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ABSTRACT 

 

 Golf course water use in Texas has become increasingly regulated in the past 

decade due to persistent drought conditions, diminishing water supplies, and rapidly a 

growing population. Many golf courses have been faced with considerable cutbacks in 

irrigation allocations, but information is limited regarding critical levels needed for 

maintaining adequate turf quality, persistence, and recovery from divots and traffic.  

Furthermore, the effects of irrigation water quality on minimal irrigation requirements 

has not been fully resolved.  A series of field and greenhouse studies were conducted 

over the course of two years in College Station, TX, to determine the effects of 

continuous reference evapotranspiration (ETo)- based deficit irrigation levels on quality 

of bermudagrass fairway turf. Turf quality evaluations from both seasons showed that in 

the absence of traffic, irrigation levels of 0.3 x ETo were sufficient to maintain 

acceptable turfgrass quality during summer months (at a 3-day per week irrigation 

frequency). Canopy temperatures increased considerably as irrigation was reduced; with 

up to a 20C increase detected between irrigated and unirrigated plots.  Upon resumption 

of full irrigation levels in September, unirrigated and deficit-irrigated plots quickly 

recovered to ~90% green cover within 8 weeks in year 1.  However, unirrigated plots 

were much slower to recover in the second season, only reaching ~30% green cover by 8 

weeks. The delayed ability of unirrigated plots to rebound following successive years 

without irrigation suggests a cumulative effect of drought stress on bermudagrass health 

and vigor.  Traffic treatments delayed recovery across all irrigation levels.  Greenhouse 
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investigations into irrigation water quality (reverse osmosis (RO), saline, and sodic) and 

plant growth regulator trinexapac-ethyl (TE) effects on bermudagrass evapotranspiraton 

and tolerance to deficit irrigation were also undertaken.  Irrigation water quality failed to 

significantly influence minimal irrigation requirements, but turf irrigated with sodic 

irrigation did exhibit considerably higher evapotranspiration (ET) rates relative to those 

receiving saline or RO irrigation. TE improved bermudagrass quality and delayed leaf 

firing under the soil moisture stress from deficit irrigation.  The findings from this 

research provide timely and practical information for turf managers who must 

increasingly utilize ET-based irrigation scheduling and/or low-quality water sources in 

the management of golf course turfgrass systems. 
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CHAPTER I 

 INTRODUCTION 

Golf’s Use of Water in Texas 

During the last decade, Texas has experienced one of the harshest droughts on 

record and, in 2011, the state endured the worst drought since the drought of 1956. 

Rainfall throughout the state was at a record low as well as record high temperatures and 

these trends are predicted to continue.  

This water shortage coupled with rapid population growth has placed great 

strains on water supplies throughout the state. Population growth in Texas is predicted to 

continue and according to the 2012 Texas State Water Plan, over the next 50 years, the 

state’s population will increase by 82% (Texas State Water Plan, 2012). As population 

increases so does the demand for water. According to the Texas Water Development 

Board, in 2011 the state needed 18 million acre-feet of water per year to support the 

current population. With current growth trends, the board predicts by 2060, 22 million 

acre-feet of water will be required to support the state’s population (Texas State Water 

Plan, 2012). This growing demand for water has caused reservoir storage to drastically 

decline since 1980 (Texas State Water Plan, 2012).   

To ensure adequate water supplies throughout the state, there is a major emphasis 

on water conservation, a key component of which is tighter regulation on turfgrass and 

amenity landscape irrigation practices.  In 2011, about 1,000 water systems implemented 

watering restrictions throughout the state (Thomas, 2012). Most were day-of-the-week 

restrictions, which limit the number of days per week customers are allowed to water.   
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According to the 2012 Texas State Water Plan, there are over 1000 golf courses 

in Texas representing an area of nearly 115,000 acres.  It is estimated that water use for 

irrigation of these golf course accounts for nearly 2% of the state’s total water 

allocations (Texas State Water Plan, 2012). According to a recent national survey of golf 

course operations conducted by the Environmental Institute for Golf, 25% of 18-hole 

golf course facilities have been subject to ‘recurring annual water allocations’ (Throssell, 

2009). For survey purposes, Texas was divided east to west, primarily based on 

differences in annual rainfall amounts. In East Texas, 36% of facilities reported 

experiencing recurring annual water allocations, while in West Texas, nearly 40% of 

facilities face similar challenges (Throssell et al, 2009).  

Water Conservation Efforts 

Given these water allocation changes, golf course superintendents must be 

prepared to modify irrigation practices to meet conservation goals while still producing 

the quality turfgrass playing surface golfers demand. Currently, the majority of golf 

course superintendents manage irrigation essentially ‘by feel’, relying on skill and 

experience to maintain quality.  Greater than 90% of managers of 18-hole golf course 

facilities in the United States still make irrigation decisions based on turfgrass or soil 

observations, (Throssell, 2009). As greater strains are placed on irrigation supplies in the 

future, and mandatory restrictions and allocation reductions become the norm; however, 

it may become even more challenging for superintendents to manage irrigation in this 

way.  
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Therefore, the challenge for golf course superintendents is to meet conservation 

goals set forth by water purveyors while maintaining acceptable turf quality and 

playability standards desired by membership. As such, superintendents must increasingly 

become familiar with and adopt technology-based strategies for budgeting and managing 

water use, irrigating only when the plant needs it and at amounts that don’t surpass plant 

irrigation requirements.  

ET-Based Irrigation   

Evapotranspiration (ET)-based irrigation is one strategy that can lead to greater 

water use efficiency on the golf course. Weather based-ET feedback systems or ET 

irrigation controllers allow for greater precision in irrigating to the exact needs of the 

turf.  These systems initially calculate potential evapotranspiration (ETo) from 

temperature, solar radiation, relative humidity, and wind velocity, and then adjust this 

value by a coefficient particular to the consumptive water use of the crop being irrigated, 

or crop coefficient (Kc) (Devitt et. al.,1992).  

Previous research has sought to identify appropriate Kc for turfgrass species.  By 

summarizing the results from a series of applied water studies, Meyer and Gibeault 

(1987) and Snyder and Pruitt (1985) using a modified Penman equation, suggested a Kc 

of 0.6 for irrigation of warm-season grasses. This has become a widely accepted value 

for irrigation of warm-season grasses; however, more recent studies have indicated 

higher Kc values may more accurately reflect warm-season grass water use. Allen et al 

(1998) recommend a Kc value of 0.80 to 0.85 for irrigating warm season grasses.   
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Another important consideration of turfgrass water use is that Kc values have 

been shown to vary up to 25% from one geographic location to another (Brown et al., 

1998). For a Kc value to be widely accepted, it should be matched to a specific ETo 

procedure that ensures accurate estimation of actual plant water usage ETa (Brown et al., 

1998).  Brown et al. (2001) concluded that in the desert southwest (using the Penman-

Monteith method) a constant Kc value of 0.8 was appropriate for bermudagrass in 

summer months, considering monthly variation (Brown et al, 2001). Similarly, Zhang et 

al. (2007) determined that Kc values ranged from 0.66 to 0.92 during a 2007 study 

involving multiple warm-season turfgrasses in Beijing, China (Zhang et al., 2007).  

While seasonal and climatic differences exist, previous research aimed at 

identifying consumptive water use for warm-season turf has generally resulted in Kc 

values within the .60 to .80 range for summertime growth periods. These data offer turf 

managers the ability to calculate and apply water to meet the maximal demand of 

turfgrass on a daily, weekly, or monthly basis; however, as of 2009 only 18% of 

superintendents in the U.S. utilize reference evapotranspiration data for ET-based of golf 

course irrigation management (Throssell, 2009). 

Deficit Irrigation for Periods of Water Conservation 

  Meeting the maximal water use rates of a given turf through use of ET-based 

irrigation and Kc data is an important strategy in properly managing irrigation water 

during times when water is plentiful. However, there are increasingly periods or seasons 

when diminishing water supplies or mandatory allocation reductions force golf course 

superintendents to reduce irrigation to below consumptive water use (Kc) levels. For 
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example, in times of severe drought, golf courses in the San Antonio area are required to 

reduce irrigation amounts by 20% of daily ETo (San Antonio Water System, 2013).  

Deficit irrigation is the agronomic term used to describe the practice of intentionally 

maintaining turf at below the maximal water use of the turf (Fu et all, 2004; Wherley, 

2011).  Deficit irrigation can be used as a viable water conservation tool, especially on 

golf course fairways, which occupy the largest acreage of irrigated turf on a golf course.  

However, irrigation levels must be sufficient to produce quality that meets golfer 

expectations in terms of aesthetic and functional characteristics. The degree of stress or 

deficit level a turf is able to withstand could be affected by species, environment, 

geographic location, and the intensity of cultural management at which the turf is 

maintained. In a Kansas study, tall fescue watered twice weekly at 0.5 x ETo exhibited 

exceptional drought resistance, resulting in only small reductions in visual quality (Fry et 

al, 1989). In a transition zone study evaluating turfgrass response to season long deficit 

irrigation, zoysiagrass (Zoysia japonica) and Kentucky bluegrass (Poa pratensis) 

maintained at a 5 to 6 cm mowing height were both found to be sensitive to deficit 

irrigation, and both species maintained acceptable quality levels only at their maximal 

water use rates (Fu et al., 2004).  However, in the same study bermudagrass and tall 

fescue maintained at the same mowing height exhibited acceptable quality at levels 

below maximal water use rates (Fu et al., 2004). These differences were attributed to 

drought avoidance characteristics of bermudagrass and tall fescues and their ability to 

form extensive root systems and explore more of the soil profile (Qian et al., 1997).   
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A study evaluating Tifway bermudagrass response to deficit irrigation in the arid 

southwest found dramatic loss of turf quality at irrigation levels below 0.6 x ETo 

(Bañuelos, 2010). These results differed from those found in 1999 by Quian and Engelke 

in Dallas, TX where Tifway bermudagrass was found to exhibit acceptable quality at 

irrigation levels of 0.17 to 0.5 x ETo (Bañuelos et al., 2011; Qian and Engelke, 1999). 

These differences would likely be attributed to differences in seasonal precipitation and 

soil textural differences between the two locations. Thus, the amount of deficit irrigation 

turf is able to withstand while exhibiting acceptable quality appears to be influenced by 

many factors including species, environment, and maintenance level.   

Given the growing importance of water conservation in Texas and the lack of 

data on minimal irrigation requirements for maintaining bermudagrass fairways in the 

sub-humid to humid regions of Texas, a more detailed understanding of deficit irrigation 

management on bermudagrass could be highly useful at this time.  

Bermudagrass Recuperative Capacity from Irrigation Stress  

 When water supplies become severely limiting, golf courses sometimes are 

forced to eliminate fairway irrigation entirely, directing any available water to higher 

priority areas such as greens and tees.  The United States Golf Association (USGA) 

Green Section has termed this concept ‘maintenance up the middle’.  This management 

approach was widely adopted across Texas golf courses during the 2011 drought.  

Information on the capacity of bermudagrass fairways to tolerate and/or recover from 

these periods is limited.  Steinke and Chalmers (2011) found that all warm-season turf 

species they tested were able to recover from a 60-day drought to levels greater than 
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80% green cover within 10-20 days of irrigation, so long as topsoil depth was not 

restricted. The time required for bermudagrass fairways to recover to acceptable quality 

and cover levels following deficit- or unirrigated conditions, or how this is affected by 

successive years of irrigation stress has not been evaluated. 

Effects of Traffic Stress on Irrigation Requirements  

Turfgrass wear injury is characterized by the crushing and tearing of leaf tissues 

caused by foot and vehicular traffic (Shearman, 1988). Golf course turf is routinely 

subject to wear injury due to golf cart traffic, foot traffic, and/or divots. Depending on 

other environmental factors, traffic injury can lead to an inhibition of growth from 

chlorophyll degradation and an overall increased susceptibility to pathogens (Trenholm 

et al., 2000).  If deficit irrigation becomes a common approach to water management on 

golf courses, the influence of traffic or wear injury should be better understood. It would 

seem likely that grasses managed under deficit irrigation would have lower capacity to 

recover from injury or withstand traffic, simply due to diminished rates of growth 

(Wherley, 2011).  In previous deficit irrigation research, traffic has been an often-

overlooked factor that may have considerable impact on the minimal levels of irrigation 

a turf can tolerate.  Therefore, more detailed examination of traffic impacts on minimal 

irrigation requirements should be considered. 

Impacts of Water Quality on Deficit Irrigation Practices 

As potable water supplies for golf course irrigation become strained, those 

supplies available for irrigation are typically of lesser quality. To alleviate some of the 

demands placed on potable water and groundwater supplies, an increasing number of 
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golf courses are irrigating with reclaimed or recycled water (King et al., 2000). 

Additionally many of these water sources contain high levels of salts, making them 

either saline and/or sodic in nature (Qadir, 2010). Saline irrigation water has potential to 

cause adverse impacts on plant health by lowering the osmotic potential within the soil 

solution, and thereby making the water in solution less available to the plant (Qadir, 

2010). High salt concentrations can also indirectly reduce plant growth by ion 

antagonism (Deifel et al., 2006). Sodic irrigation impacts soil physical structure, 

resulting in decreased soil aggregation among clay particles causing an adverse effect of 

soil structure over time (Halliwell et al, 2001).  High sodium concentrations can also 

have a toxicity effect in plants. 

For golf courses using irrigation of marginal quality, the ability to ‘flush’ the soil 

of salts using higher than needed amounts of irrigation (leaching fraction) has 

traditionally been important in managing salts. Therefore, when lower water quality is 

used in combination with deficit irrigation practices, a complexity of challenges may 

arise. It seems likely that water quality could influence the level of deficit irrigation 

tolerable by turfgrass, however, research is also lacking in this area.   

Influence of Trinexapac-ethyl (Primo) on Plant Water Stress 

Trinexapac-ethyl (TE) [4-(cyclopropylα-hydroxy-methylene)-

3,5dioxocyclohexanecarboxylic acid ethyl ester] is a plant growth regulator (PGR) that 

when applied to turfgrasses suppresses clipping yield by inhibiting giberillic acid 

synthesis. TE inhibits the conversion of GA20 to GA1 (Reid and Ross, 1991; 

Rademacher, 2000); therefore, decreasing cell elongation and increasing the total 
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number of nonstructural carbohydrates (TNC) (Han et al., 1998, Han et al., 2004; Tan 

and Qian, 2003). While leaf length is reduced, mesophyll cell density, chlorophyll 

concentration, and leaf area are enhanced (Ervin and Koski, 1998; Ervin and Koski, 

2001; Stier and Rogers, 2001; Bunnell et al., 2005; Beasley et al., 2007). These 

physiological alterations brought about by TE have been found to produce turfgrass 

color enhancement, visual quality enhancements, and may also influence plant response 

to stress during times of drought (McCann and Huang, 2007).  

Previous research has, to a limited extent, evaluated the effects of (TE) on 

creeping bentrgrass (Agrostis palustris) during onset of drought stress. In one study, TE 

was applied to creeping bentgrass (Agrostis palustris) every two weeks for forty-two 

days prior to the onset of drought, and was found to improve turf quality compared to 

untreated controls as plants entered into water stress (McCann and Huang, 2007). In this 

study, TE was reported to improve heat and drought tolerance of creeping bentgrass by 

promoting higher photosynthetic activity levels as well as higher cellular hydration 

compared to the untreated controls (McCann and Huang, 2007). However, the potential 

benefit of TE in regards to improving warm-season turfgrass quality and vigor under 

water stress have not been explored.  

TE applications to turf are typically made on frequent, 2 to 3 week, intervals 

(Kreuser, 2010), but use of TE in the context of deficit irrigation programs may allow for 

less frequent application schedules, especially if metabolism of TE within the plant is 

suppressed by water stress.  Information is lacking concerning metabolism of TE as it 

relates to irrigation. Under ideal conditions, the time required for plants to metabolize 
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TE appears to range from 2 to 3 weeks in annual bluegrass (Poa annua) to 3 to 4 weeks 

in bermudagrass (Fagerness and Yelverton, 2000; Fagerness et al., 2004; Kreuser, 2007; 

McCullough et al., 2007). Knowledge of the effects of irrigation level on metabolism of 

TE could aid in developing appropriate application schedules for turf managed under 

differing amounts of irrigation. However, characterization of the response of 

bermudagrass to TE under increasing drought stress or deficit irrigation has yet to be 

explored. 
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CHAPTER II 

IMPACTS OF DEFICIT IRRIGATION AND TRAFFIC STRESS ON 

BERMUDAGRASS FAIRWAYS  

Overview 

Texas golf course water use has become increasingly regulated due to persistent 

drought conditions, diminishing water supplies, and population growth. Golf courses are 

increasingly faced with reductions in water allocation, but information is limited 

regarding minimal levels needed for maintaining adequate quality, persistence, and 

recovery. The objectives of this 2-year study were to 1) characterize the response of 

‘Tifway’ bermudagrass (Cynodon dactylon x C. traansvalensis Burt. Davy) managed 

similarly to golf course fairways to season-long irrigation at crop coefficients 0.6, 0.45, 

0.3, and 0 x reference evapotranspiration (ETo), 2) determine the impacts of simulated 

traffic on irrigation requirements, and 3) quantify divot recovery as a function of 

irrigation amount and traffic. Digital analysis was used to quantify changes in turf 

canopy through the multiple seasons of irrigation stress.  Without the influence of traffic, 

an irrigation level of 0.3 x ETo was adequate to maintain acceptable quality, where there 

were only a few rating dates that quality fell below acceptable levels. Traffic stress 

reduced turf quality under all irrigation levels in both years. Canopy temperatures 

increased considerably with reduced irrigation, with up to a 20°C difference between 

irrigated and non-irrigated plots observed.  Upon resuming full irrigation levels in 

October, all deficit and unirrigated treatments rebounded to ~90% green cover after the 

first summer, but were much slower to recover following the subsequent year of 
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irrigation stress, particularly in unirrigated plots.  Divot recovery times were also 

noticeably delayed by deficit irrigation practices. Root development was not affected by 

irrigation levels during the first season, but was during the second. 

Introduction 

 As drought and population growth continue to place greater strains on water 

supplies, golf course turf managers are confronted with decisions of how to best allocate 

irrigation water to meet the demands of the turf.  One approach is to reduce overall 

irrigated acreage while irrigating high-priority areas at full irrigation levels.  Another 

strategy is to irrigate turf at deficit, or stress levels of irrigation, which involves 

intentionally irrigating a plant below its maximal water use rate (Wherley, 2011).  

In order to accurately meet turfgrass water requirements, it is necessary to 

understand its consumptive water use rate (evapotranspiration under fully irrigated, ideal 

conditions), also referred to as the crop coefficient (Kc), as it relates to reference ET for a 

particular species and a given location.  Previous researchers have sought to determine 

crop coefficients (Kc) for turfgrass species. Meyer Gibeault et al. (1987) suggested a 

year-long Kc value for warm-season grasses of 0.6. This has become a widely accepted 

value for irrigation of warm-season grasses; however, more recent studies have indicated 

higher Kc values may more accurately reflect warm-season grass water use. In a 

comprehensive study evaluating various turfgrass Kc values, Carrow (1995) found that 

using a FAO modified Penman equation Tifway Bermudagrass’ Kc value varied from 

0.53 to 0.97 (Carrow, 1995). Allen et al. (1998) recommended a Kc value of 0.80 to 0.85 

for irrigating warm season grasses (Allen et al., 1998). Furthermore, Brown et al. (1998) 
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concluded that Kc values can vary up to 25% from one geographic location to another. 

For a Kc value to be widely accepted the Kc value should be matched to a specific ETo 

procedure that ensures accurate estimation of ETa (Brown et al., 1998). Brown et al. 

2001 concluded that in the desert southwest (using the Penman-Monteith method) a 

constant Kc value of 0.8 was appropriate for bermudagrass in summer months, 

considering monthly variation (Brown et al, 2001). Similarly, Zhang et al. (2007) 

determined that Kc values ranged from 0.66 to 0.92 during a 2007 study involving 

multiple warm-season turfgrasses in Beijing, China (Zhang et al., 2007). While seasonal 

and climatic differences exist, previous research aimed at identifying consumptive water 

use for warm-season turf has generally resulted in Kc values to be within the 0.6 to 0.8 x 

ETo range for summertime growth periods.  These data offer turf managers the ability to 

calculate and apply water to meet the maximal demand of turfgrasses on a daily, weekly, 

or monthly basis; however, as of 2009 only 18% of superintendents in the U.S. 

implement reference evapotranspiration for ET-based management of golf course 

irrigation (Throssell, 2009). 

For the Southern United States where warm season turfgrasses are used, 

consumptive water use rates of warm season turf can be estimated using Kc values that 

range from 0.58 for low use sites to 0.83 for maintenance intensive sites (Romero, 2010; 

Zhang et al., 2007).  However, since turfgrass is a crop maintained for an aesthetic 

purpose, in theory it could be irrigated at deficit levels that would decrease biomass 

production while still maintaining acceptable appearance. Replacing 0.6 x actual 

evapotranspiration (ETa) has been suggested to produce acceptable bermudagrass turf 
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quality; however, it is difficult to relate this value to season long irrigation programs on 

intensely managed turfgrass like golf course fairways where traffic injury can influence 

plant water needs in regards to durability and recovery (Fu et al, 2004; Qian and 

Engelke, 1999).  

 During times in which irrigation is to be limited, it is advised to limit traffic as 

drought stress will increase with plant injury from traffic; however, limiting traffic might 

not always be possible for high traffic turf areas such as golf course fairways. While 

theory could suggest that turfgrass quality would rapidly decrease under situations of 

traffic stress with limited irrigation, little is known of the minimal water requirements 

for turfgrasses receiving traffic. In 2000, Brown et al. concluded that warm-season turf 

irrigated below 0.6 x ETo would produce water stressed conditions and suggested that 

irrigating above the 0.6 Kc level is suitable for turf conditions where traffic is high 

(Brown et al., 2000).  However, further research is needed to evaluate turf conditions 

produced by irrigation levels below 0.6 x ETo where turf is subjected to regular traffic.  

 Golf course fairways are also subjected to turf injury caused by the removal of 

turf due to the striking of a golf ball, which is termed “divots”. The ability of turf to 

recover from divots has been studied in relation to species and fertilization (Horgan, 

2007; Karcher, 2005; Patton, 2009; Trappe, 2011), but information is lacking regarding 

the effects of deficit irrigation on divot recovery rates. Effects of irrigation frequency on 

divot recovery has been evaluated on creeping bentgrass, but the rate of divot recovery 

did not differ between plots irrigated daily and those receiving less frequent irrigation 

every 3 to 4 days (Walker, 2003).  
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 While irrigating turf at a stress level may prove to be an effective water 

conservation strategy, allowing turf to go dormant by not irrigating at all during drought 

has been employed by turf managers in situations where providing supplemental water is 

not possible. In this situation, turf managers rely on rainfall to be the only water source 

during this time in hopes of turf recovery when supplying supplemental water will be 

possible. Most established, warm season grasses possess the ability to withstand 

prolonged drought by entering dormancy (Steinke et al, 2011). In a 2006-2007 study 

evaluating the ability warm-season turfgrass species and cultivars to survive 60 days of 

drought, all warm-season grasses tested were able to survive and recover following 

return of irrigation (Steinke et al, 2011).  It should be noted, however, that separate plots 

were used for both years of the study, so cumulative effects of successive drought years 

could not be evaluated.  The ability of bermudagrass fairway turf to persist and recover 

to acceptable quality and cover levels following multiple seasons of deficit or unirrigated 

conditions has not been fully investigated.   

The objectives of this 2-year field study were to 1) evaluate the effects of 4 irrigation 

levels (0.6, 0.45, 0.3, and 0 x ETo) on Tifway bermudagrass fairway quality,  2) monitor 

soil moisture and salinity in plots to determine the relationship with quality decline in 

the field, 3) characterize the ability of bermudagrass to withstand and recover from 

simulated traffic at each irrigation level, and 4) evaluate the extent of recovery possible 

following resumption of full irrigation levels during September and October.   
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Materials and Methods 

Research Location and Design 

This study was conducted over the 2012 and 2013 growing seasons at the Texas 

A&M Turfgrass Research Laboratory in College Station, Texas.  Plots of established 

‘Tifway’ bermudagrass (Cynodon dactylon x C. transvaalensis Burt. Davy) were used 

for the study. Soils at the site were a Boonville fine sandy loam (fine, montmorillonitic, 

thermic, Vertic Albaqualf).  The study was arranged as a completely randomized design 

with three replicate plots per treatment.  

Irrigation main plots (6.1 m x 6.1m) received irrigation based on Kc values of 

0.6, 0.45, 0.3, or 0 x ETo, based on an onsite weather station that was part of the Texas 

ET network. This network used the Penman-Monteith equation for calculating ETo. 

Irrigation was supplied 3 times weekly from April through August.  From September 

through October of each season, all plots received full irrigation at Kc levels of .60 x ETo 

so that recovery from drought stress could be evaluated within plots.  On-site rain gauges 

were used for determining contributions from rainfall, with rainfall amounts of up to 1” 

accounted for when determining weekly water requirements.  

The turf was mowed 3 times weekly throughout the season using a triplex reel 

mower and fertilized at an annual rate of 147 kg N ha-1 using (21-0-0) ammonium 

sulfate. Fertilizer was applied every six weeks at a rate of 36.8 kg N ha-1 from April 

through September.  
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Simulated Traffic  

The plots were further subdivided into two 6.1 m x 1.5 m sub plots, one of which 

received traffic. A modified Kady traffic simulator (Williams et al., 2010) was used to 

supply traffic stress.  Soft spike golf shoes were mounted to the unit to attempt to 

simulate golfer foot traffic.  Traffic treatments were applied from July through August of 

both seasons.  Trafficking took place 2 times weekly with 3 passes over a plot per each 

traffic event, for a total of 6 passes weekly. This is the first time this type of machine has 

been used to simulate golf traffic so the traffic amounts were chosen arbitrarily.   

Divot Recovery 

Recovery rates of divots as influenced by irrigation level and infill mixture were 

also determined during the study.  A divot simulator (Fry et al., 2008) was constructed 

using a modified edger with a stacked series of blades.  This unit was used to remove 

two uniform 5 cm wide x 10 cm long x 1.3 cm deep divots from each untrafficked plot in 

July of 2012 and 2013.  Divots were then backfilled with either straight sand or an 85:15 

[(v:v) sand:peat] divot mixture.  Thirty days after divots were made, digital image 

analysis (Richardson et al., 2001) was used to evaluate percent green cover of divots to 

determine the subsequent rate of turf recovery within each irrigation and divot mix 

treatment.  
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Evaluation of Seasonal Turf Performance  

Turfgrass performance was evaluated during the study through visual ratings of 

turfgrass quality, digital image analysis for green color retention, and canopy to air 

temperature ratios. Turfgrass plots were visually rated on a scale from 1 to 9 with 5 

representing minimal acceptable quality. These quality ratings took into account both 

functional and aesthetic aspects of the turf and were based on a combination of color, 

density, uniformity, texture, and also perceived playability.  For reference, a value of 1 

would indicate completely brown turf, and 9 would indicate perfect green turf, i.e. 

uniform, dense, dark green turf. Visual quality ratings were taken mid-to-late-morning, 

prior to any afternoon wilt occurring in plots.  

Each irrigation treatment were also analyzed for percent green cover using the 

digital image analysis software SigmaScan (SigmaScan, SPSS, Chicago, IL) 

(Richardson, 2001). Digital images were taken twice monthly from May through 

December using a Nikon Coolpix camera coupled to a 0.6 m x 0.6 m square light-box 

that was randomly positioned within each plot.  The light box cancelled out outside light 

and created uniform light within the box (Karcher, 2005). The SigmaScan software 

operates by creating an average hue saturation and brightness level (HSB), a color space 

based upon human perception of color level for each image (Karcher, 2003).  

Canopy temperatures for treatments were also obtained twice monthly as an early 

indicator of turf stress using a handheld infrared thermometer (Model 2956, Spectrum 

Technologies, Aurora, IL). Readings were taken during mid-afternoon on cloudless 

days. 
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Evaluation of Root Development 

In September of both seasons, a truck-mounted Giddings Probe (Giddings 

Machine Company, Windsor, CO) was used to remove two root/soil samples (5 cm 

diameter x 30 cm deep) from non-trafficked plots within each irrigation level.  These 

samples were rinsed using water and sieved to separate roots from soil. Roots were then 

oven-dried for 72 hours and weighed. 

Soil Evaluations  

 Irrigation water at the site originates from a municipal source characterized by 

high sodium bicarbonate levels.  Therefore, over the course of the season, sodium 

adsorption ratio (SAR) and salt accumulation were monitored to determine the extent of 

sodium accumulation as it relates to irrigation level. Soil samples (0-15 cm depth) were 

obtained at the start of each season, prior to irrigating (May), as well as the end of the 

study period (September).  Samples were analyzed for SAR at the Texas A&M Agrilife 

Soil, Water, and Forage Testing laboratory. Soil salinity in plots was also monitored 

through bi-weekly measurements obtained using a handheld electrical conductivity (EC) 

meter (FieldScout EC 110, Spectrum Technologies, Aurora, IL).  EC readings were 

obtained for the 7.6 cm depth in plots.  Wireless Pro soil moisture sensors (Ugmo Inc., 

King of Prussia, PA) were also installed at a 7.6 cm depth in each plot for documenting 

changes in volumetric water content and its relationship with visual quality changes over 

the season.  
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Analysis of Data 

 Data for each parameter were subjected to analysis of variance using the general 

linear model, univariate test procedure using SPSS ver. 21.0 (IBM Corp, Armonk, NY) 

to determine statistical significance of the results.  Where analysis of variance indicated 

a significant study effect, parameters were presented separately by study.  Mean 

separation procedures were performed using Tukey’s HSD at the P ≤ 0.05 level.  

Results 
 
 Annual precipitation at the site was close to normal for both seasons, although 

little rainfall was received during the summer months, particularly for the 2013 season 

(Figure 2.1, 2.2). Following a wet late winter in 2012, intermittent rain was received for 

the first half of the summer, while August and September became very hot and dry.  In 

2013, a wet May was followed by 3 months with little to no rainfall. Evapotranspiration 

rates fluctuated from ~0.5 to 0.8 centimeters per day during the 2012 summer, and up to 

1.1 centimeters per day for 2013 (Figure 2.3 and 2.4, respectively).
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Figure 2.1. Daily percipitaion (cm) throughout the 2012 season. Data from the Texas ET 
network, Texas A&M Golf Course Weather Station.  

 

Figure 2.2. Daily percipitation (cm) throughout the 2013 season. Data from the Texas 
ET network, Texas A&M Field Lab Weather Station.  
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Figure 2.3. Daily ETo throughout the 2012 season. Data from the Texas ET network, 
Texas A&M Golf Course Weather Station.  
 
 
 

 
Figure 2.4. Daily ETo throughout the 2013 season. Data from the Texas ET network, 
Texas A&M Field Lab Weather Station. 
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Table 2.1.  Analysis of variance table for week, irrigation level, and week x irrigation level. 
Where year main effects were significant (P ≤ 0.05), years have been presented separately. 

   P-values    

 Visual Quality Percent Green 
Cover 

Canopy 
Temperatures Total Root Mass Electrical 

Conductivity 

Sodium 
Adsorption Ratio 

 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

Week (W) *** *** *** *** *** ***   *** NS NS 

Irrigation (I) *** *** *** *** *** *** NS *** *** NS * 

W x I *** *** *** *** *** ***   NS NS NS 
NS, *, **, *** Nonsignificant or significant at P = 0.05, 0.01, or 0.001, respectively 
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Deficit Irrigation Effects on Turf Quality and Cover  

 The week by irrigtion level interaction effect on turf quality was significant for 

both years of the study (Table 2.1).  This was primarily due to the progressive summer 

decline in quality of deficit and non-irrigated plots relative to fully irrigated controls.  

While plots began both seasons at statistically similar levels of quality, the 0.6 x ETo 

treatment maintained superior visual quality relative to all other irrigation treatments 

during the summer months (Figure 2.5). Deficit irrigation levels of .45 x ETo and .3 x 

ETo resulted in significantly lower turf quality than the fully irrigated treatment on only 

2 of 21 and 3 of 21 dates, respectively. On all other dates, irrigation levels as low as 0.3 

x ETo were sufficient to sustain acceptable visual quality (≥5) in the context of this 3 day 

per week irrigation schedule throughout both seasons.  However, unirrigated plots 

rapidly declined to unacceptable quality levels by June of both years, indicating natural 

precipitation was not adequate to maintain acceptable turf quality.  

Digital image analysis for percent green cover confirmed visual quality ratings 

(Figure 2.6).  As such, green cover values of 75% closely aligned with the minimal 

quality threshold of 5.  In general, irrigation of .30 x ETo or greater supported >75% 

green cover over the entire first season, however, slightly diminished amounts of green 

cover were detected in these plots in the second season (Figure 2.6).  

Fall Recovery 

 Full irrigation amounts (0.6 x ETo) were resumed in all plots in early September 

of both years. As with turf quality, green cover rebounded following return of full 
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irrigation levels to deficit and unirrigated plots in year 1, but unirrigated plots were 

noticeably delayed in recovering the second season, only reaching ~25% green cover by 

the late October rating date (Figure 2.5, 2.6).  

 

 
Figure 2.5. Visual quality as affected by irrigation level in 2012 and 2013. Data were 
pooled across traffic treatments. Means with the same letter at the same date are not 
significantly different based on Tukeys HSD at p≤ 0.05.  Dotted horizontal line indicates 
minimum acceptable turf quality. 
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Figure 2.6. Percent green cover as affected by irrigation level in 2012 and 2013. Data 
were pooled across traffic treatment. Means with the same letter at the same date are not 
significantly different based on Tukeys HSD at P≤ 0.05.  Dotted horizontal line indicates 
minimum acceptable percent green cover.
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Canopy Temperatures 

A significant week x irrigation interaction effect also occurred for canopy 

temperatures both seasons (Table 2.1). Generally, canopy temperatures within the fully 

.60 x ETo irrigation treatments were at or slightly above ambient air temperature (data 

not shown).  However, as evaporative demand increased in early summer, reflective 

canopy temperatures noticeably increased (Figure 2.7).  This was most apparent where 

irrigation was being withheld entirely, as temperatures increased by as much as 20°C for 

the non-irrigated compared to the other irrigation treatments.  Greater canopy 

temperature differences were observed in the second season, likely due to higher 

temperatures, less rainfall, and overall higher evaporative demand on the turf (Figures 

2.2, 2.4). 

 

Figure 2.7. Reflective canopy temperatures as affected by irrigation level in 2012 and 
2013. Data were pooled across traffic application. Means with the same letter at the 
same date are not significantly different based on Tukeys HSD at P≤ 0.05. 
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Impacts on Root Development  

There was no detectable effect of irrigation on root development within the 0 to 

25 cm depth in year 1; however, irrigation level did impact root mass in the second 

season (Table 2.1, Figure 2.8). Root dry weight increased as irrigation level increased, 

with exception that the .45 x ETo and .60 x ETo irrigation treatments were similar 

(Figure 2.8). Since there were no differences in root dry mass among irrigation levels 

during the 2012 season but differences were observed among irrigation treatments 

during the 2013 season, this may demonstrate the long-term cumulative effect of deficit 

irrigation. 

 

Figure 2.8. Root dry weights (grams) as affected by irrigation level in 2013. Data are for 
non-trafficked plots. Means with the same letter at the same date are not significantly 
different based on Tukeys HSD at P≤ 0.05
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Irrigation Effects on Salinity 

 

Electrical conductivity readings were variable in the first year of the study, and 

no differences occurred among irrigation level was detected (Table 2.1, Figure 2.9).  In 

the second season, however, a significant irrigation treatment effect on EC occured.  As 

such, EC measurements increased with increasing irrigation (Figure 2.9). The EC values 

ranged from about 0.1 at the initiation of the study to as high as 0.9 in the 0.60 x ETo 

treatments during year 2.  The EC never exceeded levels of 1 dS m-1 in either season, 

indicating that salinity levels never reached a stressful or damaging threshold in these 

soils for bermudagrass.  Bermudagrass  tolerates salinity levels above 10 dS m-1 

(Harivandi, 1992).  

 

Figure 2.9. Electrical conductivity (dS m-1) as affected by irrigation level for the 2012 
and 2013 seasons. Data are for non-trafficked plots. Means with the same letter at the 
same date are not significantly different based on Tukeys HSD at P≤ 0.05. 
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There was no detectable effect of irrigation on SAR in year 1, but there was a 

significant irrigation main effect on SAR in the second season (Table 2.1, Figure 2.10).  

It should be noted that composite sampling across the plots revealed that SAR values 

were relatively elevated, and sodic (SAR>13), at the project initiation prior to irrigation 

treatment levels being imposed.  These increased to even higher levels in all irrigated 

plots by the end of the first season (Figure 2.10).  A noticeable decrease in SAR 

occurred from addition of gypsum to plots during the dormant season. Generally, the 

highest SAR was associated with the 0.6 x ETo treatment, with a gradually decreasing 

SAR as irrigation level decreased.   

 

Figure 2.10. Sodium Adsorption Ratio (SAR) as affected by irrigation level for the 2012 
and 2013 seasons. Data are for non-trafficked plots. Bars with the same letter are not 
significantly different based on Tukeys HSD at P≤ 0.05. 
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Irrigation Effects on Soil Moisture (SVWC) 

 
 Soil volumetric water content was monitored continually throughout the study by 

sensors in each plot at a 7.6 cm depth.  The SWC was variable during the first season, 

likely due to acclimation and soil settling following installation of sensors in March 

2012. Data from the 2013 season were much less variable and the relationship between 

SVWC and turf quality were determined (Figure 2.11). Soil moisture ranged from as low 

as 4% in unirrigated plots to as high as 29% in .6 x ETo plots.  Regression analysis 

indicated a fairly strong relationship between turf quality and soil moisture (R2=0.49).  

The results of this study suggest that when managing bermudagrass fairways on fine 

sandy loam soil, maintaining SVWC at the 7.6 cm depth above ~12% volumetric water 

in order to sustain acceptable levels of turf quality.  When SVWC fell below this level, 

turf quality was generally below acceptable levels in this study.  

 

Figure 2.11. The relationship between soil moisture at 7.6 cm below the soil surface 
visual turf quality ratings during the 2013 growing season. 
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Traffic Effects on Percent Green Cover 

 Traffic was imposed beginning in early July and continued through August of 

both years.  Significant week x traffic and week x irrigation effects occurred for percent 

green cover in both 2012 and 2013 (Table 2.2, Figure 2.12).  In 2012, traffic caused a 

nearly 50% reduction in percent green cover (Figure 2.12).  Despite this, the 

bermudagrass in all treatments recovered to similar levels of green cover by early, due to 

adequate availability of moisture from rainfall and irrigation.  

In the 2013 season, traffic showed significant, but less substantial effects on 

green cover, with only a ~10% decline in green cover occurring due to traffic. Again, 

bermudagrass in trafficked and non-trafficked treatments recovered to similar levels of 

green cover by the final fall evaluation. 

 
Table 2.2.  Analysis of variance table for week, irrigation, and traffic effects on turf 
visual quality and percent green cover.  Year main effect was significant for both 
parameters (P ≤ 0.05). 
 

P- values 

 Summer Traffic % 
Green Cover 

 2012 2013 

Week (W) ** ** 

Irrigation (I) *** *** 

W x I ** ** 

Traffic (T) *** *** 

W x T ** ** 

I x T NS NS 

W x I x T NS NS 
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Figure 2.12. The digital image analysis (DIA) of percent green cover as affected by 
traffic in 2012 and 2013. Data were pooled across irrigation levels. Means with astericks 
at the same date are not significantly different based on Tukeys HSD at P≤ 0.05. 
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Divot Recovery 

 Irrigation main effects on divot recovery were significant in both years of the 

study (Table 2.3, Fig. 2.13). Divot recovery varied from as low as 10 to 20% green cover 

for unirrigated treatments to nearly 80% green cover in the 0.6 x ETo treatment.  Lower 

irrigation amounts resulted in significantly increased divot recovery time (as indicated 

by lower amounts of green cover in divots 30 days after divots were made) during 2012, 

but not 2013 (Figure 2.13).  The unirrigated treatment exhibited the slowest divot 

recovery time in both years.  In 2012, after 30 days of recovery, the turf coefficient of 

0.6 x ETo irrigation treatment had 76% percent green cover within divots compared to 40 

and 60% green cover for the 0.3 and 0.45 x ETo treatments. In 2013, all irrigated plots 

recovered at similar rates, with only unirrigated plots exhibiting severely increased 

recovery time.  When comparing between sand vs. sand/peat divot mix infills, there were 

no statistical differences in rates of recovery, as irrigation alone was the primary factor 

affecting divot recovery time (Table 2.3).   

 

Table 2.3.  Analysis of variance table for irrigation level and divot mix effects on divot 
recovery rate.  Year main effect was significant (P ≤ 0.05). 
 

 

 

 
 
 
 

 P-values 

 Divot Recovery 
 2012 2013 

Irrigation *** *** 
Divot Mix  NS NS 
Irrigation x Divot Mix NS NS 
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Figure 2.13. Divot recovery in relation to irrigation treatments for 2012 and 2013. Data 
were pooled across divot mix. Bars with the same letter are not significantly different 
based on Tukeys HSD at P≤ 0.05.



 

36 
 

 

 
Discussion 

Deficit Irrigation Effects on Bermudagrass Fairway Turf Quality 

 In this experiment conducted over two seasons, where irrigation was supplied at 

a three time per week frequency, Tifway bermudagrass maintained acceptable quality for 

most of the season when irrigated at levels substantially less than the commonly 

recommended Kc of 0.6. Our results therefore are in agreement with Fu et al. (2004) who 

reported that bermudagrass grown in Manhattan, Kansas could maintain acceptable 

quality throughout summer months while being irrigated with as little as 60% x actual 

evapotranspiration (ETa). This 60% x ETa treatment would theoretically correspond to 

irrigating at 0.36 x ETo in our experiment, 20% higher than our lowest deficit treatment 

of 0.3 x ETo.  The results also agree with those of Qian and Engelke (1999), who 

reported minimal bermudagrass irrigation requirements of 0.17 to 0.50 x ETo in a Dallas, 

TX study.  

The ETa for bermudagrass could vary during the summer months. However, 0.6 x 

ETo has been widely accepted as an industry standard crop coefficient for warm-season 

turfgrass and would likely be the baseline amount for golf course superintendents using 

an ET based irrigation program.  

Bermudagrass Fall Recovery Following Drought Stress  

The first season’s fall recovery results were consistent with Steinke et al. (2011). 

They reported that upon applying irrigation during the fall following a 60-day drought, 

bermudagrass had greater than 80% recovery of plots.  In the second year of the study, 

after irrigation was returned to full levels in September, bermudagrass exhibited delayed 
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recovery, reaching only 30% green cover and not attaining acceptable quality levels 

(Figure 2.5, 2.6). The delayed recovery in year 2 suggests a possible cumulative effect of 

irrigation treatments.  It should also be noted that ET demand was much higher in the 

second growing season (2013), which also may have compounded the degree of stress 

for the bermudagrass.  Regardless, the recovery of bermudagrass in all irrigation 

treatments was similar in both years. These data indicate that deficit irrigation of 

bermudagrass fairways is a feasable way to conserve water while maintaining turfgrass 

performance long-term.  

Irrigation and Traffic Effects on Green Cover and Recovery 

 Although no traffic x irrigation interaction effects occurred, traffic did negatively 

impact turf at all irrigation levels by reducing green cover. Surprisingly there was no 

detectable difference between traffic treatments in terms of fall recovery, during 8 weeks 

after resuming uniform irrigation (Figure 2.12).   

 Whether or not to allow traffic under periods of drought has always been a 

difficult decision for golf course superintendents, and information of this type regarding 

irrigation x traffic effects on bermudagrass are lacking.  It is common that many golfers 

driving carts onto fairways will enter the fairway in the same location, causing a heavy 

traffic area at the edge of the fairway. While our traffic applications were representative 

of traffic golf courses might receive in the middle of the fairway, one might expect these 

“entrance points” to be more severely impacted by traffic if irrigation levels are reduced 

or withheld entirely, and therefore results may not be representative of more highly 

trafficked areas of turf on golf courses.  
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Irrigation Effects on Divot Recovery 

 It is difficult to explain why delayed divot recovery was observed with lower 

irrigation in year 1 but not year 2, especially since less rainfall was received in year two 

(Figures 2.2 and 2.13). However, divot recovery results within the unirrigated treamtents 

were consistent from year one to year two, emphasizing the importance of at least some 

supplemental irrigation for promoting healing of divots. Surprisingly, divot infill mix 

also did not affect divot recovery time.  Our results indicate that addition of peat moss to 

the infill mix provided no benefit compared to sand alone.  Based on these results, 

irrigation level was the primary factor influencing divot recovery.  These results differ 

from an Environmental Institute for golf study in 2001 in Urbana, Illinois in which divot 

recovery time was impacted by different infill mixes; however, irrigation level was not 

included as a factor in that particular study, as all plots received similar levels of 

irrigation (Schmitz et al, 2005).  

Canopy Temperatures  

One of the benefits offered by turfgrass systems is their significant cooling 

capacity. Through transpirational cooling irrigated turfgrasses dissipate thermal energy 

and have a positive impact on human comfort. While deficit irrigation may help sustain 

water resources, it could substantially increase turfgrass heat loading, and therefore 

negate some of turf’s positive benefits. We observed a definite increase in reflective turf 

canopy temperatures between the 0.6 x ETo compared to the unirrigated irrigation 

treatments; however, this was only observed during a few dates late in each season 

(Figure 2.7).  Our findings for bermudagrass agree with those of Wherley (2011) who 
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reported that so long as adequate green cover was present in Empire zoysiagrass (Z. 

japonica), only minor increases in canopy temperatures occurred. 

Irrigation Level Effects on SAR and Salinity  

 Elevated salinity can impact turfgrass growth by causing ion toxicity, rendering 

water present in the soil “unavailable”, and over time can cause detrimental impacts on 

soil structure. Furthermore, salts can quickly accumulate near the soil surface when 

irrigating with salt-laden water, and this can be exacerbated by high evaporative demand 

(Marcum, 2006).  In this study, we found that higher amounts of salt (both sodium and 

total salts) accumulated as irrigation Kc increased. High salinity is usually managed by 

applying high levels of irrigation to “flush” or leach out salts, and therefore one might 

expect the highest salt accumulation while irrigating at or just below the turf coefficient. 

In this study, we observed the highest salt accumulation occurring for the 0.6 x ETo 

treatment.  Also, salts never accumulated to damaging levels for bermudagrass, which 

was reported to tolerate EC levels of 10 dS m-1. This is likely because the irrigation 

water used in this study was not saline to begin with, and also because numerous rain 

events possibly flushed some of the added salts below the root zone.  

Elevated SAR was the primary issue occurring in these soils resulting from high 

levels of sodium bicarbonate in the irrigation water.  Elevated soil SAR (>13) has the 

potential to reduce soil permeability and infiltration due to its dispersive effects on soil 

colloids (Marcum, 2006). As with EC, SAR exhibited a trend toward elevated levels 

with increasing irrigation Kc, with all irrigation treatments at the end of the first season 

reaching sodic levels. At the end of the second season, soil SAR for the 0.6 x ETo 
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treatment reached levels above 20 (Figure 2.10). It should also be noted that gypsum 

applied during the winter, between the two years failed to effectively reduce SAR to 

non-sodic levels, and likely, a much more aggressive gypsum application program would 

be a recommended practice. 

Summary and Conclusions 

As golf courses are faced with greater reductions in water allocations, there is 

limited information for golf course superintendents regarding the minimal irrigation 

amounts that will allow them to meet acceptable quality. The hypothesis of this study 

was that bermudagrass fairways could sustain adequate growth and persistence while 

irrigating at levels less than the turfs maximal water use rate, this being done by using 

ET-based weather data to theoretically calculate plant water use. For this study we 

considered 0.6 x ETo to be the turfs maximal water use rate and evaluated turf 

performance at this level as well as 0.45, 0.3 x ETo, and unirrigated conditions. Under 

the 3-day per week irrigation used in this study, irrigating at a Kc of 0.3 provided the turf 

adequate water to sustain acceptable quality. However, for golf course fairways that 

receive a high level of traffic, the Kc would need to be raised slightly as traffic was 

found to have an influence on quality by consistently decreasing quality at all irrigation 

levels. It is worth noting that all treatments that received deficit irrigation during the 

summer were able to recover to greater than 90% green cover at the end of each season 

while non-irrigated treatments only recovered to acceptable levels after the first season. 

This emphasizes a possible cumulative effect of not irrigating during the summer months 

over consecutive seasons. The effects of deficit irrigation were also observed in root 
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development. Irrigation Kc did not affect root mass during the first season, but in the 

second season root mass showed a decreasing response with decreasing Kc.  

The effects of decreasing Kc on canopy temperatures were also evaluated, since a 

significant benefit of turfgrass systems has been shown to be mitigation of heat loading. 

In this regard, we found that turfgrass canopy temperatures increased substantially with 

decreasing irrigation Kc.  

Soil EC did not reach damaging levels in any treatment throughout either season. 

This is likely due to the fact that the irrigation water was high in sodium and sodium 

bicarbonates rather than total salts. In this case, a high SAR could be observed in the soil 

since irrigating at or below the maximal water use rate could cause elevated sodium 

accumulation.  

Overall, this experiment confirms that ET-based irrigation practices are a viable 

tool that golf course superintendents can take advantage of in achieving water 

conservation goals while maintaining acceptable levels of quality on their golf courses. 

This study documented that bermudagrass turf performed at an equally acceptable level 

for golf course fairways at Kc values of 0.3, 0.45, and 0.6.  
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CHAPTER III 

WATER QUALITY AND GROWTH REGULATOR EFFECTS ON TIFWAY 

BERMUDAGRASS MANAGED UNDER IRRIGATION STRESS  

Overview 

As the need for landscape and golf course water conservation continues to 

increase, use of poor-quality irrigation water combined with deficit irrigation practices 

become commonplace.  Information is lacking concerning the relationship between 

water quality and minimal irrigation requirements, as well as the extent to which plant 

growth regulators may aid in ameliorating warm-season turfgrass quality under irrigation 

stress. The objectives of this 10-week greenhouse study were to 1) characterize growth 

and quality response of ‘Tifway’ bermudagrass (Cynodon dactylon x C. traansvalensis 

Burt Davy) to irrigation replacement of 1.0 and 0.3 x actual turfgrass evapotranspiration 

(ETa), 2) determine whether application of trinexapac-ethyl (TE) aids turf quality under 

water stress, and 3) determine whether minimal irrigation requirements are impacted by 

water quality (reverse osmosis, sodic, and saline).  Results demonstrated that irrigation 

water quality failed to significantly affect minimal irrigation requirements, but turf 

irrigated with sodic irrigation water exhibited considerably higher ETa rates in both 

studies than those receiving saline or RO irrigation. The TE application resulted in 

improved quality and delayed firing under soil moisture stress.  As expected, higher 

canopy temperatures were observed across treatments with decreasing irrigation 

amounts. There was much higher salt accumulation observed in saline irrigated 
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lysimeters; however, salt accumulation did not reach levels that would be considered 

damaging.   

Introduction   

 Since some turfgrasses are grown and maintained with the purpose of aesthetic 

appearance, one means of achieving greater water conservation in turf management is by 

providing water at rates lower than the maximal consumptive water use for a species, 

otherwise known as deficit irrigation (Feldhake et al, 1984; Fry and Butler, 1989; Qian 

and Engelke, 1999). Relative to their cool-season counterparts, warm-season turfgrasses 

possess superior water use efficiency due to their lower transpiration rates and tolerance 

of heat and drought (Brown, 2000; Fu et al, 2004).   

Bermudagrass is a widely used warm-season turfgrass that has shown the ability 

to maintain acceptable appearance at irrigation levels below its maximal water use rate 

(Fu et al, 2004). While irrigating turf at these levels has been shown to produce 

acceptable quality, little is known as to how water quality may affect the extent of deficit 

irrigation tolerable by turfgrass.  This has become an increasingly important 

consideration, especially in light of the growing number of maintained turf sites utilizing 

non-potable or low-quality irrigation sources (Throssel, 2009). 

 Non-potable water sources often contain high levels of sodium that may cause 

plant and/or soil related problems. Saline water sources often contain high levels of 

sodium chloride (NaCl) and can cause direct osmotic injury to turf shoots and/or roots.   

Elevated soil salinity can ultimately render the plant unable to absorb water present in 

the soil (Marcum, 2006; McFarland et al, 1998).  Another common problem in low 
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quality irrigation water is the presence of sodium bicarbonate (NaHCO3), which 

ultimately can lead to deterioration of the soil structure due to dispersion of soil colloids 

(Marcum, 2006). As the amount of water available for turfgrass irrigation becomes more 

limited, it is important to understand plant tolerance to drought conditions as well as to 

explore ways to reduce water consumption without sacrificing turfgrass quality. Plant 

growth regulators such as trinexapac-ethyl (TE) reduce turfgrass shoot growth by 

inhibiting the biologically active forms of giberillins (King et al, 1997; Turgeon, 2002). 

The application of TE has was reported to enhance heat and drought tolerance of cool 

season turf species perennial ryegrass (Lolium perenne L.) and creeping bentgrass  

(Agrostis stolonifera L.) (Jiang and Fry, 1998; McCann and Huang, 2007).  However, in 

the previously mentioned work with bentgrass, TE was applied weeks prior to the onset 

of drought conditions. Since turfgrasses metabolize TE within 2 to 6 weeks (Kreuser et 

al, 2011), the benefit of applying TE to enhance tolerance to water stress might be 

enhanced if repeat applications of TE are made prior to and during progressive water 

stress.  Information is lacking regarding the effects of TE on tolerance of warm season 

turfgrasses to drought conditions. 

 The objectives of this 10-week greenhouse study were to 1) characterize growth 

and quality response of ‘Tifway’ bermudagrass (Cynodon dactylon x C. traansvalensis 

Burt Davy) to irrigation replacement of 100 and 30% of actual turfgrass 

evapotranspiration (ETa), 2) determine whether application of trinexapac-ethyl (TE) aids 

turf quality under water stress, and 3) determine whether minimal irrigation 

requirements are impacted by water quality (reverse osmosis, sodic, and saline).  
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Materials and Methods 

Research Location and Design 

 This study was conducted at the Texas A&M Agrilife Research greenhouses, in 

College Station, Texas.  The experiment was initiated on March 6, 2013 and repeated on 

June 17, 2013.  Greenhouse temperatures were set to 30/23˚C (day/night) for both 

studies.  Six weeks prior to each study, 10.2 cm diameter washed sod plugs of Tifway 

bermudagrass (Cynodon dactylon x C. transvaalensis Burt. Davy) were established in 

lysimeters constructed from polyvinyl chloride (PVC) pipe (30.5 cm tall x 10.2 cm i.d.).  

Soil in the lysimeters was a medium-textured washed sand amended with complete 

starter fertilizer (21-7-14) containing sulfur-coated urea (BCF Products, Greenville, TX) 

applied at a rate of 4.9 g N m-2 as well as micronutrients (Step Hi-Mag, Andersons, Inc.).   

The study was arranged in a completely randomized design with 3 replicates, and 

accommodated a factorial arrangement of all possible combinations of two irrigation 

levels, three water sources (RO, Saline, and Sodic Potable), and two TE levels (+ or - 

TE). 
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Growth Regulator Treatments 

The effect of the growth regulator trinexapac-ethyl (Primo Maxx; Syngenta Crop 

Protection, Greensboro, NC.) on turf quality under water deficit was evaluated by 

applying TE to half of the lysimeters within each irrigation level and water quality 

regime using a CO2 powered backpack sprayer calibrated to deliver 28 mg m-2 a.i. in 

81.5 mL of H2O m-2.  Treatments were made at 3-week intervals during the study, at 

weeks 1, 4, and 7.  

Irrigation Water Quality 

The effects of water quality on tolerance to deficit irrigation was evaluated using 

three water quality treatments including 1) reverse osmosis, 2) sodic-potable, 3) saline-

potable (Table 1). The sodic-potable water source originated from a local municipal 

source for College Station, Texas, and was found to pose a potential Na hazard (Table 

3.1).  The saline-potable treatment was produced by mixing 4.8g of NaCl per liter of 

reverse osmosis water.  This water produced a final EC of 7.5 dS m-1. 
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Table 3.1. Quality analysis of the 3 water types used in the greenhouse study, along with their respective USSL classification. 
 

 USSL 
Classification 

Na 
Hazard 

Salinity 
Hazard pH 

EC 
(dS 
m-1) 

Bicarbonates 
 (ppm) 

Na 
(ppm) 

Cl 
(ppm) 

Reverse 
Osmosis 

C1-S1 Low Low 5.9 0 0 <1 <1 

Saline  
 

C3-S4 High High 6.6 7.5 0 1972 3030 

Sodic 
Potable 

C1-S4 High Low 8.4 <1 509 234 81 
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Irrigation Levels 

Immediately prior to initiating the experiment, all lysimeters were brought to 

field capacity by fully submerging in water for 1 minute and then allowing lysimeters to 

drain overnight.   Eighteen hours later, after drainage had ceased, the field capacity 

weights of lysimeters was recorded.  Twice weekly over the 10-weeks, irrigation was 

applied to the lysimeters.  Irrigation levels included controls (full ET replacement)= 1.0 

x actual evapotranspiration (ETa) or moderate water stress = 0.3 x ETa.  Irrigation 

amounts were determined by weighing and calculating the mass change of the 3 fully 

watered control lysimeters (receiving 1.0 x ETa replacement) using a balance with a 

resolution of 15,000 g x 0.5 g (Ohaus EB15, Ohaus Corporation, Parsipanny, NJ ).  

Irrigation was then supplied at either full ET replacement (1.0 x ETa) or a deficit fraction 

(0.3 x ETa) to each lysimeter, similar to that previously reported by Wherley (2011).   

Turfgrass Performance Evaluation 

 Turfgrass was evaluated during the study through bi-weekly visual assessments 

(rating scale of 1-9, minimal acceptable rating = 6). These quality ratings took into 

account the color, density, and uniformity of the turf canopy. A rating of 1 indicated 

100% brown leaf canopy and a rating of 9 represented fully dense, dark green perfectly 

uniform turf. The turf canopy within each treatment was also analyzed for percent green 

cover using digital image analysis software (SigmaScan,SPSS, Chicago, IL) 

(Richardson, 2001). Digital images were taken every 2 weeks using a Nikon camera 

attached to a light-box positioned over each lysimeter, cancelling out any outside light 

and creating uniform lighting within the box (Karcher, 2005). The SigmaScan software 
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operates by creating an average hue, staturation, and brightness level (HSB) for each 

image (Karcher, 2003). Reflective canopy temperature readings were also taken within 

each lysimeter on a bi-weekly basis using a handheld infrared thermometer (model 2956, 

Spectrum Technologies, Aurora, IL).  These measurements serve as an indicator of 

physiological drought stress.  

Shoot Growth Measurement 

The grass in each lysimeter was trimmed to 1.9 cm at 7 to 10 day intervals during 

the study using scissors and ruler.  After trimming, clippings were oven dried for 72 h at 

65° C before weighing.  

Soil and Leaf Tissue Salinity Measurement 

Salt accumulation was measured at the 7.6 cm depth within lysimeters during the 

middle (week 5) and end (week 10) of the study using an electrical conductivity probe 

(Spectrum Technologies, Aurora, IL).  

Analysis of Data 

 Data for each parameter were subjected to analysis of variance using the general 

linear model, univariate test procedure using SPSS ver. 21.0 (IBM Corp, Armonk, NY) 

to determine statistical significance of the results.  Where analysis of variance indicated 

a significant study effect, parameters were presented separately by study.  Mean 

separation procedures were performed using Tukey’s HSD at the P ≤ 0.05 level. 
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Results 

Evapotranspiration 

 In both studies, plants receiving sodic potable irrigation water exhibited 

significantly higher daily rates of ETa compared to the RO and Saline treatments (Figure 

3.1). These values representing daily ETa are derived from the weights taken twice per 

week to calculate water loss and are only representing the fully irrigated non-PGR 

treated lysimeters. The percent differences were fairly consistent across studies when 

comparing sodic potable to either the RO and Saline treatments. Overall, these ETa rates 

were higher during the summer study due to longer days and more intense radiation. 

 

Figure 3.1. Daily average evapotranspiration (ETa) of fully irrigated (1.0 x ETa) 
treatments. Irrigation was applied twice weekly. Bars with same letter within each study 
are not significantly different based on Tukey’s HSD at P≤ 0.05.
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Table 3.2. Analysis of variance table for water source, irrigation level, and trinexapac-ethyl effects on various parameters 
during studies 1 and 2. Where studies have been presented separately, study main effect were significant (P ≤ 0.05). 
 

P values 
 Visual Quality Percent Green Cover Clipping Dry Weight Soil Electrical 

Conductivity 
Final Root Dry 

Weight 
Canopy Temperatures Evapotranspiration 

 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 Week 5 Week 10 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 

Week *** *** *** *** *** ***     * * *** *** 

Source (S) *** *** NS NS NS *** *** *** NS NS ** * *** *** 

Level (L) *** *** *** *** NS *** *** *** ** * * ***   

Trinexapac-
ethyl (TE) 

*** *** *** NS *** *** *** NS NS NS NS NS   

S x L *** *** NS NS NS *** *** *** NS NS NS *   

S x TE NS NS NS NS NS *** *** NS NS NS NS NS   

L x TE * NS NS NS NS NS NS NS NS NS NS NS   

NS, *, **, *** Nonsignificant or significant at P = 0.05, 0.01, or 0.001, respectively
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Visual Quality as influenced by Water Source and Irrigation Level  

There was a water source x irrigation interaction effect on visual qualty, as well 

as an irrigation level x TE interaction for the spring study (Table 3.2). Significant 

differences in visual quality were not observed until week 6 of the spring study, but 

occurred by week 4 in the summer study.  

Spring study 

No differences were observed due to water source at the 1.0 x ETa level, and at 

the 1.0 x ETa water application amounts, were sustained above-acceptable quality levels 

for the duration of the 10-week study (Figure 3.2).  Visual quality ratings declined 

slightly for the 1.0 x ETa irrigation treatments from during the 10 weeks, possibly due to 

early N fertilization and periodic removal of clippings during the study.  At the deficit 

irrigation level 0.3 x ETa), saline and sodic-potable irrigated treatments sustained at or 

above acceptable levels of quality across the 10-week study. However, R.O. irrigated 

turf decreased to below acceptable quality levels (~5.5 out of 9) at week 6 (Figure 3.2).  

Summer Study 

During the summer study, longer days and more intense radiation prevailed, 

producing generally higher levels of stress in deficit irrigated treatments. Unlike spring, 

significant differences in visual quality occurred between water sources at both the 1.0 

and 0.3 x ETa levels (Figure 3.2). At the 1.0 x ETa irrigation level, saline-potable 

irrigation resulted in significant reductions in visual quality relative to R.O. and sodic-

potable on 3 of the 5 rating dates.  No significant differences occurred at the 0.3 x ETa 
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level between water sources, as all treatment means fell to below the minimal acceptable 

quality level 6 at week 4 and beyond (Figure 3.2).  

 

Figure 3.2. Spring and Summer study visual quality as affected by water source and 
irrigation level. Data have been pooled across TE application. Means with the same 
letter on the same date are not significantly different based on Fishers LSD at P≤0.05. 
Dotted line denotes acceptable quality. 
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TE application Quality Effects 

 
 There was an interaction of irrigation level x TE on visual quality during the 

spring study as well as a significant main effect of TE during both studies.  TE 

application noticeably influenced visual quality under deficit irrigation (0.30 x ETa) 

during the spring, and showed positive quality benefit at both levels during the summer 

(Figure 3.3). During the spring study, within deficit irrigation, TE led to delayed leaf 

firing and sustained acceptable quality levels during all weeks, while without TE turf 

quality decreased to below acceptable quality after week 6 (Figure 3.3).  During the 

summer study, although TE treated plants exhibited higher mean quality at both 

irrigation levels, both TE and non-TE treated plants fell below acceptable quality by 

week 6 (Figure 3.3).  
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Figure 3.3. Bermudagrass turf quality in the spring and summer studies as affected by 
TE application and irrigation level. Data were pooled across water source. Means with 
the same letter on the same date are not significantly different based on Fishers LSD at 
P≤0.05.  
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Water Quality Effects on Salinity 

 
 No study interaction was found between the spring and summer study for EC so 

data were pooled across studies. The EC at the 7.5 cm depth in saline-irrigated 

lysimeters approached ~2 and 3 dS m-1 (0.3 and 1.0 x ETa, respectively) by the end of 

the 10 weeks (Figure 3.4). The EC was much lower within the R.O. and sodic irrigated 

lysimeters. In these treatments, EC remained below 0.25 dS m-1 at weeks 5 and 10 of 

both studies (Figure 3.4).  

 

Figure 3.4. Week 5 and 10 electrical conductivity as affected by water source and 
irrigation level. Means were averaged across studies. Means with the same letter at the 
same week and irrigation water are not significantly different based on Fishers LSD at 
P≤0.05.
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Water Quality, TE, and Irrigation Effects on Bermudagrass Shoot Growth 

 There was a main effect on bermudagrass shoot growth among TE treatments in 

the spring study (Table 3.1). Plants without TE maintained ~62% more daily shoot 

growth compared to TE treated plants, within the spring study (Figure 3.5).  

 

Figure 3.5. Bermudagrass clipping dry weight as affected by trinexapac-ethyl treatment 
during the spring study. Data are pooled across irrigation levels and water sources. Bars 
with the same letter are not significantly different based on Tukeys HSD @ P≤ 0.05.   
 

While considering TE application and irrigation level, twice the amount of shoot 

growth occurred in sodic-irrigated turf as compared to saline or R.O. water sources 

(Figure 3.6). Within the summer study, TE caused the greatest levels of suppression in 
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sodic-irrigated turf while there were no differences within TE and non-TE growth rates 

of R.O. and saline irrigated turf (Figure 3.6).  

 

Figure 3.6. Clipping dry weights as affected by trinexapac-ethyl treatment (PGR) for the 
summer study. Bars with same letter are not significantly different based on Fishers LSD 
at P≤ 0.05. 
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Reflective Canopy Temperatures 

 Within both studies, higher canopy temperatures were observed at lower 

irrigation levels with ~15˚C increase in canopy temperatures from the spring to summer 

study at both irrigation levels (Figure 3.7). In the summer study, the saline 1.0 x ETa 

treatment maintained higher canopy temperatures than the sodic potable and R.O. 

treatments at that level (Figure 3.8). 

 

Figure 3.7. Canopy temperatures for the 1.0 and 0.3 x ETa treatments for both the spring 
and summer study. Data were pooled across TE and water source. Bars with the same 
letter within the same study are not significantly different based on Tukeys HSD at P≤ 
0.05. 
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Figure 3.8. Summer study canopy temperatures for the three water sources and two 
irrigation levels. Data were pooled across TE. Bars with the same letter are not 
significantly different based on Tukeys HSD at P≤ 0.
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Discussion  

Turf Quality as Influenced by TE Application Under Irrigation Stress 

 When irrigation stress became apparent, TE treated bermudagrass maintained 

higher turf quality levels than did the untreated at the 0.3 x ETa level. These results are 

consistent with Jiang and Fry (1998) and McCann and Huang (2007) that TE can 

enhance turf quality during periods of water deficit. McCann and Huang found that 

plants pre-treated with TE maintained higher quality compared to untreated plants up to 

21 days after onset of drought. Unlike McCann and Huang (2007) who pre-treated 

bentgrass plants with TE every 14 days for 42 days before exposing them to drought, 

bermudagrass in this study was treated every 3 weeks beginning with the onset of water 

stress. The theory behind this method was that Tifway Bermudagrass was found to 

metabolize TE within 4-6 weeks (McCullough et al., 2007; Fagerness and Yelverton, 

2000; Fagerness et al., 2004) so re-applying TE before to the plants could fully 

metabolize the TE, could strengthen the benefit of TE improving turf quality during 

irrigation stress. While McCann and Huang saw a positive response of TE application 

with creeping bentgrass up to 21 days of drought, beyond this point TE would likely 

have metabolized within the plant and the benefit would no longer have been appaent. 

Whether it is more beneficial to pre-treat with TE or apply TE in subsequent applications 

during drought would likely depend on how long the drought conditions persisted. Since 

TE had a positive impact within the fully irrigated treatment compared to non-treated 

plants, pre-treating before being exposed to drought may have a positive impact on 

bermudagrass since plants would be of higher quality.  
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Visual Quality as influenced by Water Source and Irrigation Level  

While the saline irrigation treatment caused the greatest increases in EC within 

the 1.0 x ETa irrigation treatment, the only significant differences in visual quality 

observed during the summer study at 3 of the 5 rating dates. The explanation for this 

could be some salinity stress caused by salt accumulation within the saline treatment 

during the summer study as a result of replacing higher water volumes. The reason we 

did not find more significant differences within the water quality treatments is likely due 

to EC levels not reaching damaging levels during the 10 week studies. Bermudagrass is a 

turf species fairly tolerant to soil salinity over 10 dS m-1 (Harivandi, 1992), in both of the 

studies salinity did not exceed 3 dS m-1.   

At the deficit level, sodic treatment bermudagrass was superior for the saline and 

R.O. treatments during the spring study. This was likely due to the sodic treatments 

receiving higher water volumes due to higher ETa within the fully irrigated sodic 

treatment, since water amounts applied to the deficit treatments were a percentage of the 

ETa in the fully irrigated treatment of the same water type. During the summer study the 

sodic treatments again outperformed other treatments through week 4.  From week 6 on, 

all deficit treatments performed relatively the same.  

Trinexapac-ethyl and Water Quality Effects on Bermudagrass Shoot Growth 

 While TE application was found to enhance turf quality, TE caused an overall 

reduction in turfgrass shoot growth.  A reduction of ~60% in daily growth while 
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considering the mean of all treatments was found during the spring study. This reduction 

in growth was fairly consistent across water sources. 

 Overall, higher shoot growth occurred within the sodic potable treatment 

compared to the R.O. and saline treatments. This is likely due to the observed higher ETa 

within the sodic-potable treatment which would could be associated with higher CO2 

fixation. This finding suggests that water quality may need to be accounted for when 

scheduling irrigation to meet turf requirements; however, the underlying mechanism 

causing this difference is unknown, suggesting a need for further research and 

investigation.  

Summary and Conclusions 

 As golf course superintendants face changes in irrigation water allocations, it is 

important as researchers to explore ways to conserve water. Previous research indicated 

that some warm season grasses are able to persist while being irrigated at levels below 

their maximal water use rates; however, little is known about the extent to which they 

can persist while being irrigated with water of poor quality. Previous research has also 

indicated that applying a plant growth regulator such as trinexapac-ethyl to turfgrass 

could improve quality and drought response. Two 10-week greenhouse lysimeter studies 

were conducted to address the following objective. The objectives of were to 1) 

characterize growth and quality response of ‘Tifway’ bermudagrass (Cynodon dactylon x 

C. traansvalensis Burt Davy) to irrigation replacement of 1.0 and 0.3 of actual 

evapotranspiration (ETa), 2) determine whether application of trinexapac-ethyl (TE) aids 
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turf quality under water stress, and 3) determine whether minimal irrigation 

requirements are impacted by water quality (R.O., sodic potable, and saline).  

 In this greenhouse experiment, water source was not found to influence 

bermudagrass deficit irrigation response; however, higher daily ETa was observed while 

irrigating with a sodic source. While this could be something to address, the mechanism 

for this is unknown and requires further evaluation. TE application did improve 

bermudagrass deficit irrigation response by improving overall quality and delaying leaf 

firing. While there was much higher salt accumulation within the saline irrigated 

bermudagrass lysimeters, salt accumulation failed to reach damaging levels.  

 Overall, these studies indicated that potential water savings for golf courses 

could lie in deficit irrigation practices supplemented with TE application regardless of 

irrigation water quality.  
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CHAPTER IV 

CONCLUSION 

Regardless of the water status throughout the state, turf managers will be 

required to meet customer demands even as populations continue to increase, drought 

conditions persist, and the supply of water available for irrigation continues to dwindle. 

Due to this there was an apparent need to further examine the findings of prior research 

to help guide turf managers during changes in irrigation water allocations. We did this 

through a series of field and greenhouse studies in College Station, Texas by 

investigating if the water conservation technique of Evaportranspiration (ET) based 

deficit irrigation is a viable option for golf course superintendants needing to meet a 

conservation goal.  

In the field study, we evaluated if Tifway bermudagrass being irrigated three 

times weekly at levels below the turf coefficient of 0.6 x reference evapotranspiration 

(ETo) would be able to maintain adequate quality, persistence, recovery from divot and 

traffic stress, and also fall recovery once full irrigation volumes could be supplied. Our 

findings showed that Tifway bermudagrass plots, managed similarly to most Texas golf 

course fairways could maintain adequate growth and quality while being irrigated at 

levels as low as 0.3 x ETo. Even though divot and traffic recovery were slowed and a 

substantial increase in canopy temperatures were found at decreasing irrigation levels, 

we found turf quality to be acceptable in regards to membership and ownership 

demands. We also found, from our fall recovery evaluation that not irrigating during the 
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summer months could cause cumulative effects since unnirrigated plots were not able to 

recover to acceptable levels during the fall of the second season.  

We further expanded from our field study in two 10-week greenhouse studies to 

see if the minimal water requirements would be affected by different water sources, as 

well as determining if applying Trinexapac-ethyl (TE) could improve turf quality and 

drought response. Our findings showed that irrigation water quality will not significantly 

influence minimal irrigation requirements; however, turf that received sodic irrigation 

did exhibit considerably higher evapotranspiration (ET) rates relative to those receiving 

saline or RO irrigation. This could be something to address while irrigating with this 

water type, but this finding needs further investigation. We found TE to improve 

bermudagrass quality and delayed firing under the soil moisture stress from deficit 

irrigation.  

The findings from this research provide timely and practical information that turf 

managers can employ to help meet water conservation goals by utilizing ET-based 

irrigation scheduling and/or low-quality water sources in the management of golf course 

turfgrass systems. 
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