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ABSTRACT 

 

 The heat transfer behaviors of non-Newtonian fluids under laminar flow conditions 

in circular tubes are presented in this study. The constant wall heat flux is considered as a 

boundary condition for dilute polymer solutions with different polymer rigidities. A 

mathematic method was introduced to model the rigidity of polymer chain's effect on the 

dynamic viscosity of dilute polymer solution. Results were also obtained for the dilute 

polymer solutions under both hydro-dynamically developing and hydro-dynamically 

developed conditions. In case of a smooth circular tube with dilute polymer solution, the 

results of Nusselt numbers and fanning friction factors were obtained by varying initial 

Reynolds number and polymer rigidity. The effects of the polymer rigidity and the 

Reynolds number on the Nusselt number were found to be small. It was also observed that 

the friction factor and the performance evaluation criteria were strongly dependent on both 

polymer rigidity and Reynolds number. 
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NOMENCLATURE 

 

Variables 

C   Mass concentration 

Cp   Specific heat  

D   Diameter of the tube 

f   Fanning friction factor 

g   Acceleration of gravity 

Gz        Graetz number 

Gr        Grashof number 

n    Flow index 

K   Consistency index 

k   Thermal conductivity 

L     Tube length 

Lk   Kuhn length 

m    Mass flow rate of the slurry or fluid 

m    Rigidity changing parameter 
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Nu   Nusselt number 

Lc   Contour  

Pr   Prandtl Number 

q   Heat 

q''         Heat flux 

<R>  End-to-end vector 

r    Radius of the tube 

T   Temperature 

Tb         Bulk temperature 

T w      Temperature at a distance z from the inlet    

u   Velocity in x direction 

v   Velocity in y direction 

w   Velocity in z direction 

x   Cartesian co-ordinate along x direction 

y   Cartesian co-ordinate along y direction 

z   Cartesian co-ordinate along z direction 
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    Shear rate 

    Volumetric concentration 

  Greek symbols

θ   Rotation angle 

η   Dynamic viscosity  

ρ   Density 

Subscripts 

b   Bulk 

eff   Effective 

H   Constant wall heat flux 

i   Inlet 

mean  Mean 

w   Wall 

Acronyms 

CC          Chemical Composition 

CS          Chemical Structure 

DPS  Dilute Polymer Solution 

MW       Molecular Weight 

RCP  Rigidity Changing Parameter 
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INTRODUCTION 

 

1.1 Non-Newtonian Fluids 

 A number of fluids such as rubber, plastics, synthetic fibers, petroleum, and paints are 

non-Newtonian fluids because their viscosity properties are fluid shear rate dependent [1]. 

The study of convective heat transfer of non-Newtonian fluids has been attracting 

considerable interests among many investigators due to its relevance in industrial 

applications, including their use in industrial heat exchangers, certain HVAC systems, 

chemical industries, petroleum industries and food industries, to name a few. As a result 

a great number of investigations have studied the rheological behavior and heat transfer 

of non-Newtonian flow in circular pipes under different boundary conditions. 

It is known that for Newtonian fluids, the shear stress τ is linearly dependent on shear 

rate  [1] ，as given by: 



                                                             (1) 

 

Here τ is the shear stress, μ is the fluid’s dynamic viscosity. 
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For non-Newtonian fluids, the viscosity μ varies with shear rate, so the rheological 

behavior is certainly more complicated.  Due to the relationship between shear stress and 

shear rate, non-Newtonian fluids can be split into three categories [2], 

(a) time-dependent non-Newtonian fluid 

(b) time-independent non-Newtonian fluid 

(c) viscoelastic non-Newtonian fluid 

Time-independent non-Newtonian fluids, whose shear rate at a given point are only 

dependent upon the instantaneous shear stress. These kinds of fluids can also be 

characterized by having an initial yield stress including Bingham plastic fluids [3] and 

Herschel-Bulkley fluids [4]; and fluids without a yield stress including pseudoplastic fluid, 

whose viscosity decreases when shear rate increases.  On the other hand the viscosity of 

dilatant fluids increases when the shear rate increases. Classic time-independent fluids are 

depicted in Fig. 1.1 
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Fig. 1.1 Comparison of time-independent non-Newtonian fluids 

Time-dependent non-Newtonian fluids are characterized by having a more 

complicated relationship between shear rate and shear stress where the shear stress can 

change with time at a given shear rate. These fluids are usually classified into two types: 

thixotropic fluids and rheopectic fluids. 
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Viscoelastic fluids have both viscous and elastic properties. In contrast to purely 

viscous liquids, they will flow when subjected to stress, but its initial viscosity behavior 

cannot be fully recovered upon removal of the shear stress. To describe these sort of fluids, 

we need not only to understand the relationship between shear stress and shear rate, but 

also the time derivatives of both properties. 

In our research, time-independent non-Newtonian fluids have been considered for 

flow and heat transfer simulations. A number of studies, both experimental and theoretical, 

have been performed using viscosity models for non-Newtonian fluids. O. Waele [5] first 

introduced the power law model for time-independent non-Newtonian fluids shown in 

equation (2): 

nk                                                                (2) 

 

Where τ is the shear stress, k is the consistency index, n is the flow index. Both k and n 

are determined by experimental methods. 

The power law model describes well the shear thinning behavior of pseudoplastic 

fluids; however, the Equation fails to capture the viscosity behavior of the fluid when the 

shear rate becomes relatively large or small. For n greater than one, the viscosity of the 
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fluid will approach zero near the zero shear rate region, which does not reflect the physical 

behavior of the fluid. 

 

1.2 Polymer Solution  

In this study, dilute polymer solutions have been considered since the effects of 

polymer rigidity on hydrodynamics and convective heat transfer are still unknown.  A 

polymer is characterized by having large number of monomers, and the molecular weight 

can be substantial. Classic natural polymeric materials such as natural fiber, rubber, and 

hides have been commonly used for centuries. During the 19th century, chemists developed 

synthetic polymer molecules by polymerization reactions.  

In general, polymer solution is a liquid mixture of long and large polymer molecules, 

and light solvents. Polymer solutions are non-Newtonian fluids, characterized by having 

a complicated rheological properties. 

 

1.3 Motivation for Current Work 

The study of rheological behavior of polymer solutions in circular pipe is an important 

issue due to its wide application in heat transfer, biochemistry, automotive industry and 
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chemical industry. The microstructure and molecular weight of polymer molecules can 

affect the viscosity of polymer solutions.  Similarly, the rigidity of long molecule chains 

can also affect the rheological behavior of polymer solutions. Thus a thorough 

understanding of the relationship between polymers structural properties and the 

characteristic non-Newtonian flow behavior in circular pipe is of fundamental importance 

to a host of engineering applications. 

After a thorough literature survey in areas of polymer science and non-Newtonian 

fluids, it was found that both experimental and numerical analyses are still lacking in the 

study of the relationship between polymer rigidity and rheological behavior of polymer 

solutions. Therefore, the study of the effect of the rigidity of polymers in dilute polymer 

solutions on convective heat transfer and pressure drop in a circular pipe was undertaken. 

 

1.4 Aim and Objective  

The objective of the current study was to determine the effect of polymer rigidity on 

viscosity, convective heat transfer and pressure drop.  As the first step, two types of 

classical non-Newtonian fluids were simulated using CFD software to numerically 

validate the flow behavior of such fluids in a circular pipe with axially and peripherally 

uniform heat flux along the wall. Then, a comparison between the well-published 
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convective heat transfer correlations and the ones obtained numerically was made in order 

to gain better understanding of non-Newtonian fluids. 

The second step consisted of understanding thoroughly the effect of polymer 

structures on viscosity. A detailed mathematical method was used to determine the effect 

of molecular structure of polymers on polymer rigidity and the viscosity of dilute polymer 

solutions.  The relationship between polymer chain rigidity and viscosity of the fluid was 

analyzed using existing polymer theories. 

The next step consisted of simulating the flow of dilute polymer solutions in a circular 

pipe under constant heat flux conditions. Polymer solutions with the same concentration 

and molecular weight but different polymer rigidity were simulated.  The effects of 

polymer rigidity on viscosity, convective heat transfer and pressure drops were evaluated 

based on the simulated results. 
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LITERATURE REVIEW 

 

In this section, research background of the non-Newtonian fluid and polymer science 

are presented. The section has been divided into four parts. The first part brings a brief 

introduction of classic viscosity models of non-Newtonian fluids. The second part focuses 

on previous experiments and study of heat transfer of non-Newtonian fluids. The third part 

discusses the study of polymer structures. In addition, the fourth part focuses on the effect 

of the polymer rigidity on the dynamic viscosity. 

 

2.1 Viscosity Model of Non-Newtonian Fluid 

Numerous studies have been done on the prediction of the viscosity models of non-

Newtonian fluids. Waele [5] introduced the power law model which can describe well the 

viscosity variation in limited shear rate regions. Because of the limitation of the Power-

law model, other non-Newtonian models have also been developed to meet the 

requirements for describing multiple types of fluids. 

Carreau et al. [6] proposed a viscoelastic model extrapolated from the generalized 

Maxwell model. In their work, viscoelastic fluids such as polymer melts and solutions can 
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be generally described by Maxwell model which they used to develop the Carreau-Bird 

model. His model is based on several assumptions including the use of zero shear rate 

viscosity, infinite shear rate viscosity, and relaxation time. Compared with the Power-law 

model, the Carreau model is more useful when studying fluids with non-Newtonian 

viscosity in high shear rate and Newtonian viscosity in low shear rate. 

Mongruel et al. [7] studied xanthan solution, which is a classic semi-rigid polymer 

solution (non-Newtonian fluid), with low concentrations flowing through an axisymmetric 

orifice. In his work, the Carreau model was utilized to provide theoretical analysis of the 

elongational viscosity of the xanthan solution. Supported by experimental data, the author 

claimed that the Carreau model is available to predict the elongational viscosity of semi-

rigid polymer solution.   

The Herschel–Bulkley model was introduced in 1926. The relationship between shear 

stress and shear rate in the model is characterized by consistency index k, the flow index 

n, and yield shear stress. The Herschel–Bulkley model can be used to analyze Non-

Newtonian fluids specifically with yield stress. 

Casson model was developed by Casson in 1959, originally to study flow behavior of 

pigment-oil suspensions. The Casson model can reveal both shear thinning and yield stress, 

and it has been frequently used for the study of food products. Pastor et al. [8] used xanthan 
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gum solutions in their experiments. In their work, 48 samples of xanthan solutions with 

different pH conditions, concentrations and initial inlet velocities had been analyzed. The 

Casson model and the power law model were used to provide theoretical analysis in their 

study. It was found that the pH number and concentration can both affect the viscosity of 

xanthan solution, and both the Casson model and the power law model can be utilized to 

describe the polymer solutions’ rheological behaviors.  

Cross model [2] was proposed by Cross (1965), which is a four constant model, which 

displays a non-zero bounded viscosity at both the upper and lower shear rate limits. In 

shear thinning region the Cross model fluid behaves like a Power-law fluid, but it can 

produce Newtonian viscosity at relatively low or high shear rate regions. 

The Ellis model was introduced in limited papers [9] which set the viscosity with 

extremely large shear rate to zero for simplification. Until now, the most commonly used 

non-Newtonian model is the Power-law model, given a certain zero shear rate and an 

infinite shear rate viscosity limitations, The Power-law model can well describe the shear 

thinning behavior of pseudoplastic non-Newtonian fluids in CFD simulation. 

 



11 

 

2.2 Heat Transfer of Non-Newtonian Fluids 

Flow and heat transfer of fluids with Non-Newtonian properties have evoked proper 

consideration of investigators in the past and are still a point of discussion in recent years. 

Metzner et al. [10] conducted experiments to study the relationship between Graetz 

number [11] and Nusselt number in 1957. In their work, dilatant and pseudo-plastic fluids 

were tested, and an expression of Nusselt number was presented involving the flow index 

and the Graetz number.  

Both experiments and numerical analysis were undertaken by Mahalingam et al. [12-

13] in 1974. Three different materials including water, Methocel, and 

Carboxypolymethylene were tested in long, circular pipes with constant wall heat flux 

boundary condition. Comparisons were made between previous theoretical Nusselt 

number and the experimental data. The author claimed that the experiment data can well 

meet with the theoretical prediction of Nusselt number. The expression of Nusselt number 

for that type of non-Newtonian fluid is: 

 3
13

1

4n
13n418.1 GzNu 






 
                                              (3) 

 

Where Nu is the Nusselt number, n is the flow index of power law fluid, Gz is the Graetz 

number, which can be expressed in Equation (4): 
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kL

Cm
Gz

p


                                                          (4) 

 

Where m  is mass flow rate, k is thermal conductivity, L is hydraulic diameter，and Cp 

is heat capacity. It can be observed that the consistency index of Power-law model has no 

effect on heat transfer coefficient since it does not appear in the Nusselt number equation. 

It was found that when Graetz number is between 100 and 10000, the Equation (4) can 

well describe the Nusselt number of power law fluid under constant wall heat flux 

boundary condition. 

Cruz et al. [14] proposed an approximate methodology for different non-Newtonian 

models to estimate the Nusselt number and friction factors. To get the Reynolds number 

and the Nusselt number, the wall shear rate, bulk velocity, apparent flow index were used 

and the error was within 3.2% compared with previous data.  

Chhabra [15] gave detailed analysis and experimental data for velocity profile and 

Nusselt number calculation. In his book, the velocity profile for full developed Power-law 

fluid in a tube is given by Equation (5): 
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http://www.sciencedirect.com/science/article/pii/B9780750685320000068
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Where, Vz is the velocity in axial direction, V is the mean velocity of flow, r is radial 

distance from axis, R is radius of tube, n is flow index of Power-law model. The Nusselt 

number is given by Equation (6): 

3/1
3/1

4
1375.1 Gz

n

n
Nu 







 
                                              (6) 

 

Equation (6) is used specifically for limited conditions with relatively large Graetz number 

(larger than 10000). 

A number of scientists also studied heat transfer of Non-Newtonian fluids in 

equipment with specific shapes. Escudier et al. [16] conducted experiments and made 

comparison between numerical solution and experimental data of the non-Newtonian flow 

through an annulus pipe. Chung et al. [17] studied numerical solution for the Power-law 

flow in rectangular ducts with different boundary conditions. Salem et al. [18] presented 

theoretical and experimental investigation for laminar and turbulent of both Newtonian 

fluids and non-Newtonian fluids through non-circular pipes. Pascal et al. [19] developed 

non-linear equations to describe transient flow of Power-law fluids through a porous 

medium. Suckow et al. [20] gave numerical analysis for heat transfer to polymer solutions 

and melts that flow between parallel plates. However, no studies have been undertaken to 

http://www.sciencedirect.com/science/article/pii/0020722585900667
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understand the effect of polymer rigidity of dilute polymer solutions on heat transfer 

performance of heat transfer fluids. 

 

2.3 Polymer Structure and Rigidity 

Polymer structure was first reported by Hermann Staudinger [21] in 1920. It was 

found that polymer materials, including rubber, proteins, and fibers are formed by long 

chain molecules with repeating subunits linked by covalent bonds. W. Kuhn, E. Guth, and 

G. Mark [22] tested the elasticity phenomenon during stretching of polymer sample, and 

their ideas brought about the prediction that the micro conformational statistical properties 

of polymer molecules can have influence on the complex physical properties of polymers 

as a whole.  

Kuhn developed random walk model for polymer molecules. In his work, a real 

polymer chain is considered to be series of segments with an average length b (the Kuhn 

length). Each segment is assumed to be freely joined with each other and the rotation angle 

for each segment is independent with the position of the other segments. Kuhn length can 

be determined by end-to-end distance of a polymer chain and the number of segments, it 

can also represent the rigidity of polymer chain. 
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To better investigate the polymer chains’ contribution to the dynamic properties, 

Debye [23] simplified the molecule chain to a bend-chain model. In his theory, a polymer 

chain can be understood as a collection of N rods and N+1 beads. In polymer solution, 

each unit will have bend resistance, which gives explanation of solution’s viscosity. 

However, the bend chain model does not take into account the effect of hydrodynamic 

interactions between molecules. The solvent molecules would slow down when they flow 

through the polymer chains. 

Zimm and Rouse [24-25] made an improved model based on Debye’s theory. The 

bead-spring model was carried out to characterize the viscoelasticity of polymer solution. 

In this theory, a polymer chain is considered to be a collection of flexible Hooke springs 

and beads. When a polymer chain is moving in a solution, not only the resistance of beads 

but also the elasticity of polymer chain are taken into consideration. The disadvantage of 

the bead-spring model is that it cannot explain the phenomenon of shear thinning because 

of complicated factors such as hydro-interaction effects. 

For semi-rigid polymers, Kratky et al. [26] developed the wormlike chain model. In 

their work, a semi-rigid polymer chain is simplified to be a collection of isotropic rods, in 

contrast to the freely joint model that only discrete segments are flexible. The wormlike 

chain model has been adopted as a useful approximate method to study equilibrium and 
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nonequilibrium behaviors of rigid or semi-rigid macromolecules, such as xanthan gum, 

and DNA molecules in solutions.   

To gain an understanding of rigid polymer chains, such as isotactic polypropylene, 

and protein in helical forms, the rigid dumbbell model [27] was adopted to give numerical 

and statistical analyses of polymers. Similar with bend-chain model, the rigid dumbbell 

makes a simplification that polymer chains are combination of subunits, each subunits 

consists of two point masses joined by massless rigid rod. The models are the 

simplification of the true system, but they can be used to predict the behavior of rigid 

polymer solutions.    

To study polymer rigidity, which is one of the most important properties of polymer 

chain, Guiver et al. [28] investigated the effect of polymer chain rigidity on microporous 

membranes. Torres et al. [29] conducted both experiments and numerical analysis to study 

the effect of chain stiffness on the thermal properties and mechanical properties of polymer 

thin films. The elastic modulus and glass transition temperature were investigated by using 

2-phenylethylnorbornene. It was found that by changing the relative flexibility of the side 

chains would not improve the thin film behaviors. However the main chain rigidity plays 

an important role in observed changes in physical properties. Another experiment set by 

Harrison et al. [30] also showed the connection between polymer rigidity and spray 

http://pubs.acs.org/action/doSearch?action=search&author=Torres,+J+M&qsSearchArea=author
http://www.sciencedirect.com/science/article/pii/S0377025798001888
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atomization, indicating that the polymer rigidity can have influence on multiple physical 

properties of the materials. 

Jan et al. [31] presented results of molecular dynamic simulations of polyelectrolyte 

solutions. In their work, the bead-spring model was utilized to study the chain persistence 

length. The simulations indicate that the polymer chain size is dependent on polymer 

concentration, salt concentration of the solvent, and solution ionic concentration. 

A comprehensive numerical study on modeling of polymer rigidity was done by 

statistical analysis based on Kuhn’s model. The length of each segment has influence on 

the end-to-end distance of a polymer coil in polymer solution. The dependency of radius 

of gyration on the average end-to-end distance was discussed by Teraoka [32]. In addition, 

Kok et al. [33] illustrated the relationship between the radius of gyration of a polymer and 

hydrodynamic radius in polymer solution. 

Gennes [34] investigated the relationship between polymer coils and polymer 

concentrations. It was found that when the polymer concentration is relatively low, 

polymer coils will be separated from each other because of the interaction with solvent 

molecules. In contrast, in concentrated polymer solution, there are entanglements between 

coils and polymer chains. Predictions of for the coil overlapping concentration were also 

made to determine the conformation of polymer coils in the solution. 
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2.4 Intrinsic Viscosity 

The intrinsic viscosity is a dimensionless parameter to measure the contribution of a 

solute to the viscosity of a solution. The intrinsic viscosity can be defined by Equation (7): 

 






0

0
0

lim 



                                                        (7) 

 

Where [η] is the intrinsic viscosity, η is the viscosity of the solution, η0 is the viscosity in 

the absence of the solute.  

Higiro et al. [35] describes how the multiple main extrapolation methods can be used 

to calculate the intrinsic viscosity from dynamic viscosity. In their work a comparison was 

made among the five methods and the authors recommend a method that was developed 

by Mcmillan in 1974 using the following Equation: 

  



1

0

                                                         (8) 

 

The author claimed that the Equation 8 showed a better linear fit, with higher correlation 

for most of the blends, salts and polymer solutions.  

Einstein [36] proved the fact that the size and the shape of the particles are the main 

factors that can affect the viscosity of polymer solutions. The size of the coil is decided by 
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the radius of gyration, which is dependent on multiple properties of polymer molecules. 

Chong et al [37] introduced the relationship between the radius of gyration and the 

hydrodynamic radius, through their idea, the radius of gyration and the hydrodynamic 

radius are linearly dependent for given concentrations. The relationship between the end-

to-end distance of polymer chain and the hydrodynamic radius was introduced by Teraoka 

as indicated above. 

 The background study suggests that virtually no study has been done on the effect of 

polymer rigidity on the viscosity of Non-Newtonian fluids. The current study considered 

dilute polymer solutions consisting of flexible and rigid polymers as heat transfer fluids. 

Numerical simulations have been undertaken using a smooth circular pipe under uniform 

heat flux conditions.  
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DESCRIPTION OF DILUTE POLYMER SOLUTION (DPS) FORMULATION 

AND NUMERICAL HEAT TRANSFER AND FLUID DYNAMICS 

SIMULATION SCHEME FOR DPS 

 

3.1 Formulation of the Convective Heat Transfer Problem 

In this section the governing equations and the assumptions utilized in modeling the 

non-Newtonian flow in uniformly heated circular pipe is discussed. 

 

3.1.1 Governing Equation  

The modeling of a non-Newtonian fluid in circular pipe with constant heat flux along 

the wall is based on discretization of the continuity, momentum and energy equations 

given as follows: 

0 v                                                            （9） 

                                                （10） 

  TkTvcp

2

                                            （11） 

 

  pvv
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Here v is the velocity vector, ρ is the scalar pressure, t is the τ stress tensor, r isthe 

density of fluid, Cp is the fluid’s specific heat, k is the thermal conductivity, and T is the 

temperature. 

The above equations are solved using the finite volume method. The equations were 

solved numerically by using FLUENT 14.0, which is a commercial and academic 

computational software used for solving practical fluid dynamics and heat transfer 

problems. A description of the numerical scheme can be found below. 

 

3.1.2 Assumptions 

Various assumptions were made to solve the heat transfer problem for dilute polymer 

solutions taking into account different polymer chain rigidities.  

The non-Newtonian fluids (xanthan-water solution) used in the simulation were 

assumed to be temperature-independent. This assumption was found to be valid because 

the average temperature difference between the inlet and the outlet of the simulated system 

(pipe) was limited to 10 °C, thus the effect of temperature on the physical properties of 

the non-Newtonian fluid was assumed to be negligible. 

The polymer chains that made up the dilute polymer solutions (DPS) were assumed 

to show no signs of entanglement as long as the concentration in the DPS was less than 
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0.5%. This assumption simplifies the modeling of polymer rigidity of polymer 

macromolecules, which are assumed to form independent coils in the solution by ignoring 

the entanglement between polymer chains. This assumption allows the use of coil size as 

the main factor that affect the viscosity of DPS.  

Polymer coils are assumed to be ideal spheres in DPS with a prescribed radius of 

gyration, which can be measured experimentally. The rigidity of polymer chains in DPS 

is assumed to be an adjustable parameter that is completely independent from other 

physical properties.   

Other assumptions include constant thermal conductivity and density. These 

assumptions allowed treating non-Newtonian fluids as homogeneous liquids. 

 

3.2 Development of Viscosity Model for DPS 

3.2.1 Rigidity of Polymer Molecule 

The rigidity of polymer chains is governed by the ability of the sub-units in the 

polymer molecules to rotate around the bonds. Flexible polymer molecules have large 

rotation angles, in contrast to rigid polymer molecules which have smaller rotation angles. 

To describe the rigidity of polymer chains, we can directly use rotation angle, but in 

practice scientists usually use other properties, such as the persistence length. 
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The persistence length is a basic mechanical property qualifying the stiffness of 

polymer chain, which is defined in Equation (12),  

 PLe /cos                                                         (12) 

 

Where θ is the angle between a vector that is tangential to the polymer at position 0 

(zero) and a tangent vector at a distance L away from position 0, along the contour of the 

chain. P is the persistence length and L is the distance between two tangent vectors. The 

angle corresponds to the average angle when all the vectors can be presented by a single 

persistence length. 

In polymer science, the persistence length can be directly used to determine the 

polymer rigidity, and it is usually considered to be replaced by the Kuhn lengthsincethe 

Kuhn length can be obtained experimentally. Equation (13) relates Kuhn length to contour 

length of the polymer chair as follows: 

ck LRl /2                                                          (13) 

 

Here lk is the Kuhn length. R is the end-to-end vector of N-segment freely jointed 

chain (each segment of ls). Lc is the contour length of the chain. 

http://en.wikipedia.org/wiki/Kuhn_length
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The Kuhn length model, or random walk model, was developed by Kuhn [23] to 

account for the morphology of polymer chains. In his theory, a real polymer chain is 

defined as a collection of N segments, and every one of these segments is freely jointed 

with each other and independent of the directions taken by the other segments. Instead of 

considering a real chain consisting of n bonds and with fixed bond angles, torsion angles, 

or bond lengths, Kuhn considered a Hyan equivalent ideal chain with N connected 

segments, now called Kuhn segments that can orient in any random direction. 

The random walk model can be seen in Fig. 3.1 as follows: 

 

 

 

 

 

 

 

Fig. 3.1 Random walk model 
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http://en.wikipedia.org/wiki/Polymer_physics#Real_Chains
http://en.wikipedia.org/wiki/Polymer_physics#Ideal_Chains
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Here R is the end-to-end vector, ui (i=1, 2, 3....N) is segment with length b. Each nod 

represents a subunit of the polymer chain. Then the average end to end distance <R2> is 

given in equation (14): 
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To expand this equation, the angle between each segment was taken into account to 

determine R2.  The rotation angle θ is shown in Fig. 3.2. 

 

Fig. 3.2 Rotation angle between two segments 
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In this model (Fig.3.2), the relationship between the vectors and the rotation angles are 

given in Equations (16-17) 

ijji buu cos2
                                                     (16) 

 

 coscos 1, ii                                                      (17) 

 

Here θij is the angle between segments i and j. By mathematical transformation the angle 

between segment i and segment (i+k) is given now in Equation (18) 

 kkii  coscos ,                                                     (18) 

 

Then the <R2> can be found as follows:  
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Equation (19) was also introduced by Alexander and Alexei [22], also by definition the 

contour length Lc is given in Equation (20), 

NbLc                                                               (20) 

 

Applying Equation (19-20), then the kuhn length can be determined as follows: 

                                                       (21) 

  

In this equation, θ is the rotation angle or valence angle. In this model, the persistence 

length P is shown in Equation (21). 

 cosln
b

p 

                                                     （22） 

 

By comparing equation (21) and (22), it can be concluded that once the rotation angle is 

determined, the Kuhn length and persistence length are linearly dependent. 

Thus the Kuhn length can be used to describe the rigidity of polymer chain. 

 

1 cos
1 coskL b
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3.2.2 Coil Size 

The coil size is decided by the average end-to-end distance <R2>. The volume of the 

coil V is described in Equation (23): 

3
h3

4
RV                                                             (23) 

 

Here Rh is the hydrodynamic radius of polymer chain. It was proved by Kok and Alfred 

[35] that the hydrodynamic radius is linear dependent on the radius of gyration (Rg).  

gh RcR 1                                                             (24) 

 

Where c1 is a constant. The mean radius of gyration (<Rg2>) of a polymer coil is defined 

as the average square distance of the chain segments from the center of the mass of the 

chain. It characterizes the size and shape of the polymer and thus it may be obtained from 

hydrodynamic measurements. 

Alexander and Alexei [22] claims that there is a linear dependence between the end-

to-end distance and the radius of gyration, when the number of subunit in polymer chain 

is large enough. The definition of the radius of gyration is given in Equation (25). 

2

1

2 )(1
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Where ir
  is the vector of the i th subunit, gr


 is the center of mass of the coil which is 

given in Equation (26) 
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1                                                            (26) 

 

By applying Equation (25-26), Alexander and Alexei gave the relationship between Rg 

and R for ideal coil in Equation (27).  

22

6
1

RRg                                                          (27) 

 

Then by applying Equation (23) (27), the connection between the end-to-end distance and 

the Kuhn length of the polymer chain is given in Equation (28). 

 kc
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（28） 

 

Where c1, c2 and c3 are constants. 

Combining Equation (23) and Equation (28), the relationship between the Kuhn 

length and the volume of the polymer coil can be obtained as shown in Equation (29). 
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                                                          (29) 

 

Where c4 and c5 are constants. 

 

3.2.3 Intrinsic Viscosity 

The intrinsic viscosity is the solute’s contribution to the viscosity of the whole 

solution as defined in Equation (30). It can be determined experimentally from 

measurements of the viscosity of very-low-concentration solutions [8]. 

Csolvent

solventsolution
0intrinsic lim












                                             (30) 

 

Where C is the mass/volume concentration. Einstein [36] introduced Equation (31) which 

shows the influence of concentration on the viscosity of the fluid. 

 n

solventsolution c  21.145.21                                  (31) 

 

Where ηsolution is the dynamic viscosity of polymer solution, ηsolvent is the solvent’s viscosity, 

and ϕ is the volume fraction of particles in the system.  



31 

 

For dilute polymer solution, the higher power of concentration in the equation can be 

neglected, and the Equation (31) is simplified as Equation (32): 

  5.21 solventsolution                                                 (32) 

 

Where the volume fraction  can be represented by Equation (33) assuming each coil 

to consist of N particles (monomer units) of mass m with a density of ρ. 

h
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                                                          (33) 

 

where M is the molecular mass of the polymer chain, m is the mass of each polymer subunit, 

N is the number of subunit, NA is Avogadro number (6.02214×1023), and Vh is the 

hydrodynamic volume of the coil.  
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Applying Equations (29-33) into Equation (30), the relationship between intrinsic 

viscosity and the hydrodynamic volume of coil is given in Equation (34). 
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By combining Equation (29) and Equation (34), the intrinsic viscosity’s dependence on 

the Kuhn length is given by Equation (35) 
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Equation (35) shows that the intrinsic viscosity of DPS depends on Kuhn length. 
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3.2.4 Dynamic Viscosity 

Pastor [8] discussed multiple extrapolation methods to calculate the intrinsic viscosity 

from dynamic viscosity in DPS. In the paper, the author [8] made comparison between the 

five methods which are shown in Equation (36-40) and finally recommended method C 

which is shown in Equation (38).  The following equations can be used to determine the 

intrinsic viscosity of DPS experimentally. 

A. Huggins equation(Huggins, 1942): 

Ck
C

intrinsicintrinsic
sp '


                                                (36) 

 

B. Kraemer equation(kraemer,1938): 

Ck
C

2

intrinsicintrinsic
rel 

 ''ln
                                             (37) 

 

C. Simple viscosity model (Mcmillan,1974): 

Crel intrinsic1                                                         (38) 

 

D. Exponential viscosity model 

C

rel e  intrinsic                                                          (39) 
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E. Inverse viscosity model 

C
rel




intrinsic1
1


                                                     (40) 

 

Where ηrel and ηsp are as follows: 

solvent

solution
rel




                      (41) 

1
solvent

solution
sp




                                                        (42) 

 

Where C is the concentration, and k’ and k” are constantswhich can be determined 

experimentally.  

From Equation (38), the viscosity of the solution can also be represented by the intrinsic 

viscosity in Equation (43). 

  solventsolution C   intrinsic1                                            (43) 

 

3.2.5 Rigidity Effect on Dynamic Viscosity 

To take into account the effect of polymer rigidity on dynamic viscosity of a DPS, the 

relationship between polymer Kuhn length and viscosity has been postulated explicitly as 
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shown in Equation (35). However, many dilute polymer solutions behave as non-

Newtonian fluids, therefore, Equation (35) should be revised so it can be used in non-

Newtonian DPS as explained in later in the chapter. One way to estimate the viscosity of 

DPS with different levels of polymer rigidity is by explicitly taking into account the 

relationship between polymer rigidity and Kuhn length or end-to-end vector ratio between 

polymers with same molecular weight as follows:  

1 0k kL m L                                                            (44) 

 

2 2
1 0R m R

                                                        (45) 

 

Where Lk0, Lk1 are the Kuhn length of two polymers, m is the ratio of the Kuhn lengths 

between two polymers with identical molecular weight but with different rigidity. m can 

be defined as the rigidity changing parameter (RCP) in DPS. Equation 44 is based on the 

assumption that the Kuhn length is directly proportional to the level of rigidity of the 

polymer as expressed in Equation 13. It is also assumed that the Kuhn length of a polymer 

chain can be changed or adjusted by changing its chemical structure, CS (eg. make the 
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carbon chain into benzene ring)without changing its molecular weight (MW) or chemical 

composition, CC (i.e. C35H49O29).  

 By finding the intrinsic viscosity ratio between two DPS made of polymers with the 

same MW or CC but with different CS based on Equation (35), the viscosity values of less 

or more rigid DPS can be found directly using Equation (44). 

2
3

2
3

0

1

2
3

0

2
3

1

m

L

L

L

L

0 intrinsic

1 intrinsic




















                                                        

(46) 

 

By combining equations (38) and (44), the following Equation can be obtained (47): 
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Solving for ηsolution1, a viscosity model for DPS is as follows 
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3.2.6 Viscosity of Xanthan Solution 

For simulation purposes, the viscosity of 0.2% xanthan solution was used due to the 

availability of experimental data both in terms of rigidity and viscosity.  Furthermore, a 

dilute xanthan solutions follows the classic power law model since it behaves as a non-

Newtonian fluid.  Experiments and numerical analysis of dilute xanthan solutions have 

already been undertaken by Pastor [8] so complete knowledge of the flow and consistency 

index data are available. The viscosity and the rigidities were taken into account by using 

Equation (2) and Equation (48), and were shown in equation (49). 

 
3

0.69 20.64 solvent solventm                                              (49) 

 

is the dynamic viscosity of DPS with certain rigidity. 
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3.3 Boundary Condition 

Several boundary conditions were defined and used in the study. Two different initial 

velocities of the flow were taken into account.  The inlet flow velocity profile was 

assumed to uniform as in plug flow cases. The wall was heated with constant surface heat 

flux 100 W/m2.  

 

 

 

 

 

 

Fig. 3.3 Uniform wall heat flux in circular pipe 

3.4 Materials 

In the study, dilute xanthan solutions with concentration of 0.2% were chosen for 

analysis and simulation due to the availability of viscosity data [8].  

Constant axial wall heat flux  

z 

flow 
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3.5 Rheological and Heat Transfer Parameters 

Several parameters were identified and selected for the study. The following 

subsections outlines the parameters chosen for simulation and analysis purposes. 

 

3.5.1 Reynolds Number 

The Reynolds number is defined as the ratio of the inertial force to the viscous force 

of the flow, and it is a dimensionless parameter which can be utilized to characterize 

different flow regions, such as laminar flow and turbulent flow. For Newtonian fluid the 

Reynolds number is defined in Equation (50): 

eff

Re


 hmDU
                                                         (50)                                    

 

Where ρ is the density of the fluid, Um is the mean velocity, Dh is the hydraulic 

diameter, μ is the dynamic viscosity of the fluid. 

For Non-Newtonian fluid the Reynolds number cannot be calculated by Equation (50) 

due to the changing viscosities of non-Newtonian flow. The general equation of Reynolds 

number for non-Newtonian fluids based on the Power Law model is given in equation (51):  
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Where n is the flow index of the power law fluid, V is the area average velocity, D 

is the hydraulic diameter, and ρ is the density of power law fluid. 

 

3.5.2 Grashof Number 

The Grashof number (Gr) is a dimensionless parameter that used to approximate the 

ratio of the buoyancy to the viscous forces on a fluid [41]. If Gr<<Re2, forced convection 

is considered to be the main effect on heat transfer of the fluid, and natural convection can 

be neglected. To the contrary if Gr >> Re2, forced convection can be neglected. When Gr 

≈ Re2, then both forced convection and natural convection should be taken into account 

since they have similar influence on heat transfer. The Grashof number for power law 

Non-Newtonian fluid is given in equation (52): 

2

23

eff

gTD
Gr




                                                      (52) 

 

Where β is the volumetric thermal expansion coefficient, T is the temperature 

difference between the surface temperature and the bulk temperature. D is the diameter of 

the pipe, ρ is the density of the fluid, g is acceleration due to Earth's gravity, eff is the 

effective viscosity at the wall shear rate and temperature. 

http://en.wikipedia.org/wiki/Coefficient_of_thermal_expansion
http://en.wikipedia.org/wiki/Standard_gravity
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3.5.3 Density 

The density of the polymer solution is determined by Equation (53). It is obtained by 

the volume averaged density of the individual components of the solution. 

  01s xc c                                                     (53) 

 

Where ρs is the density of the polymer solution, ρxis the density of xanthan, ρ0is the 

density of the solvent, c is the solute concentration. 

 

3.5.4 Polymer Rigidity 

To study the influence of polymer rigidity on the viscosity of the DPS, the rigidity 

parameter m has been introduced above to describe the rigidity difference between 

different DPS. The introduction of m has been discussed in 3.2.4. 

3.5.5 Thermal Conductivity 

In the case of dilute polymer solution, the mass concentration of polymer molecules 

is 0.2%. To simplify the problem the thermal conductivity of dilute polymer solution was 

considered to be constant and the same as the thermal conductivity of the solvent. 
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3.5.6 Specific Heat 

The specific heat of DPS was determined using equation (54). Because of the low 

concentration, the specific heat of polymer solution can be simplified and assumed to be 

the same with the specific heat of the solvent. 

  01ps px pC cC c C                                                (54) 

 

Where Cps is the specific heat of the polymer solution, Cpx is the specific heat of 

xanthan, Cp0 is the specific heat of the solvent. 

 

3.5.7 Velocity Profile 

In the case of non-Newtonian laminar flow in smooth circular pipe, the fully 

developed velocity profile was obtained from Skelland [2]. The velocity profile can be 

generally expressed by equation (55). 
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Where Vr is the velocity on radial position, r is the distance from the specific point to 

the center in radial direction. R is the radius of the pipe, U is the mean velocity, n is the 

flow index of the power law fluid. 

 

3.5.8 Graetz Number 

The Graetz number (Gz) is a dimensionless parameter that can be used to characterize 

laminar flow in a pipe. The Graetz number is given in equation (56): 

kL

Cm
Gz

p


                                                            (56) 

 

Where m is the mass flow rate of the fluid, Cp is the specific heat, k is the consistency 

index, L is the length of the tube. 

 

3.5.9 Nusselt Number 

Nusselt number is a dimensionless parameter that can be utilized to measure the 

convection heat transfer at a boundary within fluids. The theoretical solution of the Nusselt 

number for the power law fluid laminar flow under the boundary condition of the constant 

wall heat flux is given by equation (57): 
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                                             (57) 

 

Where Gz is the Graetz number, n is the flow index of the power law model. Equation 

[1] is for the situation that the flow has a Graetz number larger than 100 but smaller than 

10000. 

For simulation purposes, the Nusselt number was calculated directly from the 

simulation results, using equation (58). 
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"                                                   (58) 

 

Where h is the convective heat transfer coefficient of the fluid, "q  is the heat flux, l 

is the characteristic length. 

 

3.5.10 Friction Factor 

In fluid dynamics, the friction factor is a dimensionless parameter which relates the 

pressure drop to the kinetic energy of the fluid. It can be calculated from the shear stress 

at the wall. The friction factor is given in equation (59). 
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Where Cfis the fanning friction factor, ρ is the density of the fluid, U0 is the inlet velocity, 

τwis the wall shear stress, which can be obtained by applying equation (60). 

  ww
                                                            (60) 

 

Where η is the viscosity of the solution, w  is the shear rate along the wall, which can be 

numerically obtained from Fluent by using the radial velocity and equation (61)  

l

VV wl
w


                                                          (61) 

 

Where Vl is the velocity of the nearest grid to the wall, and l is the distance between the 

wall and the grid in radial direction. Vw is zero because of the non-slip condition. 

In hydrodynamically fully developed region, the fanning friction factor can be obtained 

for laminar flow from known Reynolds number as follows: 

Re
16

f                                                              (62) 
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3.6 Modeling Procedure 

In order to model the thermal behavior of non-Newtonian fluids computationally, a 

detailed modeling procedure was developed as shown in Fig. 3.4. The modeling procedure 

is based on standard heat transfer modeling with the classic circular pipe meshed by a 

mesh generator. The boundary conditions were imposed to get stable numerical results, 

and comparisons were made between simulation results and theoretical results.  
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Fig. 3.4 Modeling and solution procedure 
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3.7 Grid Generation Techniques 

A basic geometry was selected for the study. The geometry consisted of 2-D smooth 

circular tube, with inlet, outlet, wall, and an axis. Several mesh structures were considered 

and tested using simple boundary conditions. The results of simulation were used to 

determine which meshing model could provide the most accurate results both in the cases 

of friction factor and Nusselt number. The simulations were undertaken and solved based 

on an axis-symmetric method [39], which converts the 2D system into a 3D configuration 

by assuming perfect symmetry along the axial distance. Since the mesh quality is 

determined by the orthogonal quality and the aspect ratio, the size and shape for each mesh 

cell should be controlled and adjusted to obtain reliable results. The best shape for 2-D 

mesh cell is the square, thus the length and the width of each cell were set to be the same. 

Different mesh densities were utilized to optimize the simulation and the results of Nusselt 

number were compared with theoretical solutions. It was found the error for Nusselt 

number was less than 1% once the number of mesh grids was greater than 200,000. Thus 

for a 0.01m diameter and 0.5m long pipe, the axial distance was divided into 5000 

elements, and the radial distance was divided into 100 elements.  As a result, the final 

mesh density was 5*105 grids. The mesh distribution is shown in Fig.3.3, and the 

minimum orthogonal quality was 1 with a maximum aspect ratio is 1.416. 
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Fig. 3.5 Mesh distribution of geometry 

 

3.8 Modeling Using FLUENT 14.0 

The heat transfer of non-Newtonian flow in circular pipe with uniform heat flux 

was solved as a two dimensional problem with a double precision solver. GAMBIT, a 

commercial mesh generating software was utilized to create the geometry and mesh model 

for analysis in FLUENT 14.0. The default (0.5) under relaxation factors provided in 

FLUENT 14.0 was used for momentum, pressure, and energy calculations. A second order 

discretization scheme was used to solve pressure, energy and momentum of the PCM fluid. 
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The SIMPLE pressure-velocity coupling algorithm was used to derive equations for 

pressure from the discrete continuity equation. 

A plug velocity profile was set as initial boundary condition at the inlet of the tube, 

and the problem was solved by assuming a hydro-dynamically developing and thermally 

developing flow. The convergence criterion for the continuity, momentum and energy 

equations was set to 10-12. During post processing, Fluent was used to determine the wall 

temperatures, the mass weighted average temperature and the velocity profiles. These 

values were used to calculate the local Nusselt number, the friction factor and the Reynolds 

number.  
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RESULTS AND DISCUSSION 

 

 This chapter includes numerical simulation results for Newtonian and non-Newtonian 

heat transfer fluids under constant heat flux conditions. The first section deals with 

validation of the numerical scheme and grid use in the study. The latter sections show 

simulation results for DPS fluids. 

 

4.1 Numerical Validation 

The numerical simulations were undertaken using water as the heat transfer fluid.  

The numerical solutions have been compared with experimental, analytical and previous 

numerical results in this section. 

Fig. (4.1) shows a dimensionless fully developed velocity profile for a classic 

Newtonian fluid (water) in a circular pipe with constant wall heat flux condition. The 

Reynolds number in fully developed region was set to 1000, and the results from the 

simulations agreed within 1% of the theoretical results for laminar flow. The fully 

developed velocity profile was utilized to study the heat transfer performance of a circular 

pipe under laminar conditions, and the numerically-obtained local Nusselt number was 
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validated using the theoretical Nusselt number equation [11] for water under constant wall 

heat flux boundary condition. The error was within 1% of the analytical solution and the 

results are shown in Fig 4.2. 

 

 

Fig. 4.1 Dimensionless fully developed velocity profile 
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Fig. 4.2 Local Nusselt number of water 

Then the analysis of a non-Newtonian power law fluid, 0.2% xanthan solution, was 

undertaken using a two dimensional geometry model for a smooth circular pipe. The 

viscosity of the power law fluid [8] is given in equation (63).  

69.064.0 -                                                      (63) 

 

The Reynolds (Re) number in hydro-dynamically fully developed region was set to 

10.76, the Grashof (Gr) number of this case was 2.24, so the ratio of Re2/Gr was 51.3, 

which is much larger than 1, thus the natural convection was considered to be negligible.  
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The fully developed velocity profile for a non-Newtonian power law fluid was 

compared with known theoretical velocity profile obtained using Equation 53.  The 

results are shown in Fig. 4.3. A plug flow inlet velocity profile was utilized to determine 

the friction factor and the heat transfer performance of a circular tube under laminar flow 

conditions. The numerical-obtained Nusselt number (Nu) for this case was validated with 

known theoretical solution of Nusselt number (Nu) under constant heat flux in circular 

smooth pipe. The numerical result of Nusselt number (Nu) agreed within 2% of the 

analytical results and the comparisons are shown in Fig. 4.4. 

 

 

Fig. 4.3 Velocity profile of power law fluid 
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Fig. 4.4 Local Nusselt number of power law fluid 

 

With the fully developed velocity profile, the fanning friction factor was obtained and 

shown in Fig.4.5. 
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Fig. 4.5 Friction factor of 0.2% xanthan solution with inlet velocity 0.05m/s 
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4.2 Power Law Fluid in Circular Pipe 

Two cases of non-Newtonian flow with two different initial velocities were studied 

and the heat transfer performance of the power law flow in circular pipe with constant 

wall heat flux condition are discussed in this section. 

To study the effect of polymer rigidity on the behavior of DPS, 0.2% xanthan 

solution was set as the baseline for parametric analysis. Different rigidity changing 

parameters (RCP) or m values were used as shown in Table 1. 

DPS Name RCP (m) Rigidity compared with 0.2% xanthan 

DPS 

Sample 1 0.5 Flexible 

Sample 2 0.75 Flexible 

0.2% xanthan solution 1 Baseline sample 

Sample 3 2 Rigid 

Table 1. Rigidity changing parameter of DPS 

By choosing the value of m, the viscosities for these four DPS was calculated using 

equation (49) which was introduced in section 3.2.6, shown in Table 2. 
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Rigidity Parameter (m) Viscosity of DPS (power law fluid) 

m  
31 2

solution 1
n

solvent solventk m        

0.5    3 30.692 2
water0.5 0.64 1-0.5     

 

0.75 
3 30.692 2

water0.75 0.64 1-0.75     （ ）  

1 0.690.64    

2 3 30.692 2
water0.75 0.64 1-0.75     （ ）  

Table 2. Viscosity of DPS at various rigidity levels 

Two simulation cases were considered. Case 1 had an inlet velocity of 0.05 m/s , 

while Case 2 had an inlet velocity of 0.1m/s.  

The boundary conditions were carefully set in order to ensure turbulent flow and 

natural convection were negligible. To better control the flow conditions, the Reynolds 

numbers were carefully controlled and the Grashof numbers were calculated to make 

numerical comparisons with the square of Reynolds number. The Reynolds number could 

be found once the inlet velocity was chosen. Table 3 and Table fig4 show flow conditions 

for inlet velocity of DPS at 0.05 and 0.1 m/sec, respectively are the Case 1 and Case 2. 
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Rigidity U0 Re Gr Re2 Re2/Gr 

m=0.5 0.05m/s 30.48 17.92 929 51.8 

m=0.75 0.05m/s 16.57 5.32 274 51.5 

m=1 0.05m/s 10.76 2.24 115 51.3 

m=2 0.05m/s 3.81 0.28 15 53.5 

Table 3. Case1: Flow conditions at inlet velocity of 0.05 m/sec 

 

Rigidity U0 Re Gr Re2 Re2/Gr 

m=0.5 0.1m/s 98.24 25.29 9651 381.6 

m=0.75 0.1m/s 53.48 7.495 2861 381.7 

m=1 0.1m/s 34.73 3.162 1206 381.6 

m=2 0.1m/s 12.28 0.395 150 381.5 

Table 4. Case 2: Flow conditions at inlet velocity of 0.1 m/sec 

 Where U0 is the inlet velocity, Re is the Reynolds number and Gr is the Grashof 

number. As it can be seen, the ratio between Re2 and Gr is much bigger than 1 in all the 

cases, which indicates that the effect of natural convection in the cases can be negligible 

and neglected. 
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Fig.4.6 shows the fully developed velocity profile for 0.2% xanthan solution 

compared with water. It can be observed that the velocity profile for the non-Newtonian 

(xanthan DPS) is flatter than that of water. 

 

 

Fig. 4.6 Velocity profile of 0.2% xanthan DPS 
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Fig. 4.7 Developing velocity profile of 0.2% xanthan solution 

Fig.4.8 shows local Nusselt number along the axial direction of the pipe for Casen 1. 

Two close up figures of the same process can be seen in Fig.4.9 and Fig.4.10, which show 

the Nusselt number in the entrance region of the pipe and the tiny difference of Nusselt 

number near the hydro-dynamically fully developed region. 
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Fig. 4.8 Variation of Nu for power law fluid in Case 1 

  

Fig. 4.9 Variation of Nu in the Gz-1 range of 0.001 to 0.011 
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Fig. 4.10 Variation of Nu in the Gz-1 range of 2E-5 to 8E-5 

In Fig (4.8-4.10) it can be seen that the Nusselt number for all DPS and water 

decreased as the value of Gz-1increased, and the trend became more smooth when the 

value of 1/Gz was greater than 0.000004. In entrance region, the local Nusselt number 

decreases slightly when the DPS is more rigid (m = 2).  Also the Nusselt number of water 

is higher than that of DPS. In hydro-dynamically fully developed region the local Nusselt 
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Fig. 4.11 Variation of Nu for power law fluid in Case 2 
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Fig. 4.12 Variation of Nu in the Gz-1 range of 0.004 to 0.01 

 

Fig. 4.13 Variation of Nu in the Gz-1 range of 2E-5 to 1e-4 
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In the hydro-dynamically developed region, it can be seen that the local Nusselt 

number of DPS was independent on the rigidity of polymer chain, and the Nusselt number 

of DPS converged to the same result which is numerically close to the Nusselt number of 

water. By studying the theoretical Nusselt number solution of power law fluid which is 

given in section 3.5.9, the Nusselt number was mainly affected by the Graetz number and 

the flow index. However, the rigidity model only takes into account the consistency, thus 

the Nusselt number does not vary much when the rigidity of the polymers in solution 

change as indicated in Table 2. 

It can also be seen that in hydro-dynamically developing region, a more rigid DPS 

yields a slightly lower Nusselt number than that of a flexible DPS. 

The friction factor curves of different DPS in Case 1 and water are shown in Fig.4.14, 

and close up friction factor curves for the developing region are given in Fig.4.15. 
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Fig. 4.14 Friction factor for Case 1 

 

Fig. 4.15 Friction factor for Case 2  
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The friction factor curves of Case 2 for DPS and water are also presented in Fig.4.16 

with a close up friction factor curves for hydro-dynamically developing region shown in 

Fig.4.17. 

 

 

Fig. 4.16 Friction factor for Case 2 in dimensionless axial distance from 0 to 1 
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Fig. 4.17 Friction factor for Case 2  

It can be seen that the effect of rigidity on the friction factors of DPS is significant. 

This is because the rigidity of DPS affects the viscosity of the solution, resulting in greater 

surface shear stress and friction losses when compared to water under laminar flow 
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0

0.5

1

1.5

2

2.5

0 5 10 15 20

Fr
ic

ti
o

n
 f

ac
to

r

Dimensionless Axial Distance z/r

m=0.5

m=0.75

m=1

m=2

water



70 

 








































3

1

water

sample

water

sample

f

f

Nu

Nu

PEC                                             (64) 

 

Where Nusample is the local Nusselt number of tested fluid, Nuwater is the local Nusselt 

number of water with the same boundary condition as tested fluid, fsample is the friction 

factor of tested sample, and fwater is the friction factor of water under the same conditions. 

The purpose of PEC is to characterize the heat transfer performance of DPS under laminar 

flow conditions. 

The PEC of Case 1 and Case 2 are shown in Fig.4.18 and Fig.4.19. It can be observed 

that that the flexible DPS lead to greater PEC values when compared to the more rigid 

DPS solutions. Furthermore, Fig. 4.19 indicates that greater inlet Reynolds number leads 

to slightly greater PEC values at the same axial distances and m values. All DPS lead to 

PEC values less than 1 because of the shear stress associated with DPS. In summary, 

rigidity of DPS should be controlled carefully to avoid low PEC values. 
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Fig. 4.18 Performance evaluation criteria of DPS in Case 1 

 

Fig. 4.19 Performance evaluation criteria DPS in Case 2 
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4.3 Comparison between Case 1 and Case 2 

The Nusselt number for the same 0.2% xanthan solution with different inlet velocity are 

presented in Fig.4.20. 

 

Fig. 4.20 Comparison of Nusselt number 

It can be observed that the local Nusselt number of the same DPS with different Reynolds 

number do not vary much.  

 Friction factors of the same two DPS solutions with different Reynolds number are 
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Fig. 4.21 Friction factor comparison of DPS with the same rigidity 

 PEC is also different between the two DPS because of different friction factor. It can 

be observed that a higher Reynolds number could lead to a higher value of PEC, which 

indicates that the heat transfer performance could be improved. 
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Fig. 4.22 PEC comparison of DPS with the same rigidity 

The observations made during this study indicate that the polymer chain rigidity 

has a significant impact on the heat transfer performance of the dilute polymer solution in 

circular pipe with a constant wall heat flux. It can also be concluded that the Reynolds 

number also can influence the value of PEC and friction factor. Results indicate that 

polymer rigidity has little effect on how the local Nusselt number decreases with axial 

distance; however, DPS properties have a significant effect on the hydrodynamic behavior 

of DPS. 
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CONCLUSION 

 

 The effect of polymer rigidity on the heat transfer and rheological behaviors were 

investigated using a viscosity model for DPS with different rigidities. Constant wall heat 

flux and inlet plug velocity in a circular section were taken into consideration as boundary 

conditions. It was found that for the DPS, the polymer rigidity and the Reynolds number 

affect the friction factor behavior. A significant increase in the friction factor was observed 

when the rigidity changing parameter was set to higher values. Also, higher Reynolds 

number could lead to lower friction factor and slightly larger value of PEC. Furthermore, 

Reynolds number has little effect on Nusselt number even when using flexible polymers. 

 Experimental data are needed to validate the results presented in the current study. 

The current study also considered only laminar flow and 0.2% xanthan solution as DPS. 

Thus the effect of particles on the thermal performance has to be studied under laminar 

condition in a smooth circular tube taking into account the temperature dependence of 

viscosity and density to account for real conditions in heat exchangers. 
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APPENDIX A 

 

USER DEFINED CODE. 

Viscosity for Case: m=0.5 

#include "udf.h" 

DEFINE_PROPERTY(cell_viscosity, cell, thread) 

{ 

 real visco; 

 real mu; 

 real R; 

 R = C_STRAIN_RATE_MAG(cell,thread); 

 mu = 0.64*0.353553*pow(R,-0.69)+0.000646447; 

 if(mu > 0.001 && mu < 1000) 

  visco = mu; 

 else if(mu>=1000 ) 

  visco = 1000; 

 else 
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  visco = 0.001; 

 return visco; 

 } 

 Viscosity for Case:m=0.75 

#include "udf.h" 

DEFINE_PROPERTY(cell_viscosity, cell, thread) 

{ 

 real visco; 

 real mu; 

 real R; 

 R = C_STRAIN_RATE_MAG(cell,thread); 

 mu = 0.64*0.64952*pow(R,-0.69)+0.000350481; 

 if(mu > 0.001 && mu < 1000) 

  visco = mu; 

 else if(mu>=1000 ) 

  visco = 1000; 

 else 

  visco = 0.001; 
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 return visco; 

 } 

 Viscosity for Case:m=1 

#include "udf.h" 

DEFINE_PROPERTY(cell_viscosity, cell, thread) 

{ 

 real visco; 

 real mu; 

 real R; 

 R = C_STRAIN_RATE_MAG(cell,thread); 

 mu = 0.64*pow(R,-0.69); 

 if(mu > 0.001 && mu < 1000) 

  visco = mu; 

 else if(mu>=1000 ) 

  visco = 1000; 

 else 

  visco = 0.001; 

 return visco; 
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 } 

Viscosity for Case:m=2 

#include "udf.h" 

DEFINE_PROPERTY(cell_viscosity, cell, thread) 

{ 

 real visco; 

 real mu; 

 real R; 

 R = C_STRAIN_RATE_MAG(cell,thread); 

 mu = 0.64*2.82843*pow(R,-0.69)-0.00182843; 

 if(mu > 0.001 && mu < 1000) 

  visco = mu; 

 else if(mu>=1000 ) 

  visco = 1000; 

 else  

  visco = 0.001; 

 return visco; 

 } 
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APPENDIX B 

 

Modeling Parameters for Smooth Circular Tube 

a. Tube diameter: 0.02m 

b. Dilute polymer solution concentration: 0.2% 

c. Non-slip wall 

d. Boundary Condition: Constant wall heat flux 100 W/m2 

e. Plug developed velocity at the inlet 

 
Density 

 
kg m-3 

Specific Heat 

 
J kg-1 K-1 

Thermal 
Conductivity 

W m-1 K-1 

Water 997 4180 0.606 

Xanthan DPS 998 4128 0.6 

 

 

 

 




