FURTHER INVESTIGATION OF FLUOBORIC ACID IN SANDSTONE ACIDIZING USING 11B AND 19F NMR

A Thesis

by

ARPAJIT PITUCKCHON

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Hisham A. Nasr-El-Din
Committee Members, Maria A. Barrufet
Mahmoud El-Halwagi
Head of Department, A. Daniel Hill

May 2014

Major Subject: Petroleum Engineering

Copyright 2014 Arpajit Pituckchon
ABSTRACT

Although fluoboric acid (HBF₄) has long been known as one of the low-damaging acid treatments for clayey sandstone formations, little is known of its chemistry which could explain the mixed results of fluoboric acid in actual field application. A better understanding of its limitations would contribute to an improved success rate in HBF₄ stimulation application.

The unique advantages of this acid system are the ability to reach deeper into formation to address damage at extended radius before spending, owing to its slow hydrolytic reaction to produce HF, as well as the stabilization and desensitization of undissolved fines with borosilicate.

A more comprehensive understanding of how the chemistry of fluoboric acid and its reaction products affect silica and aluminosilicates is crucial to the design and optimization of fluoboric acidizing treatment. Through a novel application of 11B and 19F Solution State High Field Nuclear Magnetic Resonance (NMR) spectroscopy, chemical complexes involved in the reaction were defined.

Various other experimental techniques were also employed in studies on the ability of hydrolyzed fluoboric acid to react with common clays found in sandstone at room and elevated temperatures, as well as coreflooding to investigate clay migration development. Analyzing fresh and spent acid with inductively coupled plasma (ICP) and 11B and 19F NMR helps identify reaction products and their distribution. A set of 12-3
mud acid experiments was done in parallel to serve as a reference to 3%- equivalent-HF fluoboric acid in aqueous-HCl solution.

NMR results show complex mixtures of fluoborate species from HBF₄ hydrolysis and products from HF-aluminosilicates reaction. The fresh HBF₄ hydrolysis study at room temperature has confirmed retarded HF generation with presence of BF₄⁻ and BF₃(OH)⁻ and absence of BF₂(OH)₂⁻ or BF(OH)₃⁻ species. The effect of temperature on HBF₄ reaction has also been studied to validate functionality of acid at 75°F and 200°F. A series of lab dynamic flow testing in Berea sandstone corroborates conclusions from lab experiments by showing decrease in permeability when treating Berea sandstone cores with HBF₄ at 200°F. Fluoboric acid treatment is therefore not suitable for formations with approximate temperature of 200°F.
ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Nasr-El-Din, and my committee members, Dr. Barrufet, and Dr. El-Halwagi, for their guidance and support throughout the course of this research.

Thanks also goes to lab technicians, Don Conlee and Joevan Beladi, and administrative officer, Kristina Hansen for fulfilling all requests made throughout the extended period of laboratory work. I also want to extend my gratitude to my friends and colleagues and the department faculty and staff for making my time at Texas A&M University a great experience.

Finally, I give thanks to my family and Napon H. for their encouragement, patience and love.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIW</td>
<td>Deionized water</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric Acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HBF$_4$</td>
<td>Fluoboric Acid</td>
</tr>
<tr>
<td>PV</td>
<td>Core Pore Volume</td>
</tr>
<tr>
<td>ACS</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>md</td>
<td>Millidarcy</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>wt%</td>
<td>Weight Percent</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per Minute</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER I INTRODUCTION AND LITERATURE REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Fluoboric Acid</td>
<td>4</td>
</tr>
<tr>
<td>Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER II EXPERIMENTAL STUDIES</td>
<td>14</td>
</tr>
<tr>
<td>Acid Used</td>
<td>15</td>
</tr>
<tr>
<td>Clay Particle Size Selection</td>
<td>16</td>
</tr>
<tr>
<td>HBF$_4$ Hydrolysis Investigation with 11B and 19F NMR</td>
<td>19</td>
</tr>
<tr>
<td>Clay Dissolution Test at 75°F</td>
<td>20</td>
</tr>
<tr>
<td>Clay Dissolution Test at 200°F</td>
<td>20</td>
</tr>
<tr>
<td>Berea Sandstone Coreflood at 200°F</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER III RESULTS AND DISCUSSION</td>
<td>25</td>
</tr>
<tr>
<td>HBF$_4$ Hydrolysis Investigation with 11B and 19F NMR</td>
<td>25</td>
</tr>
<tr>
<td>Clay Dissolution Test at 75°F</td>
<td>27</td>
</tr>
<tr>
<td>Clay Dissolution Test at 200°F</td>
<td>42</td>
</tr>
<tr>
<td>Berea Sandstone Coreflood at 200°F</td>
<td>57</td>
</tr>
<tr>
<td>CHAPTER IV FUTURE WORK</td>
<td>77</td>
</tr>
<tr>
<td>CHAPTER V CONCLUSIONS</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kaolinite particle size distribution histogram.</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Bentonite particle size distribution histogram.</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Illite particle size distribution histogram.</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>A sample spectrum of a different HBF$_4$ acid concentration.</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>OFITE aging cell.</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>11B NMR spectra of fluoboric acid at different times after preparation.</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>19F NMR spectra of fluoboric acid immediately after preparation.</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Clay weight loss % for mud acid dissolution test at 75°F.</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Clay weight loss % for 3% HBF$_4$ dissolution test at 75°F.</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>EDS spectra of fresh clays (top row) vs 3% HBF$_4$ dissolved clays at 75°F for 4 hours (bottom row).</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Boron concentration in supernatant of 3% HBF$_4$ reacted with kaolinite at 75°F for 4 hours.</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Boron concentration in supernatant of 3% HBF$_4$ reacted with illite at 75°F for 4 hours.</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Boron concentration in supernatant of 3% HBF$_4$ reacted with bentonite at 75°F for 4 hours.</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>Key elements in solution of illite + 12-3 mud acid and 3% HBF$_4$ at 75°F.</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>19F NMR spectrum of 12-3 mud acid solution reacted with kaolinite at 75°F for 4 hours.</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>19F NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 75°F for 4 hours.</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>19F NMR spectrum of 3% HBF$_4$ solution reacted with illite at 75°F for 4 hours.</td>
<td>36</td>
</tr>
</tbody>
</table>
Figure 18: Al concentration available when reacting with different clay with 3% HBF$_4$ at 75°F.

Figure 19: 19F NMR spectrum of 3% HBF$_4$ solution reacted with bentonite at 75°F for 4 hours.

Figure 20: 11B NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 75°F for 4 hours.

Figure 21: 11B NMR spectrum of 3% HBF$_4$ solution reacted with illite at 75°F for 4 hours.

Figure 22: 11B NMR spectrum of 3% HBF$_4$ solution reacted with bentonite at 75°F for 4 hours.

Figure 23: Kaolinite weight loss percent by 12-3 mud acid and 3% HBF$_4$ at 200°F.

Figure 24: Clay weight loss percent by 3% HBF$_4$ at 200°F.

Figure 25: Precipitate from illite + HBF$_4$ dissolution at 200°F for 6 hours.

Figure 26: XRD spectrum matched with KBF$_4$ using EVA database.

Figure 27: Potassium concentration leached from illite by 3% HBF$_4$ at different temperatures.

Figure 28: Key elements concentration in supernatant of kaolinite reacted with HBF$_4$ at 200°F.

Figure 29: Key elements concentration in supernatant of illite reacted with HBF$_4$ at 200°F.

Figure 30: Key elements concentration in supernatant of bentonite reacted with HBF$_4$ at 200°F.

Figure 31: EDS spectra of 3% HBF$_4$ dissolved clays at 75°F for 4 hours (top row) vs 3% HBF$_4$ dissolved clays at 200°F for 6 hours.

Figure 32: Effect of temperature on Si and Al concentrations in 3% HBF$_4$ supernatant with kaolinite.

Figure 33: Effect of temperature on Si and Al concentrations in 3% HBF$_4$ supernatant with illite.
Figure 34: Effect of temperature on Si and Al concentrations in 3% HBF$_4$ supernatant with bentonite. ..50

Figure 35: 19F NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 200°F for 6 hours. ..51

Figure 36: 19F NMR spectrum of 3% HBF$_4$ solution reacted with illite at 200°F for 6 hours. ..52

Figure 37: 19F NMR spectrum of 3% HBF$_4$ solution reacted with bentonite at 200°F for 6 hours. ..53

Figure 38: 11B NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 200°F for 6 hours. ..54

Figure 39: 11B NMR spectrum of 3% HBF$_4$ solution reacted with illite at 200°F for 6 hours. ..55

Figure 40: 11B NMR spectrum of 3% HBF$_4$ solution reacted with bentonite at 200°F for 6 hours. ..56

Figure 41: Pressure drop across the core during injection in Berea sandstone with 3% HBF$_4$ main acid at 200°F. ..58

Figure 42: Si and Al concentrations in Berea coreflood effluent samples at 200°F with 3% HBF$_4$ main acid. ..59

Figure 43: Ca and Mg concentrations in Berea coreflood effluent samples at 200°F with 3% HBF$_4$ main acid. ..60

Figure 44: K and Na concentrations in Berea coreflood effluent samples at 200°F with 3% HBF$_4$ main acid. ..61

Figure 45: Fe and B concentrations in Berea coreflood effluent samples at 200°F with 3% HBF$_4$ main acid. ..62

Figure 46: Pressure drop across the core during injection in Berea sandstone with 8% HBF$_4$ main acid at 200°F. ..63

Figure 47: Si and Al concentrations in Berea coreflood effluent samples at 200°F with 8% HBF$_4$ main acid. ..64

Figure 48: Ca and Mg concentrations in Berea coreflood effluent samples at 200°F with 8% HBF$_4$ main acid. ..65
Figure 49: K and Na concentrations in Berea coreflood effluent samples at 200°F with 8% HBF₄ main acid..66

Figure 50: Fe and B concentrations in Berea coreflood effluent samples at 200°F with 8% HBF₄ main acid..67

Figure 51: Pressure drop across the core during injection in Berea sandstone with 3% HBF₄ main acid at 200°F. ...68

Figure 52: Si and Al concentrations in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid..69

Figure 53: Ca and Mg concentrations in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid..70

Figure 54: K and Na concentrations in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid..71

Figure 55: Fe concentration in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid..72

Figure 56: ¹⁹F NMR spectrum of effluent sample 25 from Berea coreflood at 200°F with 3% HBF₄ main acid. ...73

Figure 57: ¹¹B NMR spectrum of effluent sample 25 from Berea coreflood at 200°F with 3% HBF₄ main acid. ...74

Figure 58: ¹⁹F NMR spectrum of effluent sample 29 from Berea coreflood at 200°F with 8% HBF₄ main acid. ...75

Figure 59: ¹¹B NMR spectrum of effluent sample 29 from Berea coreflood at 200°F with 8% HBF₄ main acid. ...76
LIST OF TABLES

Table 1: NMR acquisition parameters. ... 15
Table 2: Content of 3% HBF₄ acid.. 16
Table 3: Content of 8% HBF₄ acid... 16
Table 4: Content of 12-3 mud acid... 16
Table 5: Coreflood pumping sequences in Berea sandstone............................ 24
CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Background

Hydrofluoric acid (HF)-hydrochloric (HCl) acid mixtures, or mud acid, have been used to stimulate sandstone reservoirs since the 1930s. Use of mud acid treatment can include fracturing operations, acidizing operations, scale removal, drilling operations or even sand control operations.

Most sandstone formations consist primarily of quartz or sand particles bonded together by cementing materials which are typically calcite (CaCO$_3$), silicates and aluminosilicates (clay and feldspar). While most carbonate formations can be effectively treated with various mineral acids or organic acids relying on the acidity of treatment fluid, siliceous formations are not noticeably reacted by the same mechanism. The most common method of treating sandstone formations is to introduce an acid system comprised of HF into the target formation. The HF component is recognized specifically for its first order reaction with aluminosilicates (Smith and Hendrickson 1965) as a function of mineral surface area, removing aluminosilicates from the conductive flow path. HF can dissolve clays, feldspar, quartz, micas and chert, but the primary objective is to remove clays. Reactions of HF with indigenous clay and siliceous matrix in sandstone are complex and vary from one formation to another, depending on which types of clay it contains. Reactivity of different clays with HF has been investigated by Gdanski (Gdanski 1999, Gdanski 1998) and Hartman et al (Hartman et al. 2006). The
use of low pH fluid can cause higher mineral dissolution which further induces adverse
effects in certain instances, especially the precipitation of dissolved fluoride with group
1 metal ions (Na\(^+\) and K\(^+\)), group 2 metal ions (Mg\(^{2+}\), Ca\(^{2+}\), and Ba\(^{2+}\)), and Al\(^{3+}\) (Reyes
2012). An HCl preflush sequence can be applied to dissolve carbonate minerals as much
as possible before HF will be pumped to treat clay at a later stage.

The reaction of HF with quartz is expressed in eq. 1

\[
6HF + SiO_2 \rightarrow H_2SiF_6 + 2H_2O
\] (1)

The primary reaction of HF and aluminosilicates according to Gdanski is:

\[
(5 + x)HF + M-Al-Si + (3 - x + 1)H^+ + H_2O
\]

\[
\rightarrow HSiF_5 + AlF_{x}^{(3-x)^+} + M^+ + H_2O
\] (2)

Where \(x\) is F/Al ratio and \(M^+\) is all other cations, such as Na or K. This reaction will
completely dissolve aluminosilicates and generate only soluble products. This is the only
reaction that removes clay damage hence greatly improving permeability.

Fluorosilicates can be especially problematic because redissolution can be
difficult. Fluoroaluminates are thought to be soluble as long as the pH is below about 2
and the F/Al ratio is maintained below about 2.5 (Shuchart and Gdanski 1996). If
precipitated, their dissolution typically requires strong hydroxide concentration of more
than 5%.

HSiF\(_5\) or fluosilicic acid is capable of reacting further with aluminosilicates,
therefore being referred to as the secondary reaction (eq. 3).
\[
\frac{x}{5} HSiF_5 + M-Al-Si + (3 - x + 1)H^+ + H_2O \rightarrow AlF_{x}^{(3-x)^+} + M^+ + \text{silica gel} \quad (3)
\]

The secondary reaction dissolves all other portions of clays except for Si from the structure of aluminosilicates, leaving amorphous silica gel film in place. This process is found to be significantly fast and go to completion at temperature above 125°F (Gdanski 1999). The reaction rate is much slower at any temperature below that.

The tertiary reaction occurs when aluminum fluoride complexes react with clays, continuing to reduce the F/Al ratio in the spent HF until all remaining H^+ is consumed (eq. 4).

\[
yAlF_{x}^{(3-x)^+} + (x - y)Al-Si + 3(x + y)H^+ \rightarrow xAlF_{y}^{(3-y)^+} + \text{silica gel} \quad (4)
\]

The fluoride number coordinated with aluminum before tertiary reaction (x) is more than that after reaction (y). The tertiary reaction rate was found to be very slow below 200°F (Gdanski 1998).

A literature review has indicated at least two distinct drawbacks of traditional mud acid in stimulating sandstone formations. Firstly, at certain reservoir temperatures, the rapid reaction of HF with siliceous materials, specifically clay, deter the penetration capacity of acid into the formation. It is generally believed that mud acid removes skin damage from only the first few inches around the wellbore (McBride et al. 1979).

Another reason is early production decline soon after the formation has been stimulated, resulting from pore throat plugging by migratory clays and other fines (Thomas and Crowe 1978), exacerbating formation deliverability to even lower than pre-treatment level. Severe loss of permeability in sandstones due to authigenic clay...
migration in response to mechanical forces or water salinity changes was found to induce total pore plugging even in sandstone of 500 milli-darcy initial permeability (Gray and Rex 1990).

Fluoboric Acid

Fluoboric acid (HBF_4) is a water unstable compound of which extent of hydrolysis is markedly dependent on temperature and acid concentration. The slow hydrolytic reaction gradually releases hydrofluoric acid to its environment. The hydrolysis reaction of fluoboric acid at room temperature has been investigated in detail (Wamser 1948, 1951).

By nature, aqueous solutions of fluoboric acid will be hydrolyzed at a degree which depends on acid concentration, temperature, and standing time after preparation (Ryss 1956) as well as HF/ H$_3$BO$_3$ molar ratio in the starting mixture (Radosavljević et al. 1979). The hydrolysis constant of BF_4^- at various conditions had been determined from pH data by Ryss and Bakina according to the equilibrium hydrolysis of the BF_4^- ion corresponding to the following reactions, with the assumption that BF_3OH^- and BF_4^- are completely dissociated and no HF_2^- formed:

$$BF_4^- + H_2O \rightleftharpoons BF_3OH^- + HF$$ \hspace{1cm} (5)

$$HF \rightleftharpoons H^+ + F^-$$ \hspace{1cm} (6)

$$Degree\ of\ hydrolysis, \ k = \frac{[BF_3OH^-][HF]}{[BF_4^-]}$$ \hspace{1cm} (7)
The degree of hydrolysis of HBF_4 increases with an increase in temperature or an excess amount of boric acid present but decreases with increasing acid concentration or an excess amount of HF present (Wamser 1948). At room temperature, only around 8-10% of HBF_4 will hydrolyze and yield available HF to react with clay. When HF is consumed, the equilibrium will shift to the right causing more BF_4^- to hydrolyze and produce a substitute amount of HF to maintain its constant level. The limited HF availability at any given time has made HBF_4 hydrolysis the control process when comparing to the mud acid spending rate on aluminosilicates. This is usually called a retarded HF acid system.

In 1978, Thomas and Crowe introduced the use of fluoboric acid in treating sandstone reservoirs. It was found to be very effective in increasing live acid penetration and stabilizing undissolved clays to the sand grain with borosilicate (Thomas and Crowe 1978, Thomas et al. 1978). During the fixing process, aluminum will be extracted from clays and exchanged with boron to produce borosilicate material. Due to its retarding feature, HBF$_4$ could dissolve clays as effectively as mud acid but at a much slower rate. Therefore, to adequately address the damage, HBF$_4$ acid is usually designed as a postflush to mud acid.

The aqueous fluoboric acid used in this experiment was prepared by treating ammonium bifluoride with stoichiometric amounts of boric acid and hydrochloric acid.

$$2NH_4HF_2 + H_3BO_3 + 2HCl \rightleftharpoons 3H_2O + HBF_4 + 2NH_4Cl$$ (8)

Fluoboric acid will not form in the mixture immediately after preparation (Wamser 1948). At this stage, the total titratable acidity corresponds to 5 equivalent of
acid and leaves F^- and BO_2^- anions at the end point of titration. Fluoboric acid content will gradually increase in solution over time to equilibrium levels while total acidity decreases to a certain value. At titration end point, the solution will contain additional BF_4^- ions compared to those mentioned above. These phenomena are represented by a 2-step chemical reaction (Travers 1930):

(Fast reaction) \[H_3BO_3 + 3HF \rightarrow HBF_3OH + 2H_2O \] (9)

(Slow reaction) \[HBF_3OH + HF \rightleftharpoons HBF_4 + H_2O \] (10)

Hydrogen ions catalyze the formation of HBF_4. The rate of reaction of HBF_3OH with HF depends essentially on the acidity of the solution. Hydrolysis of HBF_4 is also catalyzed by Ca$^+$ ions (Ryss 1956).

Alkali salts of BF_4^- are much less soluble than those of BF_3OH^- (Ryss 1956), and are likely to precipitate out of solution. This is due to the fact that the replacement of the F^- ions by the OH^- ions leaves the lattice energy unchanged but increases the hydration of the anion. KBF_4 is one of the least soluble fluoborate compounds.

BF_3OH^- is an acid anion of considerably greater strength than HF. Thus only in very dilute solutions (0.002M at 20°C) will further hydrolysis of HBF_3OH to $HBF_2(OH)_2$ occur (Ryss 1956). The assumption that this hydrolytic equilibrium is very rapidly established (in contrast to the slow hydrolysis of HBF_4) is further supported by the result of KBF_4 and KBF_3OH aqueous solution titration with thorium nitrate in the presence of alizarin red S, which suggested that none of the fluoride in BF_4^- is available but the fluorine in BF_3OH^- is rapidly and quantitatively available (Wamser 1951).
The observed decrease in acid strength in the order $HBF_4 > HBF_3OH > HBF_2(OH)_2 > HBF(OH)_3 > H_3BO_3$ may be explained by the changes in the electrostatic inductive effect of the anion on the proton as fluorine atoms are successively replaced by hydroxyl groups. The highly electronegative fluorine atoms attract electrons more strongly than oxygen atoms, so that the tendency for the proton is to be held more firmly by a B-linked OH group than by B-F unit (Wamser 1951).

The HBF_4 acid system used in this study is similar to that used in a study by Al-Dahlan et al (Al-Dahlan et al. 2001).

NMR analysis is the main research technique used in this study. This technique exploits the magnetic properties of certain atomic nuclei in a magnetic field which absorb and re-emit electromagnetic radiation that resonates with the intramolecular magnetic fields around an atom. The spectrum obtained can then provide detailed information about the structure, dynamics, reaction state, and chemical environment of molecules, which can be used to confirm the identity of a substance. 11B and 19F NMR have never before been used to study the HBF_4 acid reaction with clay and sandstone.

Literature Review

In 1948, Wamser studied the hydrolysis of fluoboric acid in aqueous solution and found that when mixing 4 moles of HF acid with 1 mole of boric acid in aqueous medium, 3 moles of HF will react immediately to form HBF_3OH. Then, the remaining HF will react slowly with HBF_3OH to gradually form HBF_4 until equilibrium is reached (Wamser 1948). The equilibrium constant of 0.1105 M fluoboric acid at 25°C has been
determined to be 2.3×10^{-3}. It was noted that the prepared solution contains no HBF_4 immediately after preparation and that hydrolyzed aqueous fluoboric acid solutions do not contain any free boric acid. From conductivity titration, it was believed that an appreciable amounts of $HBF_2(OH)_2$ and $HBF(OH)_3$ also exist at their reversible equilibrium with HBF_3OH (Wamser 1948).

Fluoboric acid or clay acid, had later been employed in field application to stimulate and control clay in a sandstone formation by Thomas and Crowe in 1978 (Thomas and Crowe 1978, Thomas et al. 1978). Clay acid was proven to be effective in providing deeper live acid penetration and minimizing clay swelling and migration through chemical fusion of clay platelets from the borosilicate formation when HBF_3OH reacts with siliceous material. Tests showed that HBF_4 has an ability to reduce the CEC of bentonite up to 93%. In order to achieve these features of clay acid, a shut-in period following acid injection is required as the decrease in clay swelling is a function of time. The shut-in period varies from 30 minutes at 300°F to 96 hours at 100°F for the cores used in this study. Mud acid generally precedes clay acid to remove surface plugging, then a postflush with clay acid is used to attain deep penetration. A reaction rate comparison test between 12-3 mud acid and the equivalent HF generating capacity 12% HBF_4 on glass slides at 150°F reveals a 10 fold difference in rate. Another test performed on sandstone with kaolinite showed an identical dissolution effect between the HBF_4 system at 150°F after 2 hours and 12-3 mud acid at 75°F after 20 minutes.

In 1979, McBride et al. used fluoboric acid to treat clay and quartz fines in gas wells with gravel pack completions in offshore Louisiana (McBride et al. 1979). They
observed that there was no increased precipitation of hexafluorosilicates and other reaction products after long term HBF_4 exposure. All wells treated by HBF_4 showed removal of damage in both gravel pack, perforations, and effective wellbore area with a slower production decline after treatment.

In 1983, Kunze and Shaughnessy pointed out that at typical formation temperatures (150-200°F), a supposedly retarded HBF_4 system will spend at the same rate as mud acid (Kunze and Shaughnessy 1983). Furthermore, the effect of the added HCl on the solution acidity has catalyzed the reaction and caused more BF_4^- to hydrolyze at equilibrium. Experimental results indicated similar acid penetration in both Berea and actual formation corefloods across 2 acid systems. The stirred reaction experiments likewise confirmed no difference in acid-clay dissolution. No fresh water sensitivity existed in cores treated with conventional HF acid and cores treated with HBF_4. It was found that BF_4^- hydrolysis will increase with soluble aluminum concentration. Shutting in BF_4^- will lead to silica precipitation and possible pore plugging as much as if conventional HF were shut-in.

Laboratory work by Boyer and Wu in 1983 concluded that HBF_4 is suitable for clay bearing sandstones (Boyer and Wu 1983). Less silica precipitation was observed with HBF_4 than mud acid.

Bertaux adopted 8% HBF_4 acidizing in potassic mineral sandstone (containing K-feldspar and illite) in 1989 (Bertaux 1989) and concluded it enhanced permeability. Also the KBF_4 that was generated was non damaging. Meanwhile, the HF acid-mineral reaction led to K_2SiF_6 precipitation, resulting in a significant permeability reduction.
Moreover, silica and borosilicates formed during the shut-in period fused non-dissolved particles and provided permanent stabilization.

Ayorinde et al. (1992) applied HBF_4 in high rate oil and gas wells (cased or gravel packs) to prevent post treatment fines migration and to sustain production as an alternative to conventional clay control agents (cationic polymers) used in the overflush (Ayorinde 1992).

Paccaloni and Tambini used HBF_4 to treat a well with silt and clay damage resulting from mud acid treatment in 1993 (Paccaloni and Tambini 1993). Production was reported to plateau for 5 years following treatment.

Previous work by Shuchart (1995) used 19F NMR spectroscopy to study aluminum and silicon fluorides equilibria and the reactions of HF acid and H_2SiF_6 on aluminosilicates (Shuchart and Buster 1995). During the secondary reaction of silicon fluorides with aluminosilicates, a constant F/Al ratio was maintained until the silicon fluorides had reacted completely. The distribution of fluoride species depends on the HCl concentration. When the silicon fluorides have reacted completely to give silica gel, the aluminum fluoride complexes continue to react on fresh aluminosilicates (tertiary reaction) and cause the aluminum content to increase (leaching more Al) and the F/Al ratio and acid concentration to decrease below 1. The final F/Al ratio is dependent upon acid strength and temperature. In wells with temperatures of 150 to 200°F, the reaction of H_2SiF_6 continued to completion. Silicon content was low and pH levels were 2 to 3. The F/Al ratios of the returns were 0.5 to 1.3, depending on the concentration of HCl and HF in the treatment.
In 1999, Kume et al. reported that the use of fluoboric acid to treat wells in Niger Delta returned mixed results, including some with unimproved or damaged permeability (Kume et al. 1999).

Al-Dahlan et al. (2001) studied retarded acid systems, one of which was HBF_4, against mud acid (Al-Dahlan et al. 2001). Observations from lab experiments are that HBF_4 does not react with quartz and was retarded only in the first 30 minutes when reacted with kaolinite and chlorite and 1 hour when reacted with illite and bentonite. HBF_4 had the weakest dissolving power for silicon. This system precipitated hydrated silica with increasing reaction time. HBF_4 precipitates KBF_4 when reacted with illite.

Jaramillo et al. introduced a blend of organic/fluoboric acid system in 2010 (Jaramillo et al. 2010). Organic acid acted as chelant to minimize precipitations. This acid was used as the main treatment acid, eliminating the HF preflush stage. Productivity improvement was evident after treatment and remained stable, indicating efficient fines control. It claimed to be effective in fines stabilization at all temperatures.

In 2011, Feng et al has developed a new sandstone acid formulation (HTDP, a chemically modified organo-phosphonic acid) that has proven better in enhancing permeability in lab formation coreflood than HBF_4 (Feng et al. 2011).

Field study in 2012 by Restrepo et al. used a system of organic acids - HBF_4 to obtain deep live acid penetration and to minimize secondary/tertiary reactions associated with the formation of scales, HCl sensitive asphaltenes, and oil wet fines problems (Restrepo et al. 2012). Organic acids chelate Al^{3+} ions, keeping silica from precipitating.
as hydrated silica inside solution. Consequently, this leads to more aluminosilicates dissolving.

Reyes (2012) patented a treatment fluid that contained boron trifluoride complexes with chelating agents for use in formations with temperatures of at least 200°F (Reyes 2012). The boron trifluoride complex serves as a precursor of HF acid with an advantage of having higher pH (>2) than HBF₄, which lessens the risk of unwanted precipitation. Another advantage claimed by this system is that a number of different boron trifluoride complexes, having differential stabilities, may advantageously be utilized to control the release of HF acid at a desired time or location within the formation. HBF₄ solution is rapid in generating HF and other BF species, while the hydrolysis rate of boron trifluoride complexes is not as rapid. Furthermore, the ligands that complex with boron trifluoride and are released into treating fluid when boron trifluoride decomposes may enhance treatment in certain applications, e.g., solvents (alcohols and ethers), acids (phosphorus and acetic acid), or amines (methylamine and ethylamine).

In 2013, Gomaa et al. devised a one-step sandstone acid system that eliminates the HCl preflush/postflush stage (Gomaa et al. 2013). This acid system was composed of HBF₄, HCl, organic acid, acid retarder and clay control additives. Lab stimulation on Bandera sandstone cores at 180°F yielded permeability enhancement. It was discovered that increasing the HCl/HF ratio increased the permeability enhancement and reduced the acid volume needed. There is a minimum acid volume needed to achieve
permeability enhancement. This minimum PV depends on the HCl:HF ratio of the acid system and sandstone composition.
CHAPTER II

EXPERIMENTAL STUDIES

NMR analysis is the main research technique used in this study. This technique exploits the magnetic properties of certain atomic nuclei in a magnetic field which absorb and re-emit electromagnetic radiation that resonates with intramolecular magnetic field around an atom. The spectrum obtained can then provide detailed information about the structure, dynamics, reaction state, and chemical environment of molecules, which can be used to confirm the identity of a substance.

All ^{11}B and ^{19}F NMR spectra were recorded in CDCl$_3$ using a Varian Inova 400 MHz spectrometer. Chemical shifts for fluorine were recorded in parts per million (ppm, δ) relative to CFCl$_3$ using trifluorotoluene ($\text{C}_6\text{H}_5\text{CF}_3$, δ −63.72 ppm) as an internal standard. ^{11}B NMR shifts are reported in ppm relative to boron trifluoride etherate (BF$_3$·OEt$_2$) as the external reference. Samples are contained in 5 mm OD borosilicate tubes lined with FEP NMR tube liners to prevent contamination from borosilicate glass. ^{11}B and ^{19}F NMR acquisition parameters are as shown in table 1.
Table 1: NMR acquisition parameters.

<table>
<thead>
<tr>
<th>19F NMR Acquisition Parameters</th>
<th>11B NMR Acquisition Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Inova400 Brand, turned to 375.9 MHz</td>
<td>o Inova400 Brand, turned to 128.2 MHz</td>
</tr>
<tr>
<td>o Run sample w/o internal lock signal in 5 mm OD tubes</td>
<td>o Run sample w/o internal lock signal in 5 mm OD tubes</td>
</tr>
<tr>
<td>o Acquisition parameters</td>
<td>o Acquisition parameters</td>
</tr>
<tr>
<td>▪ Spectral width of 50,000 Hz</td>
<td>▪ Spectral width of 38,461.5 Hz</td>
</tr>
<tr>
<td>▪ 45 degree pulse angle</td>
<td>▪ 45 degree pulse angle</td>
</tr>
<tr>
<td>▪ 2 second relaxation delay</td>
<td>▪ 0.001 second relaxation delay</td>
</tr>
<tr>
<td>▪ 44 to 128 scans per data set,- depending on fluorine-concentration</td>
<td>▪ 200 to 620 scans per data set,- depending on Boron-concentration</td>
</tr>
</tbody>
</table>

Acid Used

Three different acid formulations are used in this research: 3% HBF₄, 8% HBF₄, and 12-3 mud acid. Both 3% and 8% HBF₄ are prepared according to eq (8). Due to the limited solubility of boric acid in high HCl content, the 8% HBF₄ solution contains no excess HCl.

The solutions were prepared using 18.2 MΩ•cm DIW, concentrated ACS grade HCl acid 36.5 wt% concentration, crystallized ammonium bifluoride, and powdered boric acid. Acids content are shown in table 2, 3, and 4.
Table 2: Content of 3% HBF₄ acid.

<table>
<thead>
<tr>
<th>wt %</th>
</tr>
</thead>
</table>
| HBF₄ | 3.3%
| HCl | 12.0%
| NH₄Cl | 4.0%
| H₂O | 80.7%
| | 100.0% |

Table 3: Content of 8% HBF₄ acid.

<table>
<thead>
<tr>
<th>wt %</th>
</tr>
</thead>
</table>
| HBF₄ | 8.0%
| NH₄Cl | 9.7%
| H₂O | 82.3%
| | 100.0% |

Table 4: Content of 12-3 mud acid.

<table>
<thead>
<tr>
<th>wt %</th>
</tr>
</thead>
</table>
| HF | 3.0%
| HCl | 12.0%
| NH₄Cl | 4.0%
| H₂O | 81.0%
| | 100.0% |

Clay Particle Size Selection

A sonic sifter with a series of sieves complying with ASTM E 11 standard, from top to bottom: 212 μm, 150 μm, 106 μm, 90 μm, 75 μm, and 45 μm were used to separate dry powdered clay as received from Ward’s Science. Kaolinite and bentonite have a non-normal distribution for available sieve size ranges (Fig. 1 and 2). Particles
with diameters between 32-45 μm were selected to represent kaolinite and bentonite samples in this study, as this range is likely the mode of the size variation.

Illite samples were received in cobble sizes. They were broken down to final sizes using a rock grinder and a shatter box. Its particle distribution histogram appeared to be a normal-right skewed pattern, and is shown in Fig. 3. The particle diameters ranging from 90-106 μm were selected to represent illite.

Figure 1: Kaolinite particle size distribution histogram.
Figure 2: Bentonite particle size distribution histogram.

Figure 3: Illite particle size distribution histogram.
HBF₄ Hydrolysis Investigation with 11B and 19F NMR

To understand the extent of the hydrolysis process of HBF₄ and the fluoride distribution, a sample of 12% HCl-3% HBF₄ at 75°F was analyzed by 11B and 19F NMR at different times after acid preparation and the results will be compared to determine HF development in the system. Fig. 4 below is a sample spectrum of a different HBF₄ acid concentration showing the fluoborate ion as the predominant species present (Reyes 2012).

Figure 4: A sample spectrum of a different HBF₄ acid concentration.
Clay Dissolution Test at 75°F

This experiment is conducted to investigate the mechanisms which affect the dissolution behavior of kaolinite, bentonite and illite in aqueous fluoboric acid compared to aqueous hydrofluoric acid at 75°F. Four grams of each clay, sieved to control particle sizes and dried in an oven to remove excess water, is mixed with 40 g of 12% HCl-3% HBF$_4$ or 12% HCl-3% HF and allowed to react for 0.5, 1, 1.5, 2, 3 and 4 hours on a magnetic stirrer plate. When reaction time had elapsed, the mixture was centrifuged at 6000 rpm for 2 minutes to separate live acid from clay, preventing further reaction. Quantitative grade filter paper was then used to separate the supernatant from the undissolved clay.

Clay weight loss percentages were recorded along with solution pH and free fluoride ion levels using a Cole-Parmer Fluoride Ion Electrode. The concentrations of key ions in these acids, aluminum, boron, phosphorus, silicon, calcium, magnesium, sodium, potassium, and total iron concentrations, were measured by Inductively Coupled Plasma Spectroscopy (ICP-OES). Dry clays and any precipitates were analyzed with an Evex Mini-SEM/EDS NanoAnalysis. Finally, the supernatant acid solution corresponding to 4 hours reaction time was analyzed by 11B and 19F NMR.

Clay Dissolution Test at 200°F

This experiment was conducted to investigate the mechanisms which affect the dissolution behavior of kaolinite, bentonite, and illite in aqueous fluoboric acid compared to aqueous hydrofluoric acid at 200°F, which could be considered normal.
formation temperature. The experiment design was such that the secondary reaction of HF goes to completion.

Using the same clay as the 75°F test, 10 g of each clay is mixed with 100 g of 12% HCl-3% HBF$_4$ or 12% HCl-3% HF and 1% vol corrosion inhibitor. The mixture was then contained in an OFITE aging cell (shown in Fig. 5), pressurized with nitrogen to 300 psi, and placed in a rolling oven that was heated up to 200°F. The reactions were allowed to continue for 1, 3 and 6 hours. When the reaction time has elapsed and the cell had cooled, the mixture was centrifuged at 6000 rpm for 2 minutes to separate live acid from clay, preventing further reaction. Quantitative grade filter paper was then used to separate the supernatant from the undissolved clay.

Clay weight loss percentages were recorded along with solution pH and free fluoride ion levels using a Cole-Parmer Fluoride Ion Electrode. The concentrations of key ions in these acids, aluminum, boron, phosphorus, silicon, calcium, magnesium, sodium, potassium, and total iron concentrations were measured by Inductively Coupled Plasma Spectroscopy (ICP-OES). Dry clays and any precipitates were analyzed with Evex Mini-SEM/EDS NanoAnalysis. Finally the supernatant acid solution corresponding with 6 hours reaction time was analyzed by 11B and 19F NMR.
Berea Sandstone Coreflood at 200°F

Berea sandstone is the most commonly used media in studying core flow test due to its homogeneity, which is favorable in control experiments, as well as its high permeability and porosity, resembling a good reservoir. The samples used had permeabilities ranging from 100-200 md.

Core flow tests were conducted using Berea sandstone cores of 1” diameter and 6” length saturated with 5 wt% NH₄Cl before use. A confining pressure of 2000 psi and a back pressure of 1000 psi were applied. The core temperature was stabilized at 200°F. Flow rates of 3-5 ml/min were employed. Effluent samples were collected at regular intervals and were later analyzed with Inductively Coupled Plasma Spectroscopy (ICP-OES) for key elements concentration and ¹¹B and ¹⁹F NMR. A shut-in period of 1 hour
was incorporated in each test to allow for in situ HF generation and reaction from HBF$_4$.

Coreflood pumping sequences are as shown in table 5.

Pressure drop across the core was recorded and plotted against pump schedule to track permeability change in the core when different fluids were pumped through. Initial and final permeability were calculated and compared.
Coreflood Pumping Sequences in Berea Sandstone

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump 5 wt% NH₄Cl</td>
<td>at 3 and 5 ml/min. Allow for pressure stabilization then measure initial permeability. Heat up the core to 200°F while pumps 5 wt% NH₄Cl at 1 ml/min.</td>
</tr>
<tr>
<td>Preflush</td>
<td>5 wt% HCl + 1 vol% corrosion inhibitor, 5 PV at 3 ml/min</td>
</tr>
<tr>
<td>Main acid</td>
<td>a) 3% HBF₄, 2 PV at 3 ml/min then shut-in for 1 hour.</td>
</tr>
<tr>
<td></td>
<td>b) 8% HBF₄, 2 PV at 3 ml/min then shut-in for 1 hour.</td>
</tr>
<tr>
<td></td>
<td>c) 12-3 mud acid + 1 vol% corrosion inhibitor, 2 PV at 3 ml/min</td>
</tr>
<tr>
<td>Postflush</td>
<td>5 wt% NH₄Cl, 5 PV at 3 ml/min</td>
</tr>
<tr>
<td>Cool down</td>
<td>the system to room temperature while pumping 5 wt% NH₄Cl at 1 ml/min</td>
</tr>
<tr>
<td></td>
<td>Pump 5 wt% NH₄Cl at 3 and 5 ml/min. Allow for pressure stabilization then measure final permeability.</td>
</tr>
</tbody>
</table>

Table 5: Coreflood pumping sequences in Berea sandstone.
CHAPTER III

RESULTS AND DISCUSSION

HBF₄ Hydrolysis Investigation with ¹¹B and ¹⁹F NMR

Fig. 6 shows the ¹¹B NMR spectra of fresh HBF₄ acid at t = 0, t = 30 minutes, t = 24 hours after preparation at 75°F. It appeared that only 2 species existed at all times. The sharp singlet at δ = -1.8 ppm is tetrafluoroborate (BF₄⁻) and a quartet at around δ = -1.4 ppm is hydroxyfluoborate BF₃(OH)⁻ (Prakash et al. 2011). The fluoborate ion is the predominant species present. Both species reach equilibrium very fast and maintain their levels past 24 hours.

The plot reveals that BF₄⁻ is formed instantly after HBF₄ acid was prepared at this H⁺ concentration and that HF was readily available in the system at equilibrium. The plots also demonstrated that further acid decomposition to HBF₂(OH)₂ would not noticeably progress in the absence of material to react with.
Figure 6: 11B NMR spectra of fluoboric acid at different times after preparation.

Fig. 7 shows the 19F NMR spectrum of fresh HBF$_4$ acid at $t = 0$ at 75°F. Two distinct species are BF_4^- at $\delta = -150$ ppm and $BF_3(OH)^-$ at around $\delta = -147$ ppm (Prakash et al. 2011). A third minor amount of fluoride containing species was also formed. Based on the chemical shift $\delta = -162$ ppm, this is believed to be HF (Dungan and Van Wazer 1970). This reveals that HF is readily available in the acid solution once prepared but at a very limited quantity.
Figure 7: 19F NMR spectra of fluoboric acid immediately after preparation.

Clay Dissolution Test at 75°F

Comparing Fig. 8 and Fig. 9, the retardation effect of 3% HBF$_4$ at room temperature is up to 60% of the conventional mud acid reaction rate for kaolinite and illite. For bentonite, the retardation of HBF$_4$ went up as high as 80-90%.

Fresh clays and clays which were dissolved by HBF$_4$ for 4 hours at 75°F were analyzed by SEM-EDS and compared side by side in Fig. 10. Each clay’s Al/Si ratio before and after HBF$_4$ dissolution remains almost constant, maintaining their structural properties of 1:1 (kaolinite) clay or 2:1 (illite and bentonite) clay. HBF$_4$ can then be
assumed to attack the tetrahedral silicate sheet and octahedral aluminate sheet equivalently.

Figure 8: Clay weight loss % for mud acid dissolution test at 75°F.

Figure 9: Clay weight loss % for 3% HBF₄ dissolution test at 75°F.
Figure 10: EDS spectra of fresh clays (top row) vs 3% HBF$_4$ dissolved clays at 75°F for 4 hours (bottom row).
Fig. 11-13 show boron concentration in the supernatant of 3% HBF$_4$ reacted with clays at 75°F for 4 hours. Among all 3 clays, only illite shows a decreasing level of boron in solution. Traces of white precipitate were also observed lying on bottom of the test tubes. This precipitate was filtered out of solution, washed with DIW, dried, and sent for X-Ray diffraction (XRD) analysis. Result confirms existence of KBF$_4$. No precipitate was observed with kaolinite or bentonite.

![B in Supernatant of 3% HBF$_4$ When Reacted with Kaolinite at 75°F for 4 Hours](image)

Figure 11: Boron concentration in supernatant of 3% HBF$_4$ reacted with kaolinite at 75°F for 4 hours.
Figure 12: Boron concentration in supernatant of 3% HBF\(_4\) reacted with illite at 75°F for 4 hours.

Figure 13: Boron concentration in supernatant of 3% HBF\(_4\) reacted with bentonite at 75°F for 4 hours.
In Fig. 14, while all other key elements except Ca are reflecting the retarded reaction of HBF$_4$, potassium concentration extracted by HBF$_4$ is at around five times of that extracted by mud acid. Fig. 15 shows the 19F NMR spectrum of 12-3 mud acid reacted with kaolinite for 4 hours at 75°F. Two species can be identified as silicon fluoride (SiF$_2$) at δ=-129 ppm and aluminum fluoride (AlF$_{x}^{(3-x)}$) at δ=-155-156 ppm. Comparing this spectrum with Fig. 16, two expected additional species appeared at δ=-145 ppm, which was assigned as BF$_3$OH$^{-}$ and δ=-150 ppm, which was assigned as BF$_4$$. A spectrum in Fig. 16 has smaller intensity at both the SiF$_2$ peak and the AlF$_{x}^{(3-x)}$ peak when compared to Fig. 15. This reflects the retardation effect of HBF$_4$. The AlF$_{x}^{(3-x)}$ peak in Fig. 17 has diminished to a very low level comparing to kaolinite due to less Al available to complex with F$^-$(see Fig. 18). The reason that a 19F NMR spectrum in Fig. 19 only shows BF$_3$OH$^{-}$ at δ=-147 ppm and BF$_4$ at δ=-149 ppm is probably because the very low dissolution rate provided a limited amount of Si and Al from bentonite to complex with F$. The peaks then become unnoticeable.

Three species of boron containing compounds were found in 11B NMR spectra of reacted 3% HBF$_4$ with clays (Fig. 20-22). A peak at δ=19 is assigned as H$_3$BO$_3$ (Dewar and Jones 1967), a peak at δ=0 is assigned as BF$_3$OH$^{-}$ and the last peak at δ=-2 is assigned as BF$_4$$. None of the spectra show the BF$_2$(OH)$_2$ or BF(OH)$_3$ species since BF$_3$OH$^{-}$ is rapidly converted to a less fluorinated borate in water to its final form (H$_3$BO$_3$). In Fig. 21-22, the spectra got cut off before the range of boric acid. This is probably due to a very low boric intensity since these systems are retarded more than kaolinite.
Figure 14: Key elements in solution of illite + 12-3 mud acid and 3% HBF₄ at 75°F.
Figure 15: 19F NMR spectrum of 12-3 mud acid solution reacted with kaolinite at 75°F for 4 hours.
Figure 16: 19F NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 75°C for 4 hours.
Figure 17: 19F NMR spectrum of 3% HBF$_4$ solution reacted with illite at 75°F for 4 hours.
Figure 18: Al concentration available when reacting with different clay with 3% HBF\textsubscript{4} at 75°F.
Figure 19: $^{19}\text{F} \text{NMR}$ spectrum of 3% HBF$_4$ solution reacted with bentonite at 75°F for 4 hours.
Figure 20: 11B NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 75°F for 4 hours.
Figure 21: 11B NMR spectrum of 3% HBF$_4$ solution reacted with illite at 75°F for 4 hours.
Figure 22. 11B NMR spectrum of 3% HBF$_{4}$ solution reacted with bentonite at 75°F for 4 hours.
Clay Dissolution Test at 200°F

Comparing to 12-3 mud acid dissolvability at 200°F, the retardation effect of HBF$_4$ plunges down to about 2-3% as shown in Fig. 23.

![Kaolinite Dissolution Test at 200°F](image)

Figure 23: Kaolinite weight loss percent by 12-3 mud acid and 3% HBF$_4$ at 200°F.

Fig. 24 compares the reaction rate of HBF$_4$ on different clays at high temperature. The reaction rate has been raised for every clay tested at this temperature. It was observed that Bentonite lost its weight more than illite with HBF$_4$ at 200°F, and the opposite happened at 75°F.

The supernatant of HBF$_4$ with illite precipitated a white substance at all dissolution times (1,3,6 hours) as shown in Fig. 25, which later was analyzed with XRD.
and identified as KBF$_4$. A match of KBF$_4$ from EVA database with XRD spectrum confirms its identity (Fig. 26).

Figure 24: Clay weight loss percent by 3% HBF$_4$ at 200°F.

Figure 25: Precipitate from illite + HBF$_4$ dissolution at 200°F for 6 hours.
The potassium concentration from 3% HBF₄ with illite at a higher temperature is lower. This can be accounted for due to the KBF₄ precipitation drawing K out of solution (Fig. 27).

Comparing key elements measured in the 3% HBF₄ supernatant of different clays (Fig. 28-30), a distinct falling trend of B in illite with acid solution is apparent. This is also resulted from KBF₄ precipitation.
Figure 27: Potassium concentration leached from illite by 3% HBF₄ at different temperatures.

Figure 28: Key elements concentration in supernatant of kaolinite reacted with HBF₄ at 200°F.
Figure 29: Key elements concentration in supernatant of illite reacted with HBF$_4$ at 200°F.
Figure 30: Key elements concentration in supernatant of bentonite reacted with HBF$_4$ at 200°F.

Fig. 31 contrasts the EDS spectrum of undissolved clays by 3% HBF$_4$ at 2 temperatures. At 200°F, HBF$_4$ leaches almost all Al from the clay structure (secondary reaction). Moreover, no SiF$_y$ or AlF$_x^{(3-x)}$ precipitated in any clay, and no NaBF$_4$ precipitate in Bentonite.
Figure 31: EDS spectra of 3% HBF₄ dissolved clays at 75°F for 4 hours (top row) vs 3% HBF₄ dissolved clays at 200°F for 6 hours.
Fig. 32-34 show comparisons of either Si or Al concentrations in 3% HBF$_4$ acid that had completed secondary reaction (200°F) with tests at 75°F. All show decreases of Si due to precipitation as amorphous silica and large increases in the Al leached.

An increase in the AlF$_{(3-x)}$ species noticed in Fig. 35 from Fig. 16 was due to a higher intensity of aluminum fluoride species compared to 75°F acid supernatant due to Al abundance in solution. A similar statement can also be implied on Fig. 36 and 37.

Fig. 38-40 yielded three similar species in every clay’s supernatant (from left to right: H$_3$BO$_3$, BF$_3$OH$^-$ and BF$_4^-$). It can then be concluded that a significant reaction is going on at this temperature for each clay with 3% HBF$_4$.

![Si in Kaolinite + 3% HBF$_4$ Dissolution](image1)

![Al in Kaolinite + 3% HBF$_4$ Dissolution](image2)

Figure 32: Effect of temperature on Si and Al concentrations in 3% HBF$_4$ supernatant with kaolinite.
Figure 33: Effect of temperature on Si and Al concentrations in 3% HBF$_4$ supernatant with illite.

Figure 34: Effect of temperature on Si and Al concentrations in 3% HBF$_4$ supernatant with bentonite.
Figure 35: 19F NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 200°F for 6 hours.
Figure 36: 19F NMR spectrum of 3% HBF$_4$ solution reacted with illite at 200°F for 6 hours.
Figure 37: 19F NMR spectrum of 3% HBF$_4$ solution reacted with bentonite at 200°F for 6 hours.
Figure 38: 11B NMR spectrum of 3% HBF$_4$ solution reacted with kaolinite at 200°F for 6 hours.
Figure 39: 11B NMR spectrum of 3% HBF$_4$ solution reacted with illite at 200°F for 6 hours.
Figure 40: 11B NMR spectrum of 3% HBF$_4$ solution reacted with bentonite at 200°F for 6 hours.
Berea Sandstone Coreflood at 200°F

Corefloods in Berea sandstone with 3% and 8% mud acid resulted in a permeability reduction of 34% (Fig. 41) and 22% (Fig. 46) respectively. This is suspected to be caused by amorphous silica precipitation blocking pore throats. The falling of Si concentration in the effluent samples after 1 hour acid shut-in in both corefloods in Fig. 42 and 47 can support this thinking. All other key elements concentration are shown in Fig. 44-45 and Fig. 49-50.

A 5 wt% HCl preflush of 5 PV has proven to be sufficient judging from the low level of Ca even before that stage is done (Fig. 43, 48 and 53). Fig. 52 illustrates how the Si trend should look if the core was stimulated with 12-3 mud acid and HF was not shut-in, which would induce less precipitation and would not damage the core (Fig. 51). All other key elements concentration from mud acid coreflood are shown in Fig. 54-55.
Figure 41: Pressure drop across the core during injection in Berea sandstone with 3% HBF$_4$ main acid at 200°F.

permeability reduced by 34%
Figure 42: Si and Al concentrations in Berea coreflood effluent samples at 200°F with 3% HBF$_4$ main acid.
Figure 43: Ca and Mg concentrations in Berea coreflood effluent samples at 200°F with 3% HBF₄ main acid.
Figure 44: K and Na concentrations in Berea coreflood effluent samples at 200°F with 3% HBF$_4$ main acid.
Figure 45: Fe and B concentrations in Berea coreflood effluent samples at 200°F with 3% HBF₄ main acid.
Figure 46: Pressure drop across the core during injection in Berea sandstone with 8% HBF$_4$ main acid at 200°F.
Figure 47: Si and Al concentrations in Berea coreflood effluent samples at 200°F with 8% HBF$_4$ main acid.
Figure 48: Ca and Mg concentrations in Berea coreflood effluent samples at 200°F with 8% HBF₄ main acid.
Figure 49: K and Na concentrations in Berea coreflood effluent samples at 200°F with 8% HBF$_4$ main acid.
Figure 50: Fe and B concentrations in Berea coreflood effluent samples at 200°F with 8% HBF₄ main acid.
Figure 51: Pressure drop across the core during injection in Berea sandstone with 3% HBF$_4$ main acid at 200°F.
Figure 52: Si and Al concentrations in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid.
Figure 53: Ca and Mg concentrations in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid.
Figure 54: K and Na concentrations in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid.
Figure 55: Fe concentration in Berea coreflood effluent samples at 200°F with 12-3 mud acid as main acid.

Both 11B and 19F NMR spectrum of the effluent samples from 3% HBF$_4$ coreflood show common species as the previous analysis of acid solutions from clay dissolution tests (Fig. 56-57), whereas the effluent samples from 8% HBF$_4$ coreflood gives a different spectrum. Peaks in Fig. 59 are assigned as H$_3$BO$_3$ at $\delta_B = 21$ ppm, BF$_3$(OH)$^-$ at $\delta_B = 0$ ppm, and a third minor species at $\delta_B = 3.5$ ppm assigned as BF$_2$(OH)$_2^-$ to be in equilibrium with BF$_3$(OH)$^-$. Both species also appear in Fig. 58. Therefore, a peak at $\delta_F = -131$ ppm is assigned as BF$_2$(OH)$_2^-$ and a peak at $\delta_F = -139$ ppm is assigned as BF$_3$(OH)$^-$.
Figure 56: 19F NMR spectrum of effluent sample 25 from Berea coreflood at 200°F with 3% HBF$_4$ main acid.
Figure 57: 11B NMR spectrum of effluent sample 25 from Berea coreflood at 200°F with 3% HBF$_4$ main acid.
Figure 58: 19F NMR spectrum of effluent sample 29 from Berea coreflood at 200°F with 8% HBF$_4$ main acid.
Figure 59: 11B NMR spectrum of effluent sample 29 from Berea coreflood at 200°F with 8% HBF$_4$ main acid.
CHAPTER IV

FUTURE WORK

The borosilicate formation expected from the reaction of HBF$_4$ and sandstone mentioned in literature has not been investigated as of current progress. Given that this is one distinguishable benefit of HBF$_4$, plans have been made to accommodate it in the scope of future experimental work.

In addition, to discover the limited retardation effect of HBF$_4$ and to define its effective working temperature window, another set of experiments should be conducted in detail over a fine grid of temperature to pinpoint the precise temperature limit of HBF$_4$ for formation treatment purposes.

An effort should also be made to explain the fact why illite and bentonite responded differently to HBF$_4$ acid under different temperatures. With the current knowledge, this phenomenon still cannot be comprehended.

Most important of all is to continue exploring the parameters/conditions that will make HBF$_4$ coreflood stimulation successful in addition to understanding the relevant reactions. This would be done in comparison with mud acid and evaluated using suitable techniques to demonstrate the claimed benefits of HBF$_4$ over traditional mud acid.
CHAPTER V
CONCLUSIONS

It was shown in this study that the dissolution of aluminosilicates with 3% HBF$_4$ at 75°F will dissolve Al and Si at an equal ratio for all three clays at an effectively retarded rate and will have minor KBF$_4$ precipitate only in the case of illite. When reaction temperature is raised to 200°F, HBF$_4$ has developed a different reaction and leached all other elements from the clay structure except silica. This behavior matches the secondary reaction discussed by Gdanski.

Fresh HBF$_4$ hydrolytic equilibrium is established soon as it is prepared at room temperature at the given H$^+$ concentration. It contains three species (BF_4^-, BF$_3$(OH)$^-$ and HF) with BF_4^- being predominant and only a limited amount of HF.

The retardation effect of HBF$_4$ is evidently a strong function of temperature. Even though reaction retardation is witnessed at room temperature, it does not persist at 200°F as exhibited by the kaolinite dissolution rate of HBF$_4$ at 200°F, which was approximately the same as regular mud acid at this temperature. Therefore it is not recommended to apply this acid where bottomhole circulating temperature is close to or greater than 200°F.

The use of HBF$_4$ in formations that contains illite clay or potassium feldspar should be strictly prohibited due to the risk of KBF$_4$ precipitation, which can potentially cause formation damage.
Treating a six inches Berea core with 12-3 mud acid at 200°F with no shut-in did not improve the core’s permeability. When using HBF₄ to treat the core at the same conditions, both 3% and 8% HBF₄ damaged the core after 1 hour of shut-in. This damage is probably due to silica precipitation, as it is a known product of the secondary reaction which goes to completion at this temperature. The different responses of core’s final permeability after mud acid and HBF₄ is believed to be induced by silica-precipitate-blocked pore throats developed over the period of HF being shut-in in the case of HBF₄.
REFERENCES

APPENDIX A

A-1. Fluoboric Acid Material Safety Data Sheet

Material Safety Data Sheet
Fluoboric acid MSDS

Product Name: Fluoboric acid
Catalog Codes: SLF1771
CAS#: 16872-11-0
RTECS: ED2685000
TSCA: TSCA 8(u) Inventory; Fluoboric acid
Gift: Not available.
Synonym: Tetrafluoroboric acid
Chemical Formula: HBF4

Contact Information:
Sciencelab.com, Inc.
14025 Smith Rd.
Houston, Texas 77366
US Sales: 1-800-901-7247
International Sales: 1-281-441-4400
Order Online: Sciencelab.com

CHEMTREC (24HR Emergency Telephone), call:
1-800-424-9300
International CHEMTREC, call: 1-703-527-3887
For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS #</th>
<th>% by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoboric acid</td>
<td>16872-11-0</td>
<td>100</td>
</tr>
</tbody>
</table>

Toxicological Data on Ingredients: Fluoboric acid LD50: Not available. LC50: Not available.

Section 3: Hazards Identification

Potential Acute Health Effects:
Extremely hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Corrosive to skin and eyes on contact. Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or occasionally, blistering.

Potential Chronic Health Effects:
Extremely hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to lungs, mucous membranes. Repeated or prolonged exposure to the substance can produce target organs damage. Repeated or prolonged contact with spray mist may produce chronic eye irritation and severe skin irritation. Repeated or prolonged exposure to spray mist may produce respiratory tract irritation leading to frequent attacks of bronchial infection. Repeated or prolonged inhalation of vapors may lead to chronic respiratory irritation.
Section 4: First Aid Measures

Eye Contact:
Check for and remove any contact lenses, immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Cold water may be used. Do not use an eye ointment. Seek medical attention.

Skin Contact:
If the chemical got onto the clothed portion of the body, remove the contaminated clothes as quickly as possible, protecting your own hands and body. Place the victim under a deluge shower. If the chemical got on the victim’s exposed skin, such as the hands: Gently and thoroughly wash the contaminated skin with running water and non-abrasive soap. Be particularly careful to clean folds, crevices, creases and groin. Cold water may be used. If irritation persists, seek medical attention. Wash contaminated clothing before reusing.

Serious Skin Contact:
Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek medical attention.

Inhalation:
Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation:
Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. WARNING: it may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, infectious or corrosive. Seek immediate medical attention.

Ingestion:
Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Non-flammable.

Auto-Ignition Temperature: Not applicable.

Flash Point: Not applicable.

Flammable Limits: Not applicable.

Products of Combustion: Not available.

Fire Hazards in Presence of Various Substances: Not applicable.

Explosion Hazards in Presence of Various Substances:
Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions: Not applicable.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:
Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container.

Large Spill:
Corrosive liquid. Stop leak if without risk. Absorb with DRY earth, sand or other non-combustible material. Do not get water inside container. Do not touch spilled material. Use water spray curtain to divert vapor drift. Prevent entry into sewers, basements or confined areas; dikes if needed. Call for assistance on disposal.
Section 7: Handling and Storage

Precautions:
Keep container dry. Do not breathe gas/foumes/vapour/spray. Never add water to this product in case of insufficient ventilation, wear suitable respiratory equipment if ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibilities such as metals, alkanals. May corrode glass. Store in an appropriate container.

Storage:
May corrode metallic surfaces. Store in a metallic or coated fiberboard drum using a strong polyethylene inner package. May corrode glass. Store in an appropriate container. Corrosive materials should be stored in a separate safety storage cabinet or room.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:
Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

Personal Protection:

Personal Protection in Case of a Large Spill:
Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits: Not available.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid.

Odor: Odorless.

Taste: Not available.

Molecular Weight: 87.81 g/mol

Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: Decomposes. (130°C or 266°F)

Melting Point: Not available.

Critical Temperature: Not available.

Specific Gravity: 1.64 (Water = 1)

Vapor Pressure: Not available.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

Ionicity (in Water): Not available.

Dispersion Properties: See solubility in water, methanol.
Solubility:
Easily soluble in cold water. Soluble in methanol.

Section 10: Stability and Reactivity Data

| Stability: The product is stable. |
| Instability Temperature: Not available. |
| Conditions of Instability: Not available. |
| Incompatibility with various substances: Extremely reactive or incompatible with metals, alkalis. |
| Corrosivity: Extremely corrosive in presence of steel, of aluminum, of zinc, of copper. Highly corrosive in presence of glass, of stainless steel(304), of stainless steel(316). |
| Special Remarks on Reactivity: Decomposes on heating. |
| Special Remarks on Corrosivity: Not available. |
| Polymerization: No. |

Section 11: Toxicological Information

| Routes of Entry: Eye contact, Inhalation, Ingestion. |
| Toxicity to Animals: LD50: Not available. LC50: Not available. |
| Chronic Effects on Humans: The substance is toxic to lungs, mucous membranes. |
| Other Toxic Effects on Humans: Extremely hazardous in case of skin contact (irritant), of ingestion, of inhalation. |
| Special Remarks on Toxicity to Animals: Not available. |
| Special Remarks on Chronic Effects on Humans: Not available. |
| Special Remarks on other Toxic Effects on Humans: Not available. |

Section 12: Ecological Information

| Ecotoxicity: Not available. |
| BOD5 and COD: Not available. |
| Products of Biodegradation: Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise. |
| Toxicity of the Products of Biodegradation: The products of degradation are more toxic. |
| Special Remarks on the Products of Biodegradation: Not available. |

Section 13: Disposal Considerations

| Waste Disposal: |

Section 14: Transport Information
Section 15: Other Regulatory Information

Federal and State Regulations: TSCA 8(b) inventory: Fluoboric acid
Other Classifications:
WHMIS (Canada):
CLASS D-2A: Material causing other toxic effects (VERY TOXIC). CLASS E: Corrosive liquid.
DSDS (IEC):
R38: Irritating to skin. R41: Risk of serious damage to eyes.
HMIS (U.S.A.):
 Health Hazard: 3
 Fire Hazard: 0
 Reactivity: 0
 Personal Protection:
National Fire Protection Association (U.S.A.):
 Health: 3
 Flammability: 0
 Reactivity: 0
 Specific hazard:
Protective Equipment:
 Gloves, Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Face shield.

Section 16: Other Information

References: Not available.
Other Special Considerations: Not available.
Created: 10/09/2005 05:34 PM
Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, however arising, even if ScienceLab.com has been advised of the possibility of such damages.
A-2. **HBF$_4$ unit cost**

Per 1 kilogram of 3% HBF$_4$:

<table>
<thead>
<tr>
<th></th>
<th>(g)</th>
<th>Unit cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>786.75</td>
<td>$0.01</td>
<td>$7.87</td>
</tr>
<tr>
<td>NH$_4$HF$_2$</td>
<td>42.75</td>
<td>$0.07</td>
<td>$2.96</td>
</tr>
<tr>
<td>H$_3$BO$_3$</td>
<td>23.17</td>
<td>$0.07</td>
<td>$1.67</td>
</tr>
<tr>
<td>HCl</td>
<td>147.33</td>
<td>$0.01</td>
<td>$2.18</td>
</tr>
<tr>
<td>Total</td>
<td>1000.00</td>
<td></td>
<td>$14.67</td>
</tr>
</tbody>
</table>