
ALGORITHMS FOR SEARCHING AND ANALYZING SETS OF

EVOLUTIONARY TREES

A Dissertation

by

GRANT REYNOLDS BRAMMER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Tiffani Williams
Committee Members, Nancy Amato

William Murphy
Jennifer Welch

Head of Department, Nancy Amato

May 2014

Major Subject: Computer Science and Engineering

Copyright 2014 Grant Reynolds Brammer

ABSTRACT

The evolutionary relationships between organisms are represented as phyloge-

netic trees. These trees have important implications for understanding biodiversity,

tracking disease, and designing medicine. Since the evolutionary process that led to

modern biodiversity was not directly recorded, phylogenetic trees are inferred from

modern observations. Inferring accurate phylogenies is computationally difficult and

many inference algorithms produce multiple phylogenetic trees of equal quality. The

common method for presenting a set of trees is to summarize their common features

into a single consensus tree. Consensus methods make it easy to tell which features

are common to a set of trees, but how do you explore the hypotheses that are not

the majority of trees? This question is best answered by a search algorithm.

We present algorithms to query a set of trees based on their internal structure.

Trees can be queried based on their bipartitions, quartets, clades, subtrees, or taxa,

and we present a new concept which unifies edge based relationships for search func-

tions. To extend the power of our search functions we provide the ability to combine

the results of multiple searches using set operations.

We also explore the differences between sets of trees. Clustering algorithms can

detect if there are multiple distinct hypotheses within a set of trees. Decision tree

depth and distinguishing bipartitions can be used to measure the similarity between

sets of trees. For situations where a set of trees is made up of multiple distinct sets,

we present p-support which is a measure to quantify the impact of the individual

sets on a single consensus tree.

The algorithms are presented within the context of TreeHouse. This is my open

source platform for querying and analyzing sets of trees. One goal of TreeHouse was

ii

to unite query and analysis algorithms under a single user interface. The seamless

interaction between fast filtering and analysis algorithms allows users to the explore

their data in a way not easily accomplished elsewhere. We believe that the algorithms

in this document and in TreeHouse can shed new light on often unexplored territory.

iii

DEDICATION

To Amy for everything

and

to my family and friends for all of their support over the years.

iv

ACKNOWLEDGEMENTS

I would like to take this time to thank my advisor, Dr. Tiffani Williams, for her

guidance and support over this handful of years. I don’t know where I’d be without

your guidance. You’ve provide support for me as a researcher, a writer, and a person.

I would also like to thank my committee members, Dr. Nancy Amato, Dr. Jennifer

Welch, and Dr. Bill Murphy, for the all of the feedback input and revisions. Not just

on this document, but on the whole process of graduate school.

I’ve been honored to work with multiple undergraduate researchers in my time

at A&M. Arthur Philpott, Matthew Cember, Jarrett Holtz, and Mark Adamo all

contributed to what has become my dissertation work. They also contributed to my

understanding of myself as a researcher, a leader, a mentor, and a teacher. Some

of the best times I’ve had in graduate school stem from being a mentor to these

individuals. I have Dr. Marc Smith to thank for many of those opportunities, and

while he allowed me to be a mentor to his students, he was also being a mentor to

me.

I’d also like to recognize my lab mates for all the help, the conversations, the

friendship, and the research collaborations. Dr. Seung-Jin Sul, Dr. Suzanne Matthews,

and the future Dr. Ralph Crosby have played a large role in my time here.

This department has been a second home to me, and it wouldn’t be the same

without the staff. Kathy Waskom, Tony Okonski, Theresa Roberts, Elena Rodriguez,

Tina Broughton, Lindsay Striegler, Bekah Holle, and Adrienne Krenek supported me

in my crazy adventures as the president of the department’s graduate student counsel.

And much to my surprise and gratitude, they continued to support me after I left

that role. These folks do not get enough recognition for the work they do.

v

I’d also like to thank Brittany Duncan for being the best president an ex-president

turn VP could ever ask for. I wish you the best of luck in your remaining time here

and all your future endeavors.

Thank you all.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . xi

LIST OF TABLES . xiv

1. INTRODUCTION . 1

1.1 What is a phylogeny? . 2
1.2 Why do we care about phylogenies? 4
1.3 Why do we care about sets of phylogenies? 5
1.4 Research objectives and contributions 8

2. BACKGROUND . 13

2.1 Phylogeny as a biological hypothesis 13
2.1.1 The structure of a phylogeny 13
2.1.2 Newick format . 15
2.1.3 Types of phylogenies . 15
2.1.4 Resolution . 17

2.2 Phylogeny as a data structure . 18
2.2.1 Clades . 18
2.2.2 Bipartitions . 19
2.2.3 Quartets . 21
2.2.4 Unified edge based relationships 23

2.3 Inferring phylogenies . 26
2.3.1 Maximum parsimony . 26
2.3.2 Maximum likelihood . 27
2.3.3 Bayesian inference . 28

2.4 Sets of phylogenies . 28
2.4.1 Storing sets of phylogenies . 30

vii

3. RELATED WORK . 31

3.1 TreeHouse as a platform for querying trees 31
3.2 TreeHouse as a platform for analysis 33

4. TREEHOUSE: A COMPUTATIONAL PLATFORM 35

4.1 The architecture of TreeHouse . 37
4.2 PQL: a language for interacting with phylogenetic trees 39
4.3 Bit string representation of clades . 44

5. SEARCHING SETS OF TREES . 47

5.1 Motivation . 47
5.2 Size of the BST+T . 49
5.3 Methods for searching . 52

5.3.1 Clade queries . 53
5.3.2 Subtree queries . 54
5.3.3 Variable size clade query . 55
5.3.4 K-tet queries . 58
5.3.5 Other search functions . 60
5.3.6 Combining queries with set operations 60

5.4 Comparison to other search structures 61
5.5 Experimental Results . 61

5.5.1 Clade query . 61
5.5.2 Variable size clade query . 65
5.5.3 K-tet queries . 70
5.5.4 Exploring a tree set with relationship queries 71

5.6 Conclusions . 76

6. TOOLS FOR TREE ANALYSIS . 78

6.1 Consensus . 78
6.1.1 Resolution rate . 81

6.2 Distance between trees . 81
6.2.1 Robinson-Foulds distance . 82
6.2.2 Quartet distance . 83
6.2.3 Clade distance . 84
6.2.4 Cosine similarity . 85

6.3 Distance within a tree . 86
6.4 Relational entropy . 88
6.5 Quartet exposure . 89
6.6 Analysis of heterogeneous tree sets 90

6.6.1 Taxa searching and distinguishing taxa 91

viii

6.7 Taxa masking . 92

7. ADVANCED ANALYSIS: DECISION TREES AND DISTINGUISHING
BIPARTITIONS* . 95

7.1 Why compare sets of trees . 95
7.2 Decision tree depth and bipartition separability 96
7.3 Decision trees . 96

7.3.1 Algorithm . 96
7.4 Interpreting decision trees . 100

7.4.1 Edge cases: distinguishing bipartitions and non-separable sets 101
7.5 Background . 101
7.6 Experimental results . 102

7.6.1 150 taxa Bayesian trees . 102
7.6.2 567 taxa Bayesian trees . 103
7.6.3 567 taxa maximum parsimony trees 105

7.7 Conclusions . 106

8. ADVANCED ANALYSIS: CLUSTERING AND PEAK SUPPORT * . . . 107

8.1 Optima and convergence . 108
8.2 Clustering . 109
8.3 Types of clustering . 110

8.3.1 k-Means . 110
8.3.2 Agglomerative hierarchical clustering 110
8.3.3 Measuring cluster quality . 111

8.4 Estimating optima with clustering . 112
8.4.1 Experimental results . 114
8.4.2 Detecting single optimum tree collections 119
8.4.3 Conclusions . 120

8.5 Peak support . 121
8.5.1 Motivation . 121
8.5.2 Definition of p-support . 122
8.5.3 Comparison to common support measures 123
8.5.4 Computing and visualizing p-support. 124
8.5.5 Experimental results . 125
8.5.6 Conclusions . 128

9. REPRODUCIBILTY . 129

9.1 Validation of TreeHouse . 129
9.2 Reproducing analyses with TreeHouse 131

10. CONCLUSIONS AND FUTURE WORK 133

ix

10.1 Conclusions . 133
10.2 Future work . 134

REFERENCES . 137

APPENDIX A. DATA SETS . 151

APPENDIX B. PQL GRAMMER AND LEXER 154

x

LIST OF FIGURES

FIGURE Page

1.1 Images of the cats in our example data set. 1

1.2 An early phylogeny drawn by E. Haeckel which was originally pub-
lished in 1866 [27]. 3

1.3 The current best hypothesis of the evolutionary relationships between
the taxa in genus Panthera [16]. 4

1.4 Multiple hypothesis of genus Panthera over the last 30 years with
publication dates shown. 7

2.1 The parts of a phylogenetic tree labeled on an example phylogeny for
genus Panthera. 14

2.2 4 ways to draw one phylogenetic tree. 16

2.3 Three trees which have the same taxa but have different degrees of
resolution. 17

2.4 A phylogeny and the four clades which define its structure. 19

2.5 Two examples of evolutionary trees depicting the relationships be-
tween 5 taxa. 20

2.6 Bipartitions and quartets are relationships which define how taxa are
placed in a tree relative to an edge. 23

2.7 Two trees where the second tree is a clone of the first but with Taxon
A and Taxon G swapped. 24

4.1 A graphical representation of the algorithms within TreeHouse. 36

4.2 A graphical representation of the TreeHouse system architecture. . . . 37

4.3 A graphical representation of the PQL parser. 40

4.4 A graphical representation of a the parse tree for a single consensus
command in TreeHouse. 43

xi

4.5 This figure shows the four clades that make up Tree T12. 45

4.6 Two trees, each containing the relationship [Lion, Leopard, Jaguar |
Tiger, S. Leopard, C. Leopard] are shown. 46

5.1 A graphical representation of the BST for the Panthera data set. . . . 47

5.2 A graphical representation of the BST for the Panthera data set with
the nodes used in a search for the [Lion, Leopard] clade marked in pink. 54

5.3 An example of how the shape of a tree can impact the sizes of the
clades in the phylogeny. 57

5.4 Timing results for clade queries on the data set with 567 taxa and
33,306 trees. 63

5.5 The number of trees reported is an average from 10,000 random suc-
cessful clade searches on the data set with 567 taxa and 33,306 trees. 64

5.6 Timing results for clade queries on the data set with 950 taxa and 200
trees. 65

5.7 Unoptimized and optimized timing results for variable clade queries
on the data set with 150 taxa and 20,000 trees. 66

5.8 Unoptimized and optimized timing results for variable clade queries
on the data set with 950 taxa and 200 trees. 67

5.9 Unoptimized and optimized timing results for variable clade queries on
the data set with 150 taxa and 20,000 trees using a second optimization. 68

5.10 Unoptimized and optimized timing results for variable clade queries
on the data set with 950 taxa and 200 trees using a second optimization. 70

5.11 Heterogeneous and homogeneous timing results for K-tet queries on
the data set with 567 taxa and 33,306 trees. 72

5.12 This figure shows the number of searches returning some number of
trees for different sized relationships on the 567 taxa 33,306 tree data
set. 73

5.13 This figure shows the number of searches returning some number of
trees for different sized relationships on the 950 taxa 200 tree data set. 74

xii

5.14 This figure shows the number of searches returning some number of
trees for different relationships, each with 12 taxa, on the 567 taxa
33,306 tree and 950 taxa 200 tree data sets. 76

6.1 Three different consensus trees for 13 of the 14 trees in the Panthera
data set from Figure 1.4. 80

6.2 Two examples of evolutionary trees depicting the relationships be-
tween 5 taxa to show the differences between the Robinson-Foulds
distance and the quartet distance. 82

6.3 An example tree of genus Panthera used for examples of tree depth
and balance. 86

6.4 Multiple hypothesis of genus Panthera over the last 30 years. 91

6.5 A visualization of the multiple hypothesis of genus Panthera over the
last 30 years with Clouded Leopard, Cheetah, and Cougar removed
from each tree. 92

7.1 Twelve evolutionary trees used as input to build the bipartition table
in Table 7.1. 97

7.2 A decision tree constructed based on the input from Table 7.1. 100

8.1 Selecting the appropriate number of clusters, k. 114

8.2 150 taxa, p = 2: Each plot shows a single optimum with the trees in
the optimum colored to represent the Bayesian runs they came from. 116

8.3 567 taxa, p = 6: Each plot shows a single optima with the trees in
the optima colored to represent the Bayesian runs they came from. . 118

8.4 Selecting the appropriate number of clusters, k, when the optimal
number of clusters is 1. 120

8.5 A p-map, p-support values plotted against the percent of trees con-
taining the bipartition for the 150 taxa data set with a p value of
2. 125

8.6 p-support values plotted against the percent of trees containing the
bipartition for the 567 taxa data set with a p value of 6. 127

xiii

LIST OF TABLES

TABLE Page

2.1 The edge based relationships in common between the two trees in
Figure 2.7 and the total number of edge based relationships which
could be in common for two trees with seven taxa. 25

3.1 Previous work on querying sets of trees. 32

4.1 This table shows the bit string indices for each of the eight taxa in the
data set. 45

5.1 The in-order traversal of the binary search tree for the example data
set represented as a table with the first clade of each size marked. . . 48

5.2 Information about the size of the search structure for 4 data sets. . . 50

5.3 The in-order traversal of the binary search tree for the example data
set represented as a table with compression bit and compressed sizes
shown. 52

6.1 The number of unique clades of different sizes that each taxa appears
in. 89

6.2 The BST+T for our 14 example trees from genus Panthera after C.
Leopard, Cheetah, and Cougar have been removed and extra branches
collapsed. 93

7.1 A bipartition table depicting the presence (’1’) or absence (’0’) of each
bipartition (labeled bi), in the twelve trees shown in Figure 7.1 along
with a column denoting the run that generated the tree. 98

7.2 This table shows the depth of the decision trees created by comparing
the twelve runs of data set 2. 103

7.3 This table shows the number of distinguishing bipartition which sep-
arate the twelve runs of data set 2. 104

7.4 The depth of the decision trees resulting from the comparison of max-
imum parsimony runs. 105

xiv

8.1 Detailed information for the two local optima found for the 150 taxa
trees. 115

8.2 Detailed information for the six local optima found by our analysis on
the 567 taxa trees. 117

A.1 The number of 150 taxa Bayesian trees in each run. 151

A.2 The number of 567 taxa Bayesian trees in each run. 152

A.3 The number of maximum parsimony trees in each run. 153

xv

1. INTRODUCTION

A fundamental question in biology is how organisms are related to one another.

For instance, one might wonder about how the big cats of genus Panthera are related

to each other and other cats. While biology seeks to define the evolutionary relation-

ships between all species, certain organisms receive more attention than others. The

big cats are one such group. They are a well known set of species, but they are also

facing serious threats in the wild due to loss of habitat [66, 65]. Theses big cats and

the hypothesis about how they are related to one another will serve as the primary

running example through out this document.

JaguarLionLeopard Tiger
Snow

Leopard
Clouded
Leopard

Near
Threatened

Near
Threatened

Vulnerable EndangeredEndangered Vulnerable

Figure 1.1: Images of the cats in our example data set. The citations for the images
used in this figure: Leopard [39], Lion [20], Jaguar [97], Tiger [60], Snow Leopard [45],
and Clouded Leopard [98].

The first four cats in Figure 1.1 make up genus Panthera, which are the roaring

cats. The Snow leopard poses an interesting question because it has the similar

throat structure to the roaring cats but it does not roar [28]. So, there is a question

of how closely it may be related to genus Panthera or if it should be included in

1

genus Panthera. The Clouded Leopard serves as a bridge of sorts. It is seen as

the link between the big and small cats as it is a large Asian purring cat [18]. The

inclusion of a species such as this provides a frame of reference for the questions

about relationships between species. A hypothesis of the evolutionary relationships

between species is known as a phylogeny.

1.1 What is a phylogeny?

The theory of evolution implies the decent of all living organisms on Earth from

a common ancestral gene pool. Evolution is thought of as a branching process

where populations are genetically altered over time and may speciate into separate

groups, hybridize together, or become extinct. A tree is often used as a metaphor

for evolution with evolutionary change flowing from the root to the tips. An early

phylogeny from 1866, drawn as a literal tree, is shown in Figure 1.2 [27]. This tree

represents one of the first attempts to draw a phylogeny which classifies all known

life forms. Modern trees differ from this example in many ways. Much has changed

in our understanding of the positions of different organisms and the structure of

modern trees tends to be presented in a less literal fashion.

Today’s living organisms are just one stage of the evolutionary process resulting

from a long series of these speciation, hybridization and extinction events. A tree

used to represent the evolutionary relationships between organisms is known as a

phylogenetic tree or phylogeny. The leaves of these trees are living organisms and

the internal nodes represent the most common ancestor of the nodes that branch

from it. Phylogenies have been a part of evolutionary biology since the time of

Darwin and provide biologists with a way to structure and visualize their knowledge

of biodiversity [105].

The current best hypothesis of the relationships between the six cats in Figure 1.1

2

Figure 1.2: An early phylogeny drawn by E. Haeckel which was originally published
in 1866 [27]. This figure shows the phylogeny as a literal tree.

comes from the work of Davis, Li, and Murphy which was published in 2010 [16].

The phylogenetic relationships reported by the authors are shown in Figure 1.3. A

phylogeny can be read similarly to a family tree in that when few branches separate

two organisms they are considered to be closely related. One interesting thing to

note about this phylogeny is that it places the snow leopard as the closest relative

to the tiger. This puts the tiger which is a roaring cat more closely related to a

non-roaring cat than the other species that make up genus Panthera.

3

JaguarLionLeopard Tiger Snow
Leopard

Clouded
Leopard

Figure 1.3: The current best hypothesis of the evolutionary relationships between
the taxa in genus Panthera [16].

1.2 Why do we care about phylogenies?

In many ways a phylogeny is like a map that serves to help organize our knowledge

of biological diversity. By placing organisms in the appropriate phylogenetic context

we can obtain a better understanding of the patterns and processes of evolution.

Phylogenetics has become an important component in modern taxonomy, which is

a discipline concerned with the identification, classification, and naming of organ-

isms. Classifying organisms is an important part understanding biodiversity in any

given area. Informed decisions about conservation efforts require accurate classifica-

tions and estimates of biodiversity, making phylogenetics an important component

in conservation efforts [62, 36]. Phylogenetics can also play an important role in

other scientific efforts. Phylogenies are used in tracking the spread and evolution

4

of diseases such as HIV [1], hepatitis C [32], and SARS [47, 49]. Phylogenetics has

even played an evidentiary role in court cases related to the purposeful transmission

of HIV [81, 58, 7, 69]. Phylogenetics is also used in designing chemicals such as

medicine [79, 95, 11] and even weed killer [53].

The impact of phylogenetics even extends beyond biology. Stemmatological meth-

ods, which are deeply inspired by phylogenetic methods, are used to trace the origins

of medieval texts [89, 86, 2]. In many ways the importance of a phylogeny comes from

the context that it can provide. Placing an unknown organism into a phylogenetic

context provides insight into the evolutionary history of that organism and how its

history relates to those of other organisms.

1.3 Why do we care about sets of phylogenies?

Inferring phylogenetic relationships is a difficult process. Evolution can be ob-

served in limited cases such as small scale experiments with single cell organisms or

viruses. The process of evolution that led to the differentiation of the species we

know today was a long and slow process that took place over millions of years of un-

recorded history. Since the exact process of speciation, hybridization, and extinction

that brought us modern biological diversity is unknown, phylogenetic trees must be

inferred from the evidence of evolution that we can observe. This makes the process

of inferring a phylogenetic tree one that seeks to match the observations about a set

of organisms to a model of evolution. Finding the tree that best fits the a model of

evolution for a set of organisms is an NP-Hard optimization problem. For n organ-

isms of interest there are (2n− 3)!! possible rooted binary trees which could describe

their relationships [22]. This means that there are almost three times as many ways

to arrange 52 taxa into a binary tree than the 1× 1080 atoms in the visible universe.

Many phylogenetic inference algorithms return more than a single tree. Bayesian

5

inference algorithms are known to often return tens of thousands of trees [35]. The

common features of these trees are often summarized and presented as a single tree

in a publication. The single published tree represents the evolutionary hypothesis

for how the organisms of interest are related to one another. The trees that form

the basis for this summary are important because they are part of the supporting

evidence for published hypothesis.

Sets of trees can also be created as a part of the validation process for a phyloge-

netic hypothesis. One of the most common support measures for phylogenetic trees

is bootstrap support [21]. This method constructs multiple phylogenetic trees with

each tree being built from a subset of the observations about the organisms. The

frequency of features appearing in the bootstrap support trees is used as a measure

of stability of those features in relation to the observations. These trees are treated

directly as support for the relationships in the proposed phylogenetic hypothesis. It

is common to find the hypotheses, the single published trees, in journal publications

and to some degree in online data repositories. The phylogenies that are used to

support these hypotheses are harder to find and less explored. The ability to under-

stand and explore the evidence which supports a hypothesis is an important part of

any scientific research. The ability for others to understand and explore the evidence

is an important part of reproducibility in science.

The work that led to the Pantheran phylogeny in Figure 1.3 included exploring

all possible topological arrangements of the organisms. Multiple inference methods

were used in order to corroborate the results between multiple algorithms. Once the

most likely phylogeny was found, thousands of support trees were built to determine

confidence values for the solution. This single tree is the product of a very thorough

analysis which included the creation of thousands of trees [16]. Yet, while this tree

represents the thousands of trees it is only a slice of the picture in the long history

6

of genus Panthera. Other researchers have also looked at the same organisms and

come to different conclusions. Figure 1.4 shows fourteen hypotheses and the years

they were published. Many of these hypotheses came to very different conclusions

about the relationships between the species. They used different data and different

methods. There are likely many trees behind these hypothesis in a similar way that

multiple trees were built to support the current hypothesis.

T1 - 1986 T0 - 1978 T3 - 1996 T2 - 1995

T4 - 1997 T6 - 2000T5 - 1999 T7 - 2001

T9 - 2004 T10 - 2005

T12 - 2009

T11 - 2006

T13 - 2010

T8 - 2001

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

C. Leopard
Jaguar
Leopard
Lion
S. Leopard
Tiger

C. Leopard
Tiger
Jaguar
S. Leopard
Leopard

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

C. Leopard
S. Leopard
Leopard
Lion
Tiger
Jaguar

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

C. Leopard
Tiger
S. Leopard
Jaguar
Leopard
Lion

C. Leopard
Tiger
Jaguar
Lion
Leopard
S. Leopard

C. Leopard
Tiger
Jaguar
Leopard
Lion
S. Leopard

C. Leopard
Leopard
Jaguar
Lion
Tiger
S. Leopard

Jaguar
Lion
Leopard
Tiger
S. Leopard
C. Leopard

Jaguar
Leopard
Lion
Cheetah
Cougar
Tiger
S. Leopard

C. Leopard
Jaguar
Leopard
Lion
Tiger
S. Leopard

Lion

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

Current best hypothesis

Figure 1.4: Multiple hypothesis of genus Panthera over the last 30 years with pub-
lication dates shown. T0 and T1 are based on morphological data while the rest of
the trees are based on biochemical or molecular data. Citations for the trees are as
follows: T0 [30], T1 [29, 80], T2 [38], T3 [41], T4 [40], T5 [6], T6 [54], T7 [37], T8 [5],
T9 [73], T10 [106], T11 [42], T12 [104], and T13 [16].

7

So, while there may be a set of phylogenies from a single analysis, sets of trees

may also be built from the phylogenies resulting from multiple studies. These trees

may have been constructed by different algorithms and may contain different taxa

from one another. Trees might come from multiple analyses conducted in a single lab

or may represent the aggregated work from multiple labs. These trees may represent

multiple distinct hypotheses as to the true evolutionary history of the organisms

they contain. Trees like this are important to understand both for the phylogenetic

information they contain, but they are also important because they represent our

changing understanding of the evolutionary history for the set of organisms.

1.4 Research objectives and contributions

The overarching goal of this research is to help biologists build more accurate

phylogenetic trees. The accuracy of a phylogenetic analysis is directly tied to the

data and algorithms used to infer the phylogeny. Many published phylogenies are

compiled from, or supported by, sets of trees. Understanding those trees and what

they say about the analysis is an important component to having confidence in the

final result. Some sets of trees may completely support a hypothesis while others may

have inconsistencies or unexpected patterns. Sets of trees may have multiple distinct

hypotheses. These hypotheses can go unnoticed when they are left unexplored and

presented as a single consensus hypothesis.

Algorithms for analyzing sets of trees have been limited and lacking. Fundamental

questions, such as, “Do any of the trees in this set have a certain feature of interest?”

have been difficult to answer. Consensus algorithms allow for the quick identification

of the most prevalent bipartitions in a set of trees. However, consensus algorithms

are not useful in many cases such as when the bipartition of interest does not appear

in the majority of trees or when the feature of interest is not a bipartition. In

8

these cases search algorithms are required. To address the need for search and

analysis algorithms for sets of trees we have introduced TreeHouse. TreeHouse is an

open source project which aims to provide biologists with the algorithms needed to

investigate large sets of trees. TreeHouse allows its users to search, filter, analyze and

explore sets of trees with in a single framework. The prevailing idea of TreeHouse is

to provide provide users with fast tools which can be quickly combined. When tools

like these are at the user’s fingertips, interaction and engagement with the data is

encouraged.

The rest of this document is laid out in the following sections. Background for

phylogenetics is presented in Section 2. Different types of phylogenetic trees and

their features are discussed. Also, different ways to define the relationships between

taxa such as bipartitions, quartets, subtrees, and clades are defined.

Work related to TreeHouse is presented in Section 3. TreeHouse is not the first

platform to provide a solution for querying sets of trees. However, much of the

previous work in this area has been focused on a different search question. Many

projects have focused on returning the set of trees which contain the taxa which are

of interest to the user. Fewer projects have provided a solution which allows the

user to query a set of trees based on their structure. The few projects that have

addressed this question have done so with narrow scope in terms of ways of defining

tree structure.

Section 4 of this document describes the major components of the TreeHouse

system. The grammar, lexer and parser for the system are described. These pieces

define the interpreted language which allows users to interact with the system via

the command line or by running batch scripts. Also described in this Section is the

method for storing trees within the TreeHouse system.

Search algorithms are described in Section 5. These algorithms are intended to

9

provide biologists with the answer to the question, ”which, if any, of the trees in the

set have a feature of interest?” These algorithms allow sets of trees to be queried

based on which bipartitions, quartets, subtrees, or clades they contain. The different

ways that a user can define the relationships between taxa in a phylogenetic tree are

described in Section 2. This Section also shows how K-tets can be used in queries.

The concept of a K-tet is novel to my work, and is first introduced in Section 2.

This concept bridges the gap between bipartitions and quartets. Also described is

how multiple searches can be combined by using set operations. Combining searches

in this way allows for the creation of arbitrarily complex queries. Experiments are

presented which show the correlation between complexity and the size of the result

set. The experiments show that searches with few taxa can be powerful tools to

filter sets of trees. Searches are also shown to be quick on multiple real data sets.

This Section also describes the major data structures which provide the foundation

for many of the algorithms in TreeHouse. The way that trees are parsed and stored

in memory has been designed to make searching for trees based on their structure a

fast process.

Section 6 introduces analysis algorithms for single trees and sets of trees. These

methods can be used to gather data about a set of trees or to summarize the results of

a search. The differences in sets of trees also matter. When trees come from a single

analysis, the differences could tell us whether the trees support a single hypothesis

for the evolutionary history of a set of organisms or multiple distinct hypotheses.

The differences in gene trees can tell us about how different genes evolved within

a set of species. The differences in trees inferred from different algorithms or data

sets can tell us about how different inference algorithms perform. These differences

have been hard to get at. Exploration with search algorithms can help illuminate

some of these differences, but when the questions are about larger trends in the data,

10

other algorithms are needed. This Section contains information on consensus and

distance methods as well as methods specifically designed for taxa heterogeneous

data sets which are data sets where trees may have different taxa from one another.

Since many analysis algorithms are not meaningful or well defined for trees with

differing taxa, we introduce the concept of taxa masking. Taxa masking allows users

to homogenize a set of trees by ignoring any taxa that are not contained in all of

the trees in the group and collapsing any extra branches. This method exposes the

common structure among the trees and allows the user to apply algorithms, such as

consensus algorithms, to sets of trees where they would otherwise be useless.

Sections 7 and 8 build upon the analysis functions in Section 6. These Sections

use a combination of concepts from the previous Sections to create more advanced

analysis tools. Section 7 covers the use of distinguishing bipartitions and decision

trees. These methods provide measures for how similar or different sets of trees are

from one another. Section 8 covers clustering methods which can be used to detect

distinct subsets within a set of trees. Algorithms for measuring clustering quality are

also presented. Clustering algorithms can be useful to detect if there are multiple

distinct hypothesis within a set of trees. Experiments are presented which show that

multiple runs of a Bayesian inference algorithm, which were previously thought to

have converged to a single result, actually represent multiple distinct hypotheses of

the true tree. Also presented is p-support which is a support measure which relates

the stability of a relationship in a phylogeny to the multiple hypotheses represented in

the tree set. This Section also relates the idea of multiple distinct hypotheses within

a set of trees to the concept of convergence. Knowing whether or not an analysis

reached convergence is important in validating the results of Bayesian analyses.

Two more Sections round out this document Section 9 discusses TreeHouse as

platform for reproducible science, and finally, conclusions and a brief discussion of

11

future work is presented in Section 10.

12

2. BACKGROUND

2.1 Phylogeny as a biological hypothesis

A phylogeny is a way to express how organism are genealogically related. Since

the evolutionary events that have led to the diversity of modern species were not

directly observed, the relationships between modern species must be inferred. Phy-

logenies represent hypotheses of the flow of evolution and how organisms are related

to one another. A major goal of biology is to reconstruct the tree of life which is the

phylogeny depicting the relationships between all of the estimated 5 to 100 million

living species.

2.1.1 The structure of a phylogeny

Figure 2.1 shows a phylogenetic tree representing a proposed phylogeny for genus

Panthera [16]. The major parts of the phylogeny are annotated.

• Leaf Node: The subjects of the phylogenetic study are placed at the leaf nodes

of the tree. These often represent taxa such as individuals or populations of

organisms. Taxa can also represent larger groupings such as families, genera

or orders. Genes or bacterial strains can also be the subjects of phylogenetic

studies. While the taxa appearing on at the leaf nodes tend to be currently

living, extinct species are sometimes used.

• Internal Node: The internal nodes represent the inferred common ancestor to

all of the descendant nodes.

• Clade: A group of taxa including their most recent common ancestor and all

of its descendant is referred to as a clade. The internal node marked in the

13

Figure 2.1: The parts of a phylogenetic tree labeled on an example phylogeny for
genus Panthera.

annotated phylogeny defines a clade which includes lion, leopard, and their

most recent common ancestor.

• Root: The root of the tree represents the common ancestor to all of the taxa

in the tree.

• Branch: The branches in the phylogeny define the relationships between the

taxa.

• Branch length: The length of the branches in a tree can represent the amount

of evolutionary change that has occurred over the branch. It can also represent

an estimate of the amount to time it took for those changes to occur. A distance

scale may be shown with the tree to provide a unit of measurement for how

the branch lengths should be interpreted.

14

• Topology: The topology of the tree is defined by the branching pattern and

placement of the taxa.

• Tree shape: The shape of a phylogenetic tree is defined by the branching

pattern of the tree without regarding the placement of the taxa.

• Outgroup: To provide a root for a phylogenetic tree, an outgroup is added to

the study. This is a taxon or set of taxa which are thought to be outside of

the clade that makes up the studied organisms. The subjects of the study can

be referred to the ingroup. The tree is rooted where the outgroup meets the

ingroup. In the example tree the outgroup is the clouded leopard.

2.1.2 Newick format

The Newick format [23] is the most common format for representing phyloge-

netic trees as text. It is also the most common format for storing phylogenetic trees

on disk. In this format, the topology of the evolutionary tree is represented using

a notation based on balanced parentheses. Consider the evolutionary tree in Fig-

ure 2.1. A Newick representation of the topology of this tree is ”((((Lion, Leopard),

Jaguar),(Tiger, S. Leopard)), C. Leopard);.” Each set of parenthesis represents a

node with the enclosed taxa as children of that node. The ‘;’ character denotes

the end of the Newick string. The Newick representation of a tree is not unique.

For example, another valid Newick string for the same tree is ”(((Tiger, S. Leop-

ard),((Leopard, Lion), Jaguar)), C. Leopard);.” In fact, for a tree with n taxa there

are 2n−1 equivalent Newick strings which represent the tree.

2.1.3 Types of phylogenies

The example tree in Figure 2.1 is a rooted trees with branch lengths. However,

a phylogeny can be drawn as either a rooted or unrooted tree, and the lengths of

15

its branches may or may not carry information. In Figure 2.2 we show four possible

drawings of the same tree. Tree 1 shows the tree drawn as a rooted cladogram.

In this representation the branch lengths are not representative of any data and are

often just scaled to be pleasing to the eye. Tree 2 is also rooted but with the branches

scaled to represent the amount of evolutionary change down each branch. Tree 3

and Tree 4 are unrooted representations of Tree 1 and Tree 2 respectively. As only

the relative positions of taxa and branches matter to the meaning of the tree there

are multiple ways to draw the each of the four trees shown. For a tree with n taxa,

the number of equivalent visual arrangements of a drawn phylogeny is similar to the

2n−1 equivalent Newick representations of the tree.

Figure 2.2: 4 ways to draw one phylogenetic tree.

The branches in a tree may contain information beyond the tree’s topology.

16

Branches may carry a range of different values. For instance a tree’s branches can be

annotated by the support values of that branch, the amount of evolutionary change

that occurred down the that branch, or the estimate of the amount of divergence

time based on the fossil record. Other trees are depicted with no lengths or support

on the branches. When the branch lengths on a tree are based on the amount of

evolutionary change the tree is referred to as a phylogram. When the branches are

relative to the amount of time since divergence the tree is referred to as a chronogram.

When a tree is only representative of the branching pattern of the taxa involved it is

referred to as a cladogram. Trees in this document are referred to as either weighted

or unweighted trees. Trees that have information attached to their branches are

referred to as weighted trees.

2.1.4 Resolution

Figure 2.3: Three trees which have the same taxa but have different degrees of
resolution.

When the relationships between all the taxa in a tree are resolved, the tree is

bifurcating. This means that every internal node has two children. When a rela-

tionship is unresolved, it is represented as a polytomy or a node with more than two

17

children. We refer to the percentage of resolved relationships in a tree as that tree’s

resolution rate. Figure 2.3 shows three trees each containing the same taxa but at

different levels of resolution. In this set Tree 1 is fully resolved, Tree 2 is partially

resolved, and Tree 3 is completely unresolved. A tree like tree like Tree 3 has a

0% resolution rate has contains no information about the relationships between the

taxa. This topology is known to as a star topology.

2.2 Phylogeny as a data structure

When considered as a data structure, phylogenies are interesting due to the fact

that the information they contain is stored in the relative position of the labeled

leaf nodes. As such, a phylogeny only contains information about how the taxa

contained in the tree are related to one another. While it is the relative position

of taxa within the topology that is of interest, phylogenies do not enforce order on

their leaf nodes. Multiple configurations can represent the same information, such

as with Newick strings. It is useful to have a system where each tree has a single

unique representation for storing and comparing phylogenies. When dealing with

phylogenies where all taxa are uniquely labeled, meaning that a single taxon can

not appear in multiple places with in a single tree, we can uniquely represent the

phylogeny as the set of relationships between taxa as defined by the tree’s clades.

MUL-trees may have multiple leaf nodes with the same label. These trees can not

be uniquely identified by their set of clades and are not handled by TreeHouse.

2.2.1 Clades

A phylogenetic tree can be uniquely defined by its set of clades. Figure 2.4 shows

the four clades and the clade which they define. A clade can be computed at each

internal node of a phylogeny. The clade is represented by all of the taxa that descend

from the node. Clades provide a convenient representation for phylogenetic trees.

18

Given a set of clades only one tree topology can be built making the reassembly of

a phylogeny possible. A phylogeny can contain at most n− 2 clades where n is the

number of taxa in the tree. Clades are particularly useful when dealing with sets of

trees where different trees may contain different taxa. Since a clade is only defined

by the taxa beneath a node, two trees do not have to contain the exact same sets

of taxa to have a clade in common. This is different than a bipartition which is

defined by the placement of all of the taxa in the tree. Also, since a clade is defined

by the taxa below a node in the phylogeny the concept only makes sense for rooted

trees. This is not a problem in TreeHouse since the standard format for storing trees,

Newick format, is a rooted representation.

Jaguar
Lion
Leopard
Tiger
S. Leopard
C. Leopard

Lion
Leopard

Tiger
S. Leopard

Jaguar
Lion
Leopard

Jaguar
Lion
Leopard
Tiger
S. Leopard

C1

C2

C3

C4 C1

C2

C3

C4

Figure 2.4: A phylogeny and the four clades which define its structure.

2.2.2 Bipartitions

A phylogenetic tree can also be uniquely defined by its set of bipartitions (or

edges). When removed, a bipartition splits the taxa into two sets. In Figure 2.5,

consider bipartition b1 in Tree 1. It partitions the set of taxa into two groups with

taxa A and B on one side and taxa C,D, and E on the other side. We represent

19

Figure 2.5: Two examples of evolutionary trees depicting the relationships between
5 taxa. Each bipartition is labeled and the quartets making up each tree are shown.
Bipartitions and quartets shown in blue are shared between the two trees. Those
shown in red are not shared between the two trees.

this bipartition as AB|CDE. The taxa in the bipartition are presented using alpha

ordering with the side which has the taxa with the smallest alpha numeric value

presented first. This is a convention used to prevent confusion. However, the order

of the taxa on a side, or the order in which the sides are presented, does not effect

the relationship represented by the bipartition. The relationship AB|CDE is also

found in Tree 2 and is marked in blue in both trees. The bipartitions b2 and b3 are

marked in red and are unique to their respective trees. Tree 1 is uniquely defined

by the bipartitions b1 and b2.

A bipartition generally refers to an internal edge and not those directly linking

a leaf node to the tree. While those edges can also be used to partition a tree,

they are most often referred to as trivial bipartitions. This is because even the

most uninformative star topology, such as the topology of Tree 3 in Figure 2.3,

20

contains n trivial bipartitions. This is not to say these trivial bipartition never hold

useful information. In a weighted tree the branch lengths of the trivial bipartitions

are important. This means that any algorithm dealing with weighted trees must

also handle the trivial bipartitions. A fully bifurcating tree has n − 3 non-trivial

bipartition which uniquely define the structure of a tree, in addition to its n trivial

bipartitions.

2.2.3 Quartets

A phylogenetic tree can also be uniquely defined by its set of quartets [19]. A

quartet can be represented as an unrooted 4 taxa tree which defines the relationship

between those 4 taxa relative to an edge. If we were to prune all but 4 taxa from a

tree, then collapse any uninformative branches, we would be left with a single quartet.

A quartet is the smallest tree which contains information about the relatedness of

species. For this reason, quartets have garnered interest in the community as they

can be thought of as the most basic relational building blocks of a tree.

Figure 2.5 shows the five quartets that make up each tree. We can denote a

quartet in a similar manner to bipartitions. For instance, the relationship between the

taxa A,B,C, and D is defined as AB|CD in Tree 1 and as AC|BD in Tree 2. For any

set of four taxa, A,B,C, and D, there are four possible arrangements. The quartet

will either be AB|CD, AC|BD, AD|BC or ABCD, with the last arrangement being

the uninformative star topology. While there are n− 3 bipartitions in a binary tree,

there are
(
n
4

)
quartets. Each tree will have one of the possible arrangements for

each of the
(
n
4

)
quartets. In a binary tree, all the quartets will have one of the

three informative arrangements as the uninformative arrangement is only possible

in multifurcating trees. This means that a fully bifurcating tree contains 1/3 of all

possible quartet arrangements for its set of taxa.

21

Quartets are computationally more challenging than bipartitions, but they have

interesting properties. For instance, if we are interested how similar two trees are,

we could count the number of bipartitions that they have in common. We would get

a number between 0 and n− 3 for bifurcating trees. If we were to instead count the

number of quartets that two trees have in common, our cap would be the
(
n
4

)
total

quartets. However, what is more interesting, is that floor for the value is not 0, at

least not for trees with more than 6 taxa.

Any two trees with at least 6 taxa in common will share at least one quartet,

and trees with more taxa in common will share more quartets. This can be seen by

observing the relationship between bipartitions and quartets. We can show that any

two bipartitions which split the same group of taxa into two groups of three or more

will have at least one quartet in common. Since every tree with 6 taxa will have a

bipartition that splits the taxa into two groups of three, all trees with 6 or more taxa

will have at least one quartet in common. We will demonstrate this effect with the

bipartition ABC|DEF .

We can think of all of the other bipartitions which split those 6 taxa into two

groups of three as falling into a handful of classes. They could be described as

swapping one taxa from each side over the edge, swapping two taxa, or swapping

all the taxa. Since the order of taxa in a bipartition does not matter, nor the order

in which the two sides are presented, swapping all of the taxa is equivalent to not

swapping any taxa at all. This leaves us with the cases where one or two taxa

are swapped. In our example, we can swap A for D to get AEF |DBC. Again

the symmetric nature of the bipartition effects the results, and swapping A for D is

equivalent to swapping B and C for E and F . In terms of quartets, the most different

a bipartition can be from another bipartition is when half of the taxa are swapped

over the edge. However, in cases where there are at least three taxa on each side of

22

the edge, it is impossible not to preserve at least one quartet, no matter the number

of swapping operations performed. For instance, in our example both ABC|DEF

and AEF |DBC contain the quartet BC|EF . This effect has a major impact of the

minimum value for how many quartets two trees must have in common. All trees

with more than 6 taxa in common have at least one shared quartet, and those with

more taxa in common will have more shared quartets.

2.2.4 Unified edge based relationships

Bipartitions and quartets are related. Since every bipartition defines an edge in

a tree, we can think of that bipartition as defining some number of quartets. A

bipartition of size L|R where L is the number of taxa on one side of the edge and R

is the number of taxa on the other defines
(
L
2

)
×
(
R
2

)
quartets. In this way, we can

think of a bipartition as a compressed format for representing quartets. However,

while each bipartition may represent multiple quartets, there is no guarantee that a

quartet will not be represented in more than one of a tree’s bipartitions.

Figure 2.6: Bipartitions and quartets are relationships which define how taxa are
placed in a tree relative to an edge. Bipartitions define the positions of all taxa, and
quartets define the position of 4 taxa in a tree.

23

If we think of bipartitions as a collection of quartets over a single edge in a

tree, we can draw a bipartition as a subtree much in the same way we graphically

represent a quartet. A drawing is shown in Figure 2.6. From this figure, it is easy to

imagine that quartets and bipartitions exist at the opposite ends of a spectrum of edge

based relationships. A quartet defines the relationship between the minimum number

of informative taxa relative to an edge, and a bipartition defines the relationship

between all taxa in the tree relative to an edge.

We can fill in the spectrum by considering the relation between 5, 6, 7...n−1 taxa

over an edge. These K-tets, or partial bipartitions, may provide us with the tools

to look at different aspects of tree structure in new and interesting ways. TreeHouse

provides the ability to query sets of trees using any of these edge based relationships.

Figure 2.7: Two trees where the second tree is a clone of the first but with Taxon A
and Taxon G swapped.

Bipartitions provide a good representation for storing and searching trees. How-

ever, when the task is to compare two or more trees, bipartition based measures are

often criticized. Figure 2.7 shows two trees. The second tree is a clone of the first

24

with the positions of taxa A and G swapped. These two trees have no bipartitions

in common, though much of their structure is similar. The similarity is not reflected

when comparing bipartitions because bipartitions define the relationship between all

taxa over an edge. The swapped taxa in our example come for opposite ends of the

tree, and they are swapped over all the edges in the tree.

Quartets are more robust to detecting the similarity in these types of situations.

The trees in Figure 2.7 have five of the 35 possible quartets in common. Computing

the similarity of the trees based on quartets allows for the similar structure between

groups of four taxa to be measured. That robustness comes at a computational cost

as compared to bipartitions. When measuring quartet similarity on two trees with

seven taxa we must check 35 relationships, yet there are only four bipartitions to

consider.

Relationship Common Total
Quartet 5 35
5-tet 2 42
6-tet 0 21
Bipartition 0 4

Table 2.1: The edge based relationships in common between the two trees in Fig-
ure 2.7 and the total number of edge based relationships which could be in common
for two trees with seven taxa.

K-tets span the gap between bipartitions and quartets. They allow the user

to detect different levels of structural similarity as the computational difficulty is

varied. This gradation is shown in Table 2.1. The trade off between the sensitivity

of a relationship and its complexity is not linear. We can see from the table that

the relationship that requires the greatest number of comparisons for a tree with

25

seven taxa is actually the 5-tet. This makes sense when we consider Equation 2.1

which defines r as the number of relationships of size k for a tree with n taxa. The

relationship with the maximum complexity, in terms of edges to consider, is related

to the number of taxa in the trees. For instance, for 10 taxa trees the K-tet with the

most edges to consider is the 6-tet.

r =

(
n

k

)
× (k − 3) (2.1)

It is also worth noting that while comparing the trees in Figure 2.7 in terms

of 6-tets is more robust than comparing the trees in terms of bipartitions, neither

relationship can detect any similarity between the two trees. Since two taxa are out

of position in the trees, similarity will only be detected in relationships computed on

groups of five or fewer taxa.

2.3 Inferring phylogenies

Creating accurate phylogenetic trees is important but also difficult. This task is

often formulated as an NP-hard optimization problem on a solution space with (2n−

3)!! possible rooted trees, where n is the number of taxa considered in the analysis.

Due to the inherent difficultly of producing an accurate phylogeny, biologists have

used heuristic search algorithms to navigate the solution space of possible trees, score

them, and return the best results. There are three major methods for evaluating

phylogenies.

2.3.1 Maximum parsimony

The simplest method to score tree is maximum parsimony. In this method, the

preferred tree is the one that requires the least evolutionary change to explain the

sequence alignment. The input data to a maximum parsimony analysis is a set

26

of characters for each taxon. Each character can have one of many states. These

characters are often genetic sequences, however a character could be any heritable

variation, such as the presence of hair or a tail. Each character can have one of

many states, for instance, in sequence data a character could be an A, T, C, or G.

Computing the parsimony score of a tree involves inferring the character states of the

internal nodes such that they minimize the number of changes of each state in the

tree. The parsimony score is the minimum total number of state changes required

to explain the relationships between the taxa in the tree. Lower scores are more

parsimonious and considered better trees by the phylogenetic inference algorithms.

The common software packages [24, 64, 94] for solving the maximum parsimony

problem are based on hill-climbing heuristics. These methods use a starting tree

which is either random, user provided, or computed via a distance method. The

algorithms then rearrange branches to reach neighboring trees. Each neighboring

tree is scored. If a rearrangement yields a better scoring tree, it becomes the starting

point for another set of rearrangements. The process continues until no better tree

can be found. Parsimony analysis scores trees based on the number of character

state changes and can often have multiple topologies with the same score. In these

cases multiple trees are returned.

2.3.2 Maximum likelihood

Like maximum parsimony, maximum likelihood is an optimality criterion. How-

ever, maximum likelihood is a parametric statistical method and employs a model

of evolution as part of its scoring function. This method is thought to be more pow-

erful so long as the model of evolution used is a reasonable approximation of how

the data was actually created. Since it is difficult to calculate the probability that

a given tree is the best tree, maximum likelihood instead computes the probability

27

of the sequence data given a tree and a model of evolution. This is useful since the

probability of the sequence data given a tree is the likelihood of the tree given the

data. Therefore, the tree with the highest probability of producing the sequence data

based on the model of evolution is considered to be the most likely tree. Heuristic

algorithms that compute maximum likelihood function much the same way as those

which compute maximum parsimony. Both classes of algorithms navigate tree space

by rearranging branches on the current tree and scoring its neighbors. However,

computing the likelihood of a tree is a much more computationally intensive process,

and they require longer run times than parsimony analyses to score the same number

of trees.

2.3.3 Bayesian inference

Bayesian inference refers to the use of a prior probability distribution to determine

the posterior probability of a particular hypothesis, given the observed evidence.

Bayesian inference is similar to the other described methods in how tree space is

navigated. It is also deeply tied to maximum likelihood in that both methods require

computing the maximum likelihood of the trees visited by the inference algorithm.

While a maximum likelihood analysis seeks to return a single most likely tree, a

Bayesian inference analysis returns a posterior distribution of trees. The posterior

probability distribution is often summarized as a single tree, and the frequencies

in which the relationship appeared in the posterior distribution is represented as

support values on the trees branches.

2.4 Sets of phylogenies

Maximum likelihood based methods often return a single best tree, but parsimony

and Bayesian methods often return sets of trees. Since the scoring function in a

parsimony analysis is defined as integer values, it is not uncommon for multiple

28

trees to share the same best score. The goal of Bayesian analysis is to sample the

parameter space and return a set of trees. Tens to hundreds of thousands of trees

can result from a single Bayesian analysis. Even in the case of maximum likelihood

analyses, which return a single most likely tree, support values are often produced

by running the analysis multiple times while sampling the input sequence alignment

for each run. So, while biologists would like a single hypothesis of the evolutionary

relationships between the taxa of interest, they are often presented with sets of trees.

These sets of trees are often reconciled and a single tree is published.

Published trees can be deposited into on-line databases such as TreeBASE [61]

or Dryad [101]. Theses repositories allow other researchers to access previously pub-

lished work. The tree sets that result from phylogenetic analysis are fairly different

than the tree sets held by these online repositories. All of the trees resulting from an

analysis tend to be taxa homogeneous with each tree covering the same set of taxa.

This is very different from the trees in TreeBASE which are taxa heterogeneous and

two trees from TreeBASE might not have any taxa in common.

Taxa homogeneous and heterogeneous trees pose some similar questions. Re-

searchers may want to know if trees in the set contain a certain relationship, they

may want to quantify the difference or similarity between trees, and they may want

to summarize trees as a single structure. While there are often similar problems the

methods for solving those problems can be very different. For instance researchers

wishing to summarize a set of taxa homogeneous trees can use a consensus method

where as a super tree method may be more appropriate for a taxa heterogeneous tree

set.

29

2.4.1 Storing sets of phylogenies

TreeZip [55] provides an efficient compression algorithm for storing sets of phylo-

genetic trees. The method used by TreeZip decomposes and stores trees as a set of

bipartitions providing a single representation for a set of trees. This is a significant

advance over the Newick format. TreeZip also leverages shared bipartition among

trees to reduce the size of the file. The more shared bipartitions in the set of trees,

the more benefit from compression. This makes TreeZip an outstanding platform for

storing the trees resulting from phylogenetic analyses, as trees produced in this way

often have a high degree of bipartition similarity.

With storage comes the need for retrieval. While it is possible to compress and

decompress whole sets of trees, the methods we are proposing allow the user to

conduct searches on the compressed tree set which return only the trees that match

the search criteria. TreeHouse acts as a front end for the TreeZip file allowing the

user to search, filter, and analyze their trees from a single user interface.

30

3. RELATED WORK

3.1 TreeHouse as a platform for querying trees

Current research on searching sets of trees has focused on taxonomically diverse

datasets such as the trees stored in TreeBASE[61] and an overview of the field is

presented in Table 3.1. The fundamental query over a set such as this is to find

the trees which contain certain taxa. This is not a trivial task given that the same

organism may appear in the database multiple times under different names [71].

Software packages such as TBMap [70], PhyloFinder [12], and PhyloExplorer [77]

have been built to help address this need. Search methods that consider tree structure

have also been explored. The previous work on structural searching all follows a

similar pattern. Each algorithm computes some measure of similarity between the

query tree and the database trees and returns the trees closest to the query subtree

based on this measure.

ATreeGrep[82] measures the similarity between the query and database trees and

returns the trees within a certain distance threshold. In this method each tree is

decomposed into paths such that there exists a path between each node and each

other node. Paths are then compared between the query tree and the data base

trees. ATreeGrep stores trees as a suffix array of their paths. This can be thought of

as a alphabetically sorted array with pointers to each letter. This allows searches for

specific paths to be done with a binary search for quicker comparisons. SearchTree[17]

builds off of the suffix array and path based distance measure of ATreeGrep but allows

users to input the query relationship as a visual dendrogram.

A similar method for searching is used in TreeRank[103]. TreeRank scores the

similarity between an input tree and each tree in the database. Similarity between

31

Search Functions

Project Year Taxa
Name
Resolu-
tion

Taxa Subtree Bipart Quartet

ATreeGrep[82] 2002
√

TreeRank[103] 2003
√

TBMap[70] 2007
√

PhyloFinder[12] 2008
√ √ √

PhyQL[33] 2008
√ √

PhyloExplorer[77] 2009
√ √

TreeHouse 2014
√ √ √ √

Table 3.1: Previous work on querying sets of trees.

two trees is based on the number of topological relationships that the two trees have

in common. When a search is performed with TreeRank the query tree is scored

against each tree in the database and the best scoring trees are returned in the

order of their similarity. Scoring in TreeRank is based around an up down matrix

representation of each tree. The matrix represents the number of moves up and down

a tree to get from each leaf node to each other leaf node. The distance between two

trees is computed based on the difference in their up down matrices. This work has

been extended to support weighted branches[102]. ATreeGrep and TreeRank have

been implemented as part of TreeBASE.

The search algorithm in PhyQL [33] measures tree similarity based on least com-

mon ancestors, and PhyloFinder uses two similarity measures, one based on the

Robinson-Foulds (RF) distance [78] and the other based on least common ancestors.

In all cases trees that are judged to be close to the input tree are returned. Each of

these methods use the subtree model as the basis for inputing query relationships.

While we’ve not been able to test every previous software package due to software

being unavailable, those that we’ve tested are limited in query size. TreeHouse does

32

not limit the size of queries.

Nakhleh et al [63] proposed a database representation of phylogenetic trees which

would include the edge relationships between nodes. This idea was implemented as

an Oracle database. In these experiments the database queries were issued to find

the least common ancestor of two nodes, the minimum spanning clade for a set of

nodes, and to find the path length between two nodes. One detractor from their work

is the large memory requirement of their database implementation. The way they

stored the edge relationships of the trees was significantly larger than just storing

the trees in Newick format. In fact, their database representation was up to 7 times

larger than storing the trees in a plain Newick file. One benefit of TreeHouse is that

it uses the TreeZip[56] representation for storing trees which is often much smaller

than storing the same trees in Newick format.

3.2 TreeHouse as a platform for analysis

Most of the work in searching sets of trees has been done from an online database

prospective. TreeHouse is not intended to be a database search solution for phy-

logenetic trees. For TreeHouse, search is intended to be one of the steps in the

analysis of the set of trees. Algorithms which allow users to determine the similarity

between trees, summarize sets of trees, and detect anomalies in their data sets are

key features. In this way, TreeHouse may be most aptly compared with projects

like BioPython [13], BioPerl [87], BioRuby [25] and the phylogenetic extensions to

R [96, 44, 8]. Each of these projects provide a platform for analysis where data can

be manipulated in a variety of ways. These projects, and TreeHouse, allow the user

to experiment with and explore their data within a unified framework. There is a

community component to the development of these projects. As the code is used

and tested it is iterated upon by the community. TreeHouse is still a newer project

33

but contains code contributes from eight individuals including including five differ-

ent undergraduate researchers, one of whom opted to work with the TreeHouse code

base as the foundation for his senior thesis.

BioPython, BioPerl, BioRuby and the phylogenetic packages for R were built as

extensions to existing languages. This is a fundamentally different design approach

than what was taken with TreeHouse. TreeHouse was built from the ground up

with a distinct model of phylogenetic representation in mind. This choice somewhat

limits the scope of TreeHouse compared to BioPython. TreeHouse does not handle

sequences, alignments, model testing, or tree inference. Instead TreeHouse focuses

on problems relating to the structure of trees. This decision allows TreeHouse to use

specialized data structures and algorithms optimized for this type of work.

The concepts at the root of TreeHouse build on the work of Seung-Jin Sul and

Suzanne Matthews with HashCS [93], HashRF [92], HashRF(p, q) [90], MrsRF [56],

and TreeZip [55]. The way that these algorithms parse phylogenetic trees into sets

of bipartitions fundamental informs the work in TreeHouse. TreeHouse utilizes the

TreeZip format as the input format to load trees into the system. While Tree-

House implements some distance and consensus measures similar to those in Sul

and Matthew’s work the algorithms in TreeHouse are not meant to compete with

those in terms of speed. Distance and consensus algorithms are in TreeHouse to

enable further analysis and exploration of phylogenetic data. When speed is the

primary consideration, TreeHouse provides mechanisms to call faster algorithms and

implementations such as those in Phlash and QuickQuartet.

Due to the broad scope of the analysis algorithms within TreeHouse it would

be cumbersome to present all of the related work for each algorithm in this section.

Instead, the related work for individual analysis algorithms will be presented as those

algorithms are presented.

34

4. TREEHOUSE: A COMPUTATIONAL PLATFORM

TreeHouse is a computational platform which allows users to interact with sets

of phylogenetic trees. The modes of interaction can be grouped into two major

categories. The first are mechanisms for querying a set of trees. This is shown at

the center of the set of algorithms in Figure 4.1. Query algorithms are useful in their

own right as methods for exploring a set of trees, but the results of a query can serve

as the input for further analysis. In this way, the query algorithms in TreeHouse

can be seen as filters for the data sets. Set operations allow multiple queries to be

combined allowing further refinement in selecting trees for further analysis.

Once a set of trees is selected through querying, the trees can be analyzed. Tree-

House supports many methods for analysis including some novel methods. The most

common thing to do with a set of trees is to run them through a consensus algorithm.

These algorithms take the relationships common to a set of trees and combine them

into a single tree. TreeHouse has a few different algorithms for this computation.

Users can also compute the similarity or difference between trees using one of Tree-

House’s distance measures. Other algorithms are unique to my work. For instance,

TreeHouse allows the user to compute the information gain of each relationship for

sets of trees. This involves computing the how common a relationship is within and

between sets of trees and provides a value for how distinct a relationship is to a set

of trees. Each of these analyses can provide the user with information about their

data and stand on their own as analysis functions. But, the beauty of TreeHouse lies

in combining functions in a way that was not previously possible. These algorithms

have become the building blocks for multiple step analyses. Distance functions have

been used to implement clustering algorithms and measures of cluster quality. For

35

Consensus

Distance

Queries

Peak Support
Relationship Entropy
Decision Tree Depth

Distinguishing Bipartitions

Robinson–Foulds
Quartet

Clade
Cosine Similarity

Clade
K-tet

Subtree
Taxa

Set operations

Taxa Refinements
Tree Balance
Tree Depth

Resolution Rate

Clustering
K Means

Aggolmerative
Silhouette Width

Rand Index

Strict
Majority
Greedy

Least Conflict

Visualization
Heatmap

MDS
SVG Tree

ASCII Tree

Analysis

Auxiliary

Grammar Lexer Parser Type Checker
Interpreter

Figure 4.1: A graphical representation of the algorithms within TreeHouse.

instance, the novel support measure p-support is implemented from these building

blocks.

This document does not intend to provide an in depth explanation of every al-

gorithm implemented in TreeHouse. TreeHouse currently has over 100 functions.

Some, such as consensus, are common to the field. Others such as distinguishing

bipartitions, p-support, and the query functions are unique to my work. More time

36

will be spent on these novel functions. Yet, I hope to provide enough breadth that

the power of TreeHouse comes through.

One goal of TreeHouse was to unite query and analysis algorithms under a single

user interface. The seamless interaction between fast filtering and analysis algorithms

allows users to the explore their data in a way not easily accomplished elsewhere.

Once the initial algorithms were developed we saw the need to provide an interactive

environment as robust as the algorithms it provides access to. Having built the

underlying search algorithms in C++ which does not provide an interpreter, we

chose to build one. This decision led to the creation of a system which provides users

with multiple ways to interact with sets of trees.

4.1 The architecture of TreeHouse

Figure 4.2: A graphical representation of the TreeHouse system architecture.

A graphical layout of the code base for TreeHouse is presented in Figure 4.2.

TreeHouse is laid out in a few major sections. The first section to activate when the

program is loaded is the TreeZip file parser. When TreeHouse is executed it requires

an input TreeZip file which it decompresses, parses, and loads into memory. These

37

are the trees which will be queried or analyzed. Once the trees are loaded, the system

is ready to start processing user input commands. Users are able to either execute

a batch script with commands in it or interact with the system via a command line

interface. Each command is terminated by a new line character and is processed one

at a time. The interpreter determines the type of command and passes the input to

different functions depending on the content. Some commands, such as the union of

two sets of trees, are handled within the parser. Other commands, such as queries

over the set of trees, require additional logic. For many commands, error checking

also occurs at this part of the process. Function and variable names are checked and

resolved against their respective symbol tables. Any command using a set of trees

or a taxon identifier goes through extra error and validation as those two data types

behave slightly different than the others in the system. When a function is called,

the parameters are passed to a function pointer for a wrapper function.

Every user facing function in the system has a wrapper function. This function

contains the logic which handles type checking and overloaded function resolution. If

the parameters passed to the function are a legal function call, algorithm is run, else

an error is returned. Many of the algorithms in TreeHouse interact with a common

core set of data structures. These data structures contain the data which is loaded

from the TreeZip file and will be discussed at length in the next section. Once the

algorithm has completed, its result is returned to the command line, or, when in

batch mode, written to a file. The system is then ready to parse and handle the next

line of input.

A benefit to this system design is that it allows developers to rapidly prototype

and add functions to the system. All a developer has to do is implement their

functions in the TreeHouse code base and create a wrapper for any functions that

they want to allow users to call. In many ways developing new set of functions in

38

TreeHouse is similar to defining a library of functions. Since parsing and interaction

are handled by the system the developer just has to write their algorithm and provide

the interface, or wrapper function in TreeHouse, for how the algorithm should be

called.

The TreeHouse interpreter has been developed concurrently with our querying

and analysis algorithms. Advances in our algorithmic techniques have led to the

implementation of language features which have allowed TreeHouse to transition

from a search engine to an analysis platform. In the initial prototype, which was

solely a search engine, the only input data type was taxa names and the only output

was tree identifiers. TreeHouse quickly outgrew those limitations and required a

more robust language for interaction.

4.2 PQL: a language for interacting with phylogenetic trees

At the core of the TreeHouse interpreter is our Phylogenetic Query Language,

or PQL, which defines the way a user can interact with the system. Our language

is specified by a context-free grammar which is expressed in Extended BackusNaur

Form (EBNF). ANTLR [72], an LL(*) parser generator, is used to processes the

grammar and produce a C target recognizer for the language. Blocks of C++ code

are attached to each element in the grammar and provide instructions for each rec-

ognized command. The grammar combined with these instructions allows ANTLR

to produce an interpretor for the PQL language. TreeHouse provides the interface

to that interpreter through an interactive command line interface and a batch mode.

ANTLR was chosen for its power and flexibility. Its parsers are used by major

software products such as Twitter, Hadoop and NetBeans. Its LL(*) method for

generating parsers allows for grammars to be defined in a more natural manner than

most parser generators while still providing important debugging information which

39

is often missing from GLR and PEG parser generators.

Figure 4.3: A graphical representation of the PQL parser.

The PQL language was modeled after a simplified version of the C language.

There are many similar constructs and data types. Figure 4.3 shows a graphical

representation of the PQL parser and lexer. The full definition of both the parser

and the lexer can be found in Appendix B. The symbols in all capital letters are

40

tokens produced by the lexer, all other symbols represent parser rules. Variables,

integers, characters, floats, and strings are supported by the language. To handle

groups of data we have indexable lists which act much like the vectors in C++. Lists

in PQL can hold any of the primitive data types and are also able to be nested in

one another. Lists are restricted such that each item in the list must be of the same

type. Lists are defined as a comma separated series of items enclosed in square braces.

There are also features to PQL that are different from other C inspired languages

and beyond the primary data types which are common to many languages, PQL has

two data types specifically set up for handling trees. These are the tree and taxon

identifiers.

The trees loaded into the system are represented by their integer value tree iden-

tifiers. Each tree is given an identifier based on the order they are loaded into

TreeHouse. A set of trees is defined as comma separated series of tree identifiers

enclosed in curly braces. Sets of trees are limited to containing only references to

trees that are loaded into the system. Users may reference sets of contiguous trees

using by using the range operator which is two periods placed between the starting

and ending integer values of the range. For instance, 0..100 references the inclusive

set of trees from 0 to 100. When a user declares a tree set the values in the tree set

are bounds checked. Any negative values and any values greater than the maximum

number of trees in the system are removed. When these sets of tree identifiers are

passed into TreeHouse functions they are expanded and processed as trees.

Taxa names are handled as a special case of strings. While standard strings

are case sensitive and mutable, taxa names are processed as case insensitive and

immutable. Each string is case insensitively checked against a symbol table as it

is parsed to determine if the string should be treated as a taxon identifier or a

regular string. Taxon identifiers can also be linked with other information beyond

41

the taxon’s name. Optionally, the user can load additional data into the system. This

information could be the full taxonomic classification for a taxon or even information

about certain traits the taxon has.

Users are not able to extend PQL by defining new data types at runtime. Ex-

tending the language to handle more data types would require modifications to the

grammar. Given the limited number of data types in PQL, we’ve chosen to make

the implementation of language dynamically typed. We feel that dynamically typed

languages often have a lower barrier to entry for those who are less familiar with

computer programming.

Function calls in TreeHouse look much like the function calls in C and other

C like languages. The postfix expression rule in the grammar detects a function

identifier and a pair of parentheses which may or may not enclose an argument list.

These command names are checked against the TreeHouse function symbol table to

identify whether or not the user input a legal function. An example of the parse tree

resulting from a simple consensus command is shown in Figure 4.4. The depth and

repetitiveness of the tree is due to the fact that as that rules are checked in terms

of priority. If a match is found the rule is used. If there is not a match, the input is

passed to the next rule until a match is found or the input is deemed not to match

any rules.

The fundamental operations when working with sets of trees are set union(+),

set intersection(∧), set difference(−). We have also implemented a not(!) operator

which functions as a set difference against the loaded set of trees. Using these

operators, users can combine the results of multiple queries to create arbitrarily

complex commands. In TreeHouse each of these operators were given their own rule

in the grammar in order to enforce the desired order of operations. The order of

priority from greatest to least is intersection, union, difference, and then not. The

42

Figure 4.4: A graphical representation of a the parse tree for a single consensus
command in TreeHouse.

weakest operator is the assignment operator(=).

PQL is not intended to be a general purpose programming language, it is meant

to be a domain specific language for interacting with sets of trees. Since this language

43

is meant to provide a relatively simple interface between a researcher and their phy-

logenetic data, users are not able to define new functions at run time. This does not

mean that TreeHouse is not extensible. New functions may be added to the system,

but they are written in C++ and require TreeHouse to be recompiled for them to

executed. Care has been taken to separate the functions of the interpreter from the

analysis and query algorithms. Users developing for TreeHouse can implement new

features without touching the grammar.

4.3 Bit string representation of clades

Sets of trees loaded into TreeHouse are in the TreeZip format. They have been

traversed with a depth first search which collects each tree’s clades and stores them

in a compressed format. The clades that make up Tree T12 are shown in Figure 4.5.

TreeHouse decompresses the clades and converts them into a special format for stor-

age. Within the TreeHouse data structures each unique clade functions as a key.

This requires that each clade has a unique representation within the system. While

a user searches for a clade by using a textual representation, TreeHouse stores each

clade as a bit string. Each bit string is the length of the number of taxa in the data

set with each taxa being assigned an index in the bit string. An example of one such

ordering is shown in Table 4.1. Here each taxon in the set is assigned a position in

the bit string based on alphanumerical order. To create a bit string representing a

clade, the bits corresponding to the taxa in the clade set to a value of one. All other

bits in the string are set to zero. The bit strings associated with the four clades

shown in Figure 4.5 are given in Table 4.1.

Bit strings encodings are relative to the rooting of the tree. Two trees with the

same unrooted topology, and therefore the same bipartitions, could be rooted such

that they have different clades. Furthermore a single bipartition could be represented

44

Jaguar
Lion
Leopard
Tiger
S. Leopard
C. Leopard

Lion
Leopard

Tiger
S. Leopard

Jaguar
Lion
Leopard

Jaguar
Lion
Leopard
Tiger
S. Leopard

C1

C2

C3

C4 C1

C2

C3

C4

Figure 4.5: This figure shows the four clades that make up Tree T12.

Tax
a

N
am

e

Che
et

ah

Cou
ga

r

C. Leo
pa

rd

Ja
gu

ar

Leo
pa

rd

Lio
n

S.
Leo

pa
rd

Tig
er

Index 0 1 2 3 4 5 6 7

C1 Value 0 0 0 0 1 1 0 0
C2 Value 0 0 0 0 0 0 1 1
C3 Value 0 0 0 1 1 1 0 0
C4 Value 0 0 0 1 1 1 1 1

Table 4.1: This table shows the bit string indices for each of the eight taxa in the
data set. Also show are the bit string encoding for each of the four clades shown in
Figure 4.5

in TreeHouse by two different clades. For instance, Figure 4.6 shows two different

trees which each contain the same bipartition. Each tree has the [Lion, Leopard,

Jaguar | Tiger, S. Leopard, C. Leopard] bipartition. The nodes defining the clades

that represent this bipartition are marked with a red dot in the two trees. While

they both have the same bipartition, the clades made up of the descendants of the

marked node are inverse of one another. Since two trees with the same bipartition

can have different clades it is important to have multiple tools for querying sets of

trees. This way edge based queries can be used if the user wants to find a relationship

45

regardless of the root and clades can be used when the position of the root matters

to the user.

Figure 4.6: Two trees, each containing the relationship [Lion, Leopard, Jaguar |
Tiger, S. Leopard, C. Leopard] are shown. The node marked in red is used to
compute the encoding for the relationship. The taxa which are descendants of the
node are labeled as ones and all other taxa are labeled as zeros.

46

5. SEARCHING SETS OF TREES

5.1 Motivation

Search algorithms are a fundamental in computer science and have seen some

use in phylogenetics. Within phylogenetics, the main focus for search algorithms

has been to answer the question, “Which trees contain a certain set of taxa?” This

especially important when searching a large taxonomically diverse database such as

TreeBASE. What has been less studied is how to answer, “Which trees contain a

certain relationship between taxa?” This question is very important when we are

dealing with the tens of thousands of trees that have been returned by a Bayesian

analysis. In this case, we know that all the trees in the set contain the same set

of taxa. What differentiates the trees is their structure. Providing answers to this

question can help biologist better understand the data that supports their published

phylogenetic trees.

0

8

4

2 6 10 14

12

1 3 5 7 9 11 13 15

00000011

00000110 00001100

00010001

00001010

00010100

00100001

00100010

00001110

00010101

00011100

00011101

11000011

01000011 00011110 00011111

Figure 5.1: A graphical representation of the BST for the Panthera data set.

47

To address the need for structural searching for phylogenetic trees, we have de-

veloped a suite of search algorithms which are implemented in TreeHouse. These

algorithms provide novel ways to search sets of trees based on their structure. The

fundamental search structure in TreeHouse is a binary search tree where the keys

are unique clade identifiers and the values are the sets of trees which contain the

key clade. This binary search tree is implemented as a red-black tree due to the self

balancing characteristics.

Index Size Clade Trees
0 2* 00000011 3, 8, 11, 13
1 2 00000110 11
2 2 00001010 9
3 2 00001100 1, 2, 3, 5, 7, 8, 13
4 2 00010001 6
5 2 00010100 10
6 2 00100001 2
7 2 00100010 4
8 3* 00001110 10, 12
9 3 00010101 6
10 3 00011100 0, 1, 3, 5, 7, 8, 9, 11, 13
11 3 01000011 8
12 4* 00011101 0, 1, 2, 4, 5, 6
13 4 00011110 2, 10, 12
14 4 11000011 8
15 5* 00011111 0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13

Table 5.1: The in-order traversal of the binary search tree for the example data set
represented as a table with the first clade of each size marked.

Along with its use as a search tree the data structure does double duty as an

ordered list of clades. To better explain the different algorithms that use the search

structure and how they work, two visual representations of the binary search tree

48

are provided in this document. The first as a tree in Figure 5.1 and the second as a

table in Table 5.1. This is done solely for clarity of documentation as they are both

referring to a single structure in TreeHouse. In Figure 5.1 the clade keys and their

position in an in-order traversal are shown. These positions are the same as those

shown in Table 5.1. The table also shows the tree identifiers which are associated

with each clade. Since the structure is used in these two primary ways it will be

referred to as BST+T which is short for “binary search tree and table.”

5.2 Size of the BST+T

The size of the search structure is dictated by three variables of the trees which are

loaded into TreeHouse. The length of the keys in the search structure is determined

by the number of total taxa t in the set. The number of keys in the search structure

is determined by the number of unique clades in the set of trees. The maximum

possible number of clades is on the order of 2t. This has the potential to be a very

large number for even a small amount of taxa, but in practice the number of unique

clades in a data set is much smaller. There are practical and biological reasons

why the number of unique clades do not grow at this rate. Each clade represents a

biological relationship between species, and all biological relationships are not equally

supported.

To illustrate this point, we can use [Human, Flounder, Parakeet, and Chimpanzee]

as the set of organisms for a group of phylogenetic trees. In such such a data set

it would be possible for any combination of those organisms to make up a clade,

however, if we examine the three possible clades which contain human and one other

taxa, [Human, Flounder], [Human, Parakeet], and [Human, Chimpanzee], one of the

clades should jump out as far more likely than the other two. This is an extreme case

where the [Human, Chimpanzee] relationship was designed to be far more likely than

49

the other options. While, trees could contain the [Human, Flounder] clade instead,

the significance of those trees may be called into question.

Data set 1 Data set 2 Data set 3 Data set 4
Taxa 150 567 950 950
Trees 20,000 33,306 100 200
Unique Clades 1168 2444 5582 9668
Compressed lines 126 522 504 555
Total Tree Ids 2,940,000 18,784,584 70,197 157,437
Stored Tree ids 911,129 3,674,140 38,369 87,055

Table 5.2: Information about the size of the search structure for 4 data sets.

Practically, TreeHouse does not expect to see data where all of the trees in a set

agree on every relationship, but random relationships, while providing the theoretical

maximum size of for the number of keys, are not a good model for the types of data

that biologists work with. Each data set that has been analyzed with TreeHouse has

a certain degree of relationship sharing between trees in the set. For instance, Data

set #2 from Table 5.2 has 567 taxa and 33,306 trees. The total number of clades

possible for a set of taxa this size is about 4.8×10170. This number is far larger than

the total number of clades which can be represented by the 33,306 trees in the data

set. At most each tree could contain 565 clades assuming each tree was binary which

puts the maximum possible number of clades represented at 18,817,890 clades. In

order for that to translate into 18,817,890 distinct keys in the data structure each of

those clades would have to uniquely appear in a single tree. This would mean that

no relationships in the data set would be supported by more than a single tree, which

would make it a data set of questionable use. What we actually see when we examine

this data set is that there are 2,444 unique entries in the search table. There is a

50

high degree of sharing of clades between the trees, or to put it another way, there are

clades in this data set with a high degree of support. Similar patterns appear when

looking at other data sets. While we can not provide an exact definition of an upper

bound for the number of keys in the system based on the biological and practical

considerations, we observed the size of the search structure to be quite reasonable

for the data we’ve analyzed.

The final variable in the size of the search structure is defined by the number of

trees in the system. The value linked to each clade in the search structure needs

to represent the set of tree identifiers for the trees which contain that clade. This

means that for the 33,306 trees in Data Set #2 18,817,890 tree identifiers need to be

represented. To limit the amount of memory required for this task some compression

is used. For each entry there is a compression bit which denotes if the stored tree

identifiers are the tree which have the clade or the trees which do not have the clade.

The smaller of the two is used and stored. This means that if every tree has a clade

the compression bit would be set to one and an empty set is stored. The effectiveness

of this method of compression is dependent on the features of the tree set. The more

sharing between trees the more effective the compression is. For a data set which no

clade is shared by more than 50% of the trees there would be no compression. The

sharing of relationships between trees which allows for a small number of key entries

also allows for the this compression scheme to be effective.

Table 5.3 shows how the example data set would be stored. The “Comp” column

represents the compression bit and is set to one where compression is used. The

“stored size” column shows the set of the set of trees which is stored to represent the

trees in the “Trees” column. For this data set compression is only used on for two

clades. The clade at index 10 is shared among 9 trees so the inverse can be stored

for a space savings of 4 tree identifiers. The clade at index 15 is shared by 11 trees

51

and can be stored with only 3 for a space savings of 8 tree identifiers. Data sets with

more sharing between trees will have a higher percentage of compression.

Index Clade Comp Stored size Trees
0 00000011 0 4 3, 8, 11, 13
1 00000110 0 1 11
2 00001010 0 1 9
3 00001100 0 7 1, 2, 3, 5, 7, 8, 13
4 00010001 0 1 6
5 00010100 0 1 10
6 00100001 0 1 2
7 00100010 0 1 4
8 00001110 0 2 10, 12
9 00010101 0 1 6
10 00011100 1 5 0, 1, 3, 5, 7, 8, 9, 11, 13
11 01000011 0 1 8
12 00011101 0 6 0, 1, 2, 4, 5, 6
13 00011110 0 3 2, 10, 12
14 11000011 0 1 8
15 00011111 1 3 0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13

Table 5.3: The in-order traversal of the binary search tree for the example data set
represented as a table with compression bit and compressed sizes shown.

5.3 Methods for searching

There are two primary methods for searching with the BST+T. The first nav-

igates the BST+T as a BST and the second navigates it as if it was a linked list.

Searching for an exact clade is the prototypical example for the first group of queries

and the searching for a clade of unknown size serves the most basic example of the

second type of query.

52

5.3.1 Clade queries

TreeHouse supports multiple methods for querying a set of trees. The first method

is a clade search. In this case the user is looking for the set of trees which contain

a specific clade. This type of search is looking for a single direct match between

the query input and a clade in the the BST+T. In TreeHouse, the query taxa are

converted to a bit string then that bit string is compared against the binary search

tree. If the query value is smaller than the value in the structure the left child is

visited, if it is larder the right child is visited, and if the two strings match a result

is returned. If a no match is made a childless node an empty set is returned as

it is determined that the result is not in the BST+T. This type of search requires

O(logUniqueClades) comparisons where UniqueClades is the number of keys in

search structure. The comparitor function for the BST+Thas been selected such

that bit strings with more ones are considered larger than bit strings with less ones.

If two bit strings have the same number of ones their relative position is decided by

their integer values.

As an example, a user could search for the clade [Lion, Leopard]. Using the bit

string indices in Table 4.1 the queried clade would be converted to the bit string

[00001100]. Starting at the root, which is marked as index 8 in Figure 5.2, the query

bit string is compared the bit string in the structure. The query bit string is smaller

than the bit string at the root and so the search proceeds to the left child which is

marked with a 4 in the figure. The query bit string is smaller than this clade as well

and again proceeds to the left child. The query bit string is larger than the clade and

so it proceeds to the right child where a match is found. This process required four

comparisons to find the match. Once a match is found the tree identifiers associated

with the clade are returned to the user. The tree identifiers are not shown in the

53

figure, but are available in the table at index 3 and consist of trees [1,2,3,5,7,8,13].

0

8

4

2 6 10 14

12

1 3 5 7 9 11 13 15

00000011

00000110 00001100

00010001

00001010

00010100

00100001

00100010

00001110

00010101

00011100

00011101

11000011

01000011 00011110 00011111

Figure 5.2: A graphical representation of the BST for the Panthera data set with
the nodes used in a search for the [Lion, Leopard] clade marked in pink.

5.3.2 Subtree queries

By combining multiple clade queries more advanced searches can be built. One

such example allows users to directly query a data set for the set of trees which

contain a subtree. Since all trees can be defined as their set of clades, TreeHouse can

take an query subtree as a Newick string and parse it into clades. Once these query

clades are parsed and encoded as bit strings, TreeHouse uses a series of clade search

operations to find subtree matches. The algorithm runs an independent clade search

for each of the query subtree clades and returns the set intersection of the results of

each search. The resulting trees are the ones that contained each of the clades in the

query subtree.

The look up time for each individual clade search is on the order of O(logUC)

time where UC is the number of keys in search structure. The number of searches

54

required to return a solution is equal to the number of clades in the query subtree.

The results of of each search must be combined with intersection operations. The in-

tersection requires a number of comparisons relative to the number of tree identifiers

resulting from each search. With just two clades the set intersection would require

2 ∗ (treesInResult1 + treesInResult2) − 1 comparisons to combine the results of

each search.

For example, search(“(Jaguar, (Leopard, Lion));”) is equivalent to the intersec-

tion of results from cladeSearch([Jaguar, Lion, Leopard]) and cladeSearch([Leopard,

Lion]). The search for the [Jaguar, Lion, Leopard] clade matches with the node

marked as 10 which requires three comparisons and returns a result set of [0, 1, 3, 5,

7, 8, 9, 11, 13]. The query for [Leopard, Lion] matches with the node marked 3 and

returns the set [1, 2, 3, 5, 7, 8, 13]. The results from each search are combined with

a set intersection operation resulting in [1, 3, 5, 7, 8, 13].

5.3.3 Variable size clade query

The next type of search is one where the query could match with multiple clades

in the BST+T. For instance a user could search for any clade containing the taxa

[Lion, Leopard, Snow Leopard]. This is more general than the previously discussed

clade search in that any clade containing the query taxa would be considered a

match. Any bit string where the indices relating to the query taxa are set to one

is considered a match and the taxa in other positions are ignored. This means that

there are 2t−qt possible clades that could be a match to the search, where t is the total

number of taxa in the set and qt is the number of taxa in the query. This is another

case within TreeHouse where the number of potential clades are often larger than

the number of clades which are seen in the data sets. It would be inefficient to run

to a separate search for each of the potential bit strings which could provide a match

55

when there are more bit strings than there are entries in the the BST+T. To handle

a search where there could be many possible matches the BST+T is navigated with

an in-order traversal and each traversed node is checked for a match.

The BST+T contains certain optimization for the queries which rely on an in-

order traversal. One such optimization is in the choice of the comparator operation

used in building and traversing the BST+T. Bit string identifiers are not primarily

sorted by their lexicographical or integer values. Instead, each bit string is first sorted

by the number of ones that it contains. This allows the bit strings to be placed in

the BST+T such that an in-order traversal prints the clades from the smallest to

the largest, with clades integer value deciding the ordering between two clades of

the same size. Pointers to the first clade of each size are also attached to structure.

These pointers are used to allow the search algorithm to avoid checking parts of the

BST+T which could not possibly hold a matching clade.

For instance, a user could search for any clade containing the taxa [Lion, Leopard,

Jaguar, Tiger]. A matching clade must contain at least four taxa. Therefore Tree-

House uses the pointers to start the search at the first clade of size four, which is at

index 12 in Table 5.1. The search proceeds through the rest of the BST+T checking

each entry for a match, but the ordering of the clades and the use of pointers has

allowed the search to skip 12 of the 16 entries. This search matches with the entries

at indices 13, and 15 in the BST+T. The tree identifiers attached to each matching

clade are combined using set union operations and returned to the user as the result,

which for this search is all of the tree identifiers except the one for tree 8. So the

result would look like [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13].

The effectiveness of this range limiting optimization grows with the number of

taxa in the input query, but the growth rate is actually dependent on the topologies of

the phylogenies in the data set. To illustrate this point, we can consider two simplified

56

data sets each with a single tree. These trees are shown in Figure 5.3. Each tree has

eight taxa but have very different tree shapes. The first tree which we will refer to

as Tree A, is balanced. Each internal node has the same number of children. The

second tree, which we will refer to as Tree B, is maximally unbalanced. They each

have the same number of clades, but the sizes of the clades are very different. Notice

that tree A has four clades of size two where as Tree B only has one clade of size two.

If a user searched for a clade with at least four taxa in it on a data set consisting of

Tree A only two clades would be considered. If a user made the same search on a

data set consisting only of Tree B, four clades would need to be considered.

For a completely balanced tree like Tree A, the relationship between the number

of taxa in the search and the amount of clades which can be skipped is related to the

depth of the tree. The exact number can be determined by the function 2ceil(log2(qt)).

For a completely unbalanced tree like Tree B, the optimization eliminates the need to

consider clades linearly with the number of searched taxa and the exact number can

be determined by the function qt−2. While these are extreme cases, they give an idea

of how the distribution of the clade sizes within a data set affect the optimization.

A B C D E F G H A B C D E F G H

Tree A Tree B

2 2 22 2

444
3

5
6

7

Figure 5.3: An example of how the shape of a tree can impact the sizes of the clades
in the phylogeny.

57

The other major optimization that effects the in-order traversal searches is al-

lowing the search to terminate early if all possible trees are already in the result set.

For instance, a query requesting all the trees that contain a clade containing [Lion,

Leopard] would start at index 0 and find matches at index 3, 8, 10, and 12. The

search would find matches at indices 13 and 15 as well, but after the match at index

12 all possible trees have been added to the set. Early termination in these cases

allows the search algorithm to save the work of unneeded comparisons but also the

associated with unnecessary matches. Had the search been allowed to continue to

find matches 14 tree identifiers would be unnecessarily added to the set.

5.3.4 K-tet queries

A K-tet is a broad way of defining an edge based relationship within phylogenies.

Two popular examples of edge based relationships are bipartitions and quartets. A

bipartition defines the position of each taxa relative to the an edge and a quartet

defines the position of four taxa relative to an edge. TreeHouse provides methods

for searching for K-tets of any size. Searching for K-tets is a bit more complicated

than searching for a clade and uses a modified version of the logic for an in-order

traversal clade search. This is because a K-tet can be represented by multiple clades

in the search structure. For a K-tet with qt query taxa there are 2 × 2t−qt possible

bit string encodings of clades that could represent the query.

A K-tet query is similar to running two variable size clade searches with one for

each set of taxa on either side of the edge. There are a few differences. The first

difference is in how a matching clade is determined. To find a clade that matches a

K-tet all of the taxa on one side of the edge must be set to ones and all of the taxa

on the other side of the edge must be set to zeros. Two bit strings are built, one

to represent a clade made of the taxa on each side of the edge. For example, if the

58

query was for the K-tet [Lion, Leopard | C. Leopard, Jaguar], a bit string [00001100]

would be built to represent the possible [Lion, Leopard] clade and another bit string

[00110000] would be built to represent the possible [C. Leopard, Jaguar] clade. A

match is then determined by a series of bitwise operations. Let the first bit string be

called BS1, the second bit string be called BS2 and the entry in the BST+T which

they are compared against be called BSC .

A match between BS1 and the BSC then occurs when BS1&BSC == BS1 and

BS2&BSC == 0. If a match is not found between BS1 and the BSC a check it made

between BS2 and the BSC .

The optimization which uses pointers to reduce the amount of the BST+T which

needs to be traversed also functions slightly differently. Where as in the previous

example the algorithm was only concerned with a clade having enough ones to provide

a match, now a clade needs to have enough zeros to be a match as well. For instance

a K-tet query for the relationship [Jaguar, Leopard, Lion | C. Leopard, S. Leopard,

Tiger] could only match with entries in the search structure that have at least three

ones and three zeros. The requirement on the number of ones allows to search to

skip all of the clades of size two, meaning the search would start at index 8. The

requirement on the number of zeros allows the search to end earlier and stop after

checking index 14.

Another difference between clade queries and K-tet queries is that extra work

must be done to ensure the correct results on taxa heterogeneous data sets for K-tet

queries. This is because a zero in a bit string just means that the corresponding

taxa is not in the clade. That taxa might be on the other side of the edge which

defines the clade or it might not be in the tree at all. For instance, a query for the

K-tet [Tiger, S. Leopard | Jaguar, C.Leopard] would match with the clade [Tiger,

S. Leopard] at index 0. The trees with this clade include tree T8. However, tree T8

59

does not have the C. Leopard at all. To ensure the the results are accurate a flag in

TreeHouse is set for heterogeneous data sets. When this flag is on extra work is done

before the results are returned. A search is run to find all the trees which contain all

of the taxa in the taxa in the query K-tet. The results of this search are combined

with the results of the ktet query with a set intersection to remove any false positives

that may be present. This is only done for edge based searches on heterogeneous

data sets.

5.3.5 Other search functions

TreeHouse also provides functionality to find trees with duplicate topology to an

input tree or to filter all the duplicate topologies from a set of trees. There is also

functionality to limit the results based on where a tree appears in the input file.

This feature is useful in situations where file position has meaning. For instance, the

results of a Bayesian search are often written to file in the order in which they are

produced. In this case, the feature could be used to exclude or explore the burn-in

trees which are the trees produced before the search converged upon the posterior

distribution.

TreeHouse also supports similarity based searches. In these searches a distance

function, such as the Robinson-Foulds distance, is selected at the trees most similar

to the query tree based on the selected distance are returned. These searches can be

useful to find which trees are most similar to a hypothesis of interest when none are

a direct match.

5.3.6 Combining queries with set operations

Set intersection is used behind the scenes as part of the subtree search function-

ality but it is also available directly to users to modify the results of their searches.

Along with set intersection, we’ve also implemented set union and set difference to

60

allow users further control over their searches. There is also a “not” operator which

computes the set difference against all loaded trees. Using these operators, users can

combine multiple searches to create arbitrarily complex queries to fit their needs.

5.4 Comparison to other search structures

The BST+T in TreeHouse was selected as a trade off between running times

for queries where the exact clade is known and queries where multiple clades could

provide a match. A hashtable would have provided quicker results for searches where

an exact match is needed. The hashtable’s O(1) lookup time trumps the BST’s

O(log n) lookup time. However, since a hashtable is an unordered data structure

the optimization used in the variable size clade searches and K-tet searches to avoid

traversing unnecessary portions of the search structure would not have been possible.

Using a hashtable would have amplified the differences in the runtimes between the

two types of searches in TreeHouse. The exact searches which are already the fastest

would become faster and the slower searches which rely on a traversal of the search

structure would become even slower.

5.5 Experimental Results

The experiments use real data sets to illustrate the running time of the TreeHouse

search algorithms. All experiments were run on commodity hardware with an Intel

Core2 quad-core CPU with each core running at 2.50GHz. The machine has 4 gigs

of ram and the operating system is Ubuntu Linux 12.04 LTS.

5.5.1 Clade query

In TreeHouse a clade query is handled by navigating the BST+T as a BST. The

run time of this type of operation is determined by multiple variables. The first

variable is the number of unique clades in the data structure as that determines the

61

depth of the BST+T. The second variable to consider is the number of taxa in the

data set as the length of the bit strings have an effect on how long it takes to process

a bit string comparison. The third important variable is the number of trees in the

data set. This value is only important for the running time of a successful search,

but can be very important as it often takes longer to allocate the memory to return

the solution than it does to run the search. We evaluate the impact of the number of

trees by running two experiments on the same data set. In the first set experiment we

compute the average run time for a successful search for different size queries. This

data can then be compared to a second set of experiments where the average time

for an unsuccessful search is computed over the same query sizes. Since TreeHouse

is quite fast the values are computed by running multiple searches sequentially then

dividing the total time by the number of searches run.

Clade queries are some of the fastest queries in TreeHouse. This is for two reasons.

There is a limited number of comparisons required to get to a match. Since the

algorithm traverses the BST+T like a binary search tree the majority of the clades

are not required to be tested in any single query. The second reasons is that only a

single match with in the structure is possible. This is especially important for data

sets with many trees. Successful queries must allocate memory for the results to be

returned to the user. The more trees which have to be returned the longer the search

will take. The effect of the number of trees can be seen in Figure 5.4. This plot shows

the average time it take to compute queries of different sizes on a data set with 567

taxa and 33,306 trees. The first thing to note is that all of the searches no matter if

they were successful or unsuccessful and regardless of the size only take a fraction of

a second. Unsuccessful and successful searches require the same amount of work up

until the point where a match is or is not found. When a match is found, results are

returned. The differences in run times shown in the plot are completely due to the

62

time it takes to return the results to the user. This is why the unsuccessful searches

are practically flat relative to the number of taxa in the query. The size of the query

has a very small impact on the number of comparisons that are done and how long

those comparisons take to compute.

Figure 5.4: Timing results for clade queries on the data set with 567 taxa and
33,306 trees. Successful query times are an average of 10,000 searches of each size.
unsuccessful query times are from an average of 100,000 searches of each size.

As the size of the query grows the successful queries are shorter on average. This

has everything to do with the distribution of clades among the trees in the data set.

As the size of the query grows the average number of trees returned by a successful

search goes down and therefore it is quicker to return the results. This can be seen

in Figure 5.5 which shows the average number of trees returned by the successful

63

search for the different queries. For a data set like this one, where there are many

trees, the total runtime is dominated by the number of trees returned by a search.

Figure 5.5: The number of trees reported is an average from 10,000 random successful
clade searches on the data set with 567 taxa and 33,306 trees.

This effect is less prevalent in data sets with fewer trees. For example, a data set

with 950 taxa and only 200 trees is shown in Figure 5.6. For this data set the search

times between the successful and unsuccessful searches is much more similar. This is

due to the smaller number of trees. In this data set the average search time for the

slowest of the queries, a successful query of size two, is only 0.0000115 seconds long.

64

Figure 5.6: Timing results for clade queries on the data set with 950 taxa and 200
trees. Successful and unsuccessful query times are an average of 100,000 searches
each for each query size.

5.5.2 Variable size clade query

The variable size clade query navigates the search structure using an in-order

traversal. This method also utilizes a few optimizations to minimize the run time.

The first optimizations is to use pointers in the table to skip entries in which are too

small to be a match. The second optimization allows the search to terminate early

when once all possible trees are found. To measure the effect of these optimizations

experiments were run with each optimization turned on and off.

Figure 5.7 shows two sets of experiments on Data Set #1. Searches of various

sizes were run and timed. The values along the x-axis show the number of taxa in

the query and the y-axis shows the average running time of a successful query of

65

Figure 5.7: Unoptimized and optimized timing results for variable clade queries on
the data set with 150 taxa and 20,000 trees. The unoptimized and and optimized
times come from an average of 10,000 searches of each size for each version of the
algorithm.

that size on this data set. The blue line marked with circles shows the unoptimized

query algorithm. The average runtime for a successful search containing two taxa is

about .16 seconds. As the number of taxa in the query grows the search gets faster.

This is because as the query grows in size there are less clades in the BST+T which

could provide match to the query. Less matches means less work is done to return

the results. The green line marked with squares shows the time with the early finish

optimization turned on. This is the optimization which allows the search to stop

once all the trees in the data set have been added to the result set. The average time

for a successful query for two taxa with this optimization turned on is .027 seconds,

which is more than six times faster than the unoptimized search time for the same

66

queries.

Figure 5.8: Unoptimized and optimized timing results for variable clade queries on
the data set with 950 taxa and 200 trees. The unoptimized and and optimized times
come from an average of 10,000 searches of each size for each version of the algorithm.

The effect of this optimization is most prominent on data sets with many trees.

This is because the work that is being skipped involves allocating memory for the

result trees and determining if they are already in the result set. This work load

is much smaller when there are fewer trees and so there is less speed up from the

optimization. We show this with plot in Figure 5.8. These experiments are conducted

similarly to the ones just discussed but on a different data set. This data set has 950

taxa but only 200 trees. The first thing to notice is that average runtimes on this

data set are much faster than on Data set #1. A optimized successful two taxa query

67

averages 0.0012 seconds. The optimized algorithm does not exhibit the same general

downward trend that is exhibited by the unoptimized algorithm. Instead there is a

bump in the middle. This is due to the nature of the optimization. Queries with

few taxa are likely to find many matches in the BST+T. This makes it more likely

on average that all of the trees will be added to the result set and the search can

terminate early. As the size of the queries grow matches are less likely to be found

and the effect of the optimization is weakened.

Figure 5.9: Unoptimized and optimized timing results for variable clade queries on
the data set with 150 taxa and 20,000 trees using a second optimization. This
optimization allows the algorithm to skip clades which are known to be too small
to possibly provide a match with the query relationship. The unoptimized and and
optimized times come from an average of 10,000 searches of each size for each version
of the algorithm.

68

The early termination optimization has no effect on unsuccessful queries. Since

unsuccessful queries do not find any matches in the BST+T they are not able to

terminate early. However, unsuccessful searches make for an ideal experimental set

for exploring certain aspects of the how the data sets related to the search algorithms

as they allow us to remove a variable from the analysis. Unsuccessful queries are

only effected by the number of taxa in the data set and the number of unique clades.

Figure 5.9 shows a set of experiments similar to those in Figure 5.7 except these

experiments provide the average time for an unsuccessful query. The blue line is once

again the unoptimized search algorithm. However, this time the optimization that

has been turned on is the ability for the search to skip clades which are too small

to contain a possible match to the query relationship. The unoptimized algorithm

hold fairly steady as the optimized algorithm gets faster with the growing query size.

This drop in running time is expected. As the queries grow in size there is less of the

BST+T that needs to be traversed. The unoptimized algorithm traverses the whole

search structure regardless of the size of the search so its speed holds steady.

Figure 5.10 shows the speed of unsucessful queries on the 950 taxa 200 tree data

set. In contrast to the two figures showing differing behavior across the two data

sets for successful search times the unsuccessful searches behave more similarly. This

is because the number of trees in the data set has no effect on the time it takes to

process an unsuccessful query.

In TreeHouse misses are much faster than successful searches. In fact, missing

is so fast under certain conditions that is becomes difficult to accurately track the

amount of time spent on the query. As the green line marked with squares, which

represents the optimized algorithm, drops below 10−5 seconds we begin to reach the

limits of our ability to produce an accurate time for the algorithm. In this experiment

the search algorithms were run 10,000 times in a row and for some of the values the

69

Figure 5.10: The unoptimized and and optimized times come from an average of
10,000 searches of each size for each version of the algorithm.

timing mechanism still reported zero total seconds for all 10,000 searches.

5.5.3 K-tet queries

K-tet queries function very similarly to the variable clade size queries and use the

basic optimization. A major difference is that in a K-tet query special care needs to

be taken for taxa heterogeneous data sets which is not required for the clade based

searches or K-tet queries on taxa homogeneous data sets.

The K-tet query algorithm in TreeHouse works for heterogeneous trees similarly

to the way it works for taxa homogeneous trees with one major change. The search

algorithm compares the query relationship to each entry in the BST+T and produces

a set which contains all trees related to matching relationships. Then, if the set of

trees is heterogeneous, the algorithm traverses a secondary structure which simply

70

stores all the trivial relationships. These are relationships that do not contain any

information bout the structure of the tree, but simply keep track of which trees have

which taxa. This search produces the set of trees which contain all of the taxa in

the query relationship. The result of the search is the intersection of the set of trees

which matched the query relationship and the set of trees which contain all of the

taxa in the query relationship.

A set of experiments were run to measure the impact of this extra work on a

query. To conduct this experiment, searches were run on homogeneous data sets

which were treated as taxa heterogeneous by the query algorithms. This was done

in order to have a direct comparison between the time it would take to do the same

search on a taxa heterogeneous data set as it would to do it on a homogeneous data

set. Figure 5.11 shows the time average search time for the two runs of the query

algorithm. While the heterogeneous version does require extra work and therefore

extra time, it is still well under a second in average runtime for the queries we

examined.

5.5.4 Exploring a tree set with relationship queries

TreeHouse introduces the ability to search a set of trees with edge based relation-

ships. This allows users to search for trees containing a certain bipartition, quartet,

or anything in between. To understand how the results of these searches differ, it

helps to understand how these relationships are related to one another in the context

of our searching algorithm. Given a taxa homogeneous set of trees the simplest in-

formative search is a 2|2 pronounced as “2 by 2” which is more commonly known as

a quartet. Searching for something simpler, such as [A, | C, D], would return every

tree since the trivial bipartition that attaches A to the rest of the tree would satisfy

the query relationship. Quartets are rather common. A tree with n taxa contains

71

Figure 5.11: Heterogeneous and homogeneous timing results for K-tet queries on
the data set with 567 taxa and 33,306 trees. The heterogeneous and homogeneous
experiment times come from an average of 10,000 searches of each size for each version
of the algorithm.

(
n
4

)
quartets of the total possible 3×

(
n
4

)
quartets that could be found in trees with

n taxa.

As taxa are added to the search on either side of the relationship the search

becomes more strict. The results for searching [A, B | C, D, E] are a subset of the

results for searching [A, B | C, D]. The strictest relationships that you can search for

are bipartitions. These are the relationships that define the placement of each taxon

in the set.

To illustrate the impact that the query relationship size has on search results,

we’ve conducted experiments on two data sets. The first data set contains 33,306

trees with 567 taxa that were generated from 12 runs of Mr. Bayes and is shown in

72

Figure 5.12: This figure shows the number of searches returning some number of
trees for different sized relationships on the 567 taxa 33,306 tree data set. Each line
represents different sized relationships for instance the blue line represents “2 by”
searches such as “2 by 1,” “2 by 2,” “2 by 3,” ... “2 by 500.” The point on the
plot labelled clade is the number of clade searches of the size on the x-axis which
returned a result. Each data point represents the results of 10,000 random searches.
Some lines end before 500 on the x axis because they had no successful searches for
some values and 0 is not represented on this log scale plot.

Figure 5.12. The second data set contains 200 trees each with 950 taxa and is shown

in Figure 5.13. For each experiment we generated 10,000 random query relationships

at varying sizes. We recorded the number of those 10,000 searches which matched

at least one tree in the set on the y-axis. Both experiments show similar patterns

though the number of trees and taxa in the two data sets are quite different. The

first thing to note is that any query relationship with a single taxon on one side

will always return all of the trees in the set. As we move along the x-axis from this

73

common starting point, the size of the query relationship increases and the likelihood

of matching a search decreases. Since smaller search queries are more general than

larger search queries, we expect to see this trend results decreasing as the query

relationships get larger. What is interesting is how soon some of the relationships

stop getting any results at all. For instance, in Figure 5.12 the “6 by” set of searches

stops returning any results after “6 by 10” in our experiments and only 2 of the

10,000 searches for “6 by 10” returned any result. These searches only used about

2.8 percent of the total taxa yet barely any of them returned results.

Figure 5.13: This figure shows the number of searches returning some number of
trees for different sized relationships on the 950 taxa 200 tree data set.

The results of the set of “6 by 10” searches provides an interesting contrast to the

“2 by” set of experiments. Notice that the “2 by 500” run had 28 of 10,000 successful

74

searches as compared to the 2 successful searches when our query relationship was

“6 by 10.” In this case a search with 502 of the 567 total taxa is more likely than

one only using 16 taxa due to the way that the taxa are distributed in the query

relationships. This is because while the “2 by 2” is far more likely than the “2 by

500” search, the total number of taxa isn’t only thing governing the likelihood of

search results. It also matter how many taxa are on each side of the relationship.

The more taxa on the smaller side of the bipartition, the less likely that you are to

find a match. In fact there is an exponential decline in search results as the number of

taxa on the smaller side of the relationship is increased. This effect is demonstrated

in Figure 5.14. We can see from the plot that while “2 by 10” and “6 by 6” are both

searching for 12 taxa, “2 by 10” is far more likely. This effect is powerful enough

that it explains how searching for a “2 by 500” relationship can return more results

than searching for a “6 by 10” relationship.

The impact of size of the query relationship has on the search is worth keeping

in mind as it has implications for how one might approach searching with in this

relationship based framework. For instance, since quartets are far more common

than bipartitions or other larger relationships, they can be very useful when exploring

a new set of trees. On the other hand, if you are familiar with the data set and are

only interested in very specific relationships, something closer to a bipartition my be

more appropriate. When dealing with large numbers of taxa the idea of typing all the

taxa names to search for a bipartition may be daunting, but luckily it’s unnecessary.

We’ve implemented a shortcut for a bipartition requiring the user to only input the

smaller of the two sides. But, even that may be unnecessary. When we look at our

search results, we can see the differentiating power of even relatively small numbers

of taxa. It may be best to start with the smallest relationship that defines the

trees you are interested and add more taxa only if the initial search is found to be

75

2|10 3|9 4|8 5|7 6|6
Query size

101

102

103

104

N
u
m
b
e
r
o
f
se
a
rc
h
e
s
w
it
h
 a
 n
o
n
-z
e
ro
 r
e
su
lt

Queries using 12 taxa over 10,000 random searches

567 Taxa
950 Taxa

Figure 5.14: This figure shows the number of searches returning some number of
trees for different relationships, each with 12 taxa, on the 567 taxa 33,306 tree and
950 taxa 200 tree data sets. Each data point represents the results of 10,000 random
searches.

too broad. It’s also worth remembering that the you can combine multiple query

relationships to further refine a search. This allows a user to quickly search for a

quartet, review the results, and if further filtering is necessary, use another quartet

or a larger relationship to refine the search results.

5.6 Conclusions

TreeHouse provides users with a fast and robust method for structurally searching

phylogenetic trees. This is important as allows users to explore their data sets in

ways that were not previously possible. TreeHouse handles a wide range of search

queries, works for both taxa heterogeneous and homogeneous searches, and has been

76

shown to quickly return results for large data sets. Many of the search features in

TreeHouse are unique to this platform. Previous work has solely focused on searching

with subtrees. TreeHouse provides this functionality but also allows for other types of

search. Clades are fundamental to the biological discussion of phylogenetic trees, but

there have not been search tools geared toward querying trees in this way. Also new

to my work are edge based relationship queries. While bipartitions and quartets have

been previously defined, but they are were not used in queries until now. Completely

unique to my work is the concept of the K-tet which extends the way users can define

edge based relationships for the purpose of queries.

There is an overwhelming amount of phylogenetic data being produced, and algo-

rithms can help make sense of that data. Structural search should be as fundamental

a task as consensus. Quick computation of the consensus of hundreds of thousands

of trees has been available to the field, but it has been much harder to find which of

those trees support a given hypothesis. TreeHouse can help bridge that gap.

77

6. TOOLS FOR TREE ANALYSIS

The initial goal of TreeHouse was to create a fast and efficient way to conduct

structural searches on a large set of trees. The goal for TreeHouse was expanded

when it was realized the power of search is compounded by analysis. The new model

for TreeHouse became one where a user can quickly search for a set of trees which

match a certain criteria then conduct an analysis on that set of trees. To meet these

new goals a series of analysis algorithms have been implemented in TreeHouse. The

analysis algorithms will be discussed in three sections.

This section covers many functions such as consensus and distance measures

which are available outside of TreeHouse. Also discussed in this section are new

ideas such as least conflict consensus and relational entropy. Methods for handling

taxa heterogeneous data sets are also discussed. There is interest in these algorithms

for two reasons. The first is that TreeHouse places these algorithms in a context

where they can be quickly and easily combined. TreeHouse allows a user to search

for a set of trees, refine them if needed, and directly pass them to analysis function

which can turn data into information. The second is that they serve as components

in more complex analysis functions which are covered in the following two sections.

Those sections give examples of the types of novel in depth analysis tools that can

be built using the tools in TreeHouse.

6.1 Consensus

Consensus methods summarize a set of trees as a single consensus tree. A con-

sensus tree built from the bipartitions of the set of trees. TreeHouse has the ability

to construct four types of bipartition based consensus trees. Each method uses a

different set of rules for determining which bipartitions from the set of input trees

78

should appear in the consensus tree.

Strict consensus trees are constructed from only the bipartitions that appear in

each input tree. Applying a strict consensus algorithm to our example Panthera data

set produces a star topology since there are no bipartitions shared by all of the taxa

in the set.

Majority consensus trees are often constructed from bipartitions that appear in

more than half of the input trees. Majority consensus can also refer to trees with

any threshold for inclusion between more than half of the trees and all of the trees.

It is possible to define 99%, 75% or 53% majority trees. A 100% majority tree is

know as a strict consensus tree. The minimum threshold for inclusions for majority

consensus trees is at being in more than half of the input trees. This is because

bipartitions that appear in the input set of trees may be incompatible with one

another. Two incompatible bipartitions can not appear in the same tree. By limiting

the bipartitions to those that appeared in more than half the trees, the possibility of

incompatible bipartitions being included in the consensus tree is excluded.

The first step in constructing a greedy consensus tree is to sort the set of biparti-

tions by how common they are in the input tree set. The bipartitions that appear in

all of the trees are added to the consensus tree. Any bipartition which is in conflict

with a bipartition in the tree is removed as a potential consensus bipartition. Of the

remaining bipartitions, the next more common is added and any bipartitions which

conflict with it are excluded from the set of potential consensus bipartitions. This is

continued until there are no non-conflicting potential bipartitions left. The resulting

greedy consensus tree contains all the bipartitions in the strict and majority consen-

sus trees, but also attempts to fill in the most common bipartitions which appeared

in half or less of the input trees.

Some what similar to the greedy consensus tree is the least conflicting consensus

79

tree. This tree is computed by adding bipartitions based on how few other bipar-

titions they are incompatible with. The tree starts with all of bipartitions in the

strict consensus tree since they are in conflict with no other bipartitions in the set.

The remaining set of bipartitions is ranked based on how few bipartitions in the

set they conflict with and the least conflicting bipartition is added to the set. The

bipartitions which do conflict with any bipartition in consensus tree are removed as

potential consensus bipartitions and the remain bipartitions are re-ranked. This pro-

cess continues until there are no remaining bipartitions that could be added to the

tree. This type of consensus tree has similarities to the greedy consensus in that the

consensus tree is fully resolved. However, since it is built with a different inclusion

criteria it can be structurally different than the greedy consensus tree.

Clouded Leopard

Leopard
Jaguar

Lion

Tiger

Snow Leopard

Clouded Leopard

Leopard
Jaguar

Lion

Tiger
Snow Leopard

Clouded Leopard

Leopard
Jaguar

Lion

Tiger

Snow Leopard

Majority Greedy Least Conflict

Figure 6.1: Three different consensus trees for 13 of the 14 trees in the Panthera
data set from Figure 1.4. Tree 8 contains a different set of taxa than the other 13
trees. It was removed because the consensus methods shown require all of the input
trees to contain the same taxa.

Figure 6.1 shows example consensus trees for the 50% majority, greedy and least

conflicting consensus tree. The strict consensus tree contains no bipartitions and is

not shown. The Panthera data set was used for these computations but was slightly

modified. Tree 8 which is the tree that contains the cheetah and cougar was removed

from the consensus computations. This is because the consensus computations are

80

only well defined when each tree in the consensus computation is taxa heterogeneous.

Due to the diversity of relationships in the tree set the majority consensus tree is

not well resolved and only contains a single bipartition. Greedy and least conflicting

consensus trees are always fully resolved and so they can provide some insight into

the data set which is missing from a strict or majority consensus tree. Notice that the

one bipartition that is in the majority consensus tree is also in the greedy consensus

tree. All the bipartitions in the majority consensus will always appear in the greedy

consensus.

The greedy and least conflicting consensus tree share a similar topology but the

position of the snow leopard and tiger are swapped. These trees share two clades

but say very different things about how the tiger, snow leopard, and clouded leopard

are related to the other cats.

6.1.1 Resolution rate

The resolution rate of a tree is the percent of bipartition that appear in a tree

divided by the n− 3 possible bipartitions, where n is the number of taxa, that could

have appeared in the tree. The resolution rate of a consensus tree can be used to

measure the similarity of the set of trees that made up the input into the consensus

algorithm. The resolution rate of a single tree may also be computed. This value is

useful in determining if a tree is fully bifurcating as some other measures only work

with fully bifurcating trees.

6.2 Distance between trees

A fundamental question when dealing with any two objects is, ”How similar are

they?” This question is often answered with a distance measure. Different distance

measures compute similarity based on different features. The Robinson-Foulds [78]

distance uses bipartitions and the quartet distance uses quartets. Cosine similarity

81

takes a slightly different approach to using bipartitions as compared to the Robinson-

Foulds distance.

Figure 6.2: Two examples of evolutionary trees depicting the relationships between 5
taxa to show the differences between the Robinson-Foulds distance and the quartet
distance. Each bipartition is labeled and the quartets making up each tree are
shown. Bipartitions and quartets show in blue are shared between the two trees.
Those shown in red are not shared between the two trees.

6.2.1 Robinson-Foulds distance

The Robinson-Foulds (RF) distance is ubiquitous in the field and quick to com-

pute compared to other measures. The RF distance between two trees is computed

based on the number of bipartitions that differ between them. Let Σ(T) be the set

of bipartitions defined by all edges in tree T . The RF distance between trees T1 and

T2 is defined by Equation 6.1.

dRF (T1, T2) =
|Σ(T1)− Σ(T2)|+ |Σ(T2)− Σ(T1)|

2
(6.1)

82

In Figure 6.2, consider the RF distance between trees Tree 1 and Tree 2. The

set of bipartitions defined for tree Tree 1 is Σ(Tree 1) = {AB|CDE,ABC|DE}.

Tree 2 is Σ(Tree 2) = {AC|BDE,ABC|DE}. The number of bipartitions appearing

in Tree 1 and not Tree 2 (i.e., |Σ(Tree 1)−Σ(Tree 2)|) is 1, since {AB|CDE} does

not appear in Tree 2. Similarly, the number of bipartitions in Tree 2 but not in

Tree 1 is 1. Hence, dRF (Tree 1, T ree 2) = 1. The largest possible RF distance

between two binary trees is (n − 3), which would be a maximum RF value of 2 in

the example shown in Figure 6.2.

Computing the RF distance between trees can be done quickly with recent algo-

rithmic developments. HashRF [92], HashRF(p, q) [90], MrsRF [56], and Phlash [57]

have consecutively set the bar for both speed and the number of trees handled.

TreeHouse has an implementation of the RF distance which is intended for quick

computations. When it is necessary to produce large all to all distance matrices

TreeHouse provides a function to pass a set of trees to Phlash.

6.2.2 Quartet distance

The quartet distance [10] is very similar to the RF distance. The quartet distance

between two trees is based on the number of quartets that differ between them. Let

Q(T) be the set of quartets contained in tree T . The quartet distance between trees

T1 and T2 is defined by Equation 6.2.

dQuartet(T1, T2) =
|Q(T1)−Q(T2)|+ |Q(T2)−Q(T1)|

2
(6.2)

For example, in Figure 6.2 there are two quartets unique to Tree 1 and two that

are unique to Tree 2. This produces a quartet distance of 2+2
2

= 2.

Computing the quartet distance between trees is more computationally intensive

than computing the RF distance. This is due to the sheer number of comparisons to

83

be made between the trees. While there are only n − 3 bipartitions in a tree there

are
(
n
4

)
quartets. Quartet distances can be computed using QDist [52] or with the

more efficient algorithm QuickQuartet [15]. TreeHouse has an implementation of of

a quartet distance measure which is intended for small computations. TreeHouse

also provides the ability to pass trees to QuickQuartet when a faster algorithm is

needed.

6.2.3 Clade distance

The clade distance is distance measure implemented in TreeHouse. It is based on

the same calculations as the RF distance but counts clades instead of bipartitions.

Let Cl(T) be the set of clades defined by all edges in tree T . The clade distance

between trees T1 and T2 is defined by Equation 6.3.

dClade(T1, T2) =
|Cl(T1)− Cl(T2)|+ |Cl(T2)− Cl(T1)|

2
(6.3)

The clade distance is very similar to the RF distance in many situations, though

there are exceptions. Since the concept of a clade does not make sense on an unrooted

tree, the clade distance is only applicable to comparing rooted trees. This distance is

also affected by how the trees are rooted. Two trees could have the same bipartitions,

but have different clades due to rooting. A benefit of the clade distance is that it can

be used to compare trees with differing taxa, since only the taxa within a clade are

considered when determining if two clades are the same. The largest possible clade

distance between two binary trees is (n− 2).

The relationship between the clade distance and the RF distance can be shown

in Figure 6.2. Consider Tree 1 which has two bipartitions but three clades. Tree 1

has the clades [A,B], [A,B,C], and [D,E]. Bipartition b1 defines the clade [A,B] and

bipartition b2 defines two clades, [A,B,C] and [D,E]. The bipartition nearest to the

84

root will always define two clades, one on either side of the root. The clade distance

between the trees in Figure 6.2 is 1 which is the same as the RF distance. However,

the values are interpreted slightly differently since the clade distance has a maximum

of three and the RF distance has a maximum of two. For an example on how rooting

can affect the outcome of the distance measures, Figure 4.6 shows two trees with the

same three bipartitions. However, due to being rooted differently these two trees do

not have all of the same clades. The RF distance between these trees is 0 while the

clade distance is 2.

6.2.4 Cosine similarity

TreeHouse also implements a cosine similarity measure. To compute this mea-

sure, a bit string with a place for each unique bipartition in the set of trees is created.

Bipartitions contained in a tree are marked with a one, and bipartitions that a tree

does not contain are marked with a zero. This bit string uniquely defines the tree.

The similarity between two trees can then be computed as the cosine similarity of

their bit strings using the equation in Equation 6.4, where the bit string represent-

ing the bipartitions contained in one tree is A and the bit string representing the

bipartitions in the other tree is B.

cosinesimilarity =
A ·B
‖A‖‖B‖

=

n∑
i=1

Ai ×Bi√
n∑

i=1
(Ai)2

(6.4)

In the general case of cosine similarity the possible values fall within the range

of −1 to 1. However, our application of the measure is limited to values between

0 and 1 because none of our entries in the bit strings are negative. A value of 1

means that the two trees had all of the same bipartitions and therefore have the

same topology. A value of 0 means they are independent and have no biparititons

85

in common. This method for computing distances between trees can be very quick

and useful in analyses such as clustering which require fast distance computations.

The cosine similarity is especially efficient for sparse vectors as only the non-zero

dimensions need to be considered. Since a tree can only have n − 3 bipartitions,

where n is the number of taxa in the tree, the maximum number of positions that

need to be considered to compute the cosine similarity is 2(n− 3).

6.3 Distance within a tree

TreeHouse also provides algorithms to compute various distances within a single

tree. These distances are defined by the placement of taxa and the tree’s topology.

For any taxa in a tree, TreeHouse can compute the length of the path between that

taxa and the root of the tree. This value is the depth of the taxa and is dependent

on the number of branching events in the path between that taxa and the root. In

the tree in Figure 6.3 the clouded leopard has a depth of 1, the tiger has a depth of

3 and the lion has a depth of 4.

Figure 6.3: An example tree of genus Panthera used for examples of tree depth and
balance. This tree has a maximum depth of 4, minimum depth of 1, and an average
depth of 3. Its C value is .6.

86

For any two taxa in a tree, TreeHouse can compute the most recent common

ancestor for the two taxa. This is the smallest clade which contains both of the

input taxa. For instance, for the tree in Figure 6.3, the smallest clade that contains

lion and jaguar is the clade that contains lion, jaguar, and leopard. TreeHouse can

compute the distance from the taxa to this most recent common ancestor. The

distance from lion to the most recent common ancestor of lion and jaguar is 2.

TreeHouse will also compute the distance between two taxa which is defined as the

minimum path between the two taxa in the tree. For two taxa A and B, the distance

From A to B is equal to the distance from A to the most common ancestor of A and

B plus the distance from B to the most recent common ancestor of A and B. In our

example the distance from lion to jaguar would be 3.

The shape of a tree is defined by its topology. Currently, TreeHouse supports a

few tree shape measures. The maximum depth of a tree is computed to be the longest

path from the root to a taxon. The tree in Figure 6.3 has a depth of 4. The average

depth of a tree is the average length of the paths from the root to the taxa which is 3

for our example tree. TreeHouse also computes Colless’ index of imbalance [14], also

known as C. This measure is based on the difference in the number of taxa under the

right and child of each node. A perfectly balanced tree has a score of 0. A score of 1

denotes maximum imbalance. The C value for our example tree is .6. Equation 6.5

can be used to compute this value. The algorithm traverses a tree and computes the

absolute value of the difference between the number of taxa under the right side TR

of a node and the left side TL of a node for each i internal nodes. The sum of these

values is then divided by the maximum possible difference to produce the value C.

c =

∑
i |TR − TL|
(n−1)(n−2)

2

(6.5)

87

6.4 Relational entropy

TreeHouse provides some functions to identify rogue taxa within a set of trees.

A rogue taxon is a taxon which is an equally good fit in many positions in the trees.

This may be due to some combination of the taxa selected, the sequences used,

sequence alignment or model of evolution used in the inference of the trees. The

extreme case would be where the taxa appears to be an equal fit in all positions in

the tree to the tree inference algorithm. Taxa that behave this way can appear on

both sides of many bipartitions. This makes summarizing a set of trees which contain

a rogue taxon as a consensus tree very difficult. While much of the structure may

be similar in the majority of trees, the indecision about the placement of a single

rogue taxon causes the bipartitions in the set of trees to vary more than the structure

would actually suggest. This is because for two trees to have the same bipartition

the placement of every taxa relative to an edge must match.

Since the hallmark of a rogue taxon is that it appears in multiple positions in a

tree, the “rogueness” of a taxon can be measured based on how many positions it

appears in with in a set of trees. This done by computing the clade level entropy for

a taxon. The clades in a set of trees are divided into tiers based on the number of

taxa on each clade.

In determining rogueness, the number of relationships a taxon appears in at each

tier of the clade table is computed. A taxa that appears in many sister relationships

will be represented in more of the size 2 clades than a taxon that always appears in

a sister relationship with the same taxa. By determining how many relationships at

each tier a taxa appears in, as well as how common each of those relationships are,

the clade level entropy for a taxa can be computed.

Table 6.1 show the results of this type of analysis for the Panthera example data

88

set. Since this data was generated by multiple labs the results can not be interpreted

the same ways as had they been generated by a single inference algorithm, however

they still show which taxa have the most varied placement within the data set.

In this case the Snow Leopard has been paired with the most other taxa in sister

relationships.

This function can provide a quick way to determine which if any taxa appear in

more than the average number of relationships per tier. Detecting rogue taxa in a

data can allow biologists to modify or remove them from their sequence alignment

and re-run their inference algorithm without their disruption.

Number of different clades
Taxa Size 2 Size 3 Size 4 Size 5
Cheetah 0 0 1 0
C. Leopard 2 0 0 0
Cougar 0 1 1 0
Jaguar 2 2 2 1
Leopard 2 2 2 1
Lion 3 3 2 1
S. Leopard 4 2 2 1
Tiger 3 2 2 1

Table 6.1: The number of unique clades of different sizes that each taxa appears in.

6.5 Quartet exposure

For a given tree, TreeHouse can print all of the quartets contained in the tree. The

enumeration of quartets provides the foundation for the way TreeHouse computes

the quartet distance between two trees. While the consensus functions in TreeHouse

are currently limited to working with bipartitions, TreeHouse can use its quartet

enumeration function to produce the set of quartets which are common to all the

89

trees in a set. TreeHouse can also compute the quartets that are common to some

percentage of trees in a set. This output would form the basis for a quartet based

consensus method if paired with a compatible tree building algorithm. While we are

unable to directly compute the consensus tree, the information is still useful in that

we can compute the number of quartets that would define the consensus tree. This is

a measure of consensus resolution that is different from that computed by the other

consensus resolution rate functions in TreeHouse which work with bipartitions.

6.6 Analysis of heterogeneous tree sets

While our search algorithms have been adapted to handle both taxa homogeneous

and heterogeneous tree sets, the same is not true for the majority of the analysis al-

gorithms we have discussed. Many distance and consensus algorithms are based on

a definition of a bipartition which does not so easily extend to cover taxa heteroge-

neous sets. For instance, any distance measure defined by bipartitions, such as the

Robinson-Foulds distance, is based on the number of bipartitions different between

two trees. Given any two trees which contain two different taxa sets, it is not possi-

ble for the trees to have any bipartition in common. Since there can be no common

bipartitions, the result would always be the maximum distance and therefore unin-

formative. Many definitions of consensus methods are similarly defined by matching

bipartitions and are not well defined on taxa heterogeneous sets of trees.

One method of handling this situation is to use TreeHouse’s search functions to

return a set of trees which all contain the exact same taxa set. This subset of the

total trees can then be passed to distance and consensus functions because the subset

is heterogeneous.

Given the trees in Figure 6.4, one could homogenize the set by simply excluding

tree T8. This could be done by querying for the trees which contain C. Leopard as all

90

T1 - 1986 T0 - 1978 T3 - 1996 T2 - 1995

T4 - 1997 T6 - 2000T5 - 1999 T7 - 2001

T9 - 2004 T10 - 2005

T12 - 2009

T11 - 2006

T13 - 2010

T8 - 2001

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

C. Leopard
Jaguar
Leopard
Lion
S. Leopard
Tiger

C. Leopard
Tiger
Jaguar
S. Leopard
Leopard

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

C. Leopard
S. Leopard
Leopard
Lion
Tiger
Jaguar

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

C. Leopard
Tiger
S. Leopard
Jaguar
Leopard
Lion

C. Leopard
Tiger
Jaguar
Lion
Leopard
S. Leopard

C. Leopard
Tiger
Jaguar
Leopard
Lion
S. Leopard

C. Leopard
Leopard
Jaguar
Lion
Tiger
S. Leopard

Jaguar
Lion
Leopard
Tiger
S. Leopard
C. Leopard

Jaguar
Leopard
Lion
Cheetah
Cougar
Tiger
S. Leopard

C. Leopard
Jaguar
Leopard
Lion
Tiger
S. Leopard

Lion

C. Leopard
S. Leopard
Tiger
Jaguar
Leopard
Lion

Current best hypothesis

Figure 6.4: Multiple hypothesis of genus Panthera over the last 30 years.

of the trees which contain C. Leopard cover the same set of taxa. The resulting set

could be passed to the analysis algorithms which require taxa homogeneous trees.

6.6.1 Taxa searching and distinguishing taxa

There are a few functions in TreeHouse that are only useful for searching and

analyzing trees with different sets of taxa. The taxa search function is one such

example. This search returns all the trees in the set which contain the query taxa.

Another is the concept of distinguishing taxa between two sets of trees. We define

the distinguishing taxa between two sets of trees to be the taxa in that appear in all

of the trees in the one of the sets but none of the trees in the other. This can be

a useful measure for differentiating sets of trees but it is only useful when the trees

91

cover different sets of taxa.

6.7 Taxa masking

T1 - 1986 T0 - 1978 T3 - 1996 T2 - 1995

T4 - 1997 T6 - 2000T5 - 1999 T7 - 2001

T9 - 2004 T10 - 2005

T12 - 2009

T11 - 2006

T13 - 2010

T8 - 2001

S. Leopard
Tiger
Jaguar
Leopard
Lion

Jaguar
Leopard
Lion
S. Leopard
Tiger

Tiger
Jaguar
S. Leopard
Leopard

S. Leopard
Tiger
Jaguar
Leopard
Lion

S. Leopard
Leopard
Lion
Tiger
Jaguar

S. Leopard
Tiger
Jaguar
Leopard
Lion

Tiger
S. Leopard
Jaguar
Leopard
Lion

Tiger
Jaguar
Lion
Leopard
S. Leopard

Tiger
Jaguar
Leopard
Lion
S. Leopard

Leopard
Jaguar
Lion
Tiger
S. Leopard

Jaguar
Lion
Leopard
Tiger
S. Leopard

Jaguar
Leopard
Lion
Tiger
S. Leopard

Jaguar
Leopard
Lion
Tiger
S. Leopard

Lion

S. Leopard
Tiger
Jaguar
Leopard
Lion

Current best hypothesis

Figure 6.5: A visualization of the multiple hypothesis of genus Panthera over the last
30 years with Clouded Leopard, Cheetah, and Cougar removed from each tree. Extra
branches have been collapsed. The tree numbers match the citations in Figure 6.4

Queries may be used to return a set of trees which are taxa homogeneous but

in doing so we may be excluding information about taxa of interest in trees that

cover more taxa that just those we are directly studying. This can be seen in the

Panthera data set. Removing a single tree, in this case tree T8, we convert the data

92

set from being taxa heterogeneous to taxa homogeneous, but we have also lost the

information tree T8 contains about the relationships between the five cats common

among all the trees in the set. To address this, TreeHouse provides functions to mask

taxa in a set of trees. Masked taxa are pruned from the data set and their branches

are collapsed. This leaves trees which look as though the masked taxa were never in

the analysis. This function can be used to homogenize a data set so that functions

which are only well defined on taxa homogeneous trees can be applied. Figure 6.5

shows the 14 trees in our heterogeneous data set with C. Leopard, Cheetah, and

Cougar removed and extra branches collapsed. These trees may now be used as the

input to any of the analysis functions that require taxa homogeneous trees.

Index Size Clade Trees
0 2* 00000011 3, 8, 11, 13
1 2 00000110 11
2 2 00001100 1, 2, 3, 5, 7, 8, 13
3 2 00001010 9
4 2 00010001 6
5 2 00010100 10
6 3* 00001110 10, 12
7 3 00010101 6
8 3 00011100 0, 1, 3, 5, 7, 8, 9, 11, 13
9 4* 00011110 2, 10, 12
10 4 00011101 0, 1, 2, 4, 5, 6
11 5* 00011111 0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13

Table 6.2: The BST+T for our 14 example trees from genus Panthera after C.
Leopard, Cheetah, and Cougar have been removed and extra branches collapsed.
The bits representing C. Leopard, Cheetah, and Cougar have also been removed
from the bit strings.

The bipartition table for the masked taxa set is shown in Table 6.2 and has only

12 unique clades. This table is smaller than the unmasked table shown in Table 5.1

93

which has 16 unique bipartitions. Using taxa masking to produce a homogeneous set

of trees provides the user with a trade off in the amount and type of information in

the set. The unmasked set of trees contains more bipartition information, however

the presence of taxa heterogeneity between the trees limits the types of analyses that

can be conducted. Homogenizing the set opens it up to many more types of analysis

but a cost. In our example we lost about 25% of the total unique bipartitions in the

homogenizing process, but in return we are able to construct a consensus tree of the

results or compute the Robinson-Foulds distance between two of the masked trees.

It also clarifies the relationships between the common taxa. Tree T8 which had two

taxa that no other tree had and was missing a taxa common to all the other trees

can now be seen to have the same relationships in the remaining five taxa as trees

T3 and T13.

94

7. ADVANCED ANALYSIS: DECISION TREES AND DISTINGUISHING

BIPARTITIONS*

7.1 Why compare sets of trees

Groups of trees can be defined in many ways. They can come from clustering

algorithms, they can be a product of how they were inferred by grouping trees from

the different chains, runs, algorithms, or labs. They can also be the result of multiple

queries on a tree set. No matter where the groups come from, analysis measures can

tell us about about the groupings. In the case of trees coming from multiple runs,

we can determine how topologically distinct those runs were. The same measure

applied to a grouping of trees from a clustering algorithm can tell us something

about whether there are distinct sub-hypothesis of the true tree in the data. This

section explores algorithms used to analyze sets of trees.

Understanding the ways in which sets of trees differ from one another is impor-

tant in answering questions about convergence. To say two groups of trees have

converged is to say they have come from the same region of tree space. This is

important question when dealing with trees resulting from a phylogenetic inference

algorithm. If the trees have not converged to a single region of tree space there may

be multiple distinct sets of trees which represent different hypotheses of the true

tree. Understanding if and how sets of trees differ can lead to insights about the

algorithms that produced them.

* Part of the data reported in this section is reprinted with permission from ”Using decision trees
to study the convergence of phylogenetic analyses.” by G. Brammer, & T. L.Williams, (2010, May).
In the proceedings from the 2010 IEEE Symposium on Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB), (pp. 1-8). c© IEEE 2011.

95

7.2 Decision tree depth and bipartition separability

Measuring the similarity between sets of phylogenies can be thought of as a

data mining style classification problem. We can ask, ”How complicated would a

classifier need to be to separate the phylogenies into their groupings based on their

features?” We can train a classifier, in this case a decision tree, on the input trees

using their bipartitions as features. The level of structural distinction in the input

sets of phylogenies is directly related to the size and shape of the trained decision

tree.

7.3 Decision trees

Decision tree learning is a predictive model for mapping observations to outcomes.

Decision trees are built with a classification at the leaves and features at the internal

nodes. For our data, the classifications could be the run, algorithm, cluster, query

or other grouping of phylogenies and the internal nodes are bipartitions, and the

branches leading from the those nodes denote either the presence or absence of that

bipartition. The features crossed by tracing a path from the root of the tree to

a leaf node describe a set of features where all trees with those features have the

classification at the leaf node.

7.3.1 Algorithm

Our approach consists of two steps. First, we construct a bipartition table that

consists of the unique bipartitions associated with our set of phylogenetic trees.

The bipartition table also contains class labels concerning the run of the phyloge-

netic search heuristic that produced each of the evolutionary trees. The second

step concerns using the bipartition table to actually create the decision using the

ID3 (Iterative Dichotomiser 3) data-mining algorithm [59].

96

Step 1: The first step is to construct a bipartition table. Consider the set of twelve

evolutionary trees depicted in Figure 7.1a. First, we enumerate all of the bipartitions

in each of the evolutionary trees. Figure 7.1b shows the set of unique bipartitions

for the twelve trees in our example. Each unique bipartition, bi, will represent a

column in the bipartition table. The rows of the table will consist of the input tree

ids (ti) of interest. For each column labeled bi, a ’0’ or ’1’ is assigned to each row

based on whether tree ti contains that bipartition. Consider Figure 7.1. Bipartition

b0 appears in trees t0, t1, t2, and t3. It does not appear in the remaining eight trees.

The data structure used in computing the decision trees is a transformation of the

BST+T which is used in the TreeHouse search functions.

t0 : (((a, b), (c, d)), (e, f));
t1 : (((a, b), (c, e)), (d, f));
t2 : (((a, b), (c, f)), (d, e));
t3 : (((a, b), (c, d)), (e, f));
t4 : (((a, c), (b, d)), (e, f));
t5 : (((a, e), (b, d)), (c, f));

t6 : (((a, d), (b, c)), (e, f));
t7 : (((a, d), (b, c)), (e, f));
t8 : (((a, d), (b, f)), (c, e));
t9 : (((a, f), (b, c)), (d, e));
t10 : (((a, f), (b, d)), (c, e));
t11 : (((a, e), (b, c)), (d, f));

(a) Newick strings

b0 : ab|cdef
b1 : ac|bdef
b2 : ad|bcef
b3 : ae|bcdf
b4 : af |bcde

b5 : bc|adef
b6 : bd|acef
b7 : be|acdf
b8 : bf |acde
b9 : cd|abef

b10 : ce|acef
b11 : cf |acde
b12 : de|abcf
b13 : df |abce
b14 : ef |abcd

(b) Unique bipartitions

Figure 7.1: Twelve evolutionary trees used as input to build the bipartition table
in Table 7.1. (a) shows the Newick representation of the twelve phylogenetic trees
of interest. (b) provides a listing of the unique bipartitions that appear across the
twelve trees. c©2011 IEEE

97

Bipartition table

Trees b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 run

t0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 r1
t1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 r1
t2 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 r1
t3 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 r1
t4 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 r1
t5 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 r1
t6 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 r2
t7 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 r2
t8 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 r2
t9 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 r2
t10 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 r2
t11 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 r2

Table 7.1: A bipartition table depicting the presence (’1’) or absence (’0’) of each
bipartition (labeled bi), in the twelve trees shown in Figure 7.1 along with a column
denoting the run that generated the tree. The list of bipartitions are our features
and the run is our class label since we know what trees a particular run generated.
In this example, there are two runs that generated the twelve trees. A bipartition
table will serve as input for the construction of a decision tree. c©2011 IEEE

Step 2: The next task is to build a decision tree from the bipartition table. Once

the bipartition table is constructed, we use our implementation of the ID3 algorithm,

which is a top-down greedy approach that selects features based on information gain.

For our problem, the features are bipartitions, which are the internal nodes of the

decision tree. Class labels (runs and algorithm) are the leaves of the decision tree.

Class labels are also considered target features.

The ID3 algorithm takes a feature set (the presence or absence of each bipartition)

and a target feature (i.e., which run the evolutionary trees came from) and computes

a decision tree, where each node in the tree represents the a bipartition and each edge

represents the presence or absence of that bipartition. Table 7.1 shows an example

bipartition table as derived from the Newick strings in Figure 7.1a. Note the last

column in the bipartition table is run label and not bipartition information. The

98

ID3 algorithm computes the information gain of each bipartition relative to the run

label. Information gain represents how well the bipartition information correlates

with the run labels. The bipartition with the best information gain is selected and

added as the root of the decision tree.

Equation 7.1 measures the entropy of a collection of trees relative to their labels.

For a given set S of examples, the sum function iterates over all the different example

values with pi being the percentage of the examples that have that value. To compute

the entropy of the run labels, S is the rightmost column of Table 7.1. We would

iterate over the labels r1 and r2 with pi being the percentage of each label.

Entropy(S) =
c∑

i=1

−pi log2pi (7.1)

Equation 7.2 computes information gain, where S is the set of examples and A is

an attribute. In this equation, V alues(A) is the set of values that the attribute can

have. For each v in V alues(A), Sv is the a subset of S which has that value.

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
S

Entropy(sv) (7.2)

In our example in Figure 7.2, bipartition b0 is the root. All the trees with biparti-

tion b0 come from run r1. Hence, the right child node is marked as run r1 and has no

children. The trees that do not have bipartition b0 are from both runs so the process

repeats to calculate the node with the most information gain. The process contin-

ues until all the branches terminate into leaf nodes. Figure 7.2 shows the resulting

decision tree.

Figure 7.2 shows a sample decision tree where the all the trees are classified as

coming from run 1 (r1) of an algorithm or run 2 (r2) of the same algorithm. Three

bipartitions, b0, b4, and b6 are used in the decision tree to classify all of the input trees.

99

Figure 7.2: A decision tree constructed based on the input from Table 7.1. Here,
3 bipartitions (out of 15) are needed to classify the twelve input trees by what run
generated them. c©2011 IEEE

From each internal node there are two branches, the left branch denotes the presence

of the bipartition and the right branch denotes the absence of the bipartition. Each

path tells us something about the phylogenies in the input sets. For instance, we

can follow the left most path from b0− > r1 which tells us that all trees with b0 are

classified as r1. The right most path, b0− > b6− > r2 tells us that all trees which do

not have b0 or b6 were classified as r2.

7.4 Interpreting decision trees

Once the decision tree is created, we can analyze its features to learn about the

input sets of trees. The depth of a decision tree is the crucial feature for determining

whether a phylogenetic analysis, consisting of multiple runs, has converged. We

define the depth of a decision tree to be the length of the longest path from the root

to a leaf node. Deep (high depth) decision trees reflect a high level of sharing among

the evolutionary trees since many evolutionary relationships have to be consulted

in order to classify what runs produced the evolutionary trees. Shallow decision

trees reflect less sharing of information of across the runs. Hence, deep decision

100

trees provide strong evidence that a phylogenetic analysis converged while extremely

shallow trees reflect non-convergence.

7.4.1 Edge cases: distinguishing bipartitions and non-separable sets

We have proposed the term distinguishing bipartition to identify a bipartition

which can be used to distinguish between two groups of trees. These are bipartitions

that appear in all of the trees in one group and none of the trees in another group.

These bipartitions result in a decision tree of depth one meaning that a single feature

is needed to classify all of the input trees. A distinguishing bipartition means that

the two sets of phylogenies represent distinct hypotheses of the true relationships

between the taxa. The distinguishing bipartitions are major differences between the

hypotheses. It only takes a single distinguishing bipartition to result in a decision

tree of depth one, but many could be present in the sets of trees. TreeHouse provides

an algorithm to return the number of distinguishing bipartitions between two sets of

trees.

While it is possible for the decision tree to have a depth of one, it is also possible

for a decision tree to be unable to classify all the trees into their classifications based

on their bipartitions. One example of this is when two trees with the same topology

are classified into different groups. Since each tree shares the same bipartitions, and

therefore shares the same feature set, no features can be used to tell them apart.

Tree sets that can not be matched with their classifications by any combination of

their features are said to be non-separable. Non-separable sets overlap topologically

and can be said to have converged.

7.5 Background

Our work leverages the idea that the depth of a decision tree can be used to

measure the quality of a cluster. A similar idea has been used to develop new clus-

101

tering methods [50]. Decision trees and feature selection are well researched areas in

the machine learning community but, they have not yet been thoroughly applied to

phylogenetic data sets. In many ways, the work most similar in methods to ours is

that which attempts to measure the quality of clusters produced by clustering phylo-

genetic trees. Stockham, Wang, and Warnow [88] cluster phylogenetic trees and use

the concept of information loss as a measure of cluster quality, but do not address

the issue of convergence. Unlike our work, most techniques for detecting convergence

use tree scores [76], but rarely do they compare the evolutionary relationships con-

tained in the trees to each other. Comparing tree scores can be misleading since trees

with similar scores are not necessarily topologically similar, leading to misleading re-

sults [34, 68, 67, 91]. Hence the fact that a search that found two different optima in

tree space could be detected with a topology based method but left undetected by

relying on tree scores alone.

7.6 Experimental results

We’ve used decision trees to measure the level of convergence between trees pro-

duced by multiple runs of the MrBayes algorithm. We’ve used datasets #1, #2, and

#5 in our analysis which are described in detail in the appendix.

7.6.1 150 taxa Bayesian trees

The first data set has 150 taxa and 20,000 phylogenies. The phylogenies come

from two runs of equal size. The depth of the decision tree created in comparing

the two runs is 1. Since the depth of the decision tree is 1, further analysis was

done to determine the number of distinguishing bipartitions between the two runs

of the algorithm. There were found to be 3 distinguishing bipartitions. These three

bipartitions represent the phylogenetic information that separated the runs of the

phylogenetic inference algorithm. The division between the runs may be an artifact

102

of how the inference algorithm navigated the solution space with each run being

stuck in its own local optima. No matter the explanation, the implication is that the

two searches did not cover the same area of tree space.

These distinguishing bipartitions contain information about the divide between

the two sets of trees that would not appear in a standard consensus tree. Since the

two runs we analyzed are the same size, a distinguishing bipartition can not appear

in the majority of the trees. This interesting information which is important to

understanding how the searches navigated the solution space is hidden by a consensus

analysis.

Decision Tree Depth for Dataset #2: 567 taxa Bayesian trees
run 0 1 2 3 4 5 6 7 8 9 10 11

0 - 1 1 1 1 1 1 1 1 1 1 1
1 - - 1 1 1 11 1 1 1 1 1 1
2 - - - 1 1 1 1 1 1 1 1 1
3 - - - - 1 1 1 1 1 2 2 1
4 - - - - - 1 1 1 1 1 1 1
5 - - - - - - 1 1 1 1 1 1
6 - - - - - - - 1 1 1 1 1
7 - - - - - - - - 1 1 1 1
8 - - - - - - - - - 1 1 1
9 - - - - - - - - - - 2 1
10 - - - - - - - - - - - 1
11 - - - - - - - - - - - -

Table 7.2: This table shows the depth of the decision trees created by comparing
the twelve runs of data set 2.

7.6.2 567 taxa Bayesian trees

Data set #2 contains phylogenies from 12 runs of MrBayes with each tree con-

taining 567 taxa. The depths of the decision trees created in comparing each run to

103

each other run is presented in Table 7.2. The majority of run to run comparisons

resulted in decision trees of depth 1. Only 4 run to run comparisons do not have dis-

tinguishing bipartitions and result in deeper decision trees. Of the 4 deeper decision

trees 3 are of depth 2 and the deepest decision tree is of depth 11. From this we can

say that the two most similar runs are run 1 and run 5. For the decision trees of

depth 1, we computed the number of total distinguishing bipartitions between the

runs which are presented in Table 7.3. The number of distinguishing bipartitions

that separate the runs of trees vary from none to 41.

Given the high number of distinguishing bipartitions present between runs in this

set of phylogenies, it would be difficult to conclude that these runs have converged

to the same area of tree space. The trees in this data set may be generally similar to

one another but there are strong distinctions between the bipartitions reported from

each run.

Distinguishing Bipartitions for Dataset #2: 567 taxa Bayesian trees
run 0 1 2 3 4 5 6 7 8 9 10 11

0 - 15 20 13 23 16 41 17 20 26 24 34
1 - - 11 2 9 - 32 3 3 10 9 20
2 - - - 1 4 13 40 11 11 4 4 30
3 - - - - 3 2 26 1 1 - - 22
4 - - - - - 10 38 11 11 3 3 27
5 - - - - - - 33 3 3 11 10 20
6 - - - - - - - 30 30 39 36 40
7 - - - - - - - - 1 10 9 21
8 - - - - - - - - - 10 12 24
9 - - - - - - - - - - - 30
10 - - - - - - - - - - - 29
11 - - - - - - - - - - - -

Table 7.3: This table shows the number of distinguishing bipartition which separate
the twelve runs of data set 2.

104

7.6.3 567 taxa maximum parsimony trees

We have also applied decision trees to evolutionary trees obtained from two max-

imum parsimony (MP) heuristics, Rec-I-DCM33 and Pauprat. Table A.3 shows the

number of evolutionary trees collected from each run. Each of the MP heuristics re-

quired five runs to produce its set of evolutionary trees. Runs r0, r1, r2, r3, and r4 were

generated by Pauprat while the remaining runs were obtained from Rec-I-DCM33.

Table 7.4 provides the depth of the resulting decision trees using runs as the

target feature. The results show that the Rec-I-DCM33 runs are quite self-similar.

Many of the run-by-run comparisons are non-separable, which we denote by the label

NS. In other words, the two runs being compared returned at least one identical tree.

As a result, the bipartition information cannot separate the evolutionary trees across

the runs.

Decision Tree Depth for Dataset #3: 567 taxa maximum parsimony trees
run r0 r1 r2 r3 r4 r5 r6 r7 r8 r9

r0 - 15 15 17 13 11 10 13 11 13
r1 - - 14 16 20 14 11 10 12 12
r2 - - - 13 15 10 11 10 9 11
r3 - - - - 18 13 9 11 9 13
r4 - - - - - 13 12 12 12 11
r5 - - - - - - NS NS 39 NS
r6 - - - - - - - NS NS NS
r7 - - - - - - - - 52 NS
r8 - - - - - - - - - NS

Table 7.4: The depth of the decision trees resulting from the comparison of maximum
parsimony runs. NS stands for non-separable which means that the bipartitions from
each run are so similar in these cases that the ID3 algorithm can not classify them.

The depths of the decision trees for the three data sets we studied show that

105

the maximum parsimony trees represent a better example of convergence than the

Bayesian trees. The Bayesian trees seemed to have gotten stuck in different local

optima from run to run while the trees inferred from the parsimony analysis we

studied seemed to have settled on a single optimum across the ten runs.

7.7 Conclusions

Decision trees can be used to measure the separation between sets of trees based

on the distinction of the features of each group. A single bipartition could be the

feature which defines a set of trees. This feature centric method for comparing sets

of trees illuminates specific differences in which features are separating two sets of

trees. With a group of trees representing a phylogenetic hypothesis, the features

which different between the groups represent the ways in which the two hypothesis

are different.

Determining whether a phylogenetic analysis has converged is an important prob-

lem in phylogenetics. Without convergence, the robustness of a phylogenetic analysis

is unclear and leads to inaccurate hypotheses of how the taxa evolved from a common

ancestor. Decision trees can be an effective measure of convergence for a phylogenetic

analysis.

106

8. ADVANCED ANALYSIS: CLUSTERING AND PEAK SUPPORT *

The work with decision trees showed that multiple runs of a Bayesian analysis

do not necessarily converge to a single hypothesis. The analysis with decision trees

allows for users to determine if two groups of trees converged to the same place

in tree space. This analysis is useful, but relied on the user having a meaningful

grouping of trees, e.g. the runs which generated them or their parsimony score.

A set of trees may contain groupings which don’t align with how the trees were

generated. For instance, a single Baysian run might return trees from two optima

in tree space. Clustering algorithms can use the differences between trees in a set

to attempt to identify separate groups. These algorithms can be useful in answering

questions about convergence without the need of outside information about how the

trees where generated or their scores.

Also discussed in this section is p-support, which is short for peak support. This

is a measure developed to show the impact of different optima in the data set. Once

optima are identified, we can compare the support for each relationship across optima

and within the set as a whole. This measure serves to identify relationships which

have a varied level of support across the different optima. Relationships which are

supported by each of the identified optima are likely to be supported by further runs

of the phylogenetic inference algorithm that generated the trees. Those which are

supported by fewer optima may or may not be supported in further runs and should

be investigated further. Understanding the variance between runs of phylogenetic

* Part of the data reported in this section is reprinted with permission from ”A new support
Measure to Quantify the Impact of Local Optima in phylogenetic Analyses.” by Grant Brammer,
Seung-Jin Sul, and Tiffani L. Williams, in Evolutionary Bioinformatics Online 7 (2011): 159. c©
Brammer, Sul, and Williams.

107

inference algorithms can provide users with another level of confidence in their results.

8.1 Optima and convergence

Trees coming from a single analysis provide interesting data sets for comparative

study. Given the NP-Hard nature of the phylogenetic inference problem we can

not know if we have found the globally optimal trees until we have visited and

scored every tree in tree space. Full exploration of the solution space is impractical

for all but the smallest datasets. Search algorithms navigate through tree space

returning the best scoring trees they find. Algorithms are not immune to be stuck

in a single optimum and may explore multiple optima as part of a search. When

multiple optima are explored, some may be sampled more than others. This is

not necessarily because the more sampled optima are better than the others, but

because the inference algorithm was stuck there longer. These algorithmic issues can

be reflected in the search results.

Since the popular inference algorithms navigate from one tree to the next by

mutating a tree’s topology, groups of topologically similar good scoring trees can

form local optima for the search algorithms. Each optimum can be thought of as

a distinct hypothesis of the true phylogeny. This is because the trees within an

optimum share similar characteristics, yet they are distinct from the trees in other

optima. Detecting the presence of these optima can allow a researcher to better

understand how the support for different relationships is manifested in the tree set.

Detection and understanding of optima is especially important for Bayesian inference

analyses.

Bayesian inference, as implemented in the MrBayes [35] software package, is one

of the most popular approaches for reconstructing evolutionary trees. This pack-

age uses Markov Chain Monte Carlo (MCMC) sampling which is a very versatile,

108

yet computationally intensive, procedure to produces samples of parameter values

from the posterior distribution. Unfortunately, MCMC simulations are not without

their problems. It can be difficult to assess whether an MCMC analysis has con-

verged to the correct distribution and the resulting samples can only be said to have

come from the true distribution after convergence [74]. For phylogenetic inference,

non-convergence implies that the MCMC sampling did not sample from the distri-

bution of the true evolutionary tree, leading to an inaccurate estimate of the true

tree. Detecting and understanding the presence of optima in the data set can help

researchers make a better informed decision as to whether their analysis has reached

convergence.

8.2 Clustering

Clustering refers to the task of placing data into sets such that the data in each

set is more similar to the data with in the same set than it is to the data contained

in the other sets. Sets created this way are referred to as clusters. Since the place-

ment of data requires optimizing multiple clusters, clustering is a multi-objective

optimization problem. Different algorithms define optimal clusters in different ways

and use different methods to compute the optimal clusters. Clustering algorithms

are dependent on the measures used to define the similarity between data points.

Different clustering results can be obtained by changing the optimality criteria.

In general, a cluster is not precisely defined and only has a common theme of being

a group of data. However, when applying the concept of clustering to a phylogenetic

trees, we can define certain goals for clustering algorithms. We use clustering as

a method of estimating distinct groups of topologically similar trees with in a set.

The trees in a set may be returned from one or more local optima, but the inference

algorithms do not make users aware of potential optima in the data, they only return

109

the set of good scoring trees. Clustering algorithms provide a way to estimate the

presence of these optima after the analysis is competed.

8.3 Types of clustering

Two popular clustering algorithms are implemented in TreeHouse. K-means and

agglomerative are each different approaches to the clustering problem with there own

strengths and weaknesses.

8.3.1 k-Means

k-means is a centroid based clustering algorithm which attempts to partition the

trees into k clusters. Each tree is placed into the cluster with the nearest mean based

on some distance function selected by the user. Defining the best possible clusters is

an NP-Hard optimization problem, but one with well known heuristics which quickly

converge to a locally optimal solution.

8.3.2 Agglomerative hierarchical clustering

TreeHouse also contains an implementation of an agglomerative hierarchical clus-

tering algorithm. Hierarchical clustering attempts to build a tree of the data placing

similar data points near each other. In the case of trees hierarchical clustering builds

a tree of trees with similar trees near one another. Hierarchical clustering can be

done in two major ways. The first is a bottom up approach where each data point

starts in a cluster by itself. Pairs of similar clusters are merged as the tree hierarchy

is formed. This is known as agglomerative clustering and is the method implemented

in TreeHouse. The other option is to use a decisive clustering algorithm which is a

top down approach to creating a hierarchical clustering. In this method all the data

points start in a single cluster. Clusters are split as the hierarchy is formed. Both

methods are generally implemented as greedy algorithms. Agglomerative clustering

110

was chosen for inclusion in TreeHouse for its general case O(n3) running time. While

this is slow for large data sets it is faster than the general case for divisive clustering

which runs in O(2n) time.

8.3.3 Measuring cluster quality

The average silhouette width is a popular measure for assessing the validity of

clusters. When applied to tree space, the silhouette width is a measure of how well

matched a tree is to its assigned cluster. The value is computed for each tree in the

set and average values are computed for each cluster or across the whole data set.

sill(i) =
NeighborDist(i)−OwnDist(i)

max{OwnDist(i), NeighborDist(i)}
(8.1)

The silhouette of a tree i is defined in Equation 8.1. OwnDist(i) is the average

distance between the tree i and the rest of the trees in the same cluster as i. This

value can be thought of as how well the tree i is matched with its own cluster. Well

matched trees will have low OwnDist(i) values. NeighborDist(i) is the average

distance between the tree i and all the trees of the closest cluster which it is not

assigned. This value is computed by taking the average distance between i and all

the trees in a single cluster. This is repeated for each cluster and the minimum value

is returned. The cluster with the lowest value is referred to as the neighboring cluster

for i and is the cluster other than the one that i is assigned which would be the best

fit for i.

The silhouette width reported as a value from -1 to 1. Values close to 1 require

that average distance from the other trees in its assigned cluster to be smaller than

the average distance to the trees in the neighboring cluster. Trees with values close

to 1 are considered to be well placed. Values close to -1 require that the trees in the

neighboring cluster are less dissimilar to i that the trees in its assigned cluster. Trees

111

with negative values are considered not to be well placed. Values close to 0 would

denote a tree that is on the edge of two clusters.

The average sill(i) value for a whole cluster of trees is a measure of how tightly

grouped and distinct the cluster is. The average sill(i) for a whole data set can be

taken as how well the data has been clustered.

While this measure was defined for validating the result of clustering algorithms,

it can be as a measure of quality for groups of trees no matter how the groups are

defined. We can think of it as answering the question, “If a clustering algorithm had

created this grouping of trees would the algorithm have been considered to do a good

job?”

ISimave

ESimave
is similar to the Average Silhouette width. It is the average distance from

a tree to the other trees in its own cluster over the average distance for a tree to

the trees in every other cluster. The major difference in the calculations is that the

silhouette width only considers the next closest cluster in scoring a data point and

the ISimave

ESimave
considers all other clusters for each data point. Due to each measure’s

use of data points outside of the cluster as part of their calculations, neither measure

is effective in directly determining if a single cluster is the best fit for the data.

8.4 Estimating optima with clustering

The first step in measuring the impact of optima on a set of trees is to identify the

presence of optima. In our work on the development of p-support, which attempts

to quantify the impact of optima on the summarization of a dataset, we put forth

a method called PeakMapper. PeakMapper estimated optima, or peaks, but relied

on many outside packages for its computations. The same general method for esti-

mating optima in a set of trees is available in TreeHouse, though TreeHouse provides

the user with more options. TreeHouse provides two different clustering algorithms

112

and multiple methods for examining cluster quality. The original experiments with

PeakMapper relied on CLUTO [43] for its clustering functions and the ISimave

ESimave
as a

measure of cluster quality. The clustering algorithms perform similarly and ISimave

ESimave

is very similar to the average silhouette width which is also implemented in Tree-

House. One method of estimating optima is presented here and the results from this

analysis can be used as the input to algorithms which analyze sets of trees, such as

p-support.

The general process for estimating the number of optima in a set of trees is

presented here in four steps.

Step 1: Given a set of t trees, we use a k-means algorithm to produce a clustering.

The default distance measure in TreeHouse is the Robinson-Foulds distance but other

distance measures can be used and may produce different results. Since the true

number of clusters which best fit the data is unknown, we test a range of k values,

and evaluate the fit of each. Fitness of a clustering in TreeHouse can be measured

in terms of the average silhouette width.

Step 2: For clustering quality measures such as the silhouette width or the

ISimave

ESimave
, we cannot generate a fitness score for situations where k = 1 best describes

the data. This is because both measures rely on the distance between a tree and the

trees in a neighboring cluster. With a single cluster there is no neighboring cluster

to use in the computation. Instead, we check whether any of the clusterings fit the

data. If not, we reject the hypothesis that there are multiple optima in favor of a

single optimum being the best fit for the data.

Step 3: Once we have computed the clusterings of our data, we select the number

of clusters that maximizes the similarity among the trees of interest while minimizing

the total number of clusters. In selecting a p value which best fits the data, we use

the elbow criteria. The selection criteria favors choosing a p so that adding additional

113

optima does not add sufficient information. In other words, we choose a p value such

that increasing it does not increase the silhouette ratio significantly.

Step 4: We can then use multidimensional-scaling (MDS) plots to see the relative

positions of the trees within their local optima. TreeHouse can call dredviz [100, 99]

which is a freely available open source for reducing the dimensionality of large data

sets so that they can be visualized. MDS computes a position for each tree in a 2 di-

mensional plane which best fits their higher dimensional relationships. Mapping the

high dimensional relationships into the best fitting points on a plane is a NP-hard

optimization problem. While imperfect MDS is provides powerful visual feedback

about the relationship between trees and acts as a another check to the validity of

a clustering. Aside from this study, other systematists have used MDS in phyloge-

netics [31]. However, they do not use MDS in the context of optima analysis and

visualization as explored here.

8.4.1 Experimental results

(a) Weighted ISimave

ESimave
(b) Unweighted ISimave

ESimave

Figure 8.1: Selecting the appropriate number of clusters, k. Larger ISimave

ESimave
values

are preferred since they indicate a better clustering of the data.

114

Figure 8.1 shows the weighted and unweighted ISimave

ESimave
values for different clus-

terings of the 150 taxa, 20,000 tree set. The weighted value takes the size of a cluster

into the calculation of the ISimave

ESimave
so that smaller clusters contribute less to the total

score. This analysis considers both the weighted and unweighted values, though in

many cases one value may be sufficient. Applying the elbow criteria to both the

weighted and unweighted data suggests that the optimal number of clusters is at

k = 2. Thus, p= 2 since the data set contains two local optima, P0 and P1. What

is the composition of the two local optima in this data set? Table 8.1 and Figure 8.2

shows that both optima are composed of half of the 20,000 total trees, and each

optimum is composed of trees from a single run. Optimum P0 is composed of trees

from run R1 from the Bayesian analysis. Optimum P1 consists of trees from run R0.

There is no overlap of trees between the two optima as each run is contained within

a single local optimum.

size resolution rate
optima trees % majority strict runs (%)
P0 10,000 50% 90.5% 34.7% R1 (100%)
P1 10,000 50% 89.1% 37.4% R0 (100%)

Table 8.1: Detailed information for the two local optima found for the 150 taxa trees.
For each optimum, we list the number of trees, resolution rates of the majority and
strict consensus trees, and run labels of the trees. The resolution rate reported in this
table is a measure of how resolved the consensus tree is. If the consensus tree was
completely binary we would have a value of 100% whereas if it was a star phylogeny
it would have a value of 0%

Even though the 567 taxa data set is more demanding in terms of having more

trees and runs than the 150 taxa data set, we approach it with the same process

to estimate the number of optima in the data set. Examining Figure 8.1 with the

115

(a) Optimum P0 (b) Optimum P1

Figure 8.2: 150 taxa, p = 2: Each plot shows a single optimum with the trees in the
optimum colored to represent the Bayesian runs they came from. The MDS values
are computed as a Euclidean embedding of the data points. The r value for this
MDS analysis is 0.79, where r = correlation(original, reconstruction).

elbow criteria in mind suggests that k = 6 is the optimal clustering for the data set.

Since k = 6 is the clear peak for the unweighted data and is with in the elbow for

the weighted data, we will proceed with it as our choice and select the p = 6 as the

number of local optima for this phylogenetic analysis.

We now explore the make up of the optima and ask “What are the traits of the

six optima in the data set?” Table 8.2 provides statistics regarding the composition

of the six optima for the 567 taxa trees. The trees in runs R0, R6, and R11 are each

fully contained in single local optimum, P3, P1, and P2 respectively. These trees

are placed in these optima alone with no other trees from other runs. Hence, we can

say that the trees from each run are contained in their own optimum with no mixing

or overlap with trees from other runs. These runs settled into distinct local optima

in tree space.

Alternatively, optima P4 and P5 contain trees from multiple runs. Optimum P4

contains trees from runs R1, R5, R7, and R8. These runs appear wholly in P4, and

116

size resolution rate
optima trees % majority strict runs (%)
P0 1,537 4.6% 94.2% 68.4% R3 (100.0%)
P1 2,986 9.0% 95.6% 64.7% R6 (100.0%)
P2 2,164 6.5% 95.6% 66.8% R11 (100.0%)
P3 3,177 9.5% 95.4% 65.1% R0 (100.0%)
P4 11,312 34.0% 94.0% 61.0% R1 (28.1%) R5 (26.4%) R7 (26.4%)

R8 (19.1%)
P5 12,130 36.4% 92.4% 58.3% R2 (26.2%) R3 (13.5%) R4 (24.6%)

R9 (17.8%) R10 (17.8%)

Table 8.2: Detailed information for the six local optima found by our analysis
approach on the 567 taxa trees. For each optimum, we list the number of trees,
resolution rates of the majority and strict consensus trees, and run labels of the
trees.

in no other optima. We can say that these four runs have stabilized to the same

optimum but do not overlap with the runs in any other optima. Local optimum

P5 is very similar to optimum P4. It is mainly composed of runs that wholly are

contained with in the optimum. Runs R2, R4, R9 and R10 are all contained in this

optimum. The one exception is the placement of run R3. This run is split between

two optima. About half the run appears in optimum P4 with four other runs and the

other half of run R3 appears in optimum P0 by itself. This shows that run R3 is split

between two different optima. It is the only run in either of our data sets to exhibit

this behavior. This behavior may be the result of the phylogenetic search settling

into one optimum for the first part of the search only to find a better optimum as the

search progressed. The information in Table 8.2 is represented visually in Figure 8.3.

117

(a) Optimum P0 (b) Optimum P1

(c) Optimum P2 (d) Optimum P3

(e) Optimum P4 (f) Optimum P5

Figure 8.3: 567 taxa, p = 6: Each plot shows a single optima with the trees in the
optima colored to represent the Bayesian runs they came from. The MDS values are
computed as a Euclidean embedding of the data points. The r value for this MDS
analysis is 0.84, where r = correlation(original, reconstruction).

118

In this data set our analysis shows six local optima each distinct from one another.

The only mixing in terms of runs appearing in multiple optima occurs with R3

appearing in two optima. Knowledge of these trends in the data have the potential

to inform the process of summarizing of the trees. For instance, since the behavior

exhibited by run R3 could be explained that it found one optimum early in the search

only to abandon it later for another optimum, it may be useful to remove the section

of R3 contained in the lesser scoring of the two optima from the summarization. This

same idea could be applied to whole sets of optima. Given that we have six optima

and know which trees make up each optima, it becomes possible to select the optima

with the best overall likelihood scores and set aside the trees representing the less

likely optima.

8.4.2 Detecting single optimum tree collections

We have shown the effectiveness of our algorithm in detecting when a data set

has stabilized to multiple optima instead of a single optimum. Since neither data set

we analyzed contained only a single optimum, we chose to create such a data set in

order show how our algorithm would perform given this case. To represent this case

we used a single run from our 150 taxa data set to create a 10,000 tree data set with

a single optimum.

We begin by clustering our data set using k = 2 through k = 24. We then

examine the ISimave

ESimave
ratio in Figure 8.4. Applying the elbow criteria can be a little

tricky in this case. There is no obvious place where the gains in the ISimave

ESimave
ratio

taper off. There is a fairly steady increase in the ISimave

ESimave
ratio as the k values increase.

This is a strong sign that the most appropriate clustering is actually k = 1. As we

increase k to its maximum value of n (number of trees) we expect the ISimave

ESimave
ratio

to rise. We are looking for a peak in these values before it it becomes a continual

119

(a) Weighted ISimave

ESimave
(b) Unweighted ISimave

ESimave

Figure 8.4: Selecting the appropriate number of clusters, k, when the optimal number
of clusters is 1. Larger ISimave

ESimave
values are preferred since they indicate a better

clustering of the data.

rise. Since this isn’t found, we assume a k value of one and therefore a p value of

one.

8.4.3 Conclusions

Using our approach, we analyzed two published Bayesian studies. Data set #1

covers 150 taxa of desert algae and green plants [48] and Data set #2 covers 567 taxa

of angiosperms [85]. The 150 taxa data set consists of 20,000 trees from two runs of

the MrBayes phylogenetic heuristic. The 567 taxa data set contained 33,306 trees

from 12 Bayesian runs. Both of these tree collections have high majority consensus

resolution rates. Our approach shows that both tree sets contain multiple local

optima—there are two and six local optima found for the 150 and 567 taxa data sets,

respectively. Hence, high consensus resolution rates do not exclude the possibility

of a tree set containing multiple optima. These data sets present two interesting

cases: the number of trees in the optimum in the 150 taxa data set are of equal size

while they are disproportional in the 567 taxa data set. These cases show how the

120

distribution of trees across optima can impact the resulting majority consensus tree.

These data sets make the case for a support measure which can quantify the impact

of optima on the branches of a consensus tree. p-support is intended to provide this

information.

It has been assumed that when multiple Bayesian analyses converge that there is

a single optimum present in the data set. We have shown that this is an assumption

that should be investigated further. Not only is it possible for multiple optima to be

present it is possible for a single run of a search algorithm to contain multiple local

optima. We have introduced tools to help detect and quantify the impact of local

optima on the bipartitions which are presented in the final tree.

8.5 Peak support

8.5.1 Motivation

With our work exploring convergence and distinguishing bipartitions, we identi-

fied multiple optima in some tree sets. The trees in an optimum share some common

phylogenetic information with the other trees in the optimum. However, each op-

timum clusters independently and is separated by distinguishing bipartitions from

the other optima. Each optimum contains its own hypothesis of the true tree. Since

phylogenetic search algorithms attempt to find the best tree in tree space and not

evenly sample each optima, the search may over sample some optima and under

sample others. Computing a majority consensus tree of such a data set can lead to

some hypotheses being given more weight than others, not because they are more

likely but simply because of how the data was sampled. To address this issue we have

developed p-support as a way of showing the impact of these distinct hypothesis on

the final consensus tree.

121

8.5.2 Definition of p-support

We define the p-support of a bipartition as the percentage of p local optima with

majority support for that bipartition. A p-support value of 100% means that a bipar-

tition was supported by each optimum whereas 0% implies that the bipartition was

not strongly supported by any of the p optima. p-support can be viewed as a mea-

sure of precision at the local optimum level, much the same way that bootstrap [21]

and taxa jackknifing [83] support are measures of precision at the character and taxa

level. High p-support values signal that a bipartition is in high agreement across

the local optima and, therefore, is less likely to be overturned by additional analysis.

Similarly to other common support measures, p-support can be useful in identifying

the areas of a tree that may benefit the most from additional data and analysis.

In this way, support measures are a useful tool in illuminating new problems and

hypotheses [26].

The most critical feature to the p-support measure is the identification of the p

local optima of an analysis. These local optima serve as the input to the p-support

calculation. We have developed PeakMapper as well as a more streamlined process

available in TreeHouse to determine how many local optima are contained in a data

set, as well as which trees are contained in each optimum. While we present a

technique to use clustering to identify the optima among the trees, p-support is

independent of how the optima are determined. Any method that identifies local

optima can be used with our p-support measure. For instance, if tree islands [51]

were detected and labeled in a data set, that information could be used to compute

p-support. Once the optima are identified, p-support can be computed for the tree

collection and annotated on majority and strict consensus trees. These support

values can be viewed in standard tree viewing packages such as FigTree or with

122

TreeHouse’s display tree function.

p-support was defined and tested outside of the TreeHouse framework. It has

since been implemented with in TreeHouse. The experiments shown were originally

done with the standalone implementation of p-support using PeakMapper. They

have since been verified with the new TreeHouse implementation. Since p-support

values are deterministic, the results for the new and original analysis are the same.

8.5.3 Comparison to common support measures

Bremer support, also known as the decay index, support index, or simply SI [9]

measures how many steps from the most parsimonious trees it takes to lose a branch

in the consensus of the near-most-parsimonious trees. A branch in one of the most

parsimonious trees is strongly supported if it is also contained in the near-most-

parsimonious trees. There are similarities in the intuition behind Bremer support

and p-support. Both methods consider the prevalence of a bipartition across sets

of trees. Where Bremer support creates subsets of trees by iteratively relaxing the

threshold for near-most-parsimonious trees to be included into the consensus, p-

support considers local optima. Where Bremer support seeks to compute the the

point at which the bipartition stops appearing in the consensus of the subset of trees,

p-support computes the prevalence of each bipartition in each optimum. In both

cases highly supported bipartitions are highly corroborated in the data set. While

Bremer support is effective only in parsimony analyses, p-support is not limited by

the method which the trees are computed. p-support can be used in any analysis

which contains multiple optima.

Bootstrap support [21] is computed by running a set of analyses with the input

sequence alignment resampled such that some characters are include twice or more

and others are not included at all. This simulates the effect that reweighting or

123

revising the data might have on the output trees. Hence, the rate that a bipartition

appears in the resulting trees is a measure of how robust a bipartition is to changes

in the sequence alignment. Bootstrap support is similar to taxa jackknifing [46,

75] which samples the taxa set to generate input data for a set of phylogenetic

analyses. The resulting trees are used to compute a consensus tree to identify areas

of disagreement among the trees. This is a measure of stability in regards to the

deletion of taxa.

Each of these measures defines the support of a bipartition based on its stability

under different methods of perturbation of the input sequence data. These methods

are very complementary to p-support which is the only support measure of corrob-

oration across optima in the data set. In fact, there is no strict guarantee that the

trees generated from a bootstrap or jackknife analysis fall into a single optimum

themselves. Thus, measuring the p-support of the trees resulting from a bootstrap

or jackknife analysis may provide further information.

8.5.4 Computing and visualizing p-support.

Once the optima in a set of trees have been identified, we can compute the p-

support value for each clade in our data set based on those optima. The p-support

value of a clade is the percentage of optima which contain majority support for

the clade. In order to visualize the p-support values for each unique clade in the

data set, we developed the p-map. Our visualization technique compares the range

of p-support values on the y-axis to the percentage of total support on the x-axis.

To increase readability, jitter is applied along the y-axis only, allowing overlapping

points to form into lanes. The position on the x-axis is absolute meaning that any

point on the right side of the line marking 50% support is a clade that would appear

in the majority consensus trees. The shading of each point in a p-map represents the

124

standard deviation in support for each clade between clusters. Points shaded in blue

are equally supported across clusters and points shaded in red are highly supported

in some clusters and barely supported in others.

8.5.5 Experimental results

Figure 8.5: A p-map, p-support values plotted against the percent of trees containing
the bipartition for the 150 taxa data set with a p value of 2. Points greater than
50% on the x-axis would appear in a majority consensus tree. The points are shaded
to reflect the standard deviation in the support values from the different optima.
Dark blue points mean the bipartition was equally supported among the optima
whereas red points mean there was a large difference in the amount of support for a
bipartition among the optima.

125

Using the the optima estimations in Section 8.4 for Data set #1 and Data set #2

we compute the p-support for the clades in each tree set.

Summarizing the of 20,000 trees of Data set #1 as a consensus tree without

acknowledging the presence of the two local optima ignores the distinct competing

hypotheses that exist in this data set. We represent the influence of these hypotheses

by annotating the resulting consensus tree with the p-support values of each branch in

the consensus. For example, in a majority consensus tree, our annotation illuminates

majority bipartitions that are supported by a subset of the local optima. Figure 8.5

shows that there are three bipartitions that would appear in the majority consensus

tree but are only supported by one of the two local optima. These bipartitions have

a high standard deviation of p-support meaning that they are supported by one

optimum much more than the other. Since there is disagreement among the optima,

these bipartitions more likely to be overturned by further runs of the search heuristic

than those agreed on by all of the optima.

Figure 8.6 shows the p-support values plotted against the percentage of trees

containing each bipartition for the clades in Data set #2. Notice that there are a

number of bipartitions which would appear in the majority consensus of the set but

are supported by only a subset of the optima found in the search. For instance, there

are seven bipartitions which appear in the majority consensus tree, but they are only

supported by 50% of the optima. There is even a bipartition which is only supported

by 2 of the 6 optima yet it has over 50% majority support and therefore appears on

the majority consensus tree. Due to size disparity between optima, there are some

bipartitions supported by only half the optima but are still able to achieve over 70%

majority support. These bipartitions are also interesting due to the high standard

deviation in p-support. Some optima heavily support those bipartitions while other

optima barely support them if at all. The bipartitions with low p-support are the

126

Figure 8.6: p-support values plotted against the percent of trees containing the
bipartition for the 567 taxa data set with a p value of 6. Points greater than 50%
on the x-axis would appear in a majority consensus tree. The points are shaded to
reflect the standard deviation in the support values from the different optima. Dark
blue points mean the bipartition was equally supported among the optima whereas
red points mean there was a large difference in the amount of support for a bipartition
among the optima.

ones most likely to be effected by further analysis or new data. Bipartitions that

are common to all 6 local optima are likely to appear in future runs of the heuristic

search algorithm while bipartitions supported by a subset of optima are less likely to

be present in a future run. To this end it may be appropriate to collapse bipartitions

with low p-support.

127

8.5.6 Conclusions

Overall, our work presents systematists with a new measure called p-support

for quantifying the robustness of inferred relationships in an evolutionary tree. We

hope that p-support can provide researchers and the community at large with more

information about the results of phylogenetic analyses—especially in regards to which

regions of the tree may benefit most from further investigation

The p-support analysis also serves as an example of the types of analysis that

can be conducted with in TreeHouse and the power of having multiple algorithms

availble with in a single framework. Peak support relies on clustering to determine

optima, and consensus methods to identify which relationships are supported by the

optima. Clustering relies on distance measures for the actual grouping of trees as

well as the measurement of clustering quality. Having all of these functions with in

the same framework makes the analysis much easier for the user.

128

9. REPRODUCIBILTY

9.1 Validation of TreeHouse

A major component of the scientific method is the validation of the research

by the community. Validation requires that the community is given access to the

data and tools necessary for to repeat the experiments. Funding organizations and

scientific journals have put policies into place that require researchers to make their

data and methods available to other researchers. Within the field of phylogenetics,

it is often required that the sequence data used to infer the phylogeny is published in

GenBank [3] and the inferred phylogeny is published on TreeBASE. However, much

of the information required to repeat the experiment and turn the sequences into a

tree are lost.

The computational nature of the methods can cause other issues for reproducible

science. Analyses are often conducted with software that is neither multi-platform

nor open source. When software is available, there is still a question is to whether

it will run the same on two different machines. Operating systems, hardware, soft-

ware dependencies, and runtime environment differences can lead to different results.

Furthermore, the version of the software can make a big difference in the results of

an analysis. Once software is installed and working as expected, there becomes a

question as to what settings were used to conduct the analysis. Much of the software

used in computational biology allows the user to tweak a variety of settings to adjust

the analysis to better fit the user’s data or the type of analysis being done. All of the

settings are a required component of checking and reproducing an analysis. However,

much of this information is not readily available to the scientific community.

As a developer of piece of software which hosts algorithms for computational anal-

129

ysis, I’m aware of the reproducibility issue on two levels. The first is the validation

of TreeHouse and its algorithms. TreeHouse is being made available to the commu-

nity as an open source project. This allows others to validate that the algorithms

contained in the system work as described.

TreeHouse uses features from open source libraries such as Boost, ncurses, and

readline. The availability of these open source libraries is a boon to those that write

software. They go a long way in preventing the need to reinvent the wheel for many

common functions. However, for every library that the programmer uses to get their

software running, there is one more library that the end user has to install. TreeHouse

also uses some features in the C++11 standard. These features are implemented

in some version of some compilers and not in others. These dependencies form the

environment in which TreeHouse was developed and tested and can often be a barrier

to installing a piece of research software.

In order to lower the barrier of entry to TreeHouse, it is being made available

as part of a virtual machine image that captures the development environment for

the project. This allows users to download the machine image and load a runtime

environment which contains an installed version of TreeHouse, the source code, all

of its dependencies, examples, and documentation. This method allows users to

test drive the software before deciding if it is worth while to install it on their own

systems. It also provides a template for a known working installation environment.

As compilers and libraries continue to develop, features may change which could

break or improve functionality within TreeHouse. The virtual image provides a snap

shot of how it worked when it was published.

130

9.2 Reproducing analyses with TreeHouse

In the development of TreeHouse, I was also aware that the intended users are

scientists running experiments. So, while I wanted to make sure that the work I

had done with the algorithms in TreeHouse was reproducible, I also wanted to make

sure that any work done using TreeHouse for analysis would also be reproducible.

TreeHouse offers two modes of interaction, the first is an interactive command line

and the second is the execution of batch scripts. TreeHouse provides a logging feature

which documents the user input in the interactive mode as a batch script so that

complicated series of commands can be easily repeated.

For instance, we can use TreeHouse to address whether two runs of a phylogenetic

inference algorithm converged to the same place in tree space. One way that we

might conduct this experiment is to cluster the trees then compare the way that

the clustering algorithm grouped the trees with a grouping based on the runs that

generated the trees using the rand index. The results of this experiment might appear

in a paper but due to perceived importance and space limits certain details may be

omitted. However, with TreeHouse the whole experiment can be distributed so that

others can follow the exact steps. The example analysis might take the form of the

five commands shown in Listing 9.1

Listing 9.1: Rand index comparison

run1 = {0 . . 9999}

run2 = {10000 . .19999}

runs = [run1 , run2]

c l u s t e r i n g = kmeans ({0 . . 1 9 9 9 9} , 2 ,RF)

rand index (runs , c l u s t e r i n g)

With the included batch script and the TreeZip file, any one can run the analysis

131

themselves. More importantly, it takes away any ambiguity about how the analysis

was conducted. All of the variables are defined for the users and it is clear that the

clustering algorithm used was k-means with a k value of 2, and the Robinson-Foulds

distance was used as the distance measure for the clustering algorithm. This not

only resolves any confusion about how the analysis was conducted but provides a

platform for further analysis. Given the features of TreeHouse, it would be easy

to see if the results of a agglomerative clustering algorithm matched those of the

k-means clustering algorithm or take the analysis a step further and determine if

there are any distinguishing bipartitions between the runs.

TreeZip [55] has relieved many memory concerns with storing large sets of trees.

Space constraints are should not prevent researchers from storing or making public

the sets of trees used in their analyses. I hope that the logging features and virtual

machine distribution of TreeHouse will allow and encourage researchers to make more

of their data available to the community.

132

10. CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

The goal of this research has been to provide algorithms which allow biologists to

better understand their data sets. What began as a search engine for phylogenetic

trees has become a platform for information discovery and exploration. In TreeHouse,

a user can find more than just the trees that match a query but a range of information

their trees. Whether it’s questions about how far two taxa are from one another in

a single tree or if there are patterns or anomalies in whole sets, TreeHouse has

algorithms to help explore those questions.

We have shown that the search algorithms in TreeHouse are fast and effective for

both taxa homogeneous and taxa heterogeneous sets of trees. We have also shown

the search power of relationships defined by a smaller number of taxa. These edge

based searches provide a united way to consider quartets, K-tets, and bipartitions

in either taxa homogeneous or heterogeneous trees. Furthermore, the development

of a model of querying led to the development of the idea of K-tets as the a way

to unify edge based relationships. Our work with K-tets, as a fundamental unit of

search, impacted the way we think of distance measures and freed us from the idea

that building blocks of trees where either bipartitions or quartets.

The analysis algorithms in the TreeHouse have also lead to novel developments.

The work with decision trees demonstrated that sets of trees thought to have con-

verged to a single place in tree space may not have reached convergence. This led

to the development of the idea of distinguishing bipartitions and the suggestion that

the previous methods for detecting convergence, which do not consider tree topology,

were insufficient. This work lead to applying clustering algorithms to sets of trees

133

to estimate local optima in the tree sets that were previously undetected. We have

shown that optima are detectable and presented p-support as a measure to quantify

the impact of those optima on the resulting tree.

TreeHouse has also lead to the development of other novel analysis tools. Com-

puting consensus trees from the bipartition table led us to implement methods for

detecting which trees in a set could or couldn’t appear in the same tree. This com-

putation formed the basis for building a new type of consensus tree which is build

from the least conflicting bipartitions. The adaptation of the data structures and

algorithms to handle heterogeneous taxa sets to facilitate searching inspired the idea

of taxa masking as a way to apply familiar analyses to data sets which they would

not otherwise be applicable.

10.2 Future work

TreeHouse has evolved from a phylogenetic search engine into a platform for

exploring trees. It seems that every new analysis algorithm poses as many new

questions as they solve. While we know enough about phylogenetic trees to produce

and publish them, it seems at times like we have barely scratched the surface of

potential understanding. To this end, there is an ever growing list of problems and

questions that TreeHouse may provide solutions for in the future. A few future

directions for project have been selected to give the reader a better idea of the

TreeHouse’s potential as a platform for phylogenetic analysis.

TreeHouse currently uses clustering and decision trees to find patterns in a set of

trees. These tools have been used to address the issue of convergence and detect if

there are multiple optima in a data set. With some work these methods may also be

valuable for determining the burn in of a phylogenetic inference. Burn in is a term

used to refer to the samples from a Bayesian analysis which occur before the analysis

134

reaches stability. These trees are discarded as they are not part of the estimated

distribution. Since determining convergence is a difficult problem, determining the

cut off between the burn in and the posterior distribution can also be difficult. The

same sorts of analysis tools which we have used to detect an patterns in amongst

trees may also be useful for determining what can be safely discarded as burn in.

TreeHouse introduces the ability to query a set of trees based on relationships.

This work on search algorithms has taken an approach which presents bipartitions

and quartets as the two end points on the scale of all possible edge based relationships.

Bipartitions and quartets have been explored and are fairly well understood, but

the relationships which reside between bipartitions and quartets, the K-tets, are

not well understood. TreeHouse can already compute matches between K-tets and

trees as part of the search algorithms and it is only steps away from allowing K-

tets to be used in other contexts. K-tets could be used as the basis of distance

measure or as the building blocks in consensus algorithms. They are more robust to

conflicting taxa than bipartitions but may be faster to use, at least in some cases,

than quartets. These unexplored relationships could be powerful tools in future

analysis and TreeHouse is an good position to begin that exploration.

The development of TreeHouse has been guided by the idea that better under-

standing of the data that goes into a published tree will lead to better published

trees. TreeHouse has focused mainly on the topological aspects of trees, but future

development may expand with analysis algorithms that utilize the score of a tree

based on a specified model of evolution. Bringing in this aspect would could open

new questions and lead to the development of new algorithms. It would also re-

quire TreeHouse to handle different data types. The ability to score trees based on a

model requires that TreeHouse be aware of the model of evolutions and the sequence

alignment. This would mark a major shift in development for the project but could

135

provide new an important avenues of research.

136

REFERENCES

[1] Anne Margrethe Audelin, Jan Gerstoft, Niels Obel, Lars Mathiesen, Alex

Laursen, Court Pedersen, Henrik Nielsen, Janne Jensen, Lars Nielsen, Claus

Nielsen, et al. Molecular phylogenetics of transmitted drug resistance in newly

diagnosed hiv type 1 individuals in denmark, a nation-wide study. AIDS Re-

search and Human Retroviruses, 27(12):1283–1290, 2011.

[2] Adrian C. Barbrook, Christopher J. Howe, Norman Blake, and Peter Robinson.

The phylogeny of the Canterbury Tales. Nature, 394:839, 1998.

[3] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell,

Barbara A. Rapp, and David L Wheeler. Genbank. Nucleic Acids Research,

28(1):15–18, 2000.

[4] Olaf Bininda-Emonds. Ratchet implementation in PAUP*4.0b10, 2003. avail-

able from http://www.tierzucht.tum.de:8080/WWW/Homepages/Bininda-

Emonds.

[5] Olaf R. P. Bininda-Emonds, Denise M. Decker-Flum, and John L. Gittleman.

The utility of chemical signals as phylogenetic characters: an example from

the felidae. Biological Journal of the Linnean Society, 72(1):1–15, 2001.

[6] Olaf R. P. Bininda-Emonds, John L. Gittleman, and Andy Purvis. Building

large trees by combining phylogenetic information: a complete phylogeny of

the extant carnivora (mammalia). Biological Reviews, 74(2):143–175, 1999.

[7] Christopher J. Birch, Rhonda F. McCaw, Dieter M. Bulach, Peter A. Revill,

J. Tom Carter, Jane Tomnay, Beth Hatch, Tracey V. Middleton, Doris Chibo,

Michael G. Catton, Jacinta L. Pankhurst, Alan M. Breschkin, Stephen A.

137

Locarnini, and Scott Bowden. Molecular analysis of human immunodeficiency

virus strains associated with a case of criminal transmission of the virus. The

Journal of Infectious Diseases, 182(3):941–944, 2000.

[8] Nicolas Bortolussi, Eric Durand, Michael Blum, and Olivier François. ap-

treeshape: statistical analysis of phylogenetic tree shape. Bioinformatics,

22(3):363–364, 2006.

[9] K. Bremer. Branch support and tree stability. Cladistics, 10(3):295–304, 1994.

[10] David Bryant, John Tsang, Paul Kearney, and Ming Li. Computing the quartet

distance between evolutionary trees. In Proceedings of the eleventh annual

ACM-SIAM symposium on Discrete algorithms, pages 285–286. Society for

Industrial and Applied Mathematics, 2000.

[11] Jon K. Chambers, Lynn E. Macdonald, Henry M. Sarau, Robert S. Ames,

Katie Freeman, James J. Foley, Yuan Zhu, Megan M. McLaughlin, Paul Mur-

dock, Lynette McMillan, John Trill, Ann Swift, Nambi Aiyar, Paul Taylor,

Lisa Vawter, Sajda Naheed, Philip Szekeres, Guillaume Hervieu, Claire Scott,

Jeanette M. Watson, Andrew J. Murphy, Emir Duzic, Christine Klein, Derk J.

Bergsma, Shelagh Wilson, and George P. Livi. AG protein-coupled receptor

for UDP-glucose. Journal of Biological Chemistry, 275(15):10767–10771, 2000.

[12] Duhong Chen, Gordon J. Burleigh, Mukul S. Bansal, and David Fernandez-

Baca. PhyloFinder: an intelligent search engine for phylogenetic tree databases.

BMC Evolutionary Biology, 8:90+, 2008.

[13] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J.

Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek

Wilczynski, et al. Biopython: freely available python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25(11):1422–1423, 2009.

138

[14] D. H. Colless. Review of phylogenetics: the theory and practice of phylogenetic

systematics. Systematic Zoology, 31(1):100–104, 1982.

[15] Ralph W. Crosby and Tiffani L. Williams. A fast algorithm for computing the

quartet distance for large sets of evolutionary trees. In Bioinformatics Research

and Applications, pages 60–71. Springer Berlin, Heidelberg, 2012.

[16] Brian W. Davis, Gang Li, and William J. Murphy. Supermatrix and species

tree methods resolve phylogenetic relationships within the big cats, panthera

(carnivora: Felidae). Molecular Phylogenetics and Evolution, 56(1):64 – 76,

2010.

[17] Akshay Deepak. SearchTree: Mining robust phylogenetic trees. PhD thesis,

Iowa State University, Ames, 2010.

[18] Armand Denis. Cats of the world. World wildlife series. no. 1. Houghton Mifflin,

Boston, 1964.

[19] George F. Estabrook, F. R. McMorris, and Christopher A. Meacham. Com-

parison of undirected phylogenetic trees based on subtrees of four evolutionary

units. Systematic Biology, 34(2):193–200, 1985.

[20] Wikimedia User Falense. Lioness at okonjima lodge, namibia. Availi-

ble from http://en.wikipedia.org/wiki/File:Okonjima Lioness.jpg, September

2006. This Digital image is availible from Wikimedia Commons and is licensed

under the Creative Commons Attribution-Share Alike 3.0 Unported license.

[21] Joseph Felsenstein. Confidence limits on phylogenies: An approach using the

bootstrap. Evolution, 39(4):pp. 783–791, 1985.

[22] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Hoboken, New

Jersey, 2003.

139

[23] Joseph Felsenstein. The Newick tree format. Internet Website,

url: http://evolution.genetics.washington.edu/phylip/newicktree.html, last ac-

cessed, March 2014.

[24] Pablo A. Goloboff, James S. Farris, and Kevin C. Nixon. TNT, a free program

for phylogenetic analysis. Cladistics, 24(5):774–786, 2008.

[25] Naohisa Goto, Pjotr Prins, Mitsuteru Nakao, Raoul Bonnal, Jan Aerts, and

Toshiaki Katayama. Bioruby: bioinformatics software for the ruby program-

ming language. Bioinformatics, 26(20):2617–2619, 2010.

[26] T. Grant and A. G. Kluge. Clade support measures and their adequacy. Cladis-

tics, 24(6):1051–1064, 2008.

[27] E. Haeckel. Generelle Morphologie der Organismen: Allgemeine grundzge der

organischen formen-wissenschaft, mechanisch begrndet durch die von Charles

Darwin reformirte Descendenz-Theorie. Verlag von Georg Reimer, Berlin.,

1866.

[28] M. H. Hast. The larynx of roaring and non-roaring cats. Journal of Anatomy,

163:117, 1989.

[29] H. Hemmer. The evolutionary systematics of living felidae: present status and

current problems. Carnivore, 1:7179, 1978.

[30] S. J. Herrington. Phylogenetic relationships of the wild cats of the world. PhD

thesis, University of Kansas, Lawrence, 1986.

[31] David M. Hillis, Tracy A. Heath, and Katherine St. John. Analysis and visu-

alization of tree space. Systematic Biology, 54(3):471–482, 2005.

[32] Eddie C. Holmes, Sean Nee, Andrew Rambaut, Geoff P. Garnett, and Paul H.

Harvey. Revealing the history of infectious disease epidemics through phylo-

140

genetic trees. Philosophical Transactions: Biological Sciences, 349(1327):pp.

33–40, 1995.

[33] S. Hossain, M. Islam, Jesmin, and H. M. Jamil. Phyql: A web-based phyloge-

netic visual query engine. In IEEE International Conference on Bioinformatics

and Biomedicine, 2008., pages 295–298, 2008.

[34] John P. Huelsenbeck, B. Larget, R. E. Miller, and F. Ronquist. Potential

applications and pitfalls of bayesian inference of phylogeny. Systematic Biology,

51:673, 2002.

[35] John P. Huelsenbeck and Frederick Ronquist. MRBAYES: Bayesian inference

of phylogenetic trees. Bioinformatics, 17(8):754–755, 2001.

[36] Nick J.B. Isaac, Samuel T. Turvey, Ben Collen, Carly Waterman, and

Jonathan E.M. Baillie. Mammals on the edge: Conservation priorities based

on threat and phylogeny. PLoS ONE, 2(3):e296, 03 2007.

[37] Kim Jae-Heup, E. Eizirik, S. J. O’Brien, and W. E. Johnson. Structure and

patterns of sequence variation in the mitochondrial dna control region of the

great cats. Mitochondrion, 1(3):279–292, 2001.

[38] D. N. Janczewski, W. S. Modi, J. C. Stephens, and S. J. O’Brien. Molec-

ular evolution of mitochondrial 12s rna and cytochrome b sequences in the

pantherine lineage of felidae. Molecular Biology and Evolution, 12(4):690–707,

1995.

[39] Wikimedia User JanErkamp. African leopard in serengeti, tanzania. Availi-

ble from http://en.wikipedia.org/wiki/File:Leopard africa.jpg, February 2007.

This Digital image is availible from Wikimedia Commons and is licensed under

the Creative Commons Attribution-Share Alike 3.0 Unported license.

141

[40] Warren Johnson and Stephen O’Brien. Phylogenetic reconstruction of the

felidae using 16s rrna and nadh-5 mitochondrial genes. Journal of Molecular

Evolution, 44:S98–S116, 1997. 10.1007/PL00000060.

[41] Warren E. Johnson, Peter A. Dratch, Janice S. Martenson, and Stephen J.

O’Brien. Resolution of recent radiations within three evolutionary lineages of

felidae using mitochondrial restriction fragment length polymorphism varia-

tion. Journal of Mammalian Evolution, 3:97–120, 1996. 10.1007/BF01454358.

[42] Warren E. Johnson, Eduardo Eizirik, Jill Pecon-Slattery, William J. Murphy,

Agostinho Antunes, Emma Teeling, and Stephen J. O’Brien. The late miocene

radiation of modern felidae: A genetic assessment. Science, 311(5757):73–77,

2006.

[43] George Karypis. Cluto: A clustering toolkit. Technical Report TR-02-017,

University of Minnesota, Department of Computer Science, November 2003.

[44] Steven W. Kembel, Peter D. Cowan, Matthew R. Helmus, William K. Corn-

well, Helene Morlon, David D. Ackerly, Simon P. Blomberg, and Campbell O.

Webb. Picante: R tools for integrating phylogenies and ecology. Bioinformat-

ics, 26(11):1463–1464, 2010.

[45] Bernard Landgraf. A snow leopard (uncia uncia). Availible from

http://en.wikipedia.org/wiki/File:Uncia uncia.jpg, January 2005. This Dig-

ital image is availible from Wikimedia Commons and is licensed under the

Creative Commons Attribution-Share Alike 3.0 Unported license.

[46] Franois-Joseph Lapointe, John A. W. Kirsch, and Robert Bleiweiss. Jackknif-

ing of weighted trees: Validation of phylogenies reconstructed from distance

matrices. Molecular Phylogenetics and Evolution, 3(3):256–267, 1994.

142

[47] Susanna K. P. Lau, Patrick C. Y. Woo, Kenneth S. M. Li, Yi Huang, Hoi-Wah

Tsoi, Beatrice H. L. Wong, Samson S. Y. Wong, Suet-Yi Leung, Kwok-Hung

Chan, and Kwok-Yung Yuen. Severe acute respiratory syndrome coronavirus-

like virus in chinese horseshoe bats. Proceedings of the National Academy of

Sciences of the United States of America, 102(39):14040–14045, 2005.

[48] Louise A. Lewis and Paul O. Lewis. Unearthing the molecular phylodiversity

of desert soil green algae (chlorophyta). Systematic Biology, 54(6):936–947,

2005.

[49] Wendong Li, Zhengli Shi, Meng Yu, Wuze Ren, Craig Smith, Jonathan H. Ep-

stein, Hanzhong Wang, Gary Crameri, Zhihong Hu, Huajun Zhang, Jianhong

Zhang, Jennifer McEachern, Hume Field, Peter Daszak, Bryan T. Eaton, Shuyi

Zhang, and Lin-Fa Wang. Bats are natural reservoirs of sars-like coronaviruses.

Science, 310(5748):676–679, 2005.

[50] Bing Liu, Yiyuan Xia, and Philip S. Yu. Clustering through decision tree con-

struction. In Proceedings of the ninth international conference on Information

and knowledge management, pages 20–29, New York, 2000. ACM.

[51] D. R. Maddison. The discovery and importance of multiple islands of most

parsimonous trees. Systematic Biology, 42(2):200–210, 1991.

[52] Thomas Mailund and Christian N. S. Pedersen. QDist–quartet distance be-

tween evolutionary trees. Bioinformatics, 20(10):1636–1637, 2004.

[53] Sylvie Marcacci and Jean-Paul Schwitzgubel. Using plant phylogeny to predict

detoxification of triazine herbicides. In Phytoremediation, volume 23 of Methods

in Biotechnology, pages 233–249. Humana Press, New York, 2007.

143

[54] Michelle Y. Mattern and Deborah A. McLennan. Phylogeny and speciation of

felids. Cladistics, 16(2):232–253, 2000.

[55] Suzanne J. Matthews, Seung-Jin Sul, and Tiffani L. Williams. Treezip: A

new algorithm for compressing large collections of evolutionary trees. In Data

Compression Conference (DCC), 2010, pages 544–544. IEEE, 2010.

[56] Suzanne J. Matthews and Tiffani L. Williams. Mrsrf: an efficient mapreduce

algorithm for analyzing large collections of evolutionary trees. BMC Bioinfor-

matics, 11(Suppl 1):S15, 2010.

[57] Suzanne Jude Matthews. Efficient algorithms for comparing, storing, and shar-

ing large collections of evolutionary trees. PhD thesis, Texas A&M University,

College Station, 2012.

[58] Michael L. Metzker, David P. Mindell, Xiao-Mei Liu, Roger G. Ptak,

Richard A. Gibbs, and David M. Hillis. Molecular evidence of hiv-1 trans-

mission in a criminal case. Proceedings of the National Academy of Sciences,

99(22):14292–14297, 2002.

[59] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[60] Sumeet Moghe. A young adult from the terai in india. Availible from

http://en.wikipedia.org/wiki/File:Tigress at Jim Corbett National Park .jpg,

August 2013. This Digital image is availible from Wikimedia Commons and is

licensed under the Creative Commons Attribution-Share Alike 3.0 Unported

license.

[61] Virginia Morell. TreeBASE: The Roots of Phylogeny. Science, 273(5275):569–

0, 1996.

144

[62] Craig Moritz. Uses of molecular phylogenies for conservation. Philosophical

Transactions: Biological Sciences, 349(1327):pp. 113–118, 1995.

[63] Luay Nakhleh, Daniel Miranker, Francois Barbancon, William H. Piel, and

Michael Donoghue. Requirements of Phylogenetic Databases. IEEE Interna-

tional Symposium on Bioinformatic and Bioengineering, 0:141+, 2003.

[64] K. C. Nixon. The parsimony ratchet, a new method for rapid parsimony anal-

ysis. Cladistics, 15:407–414, 1999.

[65] Kristin Nowell. Revision of the felidae red list of threatened species. Cat News,

37:4–6, 2002.

[66] Kristin Nowell and Peter Jackson. Wild cats: status survey and conservation

action plan. IUCN, 1996.

[67] Johan A. A. Nylander, Fredrik Ronquist, John P. Huelsenbeck, and Joseluis

Nieves-Aldrey. Bayesian Phylogenetic Analysis of Combined Data. Systematic

Biology, 53(1):47–67, 2004.

[68] Johan A. A. Nylander, James C. Wilgenbusch, Dan L. Warren, and David L.

Swofford. AWTY (are we there yet?): a system for graphical exploration of

mcmc convergence in bayesian phylogenetics. Bioinformatics, 24(4):581–583,

2008.

[69] Chin-Yih Ou, Carol A. Ciesielski, Gerald Myers, Claudiu I. Bandea, Chi-Cheng

Luo, Bette T. M. Korber, James I. Mullins, Gerald Schochetman, Ruth L.

Berkelman, A. Nikki Economou, John J. Witte, Lawrence J. Furman, Glen A.

Satten, Kersti A. Maclnnes, James W. Curran, Harold W. Jaffe, Laboratory

Investigation Group, and Epidemiologic Investigation Group. Molecular Epi-

145

demiology of HIV Transmission in a Dental Practice. Science, 256(5060):1165–

1171, 1992.

[70] Roderic Page. TBMap: a taxonomic perspective on the phylogenetic database

TreeBASE. BMC Bioinformatics, 8(1):158+, 2007.

[71] Roderic Page. Towards a Taxonomically Intelligent Phylogenetic Database.

Nature Precedings, (713), 2007.

[72] Terence Parr. The definitive ANTLR reference: Building domain-specific lan-

guages. Pragmatic Bookshelf, Dallas, Texas, 2007.

[73] J. Pecon-Slattery, A. J. Pearks Wilkerson, W. J. Murphy, and S. J. O’Brien.

Phylogenetic assessment of introns and sines within the y chromosome us-

ing the cat family felidae as a species tree. Molecular Biology and Evolution,

21(12):2299–2309, 2004.

[74] Jaakko Peltonen, Jarkko Venna, and Samuel Kaski. Visualizations for assessing

convergence and mixing of markov chain monte carlo simulations. Computa-

tional Statistics & Data Analysis, 53(12):4453–4470, 2009.

[75] Maurice H. Quenouille. Notes on bias in estimation. Biometrika, 43(3/4):353–

360, 1956.

[76] A. Rambaut and A. J. Drummond. Tracer v1.4. Internet Website, url:

http://beast.bio.ed.ac.uk/Tracer, last accessed, March 2014.

[77] Vincent Ranwez, Nicolas Clairon, Frederic Delsuc, Saeed Pourali, Nicolas

Auberval, Sorel Diser, and Vincent Berry. PhyloExplorer: a web server to

validate, explore and query phylogenetic trees. BMC Evolutionary Biology,

9(1):108+, 2009.

146

[78] D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathe-

matical Biosciences, 53:131–147, 1981.

[79] Nina Rønsted, Vincent Savolainen, Per Mølgaard, and Anna K. Jäger. Phyloge-

netic selection of narcissus species for drug discovery. Biochemical Systematics

and Ecology, 36(56):417–422, 2008.

[80] L. O. Salles. Felid phylogenetics: extant taxa and skull morphology (Felidae,

Aeluroidea). American Museum novitates. American Museum of Natural His-

tory, New York, 1992.

[81] Diane I. Scaduto, Jeremy M. Brown, Wade C. Haaland, Derrick J. Zwickl,

David M. Hillis, and Michael L. Metzker. Source identification in two criminal

cases using phylogenetic analysis of hiv-1 dna sequences. Proceedings of the

National Academy of Sciences, 107(50):21242–21247, 2010.

[82] Dennis Shasha, Jason Tsong-Li Wang, Huiyuan Shan, and Kaizhong Zhang.

Atreegrep: Approximate searching in unordered trees. In Proceedings of the

14th International Conference on Scientific and Statistical Database Manage-

ment, pages 89–98. IEEE, 2002.

[83] Mark E. Siddall. Another monophyly index: revisiting the jackknife. Cladistics,

11(1):33–56, 1995.

[84] D. E. Soltis, P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis,

V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen,

L. M. Prince, W. J. Kress, K. C. Nixon, and J. S. Farris. Angiosperm phylogeny

inferred from 18s rDNA, rbcL, and atpB sequences. Botanical Journal of the

Linnean Society, 133:381–461, 2000.

147

[85] Douglas E. Soltis, Matthew A. Gitzendanner, and Pamela S. Soltis. A 567-

taxon data set for angiosperms: the challenges posed by bayesian analyses of

large data sets. International Journal of Plant Sciences, 168(2):137–157, 2007.

[86] Matthew Spencer, Elizabeth A. Davidson, Adrian C. Barbrook, and Christo-

pher J. Howe. Phylogenetics of artificial manuscripts. Journal of Theoretical

Biology, 227(4):503–511, 2004.

[87] Jason E. Stajich, David Block, Kris Boulez, Steven E. Brenner, Stephen A.

Chervitz, Chris Dagdigian, Georg Fuellen, James G. R. Gilbert, Ian Korf,

Hilmar Lapp, et al. The bioperl toolkit: Perl modules for the life sciences.

Genome Research, 12(10):1611–1618, 2002.

[88] Cara Stockham, Li-San Wang, and Tandy Warnow. Statistically based post-

processing of phylogenetic analysis by clustering. volume 18, pages S285–S293.

Oxford Univ Press, 2002.

[89] Michael Stolz. New philology and new phylogeny: Aspects of a critical

electronic edition of wolfram’s parzival. Literary and Linguistic Computing,

18(2):139–150, 2003.

[90] Seung-Jin Sul, Grant Brammer, and Tiffani L. Williams. Efficiently computing

arbitrarily-sized robinson-foulds distance matrices. In Algorithms in Bioinfor-

matics, pages 123–134. Springer, 2008.

[91] Seung-Jin Sul, Suzanne Matthews, and Tiffani L. Williams. Using tree diversity

to compare phylogenetic heuristics. BMC Bioinformatics, 10 (Suppl 4)(S3),

2009.

[92] Seung-Jin Sul and Tiffani L. Williams. A randomized algorithm for comparing

sets of phylogenetic trees. In Proceedings of the Fifth Asia Pacific Bioinfor-

148

matics Conference, pages 121–130, 2007.

[93] Seung-Jin Sul and Tiffani L. Williams. An experimental analysis of consen-

sus tree algorithms for large-scale tree collections. In Proceedings of the 5th

International Symposium on Bioinformatics Research and Applications, pages

100–111, Berlin, Heidelberg, 2009. Springer-Verlag.

[94] D. L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other

methods), 2002. Sinauer Associates, Underland, Massachusetts, Version 4.0.

[95] Philip G. Szekeres, Alison I. Muir, Lisa D. Spinage, Jane E. Miller, Sharon I.

Butler, Angela Smith, Gillian I. Rennie, Paul R. Murdock, Laura R. Fitzgerald,

Hsiao ling Wu, Lynette J. McMillan, Sephanie Guerrera, Lisa Vawter, Nabil A.

Elshourbagy, Mooney Jeffery L., Bergsma Derk J., Shelagh Wilson, and Cham-

bers Jon K. Neuromedin U is a potent agonist at the orphan G protein-coupled

receptor FM3. Journal of Biological Chemistry, 275(27):20247–20250, 2000.

[96] R Development Core Team et al. R: A language and environment for statistical

computing. Technical report, ISBN 3-900051-07-0. R Foundation for Statistical

Computing. Vienna, Austria, 2013. url: http://www.R-project.org, 2005.

[97] Bjørn C. Tørrissen. Junior jagua belize zoo. Availible from

http://en.wikipedia.org/wiki/File:Junior-Jaguar-Belize-Zoo.jpg, Decem-

ber 2010. This Digital image is availible from Wikimedia Commons and is

licensed under the Creative Commons Attribution-Share Alike 3.0 Unported

license.

[98] Nancy Vandermey. Neofelis nebulosa. Availible from

http://en.wikipedia.org/wiki/File:Neofelis nebulosa.jpg, June 2005. This

Digital image is availible from Wikimedia Commons and is licensed under the

Creative Commons Attribution-Share Alike 3.0 Unported license.

149

[99] Jarkko Venna and Samuel Kaski. Local multidimensional scaling. Neural Net-

works, 19(6):889–899, 2006.

[100] Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel

Kaski. Information retrieval perspective to nonlinear dimensionality reduction

for data visualization. The Journal of Machine Learning Research, 11:451–490,

2010.

[101] Todd J. Vision. Open data and the social contract of scientific publishing.

BioScience, 60(5):pp. 330–331, 2010.

[102] Jason TL Wang, Huiyuan Shan, Dennis Shasha, and William H Piel. Fast

structural search in phylogenetic databases. Evolutionary Bioinformatics, 1:37–

46, 2005.

[103] Jason Tsong-Li Wang, Huiyuan Shan, Dennis Shasha, and William H. Piel.

Treerank: a similarity measure for nearest neighbor searching in phyloge-

netic databases. In 15th International Conference on Scientific and Statistical

Database Management, pages 171–180. IEEE, 2003.

[104] Lei Wei, Xiaobing Wu, and Zhigang Jiang. The complete mitochondrial genome

structure of snow leopard panthera unci. Molecular Biology Reports, 36:871–

878, 2009. 10.1007/s11033-008-9257-9.

[105] Edward Orlando Wiley and Bruce S Lieberman. Phylogenetics: Theory and

practice of phylogenetic systematics. John Wiley & Sons, Hoboken, New Jersey,

2011.

[106] Lixin Yu, Hongwei Song, Shaozhe Lu, Zhongxin Liu, Linmei Yang, and Xiang-

gui Kong. Luminescent properties of lapo4: Eu nanoparticles and nanowires.

ChemInform, 36(1):no–no, 2005.

150

APPENDIX A

DATA SETS

• Data set #1: 20,000 trees obtained from a Bayesian analysis of an alignment

of 150 taxa (23 desert taxa and 127 others from freshwater, marine, ands oil

habitats) with 1,651 aligned sites [48]. Two independent runs consisting of

25 million generations (trees were sampled every 1,000 generations) were per-

formed using the GTR+I+Γ model in MrBayes with four independent chains.

The authors constructed a majority consensus tree in their study using the

20,000 trees from the last 10 million generations from each of the two runs.

The resolution rates of the majority and strict consensus trees are 85.7% and

34.0%, respectively. The total number of clades across the 20,000 trees is

2,940,000, where 1,168 of them are unique.

Data set #1: 150 taxa Bayesian trees
run r0 r1

- 10,000 10,000

Table A.1: The number of 150 taxa Bayesian trees in each run. There are 2 total
runs and 20,000 total trees.

• Data set #2: 33,306 trees obtained from an analysis of a three-gene, 567 taxa

(560 angiosperms, seven outgroups) data set with 4,621 aligned characters,

which is one of the largest Bayesian analysis done to date [85]. Twelve runs,

with four chains each, using the GTR+I+Γ model in MrBayes ran for at least 10

million generations. Trees were sampled every 1,000 generations. The authors

151

discuss the difficulties with combining trees from multiple runs. To obtain

our collection of 33,306 trees, we discard the trees from the first 8 million

generations. The resolution rates of the majority and strict consensus trees

are 92.6% and 51.8%, respectively. The total number of bipartitions across the

33,306 trees is 18,784,584, where 2,444 of them are unique.

• Data set #3: 100 trees were obtained from Gordon Burleigh. Theses trees are

part of a bootstrap analysis of a 950 taxa gymnosperm data set.

• Data set #4: 200 trees were obtained from Gordon Burleigh. Theses trees are

part of a bootstrap analysis of a 950 taxa Saxifragales data set.

Data set #2: 567 taxa Bayesian trees
run r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

- 3177 3178 3178 3179 2985 2985 2986 2987 2162 2162 2163 2164

Table A.2: The number of 567 taxa Bayesian trees in each run. There are 12 total
runs and 33,306 total trees.

• Data set #5: 4,898 trees from a maximum parsimony (MP) analysis of the

567 “three-gene” data set. This is a further analysis using different methods of

the data set in Data Set #2 [84]. Two MP algorithms, parsimony ratchet [64]

and Rec-I-DCM33 were used to infer the phylogenies. Each MP algorithm

created 5,000 trees for a total of 10,000 trees. Parsimony ratchet was used to

was call Pauprat and was based on a Perl script by Bininda-Emonds [4] to

generate a PAUP* [94] batch file to run the parsimony ratchet heuristic. The

set was culled to remove any trees that were less and near-optimal. For our

experiments, we use parsimony trees that are step0, step1, and step2 away from

152

the best-known maximum parsimony score for this data set, which is 44,165.

Let x represent the parsimony score of a tree ti. Then, tree ti is x−b steps away

from the best score. In our experiments, step0, step1, and step2 represents trees

that are 0, 1, and 2 steps away from the best score, b, respectively. Between

the two algorithms, there are 4,898 trees that fit this criteria.

Data set #5: 567 taxa maximum parsimony trees
run r0 r1 r2 r3 r4 r5 r6 r7 r8 r9

- 246 179 197 169 234 796 764 761 791 761

Table A.3: The number of maximum parsimony trees in each run. Runs r0 to r4 were
obtained from Pauprat. The remaining trees were collected from Rec-I-DCM33.

153

APPENDIX B

PQL GRAMMER AND LEXER

Listing B.1: Rules for the PQL grammar

prog

: query +;

query

: (a s s i gnment expre s s i on)? NEWLINE;

a s s i gnment expre s s i on

: IDENTIFIER ’= ’ a s s i gnment expre s s i on

| n o t e x p r e s s i o n ;

n o t e x p r e s s i o n

: (’ ! ’) ? d i f f e r e n c e e x p r e s s i o n ;

d i f f e r e n c e e x p r e s s i o n

: un i on expr e s s i on (’− ’ un i on expr e s s i on) ∗ ;

un i on expr e s s i on

: i n t e r s e c t i o n e x p r e s s i o n (’+ ’ i n t e r s e c t i o n e x p r e s s i o n) ∗ ;

i n t e r s e c t i o n e x p r e s s i o n

154

: e q u a l i t y e x p r e s s i o n (’ ˆ ’ e q u a l i t y e x p r e s s i o n) ∗ ;

e q u a l i t y e x p r e s s i o n

: p o s t f i x e x p r e s s i o n ((’== ’ | ’ != ’) p o s t f i x e x p r e s s i o n)∗ ;

p o s t f i x e x p r e s s i o n

: p r imary expre s s i on (’ [’ a s s i gnment expre s s i on ’] ’

| ’ (’ ’) ’

| ’ (’ a r g u m e n t e x p r e s s i o n l i s t ’) ’) ∗ ;

a r g u m e n t e x p r e s s i o n l i s t

: a s s i gnment expre s s i on (’ , ’ a s s i gnment expre s s i on) ∗ ;

p r imary expre s s i on

: IDENTIFIER

| atom

| ’ (’ a s s i gnment expre s s i on ’) ’ ;

c o n s t a n t e x p r e s s i o n l i s t

: (a s s i gnment expre s s i on | RANGE LITERAL)

(’ , ’ (a s s i gnment expre s s i on | RANGE LITERAL))∗ ;

atom

: constant

| ’ [’ (c o n s t a n t e x p r e s s i o n l i s t)? ’] ’

155

| ’{ ’ (c o n s t a n t e x p r e s s i o n l i s t)? ’} ’ ;

constant

: (DECIMAL LITERAL)

| (CHARACTER LITERAL)

| (STRING LITERAL)

| (FLOATING POINT LITERAL) ;

Listing B.2: Rules for the PQL lexer

IDENTIFIER

: LETTER (LETTER | ’ 0 ’ . . ’ 9 ’) ∗ ;

fragment

LETTER

: ’ $ ’

| ’A’ . . ’ Z ’

| ’ a ’ . . ’ z ’

| ’ ’ ;

CHARACTER LITERAL

: ’\ ’ ’ (ESCAPE SEQUENCE | ˜ (’\ ’ ’ | ’\\ ’)) ’ \ ’ ’ ;

STRING LITERAL

: ’” ’ STRING GUTS ’ ” ’ ;

fragment

156

STRING GUTS

: (ESCAPE SEQUENCE | ˜ (’\\ ’ | ’ ” ’))∗ ;

RANGE LITERAL

: (’− ’)? (’ 0 ’ . . ’ 9 ’) + ’ . . ’ (’ − ’) ? (’ 0 ’ . . ’ 9 ’)+ ;

DECIMAL LITERAL

: (’ 0 ’ | (’− ’)? ’ 1 ’ . . ’ 9 ’ ’ 0 ’ . . ’ 9 ’ ∗) ;

FLOATING POINT LITERAL

: (’ − ’) ? (’ 0 ’ . . ’ 9 ’)+ ’ . ’ (’ 0 ’ . . ’ 9 ’) ∗

| ’ . ’ (’ 0 ’ . . ’ 9 ’) + ;

fragment

ESCAPE SEQUENCE

: ’\\ ’ (’ b ’ | ’ t ’ | ’ n ’ | ’ f ’ | ’ r ’ | ’ \ ” ’ | ’ \ ’ ’ | ’ \ \ ’) ;

COMMENT

: ’/∗ ’ (: .)∗ ’∗/ ’ ;

LINE COMMENT

: ’// ’ ˜(’\n ’ | ’ \ r ’) ∗ ;

NEWLINE: (’\ r\n ’ | ’ \ n ’ | ’ \ r ’) ;

157

WS : (’ ’ | ’\ r ’ | ’ \ t ’ | ’ \ u000C ’ | ’ \ n ’) ;

158

