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ABSTRACT

Due to their ubiquitous presence in hard-disk drives and growing potential as

commercially viable memory bits, Magnetic Tunnel Junctions (MTJs) continue to

provide impetus for scientific study. The demand for smaller devices and efficient

energy consumption mandates further investigation of their thermal properties and

possible finite-size effects. Such considerations have prompted a renewed interest

in the long-known Seebeck effect, in which a thermal gradient spanning a material

induces a voltage. The strength of this induced voltage can change as a function of

the device’s magnetization configuration - known as the magneto-Seebeck effect or

magnetothermopower - in analogy with the Giant (and Tunnel) Magnetoresistance.

This thesis presents a theoretical study of this effect in MgO-based MTJs with spin-

orbit coupling. We present theoretical calculations of the Tunneling Anisotropic

Magneto-Seebeck effect using realistic band structures, and show that the thermal

properties of MTJs are tunable via magnetic field. This phenomenon potentially

enables the controlled manipulation of temperature gradients, the recycling of wasted

heat, and thermal spin-logic.

Our calculations employ the Landauer-Buttiker scattering formalism, in conjunc-

tion with realistic multi-band tight-binding models fitted to ab-initio calculations.

We demonstrate that numerically-unstable transmission resonances, ordinarily de-

scribed as hot-spots in the literature, more accurately resemble ”walls” that weave

through each device’s two-dimensional Brillouin Zone. We discuss their physical rele-

vance in modern day nanostructures, and argue that their selective removal (via filter-

ing algorithms) aids convergence while preserving each system’s essential magnetic-

transport properties. Finally, we demonstrate that exploiting spin-orbit coupling
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in MTJs with a single ferromagnetic contact can actually enhance certain magnetic

transport anisotropies, allowing for higher packing densities as well.
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1. INTRODUCTION

The discovery of quantum mechanics enabled scientists to describe atomic phe-

nomena from first principles. The new fundamental equations of matter entrusted

free particles with a wavelike nature, and experiments confirmed that electrons ex-

hibited interference phenomena ordinarily seen in classical optics. Trapped particles,

such as electrons confined by atomic potentials, likewise existed in discrete energy

modes common to bounded wave-carrying media. Furthermore, the discovery of

spin angular momentum — confined to discrete values and intrinsic to all particles

— proved that not all quantum phenomena possessed a classical counterpart.

Soon after, many early pioneers attempted to explain the behavior of electrons in

solids. Practical limitations arose due to the enormous number of atoms and com-

plexity of fundamental calculations. In 1925 Felix Bloch derived a theorem describing

electrons in periodic systems (such as a perfect crystal) from first principles, tran-

scending the complexities of solids by exploiting their symmetries. In this description

electrons retain their wavelike nature, possibly enabling one to observe interference ef-

fects via conductance measurements. Despite the inherent quantum nature of solids,

many believed that multiple scattering events rendered such coherent phenomena

unobservable. By the 1980’s, advancements in device fabrication enabled a number

of experiments to prove this assertion incorrect. Exploration of the so-called meso-

scopic regime, in which one observes such coherent electronic transport, heralded a

new era in solid-state physics and electronics.

Today the growing necessity for energy-efficient information processing at nanome-

ter scales mandates research beyond industry-standard electronics. While many elec-

tronic devices operate in the mesoscopic regime, the spin degree-of-freedom is largely
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disregarded (despite a few notable exceptions). Many researchers believe that ex-

ploiting spin might alleviate the mounting technological pressures associated with

building faster, more energy-efficient devices.

1.1 Spintronics

Like many subfields within Physics and Engineering, Spintronics falls victim to

an overabundance of definitions. In general, it refers to the study of an electron’s

spin and associated magnetic moment in solid-state systems. Spintronics presents

extraordinary technological promise. Arguably its greatest success story, the Tunnel

Magnetoresistance (TMR) found its way from the laboratory to commercial hard-

disk read heads at an unprecedented speed. Even so, much of Spintronics easily

falls within the realm of pure science. The inherent spin-polarization of carriers

in half-metals, or the spin-locked states found in topological insulators furnish a

few examples whose scientific intrigue perhaps outshines the potential for applica-

tion. In the following section I discuss Magnetoelectronics, a branch of Spintronics

that currently enjoys industry-wide adoption. Next, I describe emerging disciplines

within Spintronics rich with scientific curiosities and potential technological appli-

cations. Finally, I give the problem statement of this thesis, which bridges the well-

established magnetoresistance effect with an up-and-coming area of research called

Spin Caloritronics.

1.1.1 Magnetoelectronics

Magnetoresistance refers to a system’s ability to change its electrical resistance

based on an externally-applied magnetic field. One quantifies the effect by mea-

suring the magnetoresistance (MR) ratio, i.e. the maximum difference in measured

resistances relative to its minimum (or maximum) value.

The discovery of the Anisotropic Magnetoresistance (AMR) by William Thom-
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son (Lord Kelvin) in the mid-nineteenth century foreshadowed a new paradigm in

electronics that followed more than a century later. Though Thomson measured

an MR ratio of less than one percent (in Ni and Fe), modern day layered magnetic

structures boast MR ratios over one hundred times greater. Despite its prevalence

in certain magnetic sensing applications, AMR remains relatively unused in regards

to information processing.

In the mid-seventies Julliere [22] first observed the so-called Tunnel Magnetore-

sistance (TMR) in an Fe
∣∣Ge
∣∣Co structure, measuring an MR ratio of 14% at liquid

Helium temperatures. In the late eighties Albert Fert, Peter Grunberg and collabora-

tors reported observation of the Giant Magnetoresistance (GMR) effect; both teams

observed significant room-temperature MR ratios (∼50%) in Fe
∣∣Cr-based structures

[1, 5]. Their discoveries eventually won them the Nobel Prize in Physics (2007).

Today, hard-disk drives employ read heads that utilize the TMR effect to measure

magnetic information. The electronics industry adopted the TMR effect with un-

precedented speed, demonstrating the great potential of Magnetoelectronics.

On the theoretical front, numerical calculations that couple ab-initio methods

with the Boltzmann formalism [41] and with coherent transport calculations [40, 3, 6]

surfaced in the nineties, adding new depth to our understanding of magnetoresis-

tance. By 2004 Yuasa et al [62, 63] obtained MR ratios exceeding 200% at room

temperature using a single-crystal MgO barrier. Parkin et al [36] produced com-

parable results in highly-oriented polycrystalline MgO barriers. In the same year

Charles Gould et al discovered the Tunneling Anisotropic Magnetoresistance. In

their experiment they measured a magnetoresistance utilizing a single (spin-orbit

coupled) ferromagnetic layer [13]. To date, researchers have observed MR ratios of

over 400% at room temperature [28]. Eventually, ab-initio theories predicted MR

ratios that exceed 1000% in magnetic tunnel junctions with a crystalline MgO(001)
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barrier [7, 26]. In general, magnetic tunnel junctions remain strong candidates for

many emerging spintronics applications.

1.1.2 Emerging Schemes in Spintronics

One could refer to Magnetoelectronics as well-established Spintronics. Over the

past four decades researchers have investigated other promising ventures in spin-

based systems yet to be commercially utilized. Although magnetic tunnel junctions

currently enjoy widespread use in data storage, the ability to efficiently switch mag-

netization via electric current opens doors to applications that span information pro-

cessing. Early forms of Magnetic Random Access Memory (MRAM) achieved this

switching through magnetic fields generated by currents [47]. Magnetization con-

trol via the direct transfer of spin angular momentum, known as the Spin-Transfer

Torque [46, 4], later paved the way for more efficient implementations of MRAM.

Even so, the large current densities involved continue to exceed viable standards for

commercialization. Spin-based logic devices furnish the most elusive application yet.

One state-of-the-art implementation of current-induced magnetization switching

(CIMS) utilizes the so-called Spin-Orbit Torque, which occurs in magnetic systems

with a spin-orbit interaction and broken inversion symmetry [10]. Despite experimen-

tal verification in various material structures and multiple theoretical studies, debate

ensues regarding its origin in heavy metal/ferromagnetic interfaces. Promising ma-

terial candidates remain unexplored, such as the half-Heusler alloys and topological

insulator/ferromagnetic bilayers. This phenomenon mandates further investigation,

and exhibits enormous potential for low power, next-generation computing devices.

Recently researchers have made great progress combining spintronics with tra-

ditional thermoelectric effects. Known as Spin Caloritronics, this subfield gained

strength with the discovery of the Spin-Seebeck effect in 2008 [51]. Investigators

4



have also observed that the Seebeck and Peltier coefficients belonging to certain ma-

terials depend on the spin degree of freedom [44, 12]. The Thermal Spin Transfer

Torque, predicted by Jia et al. [20], may achieve CIMS using temperature gradients

instead of currents [60].

1.2 Dissertation Overview: Tunneling (Anisotropic) Magnetic Transport

Anisotropies

As it turns out, thermally-generated voltages in magnetic tunnel junctions vary

based on the magnetization configuration of the device. Known as the Magneto-

Seebeck Effect, this phenomenon enables one to tune the thermal properties of mag-

netic tunnel junctions via magnetic field. First reported by three separate groups

[56, 23, 31], who confirmed the effect in CoFeB
∣∣MgO

∣∣ CoFeB and GaAs-based tunnel

junctions, the magneto-Seebeck effect represents the thermal cousin of the magne-

toresistance. Theoretical studies by multiple teams investigate the effect using ab-

initio methods in conjunction with the Landauer-Buttiker approach [17, 11] or the

Boltzmann formalism [59, 24].

In this thesis we perform a theoretical study of the magnetoresistance and magneto-

Seebeck effect in magnetic tunnel junctions. In some sense this dissertation combines

both traditional and emerging schemes in spintronics. As far as we know, no one has

computed this effect in CoPt-based devices using realistic band structures. Further-

more, no comparative studies of the magneto-Seebeck effect have been performed

in MTJs exhibiting the TMR and TAMR effects. We therefore hope that our in-

vestigations add to the understanding of magnet transport anisotropies induced by

spin-orbit coupling.
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2. ELECTRONIC TRANSPORT

We begin by providing a review of the essential tools required to study electronic

transport in the coherent regime. We first discuss periodic systems and the emergence

of electronic structure. Afterwards, we derive the Landauer-Buttiker formalism,

which allows us to calculate electron transmission across a scattering region supplied

by thermal reservoirs.

2.1 Electronic Structure

2.1.1 Bloch’s Theorem

In 1928, Felix Bloch published a paper deriving the wavefunction of a single

particle in a spatially-periodic environment. In doing so he created a new paradigm

for analyzing solid-state systems. We derive this formalism now.

In order to realize a spatially-periodic system of infinite extent, imagine a grid

spanned by all values of ~R, defined below:

~R =
∑
i

λi~ai. (2.1)

The λi comprise of all integer-valued coefficients and the ~ai represent a set of basis

vectors. We assume that a single electron obeys some Hamiltonian Ĥ(~r), and that

performing the spatial translation ~r → ~r + ~R leaves this Hamiltonian unchanged:

Ĥ(~r + ~R) = Ĥ(~r). (2.2)

We require that the ~ai represent the minimal basis by which all invariant translations

of Ĥ are obtained. The collection of points spanned by ~ai is known as a Bravais
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Lattice. They could, for example, represent the positions of nuclei within a perfectly

homogenous material. An example of such a lattice is presented in figure 2.1. We

should point out that the continuous space defined by this equation

~R ≤ ~r < ~R +
∑
i

xi~ai. (2.3)

for 0 ≤ xi ≤ 1

is known as a primitive cell. Since we are dealing with a time-independent Hamil-

a1

a2

a3

Figure 2.1: A pictorial representation of a Bravais Lattice.

tonian, we proceed directly to the eigenvalue equation:

Ĥ(~r)ψn(~r) = Enψn(~r). (2.4)

We aim to learn something about the ψn(~r). It is tempting to assume that the

7



wavefunction obeys the same symmetry relation as the Hamiltonian; in general this

must be scrutinized. We proceed in the usual way established by F. Bloch; first we

define a translation operator with respect to our Bravais Lattice:

T̂ (~R)ψn(~r) = ψn(~r + ~R). (2.5)

We note that this operator (for any ~R) commutes with the Hamiltonian,

[Ĥ(~r), T̂ (~R)]ψn(~r) = Ĥ(~r)T̂ (~R)ψn(~r)− T̂ (~R)Ĥ(~r)ψn(~r)

= Ĥ(~r)ψn(~r + ~R)− EnT̂ (~R)ψn(~r)

= Enψn(~r + ~R)− Enψn(~r + ~R)

= 0, (2.6)

implying that both operators possess simultaneous eigenvalues. In other words, the

ψn are also eigenfunctions of T̂ :

T̂ (~R)ψn = ψn(~r + ~R) = tψn(~r). (2.7)

In essence, equation 2.7 constricts the form of the wavefunction; we now know the

energy eigenfunctions ψn merely pick up a phase factor (specifically, an eigenvalue

of the translation operator) when shifted along the Bravais Lattice. The trick now

is to expand ψn in terms of plane waves:

ψn(~r) =
∑
~q

An~qe
i~q·~r. (2.8)
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Applying the transformation operator, we find

T̂ (~R)ψn(~r) =
∑
~q

An~qe
i~q·(~r+~R)

=
∑
~q

An~qe
i~q·~Rei~q·~r

= t
∑
~q

An~qe
i~q·~r (2.9)

where the last line must somehow hold due to (2.7). Since plane waves furnish an

orthogonal set, we determine that

t = ei~q·
~R (2.10)

for each ~q. How can ~q vary within the sum while ei~q·
~R remains constant? One achieves

this by introducing an infinite discrete set of vectors ~G, much like the Bravais Lattice,

that obey the property

~G · ~R = 2πn (2.11)

for integer values of n. This set of vectors is known as the Reciprocal Lattice. We

then make the transformation

~q = ~G+ ~k (2.12)

for some constant vector ~k, and obtain

t = ei(
~G+~k)·~R = ei2πnei

~k·~R = ei
~k·~R, (2.13)
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and

ψn(~r) =
∑
~G+~k

An( ~G+~k)e
i( ~G+~k)·~r

= ei
~k·~r
∑
~G

An( ~G+~k)e
i ~G·~r. (2.14)

We note from the last line that summing over ~G + ~k is identical to summing over

~G, since ~k is constant over the sum. We should also remind the reader that we have

placed no restrictions on ~k; it can take on any complex value and appears to be

uncorrelated (unlike ~G) to the lattice ~R.

Let us pause for a second. We forced t to be constant and allowed the sum to

vary, but did so at the expense of limiting the sum’s extent. Before the sum was

taken over the continuous parameter ~q; now it is taken over the discrete lattice ~G

shifted by a constant vector ~k. The combination of the eigenvalue problem for t plus

the orthogonality of the plane waves demand that this be the case.

Finally, we recognize that because of (2.11), the plane waves in the Fourier sum

ei
~G·~r describe modes that fit exactly within the unit cells of the Bravais Lattice

(figure 2.2). They have the same periodicity as the lattice; thus we may write our

wavefunction as

ψn~k(~r) = ei
~k·~rµn~k(~r), (2.15)

µn~k(~r) =
∑
~G

An( ~G+~k)e
i ~G·~r (2.16)

where

µn~k(~r + ~R) = µn~k(~r). (2.17)

The reader should find that (2.17) follows from (2.16) by inspection.

Thus we have already obtained a remarkable result: if the Hamiltonian is lattice-
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a1a2

Figure 2.2: Properties of the Reciprocal Lattice. Plane waves of the form ei
~G·~r fit exactly

within the Bravais Lattice ~R.

periodic, the wavefunction is also lattice-periodic, but only up to a complex phase.

A complex phase factor implies that (in general) the wavefunction can diminish in

amplitude over the lattice.

Note that by requiring t to be a constant phase and making no restrictions as

to its value, ~k becomes unrestricted in value as well. Thus, ~k comprises another

quantum number labeling the eigenvalue of the translation operator, much like n

originally represented the set of quantum numbers labeling the energy eigenvalue.

Now both must be included in the most general solution. In particular this proves

quite important for the energy, now written as:

En(~k). (2.18)

Given that ~k varies continuously, it’s no stretch to assume that En(~k) does as well

(with respect to ~k). However, the other quantum number n shifts the energy dis-

cretely in general. Thus, for each n, there exists a separate and continuous energy

dispersion relation, referred to as a band.

We see that, in systems of infinite periodicity, the wavefunction itself is only par-
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tially periodic; it is the product of a lattice-periodic function and a plane wave whose

periodicity is uncorrelated to the lattice. This is the essence of Bloch’s Theorem.

2.1.2 The Brillouin Zone

In the previous section we showed that the µn~k can be expanded as a Fourier

sum:

µn~k(~r) =
∑
~G

An(~k+ ~G)e
i ~G·~r (2.19)

As mentioned before, the reciprocal lattice forms an infinite discrete set of vectors;

however they are designed to obey the rule

~G · ~R = 2πn (2.20)

for any integer n. The An(~k+ ~G) are coefficients of the Fourier series and are given

dependency on both the n and ~k for complete generality.

Despite the complete freedom of choice regarding ~k, we should note that physical

requirements do restrict the space in which ~k is not redundant. Since the ~G belong

to an infinite discrete lattice, they should also be spanned by a set of basis vectors.

In three-dimensions, for example, these basis vectors are given by:

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)

~b2 = 2π
~a3 × ~a1

~a1 · (~a2 × ~a3)

~b3 = 2π
~a1 × ~a2

~a1 · (~a2 × ~a3)
. (2.21)

Figure 2.3a depicts the space spanned by such a collection of vectors. In the previous

section, we discussed what happens when we translate the wavefunction in real space.

12



Let us see the effect of translating the wavefunction in ~k-space:

ψn(~k+~bi)
(~r) = ei(

~k+~bi)·~rµn(~k+~bi)
(~r)

= ei(
~k+~bi)·~r

∑
~G

An(~k+~bi+ ~G)e
i ~G·~r,

Since the ~G are an infinite set we can uniformly shift them at no cost,

= ei(
~k+~bi)·~r

∑
~G

An(~k+~bi+ ~G−~bi)e
i( ~G−~bi)·~r

= ei
~k·~r
∑
~G

An(~k+ ~G)e
i ~G·~r

= ψn~k(~r), (2.22)

thus we immediately find

ψn(~k+~bi)
(~r) = ψn~k(~r), (2.23)

while in general, since the ~bi span the ~G, we can say

ψn(~k+ ~G)(~r) = ψn~k(~r). (2.24)

Using the same trick as above one can show:

µn(~k+ ~G)(~r) = e−i
~G·~rµn~k(~r). (2.25)

From equation 2.23 we see that if ~k is shifted by any of the ~bi the wavefunction will

simply repeat. That means that ψn~k is uniquely defined within the parallelepiped

bounded by the vectors ~bi (figure 2.3b). Any ~k values beyond the boundaries of this

space are simply redundant, in regards to the wavefunction (figure 2.3c). This space

13



b1

b2
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(a)

b1
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Ψn

Ψn

Ψn

Ψn

Ψn

Ψn

Ψn

Ψn

(c)

Figure 2.3: Properties of the Brillouin Zone. (a) The Reciprocal Lattice ~G, spanned
by the vectors ~bi. (b) The first Brillouin Zone (in a three-dimensional ~k-space). This
volume represents the maximal space in which the wavefunction is not redundant. (c) The
wavefunction for the n-th mode is uniquely defined within each Brillouin Zone; however
the µ

n~k
pick up a local phase between each Brillouin Zone.

of ~k-vectors is known as the Brillouin Zone, or more accurately, the first Brillouin

Zone.

2.1.3 The Band Structure, Fermi Energy, and Electrochemical Potential

Any given electron feels the influence of electric and magnetic fields brought upon

by other electrons and atomic nuclei within a material. If the atomic nuclei form

a perfect lattice with no spatial defects or substitutions with other atomic species

(referred to as disorder), often the electron sees the lattice as an infinitely periodic

electrostatic potential. In some cases, one even describes the influence of every other

electron in terms of a smeared static charge density (screening). Considering the

simple case in which each non-interacting electron feels the same periodic potential,

Bloch’s theorem tells us that their energies obey a band structure En(~k). In this

limit the band structure uniquely determines the electronic properties of a perfectly
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clean, bulk material, in the sense that it specifies all available electronic states.

Since electrons obey the Pauli exclusion principle, each electron fills the lowest en-

ergy state available (at zero temperature) until all delocalized electrons are accounted

for. The amount of delocalized electrons usually stems from the number available

for transport per atomic site. Disorder inevitably complicates this otherwise pretty

picture, leading to diverse physical phenomena such as Anderson localization or co-

herent phenomena such as Universal Conductance Fluctuations. Increases in charge

screening brought upon by higher carrier densities can alter the underlying band

structure of materials, changing them from conductors to insulators (Mott transi-

tion). A review of the many transport phenomena present in Condensed Matter

systems is best left to textbooks; in general, we stick to the simple picture provided

here.

The Fermi Energy equals the greatest energy an electron occupies at zero temper-

ature, usually reported relative to the lowest energy available in a particular band.

The Fermi level (or electrochemical potential), however, refers to the energy at which

the probability of occupation is one half. In the framework of Fermi-Dirac statistics,

the Fermi energy equals the Fermi level at zero temperature. At higher temperatures,

one should speak of the Fermi level and not the Fermi energy; in practice many texts

and journal articles use both interchangeably.

The electric fields, temperature gradients, and electrochemical potential differ-

ences that lead to conduction primarily influence electrons at the Fermi level, since

they have the nearest access to unfilled states. Thus the results of transport simula-

tions often greatly depend upon the prediction of the Fermi level.
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2.1.4 Finite-Size Effects

In the previous section we skipped over a major conceptual point that later proves

essential to the results of this thesis. If the quantum number ~k labels available states

and varies continuously, than an infinite amount of electrons can occupy any interval

of ~k-space. Thus a finite amount of electrons only occupies an infinitesimal range

past the ground state; no appreciable Fermi energy exists. In fact, this holds true

for any infinite system.

In reality, all solid-state systems are finite. One often assumes that a system is

big enough so that Bloch’s theorem roughly holds but small enough to enforce some

sort of finite boundary conditions. In the simplest approach we assume that the

wavefunction vanishes outside the material, usually referred to as hard wall boundary

conditions. For systems satisfying µn~k = µn−~k, we could limit our total wavefunction

to pairs of Bloch states

Ψ(~r) =
∑
n~k

cn~k

[
ψn~k(~r) + ψn−~k(~r)

]
(2.26)

=
∑
n~k

cn~kµn~k(~r)
[
ei
~k·~r + e−i

~k·~r
]

(2.27)

=
∑
n~k

c+

n~k
µn~k(~r) cos(~k · ~r) (2.28)

where in the last line we absorbed a factor of 2 into the coefficients c+

n~k
. In analogy

with the infinite square well potential, we restrict our values of ~k such that each wave

cos(~k · ~r) vanishes at the boundaries. Assuming our system is a cube with sides Li

we have:

ki =
πmi

Li
for i ∈ [x, y, z], mi ∈ Z. (2.29)
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Unfortunately we cannot guarantee that this form encompasses all solutions. In

general µn~k 6= µn−~k, and while wavefunctions resemble ei
~k·~rµn~k in the bulk they likely

deform near the boundaries. Instead, we might soften our boundary conditions by

only requiring that the wavefunction repeat at the ends (often called cyclic boundary

conditions). In this case:

ki =
2πmi

Li
for i ∈ [x, y, z], mi ∈ Z. (2.30)

As equation 2.30 demonstrates, cyclic boundary conditions limit the available ~k-

values (within the first Brillouin Zone) to a discrete grid rather than a continuum.

States are now separated by a minimal spacing ∆ki = 2π/Li in each direction. In this

picture a finite amount of electrons can now occupy states up to a non-infinitesimal,

meaningful Fermi energy.

The minimum ~k-spacing scales inversely with the system size. Thus, given the

same material (i.e. assuming the size of the Brillouin Zone remains invariant), larger

systems admit more quantum states. Said another way, in larger systems electrons

occupy a denser grid in ~k-space. Later we see that the electron transmission across

certain magnetic tunnel junctions (MTJs) exhibits resonances highly localized in ~k-

space. Whether or not electrons display this resonant behavior depends on whether

or not the MTJ’s size permits sufficient ~k-space resolution to access these features.

2.1.5 The Density of States

Having established that the available ~k states form a grid, we proceed right back

to where we started. Often we wish to approximate the ~k-space sum of some function

with an integral. Such a maneuver is justified when the ∆ki are small with respect

to sharply-varying features in the function. In this case we rewrite the sum of all
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available ~k vectors (in n dimensions)

∑
~k

1 =
VBZ

∆~k
=

1

∆~k

∫
dnk =

V

(2π)n

∫
dnk (2.31)

where V and VBZ represent the volumes of the entire system and Brillouin Zone

respectively, and ∆~k represents the product of all ∆ki (the minimum volume ele-

ment of the Brillouin Zone). This expression is exact. It is therefore reasonable to

approximate the sum of a function as:

∑
~k

f(~k) ∼ V

(2π)n

∫
dnkf(~k) (2.32)

Here we assume that a tiny piece of this integral taken over the minuscule region ∆~k

approximately equals f(~k)∆~k. By including the factor of 1/∆~k we force the integral

to only add up values of f(~k) (as the L.H.S. of equation 2.32 prescribes). We treat

these expressions as interchangeable; therefore we introduce the notation

∫
[dnk]f(~k) (2.33)

to stand for either the L.H.S. (bare sum) or R.H.S. (weighted integral) of equation

2.32), depending on the situation.

Assume we wish to sum a function only dependent on energy, over both ~k-space

and band index. At any given energy, the function is added multiple times at each
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~k-point lying within the constant energy surface. A quick calculation gives:

∑
m

∫
[dnk]f

(
Em(~k)

)
=
∑
m

∫
[dnk]

[∫
dEf

(
E
)
δ
(
E − Em(~k)

)]
(2.34)

=

∫
dEf

(
E
)[∑

m

∫
[dnk]δ

(
E − Em(~k)

)]
(2.35)

=

∫
dEf

(
E
)
ρ(E) (2.36)

where

ρ(E) ≡
∑
m

∫
[dnk]δ

(
E − Em(~k)

)
(2.37)

Clearly ρ(E) represents the number of ~k-vectors existing between E and E + ∆E.

Naturally, we may identify equation 2.37 as the energy-dependent Density Of States

(DOS). Although this integral runs through an n-dimensional ~k space, the integrand

comprises of an energy-dependent one-dimensional Dirac delta function. In general,

one cannot further simplify this integral without expressing the integrand and the

integral in the same coordinate system. Often one rewrites equation 2.37 as the

difference between constant energy surface integrals at E and E + ∆E. In this form

one may investigate the so-called Van Hove singularities : divergences and cusps

in the energy-dependent DOS. Although we later encounter similar divergences in

section 5, equation 2.37 suffices to explain them.

2.2 Coherent Transport

The model of electronic transport that I use throughout this thesis incorporates

a number of features. In general, one must label electrons within realistic materials

by crystal momentum and band number, the latter of which includes spin and or-

bital degrees of freedom. These electrons feel a magnetization through the exchange
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Figure 2.4: Schematic depicting the general device geometry considered in the Landauer-
Buttiker formalism.

interaction, and their spin degree of freedom couples via the spin-orbit interaction.

All of these effects manifest themselves within an electron’s Hamiltonian for a given

material. Furthermore, incorporating temperature requires (at minimum) populat-

ing electronic states via the Fermi-Dirac distribution. I therefore aim to define the

current (and conductance) of non-interacting electrons, subject to all of these condi-

tions, flowing through a scattering center supplied by clean leads.

2.2.1 The Landauer-Buttiker Formalism

Let us consider the geometry depicted in figure 2.4. The leads serve as channels

delivering current to and from the sample, or scattering region. The contacts (not

shown) behave as a reservoirs that supply the leads with electrons. Each contact

is connected to its corresponding lead on the side opposite of the scattering region.

In general, the leads, contacts, and scattering region all possess different available

quantum states. How then do we calculate the total current?

First and foremost, we must ignore the traditional semiclassical models of con-

ductance. Though charge carriers in coherent systems may behave like semiclassi-
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cal wavepackets subject to external fields, they scatter elastically with impurities

and retain their phase information. In general, one describes these systems using

Schrodinger’s equation, abandoning the idea of a balancing act between an acceler-

ating electric field and a demobilizing set of impurities. In fact, conduction electrons

in mesoscopic systems do not require the direct influence of an electric field at all.

Instead, the population imbalance between incoming and outgoing electrons drives

the current.

2.2.1.1 Electron Waveguide Model

Assume that each contact contains electrons with chemical potential µα, where

α labels the reservoir. We assume that the contacts are infinitely wide, whereas the

leads are finite or (at least) periodic in the plane perpendicular to transport. Given

this geometry, Szafer and Stone demonstrated that electronic wavefunctions suffer

(almost) no reflection when traveling from a lead into a contact [49]. Furthermore,

we assume the lead Hamiltonians possess continuous translation symmetry in the

direction of transport:

Hα(xα, ~rα⊥) = Hα(xα + x′, ~rα⊥). (2.38)

In the perpendicular direction they may obey some complex electrostatic potential

in general. We describe each lead using a relative coordinate system; x̂α points in the

(longitudinal) direction towards the scattering center while ~rα⊥ = (yα, zα) denotes

the coordinates perpendicular to transport. The general coordinates in lead α are

then given by ~rα = xαx̂α + ~rα⊥.

We label electrons in lead α by transverse and longitudinal quantum numbers

m and k respectively. In the case in which the leads are periodic in the plane

perpendicular to transport, m ∈ (n,~k⊥), where n gives the band index and ~k⊥ labels
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crystal momentum vectors in the corresponding two-dimensional Brillouin Zone. For

now we assume that m represents all of the quantum numbers labeling transverse

states in the lead. We refer to these states (for historical reasons) as channels. In

general they conform to the wavefunctions and dispersion relations given below:

Φσ
αm(k, ~rα) = φαm(~rα⊥)eiσkxα (2.39)

Eαm(k) = Eαm(0) +
~2k2

2m∗α
(2.40)

Whereas k takes on continuous values in the dispersion relation, Eαm(0) takes on

discrete values (unless m ∈ ~k⊥, in which these energies are still discrete for a given

~k⊥). Thus we define kαm(E) to be the longitudinal wave vector of a tunneling

electron with total energy Eαm(k) = E. If all electrons exist at a given energy E

(for instance, zero-temperature tunneling at the Fermi Energy), than all electronic

states are labeled by quantum number kαm(E) in addition to α and m. To specify

states moving either towards or away the scattering region, we assume that kαm is

always positive-definite and introduce σ ∈ [+,−] to handle its sign.

kαm(E) ≡ 1

~

√
2m∗α

[
E − Eαm(0)

]
(2.41)

Consider the situation in which there is only one incoming mode in the entire system.

It exists in lead α, channel m, with σ = +, at energy E. All other modes are outgoing.

The total wave function in channel α is:

ψ+
αm(E,~rα) = Φ+

αm

(
kαm(E), ~rα

)
+
∑
n

cαn←αmΦ−αn
(
kαn(E), ~rα

)
(2.42)
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The total wave function describing all other channels β is:

ψ−αm(E,~rβ) =
∑
n

cβn←αmΦ−βn
(
kβn(E), ~rβ

)
(2.43)

where c is the wavefunction scattering coefficient and s is the current scattering

coefficient. Many texts refer to s as simply the scattering coefficient or scattering

matrix element. Together, the scattering coefficients compose the S-matrix.

√
vβn
vαm

cβn←αm = sβn←αm (2.44)

Since Schrodinger’s equation governs this entire system, we must enforce continuous

zero and first-derivative boundary conditions at the interfaces. As a consequence,

we may freely choose the coefficients of exactly half of our lead states. Thus if

we randomly specify all incoming coefficients then all outgoing coefficients are fully

determined by Schrodinger’s Equation.

Consider then the most general wavefunction for all incoming and outgoing modes

modes. Writing this expression in terms of kαm, we find:

Ψ(~r, t) =
1√
2π

∑
αmσ

∫
dkαma

σ
αm(kαm)Φσ

αm(kαm, ~r)e
−iEαmt/~. (2.45)

We may also write this expression in terms of Eαm

Ψ(~r, t) =
1√
2π

∑
αmσ

∫
dEαm

1√
~vαm

aσαm(Eαm)Φσ
αm(Eαm, ~r)e

−iEαmt/~ (2.46)

where

aσαm(Eαm) ≡ aσαm(kαm)/
√
~vαm (2.47)

dkαm = [∂Eαm/∂k]−1dEαm = dEαm/~vαm. (2.48)
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Being a dummy variable, it is not necessary to include the subscripts for the inte-

gration variable Eαm. However, within these integrals, the corresponding value of k

is dependent on the lead and channel numbers (due to the presence of the thresh-

old energy Eαm(0)). We therefore keep the subscripts for clarity. Also, notice that

we dropped the subscripts of the position coordinate ~r, even though the individual

modes in each lead are described by different coordinate systems. This is merely a

notational convenience; ~r maps to ~rα within the appropriate lead.

Before we gave a single incoming mode an amplitude of unity. Now we consider

all incoming modes with amplitudes aαm. The outgoing amplitudes are:

a+
βn(k) =

∑
αm

cβn←αma
−
αm(k) (2.49)

a+
βn(E) =

∑
αm

sβn←αma
−
αm(E) (2.50)

We now see that scaling a(E) in equation 2.47 allows us to relate the incoming and

outgoing modes using the current scattering coefficients instead of the wavefunction

scattering coefficients.

2.2.1.2 The Field-Theoretic Representation

Next we switch from a Hilbert space to a Fock space, promoting the Schrodinger

field to an operator. This procedure is often referred to as second quantization:

Ψ̂(~r, t) =
1√
2π

∑
αmσ

∫
dEαm

1√
~vαm

âσαm(Eαm)Φσ
αm(Eαm, ~r)e

−iEαmt/~ (2.51)

The field operator is subject to equal-time Fermi-Dirac statistics:

{Ψ̂†(~r, t), Ψ̂(~r′, t)} = δ3(~r − ~r′) (2.52)
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Plugging in 2.51 into 2.52 we get:

{Ψ̂†(~r, t), Ψ̂(~r′, t)} =
1

2π~
∑

αmσβnσ′

∫
dEαmdE

′
βn

1
√
vαmvβn

(2.53)

×
{[
âσαm(Eαm)

]†
, âσ

′

βn(E ′βn)
}

(2.54)

×
[
Φσ
αm(Eαm, ~r)

]†
Φσ′

βn(E ′βn, ~r
′) (2.55)

× ei(Eαm−E′
βn)t/~ (2.56)

The easiest way to proceed is to postulate the following anticommutation relation

for â and show that it produces the desired anticommutation relation for Ψ̂.

{[
âσαm(E)

]†
, âσ

′

βn(E ′)
}

= δαβδmnδσσ′δ(E − E ′) (2.57)

The expectation value of a multiple particle wavefunction
∣∣∣n〉 is:

〈
n
∣∣∣[âσαm(E)

]†
, âσ

′

βn(E ′)
∣∣∣n〉 = δαβδmnδσσ′δ(E − E ′)nαm(E) (2.58)

where nαm(E) is the number of particles belonging to the state labeled. This many-

body state contains a finite number (0 or 1) of particles belonging to a given set

of single-particle states. We want to populate a statistical ensemble at a given

temperature using each many-body state as a microstate. Then we must have:

〈〈
n
∣∣∣[âσαm(E)

]†
, âσ

′

βn(E ′)
∣∣∣n〉〉 = δαβδmnδσσ′δ(E − E ′)f(E, µα, T ) (2.59)

Though our field-theoretic approach merely curtails the heavy algebra found in the

single-particle approach, it allows one to rigorously study correlation effects such as

current fluctuation spectra [8], and paves the way to attack perturbative interactions
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via a diagrammatic approach.

2.2.1.3 The Charge Current Operator

The charge current density operator within a particular lead, derived from writing

a continuity equation for Schrodinger’s equation, is given by:

ĵα(~rα, t) =
e~

2mi

[
Ψ̂†∂xαΨ̂− (∂xαΨ̂†)Ψ̂

]
(2.60)

The total current passing through the cross section of a lead is then

〈〈
σ
∣∣Îα(xα, t)

∣∣σ〉〉 (2.61)

where

Îα(xα, t) ≡
∫
ĵα(~rα, t)d

2rα⊥ (2.62)

Evaluating this expression, we have:

Îα(xα, t) =
e

4πm

∑
mnσσ′

∫
dEαmdE

′
αn

1√
vαmv′αn

(2.63)

×
[
âσαm(Eαm)

]†
âσ

′

αn(E ′αn) (2.64)

×
(
σ′k′αn + σkαm

)
(2.65)

×
∫ [

Φσ
αm(Eαm, ~r)

]†
Φσ′

αn(E ′αn, ~r)d
2rα⊥ (2.66)

× ei(Eαm−E′
αn)t/~ (2.67)
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Exploiting the orthogonality of the lead modes:

Îα(xα, t) =
e

4π~
∑
mσσ′

∫
dEαmdE

′
αm

1√
kαmk′αm

(2.68)

×
[
âσαm(Eαm)

]†
âσ

′

αm(E ′αm) (2.69)

×
(
σ′k′αm + σkαm

)
(2.70)

× ei(σ′k′αm−σkαm)xα (2.71)

× ei(Eαm−E′
αm)t/~ (2.72)

Now comes the key approximation. Until we perform a statistical average over these

operators, we may populate our many-body states with single-particle states of any

energy. In reality (as we later see) each electron obeys Fermi-Dirac statistics. The

electrons in each lead that participate in transport live within a few kbT of each

other. Even so we still require that energy-dependent operators (as well as the energy

values themselves) remain distinguished. However, we equate all c-number functions

of energy, such as v or k. In other words, we assume that the Fermi velocities /

crystal momenta obey E ∼ E ′:

Îα(t) =
e

4π~
∑
mσσ′

∫
dEαmdE

′
αm

1

kαm
(2.73)

×
[
âσαm(Eαm)

]†
âσ

′

αm(E ′αm) (2.74)

× 2σδσσ′ (2.75)

× ei(Eαm−E′
αm)t/~ (2.76)
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Notice that we lost the dependence on xα, giving us:

Îα(t) =
e

h

∑
mσ

∫
dEαmdE

′
αmσ

[
âσαm

]†[
âσαm

]′
ei(Eαm−E′

αm)t/~ (2.77)

=
e

h

∑
m

∫
dEαmdE

′
αm (2.78)

×
([
â+
αm

]†[
â+
αm

]′ −∑
βnγl

[
sαm←βn

]†
s′αm←γl

[
â+
βn

]†[
â+
γl

]′)
(2.79)

× ei(Eαm−E′
αm)t/~ (2.80)

Also note that we have switched from ~ to h. Evaluating the multi-particle expec-

tation value and then taking the statistical average gives us:

Iα ≡
〈〈
σ
∣∣Îα(t)

∣∣σ〉〉 (2.81)

=
e

h

∫
dE
(∑

m

f(E, µα, T )−
∑
β

∑
mn

[
sβn←αm

]∗
sαm←βnf(E, µβ, T )

)
(2.82)

Defining Tαβ(E) ≡
∑

mn

[
sβn←αm

]∗
sαm←βn we find:

Iα =
e

h

∫
dE
(
f(E, µα, T )Mα(E)−

∑
β

f(E, µβ, T )Tαβ(E)
)

(2.83)

Using Mα(E) =
∑

β Tβα(E), Tβα(E) = Tαβ(E), and noting that the α = β term

vanishes:

Iα =
∑
α 6=β

e

h

∫
dE
(
f(E, µα, T )− f(E, µβ, T )

)
Tαβ(E) (2.84)

We have derived an expression for the total current in lead α within the Landauer-

Buttiker formalism.
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2.2.1.4 The Linear Response Limit

While equation 2.84 considerably simplifies the calculation, often the differences

in electrochemical potential and temperature are minimal. Exploiting this we may

expand the Fermi-Dirac distribution using the chain rule

f(E, µα, T )− f(E, µβ, T ) ≈
[
(µα − µβ)∂µ + (Tα − Tβ)∂T

]
f(E, µ, T ) (2.85)

=
[
(µα − µβ)− (E − µ)

T
(Tα − Tβ)

](
− ∂Ef(E, µ, T )

)
(2.86)

nothing that ∂µf = −∂Ef and ∂Tf = ∂Ef(E − µ)/T . The current then becomes:

Iα =
∑
α 6=β

e

h

∫
dE
[
(µα − µβ)− (E − µ)

T
(Tα − Tβ)

](
− ∂Ef(E, µ, T )

)
Tαβ(E).

(2.87)

This expression proves highly useful in transport calculations. For the remaining

portion of this section we ignore any temperature differences. Later, in section 4,

we revisit equation 2.87 in its full form and use it to derive various thermoelectric

phenomena in the coherent regime.

2.2.1.5 The Conductance

In the limit in which no temperature difference exists across any of the leads, we

may write:

Iα =
∑
α 6=β

Gαβ
µα − µβ

e
=
∑
α6=β

GαβVαβ (2.88)
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where Vαβ ≡ (µα−µβ)/e is the voltage difference (due to an electrochemical potential

difference only) across leads α and β and

Gαβ(µ, T ) =
e2

h

∫
dE
(
− ∂Ef(E, µ, T )

)
Tαβ(E) (2.89)

is the conductance between leads α and β. Equation 4.8 comprises one of the two pri-

mary transport equations that we use in this thesis. We present the other, describing

the Seebeck coefficient, in section 4.

2.2.2 Modeling Semi-Infinite Leads

2.2.2.1 The Mixed-Basis Hamiltonian of a Semi-Infinite Lead

The following discussion applies to a given lead, so we drop the label α. Here we

expand our leads in a mixed position-orbital basis featuring a Linear Combination

of Atomic Orbitals (LCAO). By this we mean that each lead consists of an infinite

amount of identical slices, or principal layers, placed in succession in the direction

parallel to transport (x̂). Within each principal layer we allow for multiple mono-

layers ; these slices comprise of an infinite and periodic lattice of atoms in the plane

perpendicular to transport (spanned by ~r⊥). For example, a single principal layer

might include two neighboring monolayers, one with Co atoms and the other with Pt

atoms. In this case, the unit cell encompasses both monolayers, consisting of one Co

atom and one Pt atom. The unit cell then repeats over some lattice, describing both

monolayers as a single principal layer. In another case, each principal layer might

represent a single monolayer containing both Mg and O atoms. Thus the unit cell

includes both Mg and O but is confined to a single monolayer. In all cases, we assign

a Bravais lattice ~R⊥ to describe the periodicity of the unit cell within each princi-

pal layer. This establishes both a reciprocal lattice and a two-dimensional Brillouin
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Zone (2DBZ) spanned by the vectors ~k⊥.

Technically, the electrostatic potential due to each atom extends in the x̂ direction

as well. Since each slice is identical, we assume the entire electrostatic potential

repeats when moving from slice to slice. Ultimately we intend to invoke the Landauer-

Buttiker formalism; thus we require our leads to possess continuous translational

symmetry in the x̂ direction. In this case, we have relaxed this condition and allowed

for discrete translation symmetry instead. Technically, this gives slightly different

results when evaluating the derivatives ∂x in the current operator (section 2.2.1.3);

we treat this as an approximation for now. Aside from this point, we may now endow

the leads with realistic band structures using basis states that (almost) conform to

equation 2.39:

Φ~k⊥xim
(~r) =

∑
~R⊥

ei~k⊥·~R⊥χ~R⊥xim
(~r) (2.90)

Here, the χ are assumed to contain the normalization factor for all of Φ. Having

introduced the concept of slices we cease to use a continuous x. Instead xi labels the

x coordinate centered at the ith slice. Each basis state χ~R⊥xim
(~r) corresponds to a

particular atom within the unit cell in principal layer i at position ~R⊥ in the Bravais

lattice. One identifies each atom within principal layer based on: its monolayer,

atomic site within its monolayer, and spin and orbital quantum number correspond-

ing to its atomic site. We absorb all of these parameters into a single label m. Thus

we have covered all labels in equation 2.90.

We utilize principal layers not just to establish discrete translational invariance;

we assign them so that no interactions extend beyond the nearest principal layer.

In section 5, for example, we employ Pt leads but must include two identical Pt

monolayers within a principal layer. We do this so the principal layers exhibit nearest-
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neighbor interactions, even though the individual Pt monolayers exhibit next-nearest

neighbor interactions. Finally, we assume the Φ~k⊥xim
comprise an orthonormal set

〈
Φ~k⊥xim

∣∣Φ~k′⊥xjn

〉
= δxixjδmnδ

3(~k⊥ − ~k′⊥). (2.91)

despite their localized nature (one may construct them using Wannier functions to

accomplish this).

Let us expand these basis states into a general wavefunction, and drop the ~k⊥

dependence for now:

ψxim(~r) = CximΦxim(~r) (2.92)

Here Cxim ≡ Cmeikxxi since wavefunctions of principal layers can only differ by a

complex phase. This follows from the translational symmetry in the x direction, and

is an approximation only in the sense that the lead is semi-infinite and not infinite.

The Φxim depend on xi in order to center the coordinate system at the ith principal

layer; they are otherwise identical. From here on out we substitute xi → i, and call

i the principal layer index for notational simplicity.

First, we express our lead Hamiltonian in this basis:

Him,jn ≡
〈
Φim(~r)

∣∣Ĥ(~r)
∣∣Φjn(~r)

〉
(2.93)

We may write the total action of our Hamiltonian over the entire lead in matrix

form:

∑
j

(Hij − E)~Cj =
∑
j

H̄ij
~Cj = ~0 (2.94)
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Here [~Ci]m ≡ Cim, [Hij]mn ≡ Him,jn and m,n ∈ [1, N ]. We also introduce the

notation H̄ij ≡ (Hij − E).

Now we see the point of writing our system in terms of principal layers. By

restricting interactions between nearest-neighbor principal layers we lose the sums in

equation 2.94

H̄i,i−1
~Ci−1 + H̄i,i

~Ci + H̄i,i+1
~Ci+1 = ~0 (2.95)

At this point, we use the convention that increasing i represents the direction away

from the scattering region.

2.2.2.2 The Mixed-Basis Green’s Function of a Semi-Infinite Lead

Having written the Hamiltonian, we write the equation defining the Green’s func-

tion of the entire lead:

[
E − Ĥ(~r)

]
Ĝ(~r − ~r′) = δ3(~r − ~r′). (2.96)

Ordinarily one adds an infinitesimal imaginary parameter ±η to the energy so as to

classify the Green’s function as retarded or advanced. In what follows the results are

independent of η; we wait until section 2.2.2.7 to discuss its consequences. Inserting

the unit operator we have

[
E − Ĥ(~r)

]∑
jn

∣∣Φjn(~r)
〉〈

Φjn(~r)
∣∣Ĝ(~r − ~r′) = δ3(~r − ~r′). (2.97)
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assuming the
∣∣Φjn(~r)

〉
form a complete set. Now apply

∫
d3r′

〈
Φim(~r)

∣∣ to the left and∣∣Φkl(~r′)
〉

to the right:

∑
jn

∫
d3r′

〈
Φim(~r)

∣∣[E − Ĥ(~r)
]∣∣Φjn(~r)

〉〈
Φjn(~r)

∣∣Ĝ(~r − ~r′)
∣∣Φkl(~r′)

〉
(2.98)

=

∫
d3r′

〈
Φim(~r)

∣∣δ3(~r − ~r′)
∣∣Φkl(~r′)

〉
. (2.99)

Written in terms of matrix elements, we have

∑
jn

H̄im,jnGjn,kl = −δikδml (2.100)

where

Gjm,kl ≡
∫
d3rd3r′Φjm(~r)Ĝ(~r − ~r′)Φkl(~r′) (2.101)

one may rewrite equation 2.100 as

∑
j

H̄ijGjk = −δikIN×N (2.102)

Here [Gjk]ml ≡ Gjm,kl represent the Green’s function between state l in principal

layer k and state m in principal layer j.

Taking into account the nearest-neighbor interaction range, equation 2.102 be-

comes

H̄i,i−1Gi−1,k + H̄i,iGi,k + H̄i,i+1Gi+1,k = −δikIN×N (2.103)
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2.2.2.3 The Big Transfer Matrices

It remains to solve for the eigenstates ~Cν
i of the lead. Note that we added the

superscript ν in order to label the various solutions. Remembering that each principal

layer is identical, equations 2.95 and 2.103 become:

H̄01̄
~Cν
i−1 + H̄00

~Cν
i + H̄01

~Cν
i+1 = ~0 (2.104)

H̄01̄Gi−1,0 + H̄00Gi,0 + H̄01Gi+1,0 = −δi0IN×N (2.105)

Here we use the notation H̄01̄ ≡ H̄i,i−1, H̄00 ≡ H̄i,i, and H̄01 ≡ H̄i,i+1 for all i.

Without loss of generality, we write the Green’s functions in 2.105 between a reference

layer i = 0 and all other slices. Writing 2.104 and 2.105 in matrix notation, we have:

−(H̄01)−1H̄00 −(H̄01)−1H̄01̄

IN×N 0N×N


 ~Cν

i

~Cν
i−1

 =

~Cν
i+1

~Cν
i

 (2.106)

−(H̄01)−1H̄00 −(H̄01)−1H̄01̄

IN×N 0N×N


 Gi,0

Gi−1,0

 =

Gi+1,0

Gi,0

+

δi0(H̄01)−1

0N×N

 (2.107)

As we mentioned earlier, the ~Cν
i differ between principal layers only by a phase.

Considering this we may write

T(E)

 ~Cν
i

~Cν
i−1

 = λν

 ~Cν
i

~Cν
i−1

 (2.108)
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where

T(E) ≡

−(H̄01)−1H̄00 −(H̄01)−1H̄01̄

IN×N 0N×N

 (2.109)

and

λν ≡ eikνx∆x. (2.110)

Here kνx represents the longitudinal complex wavevector corresponding to the solution

~Cν
i and ∆x corresponds to the distance between principal layers. We refer to the

2N × 2N matrix T as the Big Transfer Matrix (BTM). Notice that T depends on

energy through H̄ij. By solving for the eigenvalues and eigenvectors of the BTM,

one obtains the ~Cν
i and the corresponding kνx.

The BTM clearly possess 2N eigenvectors and eigenvalues. Let us see if we can

discover any symmetries. Left-multiplying equation 2.108 by T−1 and rearranging,

we find

T−1

 ~Cν
i

~Cν
i−1

 =
1

λν

 ~Cν
i

~Cν
i−1

 =

~Cν
i−1

~Cν
i−2

 (2.111)

In other words the 1/λν comprise eigenvalues of T−1. Clearly, T−1 represents the

transfer matrix towards the scattering region rather than away. However, since both

T−1 and T commute they must possess simultaneous eigenvalues. Thus for every

eigenvalue λν , T also possesses an eigenvalue 1/λν . Both eigenvalues must belong to

the same eigenvector. Thus we find that of the 2N eigenvectors, only N are unique.

Each unique eigenvector corresponds to two eigenvalues that are inverses of each

other.
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We remind the reader that, in general, the kνx are complex-valued. Thus, if the

phase contains a complex part (corresponding to a real-valued amplitude in λν),

each wavefunction will grow or shrink in amplitude as one moves towards or away

the scattering region. We refer to such eigenstates with
∣∣kνx∣∣ 6= 1 as evanescent modes.

Those eigenstates for which
∣∣kνx∣∣ = 1 clearly represent traditional Bloch states; we

call them propagating modes.

Earlier in this section, while deriving the Landauer-Buttiker formalism, we dis-

covered that each mode with energy E possesses a threshold energy Eν (we called

this Eαm(0) before). Before we assumed (due to separation of variables) that the

wavefunction contained two parts: a traverse part with discrete energies (per ~k⊥)

and a longitudinal plane wave. We reproduce this dispersion relation (using the

notation of this section) for convenience:

E = Eν +
(~kνx)2

2m∗
(2.112)

In this case the threshold energy was exactly derivable. Because our basis states

Φim(~r) extend in the x̂-direction we may not employ separation of variables any-

more. Amazingly enough we may still define a threshold energy. Say for instance

we calculate the eigensystem of T(E) and find that all modes are evanescent. As

we increase the total energy E, each evanescent mode will become propagating at a

different energy. We define the threshold energy to be the energy in which a mode

first switches from evanescent to propagating (as one increases energy).

As it turns out, only propagating modes contribute to the conductance between

leads. Hence we sometimes refer to the number of propagating modes traveling

towards the scattering region as the number of states (NOS) in the lead. We make

heavy use of this terminology in section 5.
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Since the ~Cν
i are identical (at each principal layer) up to a complex phase, we

switch to this notation

~Cν
i → ~Cνσ (2.113)

where σ = (+/−) labels a mode propagating (towards/away) the scattering region.

For evanescent modes we say λν+ corresponds to
∣∣λν∣∣ < 1 and λν− corresponds to∣∣λν∣∣ > 1. For propagating modes, we use the sign of the phase to classify the direction

of transport. Finally, as a matter of convenience, we introduce the following N ×N

matrices

Cσ ≡
(
~C1σ ~C2σ · · · ~CNσ

)
(2.114)

Λσ ≡



λ1σ 0 · · · 0

0 λ2σ · · · 0

...
...

. . .
...

0 0 · · · λNσ


(2.115)

which contain all eigenstates (and phase factors) in a lead moving towards or away

the sample.

2.2.2.4 The Amplitude Transfer Matrices

In the last section we provided a systematic method to solve for the eigenstates

and phase factors present within a semi-infinite lead. In this section we rewrite

the transfer matrices with a reduced dimensionality. Using Cσ and Λσ (derived
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previously) we define the N ×N Amplitude Transfer Matrices (ATM) such that:

Ci+1 = TCi (2.116)

Ci−1 = T̄Ci (2.117)

In general, one may expand the Green’s functions [Gi,0]mn as a linear combination of

either [~Cν
i ]m or [~Cν

0 ]n. If one chooses the former set of wavefunctions, the coefficients

of expansion end up comprising of the latter wavefunctions (and vice-versa). This is

the so-called eigenvalue expansion of a Green’s function; here we merely write it in

a slightly unfamiliar basis:

[Gi,0]mn =
∑
ν

aν0n[~Cν
i ]m (2.118)

aν0n ∼ [~Cν
0 ]n (2.119)

Noting that the coefficients of expansion that yield Gi,0 are identical for all principal

layers i, one finds

T [Gi,0]n = T
∑
ν

aν0n
~Cν
i =

∑
ν

aν0n
~Cν
i+1 = [Gi+1,0]n (2.120)

where [Gi,0]n represents a vector whose components are [Gi,0]mn. So in general:

Gi+1,0 = TGi,0 (2.121)

Gi−1,0 = T̄Gi,0. (2.122)
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The ATMs are quite easy to derive. First note that upon application all eigenstates

pick up a phase:

C+Λ+ = T̄C+ (2.123)

C−Λ− = TC− (2.124)

The top (bottom) line corresponds to states moving towards (away from) the scat-

tering center. Inverting the Cσ we find:

T̄ = C+Λ+[C+]−1 (2.125)

T = C−Λ−[C−]−1 (2.126)

This result is deceptively simple; we would not know the Cσ or Λσ were it not for the

BTMs. The ATMs come in handy when calculating the Surface Green’s Functions,

as we will see later.

2.2.2.5 The Surface Green’s Function

In the following section we identify i = 0 as the principal layer directly neighbor-

ing the scattering region; i.e. the end of the semi-infinite lead. For this layer, as one

might imagine, H̄01̄ does not give the overlapping Hamiltonian. In order to ”hook”

the leads and sample together we must first consider each piece totally disconnected.

Allowing H̄01̄ to vanish the last two principal layers obey:

H̄00
~Cν
i + H̄01

~Cν
i+1 = ~0 (2.127)

H̄00G0,0 + H̄01G1,0 = −IN×N (2.128)

40



Previously we introduced the ATMs, which provide a means to transform eigenstates

from one principal layer to another. Plugging them into equation 2.128 we find:

H̄00G0,0 + H̄01TG0,0 = −IN×N . (2.129)

Rearranging:

G0,0 = −
(
H̄00 + H̄01T

)−1

(2.130)

We call G0,0 the Surface Green’s Function (SGF). It contains only the Green’s func-

tions connecting basis states within the last principal layer. As it turns out, if the

sample Hamiltonian only overlaps the last layer of each lead, and no leads overlap

with each other, the SGFs provide sufficient information to connect all semi-infinite

leads to the sample.

2.2.2.6 The Self Energy

So far we have calculating the eigenstates and Green’s functions pertaining to

a single system (in our case, a semi-infinite lead). From an algebraic perspective,

it is quite easy to connect two previously isolated systems together. Consider the

following Hamiltonian, which describes two regions (A and B):

H =

HAA HAB

HBA HAB

 . (2.131)
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We make no restrictions regarding the size of these systems. Both may be infinite,

finite, or some combination. The Green’s function for the total system is

G =

GAA GAB

GBA GBB

 =

E −HAA −HAB

−HBA E −HAB


−1

=

[Gd
AA]−1 −HAB

−HBA [Gd
BB]−1


−1

.

(2.132)

where Gd
AA and Gd

BB represent the disconnected Green’s functions in regions A and

B respectively. In other words, they describe those regions when HAB vanishes. The

2× 2 block matrix inversion yields:

GAA =
[
[Gd

AA]−1 −HABG
d
BBHBA

]−1

(2.133)

GBB =
[
[Gd

BB]−1 −HBAG
d
AAHAB

]−1

(2.134)

GBA = [Gd
BB]−1HBAGAA (2.135)

GAB = [Gd
AA]−1HABGBB (2.136)

According to the first two equations, one obtains the connected Green’s functions in

any region using only the disconnected Green’s functions and the overlap Hamiltoni-

ans. In systems with many regions this result still applies so long as no two connected

regions both share a connection with a third region. For example, one may connect

multiple leads to the same sample as long as they do not connect the leads to each

other. We call the term accompanying the disconnected Green’s function (inside the

inverse) the Self Energy (Σ), defined as follows:

GAA =
[
[Gd

AA]−1 − ΣAB

]−1

(2.137)

ΣAB ≡ HABG
d
BBHBA. (2.138)
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Note that this expression is exact; we’ve made no approximations so far. Assume

that region A is finite while region B is infinite. In this case the Self Energy doesn’t

buy us much. Indeed, both HAB and HBA contains one infinite dimension, producing

an infinitely large Self Energy. However, assume that the overlapping Hamiltonian

only connects finite portions of each region. The Self Energy becomes finite as well.

Herein lies the beauty of this approach: the Self Energy connects infinitely-long

leads to finite samples without the use of infinite matrices (given finite overlapping

Hamiltonians).

Given our newfound ability to join systems together, consider cleaving a semi-

infinite lead in between the last two principal layers. The last layer (0) becomes

totally disconnected, while the second-to-last layer (1) now becomes the last layer of

the new lead. We may compute the Green’s function of the disconnected layer (Gd
00)

and connect it back to the new lead like so:

G00 =
(

[Gd
00]−1 − Σ

)−1

(2.139)

where

Σ = H̄01G11H̄10 (2.140)

In reality, no difference exists between the new and old leads; chopping off the last

layer of a semi-infinite lead produces (surprise!) an identical semi-infinite lead. Thus

the SGFs G11 and G00 are equivalent.

Σ = H̄01G00H̄10 (2.141)
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Via substitution, G00 and Σ become:

G00 =
(

[Gd
00]−1 − H̄01G00H̄10

)−1

(2.142)

Σ = H̄01

(
[Gd

00]−1 − Σ
)−1

H̄10 (2.143)

Although we do not use these equations in what follows, we derive them to demon-

strate how to use the Self Energy. We may obtain G00 via the ATMs instead and

use 2.141 to compute the Self Energy. However, in situations where the eigenvalue

method proves impractical, one can solve equations 2.142 and 2.143 via various re-

cursive algorithms [54].

2.2.2.7 The Surface Density of States

Before proceeding to transmission calculations we discuss one final piece of the

”lead” puzzle. Consider the disconnected last principal layer of a lead. Its eigenstates

~Bν obey the following Hamiltonian

H00
~Bν = Eν ~Bν (2.144)

where ν ∈ [1, N ]. We assume the ~Bν are orthonormal

δmn =
∑
ν

[ ~Bν ]∗m[ ~Bν ]n (2.145)

δµν = [ ~Bµ]† ~Bν =
∑
m

[ ~Bµ]∗m[ ~Bν ]m (2.146)
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and that they subsequently form a complete set. In this case the disconnected Green’s

function

Gd
00 = [E −H00 + iη]−1. (2.147)

may be expanded in terms of the ~Bν :

[Gd
00]mn =

∑
ν

aνn[ ~Bν ]m (2.148)

Plugging this expansion into 2.151...

∑
m

(
(E + iη)δkm − [H00]km

)
[Gd

00]mn = δkn (2.149)

∑
mν

(
(E + iη)δkm − [H00]km

)
aνn[ ~Bν ]m = δkn (2.150)

∑
ν

(
E − Eν + iη

)
aνn[ ~Bν ]k = δkn (2.151)

...and using the orthogonality relations, we solve for the aνn:

aνn =
[ ~Bν ]∗n

E − Eν + iη
. (2.152)

The Green’s function becomes:

[Gd
00]mn =

∑
ν

[ ~Bν ]∗n[ ~Bν ]m
E − Eν + iη

. (2.153)

45



Writing Gd
00 in a more convenient form (and taking η → 0 in the last step) we find

[Gd
00]mn =

∑
ν

[ ~Bν ]∗n[ ~Bν ]m

[ E − Eν

(E − Eν)2 + η2
+

iη

(E − Eν)2 + η2

]
(2.154)

=
∑
ν

[ ~Bν ]∗n[ ~Bν ]m

[ 1

E − Eν
+ iπδ(E − Eν)

]
(2.155)

where

πδ(E − Eν) = lim
η→0

η

(E − Eν)2 + η2
. (2.156)

Consider the trace of this expression:

Tr{Gd
00} =

∑
nν

[ ~Bν ]∗n[ ~Bν ]n

[ 1

E − Eν
+ iπδ(E − Eν)

]
(2.157)

=
∑
ν

[ 1

E − Eν
+ iπδ(E − Eν)

]
(2.158)

The imaginary part yields the density of states, as defined at the beginning of this

section.

ρd(E) ≡ 1

π
={Tr[Gd

00]} =
∑
ν

δ(E − Eν) (2.159)

We refer to ρd(E) specifically as the disconnected surface density of states (SDOS).

This expression represents the density of states spanning an isolated principal layer,

originally belong to the lead. What happens if we connect this principal layer to the

rest of the lead?

Although we’ve already derived an expression for G00 in terms of the ATMs,

we desire an eigenstate expansion instead. Consider eigenstates of the operators

H00 − Σ and H00 − Σ†, where Σ (defined by equation 2.141) represents the Self
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Energy connecting Gd
00 to the rest of the lead:

(
H00 − Σ

)
~Aν = εν ~Aν (2.160)(

H00 − Σ†
)
~Dν = (εν)∗ ~Dν (2.161)

Notice that since H00 − Σ is not Hermitian the εν are complex in general. Let

us separate the real and imaginary contributions of the complex energy from the

disconnected energy Eν :

εν = Eν + ∆ν + iγν (2.162)

Despite the non-Hermiticity of H00 − Σ, the ~Aν and ~Dν form a bi-orthonormal set:

δmn =
∑
ν

[ ~Dν ]∗m[ ~Aν ]n (2.163)

δµν = [ ~Dµ]† ~Aν =
∑
m

[ ~Dµ]∗m[ ~Aν ]m (2.164)

Eventually one can show that

[G00]mn =
∑
ν

[ ~Dν ]∗n[ ~Aν ]m
E − εν

(2.165)

Performing a similar calculation as before...

[G00]mn =
∑
ν

[ ~Dν ]∗n[ ~Aν ]m
E − Eν −∆ν − iγν

(2.166)

=
∑
ν

[ ~Dν ]∗n[ ~Aν ]m

[ E − Eν −∆ν

(E − Eν −∆ν)2 + γ2
+

iγ

(E − Eν −∆ν)2 + γ2

]
(2.167)
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...we arrive at our final result:

ρ(E) ≡ 1

π
={Tr[G00]} =

1

π

∑
ν

γ

(E − Eν −∆ν)2 + γ2
(2.168)

It follows from inspection that ρ(E) → ρd(E) as γ and ∆ν → 0. Whereas the

disconnected SDOS consisted of a series of delta functions at each Eν , the presence

of Σ creates Lorentzian-like shapes that are broadened and shifted from those original

energies. In section 5 we analyze a phenomenon known as hot spots ; the connected

SDOS derived here provides our chief tool for that analysis.

2.2.3 Calculating Transmission

2.2.3.1 The Green’s Function of the Scattering Region

We now possess all the necessary tools to calculate transmission across a scatter-

ing region. Imagine that multiple leads are connected to the sample. Also, assume

that the Hamiltonian connecting the sample and any lead only overlaps at the last

principal layer of the lead. The Green’s function describing the sample is given by:

GSS =
[
[Gd

SS]−1 −
∑
α

Σα
SL

]−1

(2.169)

where

Gd
SS = [E −HSS + iη]−1 (2.170)

Σα
SL = Hα

SLG
α
00H

α
LS. (2.171)

Here HSS represents the Hamiltonian of the sample and Gd
SS represents the corre-

sponding disconnected Green’s function. Also, Hα
SL, Σα

SL, and Gα
00 give the over-

lapping Hamiltonian, Self Energy, and SGF respectively connecting lead α to the
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sample.

In the past sections we spent considerable time describing the leads in a mixed

position-orbital basis. Furthermore, we dropped the perpendicular crystal momen-

tum vector ~k⊥ throughout much of the last section. In the following we assume the

sample is sandwiched between two leads, both of different materials. Like the leads,

we describe the sample using a mixed basis; however we do not assume each principal

layer is identical. In general, the sample can be fully asymmetric in the direction

of transport; larger samples merely increase the computational time associated with

inverting Gd
SS.

Finally, we assume the 2DBZ of the sample and both leads overlap such that

one can establish a common zone for all regions. In this case ~k⊥ is a good quantum

number across the interface. We therefore continue to drop the label ~k⊥, remember-

ing at the end that each N × N Hamiltonian matrix (and thus each transmission

calculation) is a function of ~k⊥.

2.2.3.2 Calculating Transmission via Green’s Functions

In the final step, we use the relationship between the connected Sample Green’s

function GSS and the S-matrix, known as the Fisher-Lee relation. We omit the

derivation here and simply state the result:

Tαβ(E) =
∑
mn

[
sβn←αm

]∗
sαm←βn (2.172)

= Tr
[
ΓαGSSΓβ[GSS]†

]
(2.173)

where

Γα ≡ i
[
Σα
SL − [Σα

SL]†
]

(2.174)
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At this point, if we know the system Hamiltonian, we have the entire means to

calculate the conductance across leads. After a lengthy formalism, we now move on

to more physical matters.
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3. MAGNETORESISTANCE

3.1 Anisotropic Magnetoresistance (AMR)

In 1857, William Thomson, also known as Lord Kelvin, first demonstrated that

ferromagnetic metals vary in conductivity as a function of external magnetic field.

He ran current (via copper electrodes) through iron and nickel ”keepers” belonging

to horseshoe magnets that he borrowed from a colleague. The resistance increased

when current flowed in the direction of the applied field, and decreased when he

rotated the field ninety degrees. He also attempted the same experiment in brass

(an alloy of copper and zinc) but noticed no effect.

We now know that the origin of this effect, the so-called Anisotropic Magne-

toresistance (AMR), stems from the combination of ferromagnetism and spin-orbit

coupling, neither of which brass possesses. Permeability, Magnetostriction, and the

Hall effect also play a role but follow no general theory [29]. Thomson measured a

magnetoresistance ratio of less than one percent, and modern day attempts still pale

in comparison to the magnetoresistance seen in layered magnetic structures. Even

so, some regard Thomson’s discovery as the birth of Spintronics, and simple theories

of AMR provide useful insights into magnetoresistance as a while.

Despite its success in certain magnetic sensing applications, AMR remained un-

fruitful in regards to information processing. We therefore skip its lengthy history

and discuss the Giant and Tunnel Magnetoresistance effects instead. In the following

section we often refer to the magnetoresistance (MR) ratio, which sports multiple

definitions. We adhere to the following one

MR =
G(φmax)−G(φmin)

G(φmin)
(3.1)
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where φmax and φmin refer to the magnetization directions that produce the maximum

and minimum conductances. Dividing by the minimum conductance yields the so-

called optimistic ratio; in general one can normalize this ratio in many ways.

3.2 Giant / Tunnel Magnetoresistance (GMR/TMR)

The advent of layered magnetic heterostructures brought upon great improve-

ments in MR ratios. Rather than relying on the magnetic perturbation of electron

orbits (responsible for bulk AMR), these layered systems vary in electron transmis-

sion as a function of the magnetization configuration of the device. The simplest

structure (often referred to as a spin valve) contains three layers: a non-magnetic

spacer sandwiched between two ferromagnetic layers. The maximum conductance

occurs when the magnetizations of both ferromagnetic layers point parallel to each

other. The antiparallel configuration produces the minimum conductance. Rather

than manipulating both magnetic layers, one ordinarily “pins” a single ferromag-

netic layer’s magnetization using a neighboring antiferromagnetic contact, leaving

the other ferromagnetic layer free to change. Following the convention of many

authors we refer to the latter as the free layer.

Spin valves either employ conductors or insulators as their non-magnetic spacers.

One traditionally says these device structures exhibit the Giant Magnetoresistance

(GMR) effect in the former case and the Tunnel Magnetoresistance (TMR) effect in

the latter case. Tunnel barriers often provide improved MR ratios over their conduc-

tive counterparts. Both ferromagnetic metals and magnetically-doped semiconduc-

tors may compose the magnetic layers, while insulators and intrinsic semiconductors

often comprise the spacer.

In 1975 Julliere [22] first observed the TMR effect in Fe
∣∣Ge
∣∣Co MTJs, measuring a

normalized difference in conductance (∆G/G) of 14% at liquid Helium temperatures.
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Such magnetoresistance ratios resisted observation at room temperature; as a result

Julliere’s work went relatively unnoticed. Thirteen years later Albert Fert measured

the magnetoresistance of an alternating Fe
∣∣Cr multilayer, finding an appreciable

MR ratio at room temperature that grew to ∼50% at liquid Helium temperatures

[1]. In the following year, Peter Grunberg and collaborators reported similar results

at room temperature in Fe
∣∣Cr
∣∣Fe structures [5]. Both groups suggested that spin-

flip scattering might cause the appreciable changes in resistance. Immediately a

flurry of work ensured aiming to bolster the room-temperature MR ratio. Various

device geometries were considered; eventually, spin valves in which current travels

perpendicular to the layers (CPP) proved to exhibit superior sensitivity. Later the

Valet-Fert model [52] gained popularity, deriving the magnetoresistance in the CPP

geometry using the Boltzmann formalism.

In 1995 researchers experimented with amorphous aluminum oxide (AlO) tunnel

barriers sandwiched between with 3d ferromagnetic electrodes [30], obtaining room-

temperature MR ratios of 18%. This demonstration of the TMR effect, as opposed

to the GMR effect, attracted great interest. Advances in device fabrication, coupled

with the use of CoFeB electrodes, allowed for TMR ratios of 70% to be obtained

in 2004 [57]. While AlO-based MTJs work well for magnetic-sensing applications

(such as hard-disk read heads), many believe their MR ratios are insufficient for

applications such as Magnetic Random Access Memory (MRAM) [61].

Theories that couple ab-initio calculations with the Boltzmann formalism [41]

and with coherent transport calculations [40, 3, 6] surfaced in the following years,

explaining GMR with new clarity. Mathon [25] studied a (highly-theoretical) con-

tinuous transformation from a GMR system to a TMR system using the Landauer-

Buttiker formalism. Eventually, ab-initio theories predicted MR ratios that exceed

1000% in Fe
∣∣MgO

∣∣Fe MTJs with a crystalline MgO(001) barrier [7, 26]. The commu-
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nity adopted the explanation that Bloch states with the so-called ∆1 symmetry are

half-metallic and dominate transport. Said another way, these states pass through

MgO in the parallel configuration while relatively minimal transmission occurs for all

states in the antiparallel configuration. MgO then acts as a symmetry-filter, allowing

states with certain symmetries describing their transverse wavefunctions to pass.

By 2004 Yuasa et al [62, 63] obtained room-temperature MR ratios of around

200% using fully epitaxial MTJs with a single-crystal MgO barrier. Parkin et al

[36] reported similar results using highly-oriented polycrystalline (textured) MgO

barriers instead. To date, researchers have observed MR ratios of over 400% at room

temperature [28]. Given these successes, the TMR effect comprises the greatest

success story within spintronics.

3.3 Tunneling Anisotropic Magnetoresistance (TAMR)

While the TMR effect produces admirable MR ratios, it requires a spin-valve

structure consisting of two ferromagnetic contacts. The magnetization of one fer-

romagnetic contact must be ”pinned” (via an antiferromagnetic layer) so that the

other can change relative to it. Thus one requires (in systems with no spin-orbit

coupling) a relative change in the orientation of both magnetizations to observe a

magnetoresistance.

The situation changes upon the addition of spin-orbit coupling in either ferromag-

netic contact. Now, the bulk DOS of a ferromagnetic contact depends strongly on the

magnetization direction, altering transmission even if the other lead is non-magnetic.

In 2004 Charles Gould et al first reported an appreciable magnetoresistance in an

(Ga,Mn)As
∣∣AlO structure [13]. In this system the spin-orbit coupling in (Ga,Mn)As

induces the anisotropic magnetoresistance. The effect, referred to as the Tunneling

Anisotropic Magnetoresistance was subsequently observed in ferromagnetic tunnel
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junctions composed of semiconductors [13, 39, 38, 34] and transition metals [35, 58].

We note that some groups refer to any magnetic tunnel junction with spin-orbit

coupling (for example, Fe
∣∣MgO

∣∣ Fe) as exhibiting the TAMR effect. We restrict use

of the word anisotropic to structures that would not exhibit a magnetoresistance

without spin-orbit coupling.

Recently, investigators performed experimental [55] and theoretical [32] studies of

single atoms deposited on a ferromagnetic film, measuring their DOS by comparing

atomic spectra. They found that magnetic domains present in the film altered the

DOS of each atom differently, calling the effect TAMR as well. The observation of

TAMR seems unrestricted to traditional metals and semiconductors; the effect has

been observed in an organic spin-valve with a single ferromagnetic electrode as well

[15]. Furthermore, magnetic tunnel junctions employing antiferromagnetic electrodes

provide another promising area of research.

In many cases experiments produce TAMR ratios on the order of 10% [13, 39, 58],

at least one order of magnitude lower than their TMR counterparts. Shortly after its

discovery, many theoretical investigations modeled TAMR by considering the bulk

DOS of both electrodes only. First principles calculations [9, 48] soon expanded this

picture. In this thesis we perform first principles calculations of TMR and TAMR in

CoPt
∣∣MgO

∣∣PtCo and CoPt
∣∣MgO

∣∣Pt device structures. In the following section we

discuss thermoelectric effects, and later see that the magnetoresistance possesses a

thermal counterpart, known as the magneto-Seebeck effect.
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4. THERMOELECTRIC PHENOMENON

4.1 Introduction

In 1821 Thomas Johann Seebeck observed the deflection of a compass needle

placed within a closed bi-metallic loop subject to a temperature gradient. The loop

consisted of two different metals, each forming a semi-circular shape around the

compass and joined at the ends. The junctions were held at different temperatures.

Given that no voltage source was connected to the loop, Seebeck assumed that

the thermally-driven effect was purely magnetic in origin. Later, Hans Christian

Oersted verified that the compass needle responded to a magnetic field generated

by an electric current in the loop. The temperature gradient produced a potential

difference within the material; he coined the effect ”thermoelectricity.”

Strong activity in thermoelectrics ensued from 1821 to 1851. In middle of 20th

century, the advent of band theory and semiconductor physics led to a microscopic

understanding of thermoelectricity [33]. The study of the coupling between charge

and heat currents has produced great advances in refrigeration, power generation,

and temperature sensors.

As it turns out, the spin degree of freedom influences traditional thermoelec-

tric effects as well [21, 14, 42]. In 2008, the discovery of the Spin Seebeck Effect

[51] sparked a new interest in temperature-dependent phenomena as it applies to

spin-based systems. From this resurgence the field of Spin Caloritronics was born,

marrying thermoelectricity with Spintronics.
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4.2 Traditional Thermoelectric Effects

4.2.1 Seebeck Effect

For almost two centuries, the Seebeck effect found its primary applications in

temperature measurement and power generation. One quantifies the effect through

the Seebeck coefficient,

S ≡ ∆V

∆T
(4.1)

i.e. the constant of proportionality between the temperature difference ∆T across

a material and the induced voltage ∆V . In principle, one measures temperature

by placing a bulk metal between the region of interest and a thermal reservoir. By

measuring the induced voltage one then deduces the unknown temperature, given

knowledge of the Seebeck coefficient and the reservoir’s temperature. In practice,

devices such as thermocouples employ at least two dissimilar metals to accomplish

this task. A thermocouple consists of two metals with different Seebeck coefficients

joined at the ends; this junction is placed in a hot region while the free ends are

placed in a cold region. Both metals induce different voltages across their ends due

to their differing Seebeck coefficients, creating a potential difference across the free

ends as well. Apart from measuring external temperatures, Si-based thermocouples

placed in series (thermopiles) perform sensitive measurements of on-chip temperature

differences [53].

Though many thermoelectric devices operate within phase-inelastic regimes of

electronic transport, the Seebeck effect exists in the coherent regime as well. In

section 2 we derived the current passing through a lead using the Landauer-Buttiker
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formalism, given by

Iα =
∑
α 6=β

e

h

∫
dE
(
f(E, µα, T )− f(E, µβ, T )

)
Tαβ(E). (4.2)

We expanded this expression in the linear response limit, obtaining

Iα =
∑
α 6=β

e

h

∫
dE
[
(µα − µβ)− (E − µ)

T
(Tα − Tβ)

](
− ∂Ef(E, µ, T )

)
Tαβ(E). (4.3)

where µ and T denote the average electrochemical potential and temperature of leads

α and β within the sum. Consider now a system with two leads. We may write 4.3

in a simpler form by defining the moments Lν as follows:

Lν ≡ e

h

∫
dE
(
− ∂Ef(E, µ, T )

)
(E − µ)νT (E). (4.4)

The current across the sample becomes

I = L0∆µ− L1

T
∆T (4.5)

where and ∆µ and ∆T represent the electrochemical potential and temperature

differences across the leads respectively. We remind the reader that T (E) represents

the energy-dependent transmission across the sample. Assuming that a current flows

but the reservoirs remain identical in temperature (∆T = 0), we find:

I = L0∆µ ≡ G∆V. (4.6)

Here ∆V = ∆µ/e represents the voltage difference (due to an electrochemical po-

tential difference only) across the two reservoirs, while G ≡ eL0 gives the same-
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temperature conductance. We derived this formula in section 2 across multiple leads.

Conversely, imagine that ∆T is finite but no current flows (I = 0), creating an

open circuit condition allowing for a potential difference across the reservoirs. Then:

∆V =
L1

GT
∆T ≡ S∆T (4.7)

where S ≡ L1/GT represents the Seebeck coefficient. We now write the full form of

these thermoelectric transport quantities:

G(µ, T ) =
e2

h

∫
dE
(
− ∂Ef(E, µ, T )

)
T (E) (4.8)

S(µ, T ) =
e

hT

1

G(µ, T )

∫
dE
(
− ∂Ef(E, µ, T )

)
(E − µ)T (E). (4.9)

The conductance gives the current brought upon by an electrochemical potential

difference between two leads held at the same temperature. The Seebeck coefficient,

however, determines the open-circuit electrochemical potential difference between

two leads held at different temperatures.

4.2.2 Peltier Effect

The Peltier effect describes the heat flow caused by an electrical current flowing

through contacts held at identical temperatures. In these conditions, the Peltier

coefficient is the constant of proportionality between the heat current and the charge

current

Π =
IQ

I
(4.10)
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where IQ refers to the heat current. Equation 4.3 gives the total charge current in

any particular lead, which we may also define as

I = eIN (4.11)

where IN denotes the corresponding particle current (we omit the lead label in what

follows). How then do we define the heat current? We proceed by noting the first

law of thermodynamics, as it applies to our leads:

dU = dQ+ µdN. (4.12)

The infinitesimal change in total energy dU equals the heat transfer dQ plus the

energy brought in by new particles µdN . Taking the time derivative of 4.12 and

rearranging, we find:

IQ = IE − µIN . (4.13)

Using 4.2 it follows from inspection that:

IQα =
∑
α 6=β

1

h

∫
dE(E − µ)

(
f(E, µα, T )− f(E, µβ, T )

)
Tαβ(E). (4.14)

Written in the linear-response limit:

IQα =
∑
α 6=β

1

h

∫
dE(E − µ)

[
(µα − µβ)− (E − µ)

T
(Tα − Tβ)

](
− ∂Ef(E, µ, T )

)
Tαβ(E).

(4.15)
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The heat current across a device with two leads becomes

IQ = L1∆V − L2

eT
∆T (4.16)

using the definitions of Lν provided in the previous section. When ∆T vanishes we

obtain:

Π =
IQ

I
=
L1

G
= TS (4.17)

The Seebeck and Peltier coefficients are not proportional to each other by coinci-

dence; in general they are related by the Onsager Relations. While we refrain from

deriving these relations, we emphasize their importance in calculations of thermo-

electric phenomena.

4.3 Spin Caloritronics

As recently as 2008, traditional thermoelectric effects found a new home in spin-

tronics. Arguably, Spin Caloritronics (as this marriage between fields is called) began

with the discovery of the unfortunately-named Spin-Seebeck effect [51]. In their ex-

periment, Uchida and collaborators discovered that temperature gradients induce

spin currents in NiFe at low temperatures. This spin-based analogy of the Seebeck

effect holds great promise for Spintronics applications. To date a complete theo-

retical explanation of the Spin Seebeck effect eludes researchers. Hatami et al. [16]

investigated theories of spin diffusion, observing that they could not explain the effect

based on their approach. Jaworski et al. [18] also observed the effect in (Ga,Mn)As;

by removing entire strips of their sample they demonstrated experimentally that the

spin Seebeck effect does not originate from charge flow. Instead, variations in spin

accumulation might be communicated through the substrate instead [19, 43].
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The spin-wave or magnonic Seebeck effect more aptly describes what the com-

munity refers to as the Spin-Seebeck effect (which was named in its infancy) [2].

Interestingly, investigators have also confirmed separate phenomena in which dis-

similar Seebeck and Peltier coefficients describe different spin channels. Slachter et

al. [44] and Flipse et al. [12] first reported this behavior, naming them the Spin-

Dependent Seebeck and Spin-Dependent Peltier effects respectively. Tulapurkar and

Suzuki later demonstrated that the spin-dependent Seebeck effect possesses magnonic

contributions as well [50].

In general, many new Spin Caloritronic effects exist. The Thermal Spin Transfer

Torque, predicted by Jia et al. [20], involves switching the free-layer of magnetic

tunnel junctions using temperature gradients instead of currents. Yu et al. [60]

reported experimental evidence supporting this potentially useful phenomenon.

4.3.1 The Magneto-Seebeck Effect

In the previous section we discussed briefly that certain thermoelectric quan-

tities exhibit spin dependency. Just the same, quantities such as the Seebeck or

Peltier coefficients also vary based on the magnetization configuration of devices.

The magneto-Seebeck effect (or magneto-thermopower) furnishes one such example,

as well as the central focus of this thesis. As it turns out, the ordinary Seebeck

coefficient of a magnetic tunnel junctions varies based on the magnetization con-

figuration of the device. One quantifies the effect by measuring or calculating the

magneto-Seebeck ratio, given by:

MS =
max[S(φmax)]−min[S(φmin)]

min[S(φmin)]
. (4.18)

Here, φmax and φmin denote the magnetization directions for which the maximum

and minimum Seebeck coefficients occur.
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The magneto-Seebeck effect was first reported by three groups. M. Walter et

al. [56] and N. Liebing et al. [23] both measured the effect in CoFeB
∣∣ MgO

∣∣
CoFeB tunnel junctions, reporting best magneto-Seebeck ratios of -8.7% and ∼90%

respectively. Given the presence of MgO, it seems apt to call such a phenomenon

the Tunneling Magneto-Seebeck Effect (TMS). Ts. Naydenova et al. [31] performed

a similar experiment in a GaAs-based structure with a single ferromagnetic contact

made of (Ga,Mn)As. In the same vein, we call this effect the Tunneling Anisotropic

Magneto-Seebeck Effect (TAMS), although the authors refer to it as the Tunneling

Anisotropic Magnetothermopower.

Theoretical studies by various groups predict the existence of the magneto-Seebeck

effect using ab-initio methods in conjunction with a Landauer-Buttiker approach

[17, 11] or the Boltzmann formalism [59, 24]. Though many theories ignore the

contributions of phonons, Plackowski et al. provide experimental evidence of an

electron-phonon coupling anisotropy in single-crystal MgB2 [37].

To our knowledge, no one has computed the TAMS effect in CoPt-based struc-

tures using realistic band structures. Furthermore, no comparative studies have been

performed between the TMS and TAMS effects in devices with (nearly) identical ma-

terials. The purpose of our study, as we see in the following section, is to fill in this

empty space.
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5. THE TUNNELING (ANISOTROPIC) MAGNETO-SEEBECK EFFECT

5.1 Theoretical Model

Having derived the necessary theoretical tools and provided the relevant back-

ground, we now report the results of this thesis. We begin by describing our theo-

retical model.

5.1.1 Tight-binding Model

We derive all material Hamiltonians using the Slater-Koster tight-binding model

[45]. In regards to our leads, which contain Co and Pt, we used the Shi Papacon-

stantopoulos parameterization to describe monolayers of a single atomic species. To

combine these elements into the alloy CoPt, a subset of this parameterization was re-

fined to produce DOS and spin polarization in agreement with ab-initio calculations.

The magnetization of Co was included via Stoner parameters; all Pt monolayers in

the alloy are also magnetized due to their proximity to Co. We include SOC in

both Co and Pt to fully capture the magnetic transport anisotropy. These electronic

structure calculations were performed by collaborators at The University of Notting-

ham, England and The Academy of Sciences, Prague, Czech Republic. For further

information, we refer the reader to [64].

5.1.1.1 The Leads

In order to utilize the Landauer-Buttiker formalism, we first construct semi-

infinite leads. Our calculations of surface Green’s functions require discreet trans-

lational invariance in the direction of transport. In other words, we need to group

layers of our leads into the principal layers described in section 2. In our particular

model we assume next-nearest neighbor hopping in all directions. Thus, in order for
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the lead Hamiltonian to be block tridiagonal (as required by our model), each block

must consist of a principal layer rather than a monolayer. Principal layers merely

group multiple monolayers into a single ”layer” for computational convenience.

Consider the two materials that we use for our leads: CoPt and Pt. Our model

for the CoPt alloy consists of alternating monolayers of Co and Pt. Each monolayer

includes an infinite two dimensional sheet of Co or Pt atoms, oriented perpendicular

to transport. To create something that repeats, we group two neighboring Co and Pt

monolayers into a principal layer. This enables us to retain a block tridiagonal form

while allowing for next-nearest neighbor interactions, and satisfies discreet transla-

tional invariance in the transport direction. Pt already satisfies translational invari-

ance due to its homogeneity; regardless the next-nearest neighbor hopping mandates

we use the same-sized principal layer as well.

Every monolayer is periodic in the direction perpendicular to transport, estab-

lishing the existence of a two-dimensional Brillouin Zone (2DBZ) spanned by the

crystal momentum vectors ~k⊥. Each CoPt or Pt monolayer contains one atom per

unit cell, with ten orbitals and two spin degrees of freedom for per ~k⊥ point. Thus,

aside from ~k⊥, electrons possess 40 additional quantum numbers per principal layer

in both leads. Figure 5.1 depicts the device schematics and principal layer structure

relevant to our computations.

Our CoPt and Pt Hamiltonians possess four states with zero hopping parame-

ter. Known as the s* orbitals, these fictitious states exist primarily to fit the band

structure to ab-initio calculations. Interestingly, their vanishing hopping parame-

ter prevents them from contributing to transport; such states produced infinitely-

damped modes in semi-infinite systems (see section 2 for discussion). Due to their

incompatibility with the eigenvalue method they must be removed from the lead

Hamiltonians. They may, however, persist within the scattering region. To test the
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(a) (b)

(c) (d)

Figure 5.1: Depictions of our Tight-Binding model and simulated device structures. (a)
Each principal layer is denoted by the ”glass sheet”. The monolayers are labeled by text
(Co or Pt). Consider the Pt layer labeled in blue; the nearest and next-nearest monolayers
(red text) all lie within the neighboring principal layers. Thus the principal layer scheme
allows our Hamiltonians to retain a block-tridiagonal structure while admitting any range
of interactions. (b) Schematic detailing the leads and sample in our Landauer-Buttiker
system. (c) The ordinary CoPt

∣∣MgO
∣∣PtCo device. (d) The anisotropic CoPt

∣∣MgO
∣∣Pt

device.

validity of removing the s* orbitals from the leads, we simulated a two-terminal de-

vice in which the leads and sample were all identical materials (either CoPt or Pt).

However, we allowed the s* orbitals to remain in the scattering region, not subject

to the eigenvalue method used for the leads. We swept conductance versus ~k⊥, en-

ergy, and the number of included sample layers (barrier thickness). In all cases, the

conductance mirrored the number of states in the lead; scattering into a region with

s* orbitals did not alter the transmission. We further simulated non-identical leads
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scattering into MgO, but allowed a portion of each lead to spill over into the sample.

We varied the number of spillover layers asymmetrically and allowed the s* orbitals

to remain within them. In all cases we also observed no change in the conductance.

By adopting these reduced Lead Hamiltonians (absent of s* orbitals) our new single

layer lead Hamiltonians are 36× 36 matrices per k-point.

5.1.1.2 The Scattering Region (Sample)

Our scattering region, or sample, consists of crystalline MgO. By chance, each

principal layer is also given by a 40× 40 matrix; however each principal layer corre-

sponds to a single monolayer of MgO. No s* orbitals were used in their construction.

In cases in which we allow the leads to spill over into the sample, they remain in

their full form (40 × 40). The sample, which is finite and not semi-infinite, is then

represented by a 40Nb × 40Nb matrix, where Nb equals the number of principal lay-

ers in the barrier. Furthermore, the overlap Hamiltonian connecting the leads and

sample is non vanishing only for the neighboring principal layers on either side of

the interface.

5.1.1.3 The Device Structures

We study two devices, which we call the ordinary structure (CoPt
∣∣MgO

∣∣PtCo)

and the anisotropic structure (CoPt
∣∣MgO

∣∣Pt). Both devices contain at least one free

CoPt lead in which we permit the magnetization to change. In the ordinary structure,

we fix the magnetization of the other CoPt lead in the [001] (transport) direction.

Throughout this section we only rotate the free lead’s magnetization, denoted by φ,

in the plane defined by the [001] and [100] directions. For orientation, Φ = 0◦ denotes

the [001] direction, entirely out-of-plane (parallel to transport); Φ = 90◦ represents

the [100] direction, entirely in-plane (perpendicular to transport). All CoPt leads

are Pt-terminated, i.e. Pt composes the monolayer within the principal layer closest
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to the scattering region.

We consider two magnetization configurations in the ordinary structure: parallel

and antiparallel. In the parallel configuration φ = 0◦ for both leads; in the antiparallel

configuration the free lead’s magnetization points in the opposite direction (φ =

180◦). Such configurations provide the greatest change in conductance. For the

anisotropic structure we sweep magnetization in the free lead from 0◦ to 90◦; only this

range of magnetization directions gives non-repeating results (due to the particular

rotational symmetry of the CoPt tight-binding model).

5.1.2 Transport Equations

In section 2 we obtained expressions for the Landauer-Buttiker transmission func-

tion Tαβ, given tight-binding Hamiltonians for the leads and sample. In our model

we calculate individual tight-binding Hamiltonians only for a given tunneling energy

(E), transverse crystal momentum (~k⊥), and out-of-plane magnetization direction

(φ) in the free CoPt lead. The transmission probability is then given by

T (φ,E,~k⊥) = Tr[ΓLG
+ΓRG

−] (5.1)

ΓL(R) = i
(
Σ+
L(R) − Σ−L(R)

)
(5.2)

where Σ is the self-energy of a lead and G is the Green’s function of the sample. The

subscripts (L/R) denote the (left/right) leads, while the superscripts (+/−) label

the kind of Green’s function (retarded/advanced) used to calculate that particular

quantity. The total conductance Ḡ at a given tunneling energy and CoPt magne-

tization direction is proportional to the sum of transmission probabilities over the

2DBZ:

Ḡ(φ,E) =
e2

h

∑
~k⊥

T (φ,E,~k⊥) (5.3)
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To incorporate the effects of temperature, we follow the procedures outlined in sec-

tion 2. Namely, we assume non-interacting electrons fill the band structure via

ordinary Fermi-Dirac statistics, and neglect the contributions of phonons. In this

approximation, the conductance and Seebeck coefficient may be expressed as

G(φ, T ) =
e2

h

∫
G(φ,E, T )dE (5.4)

S(φ, T ) =
e

hTG(φ, T )

∫
(E − Ef )G(φ,E, T )dE (5.5)

where

G(φ,E, T ) = Ḡ(φ,E)

(
− ∂f

∂E
(E,Ef , T )

)
(5.6)

These equations are exactly the same as those derived in section 2; we have merely

defined the function G for convenience. As we will later see, G helps to clarify the

physical origins of the magnetoresistance and magneto-Seebeck effect.

5.2 A Study of T (~k⊥) (Convergence Issues)

We now begin to discuss our results. Figure 5.2 shows plots of key transport

quantities in the anisotropic structure. Of particular interest is the relationship

between the conductance and density of states in both leads. Early models of TAMR

assume that the transmission is proportional to the product of both leads’ bulk

density of states [13]. More accurate models use the density of states corresponding

to the interfacial layers only (SDOS); some even weigh the ~k⊥-dependent SDOS

values with their respective Fermi velocities. Certain simple transport models provide

compelling evidence that, in the limit of large barrier thickness, these approximations

are valid. However, especially in the limit of thin barriers, one must compute the

full phase-coherent scattering problem. Within the results shown in this section, the
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(a) (b)

(c) (d)

Figure 5.2: Various transport quantities corresponding to the anisotropic structure
(CoPt

∣∣MgO
∣∣Pt) plotted over the 2DBZ at the Fermi Energy. The barrier contains five

monolayers of MgO. (a) The number of states (NOS) in the free CoPt lead. For orienta-
tion in ~k⊥ space, the black arrow points in the [001] (transport) direction. (b) The product
of both leads’ surface density of states (SDOS), which corresponds to the interfacial CoPt
and Pt principal layers (i.e. those directly neighboring the MgO scattering region). (c)
T (φ = 0◦). (d) T (φ = 90◦).

SDOS clearly lacks features found in the conductance, further supporting this claim.

In the following section, however, we find one important common feature between

the two.
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Figure 5.3: T (~k⊥) (e2/h) frequently exhibits sharp peaks (sometimes referred to as ”hot”
spots), shown here for the anisotropic structure (CoPt

∣∣MgO
∣∣Pt) at φ = 0◦ and E = Ef .

Figure 5.3 shows the transmission T (~k⊥) plotted over the 2DBZ for CoPt
∣∣MgO

∣∣Pt

with a five monolayer barrier thickness. Sharp peaks known as ”hot spots” seem to

pepper the ~k⊥-dependent transmission. In the original theoretical studies of Fe-based

MTJ’s with crystalline MgO tunnel barriers, these hot spots contributed negligibly

to the calculated magnetoresistance ratios. Despite their presence in the antiparallel

configuration’s transmission as well as the parallel configuration’s minority carrier

transmission, the authors determined that the parallel configuration’s majority car-

rier transmission, dominated by the so-called ∆1 states, also dominated the magne-

toresistance effect. In general, the influence of those states depends on their hopping

parameters across the interface.

Hot spots tend to greatly impede numerical convergence (figure 5.4), by which

we mean the convergence of
∫
BZ
T (~k⊥)d~k⊥ with respect to the inclusion of more
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~k⊥ points in the Reimann sum. To clarify, we introduce a unit of ~k⊥ point density

defined relative to the area of the 2DBZ. For example, a ~k⊥ point density of 106

implies a density of one million ~k⊥ points per total area of the 2DBZ.

While some areas of the ~k⊥-dependent transmission converge using a relatively

small ~k⊥ point density (∼ 105), regions with hot spots often require values of ∼ 107

or greater. Considering that a separate Landauer-Buttiker calculation occurs at each

~k⊥ point, large ~k⊥ point densities become numerically expensive, especially if other

parameters (magnetization direction, energy, barrier thickness) are swept as well.

For this reason, we conducted an investigation of areas containing hot spots in the

~k⊥-dependent transmission of both device structures. As we discuss in the next

section, these hot spots are rarely ”spots” at all.
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Figure 5.4: Percent convergence of the temperature-dependent conductance G(T) (shown
for the anisotropic structure) before and after filtering.
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5.3 “Hot” Walls, Interfacial Disorder, and Filtering Algorithms

5.3.1 “Hot Walls”

In the case of CoPt
∣∣MgO

∣∣Pt with a five monolayer barrier thickness, φ = 0◦,

and E = Ef , 32 distinct hot spots exist at a ~k⊥ point density of approximate one

million. These 32 transmission values contribute over 6% to the total transmission

summed over the entire 2DBZ. Whereas the rest of the 2DBZ converges at around a

quarter million ~k⊥ points, regions containing these hot spots continue to transform

erratically well beyond this resolution.

After studying the number of hot spots appearing at various resolutions for both

device structures, we focussed on those with the largest and smallest values, and

resimulated small portions of the surrounding areas. Clearly, shrinking the simulation

area while calculating the same number of ~k⊥ points increases the ~k⊥ point density.

Every resimulated peak across both devices exhibited the same behavior. As the ~k⊥

point density increases more hot spots appear. Eventually they begin to connect

together, forming a wall. Hot spots in MgO-based MTJs are therefore ”hot walls.”

First, we attempt to characterize the behavior of hot walls before commenting

on their origin and physical relevance. When we refer to a wall, we mean that some

~k⊥-dependent transport quantity (such as T or the SDOS) peaks in value along a

one-dimensional path (or line) through ~k⊥ space. The length of a wall then refers to

the distance the path travels through ~k⊥ space. We call the width of a wall its extent

in ~k⊥ space perpendicular to its path or length. In general, the lengths of many T

walls may approach the size of the 2DBZ itself; in contrast their widths are orders

of magnitudes smaller. We interchangeably refer to the height (or peak value) of a

wall as its amplitude.

Each hot wall in transmission appears to exist near by (and run parallel to) a
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similar wall in the SDOS of a particular lead. The corresponding walls in the SDOS

usually appears wider, implying that they are more easily seen at lower ~k⊥ point

densities. Indeed, plots of both the SDOS and T over the full 2DBZ confirm this:

the SDOS always contains more hot spots than does T . Both the amplitude and

width of the T walls diminishes with increasing barrier thickness — although the

width decreases faster than the height — making these walls appear ”skinnier” as

the sample becomes wider. Regardless, as the barrier thickens, the amplitudes of

the T walls remain considerably larger than those of the other features in the 2DBZ.

Thus T walls may contribute significantly to the total transmission in the limit of

thicker tunnel barriers.

(a) (b)

Figure 5.5: The number of states (NOS) in the (a) CoPt (φ = 0◦) and (b) Pt leads
plotted as a function of ~k⊥. Changes in the NOS follow curvilinear paths, forming plateaus
across the 2DBZ.

As discussed in section 2, changes in the NOS occur when the threshold energy of

a particular channel just exceeds the tunneling energy of an electron. That electron
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then loses an available state and the NOS drops by one. The NOS thus undergoes

multiple rises and drops over ~k⊥ space. Typically, these rises or drops do not occur

chaotically; instead they form one-dimensional curvilinear plateaus (for lack of a

better term) that sweep through the 2DBZ (figure 5.5).

Interestingly enough, both T and SDOS walls tend to run parallel to the edges

of these plateaus, implying a direct relation. The offset between a plateau and a

wall seems to vary over ~k⊥ space. Figure 5.6 demonstrates this most clearly; both

the T and SDOS walls converge into the plateau edge. The region in the figure

originally encompassed the weakest hot spot at a ~k⊥ point density of one million.

Resimulating this region reveals that even the weakest hot spots form into hot walls,

given sufficient ~k⊥ point density. In fact, the T wall amplitude within this region (for

a two monolayer barrier thickness) reaches unity; the single available lead channel

transmits perfectly. Such strong transmission at high ~k⊥ densities are a far cry from

the single hot spots accessible at lower densities.

One must consider the possibility that hot walls are numerical artifacts. However,

further analysis renders this theory unlikely. The transmission never exceeds the

minimum NOS available in either lead. The sum rules consistently check out along

the walls. Whereas T wall amplitudes are limited by the minimum available states

in the leads, the SDOS may diverge. Indeed, simulations at higher ~k⊥ point densities

confirm that the SDOS wall amplitudes do diverge (numerically). However, this is

neither unphysical nor a sign of failing code.

It is the opinion of this author that these hot walls are legitimate transmission

resonances in ~k⊥ space, possible only in extremely clean systems. Several experimen-

tal realities, such as disorder and finite-size effects, might heavily reduce or eliminate

their influence. In fact, we will later argue that one should remove any hot spots

that have not yet formed into hot walls for the sake of finite-size effects, disorder,
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(a)

(b)

(c)

Figure 5.6: Various resimulated transport quantities plotted over a small patch of the
2DBZ. It would require ∼1 billion ~k⊥ points to achieve this resolution over the entire
2DBZ. (a) Changes in color correspond to integer steps in the NOS. Such steps form
”plateaus” found throughout the 2DBZ. (b) A linearly-shaped resonance (wall) in the
SDOS runs parallel (with varying offset) to a plateau in the NOS. (c) T (φ = 0◦) (shown
for CoPt

∣∣MgO
∣∣Pt ) displays similar resonances, which we call ”hot” walls. Despite their

presence throughout ~k⊥ space, a sufficiently coarse ~k⊥ mesh might only overlap a given
wall by few pixels. In such cases one observes strong resonances at peculiar spots scattered
throughout the 2DBZ, referred to date as ”hot spots” in the literature.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.7: Hot wall formation in response to increasing barrier thickness. All panels
show T (~k⊥) (e2/h) plotted over a small region of ~k⊥ space. Panels (a), (b) and (c) apply
to CoPt

∣∣MgO
∣∣Pt for same region of ~k⊥ space, and correspond to barrier thicknesses of one,

two, and five MgO monolayers respectively. Panels (d) - (f) also correspond to one, two,
and five MgO monolayers respectively, but apply to CoPt

∣∣MgO
∣∣PtCo and over another

region of ~k⊥ space.

77



convergence, and overall consistency in approach.

Finally, we comment on the significant range of ~k⊥ point densities in which hot

walls appear. we required a ~k⊥ point density of roughly one billion to fully resolve

the hot walls shown in figures 5.6 and 5.7a through 5.7c. Despite this, the hot walls

pictured in figures 5.7d through 5.7f manifested at a ~k⊥ point density of ∼ 105. Over

the course of this study we discovered that hot walls occur between these extremal

scale lengths in both devices, exhibiting varying offsets from their corresponding

NOS plateaus.

5.3.2 Interfacial Disorder

So far, we have considered totally clean systems. Indeed, the assumption that

~k⊥ is a good quantum number across the interface implies that no bulk or interfacial

disorder exists. In the presence of disorder states with different ~k⊥ values couple, po-

tentially smearing the ~k⊥-resolved transmission. Such a phenomenon might eradicate

hot walls given their exceedingly small widths. Amazingly, both experimental and

theoretical studies of MgO-based MTJs suggest that MgO is fairly clean in the bulk.

Conversely, one might attempt adding bulk disorder to the CoPt and Pt leads; based

on our current approach this requires placing portions of these materials within the

scattering region. The sample size quickly becomes numerically prohibitive, given

that ten to twenty principal layers of each material might exist on either side of the

MgO barrier.

Many groups suggest that the most experimentally-relevant disorder occurs at the

interface between MgO and the leads [27]. We therefore study the effect of interfacial

disorder on hot walls. We allow two principal layers of each lead to spill over into the

sample. Within those layers alone we drastically increase the η parameter, which in

turn increases the decay lengths of available channels and smears (to some degree)
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(a) (b)

Figure 5.8: The effect of interfacial disorder on hot spots, achieved via large η parameter
at the interface. The panels show T (~k⊥) (e2/h) with (a) η = 10−4 and (b) η = 10−3 for
CoPt

∣∣MgO
∣∣Pt (5 monolayer barrier thickness). In both cases hot spots remain. Values

larger than η = 10−3 cause numerical instabilities.

the ~k⊥-resolved transmission. We note that increasingly larger values of η eventually

lead to violations of the sum rules (which occur for η > 10−3).

Figure 5.8 displays the results of this study for two disorder strengths. While

interfacial disorder reduces the transmission over the entire 2DBZ, it fails to suffi-

ciently diminish the amplitudes of hot walls (relative to the rest of T ). In the end,

hot spots (and their corresponding convergence issues) still persist.

5.3.3 The Surface Density of States

In the following we provide a partial explanation for the existence of hot walls.

Equation 2.168, reproduced here for convenience, gives us the SDOS of a lead.

ρ(E) ≡ 1

π
={Tr[G00]} =

1

π

∑
ν

γ

(E − Eν(~k⊥)−∆ν)2 + γ2
(5.7)
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Note that we have added the ~k⊥ dependence of the threshold energies. We further

showed that if γ and ∆ vanish, the SDOS approaches that of an isolated principal

layer:

ρ(E)→
∑
ν

δ
(
E − Eν(~k⊥)

)
. (5.8)

We suggest that the delta function in equation 5.8 produces the SDOS hot walls. This

idea essentially stems from textbook definitions of the DOS. However, the calculated

SDOS certainly does not necessarily resemble equation 5.8, due to the presence of

the Self Energy. The actual SDOS, given by equation 5.7, resembles equation 5.8

with broadened and shifted delta functions. Thus we assume γ and ∆ are responsible

for the offsets and varying widths of the hot walls. It remains to compare calculated

values of γ and ∆ to these offsets and thicknesses.

Even if equation 5.7 explains the SDOS resonances, we still do not understand

how to explain the formation of hot walls in transmission T . Consider a situation in

which the leads and the sample are identical. In this case the transmission exactly

equals the NOS in the leads and no hot walls exist. Regardless, the SDOS still

contains resonances described by equation 5.7, since the SDOS is independent of the

scattering region. Resonances in the SDOS clearly exist but do not spill into the

transmission. As barrier thickness increases (figure 5.7), the transmission begins to

mimic the SDOS. Thus thicker barriers appear to work as a filter, allowing hot walls

to pass but suppressing other features. Despite having an analytical understanding

of the SDOS resonances, further analysis is required to understand hot walls in

transmission.
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5.3.4 Finite Size Effects and Filtering Algorithms

In section 2, we discussed the implications of cyclic boundary conditions on pe-

riodic systems. Establishing a finite length over which all phases must repeat con-

strains electrons to a maximum wavelength/minimum ~k value. With the spacing

between ~k values constrained, electrons may only occupy a finite amount of the

2DBZ.

State-of-the-art MgO-based magnetic tunnel junctions range from cross sections

of 30nm×30nm to 1µm×1µm. In reality, confined electronic wavefunctions most ac-

curately obey hard wall boundary conditions. Cyclic boundary conditions, however,

provide a standard approximation used for calculating finite-size effects. Thus we

compute the maximum number of ~k⊥ points allowed for a given cross sectional area.

The results are shown, based on the edge length of our 2DBZ (23.3611 1/nm), in

table 5.1.

Out[97]=

MTJ Width HnmL Maximum  of k-points

10 1369

20 5476

30 12321

40 21904

50 34225

100 137641

200 552049

300 1243225

500 3455881

1000 13823524

Table 5.1: The maximum number of ~k⊥ points allowed for various MTJ widths.
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Whereas the larger cross sectional areas shown admit over 10 million ~k⊥ points,

many experimentally relevant MTJs (∼ 100nm) allow for densities of 105 or less.

Given that few hot walls exist in our device structures at that ~k⊥ point density, it

follows that most hot walls are physically unaccessible. From a numerical perspective,

this appears to be great news. After all, reducing the number of ~k⊥ points greatly

eases the computational load. Unfortunately, the calculated magneto-Seebeck and

magnetoresistance ratios become increasingly erratic as the ~k⊥ mesh becomes coarser.

Since our tight-binding Hamiltonians correspond to bulk systems, we cannot expect

our results to converge without using a significant number of ~k⊥ points.

Between roughly 64 × 103 and 256 × 103 ~k⊥ points we find a compromise. In

this experimentally-relevant regime, T converges better than 2% for both device

structures and all magnetization directions, energies, and barrier widths — if all hot

spots are removed.

Considering that ten or so hot spots contribute roughly 1/1000% of the calculated

2DBZ, we argue that one should ignore hot spots at ~k⊥ point densities for which no

possibility of wall formation exists. At minimum, this view is pragmatic. Given that

some hot walls form at ~k⊥ point densities of one billion, true numerical convergence is

completely impractical. Still, we argue that electrons subject to more sophisticated

disorder models and hard-wall boundary conditions are even less likely to experience

these resonances. Thus, if we systematically filter out hot walls, we may proceed

with our analysis.

For simplicity in what follows, we apply a median filter to all simulated transmis-

sion data over ~k⊥ space. In other words, we replace the T value at each ~k⊥ point with

the median T value of a small neighborhood surrounding it. This non-linear filter

kills peaks while leaving sharp edges and smoothly-varying features more or less in-

tact. However, it does subject the converged areas of the 2DBZ to minor distortions.
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(a) (b)

Figure 5.9: T (~k⊥) (e2/h) shown for CoPt
∣∣MgO

∣∣PtCo (5 monolayer barrier thickness).
(a) The raw transmission, unfiltered. (b) The same transmission passed through a median
filter, which replaces the value of each pixel with the median value taken over a small
neighborhood surrounding it. Filtering removes the hot spots, but adds some distortion to
the converged areas as well.

Figure 5.9 demonstrates the effect of a median filter on typical transmission data.

In the following sections we filter all presented data in this way, unless otherwise

specified. This filtration process allows for a consistent definition of convergence,

and later we see that it does not significantly alter the essential results of this thesis.

5.4 Energy-Dependent Transmission

Up until now we have discussed the ~k⊥-dependent transport at the Fermi Energy

T (~k⊥, Ef ). In general, one calculates the total conductance at any energy Ḡ(E)

by taking the ~k⊥ space sum of (e2/h)T (~k⊥, E). In order to calculate the finite-

temperature conductance, we then sum (−∂f/∂E)Ḡ(E) over energy.

Figure 5.10 shows the energy-dependent conductance Ḡ(E) for seven magnetiza-

tion directions (φ) in CoPt
∣∣MgO

∣∣Pt . By our convention the Fermi energy occurs at

E = 0, so the zero-temperature conductance corresponds to the value of these curves

at that energy. The high conductance value occurs at φ = 15◦. As the magnetiza-
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Figure 5.10: Ḡ(E) (e2/h) corresponding to CoPt
∣∣MgO

∣∣Pt (5 monolayer barrier thickness)
shown for all seven swept magnetization directions.

tion direction increases to 90◦, the zero-temperature conductance drops to its lowest

value. In essence, this captures the origin of the zero-temperature magnetoresistance.

Figure 5.11 provides a visual representation of the magnetoresistance and magneto-

Seebeck effects. Both Ḡ(E) (light) and G = (−∂f/∂E)Ḡ(E) (dark, T = 300K) are

plotted versus energy for the both device structures. We only show the magnetization

directions corresponding to the high (blue) and low (red) magnetoresistance states.

The conductance (equation 5.4) equals the energy-integral of G, or the area under

the darker curves. The Seebeck coefficient (equation 5.5) is proportional to the av-

erage of E−Ef weighted by G, represented by the vertical dashed lines. Thus, large

differences in the energy-integral of G create a strong magnetoresistance effect, while

large differences in the energy-asymmetry of G lead to a strong magneto-Seebeck

effect. Note that while the vertical dashed lines provide an intuitive understanding

of the Seebeck coefficient, the actual values contain a factor of e/hTḠ not incorpo-

rated in this figure. In fact, although the magneto-Seebeck effect appears larger in

CoPt
∣∣MgO

∣∣PtCo than in CoPt
∣∣MgO

∣∣Pt it is actually the other way around.
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Figure 5.11: Visual representation of the magnetoresistance and magneto-Seebeck effects.
Both Ḡ (light) and G (dark, T = 300K) are plotted versus energy for the (a) CoPt

∣∣MgO
∣∣Pt

and (b) CoPt
∣∣MgO

∣∣PtCo device structures (5 monolayer barrier thickness). Only the
magnetization directions corresponding to the high (blue) and low (red) magnetoresistance
states are shown. While the conductance equals the energy-integral of G, the Seebeck
coefficient is proportional to the average of E − Ef weighted by G. These quantities are
represented by the area under the darker curves and the vertical dashed lines (up to a
factor of e/hTḠ) respectively. Large differences in the energy-integral of G create a strong
magnetoresistance effect, while large differences in the energy-asymmetry of G lead to a
strong magneto-Seebeck effect. Although the magneto-Seebeck effect appears greater in
CoPt

∣∣MgO
∣∣PtCo than in CoPt

∣∣MgO
∣∣Pt , one must consider the factor of e/hTḠ; in reality

the anisotropic structure possesses the stronger effect.
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5.5 The Tunneling (Anisotropic) Magnetoresistance

Having discussed the chief ingredients used to calculate the magnetoresistance and

magneto-Seebeck effects, we finally present our results. The temperature-dependent

magnetoresistance ratio is given by

MR =
G(φmax, T )−G(φmin, T )

G(φmin, T )
. (5.9)

where φmax and φmin denote the magnetization directions for which the maximum

and minimum conductance occurs respectively.
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Figure 5.12: Normalized zero-temperature TAMR curves for various barrier thicknesses.

Following the literature, we call the magnetoresistance ratio belonging to the

ordinary structure the Tunneling Magnetoresistance (TMR) and for the anisotropic

structure the Tunneling Anisotropic Magnetoresistance (TAMR). Despite the use
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of coherent transport calculations and realistic band structures, we note that most

simulations only produce order-of-magnitude estimates of these effects.
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Figure 5.13: Magnetoresistance ratio versus barrier width for various device structures,
temperatures, and included numbers of ~k⊥ points. The legend in the top-right corner
applies to all panels. Panels (a) and (b) show the unfiltered and filtered curves respectively
for the anisotropic (CoPt

∣∣MgO
∣∣Pt) structure. Panels (c) and (d) show the unfiltered and

filtered curves respectively for the ordinary (CoPt
∣∣MgO

∣∣PtCo) structure. In both cases,
the filtered curves predict either the same or (marginally) lower order of magnitude for the
magnetoresistance ratio than their unfiltered counterparts. The magnetoresistance ratio of
the ordinary device is one order-of-magnitude larger than the anisotropic device, consistent
with theory and experiment reported within the literature.

Figure 5.12 shows the normalized zero-temperature TAMR curves for various

barrier thicknesses, while figure 5.13 depicts the unfiltered and filtered TMR and

TAMR ratios (for various temperatures and ~k⊥-point densities) as a function of
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barrier width. The unfiltered TMR ratios provide an upper bound for their filtered

counterparts, while the filtered and unfiltered TAMR ratios exist at roughly the

same values (∼10%). This instills confidence that the filtering process does not

overestimate our results; regardless of filtration one obtains similar predictions.

In harmony with experimental and theoretical results from other researchers, we

predict TMR and TAMR ratios that are one order of magnitude apart. While the

TAMR ratio peaks at five monolayers, the TMR ratio saturates as barrier thickness

increases. Although our TAMR ratios never approach the technologically-relevant

TMR ratios, they provide encouragement for further experimental work.

5.6 The Tunneling (Anisotropic) Magneto-Seebeck Effect

To some extent, the magnetoresistance delivered no surprises. The ordinary

structure outperforms the anisotropic structure as expected. Having discussed the

magnetoresistance we finally move to the magneto-Seebeck effect. We define the

temperature-dependent magneto-Seebeck ratio in a similar manner

MS =
S(φmax, T )− S(φmin, T )

S(φmin, T )
(5.10)

where φmax and φmin denote the magnetization directions for which the maximum and

minimum Seebeck coefficients occur. Figure 5.14 displays plots of the Seebeck coef-

ficients of both devices versus temperature (all magnetizations). The calculated See-

beck coefficients are reported in µV/K, typical of bulk materials and magnetic tunnel

junctions. While the ordinary device CoPt
∣∣MgO

∣∣PtCo delivers greater Seebeck co-

efficients, both devices produce roughly the same order of magnitude. Although

CoPt
∣∣MgO

∣∣PtCo seems to yield greater differences in Seebeck coefficient between

magnetizations, one must consider the ratio of these differences with respect to the

minimum value (equation 5.10).
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Figure 5.14: The Seebeck coefficient of all magnetizations versus temperature for the (a)
anisotropic (CoPt

∣∣MgO
∣∣Pt) and (b) ordinary (CoPt

∣∣MgO
∣∣PtCo) devices.

In reality (as figure 5.15 shows) the anisotropic device CoPt
∣∣MgO

∣∣Pt competes

quite well, even producing higher magneto-Seebeck ratios at lower barrier widths.

Figure 5.15 demonstrates once more that the unfiltered results either provide an
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Figure 5.15: Absolute value of the magneto-Seebeck ratio versus barrier width for various
device structures, temperatures, and included numbers of ~k⊥ points. Panels (a) and (b)
show the filtered and unfiltered curves respectively for both the anisotropic (CoPt

∣∣MgO
∣∣Pt)

and ordinary (CoPt
∣∣MgO

∣∣PtCo) structures. Similarly to the magnetoresistance, the fil-
tered curves provide a lower bound for the magneto-Seebeck effect relative to their unfil-
tered counterparts. However, both structures exhibit magneto-Seebeck effects of the same
order of magnitude, as opposed to the magnetoresistance effect.

upper bound to the filtered results or exist at the same order of magnitude. Once

again, this instills confidence that the filtering process only tempers our results rather

than overestimates them.

Figure 5.16, which plots the room temperature data from figure 5.15, encapsu-
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Figure 5.16: Reproduction of 5.15, isolating the 300K, maximum ~k⊥-point density re-
sults. While CoPt

∣∣MgO
∣∣PtCo produces magnetoresistance ratios one order of magnitude

greater than CoPt
∣∣MgO

∣∣Pt, both devices yield magneto-Seebeck ratios of the same order of
magnitude. Furthermore, the magneto-Seebeck ratio of CoPt

∣∣MgO
∣∣Pt actually surpasses

that of CoPt
∣∣MgO

∣∣PtCo at lower barrier thicknesses (4 and 5 MgO monolayers).

lates the main result of this thesis. While CoPt
∣∣MgO

∣∣PtCo produces magnetoresis-

tance ratios one order of magnitude greater than CoPt
∣∣MgO

∣∣Pt, both devices yield

magneto-Seebeck ratios of the same order of magnitude. Furthermore, the magneto-

Seebeck ratio of CoPt
∣∣MgO

∣∣Pt actually surpasses that of CoPt
∣∣MgO

∣∣PtCo at lower

barrier thicknesses (4 and 5 MgO monolayers). According to the conventional wis-

dom, devices with single ferromagnetic layers that exploit spin-orbit coupling in

order to produce magnetic transport anisotropies often suffer in performance. In

CoPt
∣∣MgO

∣∣Pt, for example, spin-polarized electrons leaving the ferromagnetic layer

tunnel into a region with no spin preference. Thus, only the ferromagnetic layer

affects the magnetic transport anisotropy. In CoPt
∣∣MgO

∣∣PtCo, both ferromagnetic

layers prefer spins pointing in the direction of their magnetization. Thus in the
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antiparallel configuration, spins polarized by the first layer tunnel into a receiving

layer with little preference for their spin, greatly reducing the overall transmission.

Intuitively the ordinary device performs substantially better.

Thermally-induced voltages appear to behave differently. We know that larger

magneto-Seebeck ratios stem from greater differences in the T (E)-asymmetry of dif-

ferent magnetization configurations. At the moment, explaining such asymmetries

near the Fermi energy requires further work. Regardless, the results clearly demon-

strate that both CoPt
∣∣MgO

∣∣PtCo and CoPt
∣∣MgO

∣∣Pt produce magneto-Seebeck ra-

tios similar in strength. We end with the final conclusion, that CoPt
∣∣MgO

∣∣Pt actu-

ally outperforms CoPt
∣∣MgO

∣∣PtCo for small barrier widths.
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6. CONCLUSION

The magnetoresistance of tunnel junctions furnishes an electrically-measurable

logic state for potential spintronics applications (such as spin-logic devices or MRAM).

Unfortunately, the exchange field produced by two ferromagnetic layers, in addition

to the necessity for an antiferromagnetic pinning layer, limits the packing density

and overall design simplicity of MTJ arrays. While MTJs with single ferromagnetic

contacts are desirable, their magnetoresistance ratios tend to be insufficient for com-

mercial applications. Rather than driving current through MTJs, one might produce

temperature differences across them instead (via heating currents). In this case, the

high and low states correspond to open circuit voltages induced across the tunnel

junctions, the differences of which are ultimately given by the magneto-Seebeck ratio.

We calculated the magnetoresistance and magneto-Seebeck effect of both CoPt∣∣MgO
∣∣PtCo and CoPt

∣∣MgO
∣∣Pt magnetic tunnel junctions. To perform our calcula-

tions we used the Landauer-Buttiker formalism, in conjunction with realistic multi-

band tight binding models fitted to ab-initio calculations. We demonstrated that

numerically-unstable transmission resonances, ordinarily described as hot-spots in

the literature, more accurately resemble ”walls” that weave through the Brillouin

Zone. These ”hot walls” exist over a large range of k-point densities (105 to 109),

some of which present serious numerical difficulties. Models of interfacial disorder

reduce the transmission over the entire Brillouin Zone but do not eliminate hot walls.

We discussed the physical relevance of hot walls in modern day nanostructures, and

argued that their selective removal (via filtering algorithms) enables a consistent

and numerically-viable estimate of both the magnetoresistance and the magneto-

Seebeck effect. Filtering smooths out the energy-dependent transmission and aids
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convergence without significantly altering predictions of the magnetoresistance and

magneto-Seebeck ratios. The unfiltered results either provide an upper bound or ex-

ist at the same order of magnitude, which instills confidence that the filtering process

does not accidentally produce more optimistic results.

Finally, we reported that the magneto-Seebeck ratio of our anisotropic structure

exceeded that of the ordinary structure for small barrier lengths, in contrast with

the magnetoresistance, which behaves oppositely for all barrier lengths. We therefore

conclude that exploiting spin-orbit coupling in MTJs with a single ferromagnetic con-

tact can actually enhance certain magneto-transport anisotropies. By demonstrating

that both ordinary and anisotropic MTJs produce similar magneto-Seebeck ratios,

we provide researchers with the motivation to consider anisotropic MTJs for their

potential advantages.
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