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ABSTRACT 

 

Demand in wear and friction reduction drives continuous development of new 

lubricant additives for energy saving in wide engineering applications. In the present 

research, a new approach has been developed in order to modify the viscosity of 

lubricants using novel nanostructured particles.  

Experimental approaches include synthesis, characterization, and tribological and 

rheological investigation of nanoparticles, yttrium oxide (Y2O3), α-zirconium phosphate 

(ZrP), and boron (B)-boron trioxide (B2O3) composite. It was discovered that the sheet-

shaped nanoparticles in particular are effective in friction and viscosity reduction. 

Specifically, friction coefficient was reduced by ~ 40 % and ~ 65 %, 

respectively, when Y2O3 nanosheets and α-ZrP nanoplatelets were added in mineral oil. 

Physical and rheological analyses based on basic principles of fluid dynamics 

were conducted. It was found out that the improved lubricating performance caused by 

the viscosity reduction. The relationship between structure-fluid properties was 

established. It showed that the inclination of 2D nanoparticles in fluid direction reduced 

the viscosity. 

In the present research, fluidic additives for lubricants have been demonstrated 

for the first time. Using 2D nanoparticles provides fundamentally new solution to reduce 

friction-induced energy loss in liquid lubrication. New understandings on nano-fluidics 

and nano-rheology will be beneficial to a broad range of tribology-related applications, 
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e.g., industrial machinery, microelectronic processing, oil production and transportation, 

organic manufacturing, bioengineering, food processing, and pharmaceuticals. 
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NOMENCLATURE 

 

Acronyms 

AFM  Atomic force microscope 

CMP  Chemical-mechanical planarization 

CVD  Chemical vapor deposition 

FESEM Field emission scanning electron microscope/microscopy 

FTIR  Fourier transform infrared spectroscopy 

NP  Nanoparticle 

NS  Nanosheet 

NW  Nanowire 

PPD  Pour point depressant 

SAED  Selected area electron diffraction 

TEM  Transmission electron microscope/microscopy 

WIWNU Within-wafer-non-uniformity 

XRD  X-ray diffraction 

 

Symbols 

P  Pressure 

h  Lubricant film thickness 

Ra  Arithmetic average roughness 

Rq  Root-mean-square average roughness 
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u  Velocity 

η  Viscosity 

σ  Normal stress 

τ  Shear stress 

ρ  Density 
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CHAPTER I 

INTRODUCTION 

 

This chapter provides information necessary to understand background of the 

thesis research regarding lubricant additives and viscosity modification. The state-of-the-

art in two-dimensional (2D) nanomaterials is briefly discussed.  

 

1.1. Lubricant additives 

Friction and wear dominate the efficiency, energy consumption, heat generation, 

and lifetime of machinery. In a passenger car, for example, one-third of the fuel energy 

is consumed to overcome friction in the brakes, engine, tires, and transmission (Figure 

1.1).1 Lubrication is known as a process that a friction/wear-reduction film supports a 

sliding load. The substance that composes the film is a lubricant.  Lubricants are 

consisted of an additives package and a base fluid or fluid-like material. The additive 

percentage varies from 20 % or more to several hundredths of a percent. Lubricants must 

possess certain desirable properties, such as slipperiness, proper viscosity, good 

dispersing and cleaning capability, low pour point, corrosion inhibition, weak volatility, 

low flammability, and nontoxicity. Various additives have been reported to improve 

such.2-4 There is at least one additive in all practically used lubricants. As summarized in 

Figure 1.2, these additives can be categorized into five types: deposit-control, film-

forming, anti-wear, miscellaneous, and viscosity modification. Details of each additive 

will be discussed as follows.  
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Figure 1.1. Fuel energy consumption in passenger cars. Reprinted from reference1 with permission from 

Elsevier (Copyright © 2012). 

 

 

Figure 1.2. Classification of lubricant additives. 

 

1.1.1. Deposit-control additives 

The deposit-control additives enable lubricants to work in a clear environment by 

preventing precipitates from oxidation, wear, and other friction-induced reactions.3 

Generation of deposits during lubrication is a major cause that induces operating 

malfunction. Deposit-control additives include antioxidants, zinc dithiophosphate 

(ZDDP), and dispersant and detergent. 
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1.1.1.1. Antioxidants 

Oxidative or thermal degradation of base liquids results in formation of deposits 

like sludge, carbon, lacquer, varnish, soot, etc. At high temperature, the degradation is 

caused by nitrogen oxides (NOX) and un-reacted oxygen due to partially combustion of 

fuels (Figure 1.3a). As a consequence, oxygenated products form as precursors resulting 

in oil insoluble deposits. Figure 1.3b shows mechanism how deposit precursors form. 

The formation of deposit precursors is initiated by radical generation. Rearrangement or 

disproportionation to carbonyl and olefinic groups in lubricants undergoes during the 

precursor formation. Carboxyl and hydroxyl groups-functionalized precursors are 

capable of polymerizing certain molecules in lubricants to high molecular weight 

products. Polymerization of the oil-insoluble products leads to formation of resin. Resin, 

consisting of highly oxygenated hydrocarbon, is critical in the formation of deposits 

(Figure 1.3c). The resin is oil-soluble when its non-polar to polar ratio is high. The 

dissolving process results in an increased viscosity by oil thickening. If the ratio is low, 

the resin becomes insoluble in lubricants. Varnish exists when the resin forms on a hot 

metal surface. In the presence of solids, water, and carbon, sludge forms from oil-

insoluble resin.  
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Figure 1.3. (a) Deposit-formation mechanism. (b) Formation of deposit precursors. (c) Interaction between 

deposit-forming products. 

 

Generally, oxidation progress occurs following equations (1.1) through (1.2) 

continuously and repeatedly. Oxygen-bearing compounds and unsaturated hydrocarbons 

form via branching reactions of hydroperoxide molecules [equation (1.4)]. The resultant 

high molecular-weight polymers are insoluble in the lubricants. Meanwhile, 

neutralization of the unsaturated hydrocarbons forms more oxygen-bearing compounds, 

e.g. acids, ketone, aldehydes, etc. 

• •

• •
2

R H   R  +  H                                                                                            (1 .1 )

R  +   O   R O O                                                                             




• •

• •

          (1 .2 )

R O O  +  R H   R O O H  +  R                                                                        (1 .3 )

R O O H   R O +  O H                                                                          



          (1 .4 )

 

In order to get rid of deposit during the lubrication, resistance to oxidation needs 

to be enhanced. Antioxidants are used to delay onset of the oxidation and minimize the 
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oxidative degradation. There are three types of antioxidants: primary antioxidants (PA, 

radical scavengers), secondary antioxidants (SA, peroxide decomposers), and metal 

deactivators (MD, chelating agents). PA inhibits the chain oxidizing reactions by 

donating hydrogen atoms to stabilize the radicals. Hindered aromatic amines and 

phenolics are two major classes of PA additives. SA reduces the peroxides and represses 

the oxidization. Phosphorus and/or sulfur compounds, thio-ethers, and phosphites are 

examples of SA additives. MD reduces chemical activity of the metal ions via forming a 

stable coordination complex with chelating agents. The MD additives show the 

antioxidant capability as well. Nowadays, many antioxidants have been widely used in 

metal-working fluids, hydraulic fluids, greases, gear oils, and engine oils. They are: 

phosphorus/sulfur compounds, boron compounds, hindered phenolic compounds, 

aromatic amine compounds, and organometallic compounds (metals: alkaline metals, 

molybdeum, copper, zinc, etc). 

 

1.1.1.2. Zinc dithiophosphate (ZDDP) 

ZDDP [(4(RO)2PS2)2Zn] is a family coordination complex, in which zinc 

chelates with the anion of dithiophosphoric acid. The zinc atom is sp3 hybridized 

coordinate with four sulfur atoms. Zn-S chelating arrangement in monomeric ZDDP is 

symmetrical (Figure 1.4 a). In lubricants, ZDDP molecules presents as oligomer, 

tetramer (Figure 1.4b), trimer, or dimer, as well. 
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Figure 1.4. (a) Symmetrical molecular structures of monomeric ZDDP. (b) Molecular structure of ZDDP 

tetramer. R = alkyl, phenyl, or alkylphenyl. 

 

Affinity of ZDDP to alkyl hydroperoxides and peroxy radicals entails its deposit-

control capability. When the alkyl hydroperoxides exist in lubricants, ZDDP can be 

oxidized. Basic ZDDP salt forms through its rapid initial reaction (1.5) with the 

hydroperoxide (R'OOH). The alkyl hydroperoxide decomposition occurs via its reaction 

(1.6) with dialkyldithiophosphoryl radical, leading to formation of 

dialkyldithiophosphoric acid. Inert oxidizing products then form via a reaction (1.7) of 

the alkyl hydroperoxide with the dialkyldithiophosphoric acid. The oxidation products 

are dialkyldithiophosphoryl sulfides, which have little reactivity as antioxidant. 

 

Furthermore, ZDDP can inhibit the oxidation of lubricants by reacting with 

peroxy radicals [see reaction (1.8)]. Dithiophosphate radicals form by reacting ZDDP 
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with the alkyl peroxy radical (R1O2
•). Another dithiophosphate radical (R2O2

•)-assisted 

intramolecular dimerization of the dithiophosphate radical leads to formation of 

dialkyldithiophosphoryl disulfide. The disulfide is inert to the oxidation. As an 

antioxidant, ZDDP not only destroys the alkyl hydroperoxide, but also acts as an alkyl 

radical scavenger. 

 

 

1.1.1.3. Dispersant and detergent 

Suspension of unwanted oxidization-produced deposits is an important property 

for lubricants. Dispersant and detergent are used as the additives to suspend the deposits 

in lubricants. About 40 vol % of a practical lubricant is made up with the dispersants and 

detergents. Associating with extra base, metal salts of organic acids are the most 

common detergents used in lubricants. Calcium, magnesium, potassium, and sodium are 

the extensively used metals in detergents. The so-called "soap" is the organic groups 

from the detergent. Detergent molecules contain an oleophilic hydrocarbon group and a 
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polar group (Figure 1.5a). The polar group can be selected from carboxylate, phenate, 

and sulfonate. As discussed above, lubricant oxidation results in the formation of 

oxygenated materials, such as ketones, aldehydes, and acids. In the presence of 

detergents, polar oxidizing deposits are suspended in the lubricant (Figure 1.5b), while 

the oxidation-generated acids are neutralized. Dispersants are high-molecular-weight 

polymers with the similarly functionalized/polarized end groups. Dispersants are capable 

of suspending non-acidic oxidizing deposits, e.g. resinous oxygenates, aldehydes, and 

alcohols. The suspension of deposits by dispersants occurs in five different ways: 1) 

decrease of interface/surface energy of the polarized species; 2) inclusion of the 

undesirable species in micelles; 3) prevention of colloids from agglomeration; 4) 

modification of surface of soot particles; and 5) elimination of the deposit adherence to 

metal surfaces. 

 

 

Figure 1.5. (a) A typical detergent molecular structure. (b) Polarized oxidizing deposit is suspended in 

lubricant oil. 
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1.1.2. Film-forming additives 

In order to save energy and minimize wear, film-forming additives are used to 

reduce friction in lubricants via forming either a dry or a wet film on solid surfaces.  As 

shown in Figure 1.6a, the solid surfaces interact with such additives via chemical 

reaction, chemical adsorption (chemisorption), or physical adsorption (physisorption).5,6 

The interacting strength of chemical reaction is stronger than chemisorptions, which is in 

turn stronger than physisorption. Both organic and inorganic film-forming additives have 

been widely used in lubricants. Common organic film-forming additives include: 1) 

Polytetrafluoroethylene (PTFE); 2) sulphurized hydrocarbons and fats; 3) 

dithiophosphoric, dithiocarbamic, or carboxylic acid coordinated transition metallic 

complexes; 4) phosphorous or phosphoric acid and alcohol esters; and 5) carboxylic 

acids, amines, fatty alcohols, and their derivatives. The organic film-forming molecule 

consists of a long-chain hydrocarbon or its derivatives and a functionalized end group. 

The molecular chains extend to the lubricant while the end group interacts with the solid 

surface (Figure 1.6b). The interaction of a metal surface with the organic film-forming 

additives is schematically shown in Figure 1.6c.  
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Figure 1.6. (a) Surface-additive interacting mode;5 (b) additives adsorption on the metal surface;7 (c) 

interaction of a metal surface with the organic film-forming additives.7  

 

In addition, layered inorganic materials, e.g. MoS2, WS2, h-BN, and graphite, are 

another type of film-forming additives. Such solid lubricants are able to prevent the 

mating surface from asperity contact via exfoliation of their layered structures (Figure 

1.7). As effective friction modifiers, film-forming additives should meet the following 

requirements: 1) The layered additives must orient parallel to the lubricant flow; 2) Yield 

strength along the sliding direction should be low enough for a small friction coefficient; 

3) The adhesion to substrate should be higher than the shear forces loaded to the film; 
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and 4) Continuous lubricant film should be maintained with the addition of film-forming 

additives, in which plastic deformation of lubricant molecules is avoided. 

 

 

Figure 1.7. Exfoliation of the inorganic film-forming additive. 

 

1.1.3. Anti-wear and extreme-pressure additives 

Under the conditions of high load, low speed, or little viscosity, high asperities 

on the mating surfaces interact with each other. This occurs initially through an 

elastohydrodynamic-lubrication (EHL), and later via a direct contact. The asperity 

interaction leads to friction and wear on the mating surfaces. Anti-wear additives are 

introduced, especially under extreme-pressure, to reduce wear and keep the mating 

surfaces from seizure. Anti-wear additives protect the surfaces in various ways: some 

chemically bond with the surface and modify the material removal process; some 

establish replenishable surface layer reducing the local shear stress; the others deposit 

thick layers on the surfaces to prevent the asperity contact. Organophosphorus and 

organosulfur compounds (Figure 1.8) are the most widely used anti-wear additives. 8,9 

Lead compounds that are coordinated with carboxylic acids are usually used with sulfur-
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based compounds. Oil-soluble chlorinated and phosphorous-sulfur substances perform 

well as anti-wear additives as well.  

 

 

Figure 1.8. Commonly used anti-wear additives.3 

  

In addition, discovery of ZDDP is one of the most important advances in anti-

wear additives. Asperities react with the ZDDP to reduce the possibility of the contacts 

between mating surfaces. Thermal degradation of ZDDP leads to the formation of sulfur, 

which reacts with metal surfaces resulting in a thin layer of sulfide. Simultaneously, with 

incorporation of sulfur, phosphate from ZDDP reacts with metal to produce an 

amorphous meta-phosphate layer. In such a “glass” phosphate region, metallic cations 

are neutralized, and stabilization on metal surface is obtained. The anti-wear efficiency 

of ZDDP is highly dependent on the surface rubbing extent and the operating 

temperature. In addition, wear rate is found to be directly proportional to the 
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concentration of alkyl hydroperoxide in lubricants.10 This is because that oxidation of 

ferrous metals happens through reactions (1.9) and (1.10). The ZDDP and its derivatives 

are capable of neutralizing the hydroperoxides via reactions (1.5) through (1.8). Wear 

rate is thus reduced due to the addition of ZDDP. 

• 2

2 ?

2R O O H  + Fe  2R O  + 2O H  + Fe                                   (1.9)

R O O H  + Fe   R O  + O H  + Fe                                      (1.10)

 

  




 

Under extreme pressure, anti-scuffing additives are used to protect metal surface 

from forming metallic compounds. After chemical-thermo reaction between metal 

surface and anti-scuffing additives, an extremely durable protective layer is formed on 

the mating surfaces. This layer is able to withstand ultra high pressures and temperature. 

Scoring and seizing between the mating surfaces are effectively eliminated. The metallic 

compounds have high resistance to sliding-shear. However, the anti-scuffing additives 

have strong reactivity. Corrosion and metal fatigue are the adverse effects that are often 

encountered using the anti-scuffing additives. Extreme cautiousness must be taken when 

utilizing anti-scuffing additives under high pressure. 

 

1.1.4. Miscellaneous additives 

The lubricating process often faces problems like grease stringiness, lubricant 

adherence, fluid leakage, surface adsorption, and corrosion. Miscellaneous additives are 

thus added to solve such problems. They are tackifiers,11 antimisting agents,12 seal 

swelling agents,13 surfactants,14 and corrosion inhibitors.15,16 Tackifier is used as additive 

to provide stringiness for a lubricant to a substance. Common tackifiers are soluble high 
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molecular-weight polymers with vegetable- or mineral-based diluents. In order to ensure 

the tackifier solution is tacky, its molecular chain should be good at extension in 

lubricants. This implies that the conventional tackifiers can be used as antimisting 

additives.2 Seal swelling additives are used in lubricant to prevent seal failure. Most 

common seal-swelling additives are tris-phosphite ester, dihexylphthalate, tridecyl 

alcohol, di-2-ethylhexylsebacate (DOS), and di-2-ethylhexylphthalae (DOP). In 

particular, surfactants are critical ingredients for lubricants, and their microstructures 

assembled in liquid are shown schematically in Figure 1.9. Their main functions include 

defoaming, dispersion, (d)emulsification, and solubilization. Finally, various types of 

corrosion occur when lubricants are used. As several organic acids have been used as 

lubricant additives, it is indeed necessary to enhance corrosion resistance of the substrate 

metals using corrosion inhibitors. A passivated surface forms on metal surface by 

reacting the corrosion inhibitor with the bearing substrate. Such a protective layer keeps 

corrosive ingredients in lubricant from attacking or approaching the metals. The 

corrosion-resistant surface is bonded to the metal chemically or adsorbed on it 

physically. Corrosion inhibitors can be oxygen scavenger, hydrogen poisons, cathodic 

inhibitor, anodic inhibitor, or (non-)oxidizing anion. They are typically selected from 

nitrites, chromates, oxidates, sulfonates, phosphates, hydrazine, carboxylates, alkyl 

amines, amine salts, Na3AsO4, As2O3, and nitrogen-ring-structured. 
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Figure 1.9. Surfactant microstructures assembled in liquid.2 

 

1.2. Viscosity modification for lubricants 

Viscosity is a property that determines the lubricant film thickness as well as its 

rheological behavior.17 Unlike the lubricant additives discussed above, viscosity 

modifiers are the only additives that can significantly affect the fluid dynamic behaviors 

of the lubricants. Particularly in hydrodynamic lubrication regime, fluid dynamic 

property of the lubricant dominates the lubricating efficiency and affects the energy 

consumption. Generally, friction is small when the viscosity of the lubricant is low, 

provided that the gap between two mating-sliding surfaces is fully filled with a liquid 

lubricant. This research aims at developing a new method to modify the viscosity of a 

lubricant, and finally improve its tribological performances. 
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1.2.1. Organic viscosity modifiers 

Traditionally, viscosity-modification additives are used to improve viscosity-

temperatures performance of lubricants.18,19 Pour point depressant (PPD) and oil-

soluble-polymers, such as olefin copolymers (OCP), polyisobutylene (PIB), styrene 

isoprene copolymer (SIC), styrene butadiene copolymer (SBC), and polymethacrylates 

(PMMA), are used as organic viscosity modifiers. For most lubricants, viscosity 

decrease with temperature. The polymer molecules listed in the left of Figure 1.10a 

could expand with temperature and counteract the oil thinning. This would lead to a 

decent viscosity at relatively high temperature, as shown in the right of Figure 1.10a. On 

the other hand, industrial lubricants often contain some dissolved wax. A rigid wax 

crystal structure forms as the lubricant is chilled (the left in Figure 1.10b). When an oil 

or fuel is cooled to certain temperature, it will stop flowing. The temperature is the pour 

point. Pour point depressant (PPD) is the second type of organic viscosity modifiers. By 

inserting the organic molecule branches into the rigid wax structure (the middle in 

Figure 1.10b), interlocking reduction enables the lubricant to flow at low temperature 

with low viscosity (the right in Figure 1.10b). When lubricants are used at a fixed 

temperature, such organic additives are unable to effectively modify the viscosity. 
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Figure 1.10. Viscosity-temperature properties of lubricants using polymers (a) and PPD (b). 

 

1.2.2. Einstein relationship between additives and viscosity 

The rheological properties of colloidal suspensions have garnered increased 

interest in a wide array of fluidic and tribological disciplines. Einstein predicted the 

viscosity of low-concentration hard-sphere suspended liquids, which initiated the long 

history in studying the rheology of suspensions.20-25 Einstein’s theory only permits the 

viscosity of a suspension to increase linearly with the addition of particulates. Einstein’s 

relationship has been extensively studied experimentally, 26,27 theoretically, 28-33 and 

through computational simulations. 34,35 The rheological performance of the suspension 

is dependent on hydrodynamic phenomena solely, when the size of particulate additives 

is large (~ several µm).36,37 The viscosity increases with the volume fractions since the 

colloidal effect is ignored. For the suspension of non-Brownian spherical inorganic 
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particles, viscosity increases with the additives due to shear migration, particle 

roughening, hydrodynamic-assisted aggregation, shear-induced particle pressure, and 

anisotropic radial suspension.38-44 Rheological investigation becomes complicated, when 

the non-spherical particles are investigated. Particles are found to gel when their aspect 

ratios are very low or very high.45 For example, flocculation of rod-like nanoparticles is 

believed to increase viscosity of the suspension, 45,46 while shear thickening is observed 

for non-spherical particles-suspended colloids.47 In the presences of the non-spherical 

particles, extensional and shear flows become pronounced, from which the high 

viscosity can be understood by interpreting the suspension hydrodynamic fluid behavior. 

Additionally, additives are often suspended in surfactant solutions and polymer 

solutions or melts in various applications. The flow structure impacts the variation of 

viscosity significantly due to the viscoelasticity of the dispersing medium. Under 

shearing, string-like flow structure is developed in a viscoelastic polymer solution by 

suspending particles in it.48 The shape of particle is critical for viscosity increase in such 

viscoelastic suspension. When mono-dispersed organic particles are added in a 

viscoelastic liquid, viscosity is increased due to the suppression of extensional flow.49 

Grafting density on the surface of inorganic nanopraticles affects the fluid dynamic 

behavior of a polymer melts. Aggregation of the nanoparticles induces the increase in 

viscosity due to repression of free length of the polymer chain.50,51 In brief, conventional 

particulate additives show the viscosity increase for the base liquid under shearing or 

sliding. In order to obtain an efficient lubrication and save energy consumption, the 

additives that can reduce the viscosity of lubricants are highly desirable. 
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1.2.3. Non-Einstein-like viscosity reduction 

Recent studies suggested that the addition of organic nanoparticles could affect 

the viscosity of a fluid in ways that do not follow linear Einstein’s model. 52-54 In the 

polymer suspension, if the correlation length of the organic molecules becomes 

comparable with the size of the suspended particles, abnormal viscosity reduction is 

obtained. This is due to the additives-induced change in free volume and conformation 

of the polymer by minimizing the extraneous enthalpic effects.55 Such a viscosity 

reduction is promising in optimize performance of the lubricants. It is noted that sheet- 

or platelet-like 2D nano-particles have been studied as interfaces between two liquids or 

liquid and gas.36,37 In solid-stabilized emulsions, the interfacial adsorption on layered 

structure is able to suppress the droplet coalescence.56 Due to the large surface area, 

emulsions could be well stabilized by using the 2D shaped additives, resulting in a 

viscosity reduction. Capillary force-driven particle bridging is crucial for the suspension 

of nanoparticles in colloids.57-59 The sheet-like 2D nano-additives could eliminate 

particle aggregation and effectively modify its viscosity.60 Therefore, lubricant 

performance would be improved, if a non-Einstein-like viscosity additive is used in it. 

As briefly discussed here, sheet-like 2D nanomaterials could be a proper candidate for 

the desirable viscosity modification in the liquid lubricants. The 2D nanomaterials that 

may be suitable for this research are being concisely reviewed in the following section. 
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1.3. Two-dimensional nanomaterials 

Recently developed nanomaterials additives are promising in enhancing 

lubricating efficiency.61-67 The two-dimensional (2D) nanomaterials have been studied 

extensively as solid lubricants.68-74 Their common characteristic is the layered structures. 

Within each atomic layer, covalent bonding bonds atoms together, and van der Waals 

interaction presents between two adjacent layers. Their applications as lubricant 

additives focused on film-forming additives mainly.65,75-79 Little attention has been paid 

to the capability of 2D nanomaterials in modifying the lubricants’ fluid dynamics. Some 

representative 2D nanomaterials are summarized in Table 1.1. 

 

Table 1.1. Current 2D nanomaterials library. Some representative structures are listed. 

2D category& 
representative 
structure 

Representative materials 
Referen
ces 

Graphene family 

 

 Graphene, Fluoro-graphene, Graphene 
oxide, BCN, h-BN (white graphene). 

80-87 

2D Chalcogenides 

 

 MoS2, WS2, MoSe2, WSe2. 

 Semiconducting chalcogenides: MoTe2, 
WTe2, ZrS2, ZrSe2, TiS2, VSe2, GaSe, GaTe, 
InSe, Bi2Se3, Bi2Te3, Bi2MnTe4, etc. 

 Metallic  dichalcogenides:  NbSe2, 
NbS2, LaSe, TaS2, NiSe2, etc. 

88-94 

95-107 

108-112 
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 Among the 2D nanomaterials listed in Table 1.1, graphene is the most common 

component in van der Waals heterostructures and devices.80 Graphene can be described 

as one or several-atom thick layer of graphite, making of carbon atoms in a honeycomb 

lattice. Many physical properties in graphene exceed that in any other materials, and 

some of them even reach the theoretical limits.83,155-158 Fluorographene, graphene oxide, 

and boron carbon nitride (BCN) are three graphene derivatives that are also widely used 

as 2D nanomaterials. Fluorination of graphene into fluorographene leads to poor 

electronic quality.86 Non-stoichiometric graphene oxide84 and monolayers of BCN82,85 

are also considered in designing 2D van der Waals heterostructures. Similar to the 

graphene and its derivatives, hexagonal boron nitride (h-BN) or "white graphene" 

consists of alternating nitrogen and boron atoms in a honeycomb lattice. The sp2-bonded 

2D atomic plane enables it to be the most studied layered material after graphene.81,85  

2D layered materials such as metal dichalcogenides and transition metal oxides 

have attracted intense research interest as well.95 More than 40 different types of metal 

dichalcogenides present in nature depending on the combination of transition metals and 

chalcogen.88,159 Metal dichalcogenides have a MX2 stoichiometry. The transition metal 

atoms have trigonal prismatic or octahedral coordination, and the overall symmetry of 

MX2 is rhombohedral. In the layered structures of X-M-X, a metal atomic plane (e.g. W, 

Mo, Nb, Zr, V, Ni, and Re) separates two hexagonal planes of the chalcogenatoms (e.g. 

Te, Se, and S). By varying atom coordination and stacking orders, 2D metal 

dichalcogenide nanomaterials form when adjacent layers bond together weakly.  
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Some oxides exhibit 2D structural feature at nanoscale as well.113,125,160 These 

include mica, bismuth strontium calcium copper oxide (BSCCO), WO3, MoO3, V2O5, 

TiO2, perovskite-like crystals, etc. The oxide crystals tend to react with water or 

hydrogen in air via losing the oxygen. Due to quantum confinement, 2D atomically thin 

oxide often have larger band-gaps and lower dielectric constants than the bulk 

counterparts.113 2D hydroxides [e.g. Ni(OH)2, Eu(OH)3, Y(OH)3, etc] that can be 

exfoliated down to trilayer, bilayer, and monolayer sheets are another family of 2D 

nanomaterials.114,160  

Ternary nitrides and carbides are the latest 2D nanostructured materials known as 

the MAX phases. Chemical composition of the MAX phases is Mn+1AXn, where n = 1, 2, 

or 3. “X” is N and/or C. “A” is an element from group 13, and Al has been widely used. 

“M” is a transition metal, e.g. Ti, Nb, V, and Cr. MAX phases are layered hexagonal, in 

which a unit cell contains two formula units. The element “A” layers interleave with 

near-close-packed “M” layers. The “X” atoms fill the octahedral sites in between “M” 

and “A” layers. In the presence of MAX phases, the nitrides and carbides could be 

exfoliated into layered nanostructures via hydrogen fluoride treatment and 

sonication.140,141 The other common 2D nanomaterials include metal phosphonates or 

phosphates,146-148 III–VI semiconductor,149-151 and metal halides.152-154  

When solid additives are added into a lubricant, fluid drag that acts on the solid 

surface affects the fluid viscosity and the hydrodynamic pressure.161,162 It has been 

reported that the shape of an additive affects the amount of fluid drag.163,164 The 

additives that align in the fluid direction could reduce the fluid drag. Meanwhile, heat 
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and mass transfer between two adjacent flow layers also impacts viscosity 

modification.165 At the localized contact area, the 2D nano-shaped architecture is capable 

of changing the mass and heat transfer for the relative motion of the fluid. In such, the 

viscosity and friction can be modified using the 2D nanomaterials as lubricant additives.  

 

1.4. Summary 

This chapter summarized the traditionally used lubricant additives and viscosity 

modifiers, the classic Einstein viscosity theory, and two-dimensional (2D) 

nanomaterials. 

The challenges in improving machinery efficiency and saving energy 

consumption have led to the innovation of lubricant additives. Particularly for a fluidic 

lubrication, viscosity reduction is highly desirable for an energy-saving operation. 

However, none of the conventional additives is capable of modifying the fluid dynamic 

behavior. This is due to fact that the conventional additives could increase viscosity 

following the classic Einstein theory. It is noted that 2D nanomaterials are found to 

modify rheological properties of solid-stabilized emulsions in an abnormal way. 

Therefore, the present dissertation research aims at developing a new type of non-

Einstein-like lubricant additives.  

Following chapters discuss details of this research. Motivations and objectives 

and the materials and methods are described in the Chapters II and III, respectively. 

Synthesis and characterization of nanomaterials are delivered in the Chapter IV. The 

Chapters V and VI cover the tribological examination and the rheological investigations. 
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Theoretical analyses are conducted at the same time in those chapters. Finally, the 

Chapter VII presents conclusions and future works. 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

In order to reduce energy consumption during fluidic lubrication, the reduction of 

viscosity is highly sought after. As discussed in Chapter I, conventional lubricant 

additives cannot fulfill such needs. Viscosity often increases with additives, following 

the classic Einstein theory. Therefore, new types of additives that are able to reduce 

viscosity are desired. It is noted that 2D nanoparticles in solid-stabilized emulsions could 

affect fluid dynamic behavior in an abnormal way. These 2D nanomaterials are believed 

to be a promising candidate for the desired viscosity reduction in fluidic lubrication. 

Not all 2D nanomaterials listed in Table 1.1 of Chapter I are suitable for 

modifying the fluid dynamic behavior of lubricants. The reported graphite-based 

materials and the chalcogenides are effective in boundary lubrication; however the low 

surface energy of the basal planes after exfoliation limits their applications in fluidic 

lubrication. The 2D ceramic MAX phases have a high possibility to induce noticeable 

scratch and wear on the mating surfaces. There are also corrosive elements in the 2D 

metal halides, which would affect viscosity undesirably and hinder lubrication. In 

addition, the expensive cost for 2D III–VI semiconductor materials limits their large 

scale application in the lubricant industry. Hence, the 2D nanomaterials that will be 

synthesized in this research are chosen from 2D oxide and 2D phosphates. Such 

materials have relatively strong inter-atomic-layer bonding that makes them resistant to 

exfoliation. They also have high surface energy, which enables the edges and the 
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dangling bonds of the basal planes to be passivated by the environment; i.e. lubricant 

molecules in this study. Considering their their feasibility, yttrium oxide (Y2O3) 

nanosheets, α-zirconium phosphate (ZrP) nanoplatelets, and boron (B)-boron trioxide 

(B2O3) composited nanoparticles will be synthesized and characterized for the 

tribological and rheological investigations in this research. 

The approaches and the major objectives of this research are addressed in the 

following flow chart. 

 

 

Figure 2.1. Research flow chart. 

 

1) Synthesizing and characterizing the nanomaterials 

As discussed above, three 2D nanomaterials are used in this research: Y2O3 

nanosheets, α-ZrP nanoplatelets, and B-B2O3 composited nanoparticles. Hydrothermal 

synthesis is a facile but powerful method to prepare a broad range of nanomaterials. It 



 

28 

was used to synthesize the α-ZrP nanoplatelets, and is adopted in the one-pot preparation 

of the Y2O3 nanosheets. The B-B2O3 nanoparticles are synthesized using a home-built 

chemical vapor deposition system. The size of the nanoparticles is regulated by 

controlling the deposition rate. Unique properties based on the 2D morphology or 

structures are characterized prior to the tribological and rheological investigation. 

 

2) Improving tribological performance using 2D nanomaterials 

In a viscous lubricant, friction varies as a function of load for different speeds. 

The variation is represented by the Stribeck curves. The Stribeck curves for both 

aqueous and non-aqueous lubricants are being studied with and without the nano-

additives. In such, the tribological performance of different nano-additives is examined. 

Improvement in lubricating performance is highly anticipated based on the 2D 

nanomaterials proposed here. The tribological examination would finally provide a 

general guidance for designing and developing a new generation of fluidic lubricants. As 

an example, chemical-mechanical planarization of copper are carried out to prove the 

improved tribological performance. 

 

3) Exploring non-Einstein-like viscosity additives 

For a fluidic lubricant to be effective, viscosity should be reduced. However, 

inorganic particulates would increase viscosity, following the classic Einstein theory. 

Therefore, reduction of viscosity using the conventional lubricant additives is 

challenging. It is of great interest to modify the lubricant’s fluid dynamic behavior by 
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exploring novel nanomaterials-based additives. A rheological investigation of lubricants 

possessing non-Einstein-like behavior is conducted. Such lubricants are designed to 

work efficiently with the addition of the 2D sheet-like nanoparticles. 

 

4) Establishing a relationship between structure and fluid-lubricants 

The ultimate goal of this research is to obtain an understanding and to establish 

structure-fluid -lubrication relationships for the 2D nano-additives. Fluid mechanics 

calculations, viscous flow analysis, and computational simulation are carried out to 

achieve this goal. For the lubricant flow with different nano-additives, flow-rate 

distribution, and viscosity could be calculated using the Navier-Stokes equation and the 

Reynolds equation, respectively. The reasons for the viscosity-induced lubrication 

improvement can be addressed from this analysis. A particle hydrodynamic simulation is 

used to confirm the experimental results and the fluid mechanics calculations. The 

fundamental rheological and tribological investigations will enable a better 

understanding of the nano-fluidic behaviors. The nano-fluidic mechanism will be finally 

developed. 
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CHAPTER III 

MATERIALS AND METHODS 

 

This chapter describes methods and procedures utilized in the current research. It 

has five sections. The first two sections describe chemicals and synthesis of 

nanomaterials, including yttrium oxide (Y2O3) nanosheets (NS), α-zirconium phosphate 

(ZrP) nanoplatelets, and boron (B)-boron trioxide (B2O3) composited nanoparticles. The 

third section contains technique details of characterization. Specifics of tribological and 

rheological experiments (including chemical-mechanical planarization) are discussed in 

the fourth and fifth sections. 

 

3.1. Materials 

The following chemicals were purchased from Sigma-Aldrich, USA: Y2O3 

nanopowder, zirconyl chloride octahydrate (ZrOCl2.8H2O), boron tribromide (BBr3), 

concentrated sulfuric acid (H2SO4, ACS reagent), nitric acid (HNO3, ACS reagent), 

phosphoric acid (H3PO4, ACS reagent), ammonium hydroxide solution (NH4OH, 28.0-

30.0 % NH3 basis), potassium hydroxide (KOH), citric acid, benzotriazole (BTA), and 

hydrogen peroxide (H2O2), heavy mineral oil,  aluminum nitrate nonahydrate 

[Al(NO3)3·9H2O], magnesium nitrate hexahydrate [Mg(NO3)2·6H2O], manganese nitrate 

tetrahydrate [Mn(NO3)2·4H2O], iron nitrate nonahydrate [Fe(NO3)3·9H2O], nickel nitrate 

hexahydrate [Ni(NO3)2·6H2O], copper nitrate trihydrate [Cu(NO3)2·3H2O], zinc nitrate 

hexahydrate [Zn(NO3)2·6H2O], palladium nitrate dehydrate [Pd(NO3)2·2H2O], silver 
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nitrate (AgNO3), indium nitrate hydrate [In(NO3)3·xH2O], holmium nitrate pentahydrate 

[Ho(NO3)3·5H2O], dysprosium nitrate pentahydrate [Dy(NO3)3·5H2O], and gadolinium 

nitrate hexahydrate [Gd(NO3)3·6H2O]. All chemicals were used without further 

purification. Glass slides and E52100 alloy steel ball (Ø 6.35 mm) as the sliding 

counterparts were purchased from VWR International and McMaster-Carr, respectively. 

Compressed gases of argon (Ar) and hydrogen (H2) were purchased from Praxair 

Distribution, Inc. A commercial SiO2 slurry was purchased from Fujimi Corporation for 

CMP experiment, and the SiO2 nanoparticles (Ø ~ 35 nm) were purchased from Cabot 

Electronics co. Boron (B)-doped-silicon (Si) wafer (doping concentration between 1013 

and 1016 atoms per cm3) and Cu film (~2 μm in thickness) coated Si wafers were 

purchased from Siltronic AG. 

 

3.2. Synthesis of nanomaterials 

3.2.1. Y2O3 nanosheets 

In the present study, multi- and single-phase Y2O3 nanosheets (NS) were 

synthesized via a hydrothermal method.124 In a typical synthesis, 0.4 g commercial Y2O3 

powder was first dissolved in 80 mL HNO3 solution (3.4 wt %) at 50 °C to form a clear 

and transparent yttrium nitrate [Y(NO3)3] solution. After adding 320 mL deionized (DI) 

water, a KOH solution (15wt %) was used to adjust the pH value of the mixed solution 

to 8.7 rapidly. White Y(OH)3 floc appeared as soon as the KOH was added to the 

Y(NO3)3 solution. This turbid solution was filled with DI water up to 600 mL and 

transferred into a 2 L general purpose non-stirred pressure vessel (4622Q, Parr 
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Instrument) after stirring for 10 min. Schematic diagram of the pressure vessel is shown 

in Figure 3.1. The vessel was sealed and heated at different temperature, ranging from 80 

°C to 240 °C, for 12 hours. Multiphase irregular Y2O3 nanostructure, multiphase Y2O3 

NS, and multiphase Y2O3 nanowire (NW) were synthesized at 80 °C, 120 °C, and 240 

°C, respectively. They were collected after the cooling the vessel to room temperature. 

Possible unwanted ionic remnants were removed by rinsing with great amount of DI 

water. Final products were dried in air at 70 ˚C for 24 hours after filtration. In order to 

investigate the metal ion-assisted transformation of multiphase Y2O3 NS to single-phase 

cubic Y2O3 NS, different metal ions from their nitrates were used in the synthesis. They 

were magnesium (Mg), aluminum (Al), manganese (Mn), iron (Fe), nickel (Ni), copper 

(Cu), zinc (Zn), palladium (Pd), silver (Ag), indium (In), gadolinium (Gd), dysprosium 

(Dy), and holmium (Ho). A molar ratio of 80 to 1 was selected for the yttrium ion to the 

metal ion with the subsequent processes being the same as that for the multiphase Y2O3 

NS.  

 

 

Figure 3.1. Schematic diagram of the Teflon®-lined pressure vessel. 
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3.2.2. α-ZrP nanoplatelets 

Similarly, two dimensional α-ZrP nanoplatelets used in this research were 

synthesized using the hydrothermal method as well.166,167 In a brief, 10 mL of ZrOCl2 

aqueous solution (13.5 mmol of ZrOCl2.8H2O) was added drop wise to a 30 mL solution 

of H3PO4 (12M) into a 80 ml Teflon®-lined pressure vessel under constant stirring (final 

[H3PO4] = 9M) . Then the pressure vessel was sealed and heated at 200 °C for 24 hours. 

The product was washed several times with DI water and dried at 70 °C. The resulting 

powder was grounded with a mortar and pestle into fine particles. 

 

3.2.3. B-B2O3 composited nanoparticles 

In the present study, a chemical vapor deposition (CVD) method was developed 

to synthesize α-rhombohedral boron nanoparticles with different sizes. As schematically 

shown in Figure 3.2, Ar was used as carrier and protective gas, and H2 was used as a 

reductant for BBr3. Flow speeds were regulated by a mass-flow controller (1179A, MKS 

Instruments). Before these gases passed the flask containing 2ml of BBr3, they were 

thoroughly dried with concentrated H2SO4 and molecular sieves. The B-doped-Si 

substrate was loaded in a ceramic boat and placed in the tube furnace (TF55030A-1, 

Lindberg-Blue M Thermo Scientific) before synthesis started. Initially, the quartz 

tubular chamber was purged with pure Ar flow (250 sccm) for 1.5 hours. During 

purging, BBr3 was kept at ~ -70 °C by dry ice and no BBr3 molecules volatilized at this 

temperature. The temperature of the quartz chamber was increased during the same time 

period. Once the quartz chamber reached 900 °C, BBr3 was heated to the volatilizing 
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temperatures above its flash point (-18 °C), and a mixed gas flow of 120 sccm Ar and 40 

sccm H2 was introduced into the chamber. In order to control the growth of boron 

nanoparticles, three different volatilizing temperatures were selected for BBr3, 0 °C, 10 

°C, and 20 °C. The reaction was then maintained until all BBr3 was gone. The 

byproduct, hydrogen bromide (HBr), is hazardous so that the waste gas was purged into 

the concentrated H2SO4 and reacted with NH4OH in order to get ammonium bromide 

(NH4Br), which is a safe agent. After reaction, the ceramic boat was removed when the 

chamber was cooled to the room temperature. Next, the surface of boron nanoparticles 

was oxidized to boron trioxide (B2O3) by exposing them to air at 900 °C for 45 minutes. 

These B-B2O3 composited nanoparticles were then collected for characterization and 

CMP experiment. 

 

 

Figure 3.2. Scheme of the home-built CVD system for synthesis of B-B2O3 composited nanoparticles. 
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3.3. Characterization 

A D8 advance X-ray diffractometer (XRD, Bruker) was used to determine crystal 

structure of the nanomaterials. Cu Kα radiation (λ = 1.5418 Å), operating at 50 mA and 

40 kV, was the X-ray source. A transmission electron microscope (TEM, JEOL 1200) 

was used to examine the size and morphology of the products using accelerating voltage 

at 100 kV. A field emission scanning electron microscope (FESEM, FEI Quanta 600) 

was used to image the morphology features of the 2D sheet-like nanomaterials as well. 

The selected area electron diffraction (SAED) analysis was performed with the 

instrument connected with a high-resolution (HR) TEM (JEOL 2010, accelerating 

voltage at 200 kV). The samples for TEM and SAED studies were prepared by slow 

evaporation of a drop of diluted water solution of the nanomaterials on the carbon coated 

Cu grid at room temperature. An atomic force microscope (AFM, Nano-R2, Pacific 

Nanotechnology) was utilized in this study for the surface measurements. Raman spectra 

were recorded using micro-Raman spectrometer (Raman, Jobin Yvon iHR-320) with a 

light source of He-Ne green laser (532 nm in wavelength). A Fourier transform infrared 

(FTIR) spectrometer (Thermo Scientific Nicolet 380) was used to record the infrared 

spectra at resolution of 4 cm−1 by averaging 250 scans. The powder of nanomaterials 

was measured using the attenuated total reflection (ATR) technique. A small amount of 

the liquid samples was measured after putting it between two blocks of KBr. 

Particularly, current-voltage (I-V) characteristics of different Y2O3 samples were 

measured based on a metal-semiconductor (M-S) junction. Samples of M-S junction 

were prepared by dropping 10 μL different Y2O3 (0.0001 wt %) solution on Cu 
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substrates. All those samples were fully dried at 80 °C. After drying, the Y2O3 particles 

were deposited on the Cu substrate. The I-V characteristic analysis of the M-S junctions 

was conducted using a Keithley 2400 Digital SourceMeter together with a probe system. 

A tungsten probe was placed contacting with the top surface of Y2O3. During the electric 

measurement, the Cu substrate and the tungsten probe were used as the bottom electrode 

and the top electrode, respectively. The I-V measurement was conducted under a 

scanning voltage ranged between -3.0 V and 3.0 V in 1000 steps.   

 

3.4. Tribological and rheological experiments 

During the tribological and rheological experiments, lubricant samples consisted 

of a base liquid (mineral oil or DI water) and the additives (Y2O3 NS or α-ZrP 

nanoplatelets). The additives with different concentrations (1 wt %, 0.5 wt %, and 0.1 wt 

%) were simply dispersed in the base liquid via ultrasonication for 15 minutes before the 

measurements. The coefficients of friction were recorded using a tribometer (CSM 

Instruments). As shown in Figure 3.3, the tribological measurements were carried out via 

a pin-on-disk configuration consisting of a rotating disk (glass slide) and a fixed pin 

(steel ball). 100 μl of liquid (mineral oil or DI water with or without the additives) was 

added on the disk, and the radius of the wear track was set at 3 mm. The reason to set 

this parameter is to avoid spill of the liquid during high speed rotating. The rotating 

speeds were from 10 rpm to 600 rpm under different load, 1N, 0.5 N, 0.25 N, and 0.15 

N. Coefficient of friction at specific speed and loaded was recorded. The duration of 

each test was 1 minute. To plot the Stribeck curve, the averaged friction coefficients 
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were obtained from original data and the standard deviation was used to calculate 

corresponding error. The viscosity was measured using an AR-G2 rheometer (TA 

Instruments, setup is schematically shown in Figure 3.4) with the shear rate ranged from 

10 s-1 to 18740 s-1. During experiments, a stainless steel parallel spindle (Ø 25 mm) 

rotated while the lower Peltier plate was stationary. A test liquid filled the gap of 200 μm 

between parallel plates. The temperature was maintained at 25 °C. Thixotropic behavior 

was investigated by applying a constant shear rate (10000 s-1) to the lubricants for 10 

minutes while tracking the changes of the viscosity in time.  

 

 

Figure 3.3. Diagram of the pin-on-disk testing configuration. 

 

 

Figure 3.4. Schematic setup of AR-G2 rheometer. 
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3.5. CMP experiments using different nano-abrasives 

In the microelectronic manufacturing, CMP process is an important tribological-

based process. A CMP experimental setup is briefly illustrated in Figure 3.5. A rotating 

polishing pad is in contact with a target wafer that is adhered to a rotating head. The 

material on the wafer is removed via wear and abrasion between the rotating pad and 

head. In order to obtain a well planarized surface and enhance material removal, a 

polishing slurry containing different nano-abrasives is continuously supplied through the 

nozzle. As polishing proceeds, efficiency of planarization and materials removal would 

reduce due to deterioration of pad asperity. An ex-situ or in-situ conditioner is needed to 

maintain the asperity. 

 

 

Figure 3.5. Illustration of CMP experimental setup schematically. 
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3.5.1. B-B2O3 nanoparticles as abrasives 

The Cu film (~ 2 μm in thickness) coated Si wafers were used as target substrates 

for CMP experiments using B-B2O3 composited as abrasive in the slurry. Before CMP, 

they were cut into 2 cm × 2 cm, and five pyramidalmicro-indents were made with depth 

of 1μm using a micro-hardness tester (HM2000, Fischer Technology, Inc.) on each of 

them. The line of micro-indents was parallel to the edge of squared Cu-Si wafer and 5 

mm away from it. The distance between each micro-indent was 0.5 mm. These Cu films 

were then CMPed with a Politex polishing pad (Rohm & Haas) that was made of 

polyester and polyurethane. The polishing slurry was composed of citric acid (0.01 M), 

BTA (0.05 wt %), H2O2 (3 vol %), abrasive particles (3 wt %), and DI water. Three 

different abrasive particles were used: 1). pure SiO2 nanoparticles (Ø  ~ 35 nm, Cabot 

Electronics co.) abrasive; 2). pure B-B2O3 composited nanoparticles (sized ~ 5 nm) 

abrasive; and 3). the SiO2 nanoparticles-based abrasive containing the 1 wt % B-B2O3 

composited nanoparticles. Using 1 M of KOH, the slurry pH values were adjusted to 5, 

at which H3BO3 can be dissolved into water with very high concentration.168 Each 

polishing experiment was conducted for 210 seconds using a tribometer (CSM 

Instruments). The Cu films were placed face-down onto the polishing pad. The applied 

load was 2 N (5 KPa), and the rotation speed was maintained at 40 rpm (0.21 cm·s-1). 

The AFM (Nano-R2, Pacific Nanotechnology) was used to analyze the samples before 

and after CMP experiments. 
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3.5.2. Y2O3 nanosheets as abrasives 

In the CMP experiment using Y2O3 NS abrasive, a home-made slurry was used, 

which was composed of citric acid (0.01 M), BTA (0.05 wt %), H2O2 (3 vol %), Y2O3 

NS abrasive (3 wt %), and DI water. A commercial SiO2 slurry (~ Ø 35 nm, Fujimi 

Corporation) was used as-received for comparison in this CMP experiment. Cu film (~ 2 

μm thick) coated Si wafers (Ø 300 mm) were used as target substrates here. These 

wafers were then CMPed with an IKONICTM polishing pad (Rohm & Haas). All 

polishing experiments were conducted using a Universal CMP Tester (Figure 3.6) with 

the same set-up configuration showing in Figure 3.5. Polishing was conducted for 1 

minute. Wafers were placed face-down onto the polishing pad. The applied pressure was 

1 psi (6894.757 Pa), and rotation speeds of the pad and the wafer were maintained at 79 

rpm and 76 rpm, respectively. The speeds were kept close to each other for good 

uniformity in wafer planarization. Each slurry was used to polish four wafers. The 

averaged thickness of the Cu film was measured using a table top four point probe (CDE 

ResMap 273) choosing 80 spots along the diameter of each wafer. The percentage ratio 

of the standard deviation of thickness relative to the averaged value was used to 

calculate the within-wafer-non-uniformity (WIWNU).169-171 A surface profile 

topography system (KLA-Tencor HRP-350) was used to measure the surface roughness 

and the Cu dishing on Si wafers. Results of the WIWNU, the surface roughness, and the 

Cu dishing were presented statistically. 

In addition, frictional behaviors and rheological properties of the slurries used in 

this section were examined separately. In order to solely investigate the frictional 
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behaviors and rheological properties of SiO2 nanoparticles and Y2O3 NS, the 

measurements were conducted in DI water. Friction experiments of Cu wafers were 

carried out using a tribometer (CSM Instruments). IC 1000 polishing pads (Rohm & 

Haas) with SiO2 (3 wt %) and Y2O3 (3 wt %) slurries were used in friction experiments. 

Friction coefficients were recorded during each test for 60 cycles (20 mm per cycle, 20 

mm/s) with an applied pressure of 80 kPa. An AR-G2 rheometer (TA Instruments) was 

used to measure the change of shear stress with shear rate ranging from 30 s-1 to 500 s-1. 

In rheological experiments, three different concentrations were selected for slurries, 0.3 

wt %, 3 wt %, and 10 wt % in DI water. During the measurement, a stainless steel 

parallel spindle (Ø 25 mm) rotated while the lower Peltier plate was stationary. The gap 

(500 μm) between parallel plates was filled with slurries, and the temperature was 

maintained at 25 °C. 

 

 

Figure 3.6. Pictures of the Universal CMP Tester. 
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CHAPTER IV 

SYNTHESIS AND CHARACTERIZATION* 

 

This chapter discusses the synthesis, characterization, and properties of 

nanomaterials investigated. It has three sections. The first section contains hydrothermal 

synthesis of yttrium oxide (Y2O3) nanosheets. The second is about α-zirconium 

phosphate (ZrP) nanoplatelets synthesized using the similar hydrothermal method. At 

last, a home-built chemical vapor deposition system is developed for synthesis of boron-

boron trioxide (B2O3) composited nanoparticles.  

 

4.1. Yttrium oxide nanosheets 

4.1.1. Synthesis of multiphase Y2O3 nanosheets (NS) 

Rare-earth elements are a large family of functional materials that have broad 

applications in magnetics, electronics, optics, mechanics, and catalysis.172-175 Aqueous 

synthesis of colloidal nano-rear-earth-materials has been widely used during the 

preparation.135,176,177 In a hydrothermal method, the anisotropic growth of rare-earth 

hydroxides or oxide composites was conventionally obtained via modifying OH- 

ligands.177-179 Simultaneous precipitations from boiling water solution results in complex 

                                                 
*Part of this chapter reproduced with permission from “Cun+-assisted synthesis of multi- 
and single-phase yttrium oxide nanosheets” by Xingliang He, et al., J. Mater. Chem. C, 
2013, 1, 6829-6834 (Copyright © 2013, Royal Society of Chemistry); “Boron-based 
nanoparticles for chemical-mechanical polishing of copper films” by Xingliang He, et 
al., ECS J. Solid State Sci. Technol., 2013, 2, P20-P25 (Copyright © 2013, The 
Electrochemical Society); and “α-zirconium phosphate nanoplatelets as lubricant 
additives” by Xingliang He, et al., Colloids Surf., A, 2014, 452, 32-38 (Copyright © 
2014, Elsevier). 
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compounds with multiphase.180-182 In addition, the hydroxide nanomaterials demand 

high-temperature dehydration (> 500 °C) to transform them into oxide.135,183,184 The 

transformation of phase, microstructure, and morphology occur along with the heat 

treatment. Y2O3 has three distinct crystalline phases in nature: cubic, hexagonal, and 

monoclinic. The cubic structure is the most stable phase and has been extensively 

studied as phosphors,185 microwave filters,186 and solid-state laser.187 Single-phase cubic 

Y2O3 provides rapid electron transfer with high efficiency as compared with their 

multiphase compounds.188,189 Therefore, a one-pot synthesis of single-phase cubic Y2O3 

nanomaterials, featuring easy control, simple apparatus, and low temperature, is highly 

desirable. 

The hydrothermal method has shown to be effective in synthesis of oxide 

nanomaterials. It is observed in Figure 4.1 that different Y2O3 nanostructures were 

synthesized via hydrothermal reactions at different temperature. At low temperature 

(80 °C), irregular Y2O3 nanotrautures were obtained as shown in Figure 4.1a. Square 

Y2O3 NS (317 ± 49 nm side, Figure 4.1b) and Y2O3 nanowires (NW, Figure 4.1c) were 

synthesized at 120 °C and 240 °C, respectively. An AFM image of Y2O3 NS is shown in 

Figure 4.1d. The average thickness of Y2O3 NS is 16 ± 1 nm. This gives the aspect ratio 

as high as 25. A commercial multiphase Y2O3 powder was used as starting material for 

synthesis of these Y2O3 NS. In Figure 4.1e, the XRD pattern of the commercial Y2O3 

powder is shown with the black (bottom) plot. Three different phases were revealed: 

cubic (phase c in Figure 4.1e, JCPDS Files No. 41-1105), hexagonal (phase h in Figure 

4.1e, JCPDS Files No. 20-1412), and monoclinic (phase m in Figure 4.1e, JCPDS Files 
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No. 44-0399). All three phases are observed in the XRD pattern of the as-synthesized 

irregular Y2O3 nanotrauture, Y2O3 NS and Y2O3 NW (see top colorized plots in Figure 

4.1e). Directly hydrothermal-synthesized Y2O3 nanomaterials, including NS, are 

multiphase. The reaction between water and Y2O3 powder occurs spontaneously via 

hydrolysis in nitrate solution.190 This reaction leads to the formation of hydroxide and 

oxide-hydroxide. Presences of the hexagonal hydroxide and monoclinic oxide-hydroxide 

species can be confirmed by the other unidentified peaks in the XRD patterns in Figure 

4.1e.  

 

 

Figure 4.1. TEM images of irregular Y2O3 nanostructure (a), Y2O3 NS (b) and Y2O3 NW (c) synthesized at 

80 °C, 120 °C, and 240 °C, respectively. (d) AFM images of the Y2O3 NS. (e) Comparison of XRD 

patterns among the commercial multiphase Y2O3 powder (bottom black pattern), the irregular 

nanostructure, NS, and NW of multiphase Y2O3 (top colorized patterns). 
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Most metal hydroxide and oxide-hydroxide have layered structures.191-194 

Exfoliation of the layered structures results in the formation of hydroxide or oxide-

hydroxide NS initially. Y2O3 NS is obtained hydrothermally via subsequent dehydration 

of the hydroxide and oxide-hydroxide in the high-boiling solution.195,196 Due to the 

random distribution of two-dimensional growth orientations, multiphase Y2O3 NS will 

be obtained with cubic, hexagonal, and monoclinic crystalline structures. At high 

temperature (240 °C), Y2O3 dissolves into the solution gradually, leading to nucleation 

of yttrium hydroxide again.197 The nuclei evolve into one-dimensional multiphase 

crystals at nanoscale due to the high anisotropic structure along c-axis in hexagonal 

yttrium hydroxide. Surface energy reduces substantially due to elimination of the rigid 

lamellar structured interface.198 This prompts the thermodynamic driving force to fuse 

and align nanocrystals together anisotropically.199 One-dimensional hydroxide NW 

forms spontaneously.  

 

4.1.2. Phase transformation  

An interesting phenomenon that we observed during the synthesis was the 

transformation of Y2O3 NS from the multiphase structure to the single-phase one. As 

shown with the red (top) XRD pattern in Figure 4.2a, only the cubic phase (JCPDS Files 

No. 41-1105) is obtained from Y2O3 NS that was synthesized in the presence of Cu ions 

(Y2O3-Cu NS, see Figure 4.2b). Different from multiphase Y2O3 NS as discussed above, 

the Y2O3-Cu NS is single cubic phase. The effects of other metal ions were also 

investigated in the synthesis of Y2O3 NS. Their XRD patterns are shown in Figure 4.3a, 
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from which we observe multiphase Y2O3 only. According to TEM images in Figures 

4.1b, 4.2b, and 4.3b, we can see that the two-dimensional morphology of Y2O3 NS is 

well maintained, even though different metal ions were involved during the synthesis. 

Crystalline phase of the single-phase cubic Y2O3-Cu NS and multiphase Y2O3 NS are 

further compared using SAED patterns in Figures 4.4a and 4.4b. These two patterns 

were recorded from the same samples that are shown in Figures 4.1b and 4.2b, 

respectively. In the single-phase cubic Y2O3-Cu NS (Figure 4.4a), only electron 

diffraction patterns indexed in the red (top) XRD pattern of Figure 4.2a are observed. 

They are cubic (222), cubic (400), cubic (440), and cubic (622). In contrast, as shown in 

the SAED pattern of Figure 4.4b, both hexagonal and monoclinic crystalline phases 

present in addition to the cubic phase. Therefore, it is concluded that Cu ions, as a phase 

transfer catalyst, play a unique role in assisting the formation of single-phase cubic Y2O3 

NS. On the basis of our present results, it is difficult to address the reasons why multi-

single-phase transformation occurs and how Cu ions catalyze the transformation. Further 

investigations are being carried out to reveal the mechanism that Cu ions transform the 

multiphase Y2O3 NS into the single-phase cubic Y2O3 NS. 
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Figure 4.2. (a)  Comparison of XRD patterns among the commercial multiphase Y2O3 powder (bottom 

black pattern), the multiphase Y2O3 NS (middle blue pattern), and the single-phase cubic Y2O3-Cu NS (top 

red pattern); (b) TEM image  of the single-phase cubic Y2O3-Cu NS. 
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Figure 4.3. (a) XRD patterns of multiphase Y2O3 NS synthesized in the presences of the other metal ions. 

(b) TEM images of multiphase Y2O3 NS synthesized in the presences of the other metal ions. 

 

 

Figure 4.4. SAED patterns of the single-phase cubic Y2O3-Cu NS (a) and the multiphase Y2O3 NS (b). 
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4.1.3. I-V characteristics 

Based on an M (Cu)-S (Y2O3) junction, we investigate the electronic 

transportation behaviors of the multiphase Y2O3 NS and the single-phase cubic Y2O3-Cu 

NS. A tungsten probe was placed contacting with the top surface of Y2O3 mechanically 

(See Figure 4.5a). The results of I-V characteristics are shown in Figures 4.5b through 

4.5e. Cu is used as bottom electrode, and the current passing through it is directly 

proportional to the applied voltage (Figure 4.5b). The I-V characteristic of the 

commercial multiphase Y2O3 is shown in Figure 4.5c as a reference. The Schottky 

diode-like behavior is observed with an obvious leakage current and a great current 

fluctuation. The commercial Y2O3 powder has a random distribution in its size, 

morphology, and structure. Therefore, it is impossible to exhibit efficient electronic 

transportation through the interface between each Y2O3 particle. An inhomogeneous 

electric field is believed to build in the commercial multiphase Y2O3 and results in the 

current fluctuation. The large leakage current can be attributed to the easy draw of 

defects-induced electrons and holes from the depletion layer.200,201 The output current 

versus voltage in Figure 4.5d exhibits significant nonlinearity in multiphase Y2O3 NS-

based M-S junction. Schottky diode-like behavior is obtained with a negligible leakage 

current. When a positive bias is applied to the Cu bottom electrode, its Fermi energy is 

lowered with respect to that of Y2O3. More electrons will diffuse towards the Cu than the 

number drifting into the Y2O3 NS due to the smaller potential drop across the Y2O3 NS. 

Multiphase Y2O3 NS has a thin and uniform nanostructure, across which the potential 

drops fast and smoothly. A distinct forward current, passing through the junction, is 
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obtained in the right branch (V > 0) of Figure 4.5d as the voltage becomes larger than 

the built-in potential barrier. Before the positive bias surpasses the built-in potential 

barrier, electrons accumulate at the M-S interface with the increase of voltage. Two-

dimensional morphology of multiphase Y2O3 NS enables it to accumulate more electrons 

till a higher voltage is reached. The multiphase Y2O3 NS-based M-S junction thus has a 

larger built-in potential barrier than that based on the commercial multiphase Y2O3 

(Figure 4.5c). When a negative voltage is applied to the Cu bottom electrode, its Fermi 

energy is raised comparing to that of Y2O3. The potential across the Y2O3 increases, 

yielding a large depletion region. This barrier restricts the electronic transportation to the 

Cu bottom electrode. A negligible leakage current is observed from the left branch (V < 

0) of Figure 4.5d due to the uniform two-dimensional structure of thin multiphase Y2O3 

NS. Further increase of negative bias leads to a breakdown of the M-S junction. During 

the breakdown, the broken ionic/covalent bonding enables electron tunnelling from the 

valence band to the conduction band like a Zener diode.202,203 Similar to the distinct 

forward current, this clear reverse current gives rise to the high slope resistance due to 

the uniform and fast electronic transportation.  
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Figure 4.5. (a) Schematic of the I-V setup. I-V characteristics of the Cu substrate electrode (b), the 

commercial multiphase Y2O3 powder (c), the multiphase Y2O3 NS (d), and the single-phase cubic Y2O3-

Cu NS (e). (f) Structure of cubic Y2O3. 

 

A novel negative resistance is observed on the single-phage cubic Y2O3-Cu NS, 

in which an increase in voltage results in decreased current. As it is shown in Figure 4.5e, 

two asymmetric negative resistance regions are obtained in the single-phase cubic Y2O3-

Cu NS-based M-S junction. Driven by an external bias, solid-state electrochemical 

reactions can be used to analyze the negative resistance in the diode-like junction.204-206 

The highly localized redox-induced negative resistance is believed to occur solely in the 

single-phase cubic Y2O3 NS due to its unique crystal structure. The cubic Y2O3 has a 

Bixbyite-like structure that has 80 atoms in its unit cell.207 Local structure of cubic Y2O3 

is shown in Figure 4.5f. In the cubic structure, one fourth of the anions are missing. The 

oxygen vacancies denoted by open circles arrange along a body diagonal (lower right) or 

a face diagonal (upper left). Wyckoff positions denote two inequivalent-symmetrical 



 

52 

sites (d-site In and b-site In) that are occupied by metal atoms. The vacancies 

significantly facilitate the solid-state electrochemical reactions that undergo under the 

external electrical field. It is the oxygen vacancies that enable the single-phase Y2O3-Cu 

NS to possess the negative resistance.  

 

 

Figure 4.6. Scheme of electronic/ionic transportation under positive (a) and negative (b) bias, respectively. 

 

The reasons why the localized redox reaction occurs in single-phase cubic Y2O3-

Cu NS only will be investigated in coming future. In Figure 4.6, we propose a scheme to 

explain the mechanism dynamically. When a positive bias is applied to the Cu bottom 

electrode, diode-like electronic transportation occurs across the M-S junction. Initially 
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driven by the positive bias (the left image of Figure 4.6a), Cu ions from the Cu bottom 

electrode move toward space-charge region (marked in green in Figure 4.6a) at the M-S 

interface. Cu ions (Cu2+ and Cu1+) have a reduction potential window, ranging from 0.15 

V to 0.73 V (comparing to standard hydrogen electrode).208,209 Localized redox reactions 

of Cu ions (circled in Figure 4.6a) occur at the surface of Cu bottom electrode once the 

positive bias becomes larger than their reduction potential. The Cu ions in the space-

charge region will migrate back to the Cu bottom electrode (the right image of Figure 

4.6a). The direction of Cu ionic migration is opposite to the forward current that is 

induced by the electronic transportation across the M-S junction. The Cu ionic migration 

competes with the forward current under positive bias. The higher the voltage, the more 

localized redox reactions occur. The negative resistance region I in Figure 4.5e presents 

once the Cu ionic migration current surpasses the forward current. If a negative bias is 

applied to the Cu bottom electrode, a depletion region (marked in blue in Figure 4.6b) 

forms at M-S interface in which an electric field is built. The built-in electric field has an 

opposite direction to the external bias, and its strength is proportional to the negative 

bias(the left image of Figure 4.6b,). Positively charged VO
2+ are generated in the 

depletion region as oxygen ion (O2-) leaves its lattice driven by the strong built-in 

electric field (see the solid reaction in Figure 4.6b).204 In addition, the electric field is 

capable of separating of VO
2+ and O2- further, leading to an ionic transportation current 

(the right image of Figure 4.6b). The direction of the VO
2+ and O2- current is opposite to 

the reverse current and proportional to the applied negative bias. The negative resistance 

region II in Figure 4.5e is obtained as soon as the VO
2+ and O2- current exceeds the 
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reverse current across the single-phase cubic Y2O3-Cu NS-based M-S junction. As VO
2+ 

has higher mobility than metallic ions,210,211 the two negative resistance regions are 

asymmetric. 

 

4.2. α-zirconium phosphate (ZrP) nanoplatelets 

Montmorillonite-like zirconium phosphates (i.e. α-ZrP) is such a 2D layered 

structured materials with high surface energy.166,212  The α-ZrP nanoplatelets have been 

synthesized using the hydrothermal method.166,167 The XRD pattern confirms that crystal 

structure of the ZrP nanoplatelets is alpha phase (Figure 4.7a). The crystal structure is 

monoclinic (space group P21/n).213 The morphology of α-ZrP nanoplatelets was 

characterized using FESEM, TEM, and AFM. As shown in Figure 4.7b, the circular α-

ZrP nanoplatelets have sizes ranged from ~ 600 nm to 1 μm. Those nanoplatelets 

aggregate together. The TEM image in Figure 4.7c shows the 2D morphology and 

stacked layers (as indicated by arrows) of the α-ZrP nanoplatelets. The stacked layers are 

also observed from AFM images of α-ZrP nanoplatelets, as shown in Figures 4.8a and 

4.8b. The profile labeled in Figure 4.8b indicates the two dimensional morphology as 

well. Thickness of the single nanoplatelet is measured using the AFM (Figure 4.8c). A 

representative thickness of ~ 30 nm is obtained for the α-ZrP. The high aspect ratio is ~ 

20 to 30 for the α-ZrP nanoplatelets.  
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Figure 4.7. XRD pattern (a), and FESEM (b) and TEM (c) images of α-ZrP nanoplatelets. 
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Figure 4.8. AFM images showing stacked layer of α-ZrP nanoplatelets with low (a) and (b) high 

magnification. (c) AFM images of a single α-ZrP nanoplatelet with 3D visualization.  

 

The α-ZrP nanoplatelets have be reported to have an atomically-layered 

structure, as schematically shown in Figure 4.9a.213,214 Three oxygen atoms from one 

phosphate group bond to three different zirconium atoms, forming a cross-linked 

covalent network inside the plane. The fourth oxygen atom of the phosphate is 

perpendicular to the layer pointed toward the interlayer region. Between two atomic 

layers of α-ZrP, a basal water molecule resides in a zeolitic cavity, forming a hydrogen 

bonding with the OH group of the phosphate. Uniformly distributed hydroxyl-phosphate 

groups, -POH, point into the space between the two layers and maintain the spacing 7.6 

Å wide through hydrogen bonding, electrostatic, and van der Waals interactions. 
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Calculation based on 2θ values of the (002) plane in the XRD pattern (Figure 4.7a) 

confirms the interlayer spacing.  

 

 

Figure 4.9. (a) Schematic representation of the atomically-layered structure of α-ZrP. (b) Dry friction 

results with α-ZrP nanoplatelets (top red curve), graphite (bottom green curve), and without any additives 

(middle black curve). 

 

The inter-atomic-layer interaction (hydrogen bonding) between two adjacent 

layers of ZrP is stronger than that those in the 2D nanomaterials with van der Waals 

bondings, e.g. graphite and its derivatives and transition metal dichalcogenides. To prove 

this, dry friction experiments were carried out and results are shown in Figure 4.9b. In 

comparison to a known solid lubricant, graphite, it is seen that that α-ZrP nanoplatelets 

do not show reduced friction while the graphite shows otherwise. As noted that, the dry 

friction measurements were carried out by moving a steel ball on a stainless steel (Grade 

316) plate. The α-ZrP cannot be deemed as a solid state lubricant. There is no report in 

using these nanoplatelets as additives in lubricants. Therefore the α-ZrP has relatively 

strong inter-atomic-layer bonding that makes it difficult to be exfoliated and to be used 
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as a dry lubricant. However, the high surface energy enables the edges and the dangling 

bonds of the basal planes to be passivated by the environment, i.e. lubricant molecules in 

this study. This is believed to make the 2D α-ZrP nanoplatelets be an excellent lubricant 

additives. Details about exploration of the α-ZrP in lubrication can be found in coming 

chapters.  

 

4.3. Boron-B2O3 composited nanoparticles 

As a class of hard and lightweight materials with exceptional thermo-stabilizing 

capability,215-217 boron and its compounds have been used as additives to strengthen 

engineering materials,218 bullet-proof vests,219 n- or p-type semiconductors,220,221 spin 

electronics,222 field emission device,223,224 photocurrent switch device,225 ultraviolet laser 

device, 226,227 superconductors working up to 39 K,228,229 hydrogen storing fuel 

cells,230,231 neutron detector,232,233 and metal working fluid additives.234 In those 

applications, all distinctive boronic characteristics, including unusual complex bonding 

and exceptional electron deficiency, are dependent on the unique crystalline structures of 

boron developed upon triangular-defined icosahedral subunits.235,236 Four main 

polymorphs, α, β, T, and γ, exist in crystalline boron.237 Under the atmospheric pressure, 

α-rhombohedral and β-rhombohedral boron are thermodynamically stable at low 

(~1000 °C) and high (~1200 °C) temperatures respectively.238 Crystalline T-boron 

phases (α-tetragonal boron and β-tetragonal boron) were prepared through “stabilization 

of impurity atoms”.235,239,240 Recent reports show that γ-B28 can be obtained from β-B via 

a high temperature (~ 1800 °C) treatment under ~ 20 GPa of pressure.237,241 The 
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structural complexity of the crystalline boron remains the challenge in synthesis of its 

nanomaterials. In the last decade, efforts have been devoted to preparation of boronic 

amorphous nanoparticles,242-244 amorphous nanotubes,245 crystalline nanowires,246,247 

crystalline nanocones,224 crystalline nanobelts,225 and crystalline nanoribbons.248 The 

synthesis methods include pyrolysis, high-energy ball milling, arc decomposition, 

solution reduction, chemical vapor deposition (CVD), pulsed laser ablation, and radio-

frequency magnetron sputtering. Among those, only amorphous or small domain sized 

(~25 Å) boron nanoparticless was synthesized. In this research, a CVD method is 

developed to synthesize crystalline boron nanoparticles with the help of a B-doped-

silicon (Si) catalyzing substrate. 

 

4.3.1. Size-specific synthesis of boron nanoparticles 

During the CVD synthesis, argon (Ar) was used as carrier and protective gas, and 

hydrogen (H2) was used as a reductant for boron tribromide (BBr3). B-doped-Si was 

used as catalyzing substrate. As reported by Oganov et al.,237 α-rhombohedral boron 

could only be synthesized from a relatively severe condition, ~1200 °C with tens of GPa. 

Here we are able to synthesize this crystallized boron nanoparticles at 900 °C under the 

atmospheric pressure. At a temperature lower than 1200 °C, the growth of boron crystal 

on common solid surfaces is expected to be slow because it is difficult for these surfaces 

to absorb BBr3 vapor molecules. However, in the present work, the growth rate is visibly 

high. This is most likely due to the fact that the B-doped-Si substrate adsorbs BBr3 vapor 

quickly, similar to previous reports about Si epitaxy at a low temperature.249-251 As a 
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result, less activation energy is needed to break B-Br covalent bonding at the interface 

between the Si substrate and BBr3 vapor molecules. H2 can reduce BBr3 into elemental 

boron at a relatively low temperature. Once enough number of boron atoms aggregate 

together and reach supersaturating levels, boron crystal growth subsequently took place 

from the nucleated seeds at the liquid (B) - solid (B-doped-Si) interface as continuously 

shown in Figure 4.10. 

 

 

Figure 4.10. Schematic representation of CVD synthesis of the crystalline boron nanoparticles. 

 

The sizes of boron nanoparticles can be regulated through controlling the BBr3 

volatilizing temperature. In our experiment, the sizes of boron nanoparticles increased 

with elevating BBr3 volatilizing temperature, as shown in TEM images of Figure 4.11. 
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Figure 4.11a shows the boron nanoparticles synthesized from the BBr3 that was kept at 0 

°C. We can see that these boron nanoparticles have narrow size distribution and small 

particle sizes, ~ 5 nm, as shown in Figures 4.11a (circled in red) and 4.11d. The small 

boron nanoparticles aggregate together due to the surfactant-free CVD process. When 

we increased the BBr3 volatilizing temperature, large boron nanoparticles and even 

micro-particles would appear. Figures 4.11b and 4.11c show boron nanoparticles 

synthesized from the BBr3 keeping at 10 °C and 20 °C, sized at ~ 20 nm (Figure 4.11e) 

and hundreds of nms (Figure 4.11f), respectively. On one hand, sphere is the 

thermodynamically favorable shape for nanomaterials.252,253 It is believed that boron 

dopants on the B-doped-Si substrate can play a role as activation sites for growth of 

boron nucleus into boron spherical nanoparticles.254-256 These sites attract and absorb 

BBr3 vapor molecules. On a B-doped-Si substrate with certain area, there are limited 

numbers of these sites. On the other hand, the higher the volatilizing temperature, the 

quicker the BBr3 volatilizes. At a low volatilizing temperature (e.g. 0 °C), a relatively 

small amount of BBr3 is absorbed during a certain period, and they can nucleate on the 

activation sites in an orderly and moderate manner. As boron nanoparticle grows, the 

increased tension between it and Si substrate will lead to detaching itself from the 

activation site. Continuous flow of BBr3 enables the process, nucleation, growth, and 

detachment, to go on until synthesis is done as shown in Figure 4.10. The aggregated 

small boron nanoparticles are thus observed in Figure 4.11a at a low volatilizing 

temperature. If we increase the volatilizing temperature (e.g., to 10 °C and 20 °C), great 

amounts of BBr3 is absorbed by the limited activation sites in a very short period. 
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Simultaneous nucleation and growth of these boron atoms will lead to formation of large 

boron nanoparticles, as consecutively shown in Figures 4.11b and 4.11c. Therefore, we 

prepared several boron nanoparticles with different sizes by CVD. 

 

 

Figure 4.11. TEM images show increased boron nanoparticles’ sizes by increasing BBr3 volatilizing 

temperatures: 0 °C (a), 10 °C (b), and 20°C (c). Size distributions of those boron nanoparticles are shown 

in (d) through (f) accordingly. 

 

4.3.2. Preparation of boron-B2O3 composited nanoparticles 

For later tribological investigation, the as-synthesized boron nanoparticles are 

surface oxidized. It is well known that boron trioxide (B2O3) is an excellent solid 

lubricant,257-259 from which boric acid (H3BO3) with 2D nanostructured feature can be 

generated. In order to confirm the crystalline boron, the example XRD characterization 
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is shown in Figure 4.12 for the powder synthesized from BBr3 volatilized at 10 °C. All 

peaks from the black (bottom) plot in this figure are in good agreement with the 

diffraction patterns of α-rhombohedral boron (JCPDS Files No. 12-0377). This indicates 

that the CVD method is an effective way to prepare crystalline boron under an ordinary 

pressure and at the temperature much lower than previously reported.221,224,246 After 

synthesis of boron powders, the same is oxidized by keeping the sample at 900 °C in the 

air for 45 minutes. As marked on red (top) plot of Figures 4.12, several peaks match 

diffraction patterns of B2O3 (JCPDS Files No. 06-0297). In addition, there are some 

relatively weak α-rhombohedral peaks that are compatible with the same of boron. 

Among these B2O3 peaks, it is worth noting that strong diffraction appeared at 2θ of ~ 

28° that are attributed to the diffraction happened on the B2O3 crystalline plane of (310). 

TEM image showing in inset of Figure 4.12 clearly reveal that a surface oxidizing layer 

of B2O3 is formed on the crystalline boron nanoparticles. The composite boron-B2O3 

nanoparticles are prepared for tribological application. 
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Figure 4.12. XRD patterns for the boron nanoparticles before (black, bottom) and after (red, top) 

oxidization. Inset: TEM image of a boron-B2O3 composited nanoparticles. 

 

4.4. Summary 

In this chapter, synthesis and characterization of three nanomaterials are 

discussed. They are yttrium oxide (Y2O3) nanosheets, α-zirconium phosphate (ZrP) 

nanoplatelets, and boron (B)-B2O3 composited nanoparticles.  

Synthesis and characterization of Y2O3 nanomaterials are introduced first. During 

the hydrothermal reactions, 2D Y2O3 nanoparticles were synthesized by controlling the 
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reaction temperature. A transformation of the Y2O3 nanosheets from multiphase to 

single-phase was observed during the synthesis. An interesting negative resistance was 

obtained in the single-phase Y2O3-Cu nanosheet. It is the unique 2D nano-morphology 

that enables Y2O3 nanosheet such a novel property. 

Simultaneously, the facile hydrothermal method has been used to synthesize the 

α-ZrP nanoplatelets. Characterizations confirmed their unique two-dimensional 

morphology at nanoscale. The 2D morphology of α-ZrP nanoplatelet was due to its 

atomically-layered structure. 

Boron-B2O3 composited nanoparticles are the third nanomaterials synthesized in 

this research. They were prepared at low temperature under atmospheric pressure using a 

substrate-catalyzed CVD method. 2D nanostructured boric acid is expected to be formed 

from the surface oxide layer of B2O3 in the later tribological processing.  

As discussed in the Chapters I and II, 2D nanomaterials could be a promissing 

candidate for the desirable viscosity modification in the fluidic lubrication. The 2D 

morphology and structural features those three nanomaterials will be utilized in 

tribological examination and the rheological investigation in the following chapters. 
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CHAPTER V 

TRIBOLOGICAL EVALUATION OF 2D NANOPARTICLES† 

 

This chapter explores tribological applicarions of 2D nanoparticles. It contains 

four sections: the first is to investigate 2D nanoparticles as additives in lubrication; the 

second is to examine the lubricating behavior under different dynamic conditions; the 

third is to discuss the intermolecular interaction between the lubricant molecules and the 

additive surface; and the forth is to evaluate the benefits of the low-friction process in 

chemical-mechanical planarization (CMP).  

 

5.1. Frictional behavior 

Friction is the resistance to the relative motion during one solid body is in contact 

with another and moves tangentially.260,261 The resisting tangential force is known as the 

friction force that has an opposite direction to the body motion. Friction needs to be 

minimized when energy loss occur. When two rough solids are in a sliding contact, 

friction presents due to difference in intermolecular and surface forces, ruggedness, 

roughness, and unevenness of surface. The asperity contacts cannot be avoided if the 

applied load is high and the speed of motion is low. The 2D sheet-like nano-additives are 

                                                 
† Part of this chapter reproduced with permission from“Boron-based nanoparticles for 
chemical-mechanical polishing of copper films” by Xingliang He, et al., ECS J. Solid 
State Sci. Technol., 2013, 2, P20-P25 (Copyright © 2013, The Electrochemical Society); 
“Y2O3 nanosheets as slurry abrasives for chemical-mechanical planarization of copper” 
by Xingliang He, et al., Friction, 2013, 1, 327-332 (Copyright © 2013, Springer); and 
“α-zirconium phosphate nanoplatelets as lubricant additives” by Xingliang He, et al., 
Colloids Surf., A, 2014, 452, 32-38 (Copyright © 2014, Elsevier). 
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thus introduced into a non-aqueous (mineral oil) or aqueous (DI water) lubricant to show 

the promising potential in reducing friction.  The friction experiments discussed in this 

chapter were carried out via a pin-on-disk configuration consisting of a rotating glass 

disk and a fixed E52100 alloy steel pin. 

 

5.1.1. 2D nanoparticles as additives in lubricants 

In order to improve mechanical efficiency and reduce energy loss, friction-

induced surface damage can be avoided by adding an appropriate additive to lubricants. 

Three different Y2O3 nanomaterials are used as additives for mineral oil to identify the 

importance of morphology at nanoscale in friction reduction. Figure 5.1 shows the 

transmission electron microscope (TEM) images of Y2O3 NS, Y2O3 nanoparticles (NP), 

and Y2O3 nanowires (NW) used in the pin-on-disk frictional experiment. A 2D nano-

shape is observed from TEM image (Figure 5.1a) for the square Y2O3 NS (316.6 ± 49.4 

nm side and 16.1 ± 0.9 nm thick). The characteristic size of Y2O3 NP is measured to be 

18.2 ± 3.4 nm as marked in green in the TEM image of Figure 5.1b. This size is highly 

comparable with the thickness of the Y2O3 NS. The diameter and the length of the Y2O3 

NW are measured to be ~ 100 nm and ~ 15 µm, respectively (Figure 5.1c). The 

contacted counterparts undergo a friction process when rotational speed is low.  
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Figure 5.1. TEM images of the Y2O3 NS (a), Y2O3 NP (b), and Y2O3 NW used in experiments. 

 

In Figure 5.2, reduction in coefficient of friction (green curves) is observed 

solely for the mineral oil that contains 0.5 wt % of Y2O3 NS. The parameters used in the 

friction experiments are also indicated in each figure. The friction coefficients are 

reduced by ~ 20 %, ~ 12 %, and ~ 20 %, respectively in Figure 5.2a through 5.2c. On the 

contrary, coefficient of friction shows a notable increase when the same concentration 

(0.5 wt %) of Y2O3 NP and Y2O3 NW are present in mineral oil. In particular, abnormal 

variation of friction coefficient with time is observed for mineral oil containing Y2O3 

NW under smaller applied load (red curves in Figures 5.2b and 5.2c). This is believed to 

be caused by rotation or spin of the NW in the mineral oil during the friction. Therefore, 

the unique 2D morphology at nanoscale enables Y2O3 NS to perform as an effective 

additive in decreasing the friction. It is indeed necessary to explore the 2D sheet-like 

nanomaterials for friction reduction.  
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Figure 5.2. Under different friction tests, comparison of friction coefficient of mineral oils without (black 

curve) and with different types (colored curves) of Y2O3 nanomaterials additives (0.5 wt %). 

 

5.1.2. Roles of concentration in friction 

Before systematic investigation of friction reduction, critical concentration of the 

2D nano-additives for a certain type of base liquid should be evaluated. For the non-

aqueous liquid (mineral oil), three different concentrations (1 wt %, 0.5 wt %, and 0.1 wt 

%) of Y2O3 NS were selected initially. During those friction experiments, the speed was 

fixed at 10 rpm, and three loads, 1 N, 2 N, and 3 N, were applied. The results are shown 

in Figure 5.3. High concentration of the Y2O3 NS significantly increases the friction of 
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coefficient, as shown by the blue curves in Figures 5.3a through 5.3c. The friction 

coefficient fluctuates markedly with time during the test, comparing to the pure mineral 

oil (black curves in Figure 5.3) or the mineral oil containing low concentration of Y2O3 

NS (red and green curves in Figure 5.3). The friction is reduced by ~ 30 %, ~ 20 %, and 

~ 25 % in Figures 5.3a, 5.3b, and 5.3c, respectively, using 0.5 wt % of Y2O3 NS 

additives (red curves). The lower concentration (0.1 wt %) Y2O3 NS reduces the friction 

coefficient as well (green curves in Figure 5.3), yet not as much as the mineral oil 

containing the 0.5 wt % additives. Among the three concentrations we measured, 0.5 wt 

% is the most suitable percentage for Y2O3 NS additives in mineral oil. 
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Figure 5.3. Under different friction tests, comparison of friction coefficient of mineral oils without (black 

curve) and with different concentrations (colored curves) of Y2O3 NS additives. 

 

It is understandable that high concentration of Y2O3 NS increases coefficient of 

friction. The high concentration of additives leads to significant aggregation of the 

additives. The aggregation-induced abrasion or dry contact is responsible for the 

significant friction. Besides, non-uniform distribution of additives in the base liquid 

presents when aggregation occurs, resulting in the great fluctuation of friction 

coefficient. There is a critical concentration level for additives in base liquid, as 0.5 wt 

% of Y2O3 NS is found for mineral oil. The greatest friction reduction could be achieved 
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at this concentration. An important role played by the 2D nanosheet additives is that it 

can deliver lubricant molecules into the asperity-contacted area between two solid 

surfaces. If concentration is too low, limited amount of Y2O3 NS cannot carry enough 

lubricant molecules to the localized contact area. The friction can be decreased to a 

limited level. For the other base liquids and different 2D nano-additives, the critical 

concentration level would be different from each other. On the basis of mineral oil, 0.5 

wt % is the optimized additive concentration for Y2O3 NS. 

 

5.2. Effects of experimental parameters on friction 

By dividing the friction force with the force pressing two bodies together, a 

dimensionless scalar value (the coefficient of friction) is obtained. The frictional 

resistance can be deemed as a constant value provided the speed is low. The friction 

force required to keep an object moving at a constant velocity is normally smaller than 

that to move it starting from rest. Coefficient of kinetic friction is used more frequently 

than coefficient of static friction in depicting two moving surfaces. This coefficient is 

highly dependent on the applied loads and the rotational speeds in the present study. In 

order to prove that the 2D nanoparticle additives can certainly be a friction-reduction 

additive, a dynamic study of friction coefficient by varying the applied load and the 

rotational speed is necessary. 
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5.2.1. Effects of  applied loads 

Friction reducing behavior is studied firstly with the appearance of 2D nano-

additives in mineral oil. During the investigation of the critical concentration level 

(Figure 5.3), low concentrations (0.5 wt % and 0.1 wt %) of Y2O3 NS show capability of 

friction reduction at a low rotational speed (10 rpm) and under different applied loads (3 

N, 2 N, and 1 N).  In the other pin-on-disk experiments (Figures 5.4 and 5.5), a moderate 

rotational speed was fixed at 300 rpm while another three different small loads, 1 N, 0.5 

N, and 0.25 N, were applied. Such results are shown in Figure 5.4. When the optimized 

additive concentration (0.5 wt %) is used, Y2O3 NS is able to decrease coefficient of 

friction significantly. The friction coefficient is reduced by ~ 25 %, ~ 35 %, and ~ 40 % 

under applied loads of 1 N (Figure 5.4a), 0.5 N (Figure 5.4b), and 0.25 N (Figure 5.4c), 

respectively. 
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Figure 5.4. Under different loads, comparison of friction coefficient of mineral oils without (black curve) 

and with 0.5 wt % of Y2O3 NS additives (red curve). 

 

Simultaneously, frictional performance of mineral oil containing 0.5 wt % α-ZrP 

nanoplatelets is studied as well, under different applied loads and at the fixed rotational 

speed of 300 rpm. The results are shown in Figure 5.5. It is observed that the coefficient 

of friction is reduced by ~ 55 %, ~ 65 %, and ~ 50 % under applied loads of 1 N (Figure 

5.5a), 0.5 N (Figure 5.5b), and 0.25 N (Figure 5.5c), respectively. α-ZrP nanoplatelet is 

found to be a better friction-reducing additives than Y2O3 NS. As we discussed in 

Chapter III, there are plenty of uniformly distributed hydroxyl-phosphate groups (–
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POH), on the surface of α-ZrP nanoplatelet, while the surface of Y2O3 NS is decorated 

with hydroxyl groups (–OH). The –POH group has stronger polarity than –OH group, 

enabling the α-ZrP nanoplatelets to have higher surface energy than Y2O3 NS. The high 

surface energy enables the edges and the dangling bonds of the basal planes to be 

passivated by the organic molecules from mineral oils. Comparing to α-ZrP 

nanoplatelets, Y2O3 NS has poorer intermolecular interactions with the lubricant liquid. 

Therefore, α-ZrP nanoplatelets are believed to deliver more lubricant molecules to the 

localized asperity-contact region, leading to more reduction in the coefficient of friction. 

When we applied a constant rotational speed, both 2D nano-additives reduce friction 

significantly. 
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Figure 5.5. Under different loads, comparison of friction coefficient of mineral oils without (black curve) 

and with 0.5 wt % of α-ZrP nanoplatelet additives (green curve). 

 

5.2.2. Effects of rotational speeds 

Besides applied load, rotational speed is another critical dynamic parameter that 

can noticeably affect the friction between two relatively-motion solid bodies. The 

assumption that friction force is independent of relative velocity of two moving surface 

is part of the surface-friction standard model. For a narrow range of low-speed friction, 

the assumption is approximately true. However, it is found that the friction depends on 

the square or higher power of the relative velocity. This is mainly due to air friction or 
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liquid-involved friction with the increased rotational speed. Figures 5.6 and 5.7 show the 

frictional results of mineral oil containing additives of Y2O3 NS and α-ZrP nanoplatelets, 

under a fixed load (1 N) and at different rotating speeds (30 rpm, 50 rpm, and 100 rpm). 

0.5 wt % of Y2O3 NS in mineral oil reduces coefficient of friction by ~ 20 %, ~ 10 %, 

and ~ 15 % at rotational speeds of 30 rpm (Figure 5.6a), 50 rpm (Figure 5.6b), and 100 

rpm (Figure 5.6c), respectively. Similarly, 0.1 wt % of α-ZrP nanoplatelets also shows 

reduction of friction coefficient in mineral oil, by ~ 35 %, ~ 20 %, and ~ 60 % at 

rotational speeds of 30 rpm (Figure 5.7a), 50 rpm (Figure 5.7b), and 100 rpm (Figure 

5.7c), respectively. Thus, the both 2D nanomaterials prepared in this research are 

capable of reducing friction  regardless of friction-dynamic variation (either applied 

loads or rotational speeds).  
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Figure 5.6. Under different speeds, comparison of friction coefficient of mineral oils without (black curve) 

and with 0.5 wt % of Y2O3 NS additives (red curve). 
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Figure 5.7. Under different speeds, comparison of friction coefficient of mineral oils without (black curve) 

and with 0.1 wt % of α-ZrP nanoplatelet additives (green curve). 

 

5.2.3. Aqueous lubricants 

In addition to the organic liquids, aqueous solution can also be used as carrier for 

the 2D nano-additives. The pin-on-disk frictional behavior in the presence of DI water is 

characterized. As water molecules have markedly smaller size than long-chain alkane 

molecules of mineral oil, severe asperity contact between two solid surfaces occurs. This 

induces obvious friction in experiments. As shown in Figure 5.8, the friction coefficient 

is high at the initial stage, due to friction-induced oxidation and elastic or plastic 
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deformation on the surface. The coefficient starts to drop as the friction continues 

because of surface roughing and debris effects.260  

In order to verify whether the 2D nano-additives can reduce friction in an 

aqueous media, the friction test was carried out with the same pin-disk configuration but 

in DI water. As shown in Figure 5.8, α-ZrP nanoplatelets are found to reduce coefficient 

of friction at an extremely low concentration (0.002 wt %, the bottom green curve) when 

the sliding occurs in DI water. 0.1 wt % α-ZrP nanoplatelets additives increase the 

friction coefficient (see the top blue curve in Figure 5.8) for the similar frictional 

experiment in DI water. The additive concentration needed for the friction reduction in 

aqueous environment (0.002 wt %) is much smaller than that  in non-aqueous 

environment  (0.1 wt %). This can be understood by the significantly smaller size of 

water molecule than organic oil molecules. On the same area of α-ZrP nanoplatelets, 

much more water molecules can be attached than the long-chain alkane molecules of 

mineral oil. Very small amount of α-ZrP nanoplatelets is able to carry enough water 

molecules that are necessarily needed for friction reduction. With the –POH group on its 

surface, α-ZrP nanoplatelets would interact with water molecules easily. The oxygen is 

more electronegative than the hydrogen and phosphate. As a result, the polarity of P–O–

H can be increased due to that the electron density is pulled away from the hydrogen and 

phosphate by the oxygen.262 The group becomes electrophilic, and induces strong 

interaction with water molecules via hydrogen bonding. In short, the 2D nano-additive 

shows a promising potential to reduce friction in the aqueous lubricant.  
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Figure 5.8. Example comparison of friction coefficient of DI water without (middle black curve) and with 

0.1 wt % (top blue curve) and 0.002 wt % (bottom green curve) of α-ZrP nanoplatelet additives. 

 

5.3. Intermolecular interactions between fluid molecules and nano-additives 

Our results have shown that friction can be effectively reduced with addition of 

2D nanoparticles. It is the Y2O3 NS or α-ZrP nanoplatelet that is able to carry the 

lubricant molecules into the localized contact region, leading to the friction reduction. 

The friction reduction could be caused by intermolecular interactions between the 

lubricant molecules and the additives.  
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Figure 5.9. (a) Comparison of infrared spectra of α-ZrP nanoplatelets (top red curve), mineral oil (bottom 

black curve), and mineral oil containing 0.5 wt % α-ZrP nanoplatelets (middle green curve). (b) 

Comparison of Raman spectra between α-ZrP nanoplatelets (top red curve) and mineral oil containing 0.5 

wt % α-ZrP nanoplatelets (bottom green curve). (c) Comparison of Raman spectra between mineral oil 

containing 0.5 wt % α-ZrP nanoplatelets (top green curve) and pure mineral oil (bottom black curve). 

 

Interaction between the organic molecules in mineral oil and additives was 

investigated. Figure 5.9 are the infrared and Raman spectra. The mineral oil is a mixture 

of alkanes in the C15 to C40 range. Its infrared spectrum (bottom black plot in Figure 

5.9a) shows a series of characteristic vibrations on the long-chain alkane molecules: C-H 
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(CH3-CH2-) asymmetric and symmetric stretching vibrations (2853 and 2922 cm-1), C-H 

(-CH2- and -CH3) bending deformation (1377 and 1462 cm-1), and C-H aldehyde 

stretching vibration (2675 and 2725 cm-1). Other characteristic vibration modes are 

observed from the infrared spectrum of α-ZrP nanoplatelets (top red plot in Figure 5.9a): 

-O-H stretching vibrations in water molecules (~ 3509 and 3592 cm-1), P-O-H stretching 

vibration (3135 cm-1), intermediate vibrations of water molecules (1616 and 1622 cm-1), 

P-O-H deformation vibration (1248 cm-1), vibrations of the orthophosphate group (1037 

and 1071 cm-1), and formation of pyrophosphate groups (962 cm-1).263,264 Shift of some 

of those vibration modes are observed after mixing α-ZrP nanoplatelets with mineral oil 

(middle green plot in Figure 5.9a). Inset i of Figure 5.9a shows shifts of intermediate 

vibrations of water molecules (1616 → 1618 cm-1 and 1622 → 1625 cm-1, respectively). 

Vibration mode shifts in the orthophosphate group (1037 → 1032 cm-1 and 1071 → 

1077 cm-1) are shown in inset ii of Figure 5.9a with peak broadening. The shifts 

represent modification of vibration-induced stress/strain states on the surface of α-ZrP 

nanoplatelets. The enlarged width indicates that the orthophosphate groups are involved 

in interactions with organic molecular groups from the mineral oil. In Figure 5.9b, 

characteristic vibration-based inelastic scattering from orthophosphate group of α-ZrP 

nanoplatelets displays shifts and peak widening on Raman spectra. A peak broadening is 

also observed in Figure 5.9c for the C-H aldehyde stretching Raman spectra. It is evident 

that long-chain organic molecules in mineral oil interact with the surface of α-ZrP 

nanoplatelets. The interaction results in friction and fluid drag reduction. 

 



 

84 

 

Figure 5.10. (a) Schematics showing interaction between lubricant molecules and α-ZrP surface (the left), 

and formation of dipole-dipole complex (the right). (b) Schematic explanation of friction reduction with 

localized asperity-contact. 

 

In order to understand the mechanisms of friction reduction in the localized 

asperity-contact, a schematic is shown in Figure 5.10. Interaction between lubricant 

molecules and the surface of 2D nanomaterials is believed to be the principle reason. As 

an instance, the α-ZrP having a layered structure (see the Figure 3.9a in Chapter III) is 

discussed here.213,214 Three oxygen atoms from one phosphate group bond to three 

different zirconium atoms, forming a cross-linked covalent network inside the plane. The 

fourth oxygen atom of the phosphate is perpendicular to the layer pointing toward the 

interlayer region. Between two atomic layers of α-ZrP, a basal water molecule resides in 

a zeolitic cavity, forming a hydrogen bonding with the OH group of the phosphate. After 

adding the α-ZrP nanoplatelets in mineral oil, the alkane molecules, interact with the 
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surface of α-ZrP via van der Waals dispersion forces (the left of Figure 5.10a). In the α-

ZrP nanoplatelets, the hydrogen bonding is mainly between phosphate groups and/or 

water molecules.265,266 Mineral oil brings more organic groups, e.g. methyl, methylene, 

aldehyde, etc, in contact with the surface of α-ZrP nanoplatelets. The shifts and peak 

broadening in infrared and Raman spectra suggest the formation of a dipole-dipole 

complex among these functional groups (the right of Figure 5.10a). In the localized 

contact region, protuberant areas are in contact due to surface asperity (the left of Figure 

5.10b). Mineral oil is resisted due to the contact, inducing the friction. When the 2D 

sheet-like nanoparticles (tens of nm thin) are added, they are promoted to enter the 

contacted area driven by the flow of lubricant. Simultaneously, their large surface area 

supplies more lubricant molecules in the contact area (the right of Figure 5.10b). The 

lubricant molecules brought by the 2D nano- additives are capable of reducing friction 

by inserting into the localized area and separating the contacted surfaces. Therefore, the 

2D sheet-like nanoparticles-based intermolecular interaction plays a critical role in 

friction reduction. 

 

5.4. Tribological performance in Cu CMP 

CMP is a tribology-based processing technique widely used in microelectronic 

manufacturing.267,268 It is a hybrid of free abrasive polishing and chemical etching. High-

precision fabrication in modern CMP demands for a CMP slurry containing novel 

abrasive particles. Many inorganic materials such as alumina,269 ceria,270 silica,271 and 

diamond272 have been used as abrasive particles in CMP. Each has been selected based 
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on their effectiveness in polishing under particular conditions. Although abrasive 

particles enhance the mechanical removal of surface materials, defects such as scratch 

and pitting might be induced due to agglomerated particles and debris. To improve 

energy efficiency, it is essential to utilize abrasive particles that can reduce friction while 

maintaining the high processing efficiency. 

 

5.4.1. Utilization of nanosheets as slurry abrasives 

To date, global planarization in CMP remains to be a major concern, particularly 

for patterned wafers where the metal/dielectric density differs across the wafer.273 The 

limitation of ion and slurry transfer is one of the key factors affecting planarization. The 

planarization is characterized by the within-wafer-non-uniformity (WIWNU).274,275 

Previous studies in this regard have been focused on optimization of polishing 

parameters and utilization of corrosion inhibitors.276-279 It is always desirable to develop 

a slurry that improves the slurry transport and contact between the polishing pad and the 

wafer surface. Investigation in previous chapters has demonstrated great potential of 2D 

nanomaterials in tribological applications. Wear optimization in CMP process is reported 

here using a novel slurry containing yttrium oxide (Y2O3) nanosheets (NS) as abrasives. 

Cu film (2 μm thick) coated silicon wafers (Ø 300 mm) were used as target substrates for 

the planarization evaluation here. A commercial SiO2-based slurry (Ø ~ 35 nm, Fujimi 

Corporation) was used in comparison of planarization efficiency with a home-made 

slurry, which consisted of citric acid (0.01 M), BTA (0.05 wt %), H2O2 (3 vol %), Y2O3 

NS abrasive (3 wt %), and DI water. 
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The comparison of WIWNU before and after CMP experiments in different 

slurries is shown in Figure 5.11. The trend in the WIWNU after CMP is indicated by the 

arrows in the figure. It is interesting to see that the WIWNU is reduced by 30 percent 

using the Y2O3 slurry. Using the commercial SiO2 slurry, on the contrary, it shows an 

increase in the WIWNU by 48 percent. Meanwhile, the wafer polished using the Y2O3 

slurry also has better surface quality. As shown in Figure 5.12, wafers polished using the 

Y2O3 slurry have lower arithmetic-averaged surface roughness than that polished with 

the SiO2 slurry. The former is ~ 48 % smaller than the later. In microelectronic devices, 

an important factor to planarize a wafer is elimination of Cu dishing.280,281 Results of Cu 

dishing in our CMP are shown in Figure 5.13. Wafers polished with the Y2O3 slurry 

obtained ~23 % less Cu dishing than that polished with the SiO2 slurry.  

 

 

Figure 5.11. Changes of WIWNU before (black) and after (gray) CMP using different slurries. 
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Figure 5.12. The arithmetic averaged surface roughness of wafers that are polished using different slurries. 

 

 

Figure 5.13. The Cu dishing in wafers that are polished using different slurries. 

 

Planarization is significantly improved using the 2D nano-abrasive in Cu CMP. 

As discussed in above, the 2D nanomaterials have unique capability in lubrication. It is 

indeed rational to hypothesize that the 2D sheet-like nanopartciles are able to reduce 

friction via modifying the CMP slurry’s fluid dynamics. In order to understand the 

effects of abrasives on WIWNU and surface roughness, frictional and rheological 

investigations are conducted for the CMP slurries. The results are shown in Figures 5.14 

and 5.15, respectively. In Figure 5.14, it is observed that the Y2O3 NS-based slurry has 
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lower coefficient of friction than the commercial SiO2 slurry. In Figures 5.15a and 5.15b, 

it is clear that the SiO2 slurry with higher concentration has the larger slope in shear 

stress-shear rate plots. With the increase in SiO2 concentration, the slurry becomes more 

viscous. Viscosity is directly related to the friction and mass transfer among fluid 

layers.282 The change in slope of the shear stress-rate plots implies movement of one 

fluid layer respect to another with significant mass (or momentum) transfer. This is the 

evidence of a turbulent flow.283 With the same concentration, the shear stress in SiO2 

slurry changes at a faster rate against the shear rate than the Y2O3 slurry, as shown in 

Figure 5.15c. It is interesting to observe in Figure 5.15d that the ratio of shear stress to 

shear rate in water is not affected by the addition of Y2O3 NS. The unchanged slope of 

the shear stress-rate plots indicates the movement of one fluid layer past another with 

little matter transfer. This is the evidence of a laminar flow.284 It is concluded from 

rheological measurements that SiO2 NP increases the viscosity of slurries while Y2O3 

NS shows no effects. 

 

 

Figure 5.14. Results of friction between the Cu film and the polishing pad in SiO2 NP (black, top) and 

Y2O3 NS (red, bottom) slurries. 
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Figure 5.15. Results of rheological measurements: (a) the comparison of shear stress-shear rate plots in 

different slurries with different abrasive concentrations; (b) variation of shear stress to shear rate in SiO2 

NP slurries with different concentrations; (c) the clear comparison of shear stress-shear rate plots in 

different slurries with the same abrasive concentration (3 wt %); (d) variation of shear stress to shear rate 

in Y2O3 NS slurries with different concentrations. 

 

Based on frictional behaviors and rheological properties of slurries, mechanisms 

in reduction of WIWNU are proposed in schemes illustrated in Figure 5.16. When wafer 

is polished using the SiO2 slurry, spherical NP (see inset of Figure 5.16a) can embed in 

the wafer and abrade it through particle-wafer contact mode (Figure 5.16a).285,286 Such 

abrasion through 3-body and 2-body wear is believed to be responsible for materials 



 

91 

removal in CMP. On the contrary, when square Y2O3 NS (see inset of Figure 5.16b) is 

used, it enables them to have larger contact area. The increased contact leads to a 

uniform distribution of the down force and the reduced contact pressure. When the 

applied pressure is low, a fluid film will be able to form between the pad and wafer 

(Figure 5.16b).287,288 As a result, the uniformed contact and improved slurry transport 

lead to more effective lubrication.289,290 This is confirmed by the friction results. 

Accordingly, polishing under the lubricating condition can reduce the WIWNU after 

CMP.291 In addition, when slurries entered the interface between the pad and wafer, 

Y2O3 NS can be deemed as parallel layers whereas SiO2 NP distribute chaotically and 

stochastically. As demonstrated by rheological experiments (Figure 5.15), a laminar flow 

and a turbulent flow are believed to form in Y2O3 and SiO2 slurries, respectively. A 

laminar slurry flow that has low viscosity with little flow fluctuation leads to uniform 

distributions of relative velocity and abrasive movement trajectories.274,292 In such the 

WIWNU is decreased. 
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Figure 5.16. Schematic representations of abrasion modes using the commercial SiO2 NP (inset) slurry (a) 

and the Y2O3 NS (inset) slurry (b). 

 

It is also noted that the protruded areas are polished during the CMP, while the 

low areas are passivated resulting in a smooth surface.285,286 Localized pad deformation 

occurs and has been reported to be an important reason causing metal dishing.280,293,294 In 

the current work, however, Y2O3 NS has larger contact area than SiO2 NP. The down 
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force distributes uniformly in the contact area. The low area undertakes a comparable 

pressure to that protruded area experiences. A uniform pressure distribution is beneficial 

for reduction in dishing.280 In addition, dishing can be reduced through gentle contacts of 

pad through Y2O3 NS to wafer, which is similar to soft landing in abrasive free 

polishing.295-297 Therefore, the CMP conducted using the Y2O3 NS-based slurry obtains 

little Cu dishing. 

 

5.4.2. Utilization of B-B2O3 composite nanoparticles as slurry abrasives 

Boron compounds have been used as abrasives in sandblasting nozzles,298,299 

while 2D nanostructured B2O3 is widely known as an excellent solid lubricant.168,257,258 

Due to the unique properties of abrasion and lubrication, B-B2O3 composite 

nanoparticles (NP) can be new promising candidates for CMP slurry abrasive. 

Tribological application of the B-B2O3 NP (sized ~ 5 nm)-based slurry is explored here. The 

detailed information about synthesis and characterization of the B-B2O3 NP can be found 

in Chapter III. The CMP slurry contains the following additives; silica (SiO2) and/or B-

B2O3 NP as abrasives, H2O2 as an oxidizer, citric acid as a complexing agent, and 

benzotriazole (BTA) as a corrosion inhibitor.  During polishing, the oxidizer reacts with 

Cu and forms porous copper oxide which can be easily removed through friction 

between wafer, pad, and abrasives. Citric acid is able to increase Cu dissolution and 

material removal rate. Since excessive addition of the complexing agent can cause more 

Cu dissolution which leads to poor surface roughness and planarization, the component 

that can provide controllability of removal rate is required.300,301 The inhibitor BTA was 
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used to suppress Cu dissolution. The copper oxide complexed with citric acid plays the 

role of protective layer in the recessed area and an opposite role of sacrificial layer in the 

protruded area, where peak material can be removed by mechanical action induced 

through the pad and abrasive particles. With these slurry components, CMP experiment 

was performed on Cu wafers which have five pyramidal micro-indents (~ 1 μm deep) on 

each surface (see Figure 5.17). The line of micro-indents was parallel to the edge of 

squared Cu-Si wafer and 5 mm away from it. The distance between each micro-indent 

was 0.5 mm. Three different abrasives were measured in CMP: 1). 3 wt % SiO2 NP 

(sized ~ 35 nm) abrasive; 2). 0.05 wt % B-B2O3 NP abrasive; and 3). 3 wt % SiO2 NP-

based abrasive containing 1 wt % B-B2O3 NP. 

 

 

Figure 5.17. Five pyramidal micro-indents on the Cu coated Si wafers prepared for CMP. 
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The height-removal rates can be calculated through measuring the dimension of 

micro-indents before and after CMP. Using an atomic force microscope (AFM), the 

average depths of micro-indents could be measured by the height differences between 

the lowest point inside the indents and the flat surface around them after leveling. AFM 

images around the indent and rest area of the Cu surface before and after CMP are 

shown in Figure 5.18. The less the micro-indent depth is, the higher the height-removal 

rate would be. Results are shown in Figure 5.19, from which height-removal rate can be 

calculated (Figure 5.20).Using pure B-B2O3 NP abrasive, the height-removal rate is 

increased by ~ 13 %, even with a minimum abrasive concentration (0.05 wt %). Using 

the 3 wt % SiO2 NP-based abrasive containing 1 wt % B-B2O3 NP, the highest material-

removal rate is obtained, which is improved by ~ 32 %.  
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Figure 5.18. AFM images before and after CMP in different slurries (as labeled). 
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Figure 5.19. Averaged micro-indent depth on Cu films before and after CMP in different slurries. 

 

 

Figure 5.20. Comparison of materials removal rate using different CMP slurries. 

 

During polishing, the contacted area between the Cu wafer and abrasive particles 

increases by adding smaller B-B2O3 NP (~5 nm). In addition, the surface chemistry of 

nanoparticlesis largely dependenton their sizes, i.e., the smaller the particle, the more 

reactive the particle.302,303 Such will further enhance the interfacial interaction between 

wafer and nanoparticles.304,305 As a result, an increase in the height reduction, i.e., 

removal rate, is obtained. Another possible reason for the increased removal rate is the 



 

98 

electrostatic interaction between B-B2O3 NP and the Cu surface. The relationship between 

the interaction (electrostatic) force and removal rate has been reported.306,307 The H2O2 

oxidizes Cu surface, and positively charged copper oxide surface is formed.308,309 The 

zeta potentials of SiO2 NP and B-B2O3 NP are negative in the acidic environment of our 

CMP experiment.310 During the CMP, the oxidized Cu surface and the abrasive particles 

would attract each other electrostatically due to their oppositely charging states. This is 

believed to assist an increase in material-removal rate during CMP as well. 

In order to avoid generation of defects and obtain a smooth surface, low 

coefficient of friction during CMP is highly desirable. 2D nanostructured B2O3 surface on 

the B-B2O3 NP enables the CMP process to undergo smoothly. The novel composited NP-

based slurry leads to an improved surface after CMP. Figure 5.21 shows friction results 

during the CMP experiment. In the absence of abrasive particles, the coefficient of 

friction is visibly higher, as shown in the top black line in Figure 5.21. It is well known 

that silica is able to work as a lubricant when hydrated.311,312 The addition of silica hence 

apparently reduces the friction coefficient by ~ 10 % (see middle red line in Figure 

5.21). The boron based additives, such as boron, boron oxide, and boron acid, have been 

used to eliminate friction in various applications.234,313,314 In the present research, both 

slurries, containing pure B-B2O3 NP as abrasives and SiO2 NP-based abrasive containing 1 

wt % B-B2O3 NP, decrease the friction coefficient further, as shown in the bottom (blue 

and green) lines in Figure 5.21. In the presence of B-B2O3 NP, the maximum friction 

reduction that can be calculated from Figure 5.21 is by ~ 28 %.  
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Figure 5.21. Comparison of coefficient of friction for CMP experiments conducted in different slurries. 

 

Transmission electron microscope (TEM) images of B-B2O3 NP before and after CMP 

experiment are shown in the left of Figure 5.22. Different sized NP imaged here to show 

the oxidized surface (B2O3) clearly. After CMP, the B2O3 surface is removed, while the 

decrease in size of B-B2O3 NP is observed. When the B-B2O3 NP abrades the Cu surface in 

a water solution, boric acid (H3BO3) can be spontaneously generated from the B2O3 (see 

reactions shown in Figure 5.22). The H3BO3 has a 2D nanostructured-layered structures 

(see the right of Figure 5.22).  It thus can be used to reduce friction in humid 

atmosphere.168,258 During the CMP, the B-B2O3 NP shows promising in improving the 

lubricating property due to the unique 2D nanostructured surface.  
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Figure 5.22. 2D nanostructured B2O3-induced surface improvement during CMP (left); layered 

nanostructure of B2O3 (right). 

 

The 2D nanostructured surface of B-B2O3 NP makes the CMP efficiency improve. 

From AFM images shown in Figure 5.18, it is observed that CMP increases the flatness 

of Cu surface (Figure 5.18b). Addition of B-B2O3 NP into SiO2 NP-based slurry results in 

an increased uniformity and cleanness for Cu surface (Figure 5.18d). The surface 

polished using the pure B-B2O3 NP displays the best quality, from which a uniform and 

clean surface is obtained (Figure 5.18c). Accordingly, measurement of surface roughness 

after CMP confirms the improved surface quality. Results are shown in Figure 5.23. The 

surface roughness, arithmetic average (Ra) and root mean-square-average (Rq), are 

obtained using the AFM. It is seen that utilization of B-B2O3 NP as abrasive provides a 

visibly smoother polished surface than that polished with pure SiO2 NP-based slurry. In 

the presence of B-B2O3 NP, the surface roughness is reduced maximally by ~ 58 % and ~ 

72 % for Ra and Rq, respectively. Therefore, the B-B2O3 NP-based abrasives improve 

CMP performance by increasing the materials-removal rate and enhancing the 

lubricating performance. After CMP, the optimized planarization efficiency and the 
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increased surface quality are believed to be caused by the 2D nanostructured surface on 

B-B2O3 NP. 

 

 

Figure 5.23. Surface roughness on Cu films before and after CMP in different slurries. 

 

5.5. Summary 

This chapter discussed effects of 2D nanomaterials on friction in liquid 

lubricants. Firstly, morphology of the nanomaterials additives was found to be important 

for the friction reduction. Only the 2D nano-additives showed capability in reducing 

friction. Secondly, a critical concentration was observed, below which the friction was 

reduced. Thirdly, the 2D nano-additives showed friction reduction no matter how the 

friction changed with experimental parameters. Lastly, the friction reduction was found 

to be partially responsible by the intermolecular interaction between lubricant molecules 

and additive. The friction discussed here was mainly caused by the localized asperity-
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contact. The 2D nanomaterials could enter the localized contact area driven by the 

lubricant flow. The intermolecular interaction enabled them to deliver lubricant 

molecules into the contact area and reduce the friction. 

Further efforts in identifying applications of the nanomaterials were made, and 

two case studies were discussed here. The first case was to use the Y2O3 nanosheet as 

slurry abrasives for Cu CMP. The low-friction process using the Y2O3 nanosheet showed 

reduction of surface non-uniformity, decrease in roughness, and elimination of Cu 

dishing. The second was to enhance the lubrication performance during the CMP using 

the B-B2O3 nanoparticles. Results showed that the nanoparticles are able to significantly 

reduce the surface roughness while increasing the materials-removal rate. This was due 

to the low-friction CMP process resulting from its 2D nanostructured oxide surface. 

Tribological evaluation in the present chapter reveals great potential of the 2D 

nanomaterials as additives in fluidic lubrication. Mechanisms for this will be analyzed 

and addressed in the next chapter by conducting rheological investigations. 
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CHAPTER VI 

VISCOSITY MODIFICATION USING 2D NANO-ADDITIVES‡ 

 

This chapter discusses the non-Einstein-like viscosity reduction using 2D 

nanoparticles in a fluidic lubricant. It includes the following section: 1) analyses of the 

Stribeck curves of lubricants containing 2D nanomaterial; 2) non-Einstein-like viscosity 

reduction using 2D nanoparticles; 3) relationships between  structure and fluid-

lubricants. Fluid mechanics, viscous flow analysis, and computational simulation were 

carried out and it was discovered that inclination of the 2D nano-additives was 

responsible for the viscosity reduction. 

 

6.1. Effects of 2D nano-additives on lubricating performance 

6.1.1. Evaluation via Stribeck curves 

How the lubrication regimes respond to friction can be reflected through plotting 

Stribeck curves.260,261 Stribeck curves were originally designed for differentiating the 

lubrication regimes. The friction coefficient is plotted against the Sommerfield number, 

a ration of viscosity and velocity to applied load.315,316 A Stribeck curve is shown in 

Figure 6.1a with three basic lubrication regimes: 1) boundary lubrication (regime I, with 

very high friction); 2) mixed lubrication (regime II, experiencing continuous decrease of 

                                                 
‡ Part of this chapter reproduced with permission from “α-zirconium phosphate 
nanoplatelets as lubricant additives” by Xingliang He, et al., Colloids Surf., A, 2014, 
452, 32-38 (Copyright © 2014, Elsevier) and “Two-dimensional nanostructured Y2O3 
particles for viscosity modification” by Xingliang He, et al., Appl. Phys. Lett., 2014, 104, 
163107 (Copyright © 2014, AIP Publishing LLC). 
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friction); and 3) hydrodynamic lubrication (regime III, with stable and low friction). In 

the boundary lubrication two surfaces are mostly in contact with each other (the left inset 

of Figure 6.1a) when load is high and viscosity and speed are low. Characteristics of 

boundary lubrication are high friction (see top black plot in Figure 6.1b), large surface 

contact, and little fluid between two surfaces. As the load decreases, or the viscosity and 

speed increase, a fluid film forms while the surfaces are separated. The film begins to 

support load, even though it is still very thin (the middle inset of Figure 6.1a). A steep 

drop in friction is often observed on the Stribeck curve when reaching the mixed 

lubrication regime. The surfaces are lifted more with increased viscosity and speed, or 

with a decreased load. A transition from mixed lubrication to hydrodynamic lubrication 

is obtained when the minimum friction is observed on the Stribeck curve (see bottom 

green plot in Figure 6.1b). In the hydrodynamic-lubrication regime, two surfaces are 

completely separated by a fluid film (the right inset of Figure 6.1a). More loads can be 

applied to the thicker fluid film, and a relatively low and stable friction coefficient is 

obtained (see middle red plot in Figure 6.1b). Due to fluid drag, the friction increases 

slightly in the later stage.  

In order to understand the effects of 2D nanomaterials on lubrication, the average 

coefficient of friction is used in plotting Stribeck curves (Figures 6.2). Those curves 

obtained from testing yttrium oxide (Y2O3) nanosheets (NS) and α-zirconium phosphate 

(ZrP) nanoplatelets. As shown in Figure 6.2, standard deviation of the average value is 

used to label the error. The lubrication experiments discussed in this chapter were all 
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conducted using a pin-on-disk configuration consisting of a rotating glass disk and a 

fixed E52100 alloy steel pin. 

 

 

Figure 6.1. (a) A Stribeck curve with different lubrication regimes schematically showing in inset; (b) 

Example comparison of friction coefficient in different lubricant regimes using mineral oils; the applied 

loads and the rotational speeds used in the experiments are labeled in the figure. 
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Figure 6.2. Plotting Stribeck curves of different lubricants using the average coefficient of friction. 
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6.1.2. Lubricating behavior of 2D nanomaterials 

The effectiveness of 2D Y2O3 NS as additives in a mineral oil is shown in Figure 

6.3. In Figure 6.3a, both Y2O3 nanoparticles (NP, purple line) and nanowires (NW, 

orange line) additives lead to the increase in coefficient of friction. On the contrary, 

Y2O3 NS (green line) additive drops the coefficient of friction significantly. At the same 

low concentration (0.5 wt %), presence of the Y2O3 NP and NW in the mineral oil 

deteriorates its lubricating performance. Only Y2O3 NS is capable of enhancing 

lubrication of mineral oil as an effective additive. Lubricating performances of mineral 

oil containing different concentrations (1 wt %, 0.5 wt %, and 0.1 wt %) of Y2O3 NS are 

examined in Figure 6.3b as well. The low concentration of Y2O3 NS additives leads to 

reduction in friction. At a concentration of 0.1 wt %, the Y2O3 NS additive decreases the 

coefficient of friction as much as by ~ 40 %. A small amount of Y2O3 NS additive is 

enough to greatly improve lubricating performance in all regimes, from the boundary-

lubrication regime (I) to hydrodynamic-lubrication regime (III). For the lubricant with 

relatively high concentration (1 wt %), a poor lubricating performance is observed in 

boundary lubrication (blue plot in regime I in Figure 6.3b), which displays visibly higher 

coefficient of friction than that of pure mineral oil. This could be due to agglomeration 

of Y2O3 NS under the high load and low rotational speed in the boundary-lubrication 

regime.317 The fluid film of the mineral oil would be blocked as the excessive Y2O3 NS 

piled up (the left of Figure 6.4). Direct contact between the Y2O3 nanosheets results in a 

noticeable frictional drag. When the rotation speeds up and the load decreases, the 

agglomerated particles would be dispersed by the fluid shear (the right of Figure 6.4). 
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Once the lubrication becomes mixed or hydrodynamic, the Y2O3 NS additives improve 

the lubricating performance via modifying the fluid behavior. 

 

 

Figure 6.3. (a) Comparison of Stribeck curves using mineral oils without (black curve) and with different 

types (colored curves) of Y2O3 nano-additives (0.5 wt %). (b) Comparison of friction coefficient using 

mineral oils without (black curve) and with different concentrations (colored curves) of Y2O3 NS 

additives. 

 

 

Figure 6.4. Diagram schematically showing the transition from boundary-lubrication regime to mixed- or 

hydrodynamic-lubrication regime with relatively high concentration (1 wt %) of Y2O3 NS additives. 

 



 

109 

The similar effects of α-ZrP nanoplatelets in mineral oil are found and shown in 

Figure 6.5a. It is observed that the addition of 0.5 wt % and 0.1 wt % α-ZrP 

nanoplatelets, the friction coefficient is reduced significantly in ranges from boundary-

lubrication regime I, to mixed-lubrication regime II, and through hydrodynamic-

lubrication regime III. The mineral oil containing 0.1 wt % of α-ZrP nanoplatelets shows 

slightly lower friction coefficient than that contains 0.5 wt % of α-ZrP nanoplatelets. In 

addition, friction in water is reduced in the presence of α-ZrP nanoplatelets additives as 

well (Figure 6.5b). A lower concentration of α-ZrP nanoplatelets leads to further 

decrease in coefficient of friction. It is observed from Figure 6.5 that addition of 0.1 wt% 

α-ZrP nanoplatelets in mineral oil and in water reduced friction maximally by 65 % and 

90 %, respectively. 

 

 

Figure 6.5. (a) Comparison of Stribeck curves using mineral oils without (black curve) and with different 

concentrations (colored curves) of α-ZrP nanoplatelet additives. (b) Comparison of Stribeck curves using 

DI water without (black curve) and with different concentrations (colored curves) of α-ZrP nanoplatelet 

additives. 
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6.2. Non-Einstein-like reduction of viscosity  

To further understand the effects of 2D nano-additives on lubricating behavior, 

we examined the viscosity of the fluidic lubricants. According to Reynolds’ theory, once 

a continued lubricant film is formed between two bodies in relative motion, a 

hydrodynamic pressure is built up to separate the two surfaces.318,319 The viscosity of a 

fluid reflects its load-carrying capability, which determinates the thickness and 

performance of a lubricant film. 

 

6.2.1. Viscosity modification using 2D nano-additives 

The viscosity against shear rate was measured, as shown in Figures 6.6 and 6.7. 

Figure 6.6a shows that Y2O3 NP and NW additives result in viscosity increase of the 

mineral oil (purple and orange curves). The Y2O3 NP and NW additives make the 

mineral oil fluid not flow easily. This is because that high shear stress is needed to drive 

the lubricant flow in which Y2O3 NP and NW are randomly dispersed. Oppositely, after 

Y2O3 NS are added into the mineral oil, a lower viscosity is obtained (green curve in 

Figure 6.6a). By decreasing the concentration of the Y2O3 NS, the viscosity was reduced 

further (Figure 6.6b). At the concentration of 0.1 wt %, Y2O3 NS could reduce the 

viscosity as much as by ~ 4 %. Figure 6.7 shows the similar results based on the α-ZrP 

nanoplatelets additives in non-aqueous and aqueous lubricants. The most reduction of 

viscosity was achieved at the lowest concentration (0.1 wt %) of α-ZrP nanoplatelets, i.e, 

by ~ 3 % in mineral oil (Figure 6.7a) and by ~ 12 % in water (Figure 6.7b). Therefore, 

well corresponding to the results based on Stribeck curves (Figures 6.3 and 6.5), a low 
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viscosity is obtained once the 2D sheet-like nano-additives are added into the lubricants, 

which implies that they have the capability to improve lubrication via modification of 

the lubricants’ rheological property. 

 

 

Figure 6.6. (a) Variation of viscosity with shear rate in mineral oil (top black plot), and with addition of 

different types (colored curves) of Y2O3 nano-additives (0.5 wt %). (b) Variation of viscosity with shear 

rate in mineral oil (top black plot), and with addition of 0.5 wt % (middle red plot) and 0.1 wt % (bottom 

green plot) Y2O3 NS additives. 
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Figure 6.7. (a) Variation of viscosity with shear rate in mineral oil (top black plot), and with addition of 

0.5 wt % (middle red plot) and 0.1 wt % (bottom green plot) α-ZrP nanoplatelet additives. (b) Variation of 

viscosity with shear rate in DI water (top black plot), and with addition of 0.002 wt % (middle red plot) 

and 0.0004 wt % (bottom green plot) α-ZrP nanoplatelet additives. 

 

6.2.2. Thixotropic study  

From Figures 6.6 and 6.7,  the viscosity reduction with increasing shear rate is 

observed as well, indicating the shear thinning characteristic of the lubricants.320 To 

further understand this phenomenon, a thixotropic study was conducted to investigate 

the shear thinning properties of the liquid lubricants with the 2D nanostrctured additives. 

The results are shown in Figure 6.8. In mineral oil, the fluid structure is deconstructed 

initially by applying a constant shear rate (10,000 s-1), leading to the quick drop of 

viscosity at the beginning (<  60 s, Figures 6.8a and 6.8b). As mineral oil is mainly 

composed of long-chain alkane molecules, the physical interactions between them 

enable the deconstructed structure to rebuild continuously. The process that breaks the 

molecular structures competes with that rebuilds the molecular bonding. The dynamic 

balance between them results in a relatively stable viscosity at later stage (>  60 s, 
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Figures 6.8a and 6.8b). In the case of water, its viscosity keeps decreasing under a 

constant shear rate (10,000 s-1, see Figure 6.8c). This indicates that the aqueous fluid 

structure undergoes an irreversible shearing process.  

From Figure 6.8a, Y2O3 NS additives are found to reduce viscosity in the 

thixotropic study. Under the constant shear rate (10,000 s-1), the 0.1 wt % Y2O3 NS 

reduces the viscosity by ~ 4 %, which is more than that of 0.5 wt % Y2O3 NS. As seen in 

Figures 6.8b and 6.8c, under the same shear rate, the α-ZrP nanoplatelets additive 

reduces viscosity as much as by 7 % for mineral oil (Figure 6.8b) and by14 % for DI 

water (Figure 6.8c), respectively. It is noted that the classic Einstein theory could be 

used to explain linear increase in viscosity of the suspension with low-concentration 

particulate additives.321-323  Einstein’s theory permits the viscosity of a suspension to 

increase with the addition of particulates, while recent studies showed that the viscosity 

was made to decrease with addition of organic nanoparticles only.55,324-326 Interestingly 

in the present work, suspension of inorganic 2D nanomaterials in liquid lubricants is 

found to show a novel non-Einstein-like viscosity reduction. The 2D nano-additives-

induced lubrication improvement is believed to be a consequence of the non-Einstein-

like viscosity reduction.  
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Figure 6.8. Under a constant shear rate (10,000 s-1), (a) reduction in viscosity of mineral oil (top black 

plot) in the presence of Y2O3 NS with concentrations of 0.5 wt % (middle red plot) and 0.1 wt % (bottom 

green plot); (b) reduction in viscosity of mineral oil (top black plot) in the presence of α-ZrP nanoplatelets 

with concentrations of 0.5 wt % (middle red plot) and 0.1 wt % (bottom green plot); (c) reduction in 

viscosity of DI water (top black plot) in the presence of α-ZrP nanoplatelets with concentrations of 0.002 

wt % (middle red plot) and 0.0004 wt % (bottom green plot). 

 

6.3. Mechanisms 

In order to investigate the mechanisms of fluidic modification, analyses based on 

fluid mechanics are carried out. 
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6.3.1. Fluid mechanics calculation 

Fluid motions of lubricants are investigated and calculated. As shown in equation 

(6.1), a fluid element is in a dynamic equilibrium status between surface forces, body 

forces, and inertia forces.260,261,327,328 

Surface forces + Body forces = Inertia forces                        (6.1) 

 

1) Surface forces 

Surface stresses acting on a fluid element are shown in Figure 6.9. τ denotes the 

shear stresses, and σ designates the normal stresses. The shear stress can be expressed in 

equations (6.2). The first and the second subscripts represent the perpendicular and shear 

directions, respectively.  

 

 

Figure 6.9. Designating surface stresses on a fluid element. 
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The shear stresses are symmetric [the equation (6.3)], due to that the moments 

are in equilibrium in the fluid element. 
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Simultaneously, the normal stress is written as shown in the equation (6.4):  
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The fluid element moves in the x, y, and z directions, driven together by the 

shear stress [Fs, the equation (6.5)] and normal stress [FN, the equation (6.6)]. 

         (6.5)                                    (6.6)ij i
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2) Body forces 

A body force is the force that acts throughout the volume of the fluid element. 

Such forces can be expressed in the equation (6.7): 

2

4

                           (6.7)
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3) Inertia forces 

The inertia forces are the forces that are needed to accelerate or decelerate the 

fluid element. They are written in the equation (6.8). 

                           (6.8)
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Substituting the equations (6.5) through (6.8) into the equation (6.1), the Navier-

Stokes equation is obtained [the equation (6.9)].  
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         (6.9) 

 

For the pin-on-disk tribological experiment conducted in this research, the 

viscous lubricant can be considered as a flow between two parallel flat plates (see Figure 

6.10; xi = x, xj = y, and xk = z). The reason is that the thickness of the fluid film is much 

smaller than the dimensions of the pin-on-disk configuration. Such flow configuration 

imposes the below assumptions: 

1) Both body and inertia forces can be ignored; 

2) Transient density change makes it constant; 

3) Pressure gradient exists along the flow only (i.e. x direction), ∂P/∂xj = ∂P/∂xk = 0; 
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4) There is no leakage during the lubrication, terms ∂u/∂xj = 0. 

 

Figure 6.10. Lubricant flow between two parallel flat plates (top: pin; bottom: disk). 

 

Having considered the assumptions listed above, the reduced Navier-Stokes 

equation is obtained in the equation (6.10): 

P
  ( )                                         (6.10)

d d du

dx dz dz
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η is treated as the averaged viscosity across the whole film. Solving the equation 

(6.10) with a no-slip boundary condition (u = ub when z = 0; u = ua when z = h), 

expression of the flow velocity across the film between the parallel plates is obtained 

[the equation (6.11)]: 
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Due to mass-conservation principle, the mass reduction within a fluid volume 

must be the same as the net out-mass-flow from it. The continuity equation can be 

expressed in the equation (6.12): 

h
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Solving the integral based on the assumed simplification, the Reynolds equation 

is obtained for the present study in the equation (6.13): 
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The reduced Reynolds equation (6.13) will be used to calculate the change of 

viscosity in a lubricant with or without the nano-additives. 

 

6.3.2. Viscous flow analysis 

6.3.2.1. Viscosity expression in pure lubricant 

As a normal load is applied on the pin during the tribological measurements 

(Figure 6.10), the lubricant tends to be squeezed out from the spacing between the 

mating surfaces. The velocity profile of this normal squeeze-induced flow is shown in 

the top-left of Figure 6.11. The flow at the entrance has an opposite direction to that at 

the exit. Besides, shearing by the bottom disk, an entraining flow exists between the 

parallel plates. This flow rate decreases with the distance from the bottom-moving disk 

(see the bottom-left of Figure 6.11).  Taking those two effects together into considration, 

the localized flow-rate profile for the pure lubricant in this study is obtained in the right 

of Figure 6.11. More lubricant flows out of the exit, and a positive gradient for the 

hydrodynamic pressure is built within the film between the pin and the disk. A physical 

wedge is obtained, and the lubricant film thickness decreases in the flow direction. 
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Figure 6.11. Flow-rate profile of pure lubricant flow. 

 

It is noted that the pin is fixed in our tribological experiment (ua = 0). The 

viscosity of the pure lubricant is calculated using the equation (6.13) and expressed as: 
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6.3.2.2. Viscosity with spherical nanoparticles as additives 

When a spherical nanoparticle is added in the lubricant, the fluid dynamic 

behavior of the lubricant is modified. Flow rate close to the moving disk is higher than 

that far away from the disk. There is a higher flow rate (u1 in Figure 6.12a) on the 

bottom surface of the nanoparticle than that on its top surface. As a result, the 

nanoparticle starts to rotate around its center in the lubricant flow, i.e. the nanoparticle 

spins. When the nanoparticle spins, the internal friction takes part in the lubricant 

flowing process. In such, the inertia contribution becomes visible. Vortices would form 

in the lubricant fluid and smooth flow condition is broken down. In addition, for the pure 
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lubricant, density variation associating with elastic vibration of lubricant molecules is a 

transient phenomenon. With the existence of nanoparticle, however, those elastic 

vibrations along the fluid direction are hindered. It is because the inorganic 

nanomaterials used in this research have much smaller elastic modulus, comparing to the 

long-chain lubricant molecules. Thus, freely expansion of flow is repressed evidently. 

The transient change of lubricant density cannot be maintained. 

 

 

Figure 6.12. (a) Rotation (or spin) of the spherical nanoparticle under flow shearing; (b) flow distribution 

close to the nanoparticle surface; (c) flow-rate profile in lubricant that contains the nanoparticle additive. 

 

Due to the nanoparticle rotation (or spin), both inertia effects and the repressed 

expansion leads to inhibiting the shearing process. The viscosity of the lubricant 

containing the nanoparticle additives can be rewritten as: 
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As expressed in the equation (6.15), shear rate is decreased because of the inertia 

effects and the repressed expansion-induced non-transient density change. Consequently, 

viscosity is increased with the presence of nanoparticle in the lubricant. Such result is in 

accordance to the findings in tribological and rheological experiments discussed above. 

The increased viscosity can be understood by analyzing the localized flow rate, 

as shown in Figures 6.12b and 6.12c. During the spin of nanoparticle, an opposite flow 

(u′′ in Figure 6.12) to the lubricant flow is generated in the localized area close to its top 

surface (see Figure 6.12b). The flow-rate distribution approaching the nanoparticle’s 

surface is negative. After integrating the flow-rate profile below and above the 

nanoparticle, the velocity distribution becomes narrow (see Figure 6.12c). The reddish 

area indicates schematically how much the velocity distribution is shrunk. In brief, the 

rotation of nanoparticle in lubricant enables the inertia effects and flow expansion to 

hinder the shearing process. Viscosity increased as a consequence of the decreased shear 

rate. 

 

6.3.2.3. Viscosity with 2D nanosheets as additives 

In the present research, an interesting non-Einstein-like viscosity reduction is 

observed, with which the reason for lubrication improvement is addressed. The 2D 
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sheet-like nano-additive is critical to the viscosity reduction. The lubricant with it 

behaves totally different from the other two lubricants discussed above. Similarly to that 

observed for the nanoparticle, the nanosheet would rotate in a lubricant flow as well. 

This is also due to the decreased flow rate in z direction (the left of Figure 6.13a). As the 

nanosheet has a much larger aspect ratio than the nanoparticle, a minor physical wedge 

forms (the right of Figure 6.13a). The height of this wedge is a function of its length [see 

the equation (6.16) and the right of Figure 6.13a]. The viscosity of the lubricant 

containing the nanosheet can be expressed as the equation (6.17).  

 

 

Figure 6.13. (a) Rotation of the 2D nanosheet under flow shearing; (b) flow-rate profile in lubricant that 

contains the 2D nano-additive; (c) flow distribution close to the nanosheet surface.  

 



 

124 

3

3

  tan             or              sin                    (6.16)

( ) Shear stress
                       (6.17)

6 u sin   C Shear rate

C  Constant

 




 

 


 




b

h h

x l
P

h
x

l
 

Depending on the rotating angle (θ), the viscosity expressed in the equation 

(6.17) is investigated under three conditions: 1) the nanosheet is parallel to the flow (θ ~ 

0°, sin θ ~ 0); 2) the nanosheet inclines a little bit [θ is small (45° < θ < 45°), 0 < tan θ 

<< 1]; and 3) the nanosheet rotates a lot [θ is large (θ > 45°, tan θ > 1]. 

 

When nanosheet is parallel to the flow (θ ~ 0°, sin θ ~ 0): 

The viscosity equation (6.17) can be reduced to: 
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Comparing with the equation (6.14), the localized viscosity in the minor physical 

wedge is increased. 

 

When nanosheet inclines a little bit [θ is small (0° < θ < 45°), 0 < tan θ << 1]: 

The equation (6.17) is used to express the localized viscosity in the minor 

physical wedge. The small inclination (increased θ) would induce an increase in the 

shear rate, leading to the viscosity (η3) reduction. Driven by the moving disk, shearing 

process in the minor physical wedge undergoes easily, and the lubricant flow along with 

the inclined nanosheet experiences less fluid drag. It is reasonable to believe that the 
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novel finding of viscosity reduction observed in the experiments is caused by the 

inclination of the 2D sheet-like nano-additives. 

 

When nanosheet rotates a lot [θ is large (θ > 45°, tan θ > 1]: 

Elastic vibration of lubricant molecules is impeded by the solid surface of the 

nanosheet, resulting in localized variation in lubricant density. Similar to that occurs for 

the nanoparticle additives, the internal friction participates in elimination of the smooth 

lubricant flow. The inertia effects [i(u,t)] and the non-transient density variation [ρ(u,t)] 

should be included in the expression of localized viscosity for the minor physical wedge: 
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The inertia effects and the non-transient density variation are able to slow down 

the shearing process. Viscosity is thus increased due to the reduced shear rate, when 

there is notably rotated nanosheet in the lubricant. 

Therefore, only the inclined nanosheet is capable of reducing viscosity of the 

lubricant. The localized flow rate analysis could account for such viscosity reduction. 

The results are schematically shown in Figures 6.13b and 6.13c. As there is a flow-rate 

difference (u1 > u2), another lubricant flow (u′ in Figures 6.13b and 6.13c) presents on 

the top surface of the nanosheet in order to maintain the small inclined angle. This flow 

across the top surface of nanosheet is larger than that underneath it (see Figure 6.13c). In 

such, the flow-rate distribution is broadened with the nanosheet additive in lubricant (see 

Figure 6.13b). Greenish area schematically represents the widened flow-rate profile. In 
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sum, only the inclined nanosheet shows capability in reducing viscosity via an efficient 

shearing process. 

 

6.3.3. Particle hydrodynamic simulation 

The nanomaterial in a non-Newtonian fluid is modeled utilizing smoothed-

particle hydrodynamics (SPH) with the addition of rigid body inclusions.329-331 Total 

viscosity of the composite fluid matrix with a single inclusion of Y2O3 nanosheet (NS) 

or nanoparticle (NP) was simulated, and the results are shown in Figure 6.14. As we 

discussed in Sections 6.3.1 and 6.3.2, the Y2O3 NS is capable of inclining in the flow 

direction due to the unique 2D morphology at nanoscale. Figure 6.14a is the modeling 

domain of a rectangular shear cell. Having the Y2O3 NS oriented directly parallel 

(inclining at 0 degree) to the flow or with slight inclination (at 2 degree and 4 degree), a 

little bit increase in viscosity with respect to that of pure mineral oil is obtained (red 

dotted curves in Figure 6.14b). Having calculated 6, 8, and 10 degree inclination angles, 

it is observed that the steeper inclined angle results in more viscosity reduction (green 

dotted curves Figure 6.14b). On the contrary, the viscosity is increased with a single 

inclusion of Y2O3 NP (Figure 6.14c) in the SPH modeling. The non-Einstein-like 

viscosity reduction is further confirmed to be responsible by the inclination of Y2O3 NS 

in mineral oil under shear.  
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Figure 6.14. (a) Inclined Y2O3 NS in mineral oil modeled in a rectangular shear cell with periodic 

boundary conditions. (b) Total viscosity of the fluid matrix without and with a single inclusion of inclined 

Y2O3 NS at different degrees (0º, 2º, 4º, 6º, 8º, and 10º), under a constant shear rate (10,000 s-1). (c) Total 

viscosity of the fluid matrix without and with a single inclusion of Y2O3 NP and inclined Y2O3 NS. 

 

The simulation results could be capitalized to provide insight into why the 2D 

nano-additives affect the shear behavior and improve the lubrication. The viscosity used 

in this chapter is the dynamic (shear) viscosity, defined as the ratio of shear stress to 

shear rate. Being proportional to viscosity, the shear stress is represented by three 

contributions: an interactive stress component, a Brownian stress component, and a 

hydrodynamic stress component.35,332-337 For a hard particle system (the Y2O3 NS and α-

ZrP nanoplatelet), the interactive stress is zero.338 The random fluctuation of 

nanoparticles in a liquid suspension resulted in the Brownian stress.35,333,334 The 
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inclination of the 2D nanomaterials with respect to the flow of lubricant would 

significantly eliminate the chance of the random movement. The Brownian stress is 

reduced under shearing. On the other hand, a hydrodynamic stress is caused by the delay 

of the motion of dispersed particles with respect to the increase in shear strain.336,337 The 

inclined 2D sheet-like nano-additives in fluid direction are believed to decrease the time 

needed to build up the shear strain, resulting in the reduced hydrodynamic stress. On the 

contrary, the pure lubricant liquid is unable to keep up with the increased shear strain 

and leads to the high viscosity. As a whole, the inclination of the 2D nanomaterial 

additives with lubricant flow reduces the shear stress. The viscosity reduction induced by 

the 2D nano-additives is responsible for lubrication improvement. 

 

 

Figure 6.15. (a) Schematic top-view (the left) and side-view (the right) showing inclined alignment of the 

2D nano-additives in the lubricants. (b) Schematic explanation of lubrication improvement via viscosity 

modification. 
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In order to understand the mechanisms of lubrication, a schematic is shown in 

Figure 6.15. The inclined alignment of the 2D sheet-like nano-additives (Figure 6.15a) is 

capable of reducing viscosity of lubricants. It is the non-Einstein-like viscosity reduction 

that improves the lubrication. The 2D morphology can facilitate alignment of the NS and 

the nanoplatelets in an inclined manner by applying a perpendicular fluid pressure and a 

parallel shearing (see discussion in Section 6.3.2). Such an inclined alignment would 

separate lubricant flow layers by laminar cutting,339,340 leading to decreased dynamic 

interaction (including momentum transfer). As a result, the laminar separation-induced 

reduction in fluid drag leads to the viscosity reduction (see Figures 6.6 through 6.8 and 

Figures 6.12 and 6.13).339-341 In hydrodynamic lubrication, the characteristic is that a 

complete lubricant film forms as the contact surfaces are separated (the left of Fig. 

6.15b). The separation is a result of hydrodynamic lift. A converging gap is the 

necessary geometry to produce hydrodynamic lubrication (also see Fig. 6.11).342,343 The 

hydrodynamic pressure and the applied load are in the kinetic equilibrium state in 

hydrodynamic-lubrication regime 267,344. Low viscosity of the lubricants increases 

localized fluid flow [see the equation (6.11)] and leads to higher hydrodynamic pressure, 

generating an extra hydrodynamic lift. The direction of the hydrodynamic pressure is 

opposite to the load. The extra hydrodynamic lift causes friction reduction in the 

hydrodynamic lubrication. In sum, the low viscosity of the lubricants with the presence 

of inclined 2D nanomaterial additives is evident (Figures 6.9 and 6.14). The lubrication 

improvement is caused by the novel non-Einstein-like viscosity reduction revealed in 

this study. 
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6.4. Summary 

In this chapter, effective lubricating performance of 2D nanomaterials was 

evaluated first using Stribeck curves. The nano-additives were found to significantly 

improve lubricating performance in all lubrication regimes. Specifically, 0.1 wt % of 

Y2O3 nanosheets and α-ZrP nanoplatelets in mineral oil reduced the friction as much as 

by ~ 40 % and ~ 65 %, respectively. 

Their rheological behaviors were investigated to understand the lubricating 

behavior. A novel non-Einstein-like viscosity reduction was observed with the addition 

of 2D nanoparticles. In mineral oil, the viscosity was reduced by ~ 4 % and ~ 7 %, 

respectively, using Y2O3 nanosheets and α-ZrP nanoplatelets. 

In order to understand the fluidic-modification mechanisms, structure-fluid-

lubrication relationship was established using fluid mechanics calculation, viscous flow 

analysis, and computational simulation. It was discovered that the2D nanoparticles could 

reduce viscosity via inclination in flow direction. On the contrary, the spherical 

nanoparticles increased viscosity due to the inertia effects and the non-transient density 

variation. The non-Einstein-like viscosity reduction led to the improved lubricating 

performance. The utilization of 2D nanomaterials provides an innovative solution in 

improving fluidic lubricating efficiency. Based on the tribological and rheological 

investigation, the conclusions and the recommendation for future works will be 

described in Chapter VII. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORKS 

 

7.1. Conclusions 

This research investigated the use of two-dimensional (2D) nanomaterials to 

improve lubricating performance via a non-Einstein-like viscosity reduction. The 2D 

nanoparticles are an entirely new family of lubricant additives. When compared to other 

shaped nano-additives, the 2D showed exceptional performance in the friction reduction 

and the viscosity modification for fluidic lubricants. 

In this work, two types of 2D nanoparticles were synthesized using a facile 

hydrothermal method: yttrium oxide (Y2O3) nanosheets (sized ~320 and ~ 15 nm thick) 

and α-zirconium phosphate (ZrP) nanoplatelets (sized ~ 600 nm to 1 μm and ~ 30 nm 

thick). Their 2D morphology at nanoscale was confirmed with various characterizations. 

Especially for the Y2O3 nanosheets, an interesting transformation from multiphase to 

single-phase was observed. The single-phase Y2O3 nanosheets were found to possess a 

unique negative resistance, while the multiphase counterpart shows a Schottky-barrier 

behavior. It was the 2D shape that enables the Y2O3 nanosheets to have such a novel 

property. Furthermore, a chemical vapor deposition system was built to synthesize B-

B2O3 composited nanoparticles. On a catalyzed substrate, the size of the nanoparticles 

could be regulated (from ~ 5 nm to ~ 100s nm) by controlling the deposition rate. 2D 

nanostructured surface on the B-B2O3 nanoparticles were characterized as well. 
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Pin-on-disk configured tribological experiments were conducted to examine the 

lubrication using different additives. There was a critical concentration, below which 

friction reduction would present. The morphology of the additive at nanoscale was 

critical in friction reduction. Only the 2D nanoparticles showed significant friction 

reduction in all cases of combination in applied loads, rotational speeds, and base 

liquids. The improved lubricating performance was further proved by plotting the 

Stribeck curves for lubricants containing 2D nano-additives. Lubricating efficiency was 

found to be increased significantly in all lubrication regimes. The Y2O3 nanosheets and 

the α-ZrP nanoplatelet additives reduced the friction by ~ 40 % and ~ 65 %, respectively, 

in mineral oil. In addition, such low-friction process was applied to chemical mechanical 

planarization (CMP) of copper. A high degree of flatness was obtained after CMP, using 

the slurry containing the 2D nanomaterials. 

Rheological investigation revealed that a non-Einstein-like viscosity reduction 

was responsible for friction reduction. Utilizing the additives of Y2O3 nanosheets and α-

ZrP nanoplatelets, the viscosity of mineral oil was reduced by ~ 4 % and ~ 7 %, 

respectively. In order to investigate the mechanisms of fluidic modification, fluid 

mechanics calculation, viscous flow analysis, and computational simulation were carried 

out. The inclination of the sheet-like nanoparticle in the lubricant flow was found to 

induce the viscosity reduction. Consequently, improvement in the tribological 

performance was caused by the viscosity reduction. 

Using 2D nanomaterials, novel solution was developed to improve tribological 

performance and the rheological behaviors. The findings in the present research will 
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broaden the materials scope for a wide range of fluidic-related applications. The 

structure-fluid-lubrication relationship established here is believed to shed new light on 

the research of nano-fluid and nano-lubrication. Such understanding would have great 

impacts on engineering and science communities that concern about nanomaterials 

innovation, energy saving, and manufacturing efficiency.  

 

7.2. Future works 

The challenging needs of viscosity reduction for next generation of lubricants can 

be fulfilled using the 2D nano-additives. Future study will focus on integration of the 

novel additives with a broad range of existed lubricants. Based on results founded in this 

research, the below actions and works are suggested: 

 

1) More efficient viscosity-reduction additives: As summarized in the Table 

1.1, 2D nanoparticles are a big family of materials. Further improvement 

would be obtained using better 2D nano-particulate additives in lubricant. 

Their dimension, structure, and surface functionalization can be modified 

depending on the tribological or fluidic applications. 

 

2) Investigation of chemical/physical interaction: The current research 

emphasizes the effects of the 2D nano-additives on the fluidic behavior of 

lubricant. Interactions between the lubricant molecules also play 

equivalently important roles in determining lubricant’s viscosity. Further 
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detailed study regarding the interactions between the additives and 

lubricant molecules indeed necessary. 

 

3) Synergetic effects: The lubricants used in this research consisted of a base 

liquid and one type of additives. However, a real lubricant should also 

have: demulsibility, hydraulic and thermal stability, high viscosity index, 

corrosion resistance, and low freezing point and high boiling point. 

Conventional additives discussed in the Chapter I were used to enable the 

lubricant to possess those characteristics. The performance of the 2D 

nano-additives should be evaluated synergistically with the conventional 

additives. 

 

4) In-situ fluidic characterization: The fluidic behaviors of the 2D 

nanoparticles were investigated theoretically in the present research. In-

situ fluid dynamic characterizations of the flow-rate distribution, pressure 

distribution, and lubricating film thickness would ultimately provide solid 

foundation for the wide applications of the novel additives in a real world. 
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