed variables preserves the space Xj,ε.

On this subspace it is equivalent to the multigrid algorithm in primal variables. This

means for (uj, pj) ∈ Xj,ε and (ûj, p̂j) = Bj(uj, pj) there holds (ûj, p̂j) ∈ Xj,ε and

ûj = Bjuj (2.102)

where Bj and Bj are the corresponding multigrid operators for each algorithm.

Proof. The multigrid operator Bj fulfills the recursion

B0 = A−1
0 , (2.103)

Bj = (Rj)
mj(I − Ij(I − (Bj−1))A−1

j−1[Ij−1]tAj)(Rj)
mj . (2.104)

and the mixed operator Bj fulfills a corresponding one. Then we apply the above
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proposition, and the theorem is proved by induction.

(Note that Rj here refers to additive (defined in (2.24)) or multiplicative (defined

in (2.27)) Schwarz smoother in the mixed formulation, and Rj refers to additive

(defined in (2.26)) or multiplicative (defined in (2.30)) Schwarz smoother in the

singularly perturbed form correspondingly.)

Finally, we can apply continuity arguments and pass to the limit ε = 0, then we

claim that for the incompressible case our algorithm also works well.

2.8 Numerical experiments for Stokes problem

We test the additive and multiplicative Schwarz methods which we have analyzed

in the preceding subsection in order to ascertain that the contraction numbers are

not only bounded away from one, but are actually small enough to make this method

interesting. Furthermore, we conduct experiments, which go beyond our analysis, in

particular regarding the choice of the penalty parameter and the number of smooth-

ing steps on lower levels. The experimental setup for most of the tables is as follows:

the domain is Ω = [−1, 1]2, the coarsest mesh T0 consists of a single cell T = Ω. The

mesh Tj on level j is obtained by dividing all cells in Tj−1 into four quadrilaterals by

connecting the edge midpoints. Thus, a mesh on level j has 4j cells, and the length

of their edges is 21−j. The right hand side is f = (1, 1).

2.8.1 Additive Schwarz Smoother

In the subsection, the smoother choice in our multiword method is set to additive

Schwarz smoother. For the relaxation parameter in the additive Schwarz method, we

found that 0.5 is the value which provides the best results for all experimental setups,

hence we keep it there in all the following experimental setups in this subsection.

In Table 2.1, we first test the additive Schwarz smoother using variable V-cycle
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algorithm on a square domain with no-slip boundary condition. For the penalty

constant in the DG form (2.4), we choose the penalty parameter as σ̄/hJ , where

σ̄ = (k+1)(k+2), on the finest level J and all lower levels j. Results for different pairs

of RTk/Qk are reported in the table which show the fast and uniform convergence.

level RT1 RT2

3 4 4

4 4 4

5 4 4

6 4 4

7 4 4

8 4 5

Table 2.1: Number of iterations n6 to reduce the residual by 10−6 with the variable
V-cycle algorithm with penalty parameter dependent of the finest level mesh size
(Additive Schwarz Smoother for Stokes).

In Table 2.2, we keep the same experimental setup and present iteration counts

for the standard V-cycle algorithm with one and two pre- and post-smoothing steps,

respectively. Although our analysis does not apply, we still observe uniform conver-

gence results. We also see that the variable V-cycle with a single smoothing step on

the finest level is as fast as the standard V-cycle with two smoothing steps, and thus

the variable V-cycle is more efficient.
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m(j) = 1 m(j) = 2

level RT1 RT2 RT1 RT2

3 7 7 4 4

4 7 7 4 4

5 7 7 4 4

6 7 7 4 4

7 8 8 4 4

8 8 8 4 4

Table 2.2: Number of iterations n6 to reduce the residual by 10−6 with the standard
V-cycle iteration with one and two pre- and post-smoothing steps. Penalty parameter
dependent of the finest level mesh size (Additive Schwarz Smoother for Stokes).

In Table 2.3, we test the variable and standard V-cycles with penalty parameters

depending on the mesh level j, namely σ̄/hj (where σ̄ is a positive constant depending

on the polynomial degree) in the DG form (2.4). While our convergence analysis

does not cover this case either, we observe convergence rates equal to the case with

inherited forms.

41



variable standard

level RT1 RT2 RT1 RT2

3 4 4 7 7

4 4 4 7 7

5 4 4 7 7

6 4 4 7 7

7 4 4 7 8

8 4 5 8 8

Table 2.3: Penalty parameter dependent on the mesh size of each level. Number
of iterations n6 to reduce the residual by 10−6 with variable and standard V-cycle
iterations with m(J) = 1 (Additive Schwarz Smoother for Stokes).

In Table 2.4, we provide results with GMRES solver and BJ as preconditioner

for different experimental setups as in Tables 2.1, 2.2 and 2.3 respectively. The

second and third columns are results for variable V-cycle with penalty parameter

dependent of the finest level mesh size. The fourth and fifth columns are the results

for standard V-cycle with penalty parameter dependent of the finest level mesh size.

The last two columns are the results for standard V-cycle with penalty parameter

depend on the mesh size of each level. From this table, we see that the GMRES

method, as expected, is faster in every case.
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variable standard noninherited

level RT1 RT2 RT1 RT2 RT1 RT2

3 2 2 2 2 2 2

4 3 3 3 3 3 3

5 3 3 4 3 4 4

6 3 3 5 4 5 5

7 3 3 5 5 5 5

8 5 4 6 6 8 6

Table 2.4: Number of iterations n6 to reduce the residual by 10−6 with GMRES solver
and preconditioner BJ ; variable and standard V-cycle with inherited forms, variable
V-cycle with noninherited forms. One pre- and post-smoothing step on the finest
level (Additive Schwarz Smoother for Stokes).

Finally, we finish our experiments for additive Schwarz smoother by applying our

method on a non-simply connected domain. We choose a square with a square hole,

namely the domain Ω = [−1, 1] \ [−1
3
, 1

3
](see Figure 2.1). The coarse grid on level

j = 0 consists of the squares of the form [−1 + 2i
3
,−1 + 2i+2

3
]× [−1 + 2j

3
,−1 + 2j+2

3
]

with 0 ≤ i, j ≤ 2, and with the index pair (i, j) = (1, 1) missing. We note that

the Hodge decomposition in this case is more complicated due to the presence of

harmonic forms. Nevertheless, the results in Table 2.5 for elements RT1 and RT2

show the same convergence rates as the simply connected case.
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Figure 2.1: Domain with a square hole (Ω = [−1, 1] \ [−1
3
, 1

3
])

Mesh size h MG level RT1 RT2

2/3 2 4 4

1/3 3 5 5

1/6 4 6 6

1/12 5 6 6

1/24 6 6 6

1/48 7 7 7

Table 2.5: Different finite element orders on the square domain [−1, 1]2 with a square
hole [−1/3, 1/3]2 (Additive Schwarz Smoother for Stokes).

2.8.2 Multiplicative Schwarz Smoother

In this subsection, all the numerical experiments are based on the multiplicative

Schwarz method. We set the relaxation parameter in multiplicative Schwarz smoother
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to 1.0 as standard setup and keep it there in all the following experimental setups.

In Table 2.6, we first study convergence of the linear multigrid method (pre-

conditioned Richardson iteration) with the multiplicative Schwarz smoother using a

variable V-cycle algorithm on a square domain with no-slip boundary condition. The

penalty constant in the DG form (2.4) is chosen as σ̄/hJ , where σ̄ = (k+ 1)(k+ 2),

on the finest level J and all lower levels j. Results for pairs of RTk/Qk with orders

k between one and three are reported in the table which show the fast and uniform

convergence.

level RT1 RT2 RT3

3 5 5 5

4 6 6 7

5 6 6 6

6 5 5 6

7 5 5 6

8 5 5 6

Table 2.6: Number of iterations n8 to reduce the residual by 10−8 with the variable
V-cycle algorithm with penalty parameter dependent of the finest level mesh size
(Multiplicative Schwarz Smoother for Stokes).

In Table 2.7, we keep the same experimental setup and present iteration counts

for the standard V-cycle algorithm with one and two pre- and post-smoothing steps,

respectively. Although convergence analysis has not been verified, we still observe uni-

form convergence results. We also see that the variable V-cycle with a single smooth-

ing step on the finest level is as fast as the standard V-cycle with two smoothing
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steps, and thus the variable V-cycle is more efficient.

m(j) = 1 m(j) = 2

level RT1 RT2 RT3 RT1 RT2 RT3

3 5 5 5 3 3 3

4 6 6 7 5 5 5

5 6 6 7 5 5 6

6 6 6 7 5 5 6

7 7 7 7 5 5 6

8 7 7 7 6 6 6

Table 2.7: Number of iterations n8 to reduce the residual by 10−8 with the standard
V-cycle iterationwith one and two pre- and post-smoothing steps. The penalty pa-
rameter dependent of the finest level mesh size (Multiplicative Schwarz Smoother for
Stokes).

In Table 2.8, we test the variable and standard V-cycles with penalty parameters

depending on the mesh level j, namely σ̄/hj (where σ̄ is a positive constant depending

on the polynomial degree) in the DG form (2.4). While convergence analysis has

not been finished either, we still observe convergence rates equal to the case with

inherited forms.
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variable standard

level RT1 RT2 RT3 RT1 RT2 RT3

3 6 6 6 6 6 6

4 6 6 6 6 6 7

5 6 6 6 6 6 7

6 5 5 6 6 6 7

7 5 5 6 6 6 7

8 5 5 6 6 6 7

Table 2.8: Penalty parameter dependent on the mesh size of each level. Number
of iterations n8 to reduce the residual by 10−8 with variable and standard V-cycle
iterations with m(J) = 1 (Multiplicative Schwarz Smoother for Stokes).

In Table 2.9, we provide results with GMRES solver and BJ as preconditioner for

different experimental setups as in Table 2.6, 2.7 and 2.8 respectively. The second to

fourth columns are results for variable V-cycle with penalty parameter dependent of

the finest level mesh size. The fifth and seventh columns are the results for standard

V-cycle with penalty parameter dependent of the finest level mesh size. The last

three columns are the results for standard V-cycle with penalty parameter depend

on the mesh size of each level. From this table, we see that the GMRES method, as

expected, is faster in every case.
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variable standard noninherited

level RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3

3 2 2 2 2 2 2 3 3 3

4 3 3 4 4 4 4 5 5 5

5 5 5 5 5 5 5 5 5 5

6 4 4 5 5 5 5 5 5 5

7 4 4 5 5 5 5 5 5 5

8 5 4 5 5 5 5 5 5 5

Table 2.9: Number of iterations n8 to reduce the residual by 10−8 with GMRES solver
and preconditioner BJ ; variable and standard V-cycle with inherited forms, variable
V-cycle with noninherited forms. One pre- and post-smoothing step on the finest
level (Multiplicative Schwarz Smoother for Stokes).

In Table 2.10, we provide results in three dimensions for variable V-cycle methods

with the same penalty parameter as we choose in Table 2.1. We keep the similar

experimental setups: domain Ω = [−1, 1]3 and right hand side f = (1, 1, 1). We

observe the similar fast and uniform convergence performance as in 2D cases.
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Richardson GMRES

level RT1 RT2 RT1 RT2

2 1 1 1 1

3 5 5 4 4

4 6 5 4 4

5 6 5 4 4

Table 2.10: Three-dimensional domain. Number of iterations n8 to reduce the residual
by 10−8 with the variable V-cycle algorithm with penalty parameter dependent of
the finest level mesh size (Multiplicative Schwarz Smoother for Stokes).

Finally we run some tests on a non-simply connected domain again. We choose the

same a square with a square hole(see Figure 2.1) as in Subsection 2.8.1 .We note that

the Hodge decomposition in this case is more complicated because of the presence

of harmonic forms. Nevertheless, the results in Table 2.11 for elements RT1 and RT2

show the same convergence rates as the simply connected case in Table 2.6, 2.7 and

2.8.

49



variable standard

Solver Richardson GMRES Richardson GMRES

MG level RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3

2 6 6 7 4 4 4 6 6 7 4 4 4

3 6 6 6 4 4 5 7 7 7 5 5 5

4 6 6 6 4 4 5 7 7 7 5 5 5

5 5 5 6 4 4 5 7 7 7 5 5 5

6 5 5 6 4 4 5 7 7 7 5 5 5

7 5 5 6 4 4 5 7 7 7 5 5 5

Table 2.11: Number of iterations n6 to reduce the residual by 10−8, different finite
element orders and solvers on the domain with hole [−1, 1]2 \ [−1/3, 1/3]2 (Multi-
plicative Schwarz Smoother for Stokes).

2.9 Conclusion

In this section, we have investigated smoothers based on the ones introduced by

Arnold, Falk, and Winther for problems in Hdiv in a variable V-cycle preconditioner

for the Stokes system. We presented the convergence analysis and showed uniform

contraction independent on the mesh level. In numerical experiments we showed that

the contraction is not only uniform, but also very fast, thus making our method a

feasible solver or preconditioner.

In theory, the performance of the smoother relies on an exact sequence property

of finite element spaces.Our experiments with the Taylor–Hood elements, where the

method fails, demonstrate that this is not an artifact of the analysis, but that the

technique does not work due to the lack of an exact Hodge decomposition and nested

divergence free subspaces.
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3. THE COUPLING OF STOKES AND DARCY FLOW

3.1 Introduction

As the continuation of Section 2, we will raise the bar and start tackling the

relatively complicated problem - the coupling of Stokes and Darcy flow - with our

multigrid preconditioning method. The coupling of Stokes and Darcy model has been

brought up in many real world applications, for instance, filtration problem and

groundwater contamination, etc. This model, also known as multi-domain problem

with multi-physics, frequently lead to a very singular and stiff system due to the

varying governing equations in different regions. Specifically, it is composed of free

flow region (Stokes) and porous media flow region (Darcy) with certain interface

condition.The difficulty of this type problem has been described in Section 1.1. There

are several works available for the coupled Stokes and Darcy equations in current

literature(cf., [7, 26, 63, 97]. Here, we mainly follow the strongly conservative finite

element approach proposed by Kanschat and Riviere in [63]. For the velocity, we

will use divergence conforming finite elements in the whole domain. In addition,

we apply the discontinuous Galerkin method with interior penalty method [10] in

Stokes region and a mixed method in Darcy region. At the interfaces between Stokes

region and Darcy region, the Beavers-Joseph-Saffman conditions [16] are applied.

Then the multigrid preconditioner is built for the coupled discrete system based on

a overlapping domain decomposition Schwarz smoother. In this section, our main

emphasis will be posed on the efficiency of multigrid solver for the coupled system

from the computational viewpoint.

The plan of the section is given as follows. In Subsection 3.2, we introduce the

model problem and provide the Hdiv-conforming discontinuous Galerkin finite ele-
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ment discretization. The multigrid framework for the coupled system is described in

Subsection 3.3. Subsection 3.4 shows two series of numerical experiments. Finally,

we conclude this section in Subsection 3.5.

3.2 Model problem and discretization

Let Ω = ΩS

⋃
ΩD be the union of two bounded connected polygonal subdo-

mains such that ΩS

⋂
ΩD = ∅. Here, ΩS and ΩD represents Stokes regime and Darcy

regime,respectively. The interface between them are denoted by ΓSD. The external

boundaries are given as follows:

ΓS = ∂Ω ∩ ∂ΩS, ΓD = ∂Ω ∩ ∂ΩD (3.1)

In ΩD, we consider Darcy’s equations as the mixed formulation of an elliptic

problem :

κ−1uD + ∇pD = 0 in ΩD,

∇·uD = fD in ΩD,

uD · n = 0 on ΓD,

(3.2)

where uD and pD represents the fluid velocity and pressure, 0 < κ ∈ L∞(Ω) is the

permeability coefficient and fD ∈ L2(Ω) models sinks and sources in the porous

medium.

In ΩS, we consider the following Stokes system:

−∇·(2µε(uS)) +∇pS = fS, in ΩS

∇·uS = 0, in ΩS

uS = 0, on ΓS

(3.3)

52



where ε(uS) = 1
2
(∇uS + (∇uS)T ) is the deformation tensor, uS and pS represents the

fluid velocity and pressure, µ > 0 is the viscosity coefficient and fD ∈ L2(Ω) is a

body force.

At the interface ΓSD, we apply the Beavers-Joseph-Saffman transmissibility con-

dition(cf. [16]):


uS · n = uD · n,

pS − µε(uS)n · n = pD,

γκ−
1
2uS · τ − µε(uS)n · τ = 0.

(3.4)

where n and τ be the unit normal and tangential vectors to ΓSD(we assume that n

points outward of ΩS) and γ is the phenomenological friction coefficient.

We still use the hierarchy mesh {Tj}j=0,...,J and choose the Raviart–Thomas

space[81], but we point out that any pair of velocity spaces Vj and pressure spaces

Qj is admissible, if this relation

∇·Vj = Qj (3.5)

holds.

With the same notation for integral forms defined in Subsection 2.2, the discrete

weak formulation of the coupled system now reads: find (uj, pj) ∈ Vj ×Qj, such that

for all test functions vj ∈ Vj and qj ∈ Qj there holds

ASDj


uj
pj

 ,

vj
qj


 ≡ aSDj (uj, vj)− (pj,∇·vj)− (qj,∇·uj) = FSD(vj, qj). (3.6)

53



where

aSDj (u, v) := aSj (u, v)ΩS + (κ−1u, v)ΩD + γκ−
1
2

〈
uS · τ, vS · τ

〉
ΓSD

,

aSj (u, v) := 2µ(ε(u), ε(v))TSj − 4µ
〈
{{ε(u)}}, {{v ⊗ n}}

〉
FSj
− 4µ

〈
{{ε(v)}}, {{u⊗ n}}

〉
FSj

+ 4σj
〈
{{u⊗ n}}, {{v ⊗ n}}

〉
FSj

+ 2σj
〈
u, v
〉

ΓS

FD(v, q) := (fS, v)ΩS + (fD, q)ΩD .

(3.7)

(Note that the penalty parameter σj is chosen large enough such that aSD is

positive definite)

The existence and uniqueness of such solutions, as well as the inf−sup condition,

have been verified by Kanschat and Riviere in [63].

3.3 Multigrid method for the coupled Stokes/Darcy problem

We use the similar nested finite element spaces associated with hierarchies of

meshes {Tj}. We define the action of the multigrid preconditioner BSDj : Xj → Xj

recursively as the multigrid V-cycle with m(j) ≥ 1 pre- and post-smoothing steps.

Let RSD
j be a suitable smoother. Let BSD0 = (ASD0 )−1. The definition of multigrid

framework for the preconditioner BSDj can be found in Subsection 2.5.

Remark 3. (Choice of V-cycle method and smoother) From the extensive numerical

evidences in Subsection 2.8, we conclude that variable V-cycle is more efficient than

standard V-cycle algorithm. In addition, we choose the overlapping multiplicative

Schwarz smoother over the additive one for the same reason based on our observa-

tions.

The variable V-cycle preconditioner BSDJ for the coupled system ASDJ is defined
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in the following:

uk+1

pk+1

 =

uk
pk

+ BSDJ

FSDJ −ASDJ

uk
pk


 (3.8)

The symmetric multiplicative Schwarz smoother RSDm,j is defined by

RSD
m,j = (I − ESDj )(ASD)−1

j ,

ESDj =
(
I − PSDj,1

)
. . .
(
I − PSDj,N

)
. . .
(
I − PSDj,1

)
.

where PSD`,υ is the Ritz projection.

3.4 Numerical results for Coupled Stokes/Darcy problem

In the section, we provides two sets of ideal experimental setups that describe

flow around a river bed. We set the viscosity coefficient µ = 1 in free flow region

(Stokes) and the friction coefficient γ = 0.1 in the Beavers-Joseph-Saffman interface

condition. Then, we test for different permeability coefficients in the porous media

region (Darcy). Since this dissertation mainly aims at efficient preconditioning tech-

niques, our numerical results here will only focus on the computational performance

in terms of iteration steps.

Remark 4. (Choice of parameters) The penalty parameter σj in the DG formulation

is chosen as σj = (k + 1)(k + 2)/hJ (hJ is the mesh size on the finest level ) for

optimal convergence results. The reduction residual is set to 10−6 in the GMRES

solver. The choice of finite elements are RT1 × DGQ1. We use uniform mesh with

uniform refinement from coarse to fine grids.

The experimental setup in this section is given by: the domain is Ω = [−1, 1]2

and the right hand side is f = (1, 1).
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In the first set of experimental setups, we want to simulate flow through porous

medium on some simple geometries (see Figure 3.1) which consist of free flow region

(Stokes), porous medium flow region (Darcy) and intermediate region (Brinkman).

Note that in Brinkman region the viscosity and permeability coefficients are from

the neighboring Stokes or Darcy region.

(a) Two layers (S-
D)

(b) Two layers
(Checkerboard)

(c) Three layers (S-
B-D)

Figure 3.1: Flow through porous medium. Inflow and outflow boundary conditions
left and right, no slip at top and bottom

MG level 10−1 10−2 10−3 10−4

2 15 15 15 15

3 17 17 17 17

4 19 19 19 19

5 19 20 19 20

6 20 20 20 20

7 20 20 20 20

8 20 20 20 20

Table 3.1: Two layers geometry with permeability on the right columns using RT1
and DGQ1
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MG level 10−1 10−2 10−3 10−4

2 14 15 17 18

3 16 17 20 23

4 17 19 22 29

5 19 19 22 30

6 19 20 21 29

7 20 21 22 30

8 20 21 22 30

Table 3.2: Checkerboard geometry with permeability on the right columns using RT1
and DGQ1

MG level 10−1 10−2 10−3 10−4

2 14 15 16 18

3 16 18 20 22

4 17 19 21 23

5 19 20 21 24

6 20 20 21 25

7 21 21 22 25

8 21 21 22 25

Table 3.3: Three layers geometry with permeability on the right columns using RT1
and DGQ1

In Table 3.1, 3.2 and 3.3 , we provide results of flow through porous medium. For
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a fixed permeability in the porous medium (any column in the table), we observe

uniform convergence rate with respect to multigrid levels (mesh refinements). For a

fixed multigrid level (any row in the table), we observe robust convergence rate with

respect to permeability coefficients.

In the second set of experimental setups, we add channels for flow through porous

medium(see Figure 3.2). We also assume continuity between Stokes-Brinkman and

Darcy-Brinkman interfaces.

(a) Triple (b) Ring

Figure 3.2: Flow through a channel. Inflow and outflow boundary conditions left and
right, no slip at top and bottom
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MG level 10−1 10−2 10−3 10−4

2 19 20 23 26

3 21 22 24 26

4 25 26 25 27

5 26 27 26 29

6 27 28 28 30

7 27 28 29 31

8 27 28 29 31

Table 3.4: Triple geometry with permeability on the right columns using RT1 and
DGQ1

MG level 10−1 10−2 10−3 10−4

2 21 21 23 24

3 24 22 24 27

4 25 23 26 29

5 27 26 27 31

6 27 27 30 33

7 27 28 30 33

8 27 28 30 33

Table 3.5: Ring geometry with permeability on the right columns using RT1 and
DGQ1

In Table 3.4 and 3.5, we provides results of flow through porous medium with
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channels. For a fixed permeability in the porous medium (any column in the table),

we obtain uniform convergence rate with respect to mesh refinements. For a fixed

multigrid level (any row in the table), we obtain robust convergence rate with respect

to permeability coefficients.

Furthermore, we observe the robustness with respect to different experimental

setups, thus making our method a decent solver to the coupling of Stokes and Darcy

problems.

3.5 Conclusions

In this section, we have applied geometric multigrid method into to the coupling of

Stokes and Darcy problem. In theory, the analysis of this type of multigrid method for

the coupled systems is still under development. In our case, the interface terms make

it difficult to prove the stable decomposition which is a key step in the whole analysis.

While we can not prove the convergence for the proposed multigrid method, we still

obtain uniform and robust convergence performance. These positive indications lead

us to the continuation of our discovery for Brinkman’s model which will be shown in

next section.
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4. FLOW PROBLEMS IN HETEROGENEOUS POROUS MEDIA

4.1 Introduction

Fluid flow through highly porous media (such as glass wool, industrial filter or

natural reservoirs, see Figure 1.1 - 1.3) modeled by Darcy’s Law or Brinkman’s

equations has many industrial applications. Often, these porous media materials

display heterogeneity over a wide range of length-scales (see Remark 2). In relatively

larger pores, flows are often governed by Stokes’ Law. The smaller pores are treated

as permeable medium and flows through these pores are described by Darcy’s law:

∇p = −µ
κ
u (4.1)

where p is the pressure, µ is the fluid viscosity, κ is the permeability and u is the

fluid velocity. However, the Darcy’s law alone is not sufficient to meet the continuity

conditions of the velocity and the shear stress at the interfaces between the larger

pores and permeable medium (smaller pore regions). The Brinkman’s equations [23]

are considered to be an adequate model introduced as follows:

∇p = −µ
κ
u+ µ4u (4.2)

As we mentioned in Subsection 1.1, the heterogeneity of the porous media fre-

quently leads to extremely ill-conditioned discrete systems arising from approxima-

tions of Darcy’s and Brinkman’s equations. Corresponding efficient solvers are in

high demand, thus make it an area of active research (e.g., [8, 9, 5, 6, 17, 39, 38, 45,

57, 54, 53, 55, 52, 47, 46, 68, 79, 72, 90, 91], most of them based on finite volume or

finite element method).
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A high proportion of these finite element approaches are based onHdiv-conforming

finite elements [31, 30, 94] for two reasons: globally divergence-free discrete velocity

field for incompressible flows and a more dynamic treatment of boundary conditions.

Thus, preconditioning in Hdiv become popular for for flows problem (such as Darcy

flow, Stokes flow, coupled Stokes and Darcy flow and Brinkman equations) in mixed

finite element discretizations (e.g., [11, 12, 51, 67]).

From multiscale standpoint, several precondtioners originated from multiscale fi-

nite element have been introduced(e.g., [1, 34, 33, 35, 43, 49, 77, 78, 101]). From

multigrid preconditioning point of view, both algebraic and geometric multigrid

methods with classical smoothers are often not suitable for Hdiv problems, thus

two groups of appropriate smoothers have been developed to resolve the issue.

There are the Hiptmair − Xu smoothers for algebraic multigrid methods and the

Arnold−Falk−Winther smoothers for geometric multigrid methods, respectively.

Recently, algebraic multigrid preconditioners for Brinkman’s equations in heteroge-

neously porous media have been investigated in several works (e.g., [36, 37, 92, 90,

91]), whereas geometric multigrid preconditioners in this field can not be found in

current literature (see two reasons listed in Section 1). In this Section, we will investi-

gate a geometric multigrid preconditioner with Arnold-Falk-Winther type smoothers

for flow problems in heterogeneously porous media.

This section is organized as follows. In Subsection 4.2.1, we mainly introduce

the Brinkman models with corresponding the Hdiv-conforming finite element dis-

cretizations. The multigrid preconditioning method as well as domain decomposition

smoother are derived in Subsection 4.4. Subsection 4.5 is devoted to the convergence

analysis of the proposed Brinkman solver. We next present extensive numerical exper-

iments for different porous media geometries in Subsection 4.6. This section finishes

with a brief conclusion in Subsection 4.7.
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4.2 Flow models and corresponding discretizations

4.2.1 The Brinkman model

Recall the model introduced in Section 1.1. Assume Ω be a bounded Lipschitz

domain in Rd with dimension d = 2, 3, the Brinkman equations read:

−µ4u+ κ(x)u+∇p = f, in Ω

∇·u = 0, in Ω

u = uB, on ∂Ω

(4.3)

The coefficient µ (positive constant) is the fluid viscosity and the coefficient κ(x)

is the inverse permeability of the porous medium. Assume there are two positive

constants κmin and κmax such that

0 < κmin ≤ κ(x) ≤ κmax <∞ , ∀ x ∈ Ω (4.4)

The nature solution spaces for the system are H1(Ω) and L2
0(Ω) for velocity and

pressure, respectively. We will use no-slip boundary conditions here for simplicity,

although we point out that other well posed boundary conditions do not pose a

problem. In the reminder of this section, we will denote κ as κ(x) for simplicity.

We apply the same hierarchy of meshes {Tj}j=0,...,J and finite element spaces

(Vj, Qj) for the discretization of 1.1. Here, we still choose Raviart–Thomas space

RTk in [81] (Note that any finite element space that satisfy ∇·Vj = Qj also works,

i.e., Brezzi−Douglas−Marini (BDM) space ). We will use the same notation for

integral forms on Tj and Fj defined in Section 2.1.

Since Vj 6⊆ H1(Ω) is a non-conforming space, it can not be used directly to

discretize 1.1. Thus, we apply an interior penalty DG formulation to the discretization
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of the elliptic operator following [10, 75, 30, 64, 63]. Let T1 and T2 be two mesh cells

with a joint face F , and let u1 and u2 be the traces of a function u on F from T1 and

T2, respectively. On this face F , we recall the averaging and jump operator

{{u}} =
u1 + u2

2
, and [[u]] = u1 − u2 (4.5)

The interior penalty bilinear form now reads:

aBj (u, v) =µ
(
∇u,∇v

)
Tj

+ (κ−1u, v)Tj + 4µ
〈
σJ{{u⊗ n}}, {{v ⊗ n}}

〉
Fij

− 2µ
〈
{{∇u}}, {{n⊗ v}}

〉
Fij
− 2µ

〈
{{∇v}}, {{n⊗ u}}

〉
Fij

+ 2µ
〈
σJu, v

〉
F∂j
− µ

〈
∂nu, v

〉
F∂j
− µ

〈
∂nv, u

〉
F∂j
.

(4.6)

Following Subsection 2.2, the operator “⊗” denotes the Kronecker product of two

vectors and the term 4{{u⊗ n}} : {{v ⊗ n}} represents the product of the jumps of u

and v.

The discrete weak formulation of (1.1) reads now: find (uj, pj) ∈ Vj × Qj, such

that for all test functions vj ∈ Vj and qj ∈ Qj there holds

ABj


uj
pj

 ,

vj
qj


 ≡ aBj (uj, vj)−

(
pj,∇·vj

)
−
(
qj,∇·uj

)
= F(vj, qj) ≡

(
f, vj

)
.

(4.7)

Here, σJ is chosen large enough such that aB is positive definite independent of

multigrid level j. Specifically, following the discretization of Stokes equations (2.5),

we choose the same penalty parameter σj = O(σ̄/hJ), where σ̄ is a positive constant

depending on the polynomial degree and hJ is the mesh size on the finest level J .
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The energy norm on Vj is defined by:

|||u|||2 =
∥∥u∥∥2

1,j
+
∥∥u∥∥2

κ,L2(Ω)
(4.8)∥∥u∥∥2

1,j
=
∥∥∇u∥∥2

Tj
+ σJ

∥∥[[u]]
∥∥2

Fij
+ 2σJ

∥∥u∥∥2

F∂j
(4.9)

where
∥∥[[u]]

∥∥
Fij

denote the jump of traces of a discontinuous function u across interior

faces of the mesh and
∥∥u∥∥2

κ,L2(Ω)
:=
∫

Ω
κ−1u · udx.

Now, we start investigating the properties of the discretization given by (4.7).

Lemma 6. (Boundedness) There exists a constant ξ1 independent of multigrid level

j such that for any u and v in Vj we have

∣∣aBj (u, v)
∣∣ ≤ ξ1 |||u||| |||v||| (4.10)

Proof. Recall the results for Stokes problem in [30, 31, 48, 63], we have

∣∣aSj (u, v)
∣∣ ≤ ξS1

∥∥u∥∥
1,j

∥∥v∥∥
1,j

(4.11)

where aSj (·, ·) refers to the bilinear form for the elliptic operator defined in (2.4)

in Subsection 2.2 and ξS1 is independent of j but may depend on σJ . Now, by

Cauchy − Schwarz inequality we get

∣∣aBj (u, v)
∣∣ =

∣∣µaSj (u, v) + (κ−1u, v)
∣∣ (4.12)

≤ µ
∣∣aSj (u, v)

∣∣+
∣∣(κ−1u, v)

∣∣ (4.13)

≤ µξS1

∥∥u∥∥
1,j

∥∥v∥∥
1,j

+
∥∥u∥∥

κ,L2(Ω)

∥∥v∥∥
κ,L2(Ω)

(4.14)

≤ ξ1 |||u||| |||v||| (4.15)
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where ξ1 is independent of j but may depend on µ and σJ .

Lemma 7. (Stability) There exists a constant ξ2 independent of multigrid level j

such that for any u ∈ Vj we have

aBj (u, u) ≥ ξ2 |||u|||2 (4.16)

Proof. Similarly, we recall the stability result for Stokes problem

aSj (u, u) ≥ ξS2

∥∥u∥∥2

1,j
(4.17)

where ξS2 is independent of j. With the above estimate, we have

aBj (u, u) = µaSj (u, u) +
∥∥u∥∥2

κ,L2(Ω)
(4.18)

≥ µξS2

∥∥u∥∥2

1,j
+
∥∥u∥∥2

κ,L2(Ω)
(4.19)

≥ min {µξS2, 1} (
∥∥u∥∥2

1,j
+
∥∥u∥∥2

κ,L2(Ω)
) (4.20)

= ξ2 |||u|||2 (4.21)

where ξ2 = min {µξS2, 1} which is independent of j.

Proposition 6. (Inf-sup condition) For any pressure function q ∈ Qj, there exists

a velocity function v ∈ Vj, satisfying

sup
v∈Vj

(
q,∇·v

)
|||v|||

≥ ξj
∥∥q∥∥

L2(Ω)
> 0 (4.22)

where ξj = c̄
√

hJ
hj

= c̄
√

2j−J and c̄ is a constant independent of the multigrid level j.
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Proof. Recall our assumption for κ: 0 < κmin ≤ κ ≤ κmax <∞. Thus, we have

1

κmax

∥∥v∥∥
L2(Ω)

≤
∥∥v∥∥2

κ,L2(Ω)
≤ 1

κmin

∥∥v∥∥
L2(Ω)

(4.23)

Combining Proposition 2.9 (Inf - sup condition for Stokes problem) and (4.23), we

are thus left with

sup
v∈Vj

(
q,∇·v

)
|||v|||

≥ c̄ sup
v∈Vj

(
q,∇·v

)∥∥v∥∥
1,j

≥ c̄γj
∥∥q∥∥

L2(Ω)
> 0 (4.24)

Therefore,

sup
v∈Vj

(
q,∇·v

)
|||v|||

≥ ξj
∥∥q∥∥

L2(Ω)
> 0 (4.25)

where ξj = c̄γj = c̄
√

hJ
hj

= c̄
√

2j−J and c̄ is a constant independent of the multigrid

level j but may depend on h0 and κmin.

4.2.2 The Darcy model

As we mentioned in Subsection 1.1, Darcy’s equations is a simplification of the

Brinkman model. This can be done by simply setting viscosity parameter µ = 0 and

adjust the boundary condition, which reads now:

κ−1u+∇p = f, in Ω

∇·u = 0, in Ω

u · n = g, on ∂Ω

(4.26)

where the coefficient κ is the inverse permeability under the same assumption (see

(4.4)). We choose a standard variational formulation for the system (4.26): V ×Q for

velocity and pressure respectively. The discrete weak formulation for 4.26 can easily
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follow (4.7), thus make it a mixed formulation solving by Hdiv-conforming finite

elements. The discussion on the existence and uniqueness of such solutions, as well as

the corresponding inf−sup condition, can be found in [20, 21]. For the finite element

space, we still apply Raviart Thomas space for the same reason as in Subsection 4.2.1.

The multigrid preconditioning framework for Darcy’s model is similar to that of

Brinkman’s model, thus we will not repeat here. Besides, the corresponding analysis

work with constant permeability coefficient has been shown in [11, 12]. But for the

varying coefficient case, the proof of convergence is still under development and will

not be discussed in this Section. Instead, we exhibit the robustness and efficiency

of the proposed multigrid solver only from the computational standpoint. In this

Section, the analysis work for Brinkman’s equations will become our focus.

4.3 The singular perturbed problem

In order to prove convergence of our multigrid method for the Brinkman’s equa-

tions, we follow the analysis sketch in Subsection 2.7. First, we prove the estimates

robust with respect to the parameter ε of the nearly incompressible problem: find

(uj, pj) ∈ Vj ×Qj such that for all (vj, qj) ∈ Vj ×Qj there holds

ABj


uj
pj

 ,

vj
qj


+ ε

(
pj, qj

)
= F(vj, qj). (4.27)

The associated singular perturbed problem reads: find uj ∈ Vj such that for all

vj ∈ Vj there holds

ABj,ε(uj, vj) = aB(uj, vj) +
1

ε
(∇·uj,∇·vj) = F (vj). (4.28)
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4.4 Multigrid method

Here, we take the same nested finite element spaces associated with hierarchies

of meshes {Tj}. The action of the multigrid preconditioner BBj : Xj → Xj are

recursively defined as the multigrid V-cycle with m(j) ≥ 1 pre- and post-smoothing

steps. Let RB
j be a suitable smoother. Let BB0 = (AB0 )−1. For j ≥ 1, the action of BBj

on a vector Fj = (fj, gj) can be defined similarly as in Subsection 2.5.

In this section, we also choose variable V-cycle method in order to prove the

convergence analysis following Subsection 2.7. We refer to BBJ as the variable V-cycle

preconditioner of ABJ . The iteration

uk+1

pk+1

 =

uk
pk

+ BBJ

FBJ −ABJ
uk
pk


 (4.29)

is the V-cycle iteration.

Here, we define a class of smoothing operators RB
j based on a subspace decom-

position of the space Xj. Let Nj be the set of vertices in the triangulation Tj, and

let Tj,υ be the set of cells in Tj sharing the vertex υ. They form a triangulation with

N(N > 0) subdomains or patches which we denote by {Ωj,υ}Nυ=1.

The subspace Xj,υ = Vj,υ × Qj,υ consists of the functions in Xj with support in

Ωj,υ. Note that this implies homogeneous slip boundary conditions on ∂Ωj,υ for the

velocity subspace Vj,υ and zero mean value on Ωj,υ for the pressure subspace Qj,υ.

The Ritz projection PBj,υ : Xj → Xj,υ is defined by the equation

ABj
(
PBj,υ

uj
pj

 ,

vj,υ
qj,υ

) = ABj
(uj

pj

 ,

vj,υ
qj,υ

) ∀

vj,υ
qj,υ

 ∈ Xj,υ. (4.30)
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The additive Schwarz RB
a,jis defined as

RB
a,j = η

∑
υ∈Nj

PBj,υ(AB)−1
j . (4.31)

where PBj,υ is the Ritz projection.

The symmetric multiplicative Schwarz smoother RBm,j is defined by

RB
m,j = (I − EBj )(AB)−1

j ,

EBj =
(
I − PBj,1

)
. . .
(
I − PBj,N

)
. . .
(
I − PBj,1

)
.

The corresponding singularly perturbed forms RB
a,j, R

B
m,j and PB

j,υ are defined simi-

larly .

4.5 Convergence analysis for Brinkman’s equations

In this Subsection, we prove the convergence for the variable V-cycle multigrid

method with additive Schwarz smoother (the multiplicative version proof can easily

follow according to subsection 2.7.1.2). Specifically, we follow the analysis approach

for the Stokes’ problem and verify the corresponding propositions and theorems for

Brinkman’s equations. In this proof, we assume κ is a constant over the whole do-

main. About the regularity assumption, we point out that Ω is bounded and convex.

Without loss of generality, we assume viscosity µ = 1 in this proof.

Theorem 4. The multilevel iteration I − BBJ ABJ with the variable V-cycle opera-

tor BBJ defined in Subsection 4.4 employing the smoother RB
j is a contraction with

contraction number independent of the mesh level J .

Proof. Following Subsection 2.7, we first prove the convergence for the corresponding

singularly perturbed problem. Then, we verify the equivalence between singularly
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perturbed and mixed problems. Finally, the estimate uniform in ε gives us that

I − BBJ ABJ is a contraction with contraction number independent of the mesh level

J when ε→ 0.

In the reminder of this subsection, we will verify the conditions in the proof of 4.

Proposition 7. Given u ∈ (I − Pj−1)Vj and the inverse permeability coefficient κ

is a positive constant. There exist a decomposition u =
∑

υ uυ and a constant C

independent of multigrid level j and κ such that

∑
υ∈Nj

(κ−1uυ, uυ) ≤ C(κ−1u, u) (4.32)

Proof. This proof easily follows from standard scaling argument:

∑
υ∈Nj

(κ−1uυ, uυ) = κ−1
∑
υ∈Nj

(uυ, uυ) (4.33)

≤ κ−1C(u, u) (4.34)

= C(κ−1u, u) (4.35)

Where C is independent of j and κ but depending on shape regularity of the mesh.

By Proposition 2, it remains to check: for u = (I − Pj−1)w (where w ∈ Vj) with

the decomposition u =
∑

υ uυ, there is a constant CB independent of multigrid level

j, permeability coefficient κ−1 and ε such that

∑
υ∈Nj

ABJ (uυ, uυ) ≤ CBA
B
J (u, u) (4.36)
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By the convergence results of Stokes problem in Subsection 2.7 and Proposition 7,

we get

∑
υ∈Nj

ABJ (uυ, uυ) =
∑
υ∈Nj

{
aBj (uυ, uυ) + ε−1(∇ · uυ,∇ · uυ)

}
(4.37)

=
∑
υ∈Nj

{
aSj (uυ, uυ) + (κ−1uυ, uυ) + ε−1(∇ · uυ,∇ · uυ)

}
(4.38)

≤
∑
υ∈Nj

{
aSj (uυ, uυ) + ε−1(∇ · uυ,∇ · vυ) + (κ−1uυ, uυ)

}
(4.39)

=
∑
υ∈Nj

(ASJ (uυ, uυ) + (κ−1uυ, uυ)) (4.40)

≤ CSA
S
J (u, u) + C(κ−1u, u) (4.41)

= CSa
S(u, u) + ε−1(∇·u,∇·u) + C(κ−1u, u) (4.42)

≤ max {CS, C} aB(u, u) + ε−1(∇·u,∇·u) (4.43)

≤ max {CS, C}AB(u, u) (4.44)

= CBA
B
J (u, u). (4.45)

where CB = max {CS, C}. (Note that aSj (·, ·) and ASJ (·, ·) refer to the bilinear form

and singularly perturbed form defined in (2.4) and (2.13) for the Stokes’ equations,

CS is the constant in additive Schwarz smoother proof in Subsection 2.7.1.1.)

Therefore, we verify that the singularly perturbed operator I−BB
J A

B
J is a contrac-

tion with contraction number independent of the mesh level J . Finally, we complete

the convergence analysis of our multigrid method for Brinkman’s equations by The-

orem 3 and Theorem 4.

4.6 Numerical results

In this subsection, we show the computational performance of our Brinkman

solver and Darcy solver through substantial numerical experiments. First of all, we
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introduce two sets of porous media geometries (2-D case) arising from the industry-

related problems which are recently treated as the most popular criteria for evaluating

flow solvers in heterogeneously porous media. The first set is given by four geometries

as follows:

(a) Vuggy medium (b) Open foam medium

(c) Fibrous structure
(d) Periodic Geometry

Figure 4.1: Different 2D geometries of some porous media

1. Figure 4.1(a) describes vuggy media related to oil reservoirs (cf. [80]). This

type of media have a large amount of relatively big vugs or cavities (the red

bubble regions) which are usually considered as pure fluid regions. The blue

background region represents the lowly permeable material. Note that these
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vugs are mutually connected by different ”channels” or ”pipes”. These ”chan-

nels” make the vugs highly permeable regions against the lowly permeable

background. The interface between two vugs and left boundary will be the

entrance for the inflows in our numerical experiments.

2. Figure 4.1(b) is one cross section of the three dimensional industrial foam (see

Figure 1.2). It is also referred to open foam which has many applications in

industry such as filtration, heat exchanges, etc (cf. [70, 88]). Same as Fig-

ure 4.1(a), the blue regions here represent the lowly permeable material while

the red background stands for free flow region. Unlike the connected vugs in

Figure 4.1(a), these low permeability regions are mostly disconnected. Hence,

this type of materials, as known as filters, allow viscous fluid to flow through

while blocking relative large particles.

3. In Figure 4.1(c), we introduce the fibrous structure media which is also con-

sidered as one kind of filters. The blue region here refers to lowly permeable

material and the red one refers to the opposite. The only difference between

open foam media (Figure 4.1(b)) and fibrous structure media is that the former

has more complicated geometry.

4. Figure 4.1(d) depicts an artificial simple periodic geometry. There are 16× 16

small square subdomains with length 1/32 ( the blue squares) inside the a unit

square. We assume these blue squares are the obstacles in the medium and

the background for flow regions. This type of artificial geometries have been

treated as classical test cases in many works related to highly heterogenous and

highly porous mediums (e.g., [2, 53, 55, 76, 95]).

Remark 5. (Some comments about Figure 4.1) In the figures of Figure 4.1, the
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coefficients associated with high and low permeability fields (red and blue regions) will

be assigned depending on different experimental setups. Besides, the three geometries

Figure 4.1(a)-(c) are given by 128 × 128 matrices and generated through MATLAB

plots. Hence, we need associate the permeability field according to these geometries. In

our implementation, we start with initial mesh 128×128 and assign the coefficients to

each cell corresponding to each geometry information. The details about coefficients

upscaling and downscaling are discussed in Remark 7.

The second set goes here:

(a) SPE10 Slice 44 with logarithmic
plot

(b) SPE10 Slice 49 with logarithmic
plot

(c) SPE10 Slice 54 logarithmic plot (d) SPE10 Slice 74 logarithmic plot

Figure 4.2: cross sections of 3D SPE 10 Benchmark geometry
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Figure 4.2(a)-(d) are two dimensional intersections(rescaled) of the natural reser-

voir model in Tenth SPE Comparative Solution Project (cf. [28]). One of the main

purposes of this project is to compare the performances of upscaling related meth-

ods for two phase flow in the oil reservoir shown in Figure 1.3. As we remarked in

Section 1, there are 85 distinct layers within two general categories. The top 35 lay-

ers represent a prograding near shore environment where the porosity is relatively

low. The bottom 50 layers represent a fluvial fan with clearly visible channels, thus

making it an interesting geometry for the modeling of fluid flows. We first start with

a few two dimensional layers in the bottom part of the the original 3D reservoir

data. We choose these slices because they display diverse geological features. Slice

54 (Figure 4.2(b)) is almost dominated by the red and yellow regions (highly per-

meable region) compared to Slice 44 ,49 and 74. One may expect better upscaling

results due to simplicity of the geometry of this slice. In Slice 44 (Figure 4.2(a)),

we observe two highly permeable regions (marked by red color) channels which are

partially connected with top, right and bottom boundaries of the geometry. The in-

terface boundaries between highly and lowly permeable regions are typically difficult

to capture by upscaling methods. In Slice 49 and 74 (Figure 4.2(b)), the main highly

permeable regions locate in the channel that connect the left and right boundaries

of the geometry. They are somewhat similar to Slice 44 as only the difference lies

in the shape of highly permeable channels. Hence, both Slice 44, Slice 49 and Slice

74 are considered more complicated geometries than Slice 54 in terms of coefficient

upscaling. Furthermore, all the figures are plotted under logarithmic scale and the

actual contrast between coefficients is rather high, up to 108.

Finally, we bring out the three dimensional natural reservoir model(see Fig-

ure 1.3).
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Figure 4.3: SPE 10 Benchmark natural reservoir model

Remark 6. (Description of the geometry in Figure 4.3) Figure 4.3 depicts the

rescaled three dimensional SPE10 benchmark natural reservoir model. We pick 64

layers from the original dataset (32 layers from each category) reshape each layer to

64 × 64, thus make it a three dimensional geometry with size 64 × 64 × 64. As we

pointed out in the description of 2D SPE 10 geometries, a half of the dataset rep-

resents a prograding near shore environment with rather low porosity, which is not

perfect model for fluid flow simulation. Thus, we reverse these layers (with respect

to the Z − Axis) and make the fluvial fan part on the top in order to observe better

visual effects from the numerical simulations.

Since our method is built on multilevel framework, it is necessary to point out

the upscaling and downscaling schemes with respect to coefficients on coarse and
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fine grids (Note: in our 2D experiments the initial mesh is given as 128 × 128 grid

in order to load the permeability data (128× 128) correspondingly, and our method

is still capable of efficient computation after a couple of uniform refinements). More

specifically, we have the following multilevel discrete systems:

ABj


uj
pj

 ,

vj
qj


 = F(vj, qj). (4.46)

on each level j.

Remark 7. (Upscaling and downscaling schemes with respect to permeability field)

Though upscaling techniques play a crucial role in multiscale methods, its impact

on our the method is less dominant from preconditioning perspective. Actually, we

use a very computationally cheap but effective upscaling scheme here: arithmetic

averaging (see Figure 4.4(a)). The downscaling is just simple inheritance as shown

in Figure 4.4(c).

(a) a patch from initial
mesh

(b) the immediate parent
cell of Figure 4.4(a)

(c) the children of the
patch in Figure 4.4(a)

Figure 4.4: Upscaling and downscaling with respect to coefficients
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In the following next two subsections, we exhibit numerical experiments based

on the two and three dimensional geometries in Figure 4.1 - 4.3 . For the details of

parameter choice in multigrid method, we follow the same options as in Subsection 3.3

(see Remark 3 - 4 ). All the experimental setups in this section are performed on the

two dimensional domain Ω = [0, 1]× [0, 1].

4.6.1 Experiments with Darcy solver

In this subsection, we only focus on the performance of Darcy solver for flows in

heterogeneously porous media geometries and it will be self-evident on some rather

simple geometries.

Example 1. (Darcy - geometries from Figure 4.1) The corresponding geometries are:

vuggy media, open foam, fibrous media and periodic geometry. According to Remark 5,

we need to assign the permeability coefficients for highly and lowly permeable regions

for different experimental setups. The details about experimental setup in this example

are given as follows: Inhomogeneous Neumman boundary condition: g =
(

1
0

)
×n, right

hand side f ≡ 0, κ = 1 in the red regions (highly permeable) and different κ - 104 ,

105 and 106 - in the blue regions (low permeable).

By this setup, we depict a fluid flow that moves from the left boundary to right

boundary through different porous media modeled by Darcy’s law. Specifically, we are

interesting in the performance of the proposed Darcy solver with respect to different

permeability contrasts.
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Vuggy medium Open foam Fibrous media Periodic

Mesh size 104 105 106 104 105 106 104 105 106 104 105 106

1/128 15 16 17 11 12 14 11 11 12 8 11 15

1/256 14 15 16 11 12 13 10 11 11 8 10 14

1/512 13 15 16 11 11 13 10 10 10 7 10 14

Table 4.1: Darcy solver on different geometries - Permeability contrast on the right
columns

In Table 4.1, we provide the convergence results for the Darcy solver on four differ-

ent geometries (see Figure 4.1). On each geometry, for a fixed permeability contrast

(any column), we observe uniform convergence rate with respect to mesh refinements

(multigrid levels); for a fixed multigrid level (any row), we observe robust conver-

gence rate with respect to permeability contrasts. From any row of the whole table,

we observe robust performance with respect to the geometries of the porous media.

In addition to convergence results, it is necessary to present the numerical solutions

on for different permeability contrasts on each geometry because one could barely

have access to the corresponding analytical solutions. For simplicity, we only show

two components of our solutions for each experimental setup: the first component of

velocity u1 and pressure component p. They are given in Figure 4.5 - 4.6.

Example 2. (Darcy - Nature reservoir geometry in SPE 10 ) The corresponding

geometries are: slice 44, 49, 54 and 74 of the SPE 10 geometries in Figure 4.2. In

these geometries, the permeability fields are give in the dataset, thus will be directly

assigned on the initial mesh in an appropriate order.

The details about experimental setup in this example are given as follows: Inhomo-

geneous Neumann boundary condition: uB =
(

1
0

)
× n, right hand side f ≡ 0.
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(a) Vuggy medium (b) Open foam

(c) permeability
contrast 104 - u1

(d) permeability
contrast 104 - p

(e) permeability
contrast 104 - u1

(f) permeability
contrast 104 - p

(g) permeability
contrast 105 - u1

(h) permeability
contrast 105 - p

(i) permeability
contrast 105 - u1

(j) permeability
contrast 105 - p

(k) permeability
contrast 106 - u1

(l) permeability
contrast 106 - p

(m) permeability
contrast 106 - u1

(n) permeability
contrast 106 - p

Figure 4.5: (Darcy - Vuggy medium and open foam) numerical solution
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(a) Fibrous medium (b) Periodic geometry

(c) permeability
contrast 104 - u1

(d) permeability
contrast 104 - p

(e) permeability
contrast 104 - u1

(f) permeability
contrast 104 - p

(g) permeability
contrast 105 - u1

(h) permeability
contrast 105 - p

(i) permeability
contrast 105 - u1

(j) permeability
contrast 105 - p

(k) permeability
contrast 106 - u1

(l) permeability
contrast 106 - p

(m) permeability
contrast 106 - u1

(n) permeability
contrast 106 - p

Figure 4.6: (Darcy - Fibrous medium and periodic geometry) numerical solution
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By this setup, we depict a fluid flow (oil or water) inside the natural reservoirs

modeled by Darcy’s law in two dimension. Specifically, we are interested in the per-

formance of our multigrid solver for Darcy’s equations with respect to different finite

element orders and different slices (diverse geometry features) of the three dimen-

sional nature reservoir.

Slice 44 Slice 49 SPE 54 SPE 74

Mesh size RT0 RT1 RT0 RT1 RT0 RT1 RT0 RT1

1/128 30 36 33 41 28 32 31 38

1/256 24 30 27 33 20 28 25 31

1/512 19 26 22 29 17 24 20 28

Table 4.2: Darcy solver on SPE 10 geometries - Different finite orders on the right
columns

In Table 4.2, we exhibit the convergence results for the Darcy solver on SPE

10 geometries. For a fixed slice (any column), we discern optimal convergence rate

with respect to mesh refinements, which is a pleasant surprise. The reason for this

phenomenon will be given in detail in Remark 8. For a fixed multigrid level, we also

observe robust results with respect to diverse geometries. In addition, we notice the

robustness of our solver with respect to different finite element orders. Besides, the

results also coincide with our prediction about the geometries: slice 44, 48 and 74

are more complex geometries than slice 54. Similarly, we will show the corresponding

numerical solutions in Figure 4.7 - 4.8.

Remark 8. (on optimal convergence results on the fine levels) From the results in

Table 4.1 and 4.2, we have noticed that the convergence rates on fine levels become
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superior, especially in Table 4.2. The reason for that is the preconditioner become

more superior as we refine the mesh due to the upscaling and downscaling schemes

defined in Remark 7.

From the numerical solutions in Figure 4.5 - 4.8, we discern that the velocity as

well as pressure components are not well represented around the interfaces between

free flow and porous media flow regions. This is because viscous effects are neglected

in Darcy’s model as we discussed in Section 1. Thus here we experimentally verified

that Darcy’s model is not appropriate on highly heterogeneous and highly porous

media. In spite of its flaws, Darcy’s model is still give decent results in general. In

the next subsection, we will model the fluid flow through the same porous media

by Brinkman’s equations for comparison and exhibit the corresponding numerical

solutions.

4.6.2 Experiments with Brinkman solver

In this subsection, we investigate the performance of the Brinkman solver in two

and three dimension geometries through the following cases: Example 3, Example 4

and Example 5.

Example 3. (Brinkman - geometries from Figure 4.1) The corresponding geome-

tries are: vuggy media, open foam, fibrous media and periodic geometry. According to

Remark 5, we need to assign the permeability coefficients for highly and lowly perme-

able regions for different experimental setups. The details about experimental setup

in this example are given as follows: Inhomogeneous Dirichlet boundary condition:

uB =
(

1
0

)
, right hand side f ≡ 0, µ = 10−2 and κ = 1 in the red regions (highly

permeable) and different κ - 104 , 105 and 106 - in the blue regions (low permeable).

By this setup, we describe a fluid flow that moves from the left boundary to

right boundary through different porous media modeled by Brinkman’s equations.
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(a) SPE 10 Slice 44 (b) SPE 10 Slice 49

(c) RT0 - u1 (d) RT1 - u1 (e) RT0 - u1 (f) RT1 - u1

(g) RT0 - u2 (h) RT1 - u2 (i) RT0 - u2 (j) RT1 - u2

(k) RT0 - p (l) RT1 - p (m) RT0 - p (n) RT1 - p

Figure 4.7: (Darcy - SPE10 Slice 44 and 49) numerical solution
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(a) SPE 10 Slice 54 (b) SPE 10 Slice 74

(c) RT0 - u1 (d) RT1 - u1 (e) RT0 - u1 (f) RT1 - u1

(g) RT0 - u2 (h) RT1 - u2 (i) RT0 - u2 (j) RT1 - u2

(k) RT0 - p (l) RT1 - p (m) RT0 - p (n) RT1 - p

Figure 4.8: (Darcy - SPE10 Slice 54 and 74) numerical solution
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Specifically, we are interesting in the performance of the proposed Brinkman solver

on diverse geometries with respect to different permeability contrasts.

Vuggy medium Open foam Fibrous media Periodic

Mesh size 104 105 106 104 105 106 104 105 106 104 105 106

1/128 11 17 25 12 22 31 11 21 31 19 20 22

1/256 11 16 24 12 21 30 10 20 30 19 20 22

1/512 10 16 23 11 20 29 10 20 29 18 19 21

Table 4.3: Brinkman solver on different geometries - Permeability contrast on the
right columns

In Table 4.3, we observe similar convergence performance as in Darcy’s solver for

the same geometries. In Figure 4.9 and 4.10, we show the first component of velocity

u1 and pressure component p with respect to different geometries and permeability

contrasts.

Example 4. (Brinkman - Nature reservoir geometry in SPE 10 ) The corresponding

geometries are: slice 44, 49, 54 and 74 of the SPE 10 geometries in Figure 4.2. We

assign the permeability field following Example 2.

The details about experimental setup in this example are given as follows: Inhomoge-

neous Dirichlet boundary condition: uB =
(

1
0

)
, right hand side f ≡ 0, and µ = 10−2

(rather small viscosity coefficients are typically chosen in order to make the term

(κ−1(x)u, v) dominant in the discrete system 4.7).

By this setup, we depict a fluid flow (oil or water) inside the natural reservoirs by

Brinkman’s equations. Here we are interesting in the performance of the proposed
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(a) Vuggy medium (b) Open foam

(c) permeability
contrast 104 - u1

(d) permeability
contrast 104 - p

(e) permeability
contrast 104 - u1

(f) permeability
contrast 104 - p

(g) permeability
contrast 105 - u1

(h) permeability
contrast 105 - p

(i) permeability
contrast 105 - u1

(j) permeability
contrast 105 - p

(k) permeability
contrast 106 - u1

(l) permeability
contrast 106 - p

(m) permeability
contrast 106 - u1

(n) permeability
contrast 106 - p

Figure 4.9: (Brinkman - Vuggy medium and open foam) numerical solution
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(a) Fibrous medium (b) Periodic geometry

(c) permeability
contrast 104 - u1

(d) permeability
contrast 104 - p

(e) permeability
contrast 104 - u1

(f) permeability
contrast 104 - p

(g) permeability
contrast 105 - u1

(h) permeability
contrast 105 - p

(i) permeability
contrast 105 - u1

(j) permeability
contrast 105 - p

(k) permeability
contrast 106 - u1

(l) permeability
contrast 106 - p

(m) permeability
contrast 106 - u1

(n) permeability
contrast 106 - p

Figure 4.10: (Brinkman - Fibrous medium and periodic geometry) numerical solution
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Brinkman solver with respect to nature reservoir geometries with different features.

Slice 44 Slice 49 SPE 54 SPE 74

Mesh size RT0 RT1 RT0 RT1 RT0 RT1 RT0 RT1

1/128 28 32 29 35 26 28 29 33

1/256 26 29 27 32 24 26 27 31

1/512 24 27 23 29 22 24 25 28

Table 4.4: Brinkman solver on SPE 10 geometries - Different finite orders on the
right columns

In Table 4.4, we demo the convergence results for the Brinkman solver on SPE 10

geometries with different finite element orders. For a fixed slice (any column), we per-

ceive optimal convergence rate with respect to mesh refinements(see Remark 8). For

a fixed multigrid level, we also observe robust results with respect to different geome-

tries. Additionally, we discern the robustness of our solver with respect to different

finite element orders. Besides, the convergence rates in the Table 4.4 also confirm

our predictions about the geometric features of the three slices. The corresponding

numerical solutions can be found in Figure 4.11 - 4.12.

From the numerical solutions in Figure 4.9 - 4.12, the improvement is rather self-

evident in compare to the results of Darcy’s model, which indicates the superiority

of Brinkman’s model.

Finally, we finish our numerical experiments with a 3D simulation on the rescaled

SPE10 natural reservoir model.

Example 5. (Brinkman - 3D simulation on natural reservoir model (see Figure 4.3))

In this example, we exhibit a three dimensional numerical simulation of rescaled
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(a) SPE 10 Slice 44 (b) SPE 10 Slice 49

(c) RT0 - u1 (d) RT1 - u1 (e) RT0 - u1 (f) RT1 - u1

(g) RT0 - u2 (h) RT1 - u2 (i) RT0 - u2 (j) RT1 - u2

(k) RT0 - p (l) RT1 - p (m) RT0 - p (n) RT1 - p

Figure 4.11: (Brinkman - SPE10 Slice 44 and 49) numerical solution
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(a) SPE 10 Slice 54 (b) SPE 10 Slice 74

(c) RT0 - u1 (d) RT1 - u1 (e) RT0 - u1 (f) RT1 - u1

(g) RT0 - u2 (h) RT1 - u2 (i) RT0 - u2 (j) RT1 - u2

(k) RT0 - p (l) RT1 - p (m) RT0 - p (n) RT1 - p

Figure 4.12: (Brinkman - SPE10 Slice 54 and 74) numerical solution
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natural reservoir geometry in Figure 4.3. The permeability data are assigned in the

similar fashion as in Example 2 and Example 4. The details about experimental setup

in this example are given as follows: Inhomogeneous Dirichlet boundary condition and

homogeneous right hand side:

uB =


1

0

0


BC1

&


0

1

0


BC2

, and f =


0

0

0

 (4.47)

and viscosity coefficient µ = 10−2).

By this setup, we basically extend Example 4 into three dimensional case. As we

indicated in Remark 6, the top half the reservoir data has clearly visible channels

but the bottom half does not. Thus, it is not necessary to model flow through X−Y

along Z − Axis. Therefore, by the first and second boundary conditions we model

flow through Y −Z plane and X−Z plane along X−Axis and Y −Axis, respectively.

Residual 10−6 Residual 10−7 Residual 10−8 Residual 10−9

Mesh size BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2

1/64 40 41 47 47 55 56 65 66

1/128 31 31 39 39 46 46 57 57

Table 4.5: Brinkman solver on 3D SPE 10 model - Different boundary conditions on
the right columns

Remark 9. (on 3D results in Table 4.5) In Table 4.5, we show the convergence re-

sults with respect to reduction residual in our solver. For a fixed column, we observe
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(a) Solver reduction residual 10−6 (b) Solver reduction residual 10−7

(c) Solver reduction residual 10−8 (d) Solver reduction residual 10−9

Figure 4.13: (Brinkman with RT0) numerical solution with respect to different re-
duction residuals in the solver

similar optimal convergence rate as in two dimensional cases. After two refinements,

the number of degree freedom is about 70 million and our machine runs out of mem-

ory, thus no convergence results are available thereafter. Besides, the results with

RT1 and DGQ1 are either not available due to the same memory issue of our cur-

rent machine (the number of degree freedom reaches 10 million on the initial grid).

In Figure 4.13, we present the first component of velocity with respect to different

reduction residuals for flow through X − Z plane. Despite of the small increase of

convergence steps, we observe the almost identical numerical solution as shown in

Figure 4.13.

In Figure 4.14- 4.17, we show numerical solutions with respect to different bound-

ary conditions and velocity components.
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(a) Flow through Y −Z plane (Front
View)

(b) Flow through Y −Z plane (Back
View)

(c) First component of velocity (d) First component of velocity

(e) Third component of velocity (f) Third component of velocity

Figure 4.14: (Brinkman - 3D SPE 10 with flow through Y − Z plane) numerical
solution
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(a) Flow through Y − Z plane (Box
View) - Slice 58

(b) First component of velocity -
Slice 58

(c) Flow through Y − Z plane (Box
View) - Slice 54

(d) First component of velocity -
Slice 54

(e) Flow through Y − Z plane (Box
View) - Slice 49

(f) First component of velocity -
Slice 49

(g) Flow through Y − Z plane (Box
View) - Slice 44

(h) First component of velocity -
Slice 44

Figure 4.15: (Brinkman - 3D SPE 10 with flow through Y − Z plane) Slice views of
numerical solution
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(a) Flow throughX−Z plane (Front
View)

(b) First component of velocity

(c) Flow through X−Z plane (Back
View)

(d) First component of velocity

(e) Third component of velocity (f) Third component of velocity

Figure 4.16: (Brinkman - 3D SPE 10 with flow through X − Z plane) numerical
solution
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(a) Flow through Y − Z plane (Box
View) - Slice 58

(b) First component of velocity -
Slice 58

(c) Flow through X − Z plane (Box
View) - Slice 54

(d) First component of velocity -
Slice 54

(e) Flow through X − Z plane (Box
View) - Slice 49

(f) First component of velocity -
Slice 49

(g) Flow through X −Z plane (Box
View) - Slice 44

(h) First component of velocity -
Slice 44

Figure 4.17: (Brinkman - 3D SPE 10 with flow through X − Z plane) Slice views of
numerical solution
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4.7 Conclusion

In this section, we introduce the Hdiv-conforming discontinuous Galerkin dis-

cretization for the Brinkman’s equations, and present a geometric multigrid method

with on Arnold-Falk-Winther type smoother for the system. We present the conver-

gence analysis with constant permeability case and show uniform contraction inde-

pendent of the mesh size. In addition, we experimentally verify the robustness and

efficiency of our method with respect to different partial differential equation mod-

els on complex geometries (two and three dimensional cases). Therefore, it makes

our method a powerful solver for flow problems in highly heterogeneous and highly

porous media.
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5. SUMMARY

In this dissertation, we have studied and implemented a geometric multigrid

method for flow problems such as Stokes flow, Darcy flow, the coupling of Stokes

and Darcy flow and Brinkman equations. This multigrid method is based on Hdiv-

conforming finite element methods under which the discrete velocity field is globally

exactly divergence free for incompressible flows. There are two key ingredients of the

proposed preconditioner: first, the Arnold-Falk-Winther type smoothers can capture

a meaningful basis on local divergence free subspace associated with each overlapping

patch; additionally, the grid operator does not increase the divergence from the coarse

divergence free subspace to the fine one due to the fact that the divergence free spaces

are nested.

In Section 2, we first introduce the multigrid preconditioning method with Hdiv-

conforming discontinuous Galerkin methods for the Stokes problem, and then we

prove the convergence analysis for two types of domain decomposition Schwarz

smoothers with variable V-cycle method. Within these proofs, we choose the penalty

parameter depend on the polynomial degree and the mesh size of the finest level

O( k
2

hJ
) in the DG method. The corresponding numerical results confirm our analy-

sis work which also show strong robustness and efficiency. For the standard V-cycle

method with penalty parameter of order O( k
2

hJ
), we experimentally exhibit the robust

and efficient results despite of the lack of theoretical proof. For the penalty parameter

of order O(k
2

hj
) with both variable and standard V-cycle methods, plenty of numerical

evidence shows the same computational performance as that of order O( k
2

hJ
) albeit

without analysis work. Besides, we extend our numerical experiments to non-simply

connected geometries where the Hodge decompositions are rather complicated.
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In Section 3, we migrate to the coupling of Stokes and Darcy flow based on Stokes

results in the previous section. We apply the similar Hdiv-conforming DG method

for the coupled system and the same multigrid preconditioning method. The analysis

work for this coupled model is still under development due to the presence of interface

terms. Despite the fact that we can not prove the convergence, the numerical results

show strong robustness and efficiency of the proposed multigrid solver.

In Section 4, we present the models for flows in highly heterogeneous and highly

porous media with correspondingHdiv-conforming finite element discretizations. Then

we introduce the multigrid preconditioning method for the corresponding discrete

system. The convergence analysis of the proposed multigrid method for Brinkman

problem has been provided with constant permeability coefficient. For the varying

coefficient cases, we apply a relative simple but effective coefficient upscaling and

downscaling schemes on the coarse and fine grids. Finally, we introduce two sets

of industry related geometries (e.g., industrial filter models and natural reservoir

model), and show the robustness, efficiency and unification of our algorithm through

plenty of numerical experiments in two and three dimension.

Up to now, it is still an open problem for the analysis work of fully robust (with

respect to coefficient variation) multigrid preconditioning method. Future develop-

ments of interest include coefficient upscaling techniques, parallel computation and

analysis work with respect to coefficient variation.
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