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ABSTRACT 

 

 Rivers are dynamic ecosystems with considerable heterogeneity across multiple 

spatial scales. Environmental factors, such as depth, physical structure, flow regime and 

habitat connectivity influence species distributions across a floodplain, and subsequently 

there is a large body of work focused on understanding how these factors influence the 

structure of fish communities. There has also been increasing interest in understanding 

how environmental variation influences the community structure of another major 

aquatic vertebrate group, the turtles. I sampled fish and turtles at Gus Engeling Wildlife 

Management Area (WMA) and used ordination analyses to visualize environmental 

gradients that may influence community structure for these two vertebrate groups. 

Distributions of aquatic turtles and fishes at Gus Engeling WMA were associated with 

environmental gradients defined by flow regimes and substrate composition. When just 

turtles were considered, flow regimes were particularly important in describing habitat 

partitioning among species, particularly confamilial groups. A second study site, Keechi 

Creek WMA, was sampled for turtles in 2009. Keechi Creek WMA exhibited less 

habitat heterogeneity than Gus Engeling WMA, and as heterogeneity decreased between 

the two study sites, turtle species richness decreased, whereas habitat overlap between 

species increased. I analyzed the capture efficiency of 7 trap types used throughout the 

course of this project and found that effectiveness of each trap type varied by habitat 

type, species, and shell size. So, using a diversity of trap types increased my overall 

trapping success.  
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CHAPTER I 

INTRODUCTION 

 

Stream systems and their associated floodplain habitats are spatially and 

temporally variable, and as such have proven to be ideal models for studying community 

assembly, particularly in relation to landscape ecology, and patch dynamics (Grossman 

et al., 1982: Winemiller et al., 2010). Stream systems, then, may be considered dynamic 

mosaics of interconnected patches of physical conditions or biological communities 

(Pringle et al., 1988; Townsend, 1989). Phsyio-chemical properties of these patches are 

governed by stochastic events resulting in dynamic and unstable environments 

(Grossman, 1982). Species abundances are influenced by responses to these 

unpredictable environmental changes (Sale, 1980), resource partitioning (Schoener, 

1974), or predation on competitive dominants (Paine, 1974; 1976).   

In a review of current landscape level research on stream habitats and biological 

assemblages, Hughes et al. (2006) discussed the need to improve our understanding of 

the influences of spatial factors on instream biota. Within that edited volume, the only 

aquatic taxa discussed were fish and macroinvertebrates. Yet, there is evidence for 

strong biotic interactions between terrestrial and aquatic biota (Naiman and Rogers, 

1997; Naiman et al., 2002). Additionally, changes to riparian habitats can have effects 

on aquatic habitats, and in turn influence species assemblages of fish (Decamps, 1993; 

Schlosser, 1995). To address the need to improve our knowledge of stream ecosystems, 

we must expand our scope of interest to other taxa. 
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Vellend (2010) defines community ecology as the study of patterns in diversity, 

abundance, and composition of species in communities, and the processes underlying 

these patterns. Community ecology as a discipline is considered “messy” as the 

mechanisms structuring species assemblages are complex and, for some taxa, are poorly 

understood (Lawton, 1999). Two alternative paradigms have been proposed for the 

assembly of biological communities. Communities may be strongly influenced by 

dispersal and assembled randomly (Conner and Simberloff, 1979), or their structure may 

be non-randomly influenced by biotic interactions, especially competition and predation 

(Diamond, 1975). There is considerable evidence for both hypotheses. Non-random 

structure is consistent with processes described by niche theory (Chase and Leibold, 

2003; Tilman, 2004). Many observed patterns are consistent with a neutral model of 

assembly driven by stochastic demographic and dispersal processes (Hubbell, 2001).   

Null models describing non-random community structure of fish (Jackson et al., 

1992) and turtles (Luiselli, 2008) found that local species assemblages were based on 

resource dimensions related to micro- and macrohabitat, food, and time. For fish, 

seasonal fluctuations in water flow, physical and chemical characteristics, available 

shoreline, sandbars, and islands, and interconnectivity of flowing systems govern local 

species assemblages in fish (Jackson and Harvey; 1989; Schlosser, 1991; Taylor, 1997). 

Although less work has been done on turtle communities, previous research has shown 

strong species segregation between (Anderson et al., 2002; Dreslik and Phillips, 2005) 

and within (Bodie et al., 2000; Lindeman, 2000) lentic and lotic environments. Within 

habitats, selection for specific microhabitats by sympatric species of aquatic turtles has 
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been observed (Cagle, 1942; Fuselier and Edds, 1994; Barko and Briggler, 2006). 

However, turtle abundances within various habitat patches were found to vary 

throughout the year depending on water and food availability (Bodie and Semlitsch, 

2000; Bodie et al., 2000; Anderson et al., 2002). In general, literature suggests aquatic 

turtle and fish communities are linked by dispersal of multiple, potentially interacting 

species. In some sense, aquatic turtles and fish may act as an ecological metacommunity 

(Leibold et al., 2004) exhibiting similar responses to fluctuations of shared 

environmental variables. 

Although the literature on community assembly of fish and aquatic turtles is 

considerable, the two taxa have rarely been studied together, although both taxa can be 

captured using the same gear and methods (Barko et al., 2004). Considering the 

important roles each taxon plays within aquatic ecosystems, it may be informative to 

analyze patterns for both groups together, and this could enhance biological assessment 

programs. Fish assemblages suffer negative effects from physical stressors, such as flow 

regulation and channel modification, and biological stressors, such as impacts of alien 

species (Rinne et al., 2005). The same stressors also impact turtles, possibly in a similar 

manner as fish (Mitchell and Klemens, 2000).  

Lawton (1999) and Ricklefs (2008) stress that to truly understand patterns of 

species assemblage we need to focus on regional scales. The counter point to this 

argument is that to truly understand process regulating biodiversity ecologists should 

focus on smaller scales (Brooker et al., 2009). Local-scale processes influence 

assemblage structures because different species have fitness advantages that depend 
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upon their abiotic and biotic environment including their own population density 

(Chesson, 2000). Drivers of local species richness then influence large-scale patterns 

(Michalet et al., 2002; Urban et al., 2008).  

Through the auspices of their Wildlife Diversity Program, the Texas Parks and 

Wildlife Department focuses on understanding and managing Texas Native species and 

habitats. Gus Engeling Wildlife Management Area (WMA) in Anderson County, Texas 

is a 4,434-ha property in eastern Texas consisting of a major tributary of the Trinity 

River and its associated floodplain (Telfair, 1988). There is considerable interest in 

managing for the aquatic biodiversity on site (Wes Litterell, TPWD, pers.com.), so I 

sampled fishes and turtles using the same methods and analyzed patterns of species 

abundance in relation to physical environmental characteristics (flow, depth, substrate) 

within different macro-habitat types. My goal was to look for similarity in species 

assemblages of fishes and turtles among those habitat types, and to examine how 

abundances of closely related, sympatric species of turtles drives habitat selection.  
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CHAPTER II 

HABITAT ASSOCIATIONS OF AQUATIC VERTEBRATES IN AN EAST TEXAS 

STREAM 

 

Introduction 

Streams have long been the subject of ecological research that tests hypotheses 

explaining species assemblage structure, and this is, in part, because standardized 

sampling methods allow collection of reliable samples of fishes and aquatic 

macroinvertebrates (Grossman et al., 1982). Knowledge of fish and aquatic 

macroinvertebrate community ecology has been used to develop biotic indices for 

determining condition of streams and watersheds (Natural Resources Conservation 

Service, 2003). Essentially, the structure of communities is treated as a bioassay of 

stream ecosystems under the assumption that fish and/or macroinvertebrate community 

patterns should reflect the relative status of ecosystem in response to multiple stressors 

(Prentice and Cramer, 1990).  

A large body of work has been published on the role of abiotic factors in 

structuring fish assemblages (Matthews and Hill, 1980; Matthews and Styron, 1981; 

Jackson et al., 2001). These abiotic processes (flow, temperature, nutrient and chemical 

fluxes) in stream systems are unpredictable, thus, virtually all ecological processes are 

influenced by spatially and temporally variable biological and physical characteristics of 

streams (Pringle et al., 1988; Townsend, 1989). Variability in the availability of biotic 

and abiotic resources requires fish to move between habitats in order to obtain those 
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resources (Dunning et al., 1992). Habitat complementation refers to the spatial proximity 

of different nonsubstitutable resources or habitat types required by a particular species 

(Schlosser, 1995). Examples of nonsubstitutable habitats include spawning vs. feeding 

habitats, or feeding vs. refugia habitats.  

Physical and biotic factors governing fish distributions within stream systems are 

regulated through deterministic processes related to position along a stream course and 

fluctuations in stream flow (Gorman and Karr, 1978; Johnson et al., 1995). Stream 

systems exhibit a longitudinal structure that produces a continuum of morphological and 

hydrological features from the headwaters to the mouth (River Continuum Concept; 

Vannote, et al., 1980). Morphological and hydrological features along a river course are 

determined by geomorphic processes (Montgomery, 1999), and interactions and 

feedbacks between habitat patches (Poole, 2002). Feedback mechanisms within streams 

and adjacent aquatic habitats are governed by alternating periods of inundation and 

separation related to annual or semi-annual flooding. These flood pulses are considered 

one of the most important hydrological features of stream systems (Flood Pulse Concept; 

Junk et al., 1989). Flood pulses allow for biotic interchange between streams and their 

associated floodplain habitats (backwaters, oxbows, marshes) altering both species 

composition, influx of nutrients, and chemical processes in both lentic and lotic habitats 

(Junk et al., 1989; Bayley, 1995).  

The dynamic nature of streams and resultant habitat heterogeneity supports 

regional species diversity (Galat et al., 1998; Michener and Haeuber, 1998), and local 

assemblages are influenced by the periodic connectivity provided by flooding (Galat et 
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al., 1998; Winemiller et al., 2000). The spatial arrangement of flood plain habitats is 

critical, because many species use different habitats during different life history stages 

(Welcomme, 1979; Schlosser, 1991; 1995). Species-specific dispersal abilities, and size 

and position of floodplain habitats are important determinants of the structure of fish 

assemblages (Taylor, 1997; Taylor and Warren, 2001). Wilkinson and Edds (2001) 

suggested that biotic processes (foraging, reproduction, ontogenetic habitat shifts) may 

be more important in explaining variation in fish communities than environmental 

variables.  

Many other species of aquatic vertebrates, such as anurans and salamanders 

(Wells, 2007), turtles (Bodie et al., 2000; Ernst and Lovich, 2009), and crocodilians 

(Subalusky et al., 2009), also exhibit differential habitat use based on sex, seasonal 

behavior, life history stage, and seasonal fluctuations and availability of habitat. Most of 

those vertebrate taxa may also rely on terrestrial floodplain habitats in addition to aquatic 

ones for completion of life history stages. But, multiple vertebrate taxa are rarely studied 

simultaneously when addressing the ecology of riparian habitats. Since community 

structure may be strongly influenced by dispersal (Conner and Simberloff, 1979), or 

biotic interactions (Diamond, 1975) or both (Ernest et al., 2008, Velland, 2010), it would 

be beneficial to study assemblage patterns of different taxa utilizing similar habitats. 

Freshwater turtles exhibit relatively high species richness in the southeastern 

United States (Iverson, 1992; Buhlmann et al., 2009) and often make up a significant 

fraction of the total biomass in the habitats in which they occur (Iverson, 1982; Congdon 

et al., 1986). Many freshwater turtle species tend to show preferences for either lentic or 
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lotic habitats, but not both (Anderson et al., 2002; Dreslik and Phillips, 2005). Species 

living in sympatry may demonstrate selection for specific microhabitats based on 

basking structure, canopy cover associated with basking structure, flow, depth, and 

substrate (Cagle, 1942; Lindeman, 2000; Barko and Briggler, 2006). There is variation 

in these habitat associations, because flood pulses drive species exchanges between 

backwater scours, wetlands, and the river channel (Bodie and Semlitsch, 2000; Bodie et 

al., 2000).  

Although fish have been used extensively for bioassessment of aquatic 

ecosystems, it would be useful to explore the utility of sampling additional vertebrate 

groups, particularly those that can be sampled effectively with a standard methodology. 

Turtles can be sampled simultaneously with fishes using the same methods (Barko et al., 

2004: Barko and Briggler, 2006), and with this in mind, I sampled both fishes and turtles 

over three summers at two sites in eastern Texas. My primary goals were to describe 

species patterns between lentic and lotic habitats, specifically relating species abundance 

to environmental variables such as flow, depth, substrate, and presence of woody debris.  

 

Study Area 

 The Trinity River originates north of the Dallas/Fort Worth metroplex in 

northeastern Texas, and flows 1150 km southward to empty into Galveston Bay on the 

Gulf Coast. The Trinity River Basin lies solely within Texas encompassing 46,540 km2, 

and roughly one-third of the state’s population (Huser, 2000). Annual rainfall is 

approximately 100 cm/yr (Johnson, 1931), and the drainage experiences frequent 
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flooding, particularly within its upper reaches (Huser, 2000). Because there are major 

urban centers in the Middle Trinity River Basin, the stretch of river between Dallas/Fort 

Worth and Houston is considered an area of concern by the Texas Parks and Wildlife 

Department (TPWD; Bill Adams, TPWD, pers. com.). The Middle Trinity River Basin 

encompasses the Texas Natural Regions of the East Texas Plains and the Prairies 

Province, and the bisection of moderately humid grasslands and humid cross-timbers 

habitats by the Trinity River results in high species richness of both flora and fauna 

(Johnson, 1931).   

My study area was located in Anderson County, Texas, on the TPWD managed 

Gus Engeling Wildlife Management Area (WMA); (Fig. 2.1). Gus Engeling WMA is a 

4,434-ha property encompassing a large portion of the Catfish Creek ecosystem. Catfish 

Creek is a tributary in the Middle Trinity River Basin, encompassing 730 ha and 32 km 

of Anderson and Henderson counties and considered a Natural National Landmark 

(Telfair, 1988). Twenty-four small creeks feed Catfish Creek, most of which are spring 

fed. Habitats associated with the Catfish Creek ecosystem include post-oak (Quercus 

stellata) savanna, bottomland hardwoods, marshes, swamps, bogs, and springs. Aquatic 

habitat at Gus Engeling WMA is represented by Catfish Creek and its tributaries, 

adjacent scours and backwater habitat, open canopy marshes, several small ponds and 

larger lakes. Aquatic habitat is augmented by a series of levees and flood-control gates, 

built in cooperation with Ducks Unlimited, to provide wetlands for waterfowl. In 

addition, there are several ponds or “borrow” pits associated with the levees (Wes 

Litterell, TPWD, pers.com.). 
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Figure 2.1. The geographic location of the Trinity River Basin in Texas with inset showing the location of Gus 
Engeling Wildlife Management Area within the Middle Trinity River Basin. 
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Between the 1860’s and 1950’s, both upland and bottomland habitats within the 

Catfish Creek Ecosystem were cleared and burned for livestock grazing. By 1951, 

livestock was removed within Gus Engeling WMA in order to restore terrestrial habitats 

(Huser, 2000). Habitat restoration is now augmented through seasonal burns of upland 

habitat and maintenance of permanent wetlands and seasonal backwater habitats (Wes 

Litterell, TPWD, pers.com.). The biotic diversity of Gus Engeling WMA prior to 

European settlement is unknown, but at least 88 fish species, 22 amphibian species, 58 

reptilian species, 194 avian species, 45 mammalian species (Telfair, 1988), and over 

1,000 plant species (Singhurst et al., 2003) are known to occur on the area.  

 

Methods 

Sampling.—I sampled aquatic habitats at Gus Engeling WMA using a variety of 

trap gear between late May and late July, 2006-2008 and between April and late July 

2009. During each sampling period I set one large and small fyke net, two sizes of hoop 

nets, two sizes of collapsible box traps, and one size of sea bass/dome traps. The large 

fyke net (Christensen Nets; www.christensennetworks.com) was 4.5 m in length (front 

frame to cod end) with a single 14.5 m x 88 cm lead. The two anterior rectangular 

frames were 120 cm x 88 cm followed by five, 88-cm diameter round hoops, with three 

3-cm diameter stretchable funnels leading to the cod end. Square mesh size was 1 cm.  

The smaller fyke net (Christensen Nets; www.christensennetworks.com) was 3.3 m in 

length from the front frame to cod end, and had a single 7.4 m x 67 cm lead. The two 

rectangular front frames were 95 cm x 67 cm, followed by four 67 cm diameter hoops. 
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Both fyke nets had a single vertical slit funnel within the rectangular frames. There were 

two 31-cm diameter stretchable funnels leading to the cod end. Square mesh size was 

1cm. The larger hoop (turtle net; Memphis Net and Twine; www.memphisnet.net) 

consisted of three 88-cm diameter metal rings and one 31-cm diameter stretchable 

funnel. Overall trap length was 245 cm, and square mesh size was 2.5 cm.  

The collapsible box traps and sea bass traps were purchased from Memphis Net 

and Twine (www.memphisnet.net). The mini catfish hoop net had four 47-cm diameter 

fiberglass hoops, two 27-cm diameter stretchable funnels, and an overall length of 155 

cm. Square mesh size was 2.5cm. Small box traps were 59 cm x 43 cm x 22 cm with a 

square mesh size of 1 cm. There was a 43-cm, horizontal slit funnel opening on opposite 

ends of the long axis of the trap. Large box traps were 79 cm x 60 cm x 25 cm with a 

square mesh size of 1 cm, and had a 60-cm horizontal slit funnel on opposite ends of the 

long axis of the trap. Dome traps were 96 cm x 64 cm x 61 cm. Square mesh size was 

2.5 cm and there were two 15-cm rigid funnels (funnel held open with a plastic ring), 

located on each end of the trap.  

All traps were baited with sardines and/or fresh fish. Traps were checked at least 

once every 24hrs, with trap sets usually completed by early-late afternoon and checked 

by late morning of the next day. Sampling gear was set so that some portion was 

exposed above the water surface, providing air space for turtles and other air-breathing 

organisms. Aquatic habitats at Gus Engeling WMA were highly variable in size, based 

on seasonal and annual rainfall. The type and number of traps set was dictated by the 
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amount of water available, depth of available water, and number of nets available at that 

time.   

 Data Collection.—All turtles and fishes captured were identified to species and 

enumerated. To address abiotic factors driving community composition of aquatic turtles 

and fishes, I measured structural and chemical variables using methodology similar to 

that collected for fishes (Edds, 1993) and turtles (Fuselier and Edds, 1994) at each trap. 

Structural data included canopy cover, depth, flow, basking availability, substrate 

composition, and emergent vegetation. Canopy cover was recorded at the trap using a 

concave forestry densitometer (Lemmon, 1957). Depth was recorded at the opening of 

the trap gear. Flow was also recorded at the opening of the trap gear using a handheld 

flow meter averaging current speed at 5 points within the water column. Basking site 

availability was recorded as the percentage of exposed surface (bank, emergent woody 

debris) present within a 25-m diameter area surrounding the trap. Emergent vegetation 

was recorded as the percentage of aquatic vegetation present within a 25-m diameter 

area surrounding each trap. Substrate composition was divided into percent sand, mud, 

clay and detritus and was recorded within a 25-m diameter area surrounding each trap. 

Clay was defined as a sticky-fined grained soil type that was either yellow or bluish gray 

in color at this site. Sand was a looser, large granular substrate. Mud was defined as soft, 

sticky earthy matter that did not fit into the clay or sand substrate types. Detritus was 

defined as dead and decaying vegetative matter (leaves, woody debris). 

Physico-chemical data included water temperature, dissolved oxygen (DO), and 

PH.  Water temperature was recorded by placing a thermometer on the substrate roughly 
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0.5 m from the shore. Dissolved oxygen was determined using a Winkler Titration Kit 

(LaMotte, Chestertown, MA). I determined PH using a Colorimetric Octet Comparator 

kit (LaMotte, Chestertown, MA).  

I classified habitat according to five types:  Creek (flowing waters associated 

with Catfish Creek and its tributaries); Backwater (scours and flooded timber associated 

with the Catfish Creek floodplain); Marsh (shallow, open canopy, heavily vegetated 

water bodies associated with smaller feeder creeks, springs and bogs); Pond (small 

manmade water bodies and borrow pits ≤ 100 m diameter and consisting of more open 

water than marshes); and Lakes (larger, several ha manmade water bodies). 

Data analysis. —I used the PROC GLM procedure for mean comparisons in SAS (SAS 

Institute, Inc., Cary, NC, 1989) to compare microhabitat variables collected at each site 

(net) amongst five habitat types identified at Gus Engeling WMA. The PROC GLM 

procedure relates continuous dependent variables to independent variables. The 

independent variables act as classification variables, which divide observation into 

distinct groups, in this case, macrohabitats. I calculated number of captures per net night 

(1 net set for 1 night = 1 net night) by habitat type for fish and turtles to identify species 

associations amongst different habitats.   

To address relationships between fish, turtles, and measured environmental 

variables collected at common sites (traps), I compared species distributions for turtles 

using ordination analyses. I used a direct ordination method, canonical correspondence 

analysis (CCA, Palmer, 1993; ter Braak and Verdonschot, 1995), to fit species patterns 

to environmental variables. CCA is a multiple linear least-squares regression where the 
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site scores, determined from weighted averages of species, are the dependent variables 

and the environmental variables the independent variables (Palmer, 1993). Essentially, 

CCA allows one to examine the effect of environmental variables on community 

patterns (Palmer, 1993; ter Braak and Verdonschot, 1995). One can then compare the 

variance of the turtle data that is explained by the ordination axes derived by fish in co-

correspondence analysis with those derived by environmental variables in canonical 

correspondence analysis (ter Braak and Schaffers, 2004). All CCA’s were run using 

CANACO version 4.5 (ter Braak, 1987) and Monte Carlo Permutation tests were run in 

conjunction with the CCA to determine which environmental variables were important 

in describing fish and turtle distributions.  

  

Results 

 Total sampling effort at Gus Engeling WMA between 2007-09 was 1,088 net-

nights (2007 = 222 net nights; 2008 = 372 net nights; 2009 = 494 net nights). I set 210 

net nights in creek habitat, 521 net nights in backwater habitat, 160 net nights in marsh 

habitat, 139 net nights in pond habitat, and 58 net nights in lake habitat. The amount of 

water in each habitat, and thus the amount of habitat available in which to set nets, was 

highly variable depending on recent precipitation events.   

I captured 366 turtles of eight species and 2,935 fishes of 31 species (Table 2.1). 

River cooters (Pseudemys concinna) were never captured using sampling gear, even 

though many river cooters were observed at several sites. Thus, I excluded river cooters 
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from the ordination analyses. Only fish species with ≥ 10 captures were used in the 

analyses (Table 2.2).  

 

Table 2.1: Complete species list of aquatic turtles and fishes captured at Gus Engeling 
WMA, Anderson County, Texas, 2007-2009.  
 
Common Name Scientific Name 

Common Snapping Turtle Chelydra serpentina 

Alligator Snapping Turtle Macrochelys temminckii 

Eastern Mud Turtle Kinosternon subrubrum 

Common Musk Turtle Sternotherus odoratus 

Razorback Musk Turtle Sternotherus carinatus 

Spiny Softshell Turtle Apalone spinifera 

River Cooter Pseudemys concinna 

Slider Trachemys scripta 

Alligator Gar Atractosteus spatula 

Spotted Gar Lepisosteus oculatus 

Bowfin Amia calva 

Gizzard Shad Dorosoma cepedianum 

Threadfin Shad Dorosoma petenense 

Blacktail Shiner Cyprinella venusta 

Golden Shiner Notemigonus crysoleucas 

Western Starhead Topminnow Fundulus blairae 

Lake Chubsucker Erimyzon sucetta 

Smallmouth Buffalo Ictiobus bubalus 

Spotted Sucker Minytrema melanops 

Black Bullhead Ameiurus melas 

Yellow Bullhead Ameiurus natalis 

Channel Catfish Ictalurus punctatus 
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Table 2.1 cont.  

Common Name Scientific Name 

Tadpole Madtom Noturus gyrinus 

Freckled Madtom Noturus nocturnus 

Grass Pickerel Esox americanus 

Pirate perch Aphredoderus sayanus 

Flier Centrarchus macropterus 

Green Sunfish Lepomis cyanellus 

Warmouth Lepomis gulosus 

Orangespotted Sunfish Lepomis humilis 

Bluegill Lepomis macrochirus 

Dollar Sunfish Lepomis marginatus 

Longear Sunfish Lepomis megalotis 

Redear Sunfish Lepomis microlophus 

Spotted Sunfish Lepmois punctatus 

Bantam Sunfish Lepmois symmetricus 

Black Bass Micropterus sp. 

White crappie Pomoxis annularis 

Black Crappie Pomoxis nigromaculatus 
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Table 2.2: Catch per unit effort by habitat type for species used in community analyses 
at Gus Engeling Wildlife Management Area, Anderson County, Texas, 2007-2009.  
 
 Total Catch/Unit Effort by Habitat Type 

Species Captures Creek Backwater Marsh Pond Lake 
Redear Slider 264 0.05   0.34 0.18 0.60 1.07 
Razorback Musk Turtle 25 .12   0.03 0   0 0 
Common Musk Turtle 18 0.03 0.02 <0.01 <0.01 0 
Common Snapping Turtle 17 <0.01 0.04 0.01 0.05 0 
Eastern Mud Turtle 24 0 <0.01 0.10 0 0 
Alligator Snapping Turtle 12 0.04 <0.01 0 0 0.01 
Spiny Softshell Turtle 7 0.03 <0.01 <0.01 <0.01 0 
Bluegill  895 0.55 0.52 0.28 0.77 6.96 
Flier  481 0.02 0.80 0.18 0.24 0 
Yellow Bullhead  316 0.66 0.16 0.47 0.02 0.30 
Black Bullhead  280 0.23 0.14 0.15 0.24 0.31 
Warmouth  245 0.10 0.35 0.07 0.08 0.22 
Black Crappie  233 0.20 0.27 0.20 0.11 0 
Redear Sunfish  133 <0.01 0.02 0.01 0.03 1.88 
Longear Sunfish  44 0.19 <0.01 <0.01 0 0 
Dollar Sunfish  33 0 0.06 0.01 <0.01 0 
Spotted Gar  27 0.10 0.01 0 0 0 
Bowfin  26 <0.01 0.03 0.03 0.03 0 
Green Sunfish   26 0.06 <0.01 0.07 0 0 
Spotted Sunfish  26 0.07 0.01 <0.01 0 0 
Alligator Gar  25 0.08 0.01 0 0 0 
Gizzard Shad  20 <0.01 0.03 0 0 0 
Grass Pickerel  20 0.02 0.02 0.03 0 0 
Lake Chubsucker  16 0.02 0 0.08 0 0.05 
Pirate Perch  16 0 0.03 <0.01 0 0 
Golden Shiner 15 <0.01 0.02 <0.01 0 0 
White Crappie  9 0.02 0.01 0 0 0 
Smallmouth Buffalo 8 0.04 <0.01 0 0 0 
Orangespotted Sunfish  8 0.03 <0.01 0.01 0 0 
Bantam Sunfish  8 <0.01 <0.01 0.02 0 0 
Spotted Sucker  6 0.01 <0.01 0 0 0 
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Characteristics of each habitat type based on environmental variables collected at 

each site (net) differed based on substrate, canopy cover, depth, and flow (Table 2.3). 

Not surprisingly, creek habitats were deep, had high flow rates, dense canopy cover, 

moderate to high DO, and predominantly sandy substrate. Backwater habitats tended to 

be shallow, turbid, and had little to no flow, low DO, moderate canopy cover and 

substrate that was predominantly mud and sand. Marsh habitats were characterized by 

shallow water, low DO, sparse canopy cover, dense emergent vegetation, and the 

substrate was predominantly detritus. Pond habitats had low turbidity, low canopy cover, 

high PH, high water temperature, and sand and clay substrates. Lakes were characterized 

by deep water, low turbidity, sparse canopy cover, high DO, moderate presence of 

emergent vegetation, and a mixed substrate of sand, mud, and detritus.  

 Canonical correspondence analysis for fish and turtles revealed that flow, 

substrate, and emergent vegetation were associated with species distributions for fish 

and turtles (Table 2.4; Fig. 2.2). Substrate composition itself was correlated with flow 

(higher percentages of sand and clay at sites with higher flow), and emergent vegetation 

(increasing percentages of detritus at sites with low flow and increasing emergent 

vegetation). Based on Monte Carlo permutation tests, the presence of basking structure 

and water temperature also had strong influences on species’ distributions. Basking 

structure was generally represented by downed woody debris, and correlated to 

increased canopy cover and increased detritus. Water temperature was positively 

associated with sites that had a more open canopy. The percent variance of the species-

environmental relationship for the first two axes of the canonical correspondence 
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Table 2.3: Mean (± SD) environmental variables measured at each net, by habitat, at Gus Engeling Wildlife Management Area, 
Anderson County, Texas 2007-2009. Within a row means followed by the same letter are not different α = 0.05. 

Variable Backwater Creek Marsh Lake Pond P 

Depth (cm) 36.53 ± 26.07 a 64.06 ± 27.09 b 36.19 ± 26.42 a 49. 09 ± 44.12 e 46.72 ± 27.43 e  <0.001 

Turbidity (cm) 19.45 ± 8.85 a 28.80 ± 10.46 b 24.22 ± 13.76 c 34.09 ± 24.05 d 33.63 ± 26.85 d <0.001 

Flow (m/s) 0.06 ± 0.97 a 0.96 ± 1.28 b 0.00 ± 0.00 a 0.01 ± 0.13 a 0.00 ± 0.00 a <0.001 

% Canopy Cover 66.84 ± 39.11 a 90.67 ± 21.92 b 21.05 ± 34.51 c 10.54 ± 22.82 c 29.71 ± 36.57 d <0.001 

PH 5.95 ± 2.79 a 6.00 ± 1.11 a 5.73 ± 1.54 a 6.39 ± 0.49 ab 6.95 ± 4.56 b <0.001 

Dissolved Oxygen (ppm) 3.34 ± 3.25 a 5.19 ± 1.77 b 2.61 ± 2.39 c  7.29 ± 0.51 d 5.92 ± 2.52 e <0.001 

Water Temperature  22.79 ± 7.98 a 24.26 ± 4.89 b 23.93 ± 7.15 abc 25.64 ± 9.4 bcd 27.19 ± 1.85 d <0.001 

% Sand Substrate 15.25 ± 15.75 a 44.42 ± 23.46 b 14.82 ± 22.78 a 34.00 ± 21.28 c 31.18 ± 27.97 c <0.001 

% Mud Substrate 35.54 ± 18.91 a 28.22 ± 18.02 b 24.58 ±16.89 b 23.09 ± 10.99 bc 19.89 ± 22.17 c <0.001 

% Clay Substrate 12.45 ± 15.50 a 6.17 ± 11.33 b 15.47 ± 18.62 ac 17.09 ± 17.57 ac 30.79 ± 34.75 d <0.001 

% Detritus Substrate 33.36 ± 15.15 a 21.65 ± 22.43 b 41.65 ± 22.03 c 14.91 ± 7.61 d 13.99 ± 10.36 d <0.001 

% Basking Availability 14.36 ± 16.58 a 15.99 ± 1.03 ab 1.40 ± 6.17 c 8.72 ± 12.25 d 18.16 ± 17.04 b <0.001 

% Emergent Vegetation 7.74 ± 18.24 a 5.46 ± 17.67 a 79.49 ± 29.26 b 31.05 ± 30.45 c 26.42 ± 38.96 c <0.001 
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Table 2.4: Species coordinates for Canonical correspondence analysis of fish and turtles 
at Gus Engeling Wildlife Management Area, Anderson County, Texas 2007-2009.   

Turtle Species Axis 1 Axis 2 Axis 3 Axis 4 
Spiny Softshell 0.674 1.253 0.671 -0.001 
Common Snapping Turtle 0.163 1.007 -1.011 -0.047 
Eastern Mud Turtle -0.903 1.551 -1.283 1.041 
Alligator Snapping Turtle 0.399 1.042 0.332 0.277 
Razorback Musk Turtle 0.141 0.901 0.322 0.002 
Common Musk Turtle -0.203 -0.082 0.459 -0.195 
Slider -0.001 0.584 -0.881 -0.064 
Alligator Gar 0.252 0.417 0.565 -0.109 
Spotted Gar 0.440 0.814 0.583 -0.082 
Bowfin -0.558 0.699 -0.723 0.045 
Gizzard Shad -0.522 0.699 0.697 -0.812 
Golden Shiner -0.262 -0.441 0.351 -0.610 
Lake Chubsucker -0.036 0.629 -0.02 1.909 
Smallmouth Buffalo 0.526 -0.252 1.343 -0.346 
Spotted Sucker -0.285 0.735 0.221 0.227 
Black Bullhead -0.360 0.183 -0.329 -0.544 
Yellow Bullhead -0.111 0.395 0.077 0.033 
Grass Pickerel -0.549 0.599 -0.224 0.236 
Pirate Perch -0.422 -0.106 0.149 -0.233 
Flier -0.777 -0.494 0.229 0.259 
Green Sunfish 0.207 1.129 -1.341 0.254 
Warmouth -0.337 0.037 -0.090 -0.266 
Orange-Spotted Sunfish 0.747 0.633 -0.938 -0.200 
Bluegill 0.527 -0.259 0.119 0.169 
Dollar Sunfish -0.326 -0.380 0.610 -0.298 
Longear Sunfish 0.566 0.539 1.005 -0.412 
Redear Sunfish 1.046 -0.326 0.040 -0.324 
Spotted Sunfish -0.311 0.279 0.196 1.88 
White Crappie -0.499 -0.383 0.719 0.421 
Black Crappie -0.011 -0.249 0.382 -0.320 
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Figure 2.2. Distribution of species scores of turtles, fishes, and environmental variables based on the first and second axes from  
Canonical correspondence analysis at Gus Engeling Wildlife Management Area. Turtle species scores are represented by 
circles and fish species scores by triangles. Continuous environmental variables are represented by vectors. Vector 
representation of turbidity is inverse, with increasing water clarity with increasing distance from the origin. Total inertia for 
all axes is 12.22.
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analysis was 42.7%, while the third and fourth axes explained and additional 27% of the 

variance.   

Scores for spotted gar and spiny softshell turtles within the canonical 

correspondence analysis were associated with sites with clear water, high flow, high DO, 

and high percent of sandy substrate (Fig. 2.2). Bowfin, grass pickerel (Esox americanus), 

and spotted suckers (Minytrema melanops) were not clearly associated with specific 

environmental variables. Within the ordination analyses all three species occurred along 

gradients associated with marsh habitats. However, captures were evenly distributed in 

backwater and marsh habitat for bowfin and grass pickerel, but creek and backwater 

habitat had higher captures of spotted suckers.  

 Bluegill sunfish, redear sunfish, and smallmouth buffalo (Ictiobus bubalus) had 

scores on the first two canonical gradients (Fig 2.2). All three species were associated 

with sites characterized by greater water depth, and increasing water clarity and 

dissolved oxygen. Bluegill sunfish were captured most frequently in lake and backwater 

habitats, redear sunfish in lake habitats, and smallmouth buffalo in creek habitats (Table 

2.2). Whereas each species used different macrochabitats, their CCA axis scores suggest 

that each species used similar microhabitats within their respective macrohabitat type. 

 

Discussion 

One hundred percent of the turtle species and 74% of the fish species I captured 

at Gus Engeling WMA were captured within the scours and adjacent backwaters (Table 

2.2). The presence of aquatic turtles and fish in Catfish Creek and its associated 
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floodplain appear to be related to annual and seasonal fluctuations in available habitat. 

The presence of backwater, and to a certain extent marsh, habitats at Gus Engeling 

WMA are dependent on flood pulses related to seasonal rainfall.  

However, not all fish and turtle species were associated with Catfish Creek or its 

scours. Exceptions included bluegill and redear sunfish, two common centrarchid fishes 

that are regularly stocked in ponds and lakes (Robison and Buchanan, 1988); (Table 

2.2). Compared to other turtles, the eastern mud turtle generally was captured at 

relatively ephemeral sites. Juvenile bowfins were generally captured at sites along the 

edges of backwater scours characterized by shallow water and low DO. Eastern mud 

turtles are relatively terrestrial compared to other aquatic turtles, and also have the 

ability to estivate (Ernst and Lovich, 2009), and the bowfin is a primitive air breathing 

fish (Johansen et al., 1970). These physiological adaptations to ephemeral habitats may 

explain why correspondence analysis grouped these two species grouped together.  

The distribution of both aquatic turtles and fishes at Gus Engeling WMA were 

associated with environmental gradients related to flow and substrate regimes with 

predictable groupings of both taxa related to specific microhabitat characteristics. Flow, 

substrate, and emergent vegetation were variables particularly important in determining 

species distributions. Results from Monte Carlo permutation tests suggested that downed 

woody debris was a major determining factor in species distributions. Riparian areas, the 

sources of woody debris, act to regulate the thermal profile of aquatic habitats by 

shading all or parts of a stream or water body (Welty et al., 2002). Woody debris within 

stream channels introduces organic matter and nutrients, maintains physical habitat by 
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decreasing bank incision, decreases sediment flux, and controls pool spacing and bar 

formation (Abbe and Montgomery, 1996; Brooks et al., 2004). Subsequently, the 

introduction of woody debris into an aquatic environment results in increase of 

productivity and diversity of fish and invertebrates (Meffe and Sheldon, 1988; Robertson 

and Crook, 1999).   

Fishes use submerged woody debris as overhead cover from predation, and 

visual isolation between individuals (Robertson and Crook, 1999). Fishes may also 

receive a secondary benefit in the form of food from an increase in abundance and 

richness of aquatic invertebrates associated with woody debris (Angermeier and Karr, 

1984; Everett and Ruiz, 1993). Woody debris is important to turtles for aerial basking 

and refugia (Chaney and Smith, 1950) and as foraging sites (Moll, 1976; Gibbons and 

Lovich, 1990). Presence of woody debris dictated the distribution of basking species 

(Chrysemys, Graptemys, Pseudemys, and Trachemys); (Lovich, 1988; Lindeman, 1999) 

as well as bottom dwellers such as Macrochelys that depend on submerged woody debris 

for cover (Riedle et al., 2006; Shipman and Riedle, 2008). 

In addition to meeting the energy requirements for aquatic vertebrates, habitat 

complexity within stream systems allows fishes to meet their life history requirements 

providing important spawning and nursery habitats (Schlosser, 1991; Schlosser, 1995; 

Fuasch et al., 2002.). Bowfin and alligator gar (Atractosteus spatula) are medium to 

large fishes, but most of my captures at GEWMA were represented by small juveniles in 

shallow, heavily vegetated habitats, similar to findings by Etnier and Starnes (1993) and 

Echelle and Riggs (1972). Although the ecology of hatchling and juvenile life stages of 
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turtles is poorly studied, it is clear that most turtle species undergo ontogenetic habitat 

shifts. Clark and Gibbons (1969) found shifts in habitat use and diet in sliders, and Bass 

(2007) found that hatchling alligator snapping turtles preferred shallower water, with 

more woody debris and floating vegetation mats when compared with adults. Although 

total captures were extremely low, hatchling sliders and alligator snapping turtles were 

captured in shallow, heavily vegetated bodies of water, habitat similar to that described 

by Clark and Gibbons (1969) and Bass (2007).  

Interactions among and between life stages of fishes and turtles at Gus Engeling 

WMA require additional study in order to begin unraveling the complex interactions 

between these groups. Expansion of ordination analyses to additional sites within the 

Middle Trinity River Ecosystem could help to determine how scale and stream order 

affect the structure of these aquatic vertebrate assemblages over larger gradients. 

Biodiversity is affected by changes in physical and biological characteristics of  

landscapes, including movement of individual organisms (Pressey et al., 2007), and 

therefore understanding the life history needs of all aquatic organisms is essential for 

management of wetland and riparian corridors (Galat et al., 1998; Bodie et al., 2000; 

Semlitsch and Bodie, 2003). Results from this study suggest that turtles and fish can be 

surveyed and considered simultaneously to guide wetland management. 
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CHAPTER III 

ECOLOGY OF TWO EASTERN TEXAS AQUATIC TURTLE COMMUNITIES 

 

Introduction 

Two questions within community ecology are “what are the origins of diversity 

at a site?” and “how is that diversity maintained?” (McGowan and Walker, 1993; 

Ricklefs and Schluter, 1993)? It is thought that biogeographic history drives regional 

species assemblage patterns, whereas environmental conditions and species interactions 

influence local species compositions (Ricklefs, 1987; Jackson and Harvey, 1989). 

Species interactions may be explained by either stochastic demographic and dispersal 

processes (Hubbell, 2001) or by niche theory and competition (Chase and Leibold, 2003; 

Tilman, 2004). Some have argued it may be a combination of all these processes. 

Climate, habitat, and resource availability change over time, so there are subsequent 

shifts in species assemblages because of species-specific niche requirements and 

dispersal abilities (Ernst et al., 2008).  

Ecologists are currently working to better understand how factors, such as 

biogeography and niche relationships, interact to create patterns of turtle diversity. 

Globally, turtle species richness is greatest within the lower Ganges-Brahmaputra River 

Basin in India (23 species) and the Mobile River Basin in Alabama, USA (19 species) 

(Iverson, 1992; Buhlmann et al., 2009). In the USA, habitat partitioning within and 

between northern and southern species assemblages in regions of sympatry has been 

documented suggesting little exchange in species on large regional scales (Moll and 
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Moll, 2004; Dreslik and Phillips, 2005). In the southeastern USA, high species richness 

patterns are related to high rates of speciation within the Emydidae and Kinosternidae, 

resulting in smaller geographic range sizes, and increasing regional, but not local species 

diversity (Stephens and Weins, 2003). Local species pools are generally restricted to 

specific river drainages (Ernst and Lovich, 2009), reducing interactions on larger 

geographic scales. Within drainages, species tend to show strong segregation between 

(Anderson et al., 2002; Dreslik and Phillips, 2005) and within (Bodie et al., 2000; 

Lindeman, 2000) lentic and lotic environments. Turtles within the genera Graptemys and 

Apalone tend to dominate lotic habitats, whereas sliders (Trachemys scripta), common 

snapping turtles (Chelydra serpentine), and common musk turtles (Sternotherus 

odoratus) primarily occurred within more lentic sloughs and oxbows (Bodie et al., 2000; 

Anderson et al., 2002; Dreslik and Phillips, 2005).   

Community structure at local scales can be explained by differences in habitat 

associations among species. Ultimately, adaptive evolution of species to biotic and 

abiotic conditions results in a fit between the organism and its environment, which 

fundamentally influences local community structure (Losos, 1996; Stephens and Wiens, 

2004). Understanding the roles of local and regional factors is integral in developing 

conservation strategies for species and ecosystems. For many taxa, such as turtles, that 

have undergone worldwide declines (Klemens, 2000), local and regional patterns of 

community structure are poorly understood.  

The Chelonia, as a whole, are experiencing a multitude of anthropogenic 

stressors, ranging from over-exploitation for trade, habitat loss, and pollution, so many 
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species are in peril of extinction (Klemens, 2000; Moll and Moll, 2004). In response, 

turtles are the focus of major conservation efforts (e.g. Turtle Survival Alliance, and the 

IUCN Tortoise and Freshwater Turtle Specialist Group), but studies of turtle 

communities are few, and descriptions of life histories for many species are lacking. 

Despite much concern over the conservation status of turtles, there are relatively few and 

only very recent descriptions of turtle communities, and how these natural assemblages 

may be structured.  

Luiselli (2008) tested for non-random patterns in turtle community structure 

using null models based on turtle community data available in peer-reviewed literature. 

His results suggested that community structure was non-random, and microhabitat and 

food were the two most important dimensions in determining community structure in 

turtles. Three regional studies of turtle communities demonstrated predictable patterns in 

turtle assemblages over larger scales based on habitat relationships (Donner-Wright et 

al., 1999; Dreslik and Phillips, 2005; Riedle et al., 2009). Within those studies, species 

assemblages could be categorized as lentic or lotic communities, although there may be 

seasonal shifts in assemblages as scarcity of permanent water in lentic habitats results in 

mixing of species in lotic habitats (Bodie and Semlitsch, 2000; Bodie et al., 2000; 

Anderson et al., 2002).  

 While most previous research focused either on microhabitat dimensions of turtle 

community structure or macroecological patterns, little work has been done testing for 

evidence of intra- and inter-specific competition. Lindeman (2000) found no competition 

for basking sites among five species (false map turtle [Graptemys pseudogeographica], 
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Ouachita map turtle [G. ouachitensis], river cooter [Pseudemys concinna], slider, and 

smooth softshell [Apalone mutica]) of aquatic turtles, although there were familial splits 

with Emydids utilizing downed woody debris and Trionychids utilizing bank habitat for 

basking. Lovich (1988) noted intraspecific competition for basking sites among 

individuals of painted turtles (Chrysemys picta). Basking structure may be a limiting 

factor in determining density and richness in Graptemys (Lindeman, 1999) not only for 

thermoregulation (Cagle, 1950) but also for shelter and forage (Everett and Ruiz, 1993). 

Work on dietary overlap is also scarce, but two studies found a decrease in dietary 

similarity with increasing densities in neotropical turtle communities (Vogt and 

Guzman-Guzman, 1988; Moll, 1990).  

 To better understand how local scale processes influence the structure of turtle 

communities, I sampled a site in east Texas in 2006-2008 to 1) test for segregation of 

turtle species along measured environmental gradients, and 2) determine degree of 

overlap of use of macrohabitats. In 2009, I sampled a second site within the same river 

drainage with the objectives to compare 1) species richness and similarity of community 

structure between sites, 2) differences in habitat use among species between sites, and 3) 

population structure (size and sex ratios) between sites.  

 

Study Area 

My primary study area was located in Anderson County, Texas, on the Texas 

Parks and Wildlife Department (TPWD) managed Gus Engeling Wildlife Management 

Area (WMA); (Fig. 3.1). Gus Engeling WMA is a 4,434-ha property encompassing a 
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Figure 3.1. The geographic location of the Trinity River Basin in Texas with inset showing the location of Gus Engeling and 
Keechi Creek WMA’s. 
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large portion of the Catfish Creek ecosystem. Twenty-four small creeks feed Catfish 

Creek, most of which are spring fed. Habitats associated with the Catfish Creek 

ecosystem include post-oak (Quercus stellata) savanna, bottomland hardwoods, 

marshes, swamps, bogs, and springs. Aquatic habitat at Gus Engeling WMA is 

represented by Catfish Creek and its tributaries, adjacent scours and backwater habitat, 

open canopy marshes, several small ponds and larger lakes. Aquatic habitat is 

augmented by a series of levees and flood-control gates, built in cooperation with Ducks 

Unlimited, to provide wetlands for waterfowl. In addition, there are several ponds or 

“borrow” pits associated with the levees (E. Wolverton, TPWD pers. comm.).  

My second site was the TPWD managed Keechi Creek WMA in northeastern 

Leon County, Texas. Keechi Creek WMA, a small 607 ha management area, also lies 

within the Middle Trinity River Basin and was acquired by TPWD in 1986 (Fig. 3.1). 

Aquatic habitats at Keechi Creek WMA are much less complex, consisting of Keechi 

and Buffalo creeks, and a large oxbow lake associated with Keechi Creek. The oxbow 

lake is intermittently connected to both creeks (Gelwick et al., 2001). Terrestrial habitat 

is predominately bottomland hardwoods.  Hardwoods in this region are typified by green 

ash (Fraxinus pennsylvanica), boxelder (Acer negundo), bur oak (Quercus macrocarpa), 

Shumard oak (Q. shumardii), overcup oak (Q. lyrata), water oak (Q. nigra), willow oak, 

(Q. phellos) and post oak (Q. stellata); (Ryberg et al. 2004).  

Little work has been done describing the terrestrial vertebrate communities on 

Keechi Creek WMA. In 1999 a baseline inventory of vertebrates was undertaken by 
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Texas A&M University (L. Fitzgerald, pers. comm.). The survey resulted in the capture 

of 11 species of amphibians, 16 species of reptiles, and 13 species of mammals. The fish 

community has been described more extensively, and is composed of at least 34 species 

(Gelwick et al., 2001).  

Potential mammalian predators of turtle nests or adults in this region include 

eastern spotted skunks (Spilogale putorius), striped skunk (Mephitis mephitis), raccoons 

(Procyon lotor), feral hogs (Sus scrofa) and armadillos (Dasypus novemcinctus) via 

rooting in the soil near nests (Schmidly, 1983). Raccoons in particular are major 

predators of turtle nests and hatchlings (Ernst and Lovich, 2009). Raccoon densities 

appear to be increasing across their range because of decreases in pelt prices and 

increasing subsidization by humans (Gehrt et al., 2002; Landholt and Genoways, 2002). 

There are differences in natural and anthropomorphic perturbations between Gus 

Engeling and Keechi Creek WMAs. Gus Engeling WMA had additional perturbations 

acting upon adult turtles, which are not present at Keechi Creek WMA. These impacts 

include predation pressure by alligators (Alligator mississippiensis) and human related 

activity such as increased road density and high density of set lines (limb lines, trot 

lines) for fishing. The American alligator is common at Gus Engeling WMA, but rare to 

nonexistent at Keechi Creek WMA.  

 

Methods 

Sampling.—I sampled aquatic habitats at Gus Engeling WMA using a variety of 

trap gear between mid-April and late July, 2006-2008 and between April and late July 
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2009. Trap gear consisted of two sizes of fyke nets, two sizes of hoop nets, two sizes of 

collapsible box traps, and one size of sea bass/dome traps. The large fyke net 

(Christensen Nets; www.christensennetworks.com) was 4.5 m in length (front frame to 

cod end) with a single 14.5 m x 88 cm lead. The two anterior rectangular frames were 

120 cm x 88 cm followed by five, 88-cm diameter round hoops, with three 3-cm 

diameter stretchable funnels leading to the cod end. Square mesh size was 1 cm. The 

smaller fyke net (Christensen Nets; www.christensennetworks.com) was 3.3 m in length 

from the front frame to cod end, and had a single 7.4 m x 67 cm lead. The two 

rectangular front frames were 95 cm x 67 cm, followed by four 67 cm diameter hoops. 

Both fyke nets had a single vertical slit funnel within the rectangular frames. There were 

two 31-cm diameter stretchable funnels leading to the cod end. Square mesh size was 

1cm. The larger hoop (turtle net; Memphis Net and Twine; www.memphisnet.net) 

consisted of three 88-cm diameter metal rings and one 31-cm diameter stretchable 

funnel. Overall trap length was 245 cm, and square mesh size was 2.5 cm.  

The collapsible box traps and sea bass traps were purchased from Memphis Net 

and Twine (www.memphisnet.net). The mini catfish hoop net had four 47-cm diameter 

fiberglass hoops, two 27-cm diameter stretchable funnels, and an overall length of 155 

cm. Square mesh size was 2.5cm. Small box traps were 59 cm x 43 cm x 22 cm with a 

square mesh size of 1 cm. There was a 43-cm, horizontal slit funnel opening on opposite 

ends of the long axis of the trap. Large box traps were 79 cm x 60 cm x 25 cm with a 

square mesh size of 1 cm, and had a 60-cm horizontal slit funnel on opposite ends of the 

long axis of the trap. Dome traps were 96 cm x 64 cm x 61 cm. Square mesh size was 
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2.5 cm and there were two 15-cm rigid funnels (funnel held open with a plastic ring), 

located on each end of the trap.  

All traps were baited with sardines and/or fresh fish. Traps were checked at least 

once every 24 hrs, with trap sets usually completed by early-late afternoon and checked 

by late morning of the next day. Sampling gear was set so that some portion was 

exposed above the water surface, providing air space for turtles and other air-breathing 

organisms. Aquatic habitats at Gus Engeling WMA varied in their extent based on 

seasonal and annual rainfall. The type and number of traps set was dictated by the 

amount of water available, depth of available water, and number of nets available at that 

time.   

All turtles captured were identified to species and number of individuals 

recorded. Each turtle was given an individual mark, either by notching or drilling 

marginal scutes, and/or the implementation of a PIT tag (Biomark, 12.5 mm; 

www.biomark.com). For snapping turtles a hole was drilled in a marginal scute to denote 

a previous capture and a PIT tag was injected along the thigh of the left rear leg. A PIT 

tag was injected along the thigh of the left rear leg of softshell turtles. All Emydids and 

Kinosternids were given unique marks by notching marginal scutes with a Dremel tool 

(www.dremel.com). All turtles were sexed, and basic morphometric measurements, such 

as mass and mid-line carapace length (MCL) were recorded. The presence of damage 

resulting from human related activities (vehicle collisions, shooting) and/or attempted 

predation (teeth marks and shell and limb damage) was recorded.  
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I used X2 tests to determine if adult sex ratios differed from 1:1, and used t-tests 

to compare sizes between sexes.  

Community analysis.— To measure the relative amount of habitat overlap 

between species at Gus Engeling WMA, I used Pianka’s Index of Niche Overlap 

(Pianka, 1973):    

         

 

   

           

where PiA and PiK represent proportional habitat use of species A and species K and S is 

the number of species. Niche overlap was calculated using EcoSim (Gotelli and 

Entsminger, 2001). Habitat type was characterized as: Creek (flowing waters associated 

with Catfish Creek and its tributaries); Backwater (scours and flooded timber associated 

with the Catfish Creek floodplain); Marsh (shallow, open canopy, heavily vegetated 

water bodies associated with smaller feeder creeks, springs and bogs); Pond (small 

manmade water bodies and borrow pits ≤ 100m diameter); or Lakes (larger, several ha 

manmade water bodies). 

To address important biotic and abiotic factors driving community composition 

of aquatic turtles at each trap set, I measured a suite of five structural variables: canopy 

cover, depth, flow, basking availability, and emergent vegetation. Canopy cover was 

recorded at the trap using a concave forestry densitometer (Lemmon, 1957). Depth was 

recorded at the opening of the trap gear. Flow was also recorded at the opening of the 

trap gear using a handheld flow meter averaging current speed at 5 points within the 

water column. Basking site availability was recorded as the percentage of exposed 
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surface (bank, emergent woody debris) present within a 25-m diameter area surrounding 

the trap. Emergent vegetation was recorded as the percentage of aquatic vegetation 

present within a 25-m diameter area surrounding each trap.  

I ran a series of ordination analyses to determine species distributions along 

environmental gradients based on abundances of each species within each net. To detect 

species segregation without the direct influence of environmental gradients that I 

measured, I first used correspondence analysis (CA), a form of indirect gradient analysis 

(ter Braak and Prentice, 1988; Palmer, 1993). Assuming that turtles segregate along 

environmental gradients, one should detect species patterns across a hypothetical space 

represented by the distribution of sites (traps).  

I then used canonical correspondence analysis (CCA), a direct gradient analysis 

(Palmer, 1993; ter Braak and Verdonschot, 1995), to fit species patterns to 

environmental variables. Canonical correspondence analysis is a multiple linear least-

squares regression where the site scores, determined from weighted averages of species, 

are the dependent variables and the environmental variables as the independent variables 

(Palmer, 1993). Canonical correspondence analysis allows one to examine the effect of 

environmental variables on patterning communities. However, results from CCA are 

dictated by the environmental variables chosen. In contrast, because CA is an indirect 

gradient analysis, it allows one to pattern communities and infer how these communities 

are structured based on a set of measured environmental variables or other factors that 

were not measured (Palmer, 1993).  
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Both CA and CCA were performed using CANOCO version 4.5 (ter Braak, 

1987) with default settings. Bi-plot scaling emphasized inter-species distances. Monte-

Carlo permutation tests were run to identify which of the measured variables were the 

most important in determining the ordination.  

Comparison between sites.—To investigate variation in species composition 

between the two WMA’s, I compared species richness, similarity of the turtle 

community, and niche overlap among turtle species between Gus Engeling and Keechi 

Creek WMA’s. Species richness was defined as total number of species captured at each 

site. Keechi Creek was only sampled on 4 occasions in June and July of 2009. As there 

waeres unequal sampling efforts between sites, I calculated richness, similarity, and 

niche overlap three different ways.  I calculated all three parameters for Gus Engeling 

for all sampling periods (2006-2009), and June and July 2009 only. Calculations were 

also made after stratifying sampling effort at Gus Engeling by net type and number 

surrounding sampling dates at Keechi Creek.  

I calculated a measure of similarity between sites using Sorenson’s Qualitative 

Index: Cs = 2j/(a+b) where j = the number of species common to both sites, a = the 

number of species in site A, and b = the number of species in site B (Magurran, 2004). 

As a second measure focusing on species abundances, I also calculated Sorenson’s 

Quantitative Index: CN = 2jN/ (aN + bN) where aN = the number of individuals in site A, 

bN = the number of individuals in site B, and jN = the sum of the lower of the two 

abundances of species which occur in the two sites (Magurran, 2004). Because Keechi 

Creek WMA was only sampled in June-July 2009, the quantitative measure was 
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calculated using only individual abundances collected during the same time period at 

Gus Engeling WMA. I used Pianka’s Index of Niche Overlap to measure the relative 

amount of habitat overlap between species between WMAs. Niche overlap was 

calculated using both the entire turtle species assemblages from both WMAs, and also a 

dataset containing only the species shared with both WMAs. t-tests were used to 

compare body sizes (carapace length) of species shared between WMAs. I set α = 0.05 

for all comparisons.  

 

Results 

I sampled Gus Engeling WMA between mid-April and August 1 during 2006-

2009 for 1,239 net nights (Table 3.1). Of 651 total captures, there were 527 individuals 

of 8 species of turtles (Table 3.2). Catch per unit effort at GEWMA was 0.60 turtles/net 

night for 2006-2009. Not all species were represented equally, and not all individuals 

were captured in nets. Some individuals were captured crossing roads or nesting (17 

captures); these were excluded from analyses based on trap-nights as the sample unit. 

Although I observed river cooters basking in open marshy areas quite frequently, they 

were highly under-represented in capture data. Because of the disproportionately low 

captures of river cooters, this species was only included when comparing similarity 

indices between sites. 

Sliders had 1:1 male: female sex ratio (1.00:1.02 M:F, n=348, X2
1 = 0.05, P = 

0.80; Table 3.3). Sliders also exhibited significant sexual size dimorphism, with females 

larger than males (t403 = -10.17, P ≤ 0.001; Table 3.3). Common musk turtles had a  
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Table 3.1: Total number of trap nights x trap type x macrohabitat at Gus Engeling 
Wildlife Management Area, Anderson County, TX (2006-2009) and Keechi Creek 
Wildlife Management Area, Leon County, TX (2009). 
 
 Habitat Type 

Trap Type Creek Backwater Marsh Pond Lake 

GEWMA      

Large Fyke 12 32 5 13 5 

Small Fyke 9 22 10 8 3 

Mini-hoop 11 21 5 15 7 

Large Hoop 166 95 6 26 22 

Large Box 42 271 97 84 24 

Small Box 12 110 34 27 8 

Dome 16 6 6 9 0 

KCWMA      

Large Fyke 0 4 - - - 

Small Fyke 1 3 - - - 

Mini-hoop 0 0 - - - 

Large Hoop 20 13 - - - 

Large Box 6 15 - - - 

Small Box 4 12 - - - 

Dome 0 0 - - - 
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Table 3.2: Catch per unit effort by habitat type at Gus Engeling and Keechi Creek 
Wildlife Management Areas, Anderson and Leon counties, Texas, 2006-2009.  

  

Species Total Captures Creek Backwater Marsh Pond Lake 

GEWMA       

Common Snapping Turtle 21 0.01 0.02 0.01 0.05 0 

Alligator Snapping Turtle 12 0.03 < 0.01 0 0 0.01 

Eastern Mud Turtle 21 0 < 0.01 0.10 0.00 0.00 

Razorback Musk Turtle 40 0.12 0.03 0 0 0 

Common Musk Turtle 19 0.03 0.02 0.02 0.01 0 

Spiny Softshell Turtle 7 0.02 < 0.01 0.01 0.01 0 

River Cooter 3 0 < 0.01 0 0 0 

Slider 366 0.05 0.42 0.23 0.59 1.10 

KCWMA       

Common Snapping Turtle 4 0 0.09 - - - 

Alligator Snapping Turtle 3 0.03 0.04 - - - 

Razorback Musk Turtle 4 0.06 0.04 - - - 

Spiny Softshell 6 0.10 0.06 - - - 

Slider 83 0.26 1.59 - - - 

 
 

female-biased sex ratio, (1:2.66 M:F, n = 22,  X2
1 = 4.54, P ≤ 0.001; Table 3.3). Mean 

MCL for male razorback musk turtles was 123.5 cm and was significantly larger (t44 = 

3.97, P ≤ 0.001) than the 106.0 cm mean MCL of females (Table 3.3). Mean MCL for 

female common musk turtles was 76.4 cm and was significantly larger (t23 = -3.56, P ≤ 

0.001) than the 56.4 mean MCL of males (Table 3.3). There were not enough data to 

calculate sex ratio or size dimorphism for spiny softshells and alligator snapping turtles 

(Table 3.3).  
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Table 3.3: Number of turtle captures for each species, by sex, and mid-line carapace lengths (MCL) at Gus Engeling Wildlife 
Management Area, Leon County, Texas, 2006-2009. 

 Juvenile Male Female 
Species n Mean   

MCL 
range n Mean 

MCL 
range n Mean 

MCL 
range 

Common Snapping Turtle    14 260.8 144.9-319.0 11 243.3 185.6-288.0 
Alligator Snapping Turtle 12 206.7 44.1-287.0    1 319  
Eastern Mud Turtle    1 40  13 84.7 70.6-94.5 8 88.1 68.9-104.6 
Razorback Musk Turtle 5 46.5 31.1-58.9 18 123.5 86.0-139.9 28 106.0 81.3-136.8 
Common Musk Turtle 1 33.0  6 56.4 42.4-66.4 19 73.4 50.7-88.7 
Spiny Softshell Turtle 1 60.9     10 351.4 264.7-476.0 
River Cooter 1 132.8  1 242.4  3 273.1 261.2-282.2 
Slider 59 74.7 34.4-128.4 162 165.6 99.4-246.8 166 202.1 104.3-266.4 
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Community analysis.—Correspondence analysis resulted in clustering of five 

species (slider, common musk turtle, common snapping turtle, razorback musk turtle, 

and spiny softshell turtle) with low scores on the first and second axes (Figure 3.2). 

Eastern mud turtles had higher scores on the second axis, and alligator snapping turtles 

higher scores on the first axis (Fig.3.2). 

Inclusion of environmental gradients within a CCA resulted in a strong gradient 

influenced by flow, depth, and basking structure, and a secondary gradient influenced 

mostly by vegetation and canopy cover (Fig. 3.3). The percent variance explained by the 

species-environment relationship for the first two axes was 78.4%, and the addition of 

the third and fourth axes explained an additional 17% of overall variance. Sliders and 

common musk turtles occupied sites with greater depth and more basking structure. 

Common snapping turtles were more common at sites with intermediate depth and 

emergent vegetation. Eastern mud turtles occupied sites with shallower water and high 

percentages of emergent vegetation. Razorback musk turtles, alligator snapping turtles, 

and spiny softshell turtles occupied sites with increasing flow. Locations of species 

scores represented a transition of species among lentic and lotic habitats, with more 

emergent vegetation and decreasing depth separating lentic habitats and the species 

associated with lentic habitat (Fig. 3.3). Although vegetative/flow gradients are apparent 

(Fig. 3.3), Monte Carlo permutation tests revealed that depth and presence of basking 

structure were the variables most strongly associated with species distributions. 
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Figure 3.2. Distribution of species scores based on the first and second axes from Correspondence Analysis for aquatic turtles 
at Gus Engeling WMA. Total inertia for all axes is 4.98. 
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Figure 3.3. Ordination of aquatic turtle species from Gus Engeling WMA based on Canonical correspondence analysis using 
species abundance and environmental variables (only the first two gradients are shown). Contributions of environmental 
variables to each gradient are represented by vectors. Total inertia for all axes is 4.983. 
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Niche overlap ranges from 0.0 to 1.0, with higher values reflecting increasing 

overlap of resources. Overlap of resource use was high between alligator snapping 

turtles, spiny softshell turtles, and razorback musk turtles (Table 3.4), species associated 

with higher flow in Fig. 3.3. A similar degree of overlap was also seen between sliders 

and common snapping turtles (Table 3.4). Common musk turtles had moderate to high 

overlap with all species, while eastern mud turtles had low overlap with all species 

(Table 3.4). Among the three species of Kinosternidae that were captured, common 

musk turtles overlapped considerably in use of habitat with eastern mud turtles and 

razorback musk turtles, while razorback musk turtles and eastern mud turtles overlapped 

very little in habitat use (Table 3.4). The two species of chelydrids, common snapping 

turtles and alligator snapping turtles, had a moderate degree of overlap in habitat use 

(Table 3.4). 

Comparison between sites.—Keechi Creek WMA was sampled in June and July 

of 2009 for 78 net nights (12 small box, 16 large box, 24 large hoops, 3 small fyke, 2 

large fyke nets) (Table 3.1) resulting in 110 captures of 94 individuals of 5 species of 

turtles (Table 3.2). Catch per unit effort at Keechi Creek WMA in 2009 was 1.41 

turtles/net night. At Gus Engeling WMA during the same general time period, seventy-

eight net nights, stratified by net type, captured 20 individuals of 3 species of turtles 

[common snapping turtle (n=2), common musk turtle (n=3), and slider (n=15)], with a 

catch per unit effort of 0.25 turtles/net night. Total catch per unit effort at Gus Engeling 

WMA for the entire 2009 season was 0.23 turtles/net night. Because of low capture rates  
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Table 3.4: Habitat niche overlap (Pianka, 1973) amongst turtle species at Gus Engeling Wildlife Management Area, Anderson 
County, Texas, 2006-2009. 

 Spiny Softshell 
turtle 

Common 
Snapping Turtle 

Eastern 
Mud Turtle 

Alligator 
Snapping Turtle 

Common 
Musk Turtle 

Razorback 
Musk Turtle 

Slider 

Spiny Softshell Turtle  0.538 0.289 0.937 0.765 0.921 0.376 

Common Snapping Turtle   0.352 0.435 0.757 0.513 0.900 

Eastern Mud Turtle    0.109 0.407 0.149 0.403 

Alligator Snapping Turtle     0.805 0.984 0.378 

Common Musk Turtle      0.878 0.778 

Razorback Musk Turtle       0.454 
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Table 3.5: Comparison of mean mid-line carapace lengths (mm) (± 1 standard error) 
between Gus Engeling Wildlife Management Area and Keechi Creek Wildlife 
Management Area, Anderson and Leon counties, Texas, 2006-2009. 

 GEWMA  KCWMA   
Species n MCL SE  n MCL SE t P 

Spiny Softshell Turtle 10 351.4 55.9  8 394.3 62.6 1.532 0.072 
Common Snapping Turtle 25 253.2 15.9  5 279.9 37.2 1.340 0.095 
Alligator Snapping Turtle 13 227.9 53.4  3 239.3 55.5 0.332 0.372 
Razorback Musk Turtle 46 112.9 16.7  4 113.8 20.5 0.109 0.456 
Male Sliders 215 165.7 32.1  56 178.4 24.8 3.193 0.001 
Female Sliders 215 202.1 41.5  19 213.3 27.22 1.627 0.057 
 

 

at Gus Engeling WMA, I used all 2009 captures (216 specimens, 8 species) for 

comparisons of species assemblages between sites. 

Sliders were the only species recaptured with enough frequency at both sites to 

compare recapture rates. Recapture rates at Gus Engeling WMA were 30% (38% M: 

23% F) and 24% Keechi Creek WMA (26% M: 19% F). 

Mid-line carapace lengths for male and female sliders were significantly larger at 

Keechi Creek WMA than at Gus Engeling WMA (Table 3.5). Spiny softshell turtles and 

common snapping turtles were larger, although not significantly so, at Keechi Creek 

WMA than at Gus Engeling WMA (Table 3.5). There were no differences in size in 

alligator snapping turtles, or razorback musk turtles between the two WMA’s (Table 

3.5).  

Keechi Creek WMA had lower habitat heterogeneity, with only two major 

habitat types present (Creek and Backwater) compared to five for Gus Engeling WMA. 

All species captured at Keechi Creek WMA were also captured at Gus Engeling WMA. 

River Cooters, common musk turtles, and eastern mud turtles were captured at Gus 
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Engeling WMA, but not Keechi Creek WMA. The Sorenson qualitative index, based on 

presence/absence of species was 0.625, showing moderate similarity in species 

composition between WMAs. Using species abundances, Sorenson’s quantitative index 

based on abundances was much higher (0.959).  

The two WMAs had similar turtle species composition, but species richness was 

greater at Gus Engeling. Habitat niche overlap was higher among turtles at Keechi Creek 

WMA (0.869) than those at Gus Engeling WMA (0.590). The niche overlap value just 

for those species that were captured at both sites was 0.651.  

Signs of attempted predation were higher at Gus Engeling WMA than Keechi 

Creek WMA. At Gus Engeling WMA, teeth marks from predators (conical punctures, 

usually found on both the carapace and plastron) were observed on 25% of the sliders, 

40% of river cooters, 27% of eastern mud turtles, 11% of common musk turtles, and 4% 

of razorback musk turtles. An additional 7 sliders at Gus Engeling WMA were missing 

limbs. Only 7% of sliders at Keechi Creek WMA exhibited teeth marks. One common 

snapping turtle at Keechi Creek WMA had a large triangular piece of carapace missing. 

This notch matched injuries inflicted upon common snapping turtles by alligator 

snapping turtles in Kansas (Shipman et al., 1994). Human related injuries were low. One 

slider at Gus Engeling WMA had a bullet wound, while another showed shell damage 

that may have resulted from being run over by a vehicle. 
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Discussion 

 My analyses supported previous findings that aquatic turtles segregate along 

gradients associated with flow regimes (Bodie et al., 2000; Anderson et al., 2002; 

Dreslik and Phillips, 2005). Certain species from the regional species pool, primarily 

map turtles (Graptemys sp.), were not captured during my surveys. Stream order may 

play a role in segregating species across larger spatial scales, particularly for species like 

map turtles (Fuselier and Edds, 1994). Working on a small scale within Gus Engeling 

WMA, I was able to elucidate and build upon existing information concerning several 

species that have not been closely studied where they occur in sympatry with confamilial 

species.  

  Adult sex ratios for sliders at both sites were male biased, which is generally the 

rule for most well studied slider populations (Ernst and Lovich, 2009). Gibbons (1990) 

listed several environmental and physiological factors that could drive sex ratios in 

sliders, but warned that sampling bias may also affect reported sex ratios. This may be 

partially the case here, given that male sliders had higher recapture rates than females.  

Mahmoud (1969) reported female-biased sex ratios for razorback musk turtles in 

Oklahoma, and the species is sexually dimorphic, with males being the larger sex 

(Tinkle, 1958; Iverson, 2002), which mirrored results from my survey at Gus Engeling 

WMA. Female common musk turtles tend to be larger, which was true at Gus Engeling 

WMA, although sex ratios vary greatly from population to population (Ernst and Lovich, 

2009). Secondary sex characteristics in male common musk turtles occurred at carapace 

lengths that were nearly 1 cm smaller than values previously reported in the literature 
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(Risley, 1933; Tinkle, 1961; Mitchell, 1988). The cause of the smaller size at maturity at 

Gus Engeling WMA is unknown, but is ripe for further study considering the complexity 

of an environment that includes two other sympatric species of Kinosternid and 

American alligators.  

Captures of alligator snapping turtles were low at both sites and were represented 

by small individuals. Only one individual at each site was large enough to be considered 

sexually mature, although one hatchling (44.1 mm MCL) was captured at Gus Engeling 

WMA in April 2009. The stretch of Catfish Creek that flows through GEWMA is fairly 

shallow, which may preclude the occurrence of larger individuals (Sloan and Taylor, 

1987; Riedle et al., 2006; Shipman and Riedle, 2008). Larger individuals have been 

captured on the site, and an unpublished survey conducted in the late 1990’s captured 

two larger individuals (392 and 403 mm MCL) at Gus Engeling WMA and eight 

individuals between 304 and 582 mm MCL at Keechi Creek WMA (Lee Fitzgerald, 

Texas A&M University Pers. Comm). There is some evidence that Catfish Creek has 

become shallower over time due to siltation (D. Synatzske, TPWD, Pers. Comm.). 

Deeper habitats were present at Keechi Creek WMA, and based on bite marks on one 

individual of common snapping turtle, larger individuals of alligator snapping turtles 

may be present there. Of particular note is the capture of an alligator snapping turtle in 

an upland lake at Gus Engeling WMA. The lake drains into Catfish Creek suggesting a 

short upstream movement followed by an overland crossing of ~20 m, or a release by 

humans.  
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Alligator snapping turtles have experienced intensive harvest and subsequent 

declines throughout their range (Pritchard, 1989). The presence of only young turtles 

may also be a symptom of current or past perturbations of harvest. Size disparities have 

been observed between harvested and unharvested populations in Arkansas (Trauth et 

al., 1998), Georgia (Jensen and Birkhead, 2003), Missouri (Shipman and Riedle, 2008), 

and Oklahoma (Riedle et al., 2005). 

 Correspondence Analysis resulted in a clustering of several species at Gus 

Engeling WMA. Although each of these species has specific habitat requirements, they 

overlap in their use of available habitats at Gus Engeling WMA (Table 3.4). The 

exception was the eastern mud turtle that was largely restricted to shallow, heavily 

vegetated habitats, a pattern reported in other studies (Buhlmann and Gibbons, 2001). 

Ordination of the alligator snapping turtle along environmental gradients was intriguing. 

Although this species shared habitat with several species, they were segregated from 

other species along Axis 1 (Fig. 3.2). Alligator snapping turtles consume a wide variety 

of prey, including other species of turtles (Pritchard, 1989; Ernst and Lovich, 2009) and 

agnostic/predatory behavior towards large individuals of common snapping turtles has 

been reported (Shipman et al., 1994). Because individual nets were considered a “site” 

within my analyses, the presence of a large predatory turtle within a net (or site) could 

have excluded other turtles (Cagle and Chaney, 1950) thus biasing CA results with 

respect to this predator.  

Canonical correspondence analysis results largely match what is known about the 

natural history of turtle species at these sites. Sliders are considered ecological 
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generalists and are typically captured in diverse aquatic habitats (Ernst and Lovich, 

2009). Within my ordination analyses, sliders were positioned fairly close to the 

intersection of both axes (Fig. 3.3), suggesting that outside of possibly basking structure, 

they were not selecting any particular habitat. Spiny softshells mostly inhabit river and 

stream channels (Vandewalle and Christiansen, 1996; Bodie et al., 2000), and were 

typically associated with sites characterized by higher flow.  

Mahmoud (1969) compared the ecology of four species of Kinosternid turtles in 

Oklahoma, but included few comparisons where multiple species were living in 

sympatry. Three species were sympatric at Gus Engeling WMA, allowing for a 

comparison of habitat use when in sympatry. In Oklahoma, razorback musk turtles and 

common musk turtles are frequently found together, but are rarely found with eastern 

mud turtles. Razorback and common musk turtles prefer flowing water, whereas eastern 

mud turtles prefer vegetated, lentic bodies of water (Mahmoud, 1969). Even though all 

three occurred within a small area in this study, they revealed similar patterns of habitat 

segregation with eastern mud turtles being found in heavily vegetated marshes, whereas 

the two Sternotherus species were associated with greater depth and flow. Eastern mud 

turtles are physiologically adapted to the ephemeral nature of their habitat, because they 

can estivate during prolonged dry periods (Ernst and Lovich, 2009). Razorback and 

common musk turtles prefer deeper, more permanent aquatic habitats; these turtles 

exhibit high rates of evaporative water loss that restricts terrestrial activity and ability to 

estivate (Stone and Iverson, 1999; Constanzo et al., 2001).  
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Riedle et al. (2009) considered both common snapping turtles and alligator 

snapping turtles to be ecological generalists based on comparisons of habitat use across 

several river systems in Oklahoma. When sampled on a smaller geographic scale, these 

two chelydrids revealed some segregation in habitat use. Common snapping turtles will 

occupy almost any aquatic habitat, but prefer still or slow moving water with muddy 

substrates and aquatic vegetation (Bodie et al., 2000: Ernst and Lovich, 2009). Alligator 

snapping turtles, on the other hand, tend to occupy larger and deeper bodies of water 

(Ewert et al., 2006). Both species are large predators/scavengers; therefore, competition 

for food resources and predation upon one another may be driving the spatial distribution 

of both species when occurring in sympatry (Lescher et al., 2013). Thermoregulation 

may also promote use of deeper habitats by the larger alligator snapping turtle (Riedle et 

al., 2006; Fitzgerald and Nelson, 2011). 

The two WMAs had similar turtle community composition, but use of available 

habitat appeared to differ in many cases. The relatively low species richness in these two 

WMAs appears to be related to absence of certain types of habitats, primarily open 

canopy, heavily vegetated marshes, and possibly competition. At Gus Engeling WMA 

both river cooters and eastern mud turtles were predominantly captured or observed in 

those habitats. The absence of common musk turtles at Keechi Creek WMA is notable, 

because suitable habitat was present. One hypothesis is that common musk turtles are 

competitively excluded by razorback musk turtles.  

Differences in capture rates and body size between Gus Engeling WMA and 

Keechi Creek WMA also might reflect differences in natural and anthropomorphic 
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perturbations. Introduced predators such as feral hogs (Fordham et al., 2006; Doupe et 

al., 2009) and fire ants (Solenopsis invicta; Moulis, 1997; Allen et al., 2001; Buhlmann 

and Coffman, 2001) are known to have significant impacts on turtle nests and adults in 

terrestrial refugia. Raccoons are a well known predator of turtles (Ernst and Lovich, 

2009) and high population densities of raccoons are known to significantly skew turtle 

populations to primarily older age classes with low to no recruitment (Browne and 

Hecnar, 2007).  

Gus Engeling WMA had additional impacts that are not present at Keechi Creek 

WMA. These include predation pressure by alligators and human impacts, such as 

higher road density and fishing with set lines (limb lines, trot lines). Road mortality can 

have a large impact on population structure and persistence of turtle populations, and 

female turtles are most frequently hit during movements for nesting (Gibbs and Steen, 

2005). Based on my four years of sampling at Gus Engeling WMA, incidence of road 

mortality was very low, but it should be considered given that several female sliders 

were captured while nesting along roadways. Of greater concern is the high density of 

set lines for fishing, most of which appeared to be untended. Set lines are effective gear 

for catching turtles (Lagler, 1943; Moll and Moll, 2004) and can negatively impact 

aquatic turtle populations (Smith, 1979; Shipman and Riedle, 2008).   

Alligators exhibit complex relationships with turtles, and these include positive 

interactions through habitat and reproductive facilitation (Dietz and Jackson, 1979; 

Bondavalli and Ulanowicz, 1999) and negative interactions in the form of competition 

and predation (Gibbons and Lovich, 1990; Bondavalli and Ulanowicz, 1999). American 
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alligators can have a significant impact on body size distributions and population 

densities of aquatic turtles (Gibbons and Lovich, 1990; Bondavalli and Ulanowicz, 1999; 

Aresco and Gunzburger, 2007). Turtles at Gus Engeling WMA had a higher proportion 

of injuries related to attempted predation by American Alligators and other predators.  

Chesson (2000) suggested that local-scale processes influence assemblage 

structures because different species have fitness advantages affected by abiotic 

environment and densities of conspecifics that in turn influences regional species 

assemblages (Michalet et al., 2002; Urban et al., 2008). Turtle communities at Gus 

Engeling and Keechi Creek WMAs were similar, but there were considerable differences 

in patterns of abundances and habitat use. These differences may be related to habitat 

heterogeneity, long-term changes in local habitat, and natural and anthropogenic 

perturbations. Increasing the scale of sampling to include additional sites within the 

Middle Trinity River Basin would better elucidate the role of these factors in 

determining turtle community structure.  
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CHAPTER IV 

TRAPPING EFFICIENCY FOR AQUATIC TURTLES IN EAST               

TEXAS 

 

Introduction 

Species inventories and acquisition of voucher specimens are important when 

making comparisons of distribution and abundance over a temporal scale (Heyer et al., 

1994). Thus, baseline inventories are a routine part of any environmental assessment 

(Gibbons et al., 2000). Within the Chelonia, baseline information on the biology of 

many species is lacking (Lindeman, 2008). Naturally, the success of baseline inventories 

is dependent on the application of appropriate field sampling techniques. As such, 

periodic evaluation of the efficacy of sampling techniques merits attention by 

researchers. Understanding of the contribution of complementary methods to sampling 

biodiversity is also important because multiple sampling methods are often needed in 

order to adequately sample diverse communities. For example, in a comparison of seven 

sampling methods for amphibians, Gunzburger (2007) found that detection probability 

varied across a range of techniques depending on species and life stages. Greatest 

species richness was documented through use of frogloggers, while active sampling 

(dipnets, box traps) provided a more accurate count of individuals.  

Early collecting methods for aquatic turtles included antiquated (or just 

improper) techniques such as shooting, as well as more time-honored methods of using 

modified hoop nets and fyke nets (Ruthven, 1912; Lagler; 1943). Each method used for 
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sampling may show biases in captures among species (Cagle and Chaney, 1950; Vogt, 

1980), age classes, and sexes (Ream and Ream, 1966; Koper and Brooks, 1998; Smith 

and Iverson, 2002), thus a combination of techniques may be needed when sampling 

diverse species assemblages.  

Cagle and Chaney (1950) described species specific variation in capture efficacy 

during their work on Louisiana turtle communities. They noted that larger turtles, such 

as snapping turtles (Chelydra and Macrochelys), may preclude other turtles from 

entering the trap. They also noted that river cooters (Pseudemys concinna) were only 

captured by hand, while false map turtles (Graptemys pseudogeographica) were only 

captured in traps. Sterrett et al. (2010) compared effectiveness of active sampling 

(snorkeling) versus passive sampling (baited hoop traps) among several turtle species in 

a clear water Georgia stream. They found differences in capture probabilities between 

methods as Barbour’s map turtles (Graptemys barbouri) were captured 90% of the time 

by snorkeling, while pond sliders (Trachemys scripta) were captured 88% of the time in 

baited hoop nets.  

Previous research documented variation in capture rates among sites as well as 

among species. Ream and Ream (1966) noted that painted turtles (Chrysemys picta) in 

Wisconsin had female biased capture rates using basking traps, male biased captured 

rates using baited hoop nets, and equal sex ratios when captured by hand or dip net. 

However Vogt (1980) reported equal sex ratios utilizing fyke nets in Wisconsin. Female 

biased captured rates of painted turtles, regardless of technique, were recorded by Koper 

and Brooks (1998) in Ontario, Canada. 
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Not all land managers/researchers can afford a wide range of sampling gear, as 

trap types for aquatic turtles vary widely in cost ($30-1000), which would impose 

limitations on the number of techniques they could deploy (Plummer 1979; Sterrett et 

al., 2010). Evaluation of sampling methods should include the effectiveness in terms of 

number of species and individuals collected in relation to associated labor and cost (Corn 

et al., 2000).  

I sampled two sites in eastern Texas as part of a community ecology study 

focused on aquatic turtles between 2006-09 with the support of the Texas Parks and 

Wildlife Department. Results from this research support the need to better understand 

and conserve biodiversity on lands managed by the agency. In response to assisting them 

with future monitoring efforts, I reviewed my trapping results after the fact to compare 

capture efficacy, effort, and detection probability for each trap type and similarity of 

captures between trap types. Considering that area managers at this site would most 

likely have limited funds for future monitoring, I wanted to determine which trap type or 

combination of trap types would provide adequate capture rates for sampling the entire 

assemblage of aquatic turtles at this site. 

 

Study Area 

The Trinity River originates north of the Dallas/Fort Worth metroplex in 

northeastern Texas, and flows 1150 km southward to empty into Galveston Bay on the 

Gulf Coast. The Trinity River Basin lies solely within Texas encompassing 46,540 km2 

and roughly one-third of the state’s population (Huser, 2000).  Annual rainfall is 
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approximately 100 cm/yr (Johnson, 1931), and the drainage experiences frequent 

flooding, particularly within its upper reaches (Huser, 2000).  Because there are major 

urban centers in the Middle Trinity River Basin, the stretch of river between Dallas/Fort 

Worth and Houston is considered an area of concern by the Texas Parks and Wildlife 

Department (Bill Adams, Texas Parks and Wildlife Department pers. com.). The Middle 

Trinity River Basin encompasses the Texas Natural Regions of the East Texas Plains and 

the Prairies Province, and the bisection of moderately humid grasslands and humid 

cross-timbers habitats by the Trinity River results in high species richness of both flora 

and fauna (Johnson, 1931).   

My primary study area was located in Anderson County, Texas, on the Texas 

Parks and Wildlife Department managed Gus Engeling Wildlife Management Area 

(WMA) (Fig. 3.1 previous chapter). Gus Engeling WMA is a 4,434-ha property 

encompassing a large portion of the Catfish Creek ecosystem. Catfish Creek is a 

tributary in the Middle Trinity River Basin, encompassing 730 ha and 32 km of 

Anderson and Henderson counties and considered a Natural National Landmark (Telfair, 

1988). Twenty-four small creeks feed Catfish Creek, most of which are spring fed. 

Habitats associated with the Catfish Creek Ecosystem include by post-oak savanna, 

bottomland hardwoods, marshes, swamps, bogs, and springs. Aquatic habitat at Gus 

Engeling WMA is represented by Catfish Creek and its tributaries, adjacent scours and 

backwater habitat, open canopy marshes, several small ponds and larger lakes. Aquatic 

habitat is augmented by a series of levees and flood-control gates, built in cooperation 

with Ducks Unlimited, to provide wetlands for waterfowl. In addition, there are several 
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ponds or “borrow” pits associated with the levees (Eric Wolverton, Texas Parks and 

Wildlife Department pers.com.).  

My second site was the TPWD managed Keechi Creek WMA in northeastern 

Leon County, Texas. Keechi Creek WMA, a small 607 ha management area, also lies 

within the Middle Trinity River Basin and was acquired by TPWD in 1986 (Fig. 3.1). 

Aquatic habitats at Keechi Creek WMA are much less complex, consisting of Keechi 

and Buffalo creeks, and a large oxbow lake associated with Keechi Creek. The oxbow 

lake is intermittently connected to both creeks (Gelwick et al., 2001). Terrestrial habitat 

is predominately bottomland hardwoods.  Hardwoods in this region are typified by green 

ash (Fraxinus pennsylvanica), boxelder (Acer negundo), bur oak (Quercus macrocarpa), 

Shumard oak (Q. shumardii), overcup oak (Q. lyrata), water oak (Q. nigra), willow oak, 

(Q. phellos) and post oak (Q. stellata); (Ryberg et al. 2004).  

 

Methods 

I sampled aquatic habitats at Gus Engeling WMA between late May and late 

July, 2006-2008, and between April and late July 2009. I divided trap types into deep 

water and shallow water trap gear. Deep water gear consisted of two sizes of fyke nets, 

and large diameter hoop nets. Shallow water gear consisted of mini catfish hoop nets, 

two sizes of square collapsible fish traps and one size of sea/bass/dome traps.   

The large fyke net (Christensen Nets, Everson, WA, USA; 

www.christensennetworks.com) was 4.5 m in length (front frame to cod end) with a 

single 14.5 m x 88 cm lead. The two anterior rectangular frames were 120 cm x 88 cm 
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followed by five, 88-cm diameter round hoops, with three 3-cm diameter stretchable 

funnels leading to the cod end. Square mesh size was 1 cm.  The smaller fyke net 

(Christensen Nets, Everson, WA, USA; www.christensennetworks.com) was 3.3 m in 

length from the front frame to cod end, and had a single 7.4 m x 67 cm lead. The two 

rectangular front frames were 95 cm x 67 cm, followed by four 67 cm diameter hoops. 

Both fyke nets had a single vertical slit funnel within the rectangular frames. There were 

two 31-cm diameter stretchable funnels leading to the cod end. Square mesh size was 

1cm. The larger hoop (turtle net; Memphis Net and Twine, Memphis, TN, USA; 

www.memphisnet.net) consisted of three 88-cm diameter metal rings and one 31-cm 

diameter stretchable funnel. Overall trap length was 245 cm, and square mesh size was 

2.5 cm.  

The collapsible box traps and sea bass traps were purchased from Memphis Net 

and Twine (Memphis Net and Twine, Memphis, TN, USA; www.memphisnet.net 

www.memphisnet.net).  The mini catfish hoop net had four 47-cm diameter fiberglass 

hoops, two 27-cm diameter stretchable funnels, and an overall length of 155 cm. Square 

mesh size was 2.5cm. Small box traps were 59 cm x 43 cm x 22 cm with a square mesh 

size of 1 cm. There was a 43-cm, horizontal slit funnel opening on opposite ends of the 

long axis of the trap. Large box traps were 79 cm x 60 cm x 25 cm with a square mesh 

size of 1 cm, and had a 60-cm horizontal slit funnel on opposite ends of the long axis of 

the trap. Dome traps were 96 cm x 64 cm x 61 cm. Square mesh size was 2.5 cm and 

there were two 15-cm rigid funnels (funnel held open with a plastic ring), located on 

each end of the trap.  



 
 

63 
 

All traps were baited with sardines and/or fresh fish. Traps were checked at least 

once every 24 hrs. Sampling gear was set so that some portion was exposed above the 

water surface, providing air space for turtles and other air breathing organisms.  

Aquatic habitats at Gus Engeling WMA were highly variable in size, based on 

seasonal and annual rainfall. The type and number of traps set was dictated by the 

amount of water available, depth of available water, and number of nets available at that 

time. I measured depth at the opening of each trap. To relate habitat characteristics and 

depth to the trap type used I first classified five types of habitat at Gus Engeling WMA:  

Creek (flowing waters associated with Catfish Creek and its tributaries); Backwater 

(scours and flooded timber associated with the Catfish Creek floodplain); Marsh 

(shallow, open canopy, heavily vegetated water bodies associated with smaller feeder 

creeks, springs and bogs); Pond (small manmade water bodies and borrow pits ≤ 100 m 

diameter and consisting of more open water than marshes); or Lakes (larger, several ha 

manmade water bodies).  

Since trapability of individual species may vary by trap type, I used program 

PRESENCE (Hines, 2006) to calculate detection probabilities for each trap type. As a 

large number of observations are required to obtain reliable detection probabilities, 

individual turtle species were grouped by family (emydids, kinosternids, and 

chelydirids). The family Trionychidae was excluded because of very low capture rates. 

Not all trap types were used frequently throughout the project, so I only calculated 

detection probabilities for three trap types: large hoop nets, large box traps, and fyke nets 

(both large and small fyke nets combined). I also calculated catch/per unit effort x 
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species x habitat x trap type. A unit of effort was defined as a net night, or one net set 

over one night. 

To compare species richness between trap types I used Jaccard’s measure of 

similarity: CJ = j/ (a + b - J) where j = the number of species common to both net types, 

a = the number of species in net type A, and b = the number of species in net type B 

(Magurran, 2004). Then I constructed species accumulation curves to look at the rate at 

which new species were captured using each trap type. I constructed randomized species 

accumulation curves and 95% confidence intervals using program EstimateS (Colwell, 

2013). Program EstimateS assess species richness through construction of rarefaction 

curves, which are created by resampling the pool of N samples multiple times and 

plotting the average number of species found in each sample (Gotelli and Colwell, 2001; 

Chiarucci et al., 2008). Samples were randomized 100 times for calculation of sample 

means and confidence intervals.  

Not all traps were available for use in the same numbers, primarily due to cost, 

and this study was not originally set-up to compare capture techniques, but rather 

attempt to thoroughly sample an aquatic turtle  community. So the number of samples 

for each trap type was unequal. Program EstimateS extrapolates rarefaction curves past 

your reference samples allowing one to compare unequal sample sets (Longino and 

Colwell, 2011; Colwell et al., 2012). I extrapolated curves for all trap types out to 500 

net nights.  

I also determined sex ratio by trap type for each species to determine if there 

might be a sex bias for each trapping technique. To look for any observed capture bias 
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by body size by trap type I utilized pond sliders, our most frequently captured species, to 

compare body size by trap type.  

 

Results 

Sampling yielded 520 captures of 8 species of turtles in nets at Gus Engeling 

WMA (Table 4.1). Capture probabilities and detection rates varied among trap types 

(Table 4.1; Figure 4.1a). Emydids had the highest detection probabilities in all three net 

types, and fyke nets and large box traps had slightly higher detection probabilities than 

other trap types. Chelydrids had higher detection probabilities in large hoop nets and 

kinosternids had higher detectability within the fyke nets. Large fyke nets captured 

higher proportions of common musk turtles (Sternotherus odoratus). Large hoop nets 

captured higher proportions of spiny softshell turtles (Apalone spinifera), alligator 

snapping turtles (Macrochelys temminckii), and razorback musk turtles (Sternotherus 

carinatus). Large box traps captured higher proportions of common snapping turtles 

(Chelydra serpentina), eastern mud turtles (Kinosternon subrubrum), river cooters, and 

pond sliders. The two types of fyke net, large hoop traps, and large box traps were the 

most similar in species captured (Table 4.2). Dome and mini catfish hoop traps were also 

similar (Table 4.2). 
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Table 4.1: Catch per unit effort x trap type at Gus Engeling Wildlife Management Area, Anderson County, TX, 2006-2009. 
Species abbreviations: APSP, Spiny Softshell Turtle; CHSE, Common snapping Turtle; MATE, Alligator Snapping Turtle; 
KISU, Eastern Mud Turtle; STOD, Common Musk Turtle; STCA, Razorback Musk Turtle; PSCO, River Cooter; TRSC, 
Slider.  

   Species 
Trap Type Net Nights Captures APSP CHSE MATE KISU PSCO STOD STCA TRSC 
Large Fyke 82 31 0.00 0.01 0.01 0.01 0 0.13 0.03 0.25 
Small Fyke 54 34 0.00 0.04 0.02 0.05 0 0.04 0.05 0.44 
Mini-Hoop 58 44 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.69 
Large Hoop 318 111 0.01 0.01 0.01 0.00 0.00 0.01 0.06 0.09 
Large Box 547 259 <0.01 0.03 <0.01 0.03 <0.01 0.01 <0.01 0.36 
Small Box 193 23 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.10 
Dome 47 18 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.37 
All Trap Types 1299 457 <0.01 0.01 <0.01 0.02 <0.01 0.02 0.02 0.27 
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A. 

 

 

B. 

 

 
 
Figure 4.1. A. Detection probabilities for three families of aquatic turtles in three types 
of net gear at Gus Engeling WMA, Anderson County, Texas, 2006-2009. B. Detection 
probabilities for three families of aquatic turtles in three types of net gear at Keechi 
Creek WMA, Leon County, Texas. 
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Table 4.2: Jaccards similarity values for captures by net type at Gus Engeling Wildlife Management Area, Anderson County, 
Texas, 2006-2009. 
 
 Trap Type 
Trap Type Large Fyke Small Fyke Mini-Hoop Large Hoop Large Box Small Box 
Large Fyke       
Small Fyke 1.00      
Mini-Hoop 0.50 0.50     
Large Hoop 0.83 0.83 0.43    
Large Box 0.75 0.75 0.38 0.87   
Small Box 0.33 0.33 0.25 0.14 0.25  
Dome 0.50 0.50 1.00 0.43 0.38 0.25 
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The only trap type to capture all 8 species of turtles at Gus Engeling WMA were 

the large box traps (Table 4.3), although fyke nets and large hoop traps accumulated 

more species sooner (Table 4.3). Pond sliders were always the first species captured in a 

trap, except for the large fyke nets (Table 4.3). Fyke nets appeared to be fairly good at 

capturing kinosternids, although both box traps did as well. 

Large box traps were the only trap type whose rarefication curve did not reach 

asymptote (Fig. 4.2). Large box traps continued to add species, particularly juveniles of 

larger species, throughout the duration of the project (Table 4.3). Confidence intervals 

tend to grow dramatically around the rarefication curves once the curve begins to 

extrapolate past the last reference sample (Colewell, 2013). When confidence intervals 

were compared to those of the other small trap types, they tend to remain narrow around 

small box traps, but widen considerably around the mean accumulation curve for dome 

traps. When comparing confidence intervals for the larger trap types, they remain large 

for the mini-hoop and fyke nets (Figure 4.3). Small fyke nets, mini-hoop traps and dome 

traps were the only trap types to reach asymptote at a greater number of species than 

actually captured. Results for theses trap types suggests that more frequent use would 

result in the capture of additional species, possibly at a higher rate than other large trap 

types.  
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Table 4.3:  Sequential order of species captured with number of net nights to first occurrence in parentheses by trap type at Gus 
Engeling Wildlife Management Area, Anderson County, TX, 2006-2009. Species abbreviations: APSP, Spiny Softshell Turtle; 
CHSE, Common snapping Turtle; MATE, Alligator Snapping Turtle; KISU, Eastern Mud Turtle; STOD, Common Musk 
Turtle; STCA, Razorback Musk Turtle; PSCO, River Cooter; TRSC, Slider. 

Trap Type Species 1 Species 2 Species 3 Species 4 Species 5 Species 6 Species 7 Species 8 
Large Fyke KISU (2) MATE (9) STCA (17) STOD (18) TRSC (19) CHSE (19)   
Small Fyke TRSC (9) CHSE (9) KISU (10) STCA (20) STOD (25) MATE (52)   
Mini-Hoop TRSC (2) CHSE (2) STCA (14)      
Large Hoop TRSC (1) STOD (18) STCA (24) APSP (22) MATE (33) STOD (37)   
Large Box TRSC (7) CHSE (7) STCA (17) STOD (29) PSCO (60) KISU (103) APSP (208) MATE (308) 
Small Box TRSC (1) KISU (4)       
Dome TRSC (1) STCA (7) STOD (34)      
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Figure 4.2. Species accumulation curves and 95% CI for (A) small box traps, (B) large box traps and (C) dome traps at Gus 
Engeling WMA, Anderson County, Texas 2006-2009. 
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Figure 4.3. Species accumulation curves for (A) small fyke nets, (B) large fyke nets, (C) mini-hoop traps, and (D) large hoop 
traps  at Gus Engeling WMA, Anderson County, Texas 2006-2009. 
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Water depth does influence where certain net types can be set, so in turn net types 

showed variation in capture rates in different habitats (Table 4.4). Creek habitats had 

deeper water (64.1 ± 27.1 cm), followed by lakes (49.1 ± 44.1 cm), ponds (46.7 ± 27.4 

cm), backwater (36.5 ± 26.1) and marsh (36.2 ± 26.4) habitats. In creek habitats large 

fyke nets and mini-hoop traps had the highest capture rates (Table 4.4). Mini-hoop traps 

and large box traps had high capture rates in shallow backwater habitats, while small 

fyke nets and dome traps did well in more heavily vegetated marshes (Table 4.4). Both 

types of fyke net, large box traps and mini-hoops had high capture rates in ponds and 

lakes (Table 4.4). 

Mean mid-line carapace lengths for pond sliders were not significantly different 

among different trap types at Gus Engeling WMA (df = 6, F = 9.17, P = 2.68). All sizes 

of pond sliders were captured in all trap types, although the median size for turtles 

captured in small box, dome, and mini-hoop traps were slightly smaller than those 

captured in other traps (Fig. 4.4).   

Although sampling effort was considerably less at Keechi Creek WMA, I 

observed differences in detectability among trap types when compared to Gus Engeling 

WMA. At this site, emydids had higher detection rates than other families, and detection 

rates for chelydrids and kinosternids were similar (Fig 4.1b). The lack of captures of 

kinosternids in box traps at Keechi Creek WMA may be reflective of the absence of 

common musk turtles and eastern mud turtles in our captures at this site (Table 4.5).  
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Table 4.4: Catch per unit effort x trap type x habitat at Gus Engeling Wildlife Management Area, Anderson County, Texas 
2006-2009. Traps were ranked in order of highest catch per unit effort for each habitat type sampled. 
 
Trap Type Creek Rank Backwater Rank Marsh Rank Pond Rank Lake Rank 
Large Fyke 0.66 1 0.18 5 0.20 5 1.00 3 0.60 4 
Small Fyke 0.44 3 0.18 5 0.80 2 1.37 2 1.33 2 
Mini-hoop 0.54 2 0.80 1 0.00 6 1.5 1 1.57 1 
Large Hoop 0.15 6 0.21 4 0.00 6 0.23 6 0.59 5 
Large Box 0.23 4 0.48 2 0.27 4 0.42 5 1.25 3 
Small Box 0.00 7 0.16 6 0.53 3 0.00 7 0.25 6 
Dome 0.18 5 0.33 3 0.83 1 0.88 4 - - 
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Figure 4.4.  Minimum, 1st quartile, median, 3rd quartile, and maximum mid-line carapace lengths for sliders captured at Gus 
Engeling WMA, Anderson County, Texas 2006-2009. 
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Table 4.5: Catch per unit effort x trap type at Keechi Creek Wildlife Management Area, 
Leon County, Texas 2009.  
 
   Species 
Trap Type Net Nights Total Captures APSP CHSE MATE STCA TRSC 
Large Fyke 4 15 0.00 0.00 0.06 0.13 3.00 
Small Fyke 4 11 0.00 0.75 0.00 0.00 2.00 
Large Hoop 33 40 0.18 0.03 0.06 0.06 0.87 
Large Box 21 28 0.00 0.03 0.00 0.00 1.28 
Small Box 16 8 0.00 0.00 0.00 0.00 0.50 
All Trap 
Types 

78 92 0.06 0.05 0.03 0.04 0.91 

 
 

As not all turtles were captured equally in all trap types, sex ratios by trap type 

include captures from both Gus Engeling WMA and Keechi Creek WMA to provide a 

more comprehensive picture of captures by sex by net type (Table 4.6). Common musk 

turtles showed a female bias in all traps in which they were captured. Female common 

snapping turtles were captured more frequently in small fykes, while males were 

captured more frequently in large hoop traps. Male pond sliders were captured in trap 

types with smaller entrances with increasing female captures in larger nets. Pond sliders 

exhibit sexual size dimorphism, with males being the smaller sex (Ernst and Lovich, 

2009), and sex-biased captures are also represented by differences in mean body sizes 

captured in each trap type (Table 4.6: Fig 4.4). 
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Table 4.6: Sex ratios (M:F) by species and trap type for Gus Engeling Wildlife 
Management Area (2006-09) and Keechi Creek Wildlife Management Area (2009). 
Species abbreviations: CHSE, Common snapping Turtle; KISU, Eastern Mud Turtle; 
STCA, Razorback Musk Turtle; STOD, Common Musk Turtle; TRSC, Slider.  
 
Trap Type CHSE KISU STCA STOD TRSC 
Large Fyke    1:1.5 1:2 
Small Fyke 1:2 1:1 2:1  1:1 
Large Hoop 2:1  1:1.66 1:4 1:1.43 
Mini-Hoop   2:1  1:2 
Large Box 1:1 1.42:1 1:1  1:1 
Small Box     3:1 
Dome   1:1  5:1 

 

 

Discussion 

The sampling techniques I used were adequate for detecting species occurrence 

with enough sampling effort, as I captured all but one species previously recorded on 

Gus Engeling WMA (Wes Littrell, Texas Parks and Wildlife Department pers. comm.). 

The one species missing was the chicken turtle (Dierochelys reticularia), which prefer 

shallow, heavily vegetated bodies of water (Ernst and Lovich, 2009). This habitat type is 

present at Gus Engeling WMA and was sampled during the study. Based on 4 years of 

sampling for this project, this species may be extremely rare to extirpated at this site.  

River cooters were highly under-represented in my samples, although I observed 

them basking in open marshy areas quite frequently. River cooters do not appear to be 

easily attracted to bait or do not enter traps very readily, and the resulting disparity in 

number observed vs. number trapped seems to be a trend in other studies as well 

(Lindeman, 2001; Lindeman and Scott, 2001). Spiny softshells were also 

underrepresented, and with the exception of one hatchling, all captures of spiny softshell 
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turtles were female. Ernst and Lovich (2009) suggested that variation in population sizes 

throughout the spiny softshell’s range may be related as much to sampling technique as 

it is environmental conditions. Spiny softshells typically only make up a low percentage 

of turtle captures in other studies as well (Bodie et al., 2000; Dreslik et al., 2005; Riedle 

et al., 2009).  

Tinkle (1958) and Trauth et al. (2004) commented on low trap success for 

razorback musk turtles, although I was fairly successful capturing not only razorback 

musk turtles, but common musk turtles and eastern mud turtles as well. The kinosternids 

are typically considered bottom walkers (Moll and Moll, 2000; 2004) and the use of fyke 

nets and box traps may have helped increase our capture success of this family of small 

turtles. The one advantage box traps had over all other traps was the ability to set them 

in very shallow water (≥ 20 cm), and in turn they were heavily utilized in backwater and 

marsh habitats where smaller species and smaller individuals of larger species of turtles 

may occur.  

To properly set large hoop nets, water depth of at least 60 cm was needed, depths 

generally found in deeper creek habitats. The short length of the trap also allowed me to 

take advantage of smaller pockets of deeper water that were occasionally present in 

backwater and marsh habitats. While originally considered deep water gear, fyke nets 

were more heavily utilized within the shallower backwater habitats (Table 4.1). While 

successful when set in creek habitats, high flow at certain times of the year made setting 

the lead on fyke nets difficult within those creeks. Dense aquatic vegetation made setting 

all types of traps difficult within marsh habitats, particularly during periods of low water.  
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 While sampling effort and community composition differed between Gus 

Engeling WMA and Keechi Creek WMA, patterns of detectability was similar among 

trap types and turtle families although overall detectability rates were higher at Keechi 

Creek WMA (Fig. 4.1). Fyke nets have long been touted as the most efficient way to 

capture turtles (Vogt, 1980), and even work quite well passively (unbaited) at catching 

turtles (Webb, 1961: Barko et al., 2004). The long lead off the front frame of fyke nets 

served to guide turtles towards the opening of the net, and these traps were very 

successful, particularly for bottom walking species such as the kinosternidae.  

 Capture rates among sizes and sexes of single species are thought to be biased 

based upon differences in behavior between sexes and life stages (Cagle and Chaney, 

1950). In a Wisconsin population of painted turtles, Ream and Ream (1966) noted higher 

male captures in baited hoop nets and higher female captures in basking traps. We noted 

similar discrepancies in sex ratios by trap type for several species (Table 4.4). Most 

notable was the differentiation between sexes of pond sliders based on the overall size of 

the trap, with the smaller males being captured more predominantly in smaller traps. A 

better understanding of sex-biased sampling methods is needed in light of recent 

research emphases on climatic (Tucker et al., 2008) and ecotoxicological (Willingham 

and Crews, 1999) impacts on population structure of aquatic turtles.  
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CHAPTER V 

CONCLUSIONS 

 

 There has been much disagreement about the role of local processes in 

community ecology (summarized in Ricklefs, 2008; Brooker et al., 2009), but one 

school of thought is that drivers of local species richness can influence large-scale 

patterns of community structure (Michalet et al., 2002; Urban et. al., 2008). 

Understanding how the biotic and abiotic environment at local scales drives local 

community assemblages has important implications in regards to species conservation 

and habitat management. Freshwater ecosystems are considered the most endangered in 

the world (Woodward et al., 2010) with turtles viewed as the most imperiled vertebrate 

group (Buhlmann et al., 2009). Therefore research on turtle communities and how they 

are structured can give meaningful insights as to how turtle populations, species, and 

their aquatic habitats can be managed.  

 My field research was conducted at two sites in eastern Texas, USA. Catfish 

Creek is a tributary of the Trinity River in east Texas, is managed by the Texas Parks 

and Wildlife Department, and is considered a Natural National Landmark (Telfair, 

1988). Catfish Creek, and its associated aquatic habitats within the state owned and 

managed Gus Engeling Wildlife Management Area are manipulated to provide seasonal 

wetlands for migrating waterfowl. It is important for the area managers to understand 

how these manipulations impact all the flora and fauna on the area. This project 

elucidated information on fish and turtle communities on Gus Engeling and Keechi 



 
 

81 
 

Creek Wildlife Management Areas in light of these management practices. From a turtle 

conservation standpoint, my research on turtle communities in Catfish Creek fills some 

gaps in our knowledge of turtle community structure. Previous literature on riverine 

turtle communities focus on rivers (Bodie and Semlitsch, 2000; Anderson et al., 2002; 

Dreslik and Phillips, 2005), with little attention placed on lower-order tributaries.  

 Fish and turtles can be sampled utilizing the same techniques, and previous but 

separate works on fish and turtles stated that local species assemblages for both taxa 

were governed by physical and chemical characteristics of the stream system and 

interconnectivity among aquatic habitats (Jackson et al., 1992; Luiselli, 2008). All turtles 

and nearly three-quarters of all fish species were captured along the interface between 

Catfish Creek and its adjacent backwaters. Although I did not directly measure dispersal 

between habitats, it appeared that there was interchange between lentic and lotic 

habitats.  

 Analyses of stream characteristics showed that outside of flow and emergent 

vegetation, downed woody debris was an important factor in the determination of 

species occurrences and abundances. Downed woody debris maintains physical 

characteristics of stream systems, such as decreasing sediment flux, controlling thermal 

profile, decreasing bank incision, as well as increasing productivity and diversity of 

invertebrates (Robertson and Crook, 1999; Brooks et al., 2004). Downed woody debris 

also provides important cover and/or basking substrate for fish and turtles (Lovich, 1988; 

Everett and Ruiz, 1993; Lindeman, 1999). 



 
 

82 
 

 Turtles were the primary focus of my sampling efforts at Gus Engeling Wildlife 

Management Area in an effort to learn more about assemblage structure, particularly in 

smaller order streams. Map turtles in the genus Graptemys, while present in the regional 

species pool were absent from this site. Map turtles generally prefer larger streams with 

more open canopy (Ernst and Lovich, 2009) than was present at Gus Engeling Wildlife 

Management Area. Other notable differences were the predominance of smaller, 

subadult alligator snapping turtles. Alligator snapping turtles are typically considered a 

large river turtle, although juveniles may utilize shallow backwater areas and smaller 

tributaries (Pritchard, 1989; Ernst and Lovich, 2009). Larger adults are occasionally 

captured at Gus Engeling Wildlife Management Area and may move up smaller 

tributaries during periods of high water (Riedle et al., 2006). Based on the capture of one 

hatchling, some reproduction was apparently taking place on site.    

 By taking the approach of sampling turtle assemblages, I was also able to 

elucidate basic information on inter-specific habitat partitioning among closely related 

groups of turtles. Lescher et al. (2013) noted strict habitat partitioning between common 

and alligator snapping turtles. In his study alligator snapping turtles utilized deeper water 

and were associated with sites with more submerged structure, while common snapping 

turtles were associated with sites with more emergent vegetation. At Gus Engeling 

Wildlife Management Area I observed similar habitat partitioning with alligator 

snapping turtles captured at sites characterized by deeper water and higher flow, and 

common snapping turtles were captured at shallower sites.  
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 I also captured three species of kinosternid turtle (common musk turtle, 

razorback musk turtle, and eastern mud turtle) at Gus Engeling Wildlife Management 

Area. The Kinosternidae is a vastly understudied group of turtles (Lovich and Ennen, 

2013) with the only comparative biology of these three species being published in 1969 

(Mahmoud, 1969). On a larger regional scale Mahmoud noted specific habitat 

preferences among the three species, with eastern mud turtles occurring in more 

ephemeral habitats and razorback musk turtles being found in lotic habitats. Most 

notable is that the common musk turtle is considered a habitat generalist and can be 

found in all habitat types, particularly when it is the only kinosternid occurring in a 

particular area (Mahmoud, 1969; Ernst and Lovich, 2009). While sampling at a very 

local scale, this partioning of habitat was very strong. Differing species of kinosternids 

were rarely ever captured together at the same sites. Eastern mud turtles were 

predominantly captured at sites associated with shallow water and dense emergent 

vegetation. Razorback musk turtles preferred deeper water with high flow. Common 

musk turtles were then captured in backwaters and smaller streams. 

 I sampled a second site, Keechi Creek Wildlife Management Area, in 2009 for 

aquatic turtles. While superficially similar to Gus Engeling Wildlife Management Area, 

the variety of aquatic habitats available at Keechi Creek Wildlife Management Area was 

less. In addition it appeared the human perturbations (roads) and potential predators 

(alligators) were fewer at Keechi Creek Wildlife Management Area. Species richness 

was less at Keechi Creek Wildlife Management Area, but abundances were higher. Also, 

individuals tended to be larger at Keechi Creek Wildlife Management Area. While only 
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two sites were sampled during the course of this study, more extensive sampling of 

additional sites would provide a tremendous amount of information on how variation in 

local environment drives turtle assemblage structure.  

 Sampling a diverse array of turtles ultimately required using a combination of 

sampling gear. The turtles sampled at Gus Engeling Wildlife Management Area used a 

variety of aquatic habitats and modes of locomotion ranging from swimming to bottom 

walking (Moll and Moll, 2000). Using a range of turtle nets that allowed me to 

adequately sample a range of depths and physical characteristics (lentic vs. lotic) 

contributed to my overall success of this project. But, two species, river cooters and 

spiny softshells were underrepresented in my samples at Gus Engeling Wildlife 

Management Area as they were frequently observed but rarely captured.  

 Sampling at both Gus Engeling and Keechi Creek Wildlife Management Areas 

provided valuable information not only on aquatic turtle assemblages, but how turtle 

assemblages relate to assemblage rule for other aquatic taxa, in this case fish. Expanding 

this study to include other similar sites throughout the Middle Trinity River Basin would 

be a big step towards answering many questions on both local drivers of assemblage 

structure as well as regional level community analyses. 
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