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ABSTRACT 

 

The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier, but 

also accumulates and transports nutritive minerals, such as zinc, into and out of the 

cerebrospinal fluid.  The goal of this thesis was to analyze interdependent regulation of 

zinc transporters with metallothionein as the choroid plexus epithelium adapts to 

increases or decreases in extracellular zinc.  My first objective was to characterize time-

dependent changes in zinc transporter and MT-1 expression as extracellular zinc was 

pharmacologically depleted or supplemented. My second objective was to characterize 

changes in zinc transporter and MT-1 expression in response to exposure to prolactin.  

My experimental approach was to analyze gene expression of ZnT1, Zip1, Zip6, MT-1 

and carbonic anhydrase (CA-2) in primary cell cultures of neonatal rat choroid plexus 

and isolated tissues in which extracellular zinc was depleted with 10 µM diethylene 

triamine pentaacetic acid or supplemented with 25 µM ZnCl2 for 48 h.  Gene expression 

was analyzed by fluorescence quantitative real-time polymerase chain reaction.   

Zinc accumulation studies indicate choroid plexus cells maintain capacity to 

accumulate zinc, even when zinc is chelated.  In cells, zinc depletion decreased 

expression of MT-1 and ZnT1 at 3 h and increased Zip1 expression; Zip6 expression 

fluctuated.  In isolated tissues, zinc depletion down-regulated MT-1 and ZnT1 

expression, while up-regulating Zip1 and Zip6 expression.  In cells, zinc 

supplementation induced MT-1, ZnT1 and Zip6 expression at 3 h.  Zip1 expression 

decreased at 3 h.  In isolated tissues zinc supplementation up-regulated MT-1 and ZnT1 
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expression, but did not alter Zip1 and Zip6 expression.  These data indicate there is 

coordinated regulation of MT-1 and zinc transporters as extracellular zinc altered.  

Prolactin up-regulated gene expression of CA-2, MT-1, ZnT-1 and Zip6 in choroid 

plexus cells.  The JAK/STAT inhibitor AG-490 increased CA-2 and MT-1 expression, 

but decreased ZnT1 and Zip6 expression.  AG-490 further increased expression of CA-2 

and MT-1 in prolactin treated cells.  This suggests the JAK/STAT signaling pathway 

might tonically suppress basal expression of MT-1 and CA-2.  AG-490 partially reversed 

up-regulation of ZnT-1 and Zip6 expression by prolactin.  These data indicate there is a 

coordinated regulation of MT-1 and zinc transporters during extracellular zinc depletion 

or supplementation.   
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1. INTRODUCTION  

This thesis elucidates the regulation of zinc transport in the choroid plexus, 

which forms the blood-cerebrospinal fluid barrier.  There are two primary anatomical 

barriers that regulate the chemical composition of the extracellular fluid of the brain; 

these are the blood-brain-barrier and the blood-cerebrospinal fluid (CSF) barrier (22, 

29).  The blood-brain-barrier consists of the endothelial cells of the brain capillaries.  

The choroid plexus epithelium forms the blood-CSF barrier, which is separate and 

distinct from the blood-brain-barrier.  There are four choroid plexus tissues, one in each 

lateral, third and fourth ventricle of the brain.  The capillaries of choroid plexus tissue 

are fenestrated; therefore, the tight junctions between the epithelial cells form the blood-

CSF barrier (22, 29).  The choroid plexus epithelium produces CSF, which is 

functionally continuous with the extracellular fluid that bathes the neurons and glia of 

the brain.  The choroid plexus regulates composition of CSF by transporting ions, 

nutrients, drugs, and metabolites into and out of CSF.  The choroid plexus synthesizes 

and secretes vital macromolecules, such as insulin-like growth factor-II and 

transthyretin, into CSF.  The epithelium expresses receptors for hormones, such as 

prolactin, progesterone and estrogen (22).  Similar to the small intestine, mammary 

gland and prostate, the choroid plexus is an epithelial tissue that accumulates zinc (30).  

The choroid plexus accumulates excess nutritive minerals, such as copper and zinc, but 

also heavy metals, such as cadmium, acting as a ‘sink’ for these metals and minerals.  As 

such, it protects the brain from toxicity of heavy metals and regulates balance of nutrient 

minerals (37).   
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Zinc is an essential mineral, and biological and physiological roles of zinc are 

defined by its chemical characteristics.  As a divalent cation zinc readily binds enzymes 

and proteins (32).  In biological systems, zinc serves three main functions: catalytic, 

structural and regulatory.  Because zinc contains a filled d orbital, it does not participate 

in redox reactions but functions as a Lewis acid to accept electrons (21).  As such, zinc is 

very stable and an ideal cofactor for enzymes that catalyze reactions requiring a redox-

stable ion.  Members in every class of enzymes require zinc for specific functions, and 

one prominent example is carbonic anhydrase.  Zinc is the essential cofactor for carbonic 

anhydrase, which is a critical regulator of acid-base balance in the plasma as it catalyzes 

the reversible hydration of carbon dioxide and converting it to bicarbonate (10, 21).  

Zinc also facilitates enzyme function by stabilizing enzyme structure as it binds to the 

active site or amino acid residues (10).  An important structural role of zinc is its binding 

to transcription factors to form zinc fingers, which interact with DNA sequences to 

regulate gene transcription and thus, gene expression (10).  Zinc is also an essential 

cofactor for certain enzymes, such as copper-zinc superoxide dismutase in which copper 

serves the catalytic role and zinc provides structural stability (31).  Zinc also regulates 

specific genes such as metallothionein by binding to the metal response element 

transcription factor (MTF1).  This is consistent with the role of metallothionein as a 

zinc-binding protein that regulates intracellular concentration of free zinc (3, 16). 

Zinc is an essential catalytic cofactor for enzymes, such as DNA and RNA 

polymerases and DNA ligases that mediate DNA replication and cell proliferation and 

glutamic acid dehydrogenase that is critical for normal central neural function. 
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Therefore, zinc deficiency may impair brain development and cognitive function (18).  

Zinc deficiency disrupts neurotransmission, attenuates enzymatic activity and reduces 

cell proliferation, thus impairing developmental neurogenesis (2, 23, 34).  A decrease in 

zinc availability affects glutathione metabolism in neuronal cells (20).  Glutathione 

(GSH) is an important thiol in the antioxidant defense system in both brain and 

peripheral cells; thus, zinc deficiency may lead to decreased GSH levels and induction of 

oxidative stress (23). Zinc deficiency not only compromises central neural function, but 

also other organ systems.  The immune system may be compromised, and growth 

retardation can occur (25, 26).  According to the World Health Organization (WHO), 

approximately one third of the world population is currently zinc deficient and an 

additional 17.3% are at risk for inadequate zinc intake (36).  Currently, it is estimated 

approximately 15% of the United States population has inadequate zinc intake (6).  

Because zinc deficiency is prevalent worldwide, it is important to understand the 

physiology of zinc and how it enters the cells of the body.  I seek to elucidate the 

adaptation of the choroid plexus to the reduced extracellular availability of zinc.   

Cellular accumulation of zinc and intracellular zinc availability is regulated by 

specific zinc transporters and the zinc-binding protein metallothionein.  Zinc transporters 

are categorized into two gene families, Solute Linked Carrier 30A (SLC30A) and Solute 

Linked Carrier 39A (SLC39A).  The SLC30A family members are also referred to as 

Zinc Transporters (ZnT); there are 10 identified ZnT zinc transporters, numbered ZnT 1-

10 (SLC30A1-10).  ZnT zinc transporters are responsible for transporting zinc out of the 

cytosol or out of cell altogether (i.e., into extracellular compartments) or into 
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subcellular/intracellular compartments (10).  The SLC39A family members are also 

referred to as Zrt, Irt-like proteins (Zip); there are 14 identified Zip zinc transporters, 

numbered Zip 1-14 (SLC39A1-14).  Zip zinc transporters mediate transport of zinc into 

the cytosol either from the extracellular space or from subcellular compartments (10). 

The Zn transporters regulate the total amount of zinc within the cell by transporting zinc 

into the cell out of cellular compartments when the availability is reduced or transporting 

zinc out of the cell or into specific subcellular compartments when excess zinc is 

present.  In addition, metallothionein, a metal binding protein containing cysteine 

residues, also contributes to intracellular regulation of zinc.  The thiol groups in the 

cysteine residues permit metallothionein to bind to metals.  Metallothionein gene and 

protein expression is up-regulated in the presence of increased extracellular zinc and 

may help regulate intracellular zinc homeostasis by releasing the mineral during 

decreased availability (9, 16, 28).  This is important in managing the intracellular zinc 

load and maintaining zinc homeostasis in order to avoid intracellular toxicity or 

deficiency of this essential nutrient.  In cells, zinc accumulates in high amounts but the 

free concentration of zinc is very low at femtomolar 10-12-15-15M picomolar 

concentrations (24).  Which subset of the 10 ZnT and 14 Zip transporters are expressed 

in a given cell vary with cell type.  Still, for choroid plexus and other tissues known to 

accumulate zinc and/or regulate compartmentation of zinc in different extracellular fluid 

compartments, it is unclear which ZnTs and Zips are expressed and what is their 

intracellular location. 



 

5 
 

 

Few studies have analyzed the accumulation and transport of zinc in the choroid 

plexus but only a limited number of specific zinc transporters have been identified in the 

rodent choroid plexus.  Figure 1 shows the current model of zinc transporter expression 

in rodent choroid plexus based on current, albeit limited literature on zinc transport in 

this epithelium.  Zip6 has been localized at the apical membrane in the rat choroid 

plexus, thus mediating zinc uptake from CSF and into the cytosol of the cell (5).  

Expression of both Zip1 mRNA and Zip4 mRNA has been demonstrated in rat choroid 

plexus, but cellular localization of these transporters has not yet been determined (1).  

Additionally, ZnT1, ZnT4 and ZnT6 are expressed within intracellular compartments in 

mouse choroid plexus, and ZnT7 is localized specifically in the golgi apparati (4, 5, 35).  

These ZnT transporters would mediate Zn removal from the cytosol into subcellular 

compartments or Golgi apparatus (11, 19, 35).  ZnT3 has been localized specifically in 

the apical membrane of the choroid plexus in mice and would thus mediate Zn efflux 

from the cytosol into CSF (35).  Nevertheless, current data for ZnT and Zip localization 

in choroid plexus are not altogether consistent with the total intracellular Zn 

accumulation in a Zn adequate state and cannot explain reported adaptations of choroid 

plexus to changes in Zn intake. 
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Figure 1: Current model for zinc transport in the rodent choroid plexus based on  
published literature.  Zip6 has been localized at the apical membrane, thus 

mediating zinc uptake from CSF and into the cytosol.  ZnT1, ZnT4, ZnT6 and ZnT7 
have been localized intracellularly, with ZnT7 localized specifically in the golgi 
apparatus; these transporters would mediate Zn transport from cytosol into subcellular 
compartments or Golgi apparatus.  ZnT3 has been localized specifically at the apical 
membrane, thus mediating Zn efflux from the cytosol into CSF (1, 4, 5, 35). 
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In the choroid plexus of zinc deficient rats, zinc still may be accumulated in high 

amounts.  However, based on the current model it is unclear how zinc is transported and 

accumulated in the choroid plexus.  Figure 2 shows the proposed model of zinc transport 

expression in choroid plexus.  I propose that zinc importers, Zip1 and Zip4 are localized 

at the basolateral membrane and mediate zinc uptake from blood, and the Zn exporter, 

ZnT1, is localized at the plasma membrane and mediates zinc efflux from the cytosol 

into blood.  Chowanadisai et al. observed that zinc concentrations in brains of neonatal 

rats from dams fed diets marginally low (10 mg Zn/kg) or deficient in zinc (7 mg Zn/kg) 

were comparable to those in brains of neonatal rats from dams fed control diets (25 mg 

Zn/kg); however, zinc deficient diets did decrease plasma zinc concentrations (5).  Also, 

the brains of neonatal rats from dams fed zinc deficient diets had a greater capacity to 

accumulate zinc as compared to controls.  However, in the current model for zinc 

transport in the choroid plexus, Zip6 is the only zinc importer localized at the plasma 

(apical) membrane; this would indicate zinc is accumulated at the apical membrane from 

CSF.  CSF, however, is a limited source of zinc.  Instead, it is more likely the choroid 

plexus would accumulate zinc at the basolateral membrane from blood, a richer source 

of zinc, to maintain optimal CSF zinc concentrations during periods of normal and 

reduced zinc availability.  Thus, as depicted in Figure 2, I propose that zinc importers, 

Zip1and Zip4 and Zn exporter, ZnT1, are localized at the basolateral membrane.  An 

additional discrepancy is that Chowanadisai et al. also observed in the brains of neonatal 

rats of dams fed zinc deficient diets ZnT1 mRNA and MT-1 mRNA expression 

decreased while Zip6 mRNA increased (5).  
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Figure 2: Proposed model for zinc transport in the choroid plexus.  Zip1 and Zip4 
are localized at the basolateral membrane and mediate zinc uptake from the blood into 
the cytosol.  ZnT1 is localized at the basolateral membrane, mediating zinc efflux from 
the cytosol and into the blood.  
 

  

C S F Blood 

ZIP6 

ZnT3 

ZnT4 

ZnT6 ZnT1 

ZnT7 

ZIP4 

ZIP1 

ZnT1 

? 

? 

? 

MT    Zn 



 

9 
 

 

Zinc transporter expression may be regulated by select hormones, such as 

estrogen and prolactin (22).  Whether ZnT or Zip zinc transporters are regulated by these 

or other hormones has not been investigated.  Like the choroid plexus, mammary and 

prostate epithelial tissues accumulate zinc to high levels, and transport zinc into breast 

milk and seminal fluid, respectively.  In both mammary and prostate epithelia the 

peptide hormone, prolactin, regulates zinc transport (15).  In murine mammary epithelial 

cells, Zip3 is localized to the basolateral membrane and likely facilitates zinc uptake into 

the mammary epithelial cell, whereas ZnT2 is localized to the apical membrane and 

mediates efflux zinc into milk (14, 27).  In HC11 mammary cells treated with 1 µg/ml 

prolactin, ZnT2 mRNA increased as early as 8 hours and continued to increase through 

24 hours (27).  Similarly, in immortalized PC-3 prostate cells, pretreatment with 

prolactin (30 nM, 18 hours) stimulated 60-minute zinc accumulation by 33% as 

compared to non-treated control cells (7).  The choroid plexus expresses an abundance 

of prolactin receptors and accumulates zinc in high amounts (22).  However, the 

potential for prolactin to regulate zinc transporter or metallothionein expression has not 

been investigated. 

The overall goal of this thesis project is to analyze the interdependent regulation 

of zinc transporters with the zinc-binding protein metallothionein as the choroid plexus 

epithelium adapts to increases or decreases in extracellular zinc.  The two specific 

objectives are as follows.  The first objective is to characterize the time-dependent 

changes in zinc transporter and metallothionein-1 (MT-1) gene expression in cultured 

choroid plexus as extracellular zinc is pharmacologically depleted or supplemented.  I 
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hypothesize that in response to pharmacological depletion of extracellular zinc, ZnT1 

and MT-1 gene expression will decrease, while Zip1 and Zip6 gene expression will 

increase.  I hypothesize that in response to pharmacological supplementation of 

extracellular zinc, ZnT1 and MT-1 gene expression will increase, while Zip1 and Zip6 

gene expression will decrease.  The second objective is to characterize the changes in 

zinc transporter and MT-1 gene expression in cultured choroid plexus in response to in 

vitro exposure to prolactin.  I hypothesize that in vitro exposure to prolactin will induce 

gene expression of MT-1, ZnT1, Zip1 and Zip6 in the choroid plexus of primary 

cultures.  
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2. MATERIALS AND METHODS  

2.1 Animal and tissue harvest 

For preparation of primary cultures of choroid plexus epithelia, choroid plexus 

tissues were harvested from 2-3 day old Sprague-Dawley rats.  Neonatal rats were 

obtained from timed pregnant dams that were purchased from an approved commercial 

vendor (Charles River Laboratories, Spencerville, OH) and arrived at the university 

vivarium at gestational day 16; dams had free access to food and water.  With approval 

from the Institutional Animal Care and Use Committee (IACUC) at Texas A&M 

University (Protocol #2011-128), choroid plexus tissues were harvested from the brains 

of neonatal rats using ethanol-sterilized instruments.  Rats were decapitated just above 

shoulders, leaving cerebellum and brain stem intact.  The brain was removed and placed 

on sterile filter paper for dissection of lateral and fourth choroid plexus.  Lateral and 

fourth choroid plexus tissues were removed from 36-50 individual animals, pooled and 

held in chilled collection media.   

In vitro experiments were performed in choroid plexus tissues isolated from adult 

and neonatal rats.  Individual adult rats were asphyxiated with compressed CO2 gas 

dispensed with a regulator.  Following decapitation, the brain was removed and lateral 

and fourth choroid plexus tissues were harvested.  The fourth and lateral choroid plexus 

tissues were collected in penicillin-supplemented DMEM/F12.  Neonatal rat choroid 

plexus tissues were harvested as described above and collected in penicillin-

supplemented DMEM/F12.  Both adult and neonatal tissues were thoroughly rinsed in 
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artificial cerebrospinal fluid supplemented with penicillin before placement in 

experimental media. 

 

2.2 Reagents 

Tissue collection medium consisted of DMEM/F12 (Sigma, St. Louis, MO) and 

penicillin (100 U/mL; Calbiochem-EMD Millipore, Billerica, MA).  Dissociation buffer 

contained 137 mM NaCl, 2.7 mM KCl, 0.7 mM Na2HPO4, 5.6 mM glucose and 10 mM 

HEPES (pH 7.4) and 5 U/mL protease (Sigma, St. Louis, MO) and 1,500 kU/mL DNase 

I (Calbiochem-EMD Millipore, Billerica, MA).  Cells were preplated in penicillin-

supplemented DMEM/F12 with 10% Nu-Serum IV (BD Biosciences, San Jose, CA).  

Initial plating medium consisted of minimum essential medium with D-valine substituted 

for L-valine (U.S. Biological, Swampscott, MA) with 10% Nu-Serum IV, 1.5 µM 

triiodo-L-thyronine, 50 ng/mL epidermal growth factor, 100 ng/mL prostaglandin E1 and 

10 µM forskolin; all growth supplements were of tissue culture grade and purchased 

from Sigma (St. Louis, MO).  Cells were maintained in DMEM/F12 with 5% Nu-Serum 

IV and the growth supplements listed above at the same concentrations.  Plating and 

maintenance media did not contain antibiotics or fungicides.  Treatment medium 

consisted of DMEM/F12, but contained neither serum nor growth supplements.  Stock 

solutions of approximately 4 mM zinc chloride (Sigma, St. Louis, MO) were prepared in 

25 mL sterile ultra pure water; aliquots were added to serum-free DMEM/F12 to a final 

concentration of 10 or 25 μM for experimental in vitro treatment of cells or tissues.  

Stock solutions of approximately 10 mM diethylene triamine pentaacetic acid (DTPA; 
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TCI, Philadelphia, PA) were prepared in 10 mL of ultra pure water containing 0.5 M 

sodium hydroxide (NaOH); aliquots were added to serum free DMEM/F12 to a final 

concentration of 10, 25, or 50 µM for experimental in vitro treatment of cells or tissues.  

Stock solutions of approximately 325 µM prolactin (Sigma, St. Louis, MO) were 

prepared in 929 µL of ultra pure water; aliquots were added to serum free DMEM/F12 to 

a final concentration of 1000 nM, 100 nM, 10 nM, or 1 nM for experimental in vitro 

treatment of cells or tissues.  Stock solutions of approximately 100 mM AG-490, a 

JAK/STAT inhibitor, (Calbiochem-EMD Millipore, San Diego, CA) were prepared in 

170 µL of dimethyl sulfoxide (DMSO), and AG-490 was further diluted to 10 mM 

prepared in 27 µL of DMSO; aliquots were added to serum-free DMEM/F12 to a final 

concentration of 10 µM for experimental in vitro treatment of cells or tissues.  Reagents 

used specifically for analyses of gene expression and protein expression are described in 

their respective section.  

 All chemicals were of analytical grade and purchased from commercial vendors.  

The following specific reagents were purchased from the respective vendors: zinc 

chloride (Sigma, St. Louis, MO); DTPA (TCI, Philadelphia, PA); tetrakis-(2 

pyridylmethyl) ethylenediamine (Calbiochem-EMD Millipore, San Diego, CA); 

prolactin (Sigma St. Louis, MO); AG-490, (Calbiochem-EMD Millipore, San Diego, 

CA).  Primers were designed by Primer Express software (PE Applied Biosystems) and 

purchased from DNA Technologies (Coralville, IA) and Qiagen (Foster City, CA).  
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2.3 Choroid plexus epithelial cell isolation and primary culture 

Epithelial cells were dispersed from neonatal rat choroid plexus tissues following 

the protocol described previously with minor modifications (33).  Briefly, tissues were 

suspended in dissociation buffer (10 mM HEPES, pH 7.4) with 5 U/mL protease and 

1,500 kU/mL DNase I.  The tissue-enzyme suspension was shaken at 37˚C and triturated 

intermittently with fire polished pipettes over a 20-min period.  Aliquots of released cells 

were filtered through a sterile nylon cell strainer (100 µm; BD Biosciences, San Jose, 

CA) with intermittent rinsing of the filter with penicillin-supplemented DMEM/F12-

10% Nu-Serum IV to facilitate filtration of cells and dilute the enzyme concentration in 

the filtrate by 10- to 12-fold.  The cell suspension was centrifuged and washed once with 

a generous volume of penicillin-supplemented DMEM/F12.  Cells then were suspended 

in penicillin-supplemented DMEM/F12-10% Nu-Serum IV and pre-plated in a single 

35-mm Petri dish for 3.5 h in a humidified atmosphere (37˚C, 95% air-5% CO2).  During 

the pre-plating period, fibroblasts rapidly attach to the plating surface such that most 

unattached cells are epithelial cells.  Unattached cells then were collected, centrifuged, 

and suspended in plating medium consisting of a mixture of antibiotic-free minimum 

essential medium with D-valine substituted for L-valine (a nutritional modification that 

starves additional fibroblasts), 10% Nu-Serum IV and growth promoters (1.5 µM 

triiodo-L-thyronine; 50 ng/mL epidermal growth factor; 100 ng/mL prostaglandin E1; 10 

µM forskolin).  Cells were plated at a density of 3 x 105 cells/cm2 on impermeable 

supports, e.g., polystyrene tissue culture plates or glass chambered-coverslips, and 

maintained at 37˚C (humidified 95% air-5% CO2).  Seventy-two hours post-plating, 



 

15 
 

 

unattached cells were removed, and the initial plating medium was replaced with 

maintenance medium (DMEM/F12 with 5% Nu-Serum IV and growth promoters but no 

antibiotics).  Thereafter, medium was changed every 2-3 days.  Cells grew to confluence 

as a differentiated monolayer within 6 days, and experiments were conducted 6-9 days 

post-plating. 

 

2.4 In vitro supplementation of extracellular zinc or depletion with 

diethylenetriaminepentaacetic acid (DTPA) in primary cell cultures of choroid 

plexus and isolated choroid plexus tissues  

Cells were plated in 12-well culture plates.  Cells were incubated in serum-free 

DMEM/F12 medium 12-16 h prior to start of experimental treatment.  Cells were treated 

with serum free DMEM/F12 that contained no agent (control), 25 µM ZnCl2 

(supplementation), 10 µM DTPA (extracellular zinc depletion) for up to 48 hours at 

37˚C (95% air-5% CO2; humidified air).  Neonatal choroid plexus tissues were incubated 

in 12-well plates with 1 ml DMEM/F12 and treated with DMEM/F12 with no agent 

(control), with 25 µM ZnCl2 (supplementation) or 10 µM DTPA (depletion) for 24 

hours.  Additional test reagents were added to treatment media as needed.  At the end of 

treatment, control and experimental cells and tissues were collected and processed for 

assay of specific parameters.  
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2.5 Analysis of gene expression by Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

Total RNA from cultured choroid plexus cells or isolated choroid plexus tissues 

was extracted using an RNeasy Mini Kit (Qiagen, Valencia, CA).  After treatment cells 

were rinsed briefly with phosphate buffered saline (PBS).  Per manufacturer’s 

instructions, cells were disrupted in 500 µL of the provided RLT lysis buffer with β-

mercaptoethanol (β -ME; 10 µL per 1 ml RLT lysis buffer), and the suspension was 

homogenized by centrifugation (maximum RPM, 2 min) through a QIAshredderTM 

column.  Homogenates were cleared by a 1:1 dilution in 70% EtOH and applied to the 

RNeasy Spin Column on which each was treated with DNase (Qiagen, Valencia, CA) 

before final elution in RNase-free water.  Total RNA was extracted from intact tissue in 

a similar manner with the following minor modifications.  After treatment, tissues were 

transferred to 1500 µL microtubes and rinsed with 500 µl of PBS by inversion then 

centrifuged (10,000 RPM, 30 sec).  PBS was removed, and tissues were triturated in 600 

µl of RLT/β-ME prior to homogenization by centrifugation through a QIAshredderTM  

(maximum RPM, 2 minutes).   

Samples of total RNA were evaluated for quality and integrity as follows.  Using 

a Nanodrop 1000 nanospectrophotometer, the Abs260 nm:Abs280 nm ratio was 

determined to assess the purity of RNA; a ratio of ~2.0 is an acceptable index of pure 

RNA, whereas values less than 2.0 indicate unacceptable contamination by DNA and 

protein or other contaminants.  The Abs260 nm:Abs230 nm ratio was determined as a 

secondary assessment of nucleic acid purity; the values were typically in the range of 
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2.0-2.2, and values below this range may indicate contamination.  Integrity of RNA was 

assessed using an Agilent 2100 Bioanalyzer (Santa Clara, CA) and an Agilent RNA 

6000 Nano Kit (Santa Clara, CA).  First-strand cDNA was synthesized from samples 

with RNA integrity numbers >8 using Superscript III First-Strand Synthesis System 

SuperMix (Invitrogen, Carlsbad, CA) with 5x iScript reaction mix and iScript reverse 

transcriptase.  For each sample, a 5-µL aliquot of cDNA was amplified by qRT-PCR 

using forward and reverse primers against each gene of interest, as well as β-actin and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH).  Gene expression in each cDNA 

sample was analyzed in triplicate by qRT-PCR with SYBR Green® detection (iQTM 

SYBR® Green Supermix, BioRad, Hercules, CA) in a single-color real-time detection 

system (BioRad MyQ, Hercules, CA).  Initial Denaturation: 10 min, 95˚C; 

Amplification/Quantification (45 cycles): 15 sec, 95˚C; 30 sec, 60˚C; Melt Curve: 55°C-

95˚C.  Copy number for each gene of interest was determined and normalized to those of 

β-actin and GAPDH.  Primers for rat metallothionein-1 and carbonic anhydrase-2 and 

zinc transporters, ZnT1 and Zip6 were designed by Primer Express software (PE 

Applied Biosystems) based on GenBank registered sequences for rat β-actin, 

NM_031144; GAPDH, NM_017008; MT-I, NM_138826; CA-2, NM_019291.1; 

ZnT1/Slc301, NM_022853.1; ZIP6/Slc39a6, NM_001106708.1 and synthesized by 

DNA Technologies (Coralville, IA).  Primer sequences are listed in Table 1.  Primers for 

rat ZIP1 were obtained from Qiagen (Foster City, CA).  
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Table 1: Forward and reverse primer sequences used to analyze expression of genes that encode for  
rat MT-1, CA-2 and zinc transporters, ZnT1 and ZIP6 are listed as well as gene name and  
respective PubMed GeneBank ID number. 

 
Gene GeneBank ID Forward Primer (5’ – 3’) Reverse Primer (3’ – 5’) 

β-Actin NM_031144 ATGGTGGGTATGGGTCAG TACTTCAGGGTCAGGATGC 
CA2 NM_019291 ATGACCCTTCCCTACAGC GAGCCCCAGTGAAAGTGA 
GAPDH NM_017008 ATGACTCTACCCACGGC ACTCAGCACCAGCATCA 
MT-1 NM_138826 CACCGTTGCTCCAGATTCA  CAGCAGCACTGTTCGTCA  
Zip6 NM_001106708 TGAGTGAGCCCAGGAAGA CAGACAAGACCGAGCATCAA 
ZnT1 NM_022853 CCATTCTGGAAAGGAGGCA TGATTCGGGCTGTTTGTTTG 
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2.6 Analysis of intracellular accumulation of elemental zinc by inductively coupled 

plasma mass spectrometry (ICP-MS) 

Total intracellular accumulation of elemental zinc was determined by inductively 

coupled plasma-mass spectrometry (ICP-MS).  Cells were plated in 12-well culture 

plates and incubated with 1 mL experimental medium per well.  To account for 

background levels of zinc, 1 mL of DMEM/F12 was placed in wells with no cells.  After 

treatment, all experimental media were collected into pre-weighed (± 0.1 mg) 15 mL 

polyethylene tubes.  All wells were rinsed twice with phosphate buffered saline (PBS) 

with 1 mM ethylenediaminetetraacetic acid (EDTA, a chelating agent that removes 

extracellular divalent cations), then once with PBS alone.  Cells were air-dried for 48 

hours.  200 µL of concentrated nitric acid was added to each treatment well and each 

blank well to solubilize all metals and minerals, as well cellular material.  The nitric acid 

mixture from an individual well was collected and transferred to a pre-weighed (± 0.1 

mg) 15 mL tube.  The well was rinsed 3 times with ultra pure water, and each rinse was 

collected and placed in the same tube as the nitric acid mixture in the collection tube.  

Additional ultra pure water was dispensed into each tube, bringing the final total volume 

to approximately 10 mL, and the final weight was recorded (± 0.1 mg).  The final nitric 

acid concentration was 0.02% (200 µL/10,000 µL).  The samples were then analyzed by 

ICP-MS by Dr. Robert J. Taylor of the Trace Element Research Laboratory in the 

College of Veterinary Medicine at Texas A&M University. 
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2.7 Fluorescent immunocytochemical staining for metallothionein-1 (MT-1) 

Cells were plated in 4-well chamber slides and incubated with 400 µL 

experimental medium.  At the end of treatment, cells were cleared of experimental 

medium, rinsed briefly in phosphate buffered saline (PBS) and then fixed in 3.7% 

formaldehyde/0.1% Triton X-100/PBS at room temperature for 10 minutes while 

rocking.  Cells were then rinsed twice with PBS prior to immersion in cold acetone (3 

min, -20˚C); the latter treatment permeabilizes lipid membranes and improves antibody 

penetration into the cell and subcellular compartments.  Cells were rinsed twice in PBS, 

and then incubated with 1% bovine serum albumin (BSA) in PBS for 30 minutes while 

rocking to minimize non-specific binding of primary antibody.  Cells were subsequently 

incubated with mouse monoclonal anti-MT-1 (ENZO, Plymouth Meeting, PA; 1:200 

dilution in 1% BSA/PBS) for 1 hour while rocking.  Cells were rinsed in 1% BSA/PBS, 

then incubated with Alexa Fluor® 350 goat anti-mouse IgG (Invitrogen, Eugene, OR) at 

1:200 dilution in 1% BSA/PBS for 30 minutes while rocking.  To correct for background 

fluorescence due to non-specific binding of secondary antibody, representative cells 

were incubated with only secondary antibody and no primary antibody.  Cells then were 

rinsed in PBS.  Cover slips were mounted with Prolong® Gold antifade reagent with 4', 

6-diamidino-2-phenylindole (DAPI; Molecular Probes-Invitrogen, Eugene, OR) to 

counterstain nuclei.  Cells were viewed on an inverted epi-fluorescence microscope 

(Zeiss Axiovert 200, Munich, Germany) fitted with 20X and 63X (oil immersion) 

objectives and FITC and UV filters and illuminated by a mercury lamp.  Digital images 

were captured with Axiovision 4.7 software (Zeiss, Munich, Germany).  
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2.8 Statistical analysis 

 Results shown are expressed as means ± SE, except where noted.  Control and 

experimental means from experiments that investigated the possible differences in zinc 

accumulation in DTPA-treated cells or zinc-supplemented cells versus that in control 

cells were compared by one-way ANOVA with a Tukey-Kramer post hoc test.  Control 

and experimental means from experiments that evaluated time-dependent effects of 

DTPA treatment and extracellular zinc supplementation on gene expression in cultured 

choroid plexus cells were first compared by two-way analysis of variance (ANOVA) or 

ANOVA with the appropriate post hoc test.  If significant differences in the main effect 

of treatment was determined, then a t-test was performed to compare control and 

experimental means at each time point to identify differences between control and 

DTPA treatment groups or between control and zinc-supplemented groups.  Differences 

were deemed significant at P ≤ 0.05.    
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3. RESULTS 

3.1 Experimental approach  

Time-dependent changes in zinc transporter and metallothionein (MT-1) gene 

expression elicited by depletion or supplementation of extracellular zinc were 

characterized in vitro in primary cultures of choroid plexus epithelial cells and isolated 

segments of choroid plexus harvested from neonatal rats.  My experimental approach 

was to analyze time-dependent gene expression of specific zinc transporters, i.e., ZnT1, 

ZIP1 and ZIP6, the zinc-binding protein, MT-1 and the zinc-dependent enzyme, 

carbonic anhydrase-2 (CA-2) in primary cultures of choroid plexus in which 

extracellular zinc was depleted or supplemented.  Because carbonic anhydrase is a zinc-

dependent enzyme that is critical for production of CSF, analysis of CA-2 gene 

expression may lend insight into how other aspects of choroid plexus biology might be 

altered by extracellular zinc depletion or supplementation.  Experiments were performed 

in primary cultures of neonatal rat choroid plexus epithelium, which permits discrete and 

direct access to the epithelium.  Cells were incubated in serum-free DMEM/F12 medium 

12-16 h prior to start of experimental treatment; this would minimize the influence of the 

various growth factors used to promote cell differentiation and proliferation on gene 

expression.  Cells were then treated with serum-free DMEM/F12 without any test agent 

(i.e., Control), 10 µM of the cell impermeant zinc chelator diethylene triamine 

pentaacetic acid (DTPA) (i.e., extracellular zinc depletion), or 25 µM ZnCl2 (i.e., 

extracellular zinc supplementation) for up to 48 hours.  Changes in gene expression were 

analyzed in control cells and cells in which extracellular zinc was depleted or 
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supplemented for both a short time course with time intervals of 3 h, 6 h, 9 h and 12 h 

and a long time course with time intervals of 12 h, 18 h, 24 h and 48 h.  Neither 

supplementation with 25 µM zinc chloride (ZnCl2) or depletion of extracellular zinc with 

10 µM DTPA was toxic, permitting evaluation of cell adaptation rather than 

cytotoxicity.  Control, DTPA-treated, and zinc-supplemented cells were collected at 

various timed intervals, and total RNA was extracted.  mRNA levels of the genes of 

interest (CA-2, MT-1, ZnT-1, Zip1, Zip6) and β-actin and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) were analyzed by fluorescence quantitative real-time 

polymerase chain reaction (qRT-PCR; SYBR Green® detection).  Expression of each 

gene was normalized to that of β-actin and GAPDH gene expression; expression of each 

gene of interest in treated cells was compared to expression in the time-matched 

controls.  

3.2  Cellular accumulation of zinc in cultured choroid plexus cells treated with 

extracellular zinc chelator or supplemented with zinc 

 To determine whether pharmacological depletion of extracellular zinc, i.e., 

treatment with the DTPA, or supplementation of extracellular medium with zinc altered 

total cellular accumulation of zinc, cellular content of elemental zinc was measured by 

inductively coupled plasma-mass spectrometry (ICP-MS; Trace Element Research 

Laboratory TAMU).  Evaluation of possible changes in cellular accumulation of zinc 

would lend insight into the implications of changes in zinc transporter and MT-1 gene 

expression.  Cells were incubated in serum-free medium for 48 h without zinc or DTPA 

(control) or with 10 µM DTPA or 25 µM ZnCl2.  Total accumulation of elemental zinc 
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was normalized to total cellular protein (n = 2 separate culture preparations).  Cells 

accumulated zinc in each condition.  Total zinc accumulation in control cells was 0.903 

± SD 0.042 ng/mg cellular protein.  Cellular accumulation of zinc was not markedly 

altered after 48-h depletion or supplementation of extracellular zinc.  In DTPA-treated 

cells total zinc accumulation was 0.856 ± SD 0.041 ng/mg cellular protein; in zinc-

supplemented cells, zinc accumulation was 0.898 ± SD 0.036 ng/mg cellular protein. 

3.3  Effects of pharmacological depletion of extracellular zinc on gene expression of 

CA-2, MT-1, and zinc transporters in cultured choroid plexus cells  

 Cells were treated without (control) or with 10 µM DTPA for 12 hours, and both 

representative DTPA-treated and time-matched control cells were collected at 3 h, 6 h, 9 

h, and 12 h (Figure 3C, D).  CA-2 gene expression in DTPA-treated cells was similar to 

that in control cells through 9 h; at 12 h CA-2 expression increased by 34% as compared 

to time-matched control but was not significant (p = 0.088).  MT-1 expression was 

induced 1.2-fold at 3 h, but by 6 h and 9 h had decreased to 30% of control values (p < 

0.03) and further decreased at 12 h to 10% of control values (p < 0.0005).  Gene 

expression of the zinc exporter ZnT1 decreased by 70% at 3 h and remained low up 

through 12 h as compared to control.  Gene expression of the zinc importer Zip1 was 

comparable to that in time-matched controls through 9 h; at 12 h mean Zip1 gene 

expression was 60% greater than in controls (p < 0.17).  Similarly, gene expression of 

the zinc importer, Zip6, in DTPA-treated cells was significantly greater than controls by 

10% and 30% at 6 h and 12 h respectively in control cells (p < 0.05).  



 

25 
 

 

 Similar changes in CA-2, MT-1, ZnT1, Zip1 and Zip6 gene expression were 

observed during extended depletion of extracellular zinc with 10 µM DTPA for up to 48 

h; representative DTPA-treated cells and time-matched control cells were collected at 12 

h, 18 h, 24 h and 48 h (Figure 4C, D).  Throughout the extended DTPA treatment CA-2 

gene expression was comparable to that in controls from 12 h through 24 h, but at 48 h 

was slightly greater than controls (p < 0.03).  In DTPA-treated cells, MT-1 expression 

was again markedly decreased by 90% at 12 h and remained low through 48 h (p < 

0.007); in some cases MT-1 expression was decreased by 98% as compared to controls.  

Likewise, as compared to control, DTPA treatment decreased ZnT1 expression by 70% 

at 12 h through 18 h, and ZnT1 expression remained suppressed by approximately 50% 

at 24 h and 48 h (p < 0.02).  Extended DPTA treatment also elicited changes in zinc 

importer gene expression.  Zip1 expression fluctuated somewhat; expression decreased 

slightly at 12 h (p < 0.40), returned to control values at 18 h, but then decreased by 50% 

at 24 h (p < 0.03) and returned to control values by 48 h (p < 0.12).  DTPA increased 

Zip6 expression by 50% at 12 h as compared to controls, (p < 0.04); however, 

expression levels were comparable to controls at 18 h and 48 h (p < 0.23).  

3.4   Effects of direct supplementation of extracellular zinc on gene expression of CA-

2, MT-1, and zinc transporters in cultured choroid plexus cells 

 The short term regulation of gene expression was examined in cultured choroid 

plexus cells treated without (control) or with 25 µM ZnCl2 for 12 hours; zinc-

supplemented cells and time-matched control cells were collected at 3 h, 6 h, 9 h, and 12 

h (Figure 3A, B).  As compared to controls, extracellular zinc supplementation did not 
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significantly alter CA-2 expression over the 12-h treatment period (p > 0.10).  However, 

as compared to controls, MT-1 expression was induced 6-fold within 3 h of the initiation 

of zinc supplementation (p < 0.03), and remained elevated through 12 h.  Zinc 

supplementation also increased gene expression of ZnT1 by 2-fold within 3 h as 

compared to controls and expression remain elevated through 12 h (p < 0.05).  In 

contrast, significant changes in gene expression of zinc importers, Zip1 and Zip6, were 

not observed over the 12-h zinc supplementation period.    

 Similar changes in CA-2, MT-1, ZnT1, Zip1 and Zip6 gene expression were 

observed during the extended 48-h supplementation of with 25 µM ZnCl2; representative 

zinc-supplemented cells and time-matched control cells were collected at 12 h, 18 h, 24 

h and 48 h (Figure 4A, B).  CA-2 expression was comparable to controls through 24 h, 

but at 48 h expression was approximately 33% greater than controls (p < 0.02).  MT-1 

expression also increased with extended zinc supplementation, peaking at 12 h through 

18 h, but remaining markedly greater than controls by 8 and 3-fold at 24 h and 48 h 

respectively.  Similarly, zinc supplementation induced gene expression of ZnT1 by 

approximately 50% at 12 h through 24 h (p < 0.0001) and at 48 h, ZnT1 expression was 

2-fold greater than controls (p < 0.11).  With extended zinc supplementation, Zip1 

expression decreased by 40% as compared to control at 12 h (p < 0.004); however, at 18 

h through 48 h Zip1 expression in zinc-supplemented cells was comparable to controls 

(p > 0.10).  Zinc supplementation also increased Zip6 expression 40% at 12 h as 

compared to control (p < 0.007), but thereafter expression was comparable to controls at 

18 h through 48 h (p > 0.40).   
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Figure 3.  Time-dependent changes on gene expression of metallothionein-1 (MT-1),  

carbonic anhydrase-2 (CA-2) and zinc transporters ZnT1, Zip1 and Zip6 in  
primary cultures of neonatal rat choroid plexus epithelial cells during 12- 
hour direct supplementation of extracellular zinc (A, B) and  
pharmacological depletion of extracellular zinc with a cell impermeable zinc  
chelator (C, D).  Cells were plated in 12-well culture plates. Experiments were 

conducted on confluent differentiated monolayers 7-9 days post plating.  Cells were 
incubated in serum-free DMEM/F12 medium 12-16 h prior to start of experimental 
treatments.  Cells were treated for 12 h with serum free DMEM/F12 that contained no 
agent (control, Ctrl), 25 µM ZnCl2 (supplementation; A, B), or 10 µM diethylene 
triamine pentaacetic acid (DTPA; depletion; C, D).  Representative non-treated 
(Control), zinc-supplemented and DTPA-treated cells were collected at 3 h, 6 h, 9 h, and 
12 h.  For all samples, expression of genes encoding for MT-1, CA-2, ZnT1, Zip1 and 
Zip6 were normalized to expression of gene encoding for β−actin and GAPDH.  Gene 
induction was expressed as fold-change versus respective time-matched control, as 
calculated by dividing normalized gene expression in experimental sample by 
normalized gene expression in the respective control sample.  Data are the means for 
fold-induction at each time point as determined in 3 separate primary culture 
preparations, i.e., N=3.  * The asterisk indicates significant difference as compared to 
time-matched control; p<0.05. 
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Figure 4.  Time-dependent changes on gene expression of metallothionein-1 (MT-1),  
 carbonic anhydrase-2 (CA-2) and zinc transporters ZnT1, Zip1 and Zip6 in  

 primary cultures of neonatal rat choroid plexus epithelial cells during 48- 
hour direct supplementation of extracellular zinc (A, B) and 
pharmacological depletion of extracellular zinc with a cell impermeable zinc 
chelator (C, D).  Cells were plated in 12-well culture plates, and experiments  

were conducted on confluent differentiated monolayers 7-9 days post plating.  Cells  
were incubated in serum-free DMEM/F12 medium 12-16 h prior to start of  
experimental treatments.  Cells were treated for 48 h with serum free DMEM/F12  
that contained no agent (control, Ctrl), 25 µM ZnCl2 (supplementation; A, B), or 10  
µM diethylene triamine pentaacetic acid (DTPA; depletion; C, D).  Representative  
non-treated (Control), zinc-supplemented and DTPA-treated cells were collected at  
12 h, 18 h, 24 h, and 48 h.  For all samples, expression of genes encoding for MT-1,  
CA-2, ZnT1, Zip1 and Zip6 were normalized to expression of gene encoding for  
β−actin and GAPDH.  For conditions of extracellular zinc supplementation or  
depletion, gene induction was expressed as fold-change versus control, as calculated  
by dividing normalized gene expression in experimental sample by normalized gene  
expression in the respective control sample.  Data are the means for fold-induction at       
each time point as determined in 3 separate primary culture preparations, i.e., N=3.  *  
The asterisk indicates significant difference as compared to time-matched control;  
p<0.05. 
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3.5 Protein expression of metallothionein-1 in zinc-depleted or supplemented 

choroid plexus cells 

Cultured cells were plated in chamber slides and incubated for 48 h in serum-free 

medium alone (control), with 10 µM DTPA, or with 25 µM ZnCl2.  Cells were then 

fixed and immunostained for MT-1 protein using a fluorescent secondary antibody 

(green); cell nuclei were stained with DAPI (blue) (Figure 5).  In control cells, there was 

a diffuse fluorescence in the cytosol with marked punctate fluorescence.  In DTPA-

treated cells, the diffuse cytosolic fluorescence was less intense than in control cells; 

punctate fluorescence also was less pronounced.  In zinc-supplemented cells, both 

diffuse and punctate fluorescent was more intense that in control cells.  These imaging 

data indicate that metallothionein protein expression decreased in response to DTPA 

treatment and is increased in response to zinc supplementation; this was consistent with 

the observed suppression and induction of MT-1 gene expression by the respective 

manipulations of extracellular zinc.    
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Figure 5. Fluorescent immunocytochemical staining for metallothionein-1 (MT-1)  
in primary cultures of neonatal rat choroid plexus epithelial cells during 48- 
hour direct supplementation of extracellular zinc and pharmacological 
depletion of extracellular zinc with a cell impermeable zinc chelator.    

Cultured cells were plated in chamber slides, and incubated for 48 h in serum-free 
medium alone (control; A1, 2), with 25 µM ZnCl2 (B1, 2) or with 10 µM DTPA (C1, 2).  
Cells were then fixed and immunostained for MT-1 protein using a fluorescent 
secondary antibody (green); cell nuclei were stained with DAPI (blue) and fitted with 
20X (A1, B1, C1) and 63X (A2, B2, C2) objectives. 

A1 A2 

B1 B2 

C1 C2 
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3.6  Effects of in vitro pharmacological depletion and supplementation of 

extracellular zinc on gene expression of CA-2, MT-1, and zinc transporters in 

isolated choroid plexus tissues 

 To determine whether gene expression of zinc transporters and metallothionein 

might be regulated in response to changes in extracellular zinc in the intact choroid 

plexus epithelial tissue as they were in primary cultures of choroid plexus epithelial 

cells, gene expression was compared in isolated neonatal rat choroid plexus tissues 

subjected to similar manipulations simulating extracellular zinc depletion and 

supplementation.  Both lateral and IVth choroid plexus tissues from 3 animals were 

pooled and incubated for 24 h in serum-free DMEM/F12 with 10 µM DTPA or with 25 

µM ZnCl2 (n = 3-5 sets of pooled tissue per each condition).  At the end of treatment, 

total RNA was extracted, and mRNA levels of CA-2, MT-1, ZnT1, Zip1, Zip6, β-actin, 

and GAPDH were analyzed by fluorescence qRT-PCR (Figure 6A, B).  In each control 

and treated tissue sample, expression of each test gene was normalized to that of β -actin 

and GAPDH; however, gene expression values in treated tissues were not subsequently 

normalized to those in control tissues.  Although CA-2 expression in DTPA-treated 

tissues was comparable to CA-2 expression in control tissues (p > 0.3), metallothionein 

and zinc transporter gene expression levels were markedly different.   
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Mean MT-1 expression in DTPA-treated tissues was approximately 93% less than that in 

control tissues (0.015 ± SE 0.0007 vs. 0.561 ± SE 0.004, p < 0.007).  Likewise, ZnT1 

expression in DTPA tissues was approximately 50% less than that in control tissues 

(0.341 ± SE 0.062 vs. 0.688 ± SE 0.004, p < 0.005).  Concurrently, gene expression of 

zinc importers increased in DTPA-treated tissues.  Mean Zip1 expression in DTPA-

treated tissues was 65% greater than that in control tissues (1.676 ± SE 0.270 vs. 1.022 ± 

0.078, p < 0.04), while mean Zip6 expression was approximately twice that in control 

tissues (1.374 ± SE 0.093 vs. 0.602 ± SE 0.077, p < 0.0004).  Zinc supplementation did 

not alter CA-2 expression as compared to control values (p > 0.23), but doubled mean 

MT-1 expression (Zinc: 1.162 ± SE 0.174 vs. Control: 0.561 ± SE 0.004, p < 0.03) and 

increased ZnT1 expression by 85% (Zinc: 1.280 ± SE 0.167 vs. Control: 0.688 ± SE 

0.004; p < 0.02).  Zinc supplementation did not significantly alter Zip1 or Zip6 

expression as compared to controls (Zip1, Zinc: 1.150 ± SE 0.053 vs. Control: 1.011 ± 

SE 0.078, p > 0.093; Zip6-Zinc: 0.841 ± SE 0.185 vs. Control: 0.602 ± SE 0.077, p > 

0.142).   
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Figure 6.  Effects of pharmacological depletion of extracellular zinc or zinc  
 supplementation on gene expression of metallothionein-1 (MT-1) and  
 carbonic anhydrase-2 (CA-2) (A) or zinc transporters ZnT1, Zip 1  
 and Zip6 (B) in isolated primary cultures of neonatal rat choroid plexus tissues.  
Neonatal rat choroid plexus tissues (lateral and IVth) were harvested and pooled from 3 
animals and treated for 24 h with serum free DMEM/F12 that contained no agent 
(control, Ctrl), 25 μM ZnCl2 (supplementation), or 10 μM diethylene triamine 
pentaacetic acid (DTPA). For all samples, expression of genes encoding for MT-1, CA-
2, ZnT1, ZIP1 and ZIP6 were normalized to expression of gene encoding for β−actin and 
GAPDH.  For conditions of extracellular zinc supplementation or depletion, gene 
induction was expressed as the normalized gene expression in experimental sample 
without normalizing gene expression to the control sample.  Data are expressed in 
triplicate measures.  Data are the fold-induction as determined in 3 sets of pooled tissues, 
i.e., N=3.  *The asterisk indicates significant difference as compared to control; p<0.05. 
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3.7 Potential regulation of zinc transporter and metallothionein gene expression by 

prolactin 

 Prolactin may regulate zinc transporter expression in mammary epithelia (19).  

Given the high density of prolactin receptors in the choroid plexus epithelium, prolactin 

is a reasonable candidate hormone for regulation of zinc transport in this epithelium.  As 

a first approach to characterize the potential regulation of zinc transport in choroid 

plexus, I conducted a series of pilot experiments to evaluate the efficacy of prolactin to 

alter zinc transporter and metallothionein gene expression in concentration-dependent 

manner in cultured choroid plexus cells.  After overnight incubation in serum-free 

medium, cells were incubated in serum-free medium for 24 h without additional agents 

(Control), with 25 µM ZnCl2, or with 1, 10, 100, or 1000 nM prolactin.  At the end of 

treatment; total RNA was extracted, and gene expression of CA-2, ZnT1, Zip6, and MT-

1 were analyzed by fluorescence qRT-PCR and normalized to β-actin and GAPDH 

mRNA (Figure 7A, B).  This experiment was performed in two separate culture 

preparations (n = 2).  For these experiments, supplementation of extracellular zinc 

served as an internal control for the predicted changes in gene expression of zinc 

transporters and MT-1.  Whereas zinc supplementation did not markedly alter mean CA-

2 expression, prolactin increased CA-2 expression by 30% or more at all concentration.  

There was however, no apparent concentration-dependent effect by prolactin.  Zinc 

supplementation increased MT-1 expression an average of 28-fold.  At all 

concentrations, prolactin also induced MT-1 expression.  As compared to controls, 1 nM 

and 1000 nM prolactin increased MT-1 expression by an average of 6.5-fold and 7.5-
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fold, respectively, and 10 nM and 100 nM prolactin increased MT-1 expression by an 

average of 3.8- and 4.5-fold.  Zinc supplementation increased expression of the zinc 

exporter, ZnT1 by 90%; prolactin also increased ZnT1 expression at all concentrations 

by 30%, 50%, 30%, and 70% at 1, 10, 100 and 1000 nM.  Zinc supplementation 

increased Zip6 expression by an average of 3.4-fold as compared to controls.  Prolactin 

also induced Zip6 expression; at 1, 10 and 100 nM prolactin each increased expression 

by approximately 3-fold, and 1000 nM prolactin increased expression by approximately 

4.5-fold.   

 In the mammary gland prolactin-dependent regulation of zinc transporter gene 

expression is mediated through the JAK/STAT signaling pathway (19).  Thus, the 

JAK/STAT inhibitor, AG-490, was used to determine whether this signaling pathway 

might also be involved in the observed effects of prolactin on zinc transporter and MT-1 

gene expression.  After overnight incubation in serum-free medium, cultured choroid 

plexus epithelial cells were treated for 24 h in serum-free medium without hormone 

(Control), or 10 or 100 nM prolactin alone or with 10 µM AG-490 (4-h pretreatment).  

This experiment was conducted in two separate culture preparations (n = 2).  Total RNA 

was then extracted; ZnT-1, Zip6, MT-1 and CA-2 mRNA expression was analyzed by 

fluorescence qRT-PCR, and gene expression was normalized to β-actin and GAPDH 

(Figure 8A, B).  As compared to control, treatment with the JAK/STAT inhibitor alone 

nearly doubled expression of both CA-2 and MT-1, but decreased expression of both 

ZnT1 and Zip6 by approximately 25%.  This suggested that in absence of prolactin 

JAK/STAT signaling pathway might suppress basal expression of CA-2 and MT-1, 
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while facilitating expression of ZnT1 and Zip6.  Prolactin at 10 nM and 100 nM 

increased expression of CA-2 by an average of 80%; in the presence of AG-490, 

increased expression of CA-2 persisted.  Expression of MT-1 was not altered in cells 

treated with 10 nM prolactin, but was reduced by 20% by 100 nM prolactin.  Although 

AG-490 did not markedly enhance the MT-1 expression induced by 10 nM prolactin, the 

JAK/STAT inhibitor enhanced MT-1 expression induced by 100 nM prolactin to 5-fold 

as compared to control.  10 nM prolactin decreased ZnT-1 expression by 30%, and AG-

490 reversed this effect.  Although 100 nM prolactin induced no marked change in ZnT1 

expression, addition of AG-490 reduced expression by 25%.  Expression of Zip6 also 

decreased by approximately 30% in presence of 10 nM prolactin, and AG-490 partially 

reversed this effect.  Similarly, 100 nM prolactin decreased Zip6 expression by 55%, and 

again AG-490 partially reversed this effect.   
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Figure 7.  Concentration-dependent changes on gene expression of metallothionein- 
 1 (MT-1), carbonic anhydrase-2 (CA-2) and zinc transporters ZnT1 and Zip6 in  
 primary cultures of neonatal rat choroid plexus epithelial cells during 24-hour  
 direct supplementation of extracellular zinc or exposure to prolactin (A, B).  
Cells were plated in 12-well culture plates, and experiments were conducted on 
confluent differentiated monolayers 7-9 days post plating.  Cells were incubated in 
serum-free DMEM/F12 medium 12-16 h prior to start of experimental treatments.  Cells 
were treated for 24 h with serum free DMEM/F12 that contained no agent (control, 
Ctrl), 25 µM ZnCl2 or 1-1000 nM prolactin (A, B).  For all samples, expression of genes 
encoding for MT-1, CA-2, ZnT1 and ZIP6 were normalized to expression of gene 
encoding for β−actin and GAPDH.  For conditions of extracellular zinc supplementation 
or prolactin exposure gene induction was expressed as fold-change versus control, as 
calculated by dividing normalized gene expression in experimental sample by 
normalized gene expression in the control sample.  Data are expressed in triplicate 
measures and representative of 2 experiments.  
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Figure 8.  Concentration-dependent changes on gene expression of metallothionein- 
 1 (MT-1), carbonic anhydrase-2 (CA-2) and zinc transporters ZnT1 and Zip6 in  
 primary cultures of neonatal rat choroid plexus epithelial cells during 24-hour  
 exposure to prolactin or AG-490  + prolactin (A, B).  Cells were plated in 12-well 
culture plates, and experiments were conducted on confluent differentiated monolayers 
7-9 days post plating.  Cells were incubated in serum-free DMEM/F12 medium 12-16 h 
prior to start of experimental treatments and cells treated with AG-490 were pretreated 
with the inhibitor for 4 h.  Cells were then treated for 24 h with serum free DMEM/F12 
that contained no agent (control, Ctrl), 10-100 nM prolactin or 10-100 nM prolactin + 10 
µM AG-490 (A, B).  For all samples, expression of genes encoding for MT-1, CA-2, 
ZnT1 and Zip6 were normalized to expression of gene encoding for β−actin and 
GAPDH.  For conditions of prolactin exposure or prolactin + AG-490, gene induction 
was expressed as fold-change versus control, as calculated by dividing normalized gene 
expression in experimental sample by normalized gene expression in the control sample.  
Data are expressed in triplicate measures and representative of 2 experiments.  
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4. DISCUSSION 

There is has been limited elucidation of the coordinated regulation of zinc 

transporters and metallothionein in maintaining choroid plexus zinc homeostasis.  The 

overall objective of this thesis project is to analyze the interdependent regulation of zinc 

transporters with the zinc-binding protein metallothionein as the choroid plexus 

epithelium adapts to increases or decreases in extracellular zinc.  Here, in primary 

cultures of choroid plexus epithelial cells, pharmacological depletion of extracellular 

zinc with DTPA markedly decreased gene expression of MT-1 and that of the zinc 

exporter, ZnT1, as early as 3 hours. Expression of the genes remained suppressed 

throughout the duration of treatment.  Pharmacological depletion of zinc also elicited a 

delayed, but sustained increase in gene expression of the zinc importer, Zip1.  

Regulation in gene expression of Zip6 was more dynamic, as its expression fluctuated.  

Similarly, in choroid plexus tissues isolated from neonatal rats, in vitro depletion of 

extracellular zinc with DTPA down-regulated gene expression of MT-1 and ZnT1, while 

up-regulated expression of Zip1 and Zip6.  Conversely, in cultured choroid plexus cells, 

supplementation of extracellular zinc with zinc chloride markedly induced gene 

expression of both MT-1 and ZnT1 as early as 3 hours, and expression remained 

elevated throughout treatment.  Supplementation with zinc also elicited a marked 

induction of Zip6 as early as 3 hours, but gene expression fluctuated throughout 48 

hours.  There was a delayed decrease in Zip1 gene expression, but then was similar to 

control for the duration of treatment.  Similarly in isolated neonatal choroid plexus 

tissues, in vitro supplementation of extracellular zinc resulted in up-regulation of MT-1 
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and ZnT1 gene expression, while Zip1 and Zip6 gene expression were not significantly 

affected.  These data indicate that there is coordinated regulation of metallothionein and 

zinc transporters during depletion and supplementation of extracellular zinc.  

A limited number of studies have investigated changes in zinc accumulation or 

membrane transport of zinc in the choroid plexus under control conditions i.e., normal 

zinc status, conditions of zinc depletion, or conditions of zinc supplementation.  Even 

fewer studies have characterized changes in zinc transporter and MT-1 gene or protein 

expression in choroid plexus as extracellular zinc is manipulated. Because small 

intestine is the primary site of zinc homeostasis, the majority of studies that address 

regulation of cellular transport of zinc have emphasized regulation of zinc transporter 

gene and protein expression and localization in small intestine.  

 My observation that chelation of extracellular zinc with DTPA induces gene 

expression of zinc importers in choroid plexus is consistent with reported effects of 

DTPA in models for small intestine.  In the intestinal epithelial cell line MODE-K, 

expression of zinc importer, Zip4, was induced by treatment with 4 µM TPEN, and 

intracellular zinc chelator, as well as by treatment with 50 µM DTPA (20).  This is 

similar to what I observed in my depletion studies; however, I did not use TPEN and 

used lower concentrations of DTPA.  In a separate study in CACO-2 intestinal cells, 

Zip1 mRNA expression was not altered by TPEN, despite treatment with chelator as 

great as 10 µM and for extended periods (28).  Nevertheless, Zip 4 mRNA expression 

was up-regulated in a time and concentration-dependent manner for up to 24 hours (28).  
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Although Zip1 was not responsive, Zip4 was regulated in response to chelation effects of 

TPEN, indicating differential regulation of zinc transporters by small intestine.  

In vivo studies of zinc depletion through modifications of dietary zinc have also 

been observed in other epithelia.  In rats fed marginally low zinc diets (15 mg Zn/kg), 

ZnT1 protein expression in the jejunum was reduced by 70% compared to control (25 

mg Zn/kg), which was expected as less zinc will be exported out of the cell during 

reduced zinc availability (12).  A low zinc diet (7 mg Zn/kg) up-regulated Zip4 gene 

expression in rat jejunum by 4-fold.  However, Zip4 protein expression was reduced.  

This could be due to transient fluctuations in extracellular (plasma) and intracellular zinc 

concentrations during the first few days of dietary zinc deficiency and during 

compensatory periods.  In the liver of rats fed the low zinc diet, Zip1 protein expression 

in plasma membrane was reduced by 60%, while ZnT1 protein expression was increased 

2-fold (12).  Again, Zip1 reduction of protein expression could have been due to 

fluctuations in extracellular and intracellular zinc.  In jejunum of rats fed a very low zinc 

diet (<1 mg Zn/kg) up-regulation of Zip4 gene expression by 7-fold and ZnT1 protein 

expression by 1.5-fold were observed.  Hepatic Zip1 mRNA was up-regulated 1.5-fold, 

while hepatic ZnT1 protein expression was reduced by 50% compared to control (12).  

This suggests ZnT1 transporter expression in the liver may be more sensitive to the 

reductions in dietary zinc.  That study focused on multiple zinc transporters, similar to 

this study in choroid plexus, and noted dynamic changes occurring in each tissue in 

response to varying dietary zinc concentrations.  In a separate study in mice fed a low 

zinc diet (7 mg Zn/kg 30 d), Zip6 protein expression in the plasma membrane of the 
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testes was reduced by >50% compared to control (30 mg Zn/kg) (8).  In choroid plexus 

cells, Zip6 mRNA was not consistently responsive to zinc depletion; however, in 

isolated choroid plexus tissues, Zip6 and Zip1 gene expression increased in response to 

extracellular zinc depletion.  Furthermore, adaptive up-regulation of Zip1 and Zip6 and 

possibly other zinc importers may explain the observations in an earlier study in zinc 

deficient rats. Kasarkis et al. fed rats zinc deficient diets and determined that the choroid 

plexus maintained the capacity to accumulate zinc.  In fact, choroid plexus in zinc 

deficient rats accumulated ~80% more zinc per tissue weight compared to control (13).  

Currently, there are no published data on metallothionein expression in 

coordination with zinc transporters in the choroid plexus.  However, coordinated 

regulation of zinc transporters and metallothionein gene and protein expression, similar 

to what I observed in choroid plexus, have been reported for other epithelial tissues, such 

as liver and small intestine.  In hepatoma cells, mRNA expression MT-1 decreased by 

30% by 48-hour treatment with 50 µM DTPA as compared to control, whereas ZnT1 

mRNA and protein expression remained constant in both hepatoma cells and primary 

hepatocytes (9).  The supposed lack of change in ZnT1 mRNA might have been due to 

measurement of gene expression only at the end of zinc depletion, rather than throughout 

the 48 hour treatment as performed in this study.  Still, a coordinated response of 

metallothionein and zinc transporters as observed in my study was observed in the 

following studies.  mRNA expression of MT-1 was down-regulated by 80%, while Zip4 

mRNA expression was up-regulated almost 6-fold in small intestine of zinc-depleted 

mice fed zinc deficient diets (<1 mg Zn/kg) as compared to those fed zinc sufficient diets 
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(control-30 mg Zn/kg) (20).  In a separate study, in whole brains of pups that were zinc 

deficient in utero (10, 7 mg Zn/kg), ZnT1 mRNA was reduced by 20% and MT-1 

mRNA by more than 20%, but Zip6 mRNA increased by >40% as compared to controls 

(25 mg) (5).  Also in whole brains of zinc deficient pups, ZnT-1 protein expression was 

reduced by more than 50% and Zip6 protein expression was increased by more than 3 

fold (5).  Plasma zinc concentrations in pups from dams fed a marginally or moderately 

zinc deficient diet were markedly lower, as compared to controls.  However, reductions 

in dietary zinc did not lower zinc concentrations in the brain, indicating retention of zinc 

during a deprived state.  Furthermore, zinc uptake was greatest in brain of pups fed zinc 

deficient diets at 3 h and 8 h post-injection of 65Zn, suggesting increased expression or 

activity of zinc importers (5).  This also indicates there is tight regulation of intracellular 

zinc for prevention of detrimental effects due to zinc deficiency.  That in vivo study, 

nevertheless, is consistent with changes observed in this study in choroid plexus cells 

and tissue. 

A limited number of studies have analyzed the relationship between 

metallothionein and zinc transporters in liver and intestinal cells in response to zinc 

supplementation.  Lanmade et al. found that ZnT1 and MT-1 gene expression was 

induced as early as 3 hours with exposure to 100 µM ZnSO4 in Hepa cells (17).  This is 

similar to results in choroid plexus cells, as MT-1 and ZnT1 mRNA were also up-

regulated as early as 3 hours in response to zinc supplementation. In a different study in 

hepatoma cells, 100 µM zinc sulfate supplementation for 48 hours enhanced ZnT1 

mRNA expression by 60%, but no change was noted in primary cultures of hepatocytes.  



 

44 
 

 

Zinc supplementation, concurrently, increased expression of MT-1 mRNA in hepatoma 

cells by 35% (9).  That may have been due to specific differences in zinc transporter 

expression in tumor cells; in addition, ZnT1 and MT-1 were analyzed at the end of 

treatment without analysis of time-dependent effects or adaptations to zinc.  A separate 

study in CACO-2 cells analyzed MT-1 mRNA and ZnT-1 mRNA that were induced in a 

time-dependent manner by 200 µM zinc sulfate through 24 hours.  MT-1 peaked at 24 

hours with a 4-fold induction, and ZnT1 peaked at 18 hours with a 2.5-fold induction.  In 

that study, 12-hour levels of MT-1 mRNA and ZnT1 mRNA were incrementally induced 

by exposure to 100, 150 and 200 µM zinc sulfate (28).   Although that study used higher 

concentrations of zinc and was performed in CACO-2 cells, which are a human 

adenocarcinoma cell line, those results still paralleled the adaptive response of MT-1 and 

ZnT1 to zinc observed at different time points here in primary cultures of choroid plexus 

cells.  

The choroid plexus has the greatest density of prolactin receptors of any tissue in 

the brain.  Prolactin regulates zinc transport in mammary gland, which similar to choroid 

plexus, is also an epithelial tissue.  Thus, it is a reasonable candidate hormone for the 

regulation of zinc transporters in choroid plexus.  The pathway through which prolactin 

regulates zinc transporter gene expression in mammary is the JAK/STAT pathway, 

which is inhibited by AG-490.  Therefore, AG-490 was used to determine whether 

JAK/STAT signaling pathway is also involved in prolactin regulation of MT-1 and zinc 

transporters in choroid plexus.  In my pilot experiments, treatment with prolactin at 1-

1000 nM up-regulated gene expression of CA-2 and MT-1 and the zinc transporters, 
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ZnT1 and Zip6.  Interestingly, treatment with AG-490 alone also increased gene 

expression of both CA-2 and MT-1, but decreased expression of both ZnT1 and Zip6.  

Furthermore, co-treatment with prolactin and the JAK/STAT inhibitor AG-490 further 

increased expression of CA-2 and MT-1.  This suggests that the JAK/STAT signaling 

pathway tonically suppresses basal gene expression of MT-1 and CA-2.  However, co-

treatment with AG-490 and prolactin elicited varying responses in zinc transporter gene 

expression, partially reversing effects of prolactin.  It is important to note that currently 

there are no data on the effect of AG490 on metallothionein, carbonic anhydrase or zinc 

in other epithelial tissues.  Future investigations of the effects of prolactin in choroid 

plexus epithelium might yield more consistent results, if the cells or tissue were primed 

with estrogen, which is known to up-regulate and maintain prolactin receptor expression.  

In other studies done in the epithelial tissues, the mammary and the prostate, 

varying results to this study were observed.  In HC11 mammary cells, treatment with 

prolactin for 24 hours, increased gene expression of ZnT2 mRNA (27).  Also in that 

study, co-treatment of the Jak2 inhibitor AG490 (10 µM) with prolactin reduced ZnT2 

mRNA from 2 to 1-fold, which may indicate a possible regulation of prolactin through 

the Jak2/Stat5 pathway (27).  Similarly, in immortalized PC-3 prostate cells, pre-

treatment with prolactin stimulated zinc accumulation by 33% (7).  In addition, in that 

study, Zip1 gene expression in response to treatment of zinc alone was down-regulated. 

However, when cells were treated with 10-9 M prolactin, gene expression of Zip1 was 

increased, indicating a possible regulation of prolactin on zinc transport (7).  
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5. CONCLUSIONS AND PERSPECTIVES 

This thesis addresses regulation of zinc transport in the choroid plexus.  The 

choroid plexus epithelium forms the blood-CSF-barrier, which is separate and distinct 

from the blood-brain-barrier.  The choroid plexus accumulates excess nutritive minerals, 

such as copper and zinc, but also heavy metals, such as cadmium, acting as a ‘sink’ for 

these metals and minerals.  As such, it protects the brain from toxicity of heavy metals 

and regulates balance of nutrient minerals.  In the described studies, I characterized gene 

expression of zinc transporters and the zinc-binding protein, metallothionein-1 in 

response to depletion and supplementation of extracellular zinc using primary cell 

cultures and isolated neonatal choroid plexus tissues.  

Zinc homeostasis is vital for choroid plexus biology.  Based on the data 

presented herein, I conclude that choroid plexus can regulate total intracellular zinc 

concentrations as well as intracellular zinc availability as it adapts to changes in 

extracellular zinc status.  The results indicated there is a coordinated regulation of 

metallothionein and zinc transporters during extracellular zinc depletion or extracellular 

zinc supplementation.  Cellular zinc accumulation studies showed that extracellular zinc 

depletion did not greatly reduce total intracellular zinc, and extracellular zinc 

supplementation did not increase total intracellular zinc as compared to control.  During 

zinc depletion, expression levels of both MT-1 and ZnT1 mRNA are down-regulated, 

while Zip1 and Zip6 mRNA levels are up-regulated.  Conversely, in response to zinc 

supplementation, MT-1 mRNA, ZnT1 mRNA, and Zip6 mRNA expression are up-

regulated, while Zip1 mRNA is down-regulated.  Immunocytochemical staining 
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indicated that MT-1 protein expression was also induced and suppressed with zinc 

supplementation and extracellular zinc depletion, respectively. Although I did not 

directly measure zinc transporter protein expression, zinc accumulation results indicate 

the epithelium is regulating total intracellular zinc accumulation as extracellular zinc 

changes.   

Gene and protein expression of the full compliment of zinc importers and zinc 

exporters in the choroid plexus were not characterized in this study.  Nevertheless, these 

data demonstrate a coordinated regulation of zinc-binding protein - MT-1, the zinc 

exporter - ZnT1, and the zinc importers – Zip1 and Zip6 as the epithelium adapts to 

changes in extracellular zinc.  During periods of limited zinc availability, down-

regulation of ZnT1 would reduce efflux (removal) of zinc from the cell, while up-

regulation of Zip1 and Zip6 would transport additional zinc into the cell.  Concurrently, 

down-regulation of MT-1 would facilitate appropriate distribution of intracellular zinc.  

During periods of zinc supplementation as in the case of treating zinc deficiencies, 

although there are minimal changes in Zip1 and Zip6 activities, zinc can still be 

transported into the cell.  However, the free intracellular concentration of zinc would be 

regulated by up-regulation of ZnT1, which would facilitate removal of excess zinc from 

the cell, and by up-regulation of MT-1, which would bind additional zinc.  This could 

serve a protective role for choroid plexus, in permitting sequestration and storage of zinc 

that would be available for use during periods of zinc deficit.  Zinc transporter gene 

expression also seems to undergo adaptations to changes in extracellular zinc throughout 

the 48 hours as gene expression of zinc importers fluctuated.  Preliminary data suggest 
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that prolactin might potentially regulate zinc transport into the cell in part by up-

regulating gene expression of Zip6.  However, the mechanism is unclear and further, 

more detailed investigation is warranted. 

Finally, to my knowledge, there are no other published studies that define the 

coordinated regulation of zinc transporters and metallothionein in maintaining choroid 

plexus zinc homeostasis.  Therefore, these data have provided insight into the integrated 

roles of zinc transporters and metallothionein in zinc biology as well as the physiology 

of choroid plexus.  Future directions include measuring total zinc accumulation at 

different time points of extracellular zinc supplementation and depletion as well as 

analyzing protein and gene expression of all zinc importers and exporters present in 

choroid plexus as I did not analyze the full set of zinc transporters expressed in choroid 

plexus.  
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