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ABSTRACT

An important characteristic of any well-designed system is user interface design.

Even in extremely complex systems with high learning curves, a designer’s goal is

to create an interface that is simple to use and that feels natural, while at the same

time allowing the user full access to all of the system’s functionality.

In the field of visual effects and computer animation, effective manipulation of the

virtual camera is essential to any successful production. In most cases, the virtual

camera is manipulated with standard input devices such as the mouse and keyboard.

This thesis presents an alternative user interface design for virtual cameras using

physical controls.

This thesis describes an extensible system which offers physically-based, real-time

virtual camera control in a commercial 3D software package by means of rotational

motion capture. The system described is composed of both programmed physical

hardware and a software application. The physical hardware consists of multiple

analog sensors programmed to work in conjunction to detect rotation about the de-

vice’s three axes. The software application interprets the data sent from the physical

hardware into a form a 3D software package can use to manipulate a virtual cam-

era, while also providing additional functionality for the motion capture and camera

manipulation processes.

This thesis constructs the physical motion-sensing device using only affordable,

commercially-available parts. The software components of the system use freely

available programming languages and development environments. The system pos-

sesses the ability to be expanded upon to add additional functionality or modify

existing components, in order for it to be flexible enough for numerous applications.
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The result of this research is a working prototype system that captures pitch, roll,

and yaw motions that mimic actual physical motions performed by the user. The

workflow provided by the system allows for quick iterations and facilitates an inter-

active control scheme for the virtual camera that traditional mouse-and-keyboard

techniques cannot.
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1. INTRODUCTION

Cinéma-vérité is a style of documentary filmmaking where the camera action has

an improvised and interactive feel. Sometimes it is used during action scenes to

make them seem more gritty, realistic, or visceral. Some movies and TV shows are

filmed entirely in a faux-documentary style. They use hand-held camera movements

to make shots seem unscripted and more impromptu, like a camera crew was really

present at the time of filming. Regardless of how it is used, cinéma-vérité and the

hand-held camera look rely heavily on the physicality of the cinematographer or

camera person. While the general blocking of the camera can be planned ahead of

time, much of the final look is determined “in the moment.” A camera operator’s

instincts, on-the-fly decision making, reflexes, and physical limitations all contribute

to the visual look of the final shots.

In the field of visual effects and computer animation, the look and feel of hand-

held camera action can be reproduced in a virtual environment by talented technical

artists using standard input devices such as the mouse, tablet, and keyboard. How-

ever, this process lacks the physicality of camera use and is highly abstracted from

the goal and significant time and effort are required. If done improperly or poorly,

the resulting scene can appear either too mechanical or too wildly active, failing to

invoke the natural compositions as if there had been a human behind the lens. In

addition, the high level of abstraction hinders important creative members of the

crew, such as the director or cinematographer, from quickly taking control of the

virtual camera to test out a new angle or camera motion in the scene.

One approach to tackling this problem, taken by several professional production

studios, is to employ advanced motion capture technology to track the motion of a
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physical camera, or a similar device, operated by a real person in a stage environment.

The resulting motion data is applied to a virtual camera with varying degrees of real-

time playback. While this approach has become more commonplace in recent years,

the system required is only viable for large professional studios that can afford to

provide the specialized environment, equipment, and crew to run and maintain it.

The goal of this research is the development of a system for creating physically-

based camera motion that can be both feasibly implemented and easily expanded

upon by a small studio or an individual. The ability for the system to be expanded

upon is particularly important, as the needs and requirements of such a system can

greatly vary based on both the project or production it is being used for and the

individual using it.

Figure 1.1: The Nintendo Wii Remote. [19]

The primary technical inspiration for this thesis is the Nintendo Wii Remote,

pictured in Figure 1.1. Often referred to as the Wiimote, the Nintendo Wii Remote

is the primary controller for Nintendo’s Wii console, which was released in November

2006 [18]. A primary feature of the Wii Remote is its motion sensing capability. It

utilizes an accelerometer to detect physical gestures and an infa-red camera to allow
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pointing [19]. The system allows users to interact with and manipulate items on

screen by means of these physical gestures and pointing. The remote, in conjunction

with the Wii console, was one of the earliest examples of motion sensing technology

that was available to the general public. For the first time, a virtual bowling ball

could be rolled down the lane by mimicking the actual motions involved with bowling.

A sword could be swung not by pressing a button, but by making a swiping motion

in front of one’s body. The intuitive nature of the controls made the Nintendo Wii

extremely popular with “non-traditional” and first-time gamers [18].

Figure 1.2: A still frame from the 2007 Sony Pictures Animation film Surf’s Up in
which the character Cody Maverick addresses the camera. [21]

The primary visual inspiration for this thesis is the 2007 Sony Pictures Animation

film Surf’s Up. The film follows a young rockhopper penguin named Cody Maverick

on his quest to succeed in an upcoming surfing competition. Taking inspiration

from such surfing documentaries as The Endless Summer and Riding Giants, the

filmmakers wanted the movie to feel like a documentary, even though it was animated
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[38]. Several different measures were taken in order to achieve the desired look and

feel. The shots in Surf’s Up are much longer than a typical animated film, and

the dialogue has more of an improvised feel. In addition, throughout the film the

animated characters acknowledge the presence of a camera crew, either by talking

directly to the camera during an interview, as seen in Figure 1.2, or glancing quickly

at the camera when they are nervous about being filmed. The fake camera crew

can even be heard audibly talking in a few scenes. Arguably the most significant

aspect to contribute to the documentary feel was the camera work. The layout

department developed a sophisticated rig for the virtual camera that allowed them

to add a realistic physicality to their camera movements by moving around with

a real camera in a real space and capturing the motion [33]. This resulted in a

believable hand-held look for the film, setting it apart from other animated films at

the time and winning over critics and audiences with its authentic approach and feel.

The system proposed in this thesis is composed of three components: a physical

device, microcontroller code for the physical device, and a software application. The

physical device must contain a sufficient number and variety of both sensors and other

electronic components in order to accurately detect rotation in all three dimensional

axes. Being well-constructed is also important because the device is intended to

be picked up and moved around, and the user should not have to worry about

the device breaking or falling apart while being handled. The physical device is

nearly useless without its programming code, which interprets the signals sent by

the various sensors of the device and converts them into a form that can be used for

motion sensing purposes. The programming code must be simple enough to fit in a

limited amount of memory available on the device. Efficiency is also essential, so that

running the necessary calculations and outputting the results does not introduce a

noticeable amount of lag to the real-time system. The software application serves
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as a link between the output of the physical device’s programming code and the 3D

software package that provides the virtual camera and environment. It connects to

the 3D software package and both sends and receives data from it. The application

provides a graphical user interface that allows the user to quickly perform all the

necessary functions required to use the system, while also adding additional useful

functionality overall.

As part of an animation production pipeline, this system will be used by the

layout department when authentic-feeling camera motion is needed. Rather than

tediously creating keyframed animation curves by hand that lack realism, the user

can perform the actual rotational movements they want their virtual camera to

have by using this system. This will result in quicker iterations, and will allow

for interactive art direction from a director or cinematographer. The anticipated

impact is a quicker and more efficient workflow that produces more realistic looking

rotational camera motion than traditional techniques.

This thesis describes a prototype system, provides visual examples of the possible

uses of the system, and describes the limitations of the system. In the future work

section, potential improvements that can be made to the system are discussed, and

various applications for which the system could be adapted for use beyond its original

scope are theorized.
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2. PRIOR WORK

Previous research includes examining both the historical development of the cur-

rent standard for virtual cameras as well as more recent, specific efforts at expanding

the usability and functionality of the virtual camera. In addition, we examine several

of the currently available real-world physical sensors, focusing on how they operate,

what kind of data they can provide, and what their limitations are.

2.1 Historical Virtual Camera Development

Camera control has always been an integral part of 3D software packages. In

the early years of computer graphics, researchers developed what would now be

considered basic or standard functionality for virtual cameras. It is important to

note that there is not a direct correlation between what a real camera does well and

what a virtual camera does well. They are two completely separate systems with

different requirements and restrictions. As a result, the initial implementations of

virtual cameras did not always mimic how real-life cameras worked. However, as

time progressed and technology advanced, computer graphics professionals worked

to give virtual cameras similar functionality to real cameras.
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2.1.1 Image Capture

Figure 2.1: An example of Kolb’s results. Each frame is shot from the same position,
but simulates a different real-world lens configuration. [30]

Initially most rendering algorithms were limited to using pin-hole camera projec-

tion geometry which was developed for display of 3D line drawings on vector devices.

Potmesil et al. developed a more complex algorithm designed specifically for raster

displays that simulated the effects of a lens and aperture on a real camera. This

expanded the functionality of the virtual camera, allowing for cinematic techniques

such as uniform defocusing of a scene, depth of field, lens distortions, and motion

blur [31]. Kolb et al. later developed a virtual camera model that incorporated a

virtual lens system and film backplane [30]. The lens system consisted of a sequence

of simple lens elements, stops and apertures. The camera simulation module would

compute the irradiance on the film backplane from the scene radiances using dis-

tributed ray tracing. This allowed accurate simulation of the behavior of real-world

physical cameras and lens systems.

2.1.2 Camera Motion

To animate the camera and allow it to move in 3D space, a technique called

keyframing was carried over from traditional animation. Using this technique, an
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animator or layout artist sets discrete positions and orientations for the camera at

important, or “key”, frames in shot. Once several keyframes are set, the 3D software

interpolates the position and orientation of the camera for the all frames in between

the keyframes. Initially only linear interpolation between keyframes was possible.

Kochanek et al. developed a method that allowed animators to manipulate the

tension, continuity, and bias of the splines generated during keyframing, providing

more control over frame interpolation and thus smoother, more naturalistic motion

[29]. Shoemake’s work with quaternion curves greatly improved the interpolation of

rotations. By using the four coordinate system to represent rotations instead of the

traditional three coordinate system, Shoemake was able to eliminate earlier method’s

potential for quirky behavior such as gimbal lock, a condition where two of the three

axes of rotation are driven into a parallel configuration, “locking” the system into

rotation in a degenerate two dimensional space [35].

2.1.3 Manipulation

Using 2D devices such as the mouse and keyboard to operate a camera with 6

degrees of freedom can be difficult, so researchers developed camera control schemes

based on easily understood metaphors. These metaphors helped the user to ini-

tially understand the system’s behavior given different types of input actions. A

good metaphor was both appropriate and easy to learn. Some examples of these

metaphors, outlined in Ware et al., include the “eyeball in hand”, the “scene in

hand”, and the “flying vehicle control” [40]. Each metaphor has its strengths and

weaknesses, and some continue to be used as control schemes today. As technology

progressed, 3D input devices such as the Spaceball, Polhemus and DataGlove were

developed, providing additional input methods for virtual camera control [39].
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2.2 Recent, Production Specific Virtual Camera Development

In the animation and visual effects industry, studios must sometimes create their

own solutions to camera control challenges that arise during production. The stan-

dard tools that are available may not be sufficient to achieve the visual look the

director or cinematographer wants, or the standard workflow for producing virtual

camera motion may be inefficient for the needs of the production. In this section,

we examine some professional productions that expanded the functionality of their

virtual camera systems to meet specific production requirements.

2.2.1 Surf ’s Up (2007)

For the 2007 film Surf’s Up, Sony Pictures Animation wanted to create an ani-

mated documentary-style film about a group of penguin surfers. The protagonist, a

teenage rockhopper penguin named Cody Maverick, leaves his home in Shiverpool,

Antarctica, to compete in a surfing competition on the tropical Pen Gu Island. A

film crew follows Cody’s journey from start to finish, interviewing Cody and his

companions and filming the surfing competition. The film that audiences see in the

theatre is supposed to be the documentary created by this film crew.

Figure 2.2: (left) James Williams holds the camera control rig used on Surf’s Up.
[33] (right) A frame from Surf ’s Up. [21]

Achieving the documentary feel was key to the success of the film. According
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to co-directors Buck and Ash Brannon, the story artists “boarded the film like any

other animation, but the trick after that was to create the illusion of spontaneity.

That you aren’t quite sure what a character was going to do at any moment and

you had one chance to catch it with a handheld camera” [33]. James Williams, the

layout supervisor on Surf’s Up, was tasked with developing a method to achieve

the naturalistic look of a documentary film using a virtual camera. To do this, the

layout team constructed a single-point mocap system composed of a Thirdtech HiBall

tracking system and an old Sony analog video camera. The model of camera was

chosen specifically for its weight; Williams wanted something that gave the operators

the feeling of a real camera on their shoulders while they shot the action. The HiBall

tracking system attached to the camera would look at an array of 3000 infa-red

LEDs attached to the ceiling of a specialized studio in order to determine where it

was in space. Additional sensors placed on the camera gave the operator the ability

to replicate camera zoom while shooting and view a rough version of the animation

through the video camera’s viewfinder [33].

The system created by the layout department allowed the camera operator to

follow the animated characters and interact with them in a “real” way, just as a real-

world documentary filmmaker would. Because the operator of the system could see

the action of the virtual scene in his viewfinder, he could respond to the performances

of the animated characters in real-time. In addition to character shots, the system

could also be used for other camera techniques. For example, to simulate the look of

a camera filming from the back of a jet ski, the crew translated a camera in their 3D

software package and applied camera shake from the real, motion-capture camera.

For a virtual helicopter shot, they used motion paths to describe the motion of a

virtual helicopter in the environment and then applied rotations from the motion-

capture camera to simulate the feeling of a camera crew looking out the window
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[33].

Figure 2.3: Cardboard stand-ins of characters Wall-E and Eve were used to perform
lens tests for the movie Wall-E. [36]

2.2.2 Wall-E (2008)

Pixar Animation Studios broke new ground in the realm of camera control with

their 2008 feature film Wall-E. In the film, Wall-E, a mostly-mute robot protagonist,

goes about his daily duty of cleaning up an abandoned Earth, until he meets a new

robot named Eve and gets thrust into an extra-terristrial adventure. For the first

part of the film, director Andrew Stanton told director of photography Jeremy Lasky

that he wanted the audience to believe that they were truly watching a little robot

going about his business. The inspiration for this feel was rooted in live action

cinematography, so Laskey and his team rebuilt Pixar’s years-old camera package

from the ground up to emulate the way a 35mm anamorphic camera would work.

They rented equipment, performed lens tests with cardboard Wall-E and EVE stand-

ins, studied lens flares, and consulted with live-action director of photography Roger

Deakins, A.S.C, who had recently shot the live-action film No Country for Old Men

[22]. They then poured all this knowledge into their new virtual camera system.
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They made simple changes like moving the pivot point of the camera back from

where the lens would be. They made more radical changes like scrapping their tried-

and-true method for depth of field, replacing it with new-and-improved code. The

end result of these changes was an “imperfect” system that generated more natural

and realistic camera action. Using this new system, and the eyes of visual consultant

Dennis Muren, A.S.C, Pixar made Wall-E feel as though it had been shot on a

camera operator’s shoulder [22].

Figure 2.4: Robert Zemeckis works with a virtual camera operator on the virtual set
of The Polar Express. [23]

2.2.3 The Polar Express (2004)

In 2004, director Robert Zemeckis produced and directed a fully computed-

generated (CG) film adaptation of the children’s book The Polar Express. Though

the entire film was CG, all the character performances were created using state-of-

the-art motion capture (mo-cap) technology. Using arrays of special cameras and

tracking markers, actors would have their movements and even their facial expres-

sions recorded. These performances were then applied to the CG characters in the

film. When it came to virtual cinematography, Zemeckis wanted to avoid the “too
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perfect” feel that traditional keyframed virtual camera motion produced. To accom-

plish this, Ken Ralston and Jerome Chen, the co-senior visual effects supervisors on

the film, developed a system they called “wheels.” This system was essentially a

computer device that simulated the feel of a real-life camera gearhead and could be

operated by a real cinematographer using traditional techniques. In addition, they

developed a series of virtual lenses that mimicked the performance of real 35mm op-

tical lenses. To use the system, a previously recorded performance capture would be

loaded into a virtual scene. The scene was triggered, and as the performance played

out, the “wheels” operator could see the CG scene in his viewfinder, and was able

to move around the scene and follow the characters just as though he were shooting

live-action. Once the scene had finished, the camera motion could be saved and used

for rendering the scene. This gave the final scenes the realistic cinematic feel that

Zemeckis wanted [5].

Figure 2.5: James Cameron uses one of the virtual camera control rigs on the set of
Avatar. [34]
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2.2.4 Avatar (2009)

The 2009 film Avatar produced one of the most advanced virtual camera control

systems to date. Like The Polar Express, Avatar used advanced motion capture

technology to record the performances of actors for many of the characters in the

film. Unlike the post-production method of generating virtual camera motion used in

The Polar Express, director James Cameron wanted to be able to interact in real-time

with his mo-cap actors as they were performing while also simultaneously viewing

the CG environment they would be placed in. Glen Derry, the virtual-production

supervisor, developed a two-part system to allow Cameron to do this. First, for scenes

in which there were only CG characters present, Cameron would use a hand-held rig

which had its position tracked in space to control the virtual camera. Looking at a

monitor on the rig, Cameron could see the mo-cap actors as the CG characters they

were playing in real-time. The second part of the system, dubbed SimulCam, was

used when there were both live-action actors and CG characters in the same scene.

In these situations, Cameron would use a live-action camera that was tracked by

mo-cap sensors. A virtual camera in the CG environment would then be matched in

position to this live-action camera, and the CG environment and characters would

be composited into the live-action photography. The final composite image could

be viewed in real-time through the SimulCam’s viewfinder and on live monitors on

set. This allowed the real-life actors to interact with the CG characters, and allowed

Cameron to frame up the exact shots that he wanted without having to imagine how

they would look later [26].

2.3 Motion-Sensing Systems

Like several of the production-specific setups mentioned in the previous section,

our system for virtual camera manipulation includes physical components as part
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of its design. A number of commercially-available devices exist that are capable of

detecting motion. In this section, we investigate a few of these devices, focusing on

how they operate, what kind of data they provide, and what their strengths and

weaknesses are.

2.3.1 Accelerometers

An accelerometer is an electromechanical device that measures acceleration forces.

The forces can be static, like the constant force of gravity, or they can be dynamic,

caused by moving or vibrating the accelerometer. By measuring the amount of

static acceleration due to gravity, one can determine the angle of the device’s tilt

with respect to the earth. By sensing the amount of dynamic acceleration, one can

analyze the way the device is moving [12].

There are many different ways accelerometers can sense acceleration, such as

using the piezoelectric effect, the piezoresistive effect, hot air bubbles, and even light

[12]. Regardless of which method specific accelerometers utilize, they all generally

function in a similar way.

Figure 2.6: A hypothetical accelerometer being static in a weightless environment.
[8]
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When thinking about accelerometers, it is helpful to imagine a hypothetical hol-

low cube with a ball inside it. Each dimensional axis, x, y, and z, is assigned an

opposing pair of faces in the cube. One face of each pair represents the positive

direction of the assigned axis, and the other the negative. If the cube is taken to a

hypothetical location with no gravity and no other fields that might affect the ball’s

position, the ball floats in the middle of the cube. An example of this setup and

state can be seen in Figure 2.6.

Figure 2.7: A hypothetical accelerometer that has been moved quickly to the left in
a weightless environment. [8]

Now imagine that each face of the cube is pressure sensitive. If the cube pictured

in Figure 2.6 is suddenly moved to the left at a rate of 1g (9.8m/s squared), the ball

hits the wall X-, as seen in Figure 2.7. The pressure force that the ball applies to

the wall is measured and the accelerometer outputs a acceleration value of -1g for

the X axis.

It is important to note that the force an accelerometer actually detects is directed

in the opposite direction from the acceleration vector. The force detected is not a

“real” force, but rather an inertial force, or “fictitious” force. An inertial force is
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an apparent force that occurs when motion is described within an accelerated frame

of reference [37]. If the motion was described in the “frame of the universe”, or

one moving uniformly with the rest of the universe, these inertial forces would not

appear. The centrifugal force felt when riding a “rotating drum” carnival rode is

an example of an inertial force. In our hypothetical accelerometer, acceleration is

measured indirectly through a force that is applied to one of its walls. (In a real

accelerometer, the force-sensitive component is likely different.) This force can be

caused by the acceleration, but that is not always the case.

Figure 2.8: A hypothetical accelerometer that is sitting on the ground and experi-
encing Earth’s gravity, but is otherwise static. [8]

Now imagine our hypothetical accelerometer is put on Earth. Due to Earth’s

gravity, the ball falls on the Z- wall and applies a force of 1g, as seen in Figure 2.8.

In this case the cube isn’t moving, but we still get a reading of -1g on the Z axis.

The pressure applied to the cube’s wall is not caused by acceleration of the cube

itself, but by a different force. In theory the force doesn’t have to come from gravity

- for example, if the ball was metallic, placing a magnet next to the cube could move

the ball so it hits a face of the cube. This would register a force that was caused by
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neither gravity nor other accelerations. The important point to take away from this

example is that in essence, an accelerometer measures force not acceleration. It just

happens that acceleration can cause an inertial force that is captured by the force

detection mechanism of the accelerometer.

Figure 2.9: A hypothetical accelerometer that is sitting on the ground, is experiencing
Earth’s gravity, and is tilted 45 degrees clockwise around the Y axis. [8]

For our final example, we keep our hypothetical accelerometer on Earth, and tilt

it 45 degrees to the right, around the Y axis. Due to Earth’s gravity, the ball again

falls towards the ground. But now, since the cube is tilted, the ball hits both the X-

wall and the Z- wall, as seen in Figure 2.9. Each wall is detecting a portion of the

force exerted by gravity. (Note: The values of -0.71g are actually approximations of

-SQRT(0.5g). The manner in which these values were calculated will be discussed

during the methodology section of this thesis. ) If the device is not subject to any

other forces besides gravity, we can use the data output by the accelerometer to

calculate the inclination of the device relative to the ground plane.
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2.3.2 Gyroscopes

A gyroscope is a device used for measuring or maintaining orientation, based on

the principles of angular momentum [28]. Gyroscopes come in many different vari-

ations. One of the most widespread types of gyroscopes in use today is the Micro

Electro-Mechanical System gyroscope, or MEMS gyroscope. A MEMS gyroscope

is a specific implementation of a more general classification of gyroscopes know as

vibrating structure gyroscopes or Coriolis Vibratory gyroscopes. The small, inex-

pensive MEMS gyroscope can be found in many modern cell phones, the Wii Motion

Plus add-on accessory for the Nintendo Wii Remote, and many image stabilization

systems utilized by digital cameras [24].

A MEMS gyroscope can measure how fast the rate of rotation is changing about

a defined axis. To clarify with an example, let’s say we have measured the rotation

angle about a defined axis X at time t0. We define that angle as Ax0. Next, at a

later time t1, we measure the rotation angle again and find it to be Ax1. The rate

of change is calculated as follows:

Rate = (Ax1 − Ax0)/(t1 − t0)

If we express Ax0 and Ax1 in degrees, and t0 and t1 in seconds, then Rate is expressed

in degrees per second. This is the type of data that a MEMS gyroscope can provide.

It is important to further clarify what data the gyroscope provides by distinguish-

ing between “change in rotation over time” and just simply a “change in orientation.”

A gyroscope does not, by itself, track how far it has rotated from a specified point,

but rather how quickly its rotation is changing when it is in the midst of rotating.

So if a gyroscope is rotating at a constant rate, the data it outputs do not change.

Only when the speed of rotation changes, either by accelerating or decelerating, does
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the data output of the gyroscope change. If we are able to measure the amount of

time over which a rotation took place, we can multiply that amount of time by the

data the gyroscope provides us to get the actual distance rotated. By itself, though,

the gyroscope cannot directly tell us what our current orientation is.

Like the accelerometer, a MEMS gyroscope can use a variety of different inter-

nal setups to detect change in rotation over time, including tuning forks, vibrating

wheels, and resonant solids [28]. Though there are several different implementa-

tions of MEMS gyroscopes, they all rely on the same principle: vibrating objects

undergoing rotation.

A MEMs gyroscope has some form of oscillating component from where the ac-

celeration, and hence direction change, can be detected. Per Newton’s conservation

of motion law, a vibrating object wants to continue vibrating in the same plane,

and any vibrational deviation can be used to derive a change in direction [27]. In a

gyroscope, these deviations are caused by the Coriolis effect.

Figure 2.10: A visual example of the Coriolis effect at work. [13]

In physics, the Coriolis effect is the deflection of moving objects when they are

viewed in a rotating reference frame [2]. A visual example of the Coriolis effect can

be seen in Figure 2.10. In the inertial frame of reference (upper part of the picture),

the black ball moves in a straight line. However, the observer (red dot) who is

standing in the rotating/non-inertial frame of reference (lower part of the picture)
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sees the object as following a curved path due to the Coriolis effect and centrifugal

forces present in this frame of reference. If you have ever seen a Foucault pendulum

in a museum gradually knock over pegs throughout the course of a day, you have

witnessed the same thing that is happening in Figure 2.10. In this situation, the

black ball is the pendulum, the blue circle is the earth, and you are the red dot. Due

to the relative sizes of the earth and the pendulum, the Coriolis effect is not nearly

as pronounced.

Figure 2.11: A Foucault pendulum. [42]

In simple terms, a MEMS gyroscope operates similar to a Foucault pendulum,

except on a much smaller scale. When the gyroscope undergoes a rotation, the path

of the vibrating element in the gyroscope undergoes a change, thanks to the Coriolis

effect. This change is detected, and is reported via a change in data output. That

data can then be interpreted to discover the change in rotation over time of the

gyroscope.
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2.3.3 Magnetometers

A magnetometer is a measuring instrument used to measure the strength and,

in some cases, the direction of magnetic fields. At a basic level, it functions much

like a standard, handheld compass. A compass consists primarily of a needle made

of ferrous material suspended in such a way that it is free to swing around. The

strongly magnetic needle can then rotate on its mount to align itself with the earth’s

magnetic field. Since these magnetic fields occur all across the earth, a compass

can tell its owner which direction they are facing anywhere on the planet (with the

exception of the magnetic poles).

Figure 2.12: A standard handheld compass. [16]

A magnetometer can sense the same magnetic fields as a standard compass, how-

ever it does not utilize a tiny, suspended needle to do so. Instead, it uses magneto-

resistive sensors. How these sensors work is quite technical, but having a full under-

standing of their operation is not necessary to use them. It is sufficient to understand

that the influence of magnetic fields on these sensors adjusts the electrical current

flow through them. By applying a scale to this current, we can measure the amount
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of magnetic force being experienced [9]. With two or more sensors on aligned axes,

we can use the difference in the magnetic force detected by the sensors to infer our

bearing to magnetic north.

Magnetometers do have a few limitations. Radio waves or magnetic fields other

than the earth’s can interfere with a magnetometer’s operation. For instance, com-

puters, speakers, mobile phones, and microwave ovens are just a few things that can

cause interference if they are close enough, which affect a magnetometer’s readings

[9]. In addition, a magnetometer’s reading of the earth’s magnetic field varies de-

pending on what part of the earth you are on. Magnetic north is determined by

the earth’s magnetic field, which changes over time and is not the same as true (or

geographic) north. This phenomenon is called magnetic declination, which is de-

fined as the difference between true north (the axis around which the earth rotates)

and magnetic north (the direction the needle of a compass points)[32]. Luckily, this

can be accounted for with minimal effort, provided the gyroscope is remaining in

approximately the same location on earth during operation.

The most significant limitation of a magnetometer is that it only functions prop-

erly if it is on a level surface. If a magnetometer becomes tilted, it starts to become

more and more inaccurate the further it strays from being level. With a three-axis

magnetometer, it is possible to compensate for tilt. However this is only possible

if the device’s orientation with respect to the ground is knowable, which is data a

magnetometer alone cannot provide.
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3. METHODOLOGY

Rotational motion capture is the process of recording the movement of an object

as it undergoes changes in orientation about an axis. The data recorded can then be

used for other purposes. This thesis presents a system for physically-based, what-you-

see-is-what-you-get virtual camera control by means of rotational motion capture.

Unlike traditionally-used setups where the process of controlling the virtual camera

is highly abstracted, the system presented in this thesis uses a control scheme where

the input (physical gesturing) is directly correlated to the the output.

Two important corollary features of this system are the open, affordable nature

and extensibility of both its physical parts and programming code. The system is

intended to be easily modifiable by the user so it can be adapted to the specific needs

of a particular project or production.

The approach here can be divided into two interacting components which allow

the user to achieve their camera control goals. The first component is the data

production method, which is the technical core of the approach and defines how the

rotational motion data is created, detected, processed, and delivered as usable camera

rotation information. The second component of this approach is the conceptual core

of this thesis. The primary goal is defining the approach to artistic control of camera

motion and the ability of the user to utilize and expand on the system in a number

of ways.
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3.1 User Experience

Figure 3.1: The proposed setup for the system. The physical device is represented
by a red pack of cards. Autodesk Maya is open in the top left of the screen, and a
mockup of the software application is open in the bottom right of the screen.

To use this system, the user needs to have the physical device and software

application from this thesis as well as a few pre-existing items. The user must have a

computer workstation with both Autodesk Maya and the software application from

this thesis installed. The computer must have a mouse, keyboard, monitor, and a

USB port. The user also needs a USB cord with a minimum length of three feet. The

USB cord must be male USB B-type to male USB A-type. Finally, the user must

have a workspace with enough room to comfortably accommodate their computer

workstation and provide ample room for movement of their arms.

Once the user has gathered all the necessary items, they are ready to begin using

the system. The user sits in front of the computer workstation, which is running

both Autodesk Maya and our system’s software application. The physical device is

plugged into the computer via USB port, and should be set to the side next to the

computer until needed. In Maya, the user opens a scene they would like to work
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in. The scene should ideally be a low-resolution or reduced complexity scene such

as a layout department would use, as heavy or complex scenes can cause Maya to

become slow or unresponsive. The user selects or creates a camera they would like

to capture motion for and then sets their main Maya viewport to look through that

camera. When the user is ready to begin motion capture, they pick up the physical

device with one hand and hold it in their desired starting orientation. They then

connect the software application to Maya with a mouse click. Once the connection

is successful, they move the physical device with one hand and view the results in

real-time in the Maya viewport. While holding the device in one hand, the user uses

their free hand to use mouse clicks or application hotkeys to adjust settings in the

software application. A mock example of this setup can be seen in Figure 3.1.

It is important to note that the user experience setup does not seek to emulate

the total user experience of controlling a real film or video camera. Film cameras are

typically mounted on the operator’s shoulder or a sophisticated rig, and the scene is

viewed through a viewfinder or display that is attached to the camera itself. Having

a shoulder-mounted device with a viewfinder could potentially add additional realism

to the motion captured by our system. The additional weight and resistance coupled

with manipulating the device when it is in a more “traditional” position for camera

operation would offer a level of physicality that sitting in front of a computer screen

can not.

3.2 Data Production Method

This approach introduces a system that utilizes multiple different sensors working

in conjunction to detect rotational motion and output accurate data representing that

motion. Using multiple sensors allows for redundancy and robustness, where each

different sensor’s weaknesses are accounted for by another sensor’s strengths.
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Based on this model, this thesis presents a data production method that consists

of four stages:

• hardware selection

• sensor initialization

• data interpretation

• data output

3.2.1 Hardware Selection

The first stage of the data production method requires choosing sensors and other

hardware with which it is possible to produce and interpret rotational motion data.

Hardware selection is important, as the components chosen must allow for usable

motion capture while at the same time remaining affordable and allowing for easy

expansion of the device’s functionality, should the user require it. In this method,

we have decided to use a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis

magnetometer in conjunction with an Arduino board and microprocessor.

In-depth explanations for each of the three sensor types can be found in the Prior

Work section.

Figure 3.2: One version of Arduino, the “Duemilanove” board. [11]
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Arduino is an open-source electronics prototyping platform based on flexible,

easy-to-use hardware and software. Arduino is intended for artists, designers, hob-

byists and anyone interested in creating interactive objects or environments [11]. In

more technical terms, an Arduino consists of a simple open source hardware board de-

signed around an 8-bit Atmel AVR microcontroller, or a 32-bit Atmel ARM [10]. The

software consists of a standard programming language compiler and a boot loader

that executes on the microcontroller. Multiple different variations of the Arduino

hardware exist, each with a slightly different setup.

While certainly not the only option, Arduino was chosen for this method due to

its ease of use, ample documentation, and versatility. It is very simple to get started

using Arduino, even without prior experience in electronics. Arduino takes care of a

large part of the very basic setup, allowing the user to jump in and begin working on

their own project without having to reinvent the wheel, so to speak. For instance,

most Arduino boards include a USB and power connection, allowing the user to eas-

ily power their device and attach it to their computer for code upload with little to

no additional work. When it comes to writing code, Arduino uses a language very

similar to Java and provides its own interactive development environment. Both the

code and the interactive development environment (IDE) are cross-platform (they

can be used on Windows, Mac OSX, and Linux). There are extensive tutorials

and documentation on the official Arduino website, and there is an active Arduino

development community that has been around for many years that can offer addi-

tional support and examples. Finally, both Arduino’s software and hardware are

open source. The hardware’s original design files are available for free and licensed

under the Creative Commons Attribution Share-Alike license, which allows for both

commercial and personal derivative works as long as Arduino is credited [3].

For the purposes of this method, we can think of the Arduino board as the “brain”
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of our device and the accelerometer, gyroscope, and magnetometer as being the

“nervous system.” The various sensors can only output streams of data; they cannot

interpret the data or perform calculations by themselves. The sensors interface with

Arduino, which, with the proper programming, interprets the data sent to it into a

usable output.

3.2.2 Sensor Initialization

Once the Arduino board and the sensors are properly interfaced, it is necessary

to initialize the sensors so that they function as we want them to. Each type of

sensor has a set of attributes that affect how it operates. The specific attributes vary

depending on the sensor. Each sensor also has a specific communication protocol,

which dictates how data is sent to and accessed from the sensor. Most sensors fall

into one of two categories: digital or analog. Digital sensors communicate using a

serial protocol like I2C, SPI, or USART. Analog sensors output a voltage level within

a predefined range, which must then be converted to a digital value using an Analog

to Digital converter, or ADC [1].

To initialize a sensor, we have to read from and write to its registers. Registers

are basically small amounts of storage available on a device or processor [15]. The

sensors used in this method typically have several registers consisting of around eight

bits, or one byte, each. Registers can be used to control attributes of the sensor.

Usually some registers are used in conjunction to temporarily hold output data to be

read from an outside source. Information about the registers for a specific electronic

component can be found in the peripheral’s data sheet, which is typically provided

by the manufacturer.

Regardless of specific type or manufacturer, most of the sensors this method

is concerned with typically have specifications for measurement range, sensitivity,
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power or operation mode, and data rate.

Figure 3.3: Part of a typical specification sheet for an accelerometer. [7]

Measurement range is the level or threshold of input supported by the device. A

larger measurement range can handle and detect greater levels of input, but is also

less precise than a smaller measurement range. For accelerometers, range specifies

the amount of acceleration or force detection supported by the device, and is usually

specified in +/-g. For gyros, it specifies the level of angular velocity, usually in units

of +/- degrees per second or rotations per minute (RPM). For magnetometers, it is

the strength of a magnetic field, and is usually measured in gauss [1]. Some devices

allow for multiple measurement ranges, in which case the user must choose the one

best suited for their needs.

Sensitivity is the ratio of change in input to change in output signal. A higher

sensitivity means for a given change in input (acceleration, angular velocity, magnetic

field, etc.), there is a larger change in the output signal, which is easier to measure and

allows detection of more subtle movements. Sensitivity is specified at a particular

operating voltage. It is usually measured in units of millivolts per measurement
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range unit (g, degrees/sec, gauss) for analog output or Least Significant Bit (LSB)

per measurement range unit for digital output [1]. Some sensors allow the user to

choose from either a higher or lower sensitivity, depending on their needs.

Power or operation mode specifies whether the sensor is active or not. Differ-

ent modes can include active, standby (off), and auto sleep (off after a period of

inactivity). In addition, some sensors can be put into different operation modes.

For instance, “normal” operation mode can sometimes mean a sensor reports its

data once, then goes to sleep, whereas in continuous mode, the sensor is constantly

reporting its data [1].

Data rate, also known as bandwidth, specifies the amount of times per second

you can make a reliable data reading. It is measured in Hertz (Hz), and can vary in

speed from hundreds of times per second to less than once every ten seconds.

For this method, we need to be familiar with each sensor’s specifications. This

allows us to choose the most appropriate settings for the purposes of our motion

detection, and it helps to ensure that the sensors are working properly before any

data collection or data processing is attempted.

3.2.3 Data Interpretation

When hardware selection and sensor initialization are complete, we can begin

the process of converting the raw data output of our devices into usable rotational

motion data in the form of pitch, roll, and yaw.

3.2.3.1 The Direction Cosine Matrix

Orientation kinematics typically deals with calculating the orientation of a body

relative to a global coordinate system. For this method, we specifically want to

calculate the orientation of our device relative to a starting orientation that we

define ourselves. We call the frame of reference of our device the “body frame” and
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the frame of reference of the starting orientation the “global frame.” Both the body

frame and the global frame have the same origin O, and have attached coordinate

systems Oxyz and OXY Z, respectively. We define i, j, and k to be unit vectors

co-directional with the body frame’s x, y, and z axes (such vectors are also known

as “versors”). I, J , K are defined as the versors for the global frame.

Extending those definitions, we can say that in terms of body coordinates, vectors

i, j, and k can be expressed as:

iB =


1

0

0

 , jB =


0

1

0

 , kB =


0

0

1


Similarly, we can say the in terms of global coordinates, vectors I, J , and K can

be expressed as:

IG =


1

0

0

 , JG =


0

1

0

 , KG =


0

0

1


With the definitions of our two frames in place, we can now define a Direction

Cosine Matrix (DCM) for each frame. A DCM (also called a rotation matrix) can

also be used to determine the global coordinates of a vector if we already know the

coordinates in the body frame (and vice versa). In other words, it allows us to

“convert” back and forth between body and global coordinates.

The DCM to convert from the body frame to the global frame can be defined as
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follows:

DCMG =


I.i I.j I.k

J.i J.j J.k

K.i K.j K.k

 =


cos(I, i) cos(I, j) cos(I, k)

cos(J, i) cos(J, j) cos(J, k)

cos(K, i) cos(K, j) cos(K, k)


where I.i represents the scalar (dot) product of vectors I and i. Similarly, the

DCM to convert from global frame to body frame is:

DCMB =


I.i J.i K.i

I.j J.j K.j

I.k J.k K.k

 =


cos(I, i) cos(J, i) cos(K, i)

cos(I, j) cos(J, j) cos(K, j)

cos(I, k) cos(J, k) cos(K, k)


These two matrices are the transpose of each other, and are also orthogonal to

each other.

To convert an arbitrary vector vB that is represented in the body frame coordinate

system to its global frame coordinate system representation vG, we would perform

the following calculation:

vG =


vGx

vGy

vGy

 =


cos(I, i) cos(I, j) cos(I, k)

cos(J, i) cos(J, j) cos(J, k)

cos(K, i) cos(K, j) cos(K, k)




vBx

vBy

vBz

 = DCMGvB

And similarly, converting from vG to vB is simply:

vB =


vBx

vBy

vBz

 =


cos(I, i) cos(J, i) cos(K, i)

cos(I, j) cos(J, j) cos(K, j)

cos(I, k) cos(J, k) cos(K, k)




vGx

vGy

vGy

 = DCMBvG
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The specifics of how and why the DCM works is not discussed in this method,

however a quick search online can provide numerous sources for further explanation.

A good place to start online is: http://mathworld.wolfram.com/DirectionCosine.html.

In this method, we have two frames of reference with two different coordinates

systems: the body (device) frame and the global (starting orientation) frame. The

global frame remains static with respect to the earth. The body frame remains static

with respect to the device itself. That means, for example, if we define a point on the

device in the device’s coordinate system as rB = (1, 0, 0), we can rotate the device any

which way and that point remains (1, 0, 0) in device coordinates. However, that same

point expressed in global coordinates appears to change coordinates. Converting this

fixed point rB on the device into global coordinates using a DCM can tell us which

direction the device is “pointing” in the global frame.

3.2.3.2 Defining and Updating the DCM

While we have established that a DCM matrix can convert any vector from the

device’s coordinate system (body frame) to the starting orientation coordinate system

(global frame), this does not help us unless we are able to calculate the DCM matrix

to begin with. By definition, at the start of our method the device orientation is

the same as the starting orientation, so the DCM is initially defined as the identity

matrix. After that initial instant, though, we are rotating the device, which means

that the device’s coordinate system is changing. This means that the DCM must

be regularly updated to reflect the current relationship between the two coordinate

systems. For this method, we use the sensors on our device to define and update the

DCM.

As discused in the Prior Work section, a 3-axis accelerometer is capable of detect-

ing tilt with respect to the force of gravity. The gravity vector consistently points
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towards the center of the earth, perpendicular to the plane of the ground. However,

because the accelerometer is also susceptible to outside forces besides gravity, and it

has no way of distinguishing between different forces, its tilt readings are never be

reliable enough to be usable by themselves.

The 3-axis gyroscope can tell us the angular velocity of the device. Angular

velocity is defined as the rate of change of angular displacement. It is a vector

quantity which specifies the rotational speed of an object and the axis about which

the object is rotating. Unfortunately, gyros are subject to a phenomenon called

“drift”, where they gradually become more and more inaccurate over time unless

they are calibrated by applying a calculated correction value. Because of drift, gyros

alone cannot be used to accurately report rotational motion data.

The 3-axis magnetometer can tell us orientation with respect to magnetic north

when held parallel to the ground plane. With this data, only rotation about the axis

perpendicular to the ground plane can be calculated, and it is only accurate as long

as the magnetometer remains parallel to the ground plane, as any tilt introduced

throws off the readings. The magnetometer can also be thrown off by stronger local

magnetic fields.

All three sensors (accelerometer, gyroscope, and magnetometer) provide different

data regarding orientation. But each type of sensor also has weaknesses that prevent

its data from being accurate or usable. The solution used in this method combines

the readings from all three sensors in order to create an estimate or “best guess” of

the device’s orientation in the global coordinate system.

Gyroscopes have no sense of absolute orientation of the device. In other words,

there is nothing with a known orientation that a gyroscope can compare itself to in

order to determine its own orientation. The accelerometer and magnetometer, how-

ever, can compare themselves to the gravity vector and magnetic north, respectively,
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to determine their orientation. The data from the accelerometer and magnetometer

can be used to calculate a DCM, however the direct readings from each device are

subject to a lot of noise in the form of external (non-gravitational) inertial forces or

magnetic fields other than the earth’s.

If we know the orientation of the device at time t0, expressed as a DCM matrix

DCM0, we can calculate an updated DCM1 at time t1 using the gyroscope’s angular

velocity data. To prevent error accumulation due to drift, we “fine tune” the DCM

using the accelerometer and magnetometer data, which are not subject to the drift

that affects the gyros. In turn, the DCM defined by the gyro data can be compared

to the accelerometer and magnetometer data to help filter out data noise. In this

way, each sensor compensates for the other sensor’s weakness, and we can compute

a reliable and accurate DCM at each timestep.

3.2.4 Data Output

Once the device has calculated usable motion capture data, we need to be able

to transfer that data from the device to a computer where it can be put to use.

Most Arduino boards offer a USB port that allows for serial data transfer. Serial

transmission is the sequential transmission of signal elements of a group representing

a character or other entity of data. Digital serial transmissions are bits sent over a

single wire, frequency or optical path sequentially [14]. While certainly not the only

option, we use it for this method since it is a very common data transfer method

that is extremely versatile and has plenty of documentation available, making it easy

to learn and to troubleshoot.

When transferring data, the most important considerations for this method are

data format, speed, and accuracy.

Data format refers to how the information we are sending is “packaged” for
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delivery. There are several options to consider. Data could be sent as multiple

small packets of data, or as one large write that contains everything. Also, we must

choose how much data to send. In addition to sending the core rotational motion

information of pitch, roll, and yaw, we could send information about the raw data

from all the sensors, or perhaps some of the data from the intermediate steps of our

calculations.

In the context of this method, speed does not refer to baud rate of data transfer,

but rather how often we are sampling new data and how often we are sending data

updates. To determine speed, several things must be take into consideration. Tradi-

tionally, most films are shot at a rate of 24 frames per second. Since the data we are

sending is designed to work as part of a movie pipeline, it is important that we are

able to deliver updated camera motion data at a minimum of 24 times per second.

Sampling data faster than 24 times per second can allow us to average multiple sam-

ples during a time step. As a simple example, if we sample our data 48 times per

second, we can take use an average of every two samples for each of the 24 frames we

actually want motion data for. Averaging data like this can help lessen the impact

of noise and anomalous data readings. There are limits to how fast we can sample

and send data, however. Each of the sensors has a limit on how fast it can update.

Packaging data on the device end and then unpacking it on the receiving end also

takes time. If the data rate is too fast and the data cannot be unpacked as fast as

new data is being sent, the data may become corrupted.

We define accuracy as how correct data is when it arrives at its destination.

Ideally our data transfer is completely accurate, with no data loss or corruption. As

already touched on when talking about speed and data format, there are many ways

for accuracy to be compromised. We must be careful when choosing our transfer

speed and data format so we can maintain the integrity of our data. Because the
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rotational data we are sending is being used in real-time, checksums were deemed

unnecessary, as any errors in data would be recognizable in the form of very noticeable

operational problems.

3.3 Artistic Control

The artistic control component of this method is the conceptual core of this thesis.

Once the device is outputting usable data, the user needs to be able utilize the device

in such a way as to achieve their camera control goals. There are several ways of

facilitating this that we plan to implement.

3.3.1 Physical Device

The first and most obvious consideration is that the user be able to physically

manipulate the sensor with relative ease. The device is not useful if the user is

unable to effectively rotate it around to produce motion data. The device should be

small enough and light enough to be operated by a single person with one or two

hands. The construction of the device should be stable enough to allow for typical

use without concern about damaging the device. For this prototype method, the

device is attached to a computer via a USB cord. We must ensure that the USB

cord is long enough to allow for mostly unimpeded motion during operation.

It is important to note that while we are using the device to capture motion that

is used for a virtual camera, a true camera-like feel to the operation of the device

itself is not the goal of this thesis. However, we strive to make the device small

enough such that it can be mounted onto a real camera or a similar type rig setup,

should that be the user’s desire. It is important to note, however, that the utility

of such a setup would be limited unless the Maya window could be displayed by the

camera itself, and that is a non-trivial feature to implement.
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3.3.2 Extensibility

Figure 3.4: An analog trigger control. [4]

The user must be allowed the ability to expand upon the basic rotational motion

capture functionality of the device. To demonstrate this extensibility, in this method

an analog trigger is added to the device. These triggers are the same ones found in

modern game controllers. The most typical setup is to have a potentiometer that gets

adjusted by a spring-loaded trigger [4]. Essentially the user can control the signal

output by squeezing or relaxing the trigger to adjust its tension. In this method,

the analog trigger allows for control of zoom or translation along the viewing axis,

depending on the user’s choice.

3.3.3 Software Application

To extend the versatility of the device, a software application is developed to allow

for additional controls and relevant settings to be easily accessed by the user. The

software serves as a gateway between the device and the 3D visualization software.

This is a more flexible approach than having the device directly interface with the

3D visualization software. If the 3D software package being used changes, more code

can be reused, and the programming of the device can remain consistent.

For this method, we use a language called Processing to develop the software

application. Processing is based on Java and was developed by the same organization
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that developed the Arduino. The IDE is very similar to the Arduino IDE, and it

shares many of the same advantages, including being free, having a large amount

of examples and documentation, and being multi-platform. While many different

languages would have worked, Processing was chosen specifically for its close ties to

Arduino, which should make it easier to learn and easier to use in conjunction with

our chosen hardware.

The software application provides visual feedback regarding the operating state

of the device. The user is able to tell if the device is active and whether or not it

is currently connected to the 3D software package. There are numerical readouts of

the pitch, roll, and yaw of the device that update in real time, as well as a visual

representation of each axis that shows the tilt that is occurring in that axis on the

device.

Controls are made available to the user in the software application that allows

for both basic and advanced functionality. Basic functionality covers controls and

functionality that are essential to normal operation, such as the ability to connect

the software application to the 3D software package for data transfer. Advanced

functionality either expands the user’s options or increases their ease of use to allow

for an optimized and efficient workflow. The user has the ability to turn on or off the

streaming of data for pitch, roll, and yaw independently, or select a different operation

method than simply 1-to-1 rotation interpretation. Playback controls (play, stop,

rewind) and shortcut buttons, such as clearing all the recorded keyframes or returning

to the beginning of the play range, save the user time and keep the number of times

the user must operate within the 3D program itself to a minimum. The complete

list of controls provided for this method can be found in the implementation section.
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4. IMPLEMENTATION

The approach proposed in this thesis was implemented in a mostly modular fash-

ion, such that any one part of the process is not too dependent on the specific

implementation of another stage. This allows for more flexibility and easier adapt-

ability.

The objective of the first part of the implementation is to assemble and program

a device that accomplishes the data production method. The second part of the

implementation focuses on facilitating the user’s artistic and functional control by

means of the software application and its accompanying workflow, controls, and

options.

The implementation closely follows the concepts and process stages introduced

in the Methodology section.

4.1 Data Production Method

The implementation of the data production method strives for low complexity

and an easy learning curve. However, one of the core necessities of this approach is

the ability to safely and effectively work with electronic components. Many hours

were spent researching and learning basic concepts and terminology about electronics

to establish a solid foundation of knowledge on which to begin our implementation.

4.1.1 Hardware Selection

For our sensor selection, we have chosen to use a device produced by Sparkfun

Electronics called the SEN-09623 9DOF Razor IMU. The device incorporates an on-

board ATmega328 microcontroller, which uses an 8MHz Arduino bootloader, and

four sensors: a LY530AL single-axis gyro, LPR530AL dual-axis gyro, ADXL345
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triple-axis accelerometer, and HMC5843 triple-axis magnetometer.

Figure 4.1: The Sparkfun Electronics SEN-09623 9DOF Razor IMU. [6]

This particular device was chosen for several reasons. The specifications of all the

individual sensors incorporated into the board meet the operating requirements for

our method. Having them all on a single board assures that the sensors’ coordinate

axes are aligned properly from the start and allows for a more compact and stable

form factor. It assures that the sensors are wired properly, and keeps the amount of

manual soldering we must do to a minimum. The addition of an on-board micropro-

cessor programmed with the Arduino bootloader allows us to program the board to

do calculations with data from all three types of sensors without needing to send the

data to a different device. Functionally this allows us to treat the four sensors on

the board as a single sensor unit, which strengthens the modularity of our approach.

We also make use of the Sparkfun Electronics COM-10314 Game Controller Trig-

ger. While this sensor is not necessary for motion detection functionality, we are

integrating it into our device to help demonstrate the ease with which the device

can be expanded upon with custom controls. A picture of the trigger can be seen in

Figure 3.4 in the methodology section.
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We chose to utilize an Arduino Duemilanove board as the foundation of our

device. The Duemilanove provides us with a USB port, which allows for serial

transmission of data and for code upload to the microcontroller. The Duemilanove

has sufficient inputs, both analog and digital, to interface with both the Razor IMU

and the analog trigger, and includes a built-in analog-to-digital converter. A picture

of a Duemilanove board can be seen in Figure 3.1 in the methodology section.

It should be noted that while we are using two microcontrollers for this implemen-

tation (one on the Razor IMU and one on the Duemilanove board), using only one

would have been possible. However using two microcontrollers allows for a cleaner,

less complex, and more modular setup where the individual motion-detecting sensors

are compartmentalized as a single, mostly autonomous unit. With this setup we can

make a clearer distinction between code written for motion-sensing purposes and

code written for other functions. This additional ease of use and understanding is

why the two-microcontroller implementation was chosen.

Because we have access to two microcontrollers, we must decide which calculations

each one is responsible for. The Razor IMU is responsible for all calculations involved

with converting raw sensor data into Euler angles (pitch, roll, and yaw). Once it has

calculated Euler angles, its final responsibility is to package the Euler angles into

a single sequence of characters, where each discrete data value is separated by a

semicolon. This sequence of characters is then sent to the Arduino. The Arduino is

responsible for performing calculations for any other extra components and controls

added to the system. In our method, this means the Arduino is interpreting the data

from the analog trigger. Once the calculations for the analog trigger are done, the

Arduino appends the data from the analog trigger onto the end of the sequence of

characters it received from the Razor IMU, once again separating each discrete data

value with a semicolon. Finally, the Arduino sends this new sequence of characters,
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which now contains both the Euler angles data and the analog trigger data, to the

software application via a serial transfer over a USB cable.

The final setup for our prototype consists of the Razor IMU and Game Controller

Trigger connected to the Duemilanove, and the Duemilanove connected to a laptop

computer via a USB cord. Other minor pieces of equipment, such as precut wire,

a breadboard, and a plastic enclosure for the device are also utilized in a support-

ing role. Some soldering is required, but our implementation keeps this task to a

minimum.

Figure 4.2: The physical device, pictured with the top of the plastic enclosure re-
moved.

An illustration of the wiring setup used to connect all the components together

can be seen in Figure 4.3 below.
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Figure 4.3: A diagram showing the connections between the different components.

Data sheets, schematics, and other specific information about the various periph-

erals used in this implementation can be found online at the Sparkfun Electronics

website (for the IMU and analog trigger) and the Arduino website (for the Duemi-

lanove board).

4.1.2 Sensor Initialization

For sensor initialization, the Arduino programming language and development

environment were used. The development environment is available as a free download

on the official Arduino website. It contains a text editor for writing code, a message

area, a text console, a toolbar with buttons for common functions, and a series of

menus. It connects to Arduino hardware to upload programs and communicate with

them. It was chosen for this implementation based on our hardware choices of the

Arduino Duemilanove and the Razor IMU, which is programmed with an Arduino

bootloader. For this implementation we specifically used version 0023 of the Arduino
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development environment.

Before any sensor initialization was performed, the data sheets and specifications

of each component were studied. This was done to assure understanding of what

needed to be initialized for each component and how to perform the initialization.

For this implementation, if an attribute or setting of a specific component is not

explicitly mentioned in the following subsections as being initialized, it is because

the default value for that setting was determined to be appropriate for our needs.

4.1.2.1 ADXL345 triple-axis accelerometer

The ADXL345 triple-axis accelerometer is a digital accelerometer that uses the

I2C communication protocol. The Arduino programming language includes a library

called Wire that facilitates communication via I2C. It takes only a single line of code

to include the Wire library in the project code and one additional line in the body

of your code to initialize the library.

Once the Wire library is working, we initialize the ADXL345 itself. First we

establish what the 7-bit address of the ADXL345 is so we know where to send the

transmissions. (The address is 7-bit, as opposed to 8-bit, because the Wire library

is designed to use 7-bit addresses.) According to the datasheet for the Razor IMU,

the ADXL345’s 7-bit address is 0x53. This number is represented in hexadecimal

notation, as is the standard for register addresses.

We set the fourth bit of the ADXL345’s power register (0x2D) to 1, which puts

the accelerometer into measurement mode (a.k.a. “active” mode, the opposite of

standby). In the data format register (0x31) we set the fourth bit to 1, which puts

the accelerometer in full resolution mode, which makes the output resolution increase

with the measurement range. In the rate register (0x2C), we set the output rate to

50Hz (0x09), which is considered normal operation.
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Finally, we compute an offset, or “zero” value, for the accelerometer. This value is

computed when the device is first activated, before the main loop begins to run. We

take the average of 32 samples of the data for each axis from the accelerometer. This

value is used as the “zero” value for the accelerometer; the orientation that reports

this value is considered our zero-degree heading. When we get a raw reading from

the accelerometer, we subtract this value as an offset to get our modified heading.

This offset value can be reset during operation by the user if they desire to set a new

zero heading.

The z axis of the accelerometer has one additional step involved when computing

its offset. In a “neutral” orientation where the x axis and y axis are both reporting 0g,

the z axis should be reporting -1g. If we simply computed an offset and subtracted

it from the z axis’s raw value, all three axes would report 0g at the neutral position,

which is not what we want. To fix this, we subtract an additional 1g (approximately

248 raw data units) from the accelerometer’s z axis when calculating its offset.

4.1.2.2 HMC5843 triple-axis magnetometer

The HMC5843 triple-axis magnetometer is, like the ADXL345, a digital compo-

nent that uses the I2C communication protocol, so it also utilizes the Wire library for

communication. The 7-bit address of the magnetometer is 0x1E. The only initializa-

tion required for our purposes is to put the magnetometer in continuous operation

mode at a default rate of 10Hz, which we accomplish by writing zero (0x00) to

the mode register (0x02). Otherwise the default settings for the magnetometer are

sufficient.

4.1.2.3 LY530AL single-axis gyro and LPR530AL dual-axis gyro

Though we use two gyros in this implementation, their orientation with respect to

each other allows us to think of them functionally as a single triple-axis gyro. Unlike
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the accelerometer and magnetometer, the gyros are analog components, which means

that an analog-to-digital converter (ADC) needs to be used to interpret the analog

output.

The ADC must be initialized before it can be used. In order to accomplish this,

it was necessary to do research to learn the setup and terminology of an ADC. After

sufficient research, we were capable of initializing the ADC. To start, we set the

ADC Enable bit (ADEN) in the ADC Control and Status Register A (ADCSRA) to

1, which enables the ADC itself. Also in the ADCSRA, the ADC Interrupt Enable

bit (ADIE) was set to 1 to enable the ADC interrupt.

The ADC interrupt vector is essentially a block of code that is executed every

time a conversion (from analog to digital) has been completed. In the context of

our project, it is called every time the gyros’ output has been converted into digital

data. The ADC looks for a function named ISR to handle what happens during an

interrupt. We can define this function to control its behavior.

In simple terms, our ISR function reads data from one of three “gyro” ADC

channels (channels 0, 1, and 2 have the z, x, and y outputs, respectively, from the

two gyros). It saves this data into a buffer to be used for calculations later, then

increments some counters so that it reads and saves data from the next “gyro”

channel. Finally, it signals the ADC that the next conversion can be started, and

the function ends.

Once the ADC is taken care of, the gyro initialization is nearly complete. Like

the accelerometer, our final task is to compute an offset for each axis of each gyro

by taking the average of 32 samples of data before the main loop begins.
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4.1.2.4 Razor IMU

There are a few attributes that must be set for the Razor IMU’s microcontroller to

operate properly. The “Analog Reference” attribute configures the reference voltage

used for analog input (i.e. the value used as the top of the input range). For our

implementation we set this to DEFAULT, which in this context is equivalent to

3.3 volts. Next we must open a serial port for communication. The Arduino IDE

provides a library called Serial to facilitate serial communication between an Arduino

and a computer or other device. For the Razor IMU, we open a serial port and set

our baudrate (a measurement of transmission speed) to 38400.

We must also initialize our Direction Cosine Matrix. Because we define our

two coordinate systems as the starting orientation of the device and the current

orientation of the device, at the very beginning of the device’s operation before any

movement has occurred, the two coordinate systems are perfectly aligned. Because

there is no difference between the two coordinate systems at initialization time, we

initialize the DCM to be the identity matrix:

DCM =


1 0 0

0 1 0

0 0 1


4.1.2.5 Arduino Duemilanove

Like the Razor IMU, we must initialize serial communication on the Duemilanove.

Unlike the Razor IMU, we must do it for two different serial data streams. First, we

must open a port to the Razor IMU. We set this connection’s baudrate to 38400 to

match the Razor IMU. Next, we initialize a connection that goes from the Duemi-

lanove to the computer via USB cord. The baudrate for this connection is set to
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115200.

When we were initially setting the baudrate for the data stream between the

Razor IMU and the Duemilanove, we tried setting it to 115200, which was the fastest

option available. Later in our testing we noticed we were getting anomolies in the

data being sent from the Razor IMU. At first we thought there was an error in the

code, but after many tests we determined that this was not the case. After a large

amount of internet searching and several visits to online forums, we discovered that

sometimes if the baudrate is set too high, the receiving device cannot interpret the

data quickly enough, resulting in corruption. This turned out to be true in our case,

and reducing the baudrate between the Razor IMU and the Duemilanove to 38400

eliminated the data corruption we were getting.

Finally, we must make sure to set the specific type of Arduino board we are using

in the IDE. If we do not do this, we get unexpected results when we attempt to upload

our code to our Arduino from the IDE. We set the board we are using by going to

the “Tools” menu, then to “Board”, and then selecting “Arduino Duemilanove or

Nano w/ ATmega328.”

4.1.3 Data Interpretation

For data interpretation, version 0023 of the Arduino programming language and

development environment is used. The majority of the data interpretation is per-

formed on the Razor IMU. The microcontroller on the Razor IMU has a loop function

that is run and rerun continuously. In simple terms, our loop function consists of

reading raw data from each of the three sensors, transforming that raw data into a

form we want, outputting the usable data, and then repeating the loop.
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4.1.3.1 Compute the Timestep

The first step at the beginning of a new loop run is to compute the timestep.

The timestep is how much time has passed since the last iteration of the loop was

run. We accomplish this by reading the system time at the beginning of a loop run,

saving it, and then reading the time again at the beginning of the next loop run. The

difference between these two values gives us our timestep. The timestep is usually

on the order of milliseconds.

4.1.3.2 Read Raw Data

We read output data from the gyros first. It is important to note that even

though the gyros are technically being read before the other sensors, the entire loop

executes in a matter of milliseconds. So while the sensors are not, strictly speaking,

being read at the same time, the time disparity between the readings is small enough

to be considered inconsequential for our purposes.

As discussed in the ADC initialization section of the implementation, every time

the gyros output a new raw data value, an ADC interrupt occurs, and the data from

the gyros is read, converted, and stored in a buffer. This occurs many times within a

given timestep. When it is time to read gyro data in our loop, we access the data in

this buffer. In order to get more stable and noise-free data, we calculate the average

of all the data values reported during the timestep and use that as our final raw data

value for the entire timestep. The gyro raw data buffer is then cleared to prepare it

to receive new data values during the next timestep.

Next we read raw data from the accelerometer. Using the Wire library, we read

2 bytes of data for each of the accelerometer’s axes (6 bytes total). Each set of

two bytes represents a single data value stored in two’s complement form. We must

convert this data value to a typical decimal number by performing a logical left
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shift by 4 on the “high” byte and then performing a bitwise OR between the two

bytes. The final step is to subtract each axis’s offset, which was computed during

the initialization phase. Once that is complete, we save the data from each axis.

Because the magnetometer also uses the I2C protocol for communication, reading

its raw data follows the same pattern as the accelerometer. We read 6 bytes of data,

convert it to 3 decimal values, and subtract an offset. Unique to the magnetometer,

we must also multiply all readings by -1 because the magnetometer’s axes all oriented

in the opposite direction from the alignment we need.

4.1.3.3 Tilt Compensation for Magnetometer

We must compensate for any tilt the magnetometer is experiencing before its data

can be considered accurate. We use the pitch and roll values that we calculated from

our previous timestep to tilt-compensate the magnetometer’s data with the following

equations [17]:

CorrectedMagX = RawMagX ∗ cos(pitch) +RawMagY ∗ sin(roll) ∗ sin(pitch)

+RawMagZ ∗ cos(roll) ∗ sin(pitch)

CorrectedMagY = RawMagY ∗ cos(roll)−RawMagZ ∗ sin(roll)

Now we have the x and y components of our magnetic vector in the x-y plane.

We calculate our final, tilt-compensated heading with the equation:
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MagHeading = atan(−CorrectedMagY,CorrectedMagX)

4.1.3.4 Update DCM

Now that we have all the raw data from our sensors, we begin to perform calcu-

lations to transform that data into a form we want, namely Euler angles, or pitch,

roll, and yaw.

First, we transform the gyros’ raw data into radians/second data, the standard

form for angular velocity, using the formula below:

Rate = ((GyroRawData−Offset) ∗ (V ref/ADCsteps))/Sensitivity

The (GyroRawData−Offset) term has already been calculated previously when

we read the gyro’s raw data and subtracted our calculated offset. V ref is reference

voltage, which for our device is 3.3V or 3300mV. ADCsteps is how many discrete

values we can translate the voltage into. This is dependent on how many bits the

ADC has to work with. In our case it has 10 bits, so ADCsteps is 1023. Sensitivity

for gyros is measured in mV/degree/second. The datasheet lists the sensitivity as

3.33mV/degree/second, however our own tests show this value is much closer to

3mV/degree/second in practice, so we use that value. After performing the calcula-

tions, we are left with Rate, measured in degrees/second. As a final step we convert

Rate into radians/second by multiplying it by (π/180). If we compute Rate for each

of the three axes, we can combine the values into a vector δθ that represents the

angular displacement.

Next, we use δθ to update our DCM. We define the DCM from the previous
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timestep as DCM0, and we define the rows of DCM0, from top to bottom, as vectors

I0, J0, and K0. We know these vectors represent versors of the global frame expressed

in body frame coordinates at time t0. We want to calculate DCM1 (with row vectors

I1, J1, and K1), which is the DCM at time t1 after a timestep of duration δt, or t1−t0.

We want to know the position of our vectors after a small period of time δt has

passed. The equation for position is:

Position1 = Position0 + (V elocity ∗ (time1 − time0))

Adapting the equation for our purposes and using an arbitrary vector V we get

the equation

V1 = V0 + (v ∗ (time1 − time0)

where v represents the linear velocity vector. The linear velocity vector can be

calculated from angular velocity using the equation

v = ω ×R

where ω is the angular velocity vector and R is the vector that is rotating [20].

Our gyro provides us with the data for ω, and R is simply our initial known vector.

Substituting this data into the original equation for calculating V1, and replacing

(time1 − time0) with δt, we get

V1 = V0 + (ω × V0) ∗ δt

We substitute our DCM vectors into this equation to calculate I1, J1, and K1,

which we then use together to form DCM1. This is the core algorithm we use to
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calculate the DCM at time t1 from the previous DCM at time t0. It is run every

timestep and keeps the DCM updated. However a few additional steps are required

before the updated DCM is completely ready to use.

4.1.3.5 Renormalize DCM

We know the vectors I0, J0, K0 form a valid DCM matrix. In other words, they

are orthogonal to each other and are unity vectors. We cannot say the same thing

about the updated vectors I1, J1, and K1. The formulas used for calculating them

do not guarantee preservation of vector orthogonality or length. Because δt is very

small, the vectors are not off by much, and it is possible to correct them for each

timestep with a series of equations.

We first focus on correcting orthogonality of the three vectors. To understand the

final equations used, it is helpful to explain starting with a simple case. We define

two unity vectors a and b that are very close to being orthogonal. We want to find a

“corrected” vector b′ that is orthogonal to a and is in the same plane formed by the

vectors a and b. To do this, we first calculate vector c with the equation

c = a× b

By definition, a vector that is the result of a cross product is orthogonal to both

original vectors. Therefore c is orthogonal to both a and b and is perpendicular to

the plane they form. Next we calculate the vector b′ with the equation

b′ = c× a

Once again, by definition of the cross product, b′ is orthogonal to a and c. This

means b′ is in the plane perpendicular to c , which is of course the plane formed by
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a and b. So b′ is the “corrected” vector we want - it is orthogonal to a and exists in

the plane formed by a and b.

If we substitute into our equation for b′ using the triple product expansion [41]

and knowing that a is a unit vector and therefore a.a = |a| = 1, we get

b′ = c× a = (a× b)× a = −a(a.b) + b(a.a) = b− a(a.b)

We can then consider the term −a(a.b) to be our “error correction” value to make

b orthogonal to a. In this scenario, we only corrected vector b and left a alone. In a

similar scenario where we correct vector a and leave b alone, we get the equation

a′ = a− b(a.b)

where the error correction value for a is −b(a.b).

We’ve corrected for both vectors individually, but we need a solution that corrects

them together. Since neither vector is “more correct”, we can intuitively split the

correction between both vectors and only apply half of each error correction value,

as shown below:

a′ = a− b(a.b)/2

b′ = b− a(a.b)/2

It is important to note that performing these calculations does not prove math-

ematically that a′ and b′ are orthogonal. Intuitively, however, we know it gets the

angle in between the two vectors closer to π/2 radians or 90 degrees. Because we

are working with very small intervals, if we perform this correction every time step,

it assures that the two vectors never stray too far from being orthogonal.
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Using the idea just discussed, we correct our newly updated DCM (with row

vectors I1, J1, and K1). We begin by correcting orthogonality between I1 and J1

vector of the DCM with the following equations:

I ′1 = I1 − J1(I1.J1)/2

J ′
1 = J1 − I1(I1.J1)/2

We then normalize I ′1 and J ′
1 by dividing each vector by its magnitude:

Icorrected = I ′1/‖I ′1‖

Jcorrected = J ′
1/‖J ′

1‖

Finally, to calculate Kcorrected, we simply take the cross product of our other two

corrected vectors:

Kcorrected = Icorrected × Jcorrected

We use these corrected vectors to recompose our DCM.

4.1.3.6 Drift Correction

Every timestep we must correct for the gyro’s drift. We do this by comparing

the vectors in our DCM (which are defined by data from the gyros) to reference

vectors defined by the data from the accelerometer and magnetometer. Our final

“estimated” vector positions are weighted sums of the the vector positions given by

all the sensors.

First we use our accelerometer data to correct drift of the DCM. This is possible

because the accelerometer provides a reference vector (gravity) to which we can com-

pare the orientation of our DCM’s K vector. To start, we take the raw accelerometer
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data we’ve previously collected, put it into vector form, and then find the magnitude

using the standard formula for calculating magnitude of a vector. Once we have our

raw magnitude value, we divide it by our known analog value for 1g, in this case 248.

This gives us the accelerometer vector’s magnitude in terms of gs.

The purpose of finding the magnitude of the accelerometer vector is to help

estimate how reliable the data coming from the accelerometer is. When the only

force acting on the accelerometer is gravity, the magnitude of the accelerometer

vector should be very close to 1g. If additional outside forces are acting on the

accelerometer, the magnitude with be more or less than 1g. The further from 1g

the magnitude is, the more significant the outside forces are that are acting on the

accelerometer, and the less reliable the accelerometer’s data is.

To account for this, we calculate a reliability value for the accelerometer using

the following formula:

reliability = constrain(1− 2 ∗ abs(1−magnitude), 0, 1)

If magnitude is exactly 1g, then reliability is 1. If magnitude is greater than

1.5g or less than 0.5g, then reliability is 0. Any value in between returns a decimal

number between 0 and 1.

Once we have our reliability value, we compare the accelerometer vector to the K

vector of our DCM by taking the cross product. If the accelerometer vector and the

DCM K vector are parallel (which indicates that both the DCM and accelerometer

believe the device to be tilted in the same orientation), the cross product results in

the zero vector. If they are not parallel, the cross product gives us our “error” vector.

We multiple the error vector by the reliability value to get the RollP itchCorrection

vector.
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Next we use our magnetometer data to further correct the DCM. This is possible

because the magnetometer provides a reference vector (magnetic north) to which we

can compare to the orientation of our DCM’s I vector. The error correction is equal

to the z-component of the cross product of the x (left) column of the DCM matrix

and the MagHeading vector we previously calculated when we tilt-compensated the

magnetometer’s data in section 4.1.3.3. We take MagHeading and calculate just

the x and y components of the vector:

mx = cos(MagHeading)

my = sin(MagHeading)

Then we compute the equivalent of just the z-component of the cross product men-

tioned above to get our yaw correction value:

correction = (Ix ∗my)− (Jx ∗mx)

Finally, we must multiply correction by the K vector of the DCM matrix to get our

final correction for yaw:

Y awCorrection = correction ∗K

Y awCorrection is added to RollP itchCorrection to get TotalCorrection, which

is the vector we use to correct for drift. To actually perform the correction, we simply

add TotalCorrection to the the angular velocity vector we computed from our gyro

data before our next timestep. (It should be noted that that the true amount of

error correction applied is determined using a Proportional-Integral (PI) correction
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system. In a nutshell, a PI correction system helps control both immediate, large

errors as well as smaller errors that build up over longer time periods.)

4.1.3.7 Convert to Euler Angles

Our final step in data interpretation is to convert our DCM data into Euler angles.

We have previously established that to convert a vector from body coordinates vB

to global coordinates vG we use the following equation:

vG = DCMGvB

We can accomplish the same transformation by performing a series of three con-

secutive basic rotations on the vector, one for each axis. We define the yaw angle as

ψ, the pitch angle as θ, and the roll angle as φ, and get the following equation:

vG =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1




cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)




1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 vB

It is important to note that the order in which the rotations are applied is not

arbitrary. They must be performed in this order to get proper results. When we

combine the 3 rotations into one matrix, we get:


cos(θ)cos(ψ) sin(φ)sin(θ)cos(ψ)− cos(φ)sin(ψ) cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ)

cos(θ)sin(ψ) sin(φ)sin(θ)sin(ψ) + cos(φ)cos(ψ) cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

−sin(θ) sin(φ)cos(θ) cos(φ)cos(θ)


This matrix is, essentially, our DCM matrix expressed in terms of Euler angles.

Therefore, in order to find the Euler angles themselves, we use the following equa-
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tions:

Pitchθ = −asin(DCM[2,0])

Rollφ = atan2(DCM[2,1], DCM[2,2])

Y awψ = atan2(DCM[1,0], DCM[0,0])

4.1.3.8 Analog Trigger Setup

Setting up the analog trigger is very straightforward. The component is essen-

tially a 10k potentiometer with a range of about 2k to 9k ohm that gets adjusted by

a spring-loaded trigger. We connect the ground and power wires from the trigger to

the ground and power outputs of the Arduino Duemilanove. We connect the trig-

ger’s remaining wire to one of the Duemilanove’s analog inputs. Reading data from

the analog trigger requires only a single line of code implemented on the Duemilam-

ove. The value we use is simply the raw data output from the analog trigger. It is

processed later in the software application.

4.1.4 Data Output

Now that we have our data, we must send it out from the device so our software

application can make use of it. We convert our pitch, roll, and yaw data from radians

to degrees and then write the data to a stream using the Serial library of the Arudino

IDE. The discrete data values are seperated by semicolons to allow for easy parsing

of the data at the receiving end. This stream of data is sent from the Razor IMU to

the Arudino Duemilanove. A baudrate of 38400 was chosen for this stream because

during tests higher speeds resulted in the Duemilanove struggling to process the

incoming stream fast enough, which led to data corruption.

Once the Duemilanove has successfully read the data stream from the Razor IMU,

it adds the data from the analog trigger onto the end of the data stream. The new
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data stream is once again output using the Serial library, this time at a baudrate of

115200.

4.2 Artistic Control

The implementation of the artistic control method strives for both general us-

ability and plentiful options. Ideally the user should be able to acheive their camera

control goals as quickly and efficiently as possible, without having to perform a large

amount of manual setup.

The core of the artistic control implementation is the software application. We

chose to use a language called Processing to develop our software application. Pro-

cessing is based on Java and is developed by the same group that developed the

Arduino. The IDE is very similar to the Arduino IDE, and it shares many of the

same advantages, including being free, having a large amount of examples and doc-

umentation, and being multi-platform. While many different languages would have

worked, Processing was chosen specifically for its close ties to Arduino. For this

implementation we use Processing version 1.2.1.

Figure 4.4: The software application.

The software application as a whole can be seen above in Figure 4.2. We explain
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the functionality of each part in turn, and then provide a typical workflow for using

the application.

4.2.1 Controls

Along the very bottom of the screen is the message center. When the user hovers

over a button, a tooltip explaining the button’s function is displayed here. The

message center also lets the user know whether or not the are connected to a 3D

software package, and shows when the recording button is active.

The connect button (upper right, yellow) allows the software application to con-

nect to a 3D software package. For this implementation, it has been coded to connect

to Autodesk Maya. The software application can function without being connected

to Maya, however its functionality is limited.

Figure 4.5: The software application showing the connection help screen.

Before a connection to Maya can be made, a command port must be opened in

Maya. Clicking the question mark button (upper right, teal) brings up a set of brief

instructions on how to set up a command port in Maya. This must be done before

the connect button is pressed. Once a command port is established, it remains active

as long as the Maya session is open.
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Figure 4.6: The software application showing the hotkeys interface.

The hotkeys button (upper right) brings up a screen that allows the user to

set hotkeys for the majority of the available buttons. This allows for activation of

buttons with a keypress as opposed to a mouse click, and allows for a more custom

setup by the user. The current hotkeys are displayed above the buttons in yellow

text. To set a new hotkey, the user first clicks on the button they want to set a

hotkey for. The button’s current hotkey changes to a question mark (?). The user

then presses the key they want to be the button’s hotkey, and it is assigned to that

button. Hotkeys can be any letter, number, symbol, or any of the directional keys.

Down the right hand side of the interface are several textboxes. Users can change

the values of the textboxes to affect the setting listed next to the textbox. Focal

length controls the focal length of the currently selected camera object in Maya. W

rez and H rez control the width and height dimensions of the output frame.

Damping is a value the user can set to help suppress noisy data. If the change in

data from the previous state is less than the damping value, the application considers

the data to not have changed. The result is less noisy output at the expense of

precision. If a value of 0 is set for damping, all changes in value, no matter how
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small, are considered valid. Values between 0.0 and 1.0 are the most useful, with

values above 1 starting to make output look noticably choppy.

The last four textboxes along the right are x mult, y mult, z mult, and t mult.

These are essentially scale values for the pitch (x), yaw (y), roll (z), and analog

trigger (t) data. The values in the textbox are multiplied by the data coming from

the device. For example, if the data from the device showed a rotation of 5 degrees

in pitch (x) and the value in x mult was 2, the actual pitch value the software

application sends to Maya would be 10, or 5 times 2.

The set target button (center, top row) specifies the data object in Maya to

which we stream our data. In Maya, the user selects an object, and then hits the set

target button. From then on, the rotational data and the analog trigger data affect

that object. The most common object to be used for data streaming is a camera

object. Other objects, such as locators, can also be used, albeit with slightly reduced

functionality.

Figure 4.7: The software application in the midst of recording keyframes after the
record button has been pressed.

The record button (center, top row) starts and stops keyframing of data. This

button is not active until a target object has been set using the set target button.
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When record is pressed, all other buttons in the application are disabled. Maya

then sets a keyframe for the current target at the current frame, wait briefly, and

then advance to the next frame. The frame advancement occurs at a rate equal to

whatever the current framerate is set to. This process continues until the record

button is pressed again, at which point frame advancement in Maya ceases and

the other buttons are reactivated. At the end of a record, the current target has

keyframed data of the rotations that took place.

The reset button (center, top row) clears any keyframes set on the target and

sets the current frame to the beginning of the playback range. This functionality is

very useful if the user is not satisfied with a motion capture performace by allowing

them to quickly try again. Like the record button, this button is not active until a

target object has been set.

Figure 4.8: The axis selection control, showing x and z axis as active and y axis as
inactive.

The axis selection buttons (center, second row from top) control whether or not a

given axis is “active.” By default, all axes are active, which means they stream data

to the target in Maya. The user can deactivate an axis by clicking the appropriate

axis selection button. Data for that axis is still received from the device, but is not

sent to Maya by the software application, nor is it keyframed if recording is initiated.

Any combination of axes can be active at the same time.

The mode buttons (center, second row from top) give the user access to different

control schemes. Only one mode can be active at a time. The default mode is 1:1

mode, where the rotation of the target in Maya directly mimics the rotations of the
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device in the real world. In “r” mode, continuous rotation occurs in an axis where

the speed of the rotation is proportional to the angle the device is tilted in that axis.

So if we tilt the device 5 degrees about the x axis and hold it there, the target in

Maya rotates at a slow, constant rate about the x axis. If we increase the tilt of our

device to 20 degrees and hold it there, the target in Maya rotates at a faster constant

rate about the x axis. If we tilt the device to 0 degrees and hold it there, rotation of

the target ceases. The “t” mode is very similar to “r” mode. Continuous translation

occurs down an axis where the speed of the translation is proportional to the angle

the device is tilted. Unlike in “r” mode, the axis you tilt in does not correspond to

the axis that the translation happens in. Originally this was the case, however upon

testing this setup was far less logical than it was in “r” mode. Instead, in “t” mode,

rotating in the y axis still moves the selected object in the y axis (up and down),

but rotating about the x axis translates the selected object down the z axis, and vice

versa. This corresponds more to more to a setup where translation occurs in the

direction of the tilt itself, rather than in the axis about which the tilt occurs. Both

the “r” mode and “t” mode tend to work best when only one or two axes are active,

as having all three active at once can be very difficult to control.

The new take button (center, third row from top) creates a copy of your current

target in Maya, hides the original, and then sets the target to the copy. This allows

the user to quickly “save” a take they like while setting them up to try an additional

take with the same settings. The default cam button creates a Maya camera object

with default settings at the origin and sets the target to that object. This can

be used as an alternative to the set target button, and provides the user with the

quickest way to begin experimenting with the motion capture functionality. The

review button plays through the frames in the current playback range once and then

resets the current frame to the start of the playback range. This allows for a quick
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review of the current keyframes. The calibrate button allows the user to reset the

“zero point” or neutral state of the device. When the calibrate button is pressed,

whatever orientation in space the physical device has is considered to have pitch,

roll, and yaw of zero.

The trigger controls section of buttons (center, second row from bottom) provides

options for utilizing the analog trigger. The enable button activates the trigger and

allows its data to be sent to Maya. The user can then choose either translate or zoom.

Choosing translate means a squeeze of the analog trigger affects the Translate-Z at-

tribute of the current target. For a camera object, this means translation occurs

in whichever direction the camera is facing. While the translate option works for

any object, the zoom option works only for camera objects. Choosing zoom means

a squeeze of the analog trigger changes the focal length of the target camera ob-

ject, essentially zooming the camera. The final analog trigger option, reverse, either

changes the direction of the translation (if translate is selected) or causes the focal

length to get smaller i.e. more zoomed out (if zoom is selected). These controls

combined with the t mult control already mentioned provide several options for the

user when utilizing the analog trigger.

The playback controls (center, bottom row) for the most part mimic the func-

tionality of the playback controls in Maya. The user can set the playback range

(left and right textboxes) and the current frame (center textbox). The user can play

forward or backward, advance forward or backward one frame, or skip to the first or

last frame in the playback range.

The left third of the software application window does not provide any controls

to the user, but rather helps represent what the current state of the user’s data

is. In the upper left, the current target and current frame are displayed. If no

target has been set, NONE is displayed. Beneath that is a line graph that displays

68



approximately the last ten seconds of history of the pitch, roll, and yaw values. This

is most useful for users that know how to read animation curves. The line graph

continuously overwrites itself as it runs out of space. Finally, in the bottom left, we

have both a numerical and visual display of the current pitch, roll, and yaw values.

The numerical values represent the number of degrees the device is tilted in that

axis, rounded to the nearest degree. Even though only whole numbers are displayed,

decimal values are getting sent to Maya. Each circle gives a visual representation of

one of the Euler angles as though you were viewing the device looking straight down

the appropriate positive axis. The red line shows only pitch and represents looking

at the device down the positive x axis (from the side), the green line shows only yaw

and represents looking at the device down the positive y axis (from above), and the

blue line shows only roll and represents looking at the device down the positive z

axis (from behind).

4.2.2 Workflow

A typical workflow for using the software application begins with the user plug-

ging the device into an available USB slot on their computer, and then launching

the application. When the application first launches, it automatically recognizes the

physical device, and it calibrates the device for approximately ten seconds. The

user should hold the device in what they want to be the “neutral” or starting posi-

tion during this time. The message center alerts the user when the calibration has

been completed, and the left side of the application begins to update the various

representations of the pitch, roll, and yaw with live values.

The next step is usually to connect to Maya, by first following the instructions to

open a command port in Maya and then clicking the connect button. Once connected

to Maya, the user selects the object they wish to stream data to in Maya and click
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the set target button. At this point the user is able to rotate the physical device and

see the results reflected as rotation of their selected target object in Maya.

When the user is ready to capture motion, they set their start frame with the

playback controls and then click the record button. They move the device however

they wish, then click the record button again. They can quickly review their captured

motion by hitting the review button. If they do not like the result, they can hit the

reset button to quickly try again using the same target object. If they like their

result but would like to try another attempt, they can click the new take button to

quickly try again with a new target object while preserving the keyframes they set

on their initial object. The user can repeat this process until they have gotten the

take they desire, using the functionality of the other buttons as needed.
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5. RESULTS

5.1 Overview

The overall result of this research is a modular, extensible system which allows

the user to generate rotational camera motion using physical movements, and where

the physical movements have a direct relationship to the virtual camera motion

produced. The system allows the user to manipulate the camera in a 3D software

package in a dynamic and intuitive way.

The analysis of the results is organized into two sections. The first section covers

the tests that were used to evaluate the system. The second section covers the

strengths and weaknesses of the system as evidenced by the tests.

5.2 Tests

A series of basic tests were performed to ensure the various aspects of the system

were working as expected.

The first test consisted of connecting the system to Maya and performing a series

of rotations with the physical device while recording what was happening on-screen

and in the real world at the same time. The two videos were then synced together

in a single video for comparison purposes. The resulting video provided information

regarding whether the system could indeed manipulate a virtual camera in Maya in

real time. Also as part of the test, the analog trigger and all the controls in the

software application were tested to ensure they were functioning as intended. A

screenshot from part of this test can be seen in Figure 5.1.
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Figure 5.1: A screenshot from the video of the first test.

This first test served as a qualitative accessment of how well the system func-

tioned. Using our system is an interactive manual process where the user is looking

at real-time feedback on a screen to aim the camera. In such a situation, the op-

erator or cameraperson naturally compensates for small inaccuracies between the

physical device and the virtual camera, as long as the inaccuracies never become too

significant. The results of our first test showed that our system was always “close

enough” such that any inaccuracies did not affect the natural operating procedure of

the system. In other words, the system was never so far off that a rotation performed

in the real world with the physical device did not appear to match up with what was

happening on-screen to the virtual camera.

This test gave us additional valuable insight. It provided the first empirical evi-

dence that the system was functioning as intended at a basic level. It confirmed that

our system could send data from the physical device through the software applica-

tion into Autodesk Maya and finally to the rotation attributes of a virtual camera

in Maya. Upon observation, it was clear that the data sent had a direct correlation
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to the movement of the physical device. This test also gave us the first opportunity

to establish and test a workflow using the controls provided in the software applica-

tion. Iterations were fast and easy. This test also confirmed the analog trigger was

functioning as intended, both in zoom and translate mode.

The second test was designed to determine how camera motion generated by the

device compared to camera motion generated by a real camera. For this test, the

physical device was mounted to the top of a Sony NEX-5N camera that is capable

of video capture. The camera with the physical device attached was then mounted

to a tripod and oriented to point towards a test scene. Figure 5.2 below shows the

testing setup.

Figure 5.2: The setup used to compare motion captured by the system in this thesis
to real-life camera motion.

Using the tripod, the camera was put through motions to show pitch, roll, yaw,

and a combination of all three. While these motions were being performed, the

physical device was recording motion data. The layout of the test scene was logged,

including the dimensions of the set pieces, the height of the tripod, the distance of

the camera from the scene, and the focal length of the lens. The test scene was

then reproduced in Autodesk Maya as accurately as possible to the original real
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world scene. The motion data from the camera tests was then applied to a series

of virtual cameras in Maya, and the virtual test scene for each test was rendered

out. Finally, the videos of the CG test scene using camera motion captured by the

physical device were synced to and compared to the videos of the real test scene. A

series of screenshots from one these videos can be seen in the Figure 5.3 below.

Figure 5.3: A series of screenshots from a test video comparing roll captured with
the system from this thesis (top row) to real-life camera motion (bottom row).

To further compare the CG and live action footage, the two synced clips were

superimposed on top of each other at reduced opacity. A series of screenshots from

this setup can be seen in Figure 5.4. While the CG footage was still comparable

to the live action footage, the differences between the two were also much more

apparent. It is important to note that a perfect 1:1 correspondence between the two

sets of footage was unfeasible, as there were many extenuating factors that resulted

in discrepancies between the two sets of footage. The live action scene was measured

as accurately as possible, but the CG scene was most likely still not a completely

accurate representation of the live action scene. The live action footage was filmed

using a lens that has known barrel distortion (which visibly bends objects towards

the side of the frame), while the virtual camera obviously did not suffer from this

barrel distortion. Even though the camera was mounted on a tripod, the pivot point

was not perfectly centered. This meant that the camera was translating slightly

with every movement, which could not be picked up by our system nor measured

74



accurately enough to compensate for. As a result of all of these inconsistencies, the

CG and live action did not match up exactly.

Figure 5.4: The same two sets of screenshots from Figure 5.3 are now superimposed
on top of one another at reduced opacity.

The second series of tests was much more rigorous than the first test. It pro-

vided an absolute comparison between what rotations the system detected and what

rotations were actually occurring in the real world. Viewing the two sets of synced

footage side-by-side and then superimposed on top of one another removed any com-

pensation for inaccuracies the human brain might be doing. Even in this more direct

comparison, the data produced by our system held its own, showing no functionally

significant differences when compared to the live action footage. It always main-

tained a similar orientation to the live action footage and never fell behind in the

timing of movements. It maintained its accuracy well, with the ending position of

the CG scene always closely mimicing the ending position of live action scene, even

after multiple rotations. In the end, the side-by-side and superimposed comparisons

together provide enough evidence to conclude that our system can produce virtual

camera motion that is directly comparable to real camera motion and sufficiently

similar enough to be useful.

5.3 Strengths and Weaknesses

Overall, the system performs quite well. First and foremost, the device works as

intended and has the potential to be genuinely useful. The physical device, along with

the software application, can detect and report pitch, roll, and yaw in real time and

can be connected to Maya with very little difficulty. When compared to live action
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footage shot under the same circumstances, the virtual footage captured with this

system is objectively similar. The system is good at maintaining all the “zero points”

on each axis. In other words, if it is rotated one way and then back to its original

starting location, it reports that it is indeed back in the same starting position, and

not off by more than a fraction of a degree. The system can maintain this accuracy

even after extended use (the longest tests performed were several minutes in length,

which is significantly longer than an average shot in a movie) and multiple rotations.

Data noise is well controlled, and the user has the option to dampen the noise even

further at the expense of precision and responsiveness. The software application

offers myriad options to the user, and facilitates a quick, iterative workflow.

The ease of expansion of the physical device is a great advantage of the system.

To add the analog trigger to the system, very little physical electronics work was

needed, and only a few additional lines of code were required. The additional physical

control was added without having to change the core code written for motion capture.

Thanks to the Arduino board, the system can accept several more controls if need

be, which allows for extensive customization options.

The system does have a few weaknesses. The more extreme angles of rotation

(around 90 degrees in the pitch and roll and 180 degrees in the yaw) tend to be

less precise when measuring angle changes than when the angles are less extreme.

These types of angles tend to be rare in real cinematography (i.e. most camera

operators or camera rigs cannot even physically roll a full 90 degrees), but it is still

a weakness of the system. There is a small amount of lag between moving the device

and the motion registering on-screen in Maya. In our tests the amount of lag was

not significant enough to cause problems. In other words, the lag never reached a

point where it hindered or prevented us from making timed reactions to what was

occurring on-screen. Even so, the amount of lag present could potentially be an
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issue in certain situations. If rotation is too fast (over 300 degrees per second) for

too long (1 to 2 seconds), some of the sensors actually get overloaded and are not

able to report accurate data. Rotations of this speed typically only occur with very

fast camera movements like whip pans. Most other camera movements of that speed

and duration would result in footage so fast and blurry that it would be almost

unusable. Finally, this system was designed to work using a USB cord to connect

to a computer. While USB cords come in a variety of lengths, being tethered to a

computer does not allow for the same freedom of motion or flexibility that a wireless

connection would provide.
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6. CONCLUSION

The primary goal of this research was to develop an affordable, extensible sys-

tem that allowed a user to capture rotational camera motion quickly using physical

motions that mimic the desired camera movements.

This thesis focused on creating a prototype system composed of a physical device

and a software application that work together to produce rotational motion data.

The system developed successfully captures pitch, roll, and yaw motions that very

closely mimic actual motions performed by the user. Using freely available software

and off-the-shelf commercially available hardware means our system is affordable

enough to be built and programmed by an independent individual, and it allows for

very quick and easy expansion of the physical controls. The workflow provided by

the device and software allows for quick iterations, and the physical device facilitates

a what-you-see-is-what-you-get control scheme that traditional mouse-and-keyboard

techniques cannot.

The system is not without its weaknesses, and in certain situations more tra-

ditional methods for creating virtual camera motion would be appropriate. In ad-

dition, though it was possible to generate realistic virtual camera motion with the

tools and processes offered by this thesis in our tests, we must concede that they are

prototypes, and have not been fully tested as artistic tools in an actual production

environment. The quality of this system cannot compare with larger, more expensive

systems developed by professional companies.

Nevertheless, the results of our research clearly show potential for this system.

For smaller productions, it has the potential to be used to effectively and quickly to

achieve the user’s artistic goals in many circumstances, and it can be improved and
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expanded upon to increase its functionality as the situation may require.
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7. FUTURE WORK

The system we have developed in this thesis opens the door to various different

projects, including opportunities to develop new tools and systems to aid the user

in their artistic goals.

The current system is designed only to work with Autodesk Maya. With a few

changes, it could be adapted to work with other 3D software packages such as 3ds-

Max, Cinema4D, Blender, or even proprietary software. The software application is

currently coded in Processing, but could be updated to be used as a plugin for dif-

ferent 3D software packages. A redesign of the software application’s user interface

that follows better UI and UX design principles has the potential to streamline the

workflow of the system.

Further developing the capabilities of the current system could result in additional

value. As previously mentioned, this research did not focus on providing a true

camera-like user experience. Mounting the system to a rig that emulates a real

camera’s weight and feel, while also providing standard on-camera controls like a

zoom, record button, and a viewfinder has the potential to offer an more natural

and intuitive experience than our current system. Adding wireless capabilities via a

method such as bluetooth would for less restricted movement. The system could also

potentially be modified to write to a memory card or other storage device instead of

connecting directly to Maya, which would allow the system to be used without being

connected to a computer.

The current rotational motion sensing capabilities of this system could be adapted

for other uses in the visualzation field. Visual effects professionals often have to

insert computer-generated imagery (CGI) into a real-world footage. If the real world
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footage moves or changes perspective in a shot, the user must use a process called

matchmoving to insure that the CGI moves properly with respect to the real-world

footage. Adapting our system to be mounted on top of a film camera and record

to a memory card would allow the system to capture rotational data while the film

camera captures footage. The captured rotation data could then be accessed during

the matchmoving process to give the user a potentially better starting point than if

he had not had rotational data. Rotational data from this system could also be used

for homebrew head tracking in virtual reality or immersive visualization setups by

using the motion data to adjust the viewing perspective based on how the user is

moving their head.

One obvious future project would be to create a system that captures both ro-

tational and translational motion data for virtual camera control. With rotational

motion capture already developed, the future work would focus on using our ex-

isiting system in the context of another system to capture translational motion. In

particular, we believe the Kinect sensor and its newer successor the Kinect 2 , both

developed by Microsoft, have great potential. The Kinect family of sensors uses an

infrared projector and camera and a special microchip to track movement of objects.

In tech demos Microsoft has demonstrated that at a distance of approximately six

feet away, the Kinect 2 can see the entire human body from head to toe, and can

detect specific hand movements and gestures as well as changes as subtle as whether

or not a user’s eyes are open or whether they are smiling or frowning [25]. This

level of accuracy and fidelity leads us to believe that, with a bit of programming,

the Kinect 2 can potentially perform object tracking that is accurate enough to be

usable for virtual camera motion. The Kinect sensor and a software development

kit for Windows were released during the implementation of this thesis, and several

interesting projects that utilize it have already been developed.
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