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ABSTRACT 

 

 

As oil exploration projects move further into deep and ultra-deep waters, where severe 

environmental conditions persist, having safe and functional structures, at optimal cost, 

by optimizing designs of offshore structures and foundations becomes more important. 

Design considerations and methodology for dealing with conductors and piles subjected 

to cyclic lateral loads, have been based on modifications to formulations for monotonic 

loads. Soil-structure interaction problems involving offshore conductors are nonlinear. A 

convenient and computationally efficient approach to modeling this behavior uses lateral 

transfer curves (P-y curves) from which deflections resulting from applied loads can be 

estimated. P-y curves can be back-calculated from instrumented laterally loaded test 

piles, either full-scale field tests or small-scale laboratory model tests. Centrifuge tests, 

which permit small scale model tests at stress levels representative of those occurring in 

situ, are particularly useful for this purpose. This research involves the back-analysis of 

centrifuge test data on piles subjected to cyclic lateral loads to obtain P-y curves 

applicable to soft to medium clays. The tests were conducted in a kaolin test bed in an 

overconsolidated stress state. Instrumentation data included strain gage measurements 

along the length of the pile, and displacement, force, and tilt measurements at the pile 

head.   

 

The test interpretation involved deducing equivalent soil resistance (P) and pile 

deflection (y) measurements from the strain gage data. The former is particularly 

challenging, because it requires obtaining numerical second derivatives from a spatial 

array of strain gages. For this purpose a local least squares regression analysis was 

developed. For convenient implementation into an analytical model the resulting P-y 

curves were fitted to two alternative model forms: power law and Ramberg-Osgood. A 

0.91m conductor was subjected to small lateral displacements (0.01D to 0.02D), for 
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which simplified expressions for secant stiffness and equivalent damping ratio has been 

presented. The back calculated moments from the Power law and Ramberg-Osgood 

equations, compared very well with measured bending moments. 

 

This study has provided a framework for interpreting and generating P-y curves for 

cyclic load on offshore conductors. It has also provided design parameters, the stiffness 

modulus, and damping ratio that can be used as input for pile deflection and fatigue 

analysis of cyclic loaded offshore conductors. The results of this study will contribute 

towards understanding the behavior of offshore conductors installed below the ocean 

floor in harsh environmental conditions.  
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CHAPTER I  

INTRODUCTION 

 

1.1 Overview 

 

The quest for more crude oil reserves due to increasing demand for power globally, 

pushes the limits of oil exploration into deeper waters with harsh environmental 

conditions. The trend in Fig. 1.1 depicts that more future oil production in the United 

States (U.S.) will come from offshore units. In deep and ultra-deep water, floating 

exploration and production structures moored or tethered to the sea bed via anchors or 

deep foundations are utilized. These structures are continuously subjected to loads 

(wind, currents, wave actions, and ship impacts) that are transmitted to adjoining and 

supporting structures.  Such offshore structures includes, Tension Leg Platforms (TLP), 

Spars, Semi submersibles, and Floating Production Storage Offloading units (FPSO). 

Optimized designs which can deliver safe and functional structures, at optimal cost are 

required for these offshore facilities in such adverse environmental conditions. Amongst 

the design issues for offshore structures are the loads supported by the foundation 

systems and behavior of such systems, which the well conductor as a supporting 

structure falls under.  The design of such supporting structures must be functional, cost 

effective, and reliable.  

 

This thesis will contribute additional knowledge to design methods for cyclically loaded 

offshore conductors and piles, by creating a Soil-Spring Model, using existing 

relationships (Power law and Ramberg-Osgood). It will provide secant stiffness and 

equivalent damping ratio parameters, obtained from numerical analysis of centrifuge test 

data from a cyclically loaded conductor. 
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Fig. 1.1: The Margin Between the Total U.S Crude Oil Production and Offshore 

U.S. Closing Up as We Progress into the Future (Retrieved from the Encyclopedia 

of Earth, 2013). 

 

 

1.2 Offshore Conductors 

 

Offshore conductors are the widest diameter casings used for offshore wells and the key 

structural foundation for the subsea wellhead, as shown in Fig. 1.2. Offshore conductors 

also serve the purpose of protecting the wellstream from outside contaminant, as well as 

preventing oil and gas from contaminating any fresh water reservoir. They are usually 

connected to the floating moored structures through a top-tensioned or catenary riser, 

which links the conductor wellhead to the platform. The response of the risers to 

platform motions, sea currents and waves induces cyclic horizontal loads on the 

wellhead and the conductor system which can potentially cause fatigue damage to the 

conductor. The conductor transmits these lateral loads to the surrounding soil below the 
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sea bed in a complex non-linear manner. A good understanding of the interactions 

between the conductor and surrounding soil is very important for a functional, cost 

effective and reasonably conservative design. To ensure adequate conductor-soil 

resistance in an extreme loading event, the offshore conductor should be designed to 

adequately support both static and cyclic loads. A challenging aspect to having a unified 

design or rule that works in all conditions is the variability of the soil type and 

conditions across different locations. A better understanding of the behavior these 

offshore structures in relation to the soil supporting them, will add to the existing body 

of knowledge in soil/structure interaction (SSI) of offshore conductors. SSI of 

monotonic and cyclic loaded conductors can be modeled by assuming that the soil 

around the conductor acts as a series of closely spaced independent elastic springs, 

which will mobilize resistance to the motions of the conductor and experience some 

deformation during this process, as shown in Fig. 1.3. 

 

 

 

Fig. 1.2: The Offshore Conductor Shown as the First and Widest Casing in the 

Offshore Well (Steve Everley, 2013, Stated to Have been Originally Obtained from 

Http://www.Encana.Com/Images/Environment/Well-Casing.Gif). 



 

4 

 

Fig. 1.3: Equivalent Soil Springs Used to Model Mobilized Soil Resistance When 

the Offshore Conductor is Subjected to Lateral Load. 

 

 

1.3 P-y Relationship 

 

Laterally loaded conductors mobilizes soil resistance which varies with depth along the 

conductor. P-y curves are generally used to show the relationship between the mobilized 

resistance in the soil (P), and the deflection (y) that occurs. P-y curves are usually 

normalized to make them dimensionless to help eliminate site dependency and conductor 

dimensions effects, thereby improving generality of obtained results.  “The P-y curves, 

widely used by designers, were proposed by Matlock (1970), the Strain-Hardening clay 

criteria for soft clays and Reese et al. (1975), the Strain-Softening criteria for stiff clays.  

 

In this thesis, the P-y model of interest is to be generated for conductor in soft 

overconsolidated to slightly overconsolidated clay at depth. Matlock (1970) developed a 

procedure for construction of P-y curves from field and laboratory tests. The cyclic P-y 

curves developed were modifications from the static P-y curves to match observed field 

  

Pile head Load

Equivalent 
Soil‐Springs 

Mudline 



 

5 

data. The soil resistance was normalized by an ultimate soil pressure calculated from a 

soil bearing pressure factor of 9. The recommended curves by Matlock (1970) have been 

the adopted practice for cyclic P-y curves for several years now. Stevens and Audibert 

(1979) showed a series of case histories where the bearing pressure constants had been 

reported higher than the value of 9, and also concluded that the use of the previously 

formulated P-y curves in predicting the behavior of laterally loaded pile over-estimates 

the pile deflection at the mudline and underestimates the maximum bending moment. 

Randolph and Houlsby (1984); Murff and Hamilton (1993, 1995), have presented 

formulations for obtaining the ultimate pressure on a laterally loaded pile in cohesive 

soils, and values higher than 9 for the soil bearing pressure factor was reported. The 

recommendations in the API RP2A (2010), is based on the recommendations of Matlock 

(1970), with difference in the formulations for the unit lateral bearing capacity at depths 

in soft clays. 

 

In more recent studies, Templeton (2009) and Jeanjean (2009) have shown that the 

conventional methods for assessing lateral performance of conductor, using P-y curves 

as formulated by API RP2A manual in year 2000 for soft clays are too conservative.  

These methods may produce soil springs that are too soft, predicting larger cyclic lateral 

displacements and bending stresses for a given load range than the P-y curves obtained 

from the centrifuge test and Finite Element Analysis (FEA). The predicted cyclic 

stresses and lateral displacements will affect the predictions of the fatigue life of the 

structure, which is dependent on the P-y curves used in the analysis. Therefore, the use 

of P-y relations that reliably simulate the actual soil-conductor interaction is essential to 

safe and cost-effective design of conductors. .  

 

Non-linear lateral soil springs called P-y curves and vertical soil springs called 

stress/displacement (T-z) curves throughout the depth of conductor can be developed 

with, the soil data approach or empirical approach. The availability of soil data from 

either a field test or laboratory test will determine which approach is possible. In 
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designing conductors, the P-y curves representing the equivalent lateral soil reactions on 

the conductor significantly controlling its response more than the T-z curve, Pilisi et al. 

(2012).  For the offshore conductors, the significant loads of interest are the horizontal 

loads that these pipes are subjected to, so P-y curve formulation is the focus of this 

study. 

 

1.4 Objective of Thesis 

 

The purpose of this thesis is to develop and verify an equivalent linear soil/spring (P-y) 

model that characterizes the interaction between the soil and the conductor during cyclic 

lateral loading. The analysis will be considered for relatively small displacement levels, 

which are representative of most fatigue analysis conditions. The spring model is 

intended for use in analysis of fatigue life of a conductor pipe; the main focus will be on 

the steady state response of the soil mass around the conductor, neglecting the transient 

response.  

 

From the P-y curve of subsea-conductor interaction, we could successfully characterize 

the stiffness (k) of the soil, which is an integral input for the design of the offshore 

conductors and simulation of soil-conductor interaction problems. This P-y model is 

capable of simplifying the complex behavior of the soil-conductor, load-deflection 

relationship under cyclic loading. With the P-y curves, it should be possible to determine 

the maximum bending moment and the depth at which it occurs along the conductor, in 

addition to the shear force, deflection and rotation of the conductor wellhead. 

 

The centrifuge tests involved cyclic loads applied on a model offshore conductor, for 

various loading condition and sequences. In this experimental sequence, 4 tests were 

carried out on model conductors, and a description of these test procedures and 

relevance can be found in Jeanjean (2009). The current study described in this thesis was 

based on data obtained from Test 4 as described in Chapter 3 of this thesis. The objective 
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of the tests was to understand the effect of lateral riser motions generated by hull vortex 

induced vibration (VIV) on the lateral response of the soil. A series of schematics of 

applied pile head displacements for Test 4 are shown in Fig. 1.4. 

 

 

 

Fig. 1.4: Pile Head Displacement vs Time for Test 4 (Retrieved from Jeanjean, 

2009). 

 

 

The testing program as described by Jeanjean (2009) consisted of 5 sets of 1000 cycles 

of lateral load applied some distance from the pile head, until very large lateral 

displacements were achieved at the pile head. The conductor model was instrumented 

with 13 strain gages to measure strains at discrete points along the conductor; 

measurement of load, inclination, and lateral movement of the well head were also 

made. Each set of the 1000 loading cycles were separated by different waiting periods 

which progressed in the sequence enumerated below: 
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1) Initial consolidation of the soil. 

2) 1000 cycles of loading about a mean displacement position, with amplitude 

corresponding to wellhead displacement, equal to the maximum hull VIV case at 

a frequency of 1.2 Hz.  

3) A rest period in which dissipation of excess pore pressures induced by cyclic 

loads and soil consolidation occurs. 

4) 1000 cycles of loading at an offset from the mean displacement position, with 

amplitude corresponding to wellhead displacement, equal to the most damaging 

riser VIV case at a frequency of 2.2 Hz. 

5) A rest period in which dissipation of excess pore pressures induced by cyclic 

loads and soil consolidation occurs. 

6) 1000 cycles of loading about a mean displacement position, with amplitude 

corresponding to wellhead displacement, equal to the maximum hull VIV case at 

a frequency of 1.2 Hz.  

7) 1000 cycles of loading at an offset from the mean displacement position, with 

amplitude corresponding to wellhead displacement, equal to the most damaging 

riser VIV case at a frequency of 2.0 Hz. 

8) A rest period in which dissipation of excess pore pressures induced by cyclic 

loads and soil consolidation occurs. 

9) 1000 cycles of loading about a mean displacement position, with amplitude 

corresponding to wellhead displacement, equal to the maximum hull VIV case at 

a frequency of 1.2 Hz.  

10) Monotonic push of the conductor to failure after cyclic loading. 

 

The data from 5 sets of the 1000 cyclic load sequence in test 4 will be used in the 

analysis considered in this thesis; the first corresponding to the loading about a mean 

displacement position and the second with an offset from the mean position. Fig. 1.5 

shows the P-y relationship for a cyclic loaded conductor about a zero and non-zero mean 
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displacement, a depiction of symmetrically and non-symmetrically applied loads, 

showing the backbone curve, transient and steady state load cycles. 

 

 

 

Fig. 1.5: Sketch of the P-Y Relationship for a Cyclic Loaded Conductor About a 

Zero and Non-Zero Mean Displacement (Reprinted from Aubeny, 2012). 

 

 

The use of data from the centrifuge is being adopted more because it provides good 

simulations of field conditions in a controlled environment and the desired parameters 

can be measured with good accuracy and precision. In the past, designers of dynamically 

loaded structures only had results of full-scale tests as the principal source of 

information for modeling the nonlinear behavior of soil surrounding dynamic laterally 

loaded piles. Much time and capital is required to carry out full-scale tests; the 

inhomogeneity of in-situ soil strata often makes full scale tests yield data which is site 

dependent, Prevost et al. (1983). The dynamic response of SSI of a cyclic loaded 

offshore conductor was carried out with the use of the centrifuge which permitted 
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similitude effects to be properly accounted.  The model Conductor was instrumented 

with strain gages at varying depths along the conductor, and embedded in clay layer in a 

centrifuge box. From the experiments, bending moments at discrete strain gage locations 

were interpreted from strain gage data. Calibrations to the centrifuge experimental data 

was carried out to obtain model parameters for the power law and the Ramberg-Osgood 

model relating the soil resistance and deflection. The quality of fit of these models was 

carefully checked, then back-calculated bending moments were compared to the 

measured experimental moments.  
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CHAPTER II  

BACKGROUND 

 

2.1 Overview 

 

An appreciable amount of research study has been conducted over the years on obtaining 

load-deflection relationship for laterally loaded structures in sands, and clays, with the P-

y method being the most common approach. A great deal of these research efforts had 

been concentrated on static analysis, with very few dealing with cyclic loading.  

 

In the course of analyzing and designing laterally loaded piles, different approaches have 

been adopted for developing P-y curves with a clear distinction made for sand, soft and 

stiff clays, a brief enumeration of these approaches have been described by Whiteside 

(1995). 

 

2.2 Soil-Structure Interaction 

 

Soil-structure interaction is usually considered for most dynamic systems in contact with 

the earth either in seismic regions or offshore environments where cyclic loading is 

expected. It is the process whereby the response of a structure influences the motion of 

the soil in its zone of influence, or the motion of the soil influences the motion of the 

structure it supports. 

 

Most civil engineering structures are in contact with soil, or are supported by structures 

embedded in the ground; these includes offshore structures in contact with the seabed 

(catenary riser at touchdown) or below the sea bed (shallow and deep foundations, 

anchors, suction caissons), foundations of high rise buildings, and foundations for wind 
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turbines. Soil-structure interaction analysis will be expected to be carried out to 

understand the behavior of the structure relative to the soil supporting it. 

The offshore conductor interacts with the sea bed in the manner described above, as the 

pile deflects, the soil experiences some deformation which influences its ability to 

support the conductor as it further deflects. There is always a limiting condition 

acceptable for the deflection of the wellhead which the conductor supports which makes 

it really important knowing what resistance from the soil to rely on. A factor that will 

determine the size of the conductor during design, and for fatigue analysis. If the pile 

experiences serious deflections cycled in two directions, there is tendency for cracks to 

set in, within a shorter period compared with one subjected to smaller magnitudes of 

deflections. This continual back and forth movement of the pipes cannot be avoided for 

it is of natural consequences but can be minimized with accurate predictions of the 

behavior of the structural response. Therefore, carrying out soil–structure analysis of the 

conductor will to help determine the associated deflections and cyclic stresses in the 

conductor caused by motions associated with the floating vessel, hull and the riser, 

which will be very useful for fatigue analysis, Jeanjean (2009).  

 

2.3 Literature Review 

 

2.3.1 P-y Curves 

 

According to Matlock (1970), the first significant attempt to deal with the nonlinear 

behavior of soil resistance to lateral deflection of piles was employed by McClelland and 

Focht (1958). McClelland and Focht (1958) proposed a linear conversion to produce P-y 

curves for laterally loaded piles from nonlinear laboratory stress-strain curves, and 

analysis of field test data. Subsequently, Matlock (1970), proposed P-y curves for both 

static and cyclic loading on piles, but the P-y curves for the cyclic loading were 

empirically constructed off the static loading curves with a bit of adjustment made on the 

representative cyclic P-y curves to fit the experimental data. According to Whiteside 
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(1995), the P-y curve approach was a method developed to account for nonlinearity and 

produces results that are far more accurate over a wider range of loads than methods 

based on linear soil behavior. 

 

Based on the P-y approach, the lateral soil-structure interaction can be modeled using 

empirically derived nonlinear uncoupled springs (p-y curves), as boundary conditions in 

structural analysis. P-y curves intended for a more generalized use are usually 

normalized by dividing the soil pressure by using either the ultimate pressure or shear 

strength; the deflection by the diameter of the pile. The P-y approach is still the most 

common approach adopted due to its ease of use, and the short computation time 

required. The finite element analysis (FEA) is being adopted in some computations also 

to determine soil response from pile forcing. Templeton (2009) carried out nonlinear 3D 

FEA to determine the lateral interaction between the well conductors and soil, for site 

conditions at an actual deep water production system location and centrifuge test; then 

compared results to the centrifuge test results and the 2000 edition of API RP2A 

recommendations. 

 

Templeton (2009) showed that the P-y curves as formulated by 2000 edition of API 

RP2A for pile performance underestimates the stiffness of the soil/conductor interaction. 

Adopting P-y relations closer to the field conditions will be less conservative and can 

reduce the overall costs associated with conductor sizes and accumulated fatigue stress 

predictions. 

 

Several plots of normalized P-y curves obtained from a Finite Element Analysis from 

Templeton (2009), Matlock, API standard, centrifuge test, and proposed empirical 

curves were presented by Jeanjean (2009), with good correlation shown amongst all 

curves except those generated from the API and Matlock, which showed softer response 

in comparison to the other presented P-y curves. The study concluded that within the 

margin of load interests, API lateral P-y curves produced conservative results for 
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structures below the mudline in soft normally-consolidated clays, but underestimates the 

ultimate unit pressure acting on the conductor and predicts a shorter fatigue life, as 

shown in Fig. 2.1, since the API static P-y curves are shown to underestimate the soil 

stiffness for soft clays, interpreted cyclic P-y curves will certainly work the same way, 

which again indicates the need for further study to improve design recommendations. 

 

The P-y relationship for piles/conductors-soil interaction are usually established from 

large scale or model tests, or empirically. The piles/conductors are usually instrumented 

with strain gages at discrete points throughout the length of the pile/conductor. The data 

collected is then reduce from strain gage readings to curvature / bending moment data at 

the strain gage locations. A smooth function is usually fit to the discrete bending 

moment, in order to have a continuous function representing the bending moment profile 

along the entire length of the pile, which is then further interpreted to derive the pressure 

and the deflection. Some of these methodologies employed to reduce strain gage data to 

soil resistances and deflection have been described by Rollins and Gerber (2008) and 

Yang and Liang (2006). 
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Fig. 2.1: Comparison of Normalized Monotonic P-Y Curve from Centrifuge Test 1 

from Jeanjean, 2009, FEA Results from Templeton, 2009, With Those Obtained 

from API Recommendation (Reprinted from Jeanjean, 2009). 
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2.4 Ultimate Resistance on a Laterally Loaded Pile 

 

The ultimate unit resistance that can be exerted by soil on a pile is very crucial in the 

analysis of laterally loaded piles. The ultimate resistance is usually incorporated in the 

generated normalized P-y curves, and also used to determine the limiting condition of 

the soil with respect to the conductor.  The ultimate lateral resistance can be obtained 

from experimental measurements (laboratory and field), simplified wedge analysis 

(incorporating the principles of plasticity to determine lower bound and upper bound 

values) or by judgment in conjunction with any of the above methods, Murff and 

Hamilton (1993). The ultimate lateral resistance on laterally loaded pile embedded in 

clay in an undrained state has been published by Broms (1964), Randolph and Houlsby 

(1984), and Murff and Hamilton (1993).   

 

Broms (1964) first treated the problem of finding the failure load on a laterally loaded 

pile, presenting a limit pressure of 9su for cohesive soil, which was the same value 

adopted by Matlock (1970); su is the undrained shear strength. Randolph and Houlsby 

(1984), based on classical plasticity theory presented a lower bound and upper bound 

solution for plastically deforming cohesive material in undrained conditions due to a 

laterally loaded pile. The final results from the study are presented below and full 

description of the derivations can be found in the publication. 

 

Lower bound solution: The lower bound solution is obtained by finding a set of stresses 

that are in equilibrium with applied loads, however do not violate the yield criterion for 

the material. The Lower bound formulations are shown in Eqns. 1 – 3. 



 

17 

   2 2cos 4 cos sin Eqn.12 2

,

arcsin /

6 9.14 ( ) Eqn.2

, 2 2 11.94 (
2

P

cd

where

P final failure load per unit lenght of pile

c shear strength

d pile diameter

a c

P
For for smooth pile

cd
P

for perfectly rough pi
cd





 

       





 

   

    ) Eqn .3le

 

Upper bound solution: For the upper bound solution, a failure mechanism is assumed, an 

associated velocity field consistent with kinematic constraints. The collapse load is 

estimated by equating the rate of energy dissipation within the deforming mass to the 

workdone by the external load. The upper bound solution is shown in Eqn. 4. 

             2 4 cos 2 sin Eqn.44 2 4 2
P

cd
         

 

 

Murff and Hamilton (1993), also presented an approximate empirical upper bound 

solution for ultimate pressure on a laterally loaded pile, considering pile-soil adhesion at 

the front of the pile. Based on the solution, the ultimate unit resistance on the pile is 

given in Eqn. 5; and the non-dimensional lateral bearing factor (Np) expression in Eqn. 

6. 

	 	                                           Eqn. 5 

	 	 	 	                                      Eqn. 6 

Where, 

0.25 0.05																 6																														                      Eqn. 7 

0.55																																 6																														                       Eqn. 8 
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                                                 Eqn. 9 

	 	 	 	 	 ; 9.0	 	 	 	  

, 	 	 	 ; 		 	 	7.0	 	 	 	  

 

The value for the intercept 	  was slightly modified by Jeanjean (2009) where, 

 12, 	 4 

 

It is also important to note that the value of 	at depth has been limited to 12 in order to 

be consistent with exact Lower and Upper bound plasticity solutions proposed by 

Randolph and Houlsby (1984). This is the frame work that has been adopted in this 

thesis even though some measurements indicate apparently higher values. Fig. 2.2 shows 

plots of Normalized lateral pressure and depth along the pile, showing measurements 

from centrifuge and numerical simulation being above 12. The reason for measured data 

exceeding the theoretical upper bound is unclear. Possible reasons can include 

inaccuracy in soil strength measurements and strain rate effects. 
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(a) Normalized Lateral Ultimate Pressure Along Pile Depth (Reprinted from Murff and 

Hamilton (1993)) 

 

(b) Normalized Lateral Ultimate Unit Pressure from Centrifuge Test 1, FEA Analysis 

and Modified Murff and Hamilton (1993) Equation (Reprinted from Jeanjean 

(2009)) 

Fig. 2.2: Normalized Unit Pressure Suggesting Values of Np Higher Than 12. 
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CHAPTER III 

P-Y CURVE GENERATION PROCEDURE 

 

3.1 Overview 

 

Bending moments were calculated from strain gage measurements along the pile shaft 

obtained from a centrifuge test on a conductor subjected to cyclic lateral loading. The 

test was carried out on a small-scale conductor model in soft normally to slightly over-

consolidated Alwhite Kaolin clay under displacement control, Jeanjean (2009).  

 

The purpose of this test was to: 

Investigate the behavior of well conductors under cyclic loading, locate the position of 

maximum bending moment in the conductor as it is subjected to cyclic loading, and 

determine the influence of the considered loading regime on the potential flexural 

fatigue of the conductor.  

 

The model conductor was instrumented with 13 strain gages to measure the bending 

perpendicular to the axis of bending. The test was carried out at 48g in a large 

geotechnical centrifuge with a loading frequency of 1Hz. The pile head rotation, 

displacement, force were measured as well as strains at the 13 strain gage locations. 

Bending moments at these 13 locations along the depth of the conductor were computed 

from the measured strains. The deformed shape of the pile was computed through double 

integration of the measured curvature (y´=M/EI), and invoking the boundary constraints 

of measured y′ and y values at the reference point near the pile head. Similarly, the 

second derivative of the bending moment produced the soil resistance (P) per unit length 

acting on the conductor. This data reduction procedure produces the soil resistances (P) 

and deformation (y) along the pile depth at the locations where the strain gages were 

installed. Different approaches for reducing the bending moment data into soil 
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resistances and deflection, exists. The bending moment information is obtained at 

discrete points along the conductor, however, a continuous profile is required. Some 

researchers will fit an nth order continuous function of to the entire data points, while 

others will fit a piecewise nth order function to the data points. Yang and Liang, (2006), 

considered different methods to fit the discrete bending moment data, and concluded that 

the piecewise cubic polynomial curve fitting method yielded the least error on predicted 

deflections. Least square quadratic and cubic polynomial curve fitting methods were 

considered during the data reduction process, however, better results were obtained with 

the quadratic polynomial, when predicted pile head loads were compared to the 

measured values. Therefore, the quadratic polynomial was chosen for the data reduction. 

The results of Yang and Liang, (2006), ensures more confidence with the use of the 

piecewise approach as this should be less sensitive to noise and scatter in the data. 

 

3.2 Centrifuge Test Data Set 

 

Test data relevant for the analysis included the pile geometry information, undrained 

shear strength (su), bending moment (M), pile head rotation (y’(0)), and pile head 

deflection (y(0)). The conductor (model and prototype) geometry and test parameters are 

shown in Table 1. 

 

Five sets of cyclic tests were carried out on this conductor, each for 1000 cycles, as 

depicted earlier in Fig. 1.4, which consisted of a mixture symmetric, and asymmetric 

loading schemes. Fig. 3.1 shows an image of the conductor and the test bed at the end of 

the cyclic tests, and monotonic push. 
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Table 1: Conductor (Model and Prototype) Geometry and Test Parameters. 

 

 

 

Fig. 3.1: A View of the Conductor and the Test Bed at the End of the Cyclic Test, 

After a Monotonic Push (Reprinted from Jeanjean (2009)). 

 

 

 

Parameter Prototype Model 

Scale 1 48 

Material Steel 

Diameter (m) 0.9144 0.01905 

Thickness (m) 0.0508 0.00106 

SMYS (MPa) 476.9 476.9 

Length (m) 22.43 0.421 
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3.3 Data Reduction 

 

The bending moment information obtained from the strain gages along the pile were 

reduced to line load and deflection using basic beam theory from structural analysis. The 

Winkler beam theory was adopted and springs were fixed along the length of the pile at 

the locations of the strain gages.  A schematic of the beam in undeformed and deformed 

configuration is shown in Fig. 3.2. A beam subjected to pure bending, within the elastic 

range has its curvature of the neutral surface as expressed in Eqn. 10. Eqn. 11 – Eqn. 14, 

show the relationship between the deflection, and moment, shear, line load, and soil 

resistance respectively. 

 

For the analysis, elevations are referenced to a point z = 3.312m above the mudline, the 

top of the conductor pipe, which is slightly below the actual point of the load application 

during the tests. Table 2 lists the sensor locations in terms of three reference points, the 

base of the loading bracket, the pin connection, and the mudline.  

 

 

 

 

 

 

 

 

Fig. 3.2: Schematic of a Beam in Undeformed and Deformed Configuration. 
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Deflection:  

Curvature:						 	 	  Eqn. 10 

Moment:										 	 	  Eqn. 11 

Shear:             	 		 	  Eqn. 12 

Line Load:						 	 		 	            Eqn. 13 

Soil Resistance:	  Eqn. 14 

Modulus of Elasticity:   

Moment of Inertia across the section about its neutral axis:   

Secant Modulus:  

 

3.3.1 Double Integration 

 

The deflection at each strain gage location was obtained by integrating the curvature 

(M/EI) twice using the trapezoidal rule. The first integration of the curvature to obtain 

slope along the pile, with the measured slope at the pile head providing the necessary 

integration constant. A second integration of the curvature produced the deflected shape 

of the pile, using the measured deflection at the pile head to obtain the second 

integration constant. 
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Table 2. Centrifuge Test Measurements and Locations. 

Depth below 

reference point 

zref (m) 

Depth below 

pin connection 

zpin (m) 

Depth below 

mudline 

zmud (m) 

Measurement 

-1.056 

-1.056 

-1.056 

1.685 

2.601 

4.886 

7.173 

9.001 

9.916 

10.830 

11.745 

12.659 

14.030 

15.859 

18.145 

20.889 

0.0 

0.0 

0.0 

2.741 

3.657 

5.942 

8.229 

10.057 

10.972 

11.886 

12.801 

13.715 

15.086 

16.915 

19.201 

21.945 

-4.368 

-4.368 

-4.368 

-1.627 

-0.711 

1.574 

3.861 

5.689 

6.604 

7.518 

8.433 

9.347 

10.718 

12.547 

14.833 

17.577 

Pile head displacement, y 

Pile head tilt, y’ 

Pile head force 

SG13 Moment 

SG12 Moment 

SG11 Moment 

SG10 Moment 

SG9 Moment 

SG8 Moment 

SG7 Moment 

SG6 Moment 

SG5 Moment 

SG4 Moment 

SG3 Moment 

SG2 Moment 

SG1 Moment 
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a. Zero Offset b. 0.05 m Offset 

Fig. 3.3: Profiles of Lateral Deflection along Conductor (Reprinted from Aubeny 

(2012)). 

 

 

3.3.2 Double Differentiation 

 

The soil resistance was obtained by differentiating the bending moment (M) twice. The 

second derivatives were computed numerically by locally fitting a least squares second 

order polynomial through the 5 nearest data points surrounding the point of interest. A 

least squares fit has the advantage that it tends to be smooth through noise in the data 

while giving maximum weight to the data in the immediate vicinity of the point of 

interest. For the extreme two points at the pile head and toe, 2 and 3 data points were 

considered respectively for the least square fitting exercise. Fig. 3.4 shows a sample 

moment fit to the bending moment data from the test, and Fig. 3.5 show profiles of soil 

resistance P at ¼ cycle increments for a load cycle.  
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a. Zero Offset b. 0.05 m Offset 

Fig. 3.4: Profiles of Bending Moment along Conductor. 

 

 

 

 

a. Zero Offset b. 0.05 m Offset 

Fig. 3.5: Profiles of Soil Resistance along Conductor (Reprinted from Aubeny 

(2012)). 
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Schematics of the steps described above is shown in Fig. 3.6. Detailed steps of the 

numerical differentiation procedure are contained in Appendix A. At any instant of time, 

profiles of displacement and soil resistance can be computed using the procedure 

described above, which has been implemented in a MATLAB program. The inputs of 

this program are pile head displacement, rotation, and force measurement; the bending 

moments along the depth of the pile, in prototype scale. Note that the displacement 

curves, being a product of double integration, are very smooth. By contrast, the soil 

resistance curves, being a product of numerical double differentiation of relatively 

widely spaced data are more irregular, but nevertheless suitable for their intended 

purpose. 

 

For back-calculating soil stiffness, a continuous history of P and y throughout a given 

load cycle is required. Fig. 3.7 shows a typical result of the data extraction and 

processing. The blue data points denote unloading from the peak to trough, while the red 

data points denote reloading from the trough to peak. A finite difference scheme 

implemented in a MATLAB program was used to back-calculate the moment using the 

secant stiffness obtained from the Power law and Ramberg-Osgood curve fit parameters. 
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Fig. 3.6: Reduction of Centrifuge Test Data (Bending Moment) to Soil Resistance 

(P), and Deflection (Y) (Reprinted from Aubeny (2012)). 

 

 

Fig. 3.7: Typical P-Y Loop Obtained from Data Analysis Procedure. 
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3.3.3 Power Law Model 

 

Initially, a hyperbolic fitting function was applied to the dataset. However, after several 

trials and comparisons, it was concluded that a power law function provided a better fit.  

 

The power law function employed is of the form expressed below: 

	  Eqn. 15 

where	  and n are curve fit parameters, and D is pipe diameter.  

As will be shown subsequently, values of  and n were both found to be dependent on 

depth, z. 

 

In a general nonlinear analysis of laterally loaded piles, the soil resistance as a function 

of lateral displacement can be input directly into the model in the form of a nonlinear 

soil resistance function. In the framework of a linear analysis, approximate 

characterization of nonlinear soil resistance can be modeled using an equivalent secant 

stiffness and damping. For the power law function, closed form solutions were obtained 

for the secant stiffness and damping ratio. 

 

	   Eqn. 16 

 

	 	 		   Eqn. 17 

 

While the secant stiffness for a power law relationship is a function of displacement 

magnitude, the damping ratio is solely a function of the exponent n. At large 

displacement amplitudes, the damping would be expected to increase. Accordingly, Eqn. 

17 should be considered valid only for small displacements. Note that when n = 1, the P-

y relationship is linear and the damping becomes zero. 
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Expressing the secant modulus, 	in Eqn. 16 in normalized form can facilitate 

generalization of the model test results to other soil profiles. For this purpose, the 

ultimate soil resistance (Pult) was chosen as the normalization parameter. An attempt was 

made to evaluate Pult from the bending moment and displacement measurements taken at 

the final stage of the test when a large lateral displacement was applied to the pile. Pult 

values were evaluated in exactly the same manner as that described for evaluating P. 

However, the Pult values derived from this approach were judged to be excessively large. 

This was attributed to the fact that the monotonic loading to ultimate capacity was not 

conducted in a soil in pristine state; i.e., a number of episodes of cyclic loading and 

consolidation occurred prior to the monotonic loading.  

 

To provide an alternative estimate of Pult, consistent with published values, the modified 

Murff-Hamilton equation for the bearing factor (Np) by Jeanjean (2009) was used in 

conjunction with the undrained soil strength profile. In the upper reach of the soil profile 

relevant to the zone in which the data interpretation was focused, the undrained soil 

strength profile over depth z (in meters) was taken as: 

 

2.4	 0.555	 / 	   Eqn. 18 

 

3.3.4 Ramberg-Osgood Model 

 

The Ramberg-Osgood model has been successfully applied in characterizing stress-strain 

relationship for cyclic loads in metals, Skelton et al. (1997); also employed in 

characterizing the stress-strain behavior of cyclically loaded soil by its backbone curve. 

The Ramberg-Osgood equation shown below in Eqn. 19, as presented by Idriss et al. 

(1976) is used to represent the actual soil backbone curve. 
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 Eqn. 19 

where, 

τ = shear stress 

γ = shear strain 

G  = shear modulus at very small strains 

	,			α,  R = soil parameters 

 

The expression was modified to have it in a relevant form to fit the problem being 

solved; relating soil resistance to pile deflection. The modified expression is shown in 

Eqn. 20 and Eqn. 21. The secant stiffness and damping ratio are shown in Eqns. 22 and 

23 respectively, all modifications from Idriss et al. (1976). 

	 	
	 	

	
 Eqn. 20 

a	P	 	 	 	  Eqn. 21 

where, 

y = deflection 

P = soil resistance 

,a,α, c, R = soil parameters (constants) 

	
   

	
	

 Eqn. 22 

	 %
	 	

	
 Eqn. 23 
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3.4 Inverse Process for Bending Moment 

 

The springs defined by the curve fit parameters that will be presented in Chapter 4 can 

be applied to the analysis of a laterally loaded conductor pipe subjected to arbitrarily 

imposed pile head loads or displacements. This analysis can be achieved through well-

established finite difference techniques. Specific details of the procedure used in this 

investigation are described in Appendix B. The back analysis was carried out using 

displacement control at the pile head, since the centrifuge tests were carried out with a 

displacement control criteria. This is a verification process to see how the predicted 

bending moment profile compares with the measured bending moment profile from the 

centrifuge test. The results of the comparison will be presented in the next Chapter. 
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CHAPTER IV  

RESULTS 

 

4.1 P-y Curves 

 

The centrifuge test as described earlier and depicted in Fig. 1.4, consists of 3 symmetric 

cyclic tests with zero offset (M1: 0.02D±0.005, M3: 0.02D±0.005, and M5: 

0.02D±0.005), 2 symmetric cyclic tests with applied offset about 0.050m (M2: 

0.01D±0.005 and M4: 0.01D±0.005). The data reduction process was carried out for the 

various tests listed above, with focus on the steady state.  The steady state condition was 

considered from the 100th to the last cycle, in incremental steps of 100 cycles. The 

normalized P-y curves at steady state at the specified step size were grouped together for 

the various motions. The power law relationship in Eqn. 15, and Ramberg-Osgood 

relationship in Eqn. 21, were fit to the P-y data to obtain the best line fit.  

 

Fig. 4.1 (a) – (e), shows the normalized pressure and deflection plots for steady state at 

the various strain gage locations along the pile. 
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(a) Normalized Soil Resistance and Deflection Relationship at SG11, for Motions M1, 

M2, M3, M4, and M5 

Fig. 4.1: Normalized Soil Resistance and Deflection Plots from Analyzed Data, Test 

4. 
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(b) Normalized Soil Resistance and Deflection Relationship at SG 10, for Motions M1, 

M2, M3, M4, and M5 

Fig. 4.1: Continued. 
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(c) Normalized Soil Resistance and Deflection Relationship at SG 9, for Motions M1, 

M2, M3, M4, and M5 

Fig. 4.1: Continued. 
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(d) Normalized Soil Resistance and Deflection Relationship at SG 8, for Motions M1, 

M2, M3, M4, and M5 

Fig. 4.1: Continued. 
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(e) Normalized Soil Resistance and Deflection Relationship at SG 7, for Motions M1, 

M2, M3, M4, and M5 

Fig. 4.1: Continued. 
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4.1.1 Power Law Model 

 

In applying the Power law model to the test data, curve fits to individual cycles (unload 

and reload loop) were initially carried out for motions M1 and M2; an example is shown 

in Fig. 4.2 and 4.3. Instead of having several parameters unique to each individual cycle, 

a preferable approach was considered where the interpreted P-y data from the steady 

state region were grouped together to obtain a best power law fit through the entire 

dataset from which the power law parameters (K0 and n) were obtained for the various 

motions (M1 to M5) and strain gage locations along the depth of the pile. The 

normalized power law intercept, K0 and exponent, n, as interpreted from the steady state 

cycles, and the damping ratio is presented in Table 3. The values presented in red in 

Table 3 indicate a poor fit to the data points. The detailed curve fits to the data from 

which the K0 and n values were obtained are all shown in Appendix C, Figs. C-1 – C-24. 

The interpreted secant stiffness relationship based on the centrifuge test data, is 

presented in Fig. 4.4. A power law function was fit to the data points as the best fit 

curve. Upper and lower bounds were established by enveloping the data set with curves 

having the same n value (the straight-line slope on a log-log plot) with upper and lower 

bound K0 values (the straight-line intercept on a log-log plot) bracketing the dataset. The 

interpreted equivalent damping ratio from the closed form solution presented in Eqn. 17, 

is shown in Fig. 4.5. The damping ratio is plot against the maximum displacement along 

the depth of the conductor, which is not dependent on the displacement level with values 

less than 0.12. The equivalent damping ratio trend obtained from motions M2 and M4 

(symmetric motions with offsets), showed a distinct trend different from M1 – M5 

(symmetric motions with zero offset). 
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Fig. 4.2: The Power Law Fit to Unload and Reload Portion of Cycle 100, Motion 

M1. 

 

 

 

Fig. 4.3: The Power Law Fit to Motion M1, Cycle 100 P-Y Data. 
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Fig. 4.4: Normalized Fits for Obtaining the Secant Stiffness Based on the Power 

Law Parameters, Showing the Lower Bound (in Red), Best Line Fit (in Blue), and 

the Upper Bound (in Green) for the Obtained Data Points. 

 

 

 

Fig. 4.5: The Equivalent Damping Ratio Variation Along the Conductor Depth, 

Interpreted from the Power Law Exponent for the Different Motions M1 – M5. 
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4.1.2  Ramberg-Osgood Model 

 

The P-y curve fit parameters (yref, Kmax, ɑ and R) obtained from the Ramberg-Osgood fit 

to the centrifuge data are shown in Table 4. The values presented in red in Table 4 

provided no fit to the data considered, and the damping ratios presented are at the 

maximum displacement level. The curve fits to the data from which the fit parameters 

were obtained from, are all shown in Appendix D, Figs. D-1 – D-24. From the 

normalized Ramberg-Osgood parameters, the interpreted secant stiffness relationship 

based on the centrifuge test data, is presented in Fig. 4.6. A power law function was fit to 

the data points as the best line curve, and in order to have a range of bounded values, the 

same lower and upper bound as with the power law model was used and provides 

reasonable bound to the data points. The closed form solution for damping presented in 

Eqn. 22 is dependent on the displacement level, so for all motions (M1 – M5), both low 

and high displacement levels are needed to be considered. Fig. 4.7 shows the variation of 

the damping ratio with varied displacement levels along the depth of the conductor. 
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Fig. 4.6: Normalized Fits for Obtaining the Secant Stiffness Based on the Ramberg-

Osgood Parameters, Showing the Lower Bound (in Red), Best Line Fit (in Blue), 

and the Upper Bound (in Green) for the Obtained Data Points. 

 

 

 

Fig. 4.7: The Equivalent Damping Ratio Variation Along the Conductor Depth, 

Interpreted from the Ramberg-Osgood Parameters, Dependent on the Deflection 

Level for Motions M1 – M5. 
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Table 3. Interpreted Power Law Parameters (Normalized K0 and n) and Equivalent Damping Ratio. 

 

M1 M2 M3

K0/(Np.Su.D) n Damping (β) K0/(Np.Su.D) n Damping (β) K0/(Np.Su.D) n Damping (β)

SG 11 1.5744 UNLOAD 2.4646 0.3207 2.6751 0.2822 3.6503 0.3502

RELOAD 2.4196 0.3203 0.0819 5.1262 0.4139 0.0770 3.3212 0.3342 0.0780

SG 10 3.8544 UNLOAD 2.3879 0.3517 2.7072 0.3114 3.4991 0.3700

RELOAD 2.3058 0.3441 0.0770 1.9981 0.2492 0.0895 3.2711 0.3556 0.0744

SG 9 5.6880 UNLOAD 4.6834 0.4398 11.518 0.5264 9.2192 0.498

RELOAD 3.3663 0.3596 0.0683 0.4352 0.0411 0.0928 6.8566 0.4326 0.0581

SG 8 6.6048 UNLOAD 8.6195 0.5395 5.3804 0.3897 9.5505 0.4904

RELOAD 5.1636 0.4124 0.0565 4.8762 0.44 0.1072 6.041 0.3925 0.0617

SG 7 7.5168 UNLOAD 14.234 0.6763 5.7094 0.5029

RELOAD 11.035 0.5988 0.0352 5.1012 0.4991 0.0529

M4 M5

K0/(Np.Su.D) n Damping (β) K0/(Np.Su.D) n Damping (β)

SG 11 1.5744 UNLOAD 2.8123 0.2501 3.7619 0.3413

RELOAD 6.6949 0.4287 0.0785 3.5891 0.3467 0.0777

SG 10 3.8544 UNLOAD 5.5203 0.4034 3.6204 0.3661

RELOAD 1.7052 0.1851 0.0868 3.7029 0.3781 0.0728

SG 9 5.6880 UNLOAD 9.0888 0.4533 7.6218 0.4519

RELOAD 0.2012 ‐0.083 0.1003 5.9995 0.3972 0.0643

SG 8 6.6048 UNLOAD 0.1595 ‐0.146 7.6293 0.4469

RELOAD 0.0276 ‐0.386 5.6265 0.378 0.0662

SG 7 7.5168 UNLOAD 0.0033 ‐0.492 5.0299 0.4959

RELOAD 1.00E‐04 ‐1.11 2.7565 0.4037 0.0604

Strain

gage

Depth (m)

Depth (m)Strain

gage
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Table 4. Interpreted Ramberg-Osgood Parameters (Normalized K0 and n), and Equivalent Damping Corresponding to 

Maximum Displacement. 

 

 

M1 M2 M3

Unload Reload Damping (β) Unload Reload Damping (β) Unload Reload Damping (β)

a 0.2690 0.9990 0.4262 0.3070 0.9950 0.3368 0.8770 0.1530 0.4353

SG 11 yref 0.0003 0.0005 0.0008 0.0010 0.0010 0.0001

Kmax 14869.8885 2176.0891 4071.6612 1005.0251 1175.5163 46685.3408

ɑ 9733.6193 113.5218 900.5317 14.3913 34.4330 32529.3313

R 2.9017 2.8053 2.9406 2.1376 2.8237 2.7597

a 0.6060 0.8350 0.3687 0.9680 0.9730 0.3127 0.6620 0.1670 0.3967

SG 10 yref 0.0008 0.0003 0.0009 0.0009 0.0010 0.0003

Kmax 2088.8165 4606.1723 1135.2284 1141.9436 1541.4021 23030.8614

ɑ 366.7028 258.8899 28.7374 28.9252 94.8541 13409.4934

R 2.7165 2.1602 2.6959 3.0442 2.6487 2.6234

a 0.7630 0.8140 0.3873 0.9850 0.9870 0.2684 0.9580 0.8540 0.3387

SG 9 yref 0.0003 0.0005 0.0009 0.0004 0.0005 0.0004

Kmax 5242.4640 2670.6548 1080.0302 2814.3645 1933.0395 3345.6005

ɑ 197.7925 94.0188 5.8103 3.9303 20.0613 38.8310

R 2.1713 2.4378 1.3915 ‐0.0576 1.8227 2.0290

a 0.8630 0.9400 0.3582 0.6330 0.3690 0.3003 0.3620 0.2440 0.3903

SG 8 yref 0.0007 0.0010 0.0010 0.0004 0.0002 0.0006

Kmax 1632.0402 1085.5406 1612.0192 7324.3976 17265.1934 6610.2591

ɑ 31.7386 15.5226 32.2709 4.1346 427.7384 448.6995

R 1.8391 2.1091 2.4786 0.0320 1.9328 2.4013

a 0.6770 0.0100 0.3409 0.3410 0.8810 0.3481

SG 7 yref 0.0010 0.0000 0.0008 0.0009

Kmax 1507.2499 10000000.0000 3858.6202 1207.5253

ɑ 29.8476 329879.0217 170.9922 23.1348

R 1.3833 1.2248 1.6550 1.4484

Strain

gage
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Table 4. Continued. 

M4 M5

Unload Reload Damping (β) Unload Reload Damping (β)

a 0.7890 0.9810 0.3331 0.4740 0.8920 0.4272

SG 11 yref 0.0005 0.0003 0.0006 0.0006

Kmax 2347.0873 3640.6000 3575.7706 1900.1292

ɑ 52.8267 31.7108 277.8302 55.3549

R 3.3833 1.7841 2.8298 2.8301

a 0.02300 0.89200 0.3044 0.7240 0.4970 0.3865

SG 10 yref 0.00004 0.00004 0.0009 0.0002

Kmax 1086956.52174 28026.90583 1485.1779 10589.8549

ɑ 100886.69448 433.94664 70.7760 696.1554

R 1.63186 2.88842 2.6967 2.3350

a 0.9120 0.3970 0.2320 0.5730 0.0780 0.3630

SG 9 yref 0.0004 0.0002 0.0009 0.0004

Kmax 2963.4898 13257.3247 1939.1119 33738.1916

ɑ 6.7507 10.4526 33.1194 10065.6012

R 0.6580 ‐0.0468 2.0222 2.3237

a 0.3940 0.6470 0.1860 0.3130 0.7940 0.3940

SG 8 yref 0.0009 0.0008 0.0001 0.0005

Kmax 2729.1087 2060.7934 24576.0629 2737.9257

ɑ 1.1678 2.1763 992.0503 36.2423

R ‐0.1518 ‐0.1659 2.1746 2.5501

a 0.9640 0.8900 0.2073 0.1790 0.8390 0.3562

SG 7 yref 0.0001 0.0004 0.0004 0.0009

Kmax 17289.0733 2881.0141 14701.5584 1385.9246

ɑ 23.7643 4.3060 1438.0487 25.7682

R ‐0.0747 ‐0.1619 1.7288 1.3483

Strain

gage
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4.2 Bending Moment Profile 

 

The secant stiffness obtained from the Power law and Ramberg-Osgood parameters, was 

input into a finite difference MATLAB program, and used to compute the peak to peak 

bending moment profile for the conductor due to maximum peak to peak cyclic pile head 

displacement. During this exercise, it was observed that reducing the exponent made the 

computed moment profile closer to the measured profile at depth, and the intercept 

slightly controlled the magnitude of maximum bending moment. A modification to the 

upper bound was considered, and employed in the back analysis were the approximate 

intercept of 2.9, and slope of 0.667. Fig. 4.8 shows the modified curve of the upper 

bound falling within the lower and upper bound curves. 

 

 

 

Fig. 4.8: Normalized Fits for Obtaining the Secant Stiffness Based on the Lower 

Bound (in Red), Modified Upper Bound Slope (in Purple), and the Upper Bound (in 

Green) for the Obtained Data Points. 
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The equation presented by Matlock (1970) for soft clay (Eqn. 24), can be simplified in a 

form comparable to the power law equation and further simplified to obtain an 

expression for the secant stiffness as presented in Eqn. 25. 

 

0.5	
/

 Eqn. 24 

 

Noting that  = 2.5 D, where 	is strain level at 50% of the failure stress. 

 

0.5	
/

 Eqn. 25 

  

Strain levels at 50% of the failure stress are typically taken as 	= 0.02, 0.01, and 0.005 

for soft, medium, and stiff clays, respectively.  

 

The interesting observation is that the Matlock formulations for secant stiffness in Eqn. 

25, after substituting the value for  for soft clay and medium clay, the intercept is 

approximately 1.398, and 1.762 respectively; slope 0.667. This is the same slope used in 

the modified upper bound equation but with the Matlock values having a lesser intercept. 

 

Figs. 4.9 – 4.13 shows the comparison between the measured bending moment profile, 

and the computed bending moment profile along the conductor for the soil, conductor, 

and loading conditions imposed during the centrifuge test, M1 – M5 respectively for 

cycle N=100.  The bending moment profiles for motions M1 – M5, for cycles 200, 300, 

400, and 500, are shown in Figs. E.1 – E.19 in Appendix E. 

 

The comparisons show reasonable agreement between calculated and measured 

maximum bending moments. In addition, the overall shape of the computed bending 

moment profile from the Power law and Ramberg-Osgood model agrees with the 

measured bending moment.  
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 Fig. 4.9: Calculated Versus Measured Bending Moment Profiles from Centrifuge 

Test 4, M1 Load - Cycle 100 with Zero Offset. 

 

 

 

Fig. 4.10: Calculated Versus Measured Bending Moment Profiles from Centrifuge 

Test 4, M2 Load - Cycle 100 with 0.05 Offset. 
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Fig. 4.11: Calculated Versus Measured Bending Moment Profiles from Centrifuge 

Test 4, M3 Load - Cycle 100 with Zero Offset. 

 

 

 

Fig. 4.12: Calculated Versus Measured Bending Moment Profiles from Centrifuge 

Test 4, M4 Load - Cycle 100 with 0.05 Offset. 
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Fig. 4.13: Calculated Versus Measured Bending Moment Profiles from Centrifuge 

Test 4, M5 Load - Cycle 100 with Zero Offset. 

 

 

4.3 Result Interpretation 

 

4.3.1 M1 Motion 

 

The moment profiles from the M1 motion applied at the conductor head, suggest that the 

moment profile from Matlock (1970) recommendation has the softest springs when 

compared to the measured moment from the centrifuge test. The maximum moment 

compared to the measured varied within -30% to -35%. That for the power law and 

Ramberg-Osgood varied within 4% and 10%, the modified upper bound was within ±1% 

and ±2%. The bounding limits (lower and upper) were within ±8% to ±12%. 
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4.3.2 M2 Motion 

 

The moment profiles from the M2 motion applied at the conductor head, suggest that the 

moment profile from Matlock (1970) recommendation has the softest springs when 

compared to the measured moment from the centrifuge test. The maximum moment 

compared to the measured varied within -24% to -42%. That for the power law and 

Ramberg-Osgood was within 2% to 20%, the modified upper bound was within ±3% to 

±10%. The bounding limits (lower and upper) were within ±8% to ±12%. 

 

4.3.3 M3 Motion 

 

The moment profiles from the M3 motion applied at the conductor head, suggest that the 

moment profile from Matlock (1970) recommendation has the softest springs when 

compared to the measured moment from the centrifuge test. The maximum moment 

compared to the measured varied within -35% to -42%. That for the power law and 

Ramberg-Osgood was within -2% to -6%, the modified upper bound was within -3% to -

15%. The bounding limits (lower and upper) were within ±1% to ±20%.  

 

4.3.4 M4 Motion 

 

The moment profiles from the M4 motion applied at the conductor head, suggest that the 

moment profile from Matlock (1970) recommendation has the softest springs when 

compared to the measured moment from the centrifuge test. The maximum moment 

compared to the measured was within -40% to -45%. That for the power law and 

Ramberg-Osgood was within -3% to -10%, the modified upper bound was within -12% 

to -16%. The bounding limits (lower and upper) were within -1% to -24%.  
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4.3.5 M5 Motion 

 

The moment profiles from the M5 motion applied at the conductor head, suggest that the 

moment profile from Matlock (1970) recommendation has the softest springs when 

compared to the measured moment from the centrifuge test. The maximum moment 

compared to the measured was within -45% to -47%. That for the power law and 

Ramberg-Osgood was within -4% and -10%, the modified upper bound was within -10% 

to -13%. The bounding limits (lower and upper) were within -1% to -27%.  
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CHAPTER V  

SUMMARY AND CONCLUSIONS 

 

5.1 Summary 

 

A less complicated and less time consuming way of modelling soil-structure interaction 

problems concerning conductors is achieved by assuming that non-linear soil springs are 

attached to the conductors (Equivalent spring approach). In addition to the soil springs, 

dashpots could also be attached to the conductors when inertial effects need to be 

considered.  To obtain the stiffness of the soils springs and the damping coefficient for 

the dashpot, P-y relations are usually used. In this study, the soil resistances have been 

obtained by carrying out double differentiation of the bending moment data, and the 

deflection by double integration of the conductor curvature (M/EI). To get the required 

parameters needed for modelling, the P-y data were fit to two models (Power law and 

Ramberg-Osgood). The results of the fits were best for the zero offset motion, the non-

zero offset motions fits were not good all the time. This suggests that deeper 

understanding of the non-zero offset motions is needed. Analytical expressions for the 

secant stiffness and the equivalent damping ratio were derived for both models, from 

which secant stiffness and damping ratios were computed. The secant stiffness was used 

in back-calculating the moments, using displacement boundary condition. The obtained 

results showed some consistent trends, however, a few departures from the observed 

trend occurred; reasons for the departure is not clear at the moment.  

 

5.1.1 Power Law  

 

The power law model was fit to the P-y data using the data reduction process described 

in section 4.1 to obtain the power law parameters K0 and n. For the purpose of 

comparison, the Matlock equation relating the soil resistance and deflection was reduced 
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to a form similar to the equations used in this study. The derived secant stiffnesses were 

input into a finite difference MATLAB program to back-calculate bending moment 

profiles. The computed bending moments were then compared to the measured bending 

moment. Generally, the obtained results suggests that the Matlock’s equation 

underestimated the maximum bending moment, while the power law equations derived 

from the centrifuge tests  calculated maximum bending moments that were much  closer 

to the measured values. The equivalent damping ratio obtained were not displacement 

level dependent and were less than 0.12. 

 

5.1.2 Ramberg-Osgood  

 

The Ramberg-Osgood model was also fit to the P-y data to obtain the desired fit 

parameters, as described in section 4.1. The data reduction process revealed that the 

curve fits were not sensitive to the values of yref and Kmax individually; i.e., multiple 

combinations of yref and Kmax produced similar quality curve fits. The secant stiffness 

obtained from the Ramberg-Osgood equation was also input into the finite difference 

MATLAB program to back-calculate the bending moment. The results obtained were 

very similar to that of the Power law model. The equivalent damping ratio obtained were 

displacement level dependent and shown mostly higher values than that obtained from 

the power law. 

 

The lower and upper bound equation of the secant stiffness were presented to provide a 

bound to the measured data, because the equation could take any intercept and slope 

different from that obtained from the power law and Ramberg-Osgood and still give a 

meaningful result. The modified upper bound equation lay between the lower and upper 

limits and was able to match better the maximum bending moment as well as the entire 

moment profile. This equation had approximately the same slope as that using the 

Matlock’s equation but a higher intercept, and from the presented results was a better 

match to the measured moment profile. 
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The significance of the departure of the centrifuge test data from the Matlock equations 

should not be overstated. The Matlock equations were designed for monotonic loading 

and were not necessarily intended for the small displacement loading of interest in the 

current study.  

 

5.2 Conclusions 

 

The conclusions from this study include the following: 

 

1. For the relatively small pile head displacements under consideration in this study, 

about 0.01 to 0.02 pile diameters - reasonable P-y curves could be extracted from 

the bending moment measurements down to a depth of about 6-8 diameters 

below the mudline. Below this depth, the overall displacement levels were too 

small to produce reliable interpretations. 

2. Under uniform cyclic displacement loading at the pile head, a steady state 

condition develops after about 50 load cycles; data analysis was carried out at 

100 load cycles and above, to ensure that only the steady state was considered. 

3. The unload and reload segment of the P-y loops under cyclic loading has been be 

characterized in terms of: 

A Power law relationship (Eqn. 15); results shown in Appendix C, Figs. 

C-1 – C-24, which illustrates the general quality of the curve fits. The power law 

relationship involves two parameters: a coefficient K0 controlling soil stiffness 

and an exponent n controlling the degree of nonlinearity.   

A Ramberg-Osgood relationship (Eqn. 20); results shown in Appendix D, 

Figs. D-1 – D-24, which illustrates the general quality of the curve fits. The 

Ramberg-Osgood relationship involves four parameters: yref, Kmax, ɑ, and R. 

4. To facilitate extrapolating the results of centrifuge test programs such as this to 

other soil and site conditions, the coefficient K0 has be normalized by Pult, the 
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ultimate line load per unit depth acting on the pile. In this investigation Pult was 

computed by multiplying the soil undrained shear strength su by the 

dimensionless bearing factor Np proposed by Jeanjean, (2009). 

5. The secant stiffness obtained from the Power law and the Ramberg-Osgood were 

bounded by the same limits, even though they had different intercepts and slopes, 

they presented similar results when used to back calculate the bending moment. 

However, the information retrieved for the damping were very different, the 

reason for this is not known, but it would be conservative to use the small 

damping ratios, since the displacements considered were small the absorbed 

energy is also expected to be small. Using less damping will actually be more 

conservative, than using a higher value than what can be relied upon. 

 

5.3 Recommendations for Future Research 

 

Recommendations for future study include the following: 

1. Include larger cyclic displacement magnitudes at the pile head to: (1) permit 

better quality P-y measurements at depths beyond 5 diameters, and (2) verify the 

validity of the relationships and parameters derived from this study for greater 

displacement magnitudes. 

2. Perform at least one monotonic load to failure in pristine soil to provide an 

unambiguous measure of Pult, which is important for developing reliable 

normalized model parameters. 

3. Perform numerical studies to establish the validity and limitations of the 

simplified P-y secant stiffness approach considered in this study. The equivalent 

linear model developed in this study can be readily modified to accommodate a 

true nonlinear analysis, where the actual P-y path can be tracked. 

4. Perform supplemental single-element laboratory test-bed soils, such as cyclic 

direct simple shear tests. Such tests can be useful in interpreting softening 

phenomena in the centrifuge tests and can provide a useful guide in extrapolating 
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the centrifuge test results to other soils having different strength, shear modulus, 

and sensitivity characteristics. 

5. Further study is required to gain better understanding of the non-zero offset 

motions, also needed is understanding fully how series of past cyclic motions 

affect present cyclic motions. 
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APPENDIX A 

 

Numerical Differentiation of Strain Gage Curvature Measurements 

 The procedure locally fits a second order polynomial about any point of interest. The 

polynomial has the form: 

 M = c1 z2 +c2 z +c3                                   (Eqn. A.1) 

where  M = bending moment in pile  

 z = depth 

 ci = polynomial curve fit coefficients 

The polynomial curve fit coefficients ci can be formed into a matrix C: 

 

1

2

3

c

C c

c

 
   
  

                                         (Eqn. A.2) 

 

The basic steps in finding ci are as follows: 

a. Select 5 data points surrounding the point of interest. 

b. Construct an array Z comprising the polynomial terms of depth zi of the strain 

gages. 

2
1 1

2
2 2

2
3 3

2
4 4
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1
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z z

z z

Z z z

z z

z z

 
 
 
   
 
 
  

                                    (Eqn. A.3) 

c. Construct an array M containing the measured bending moments M 
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1

2

3

4
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m

m

M m

m

m

 
 
 
 
 
 
  

                                         (Eqn. 

A.4) 

 

d. Construct the 3-by-3 matrix equation below: 

ZT M = ZT Z C                                      (Eqn. A.5) 

e. Solve Eqn. A.5 for unknown C 

f. The local polynomial curve fit for moment is now defined by Eqn. A.1. 

g. The line load Q (soil resisting force per unit depth) acting on the pile is the 

second derivative of bending moment, or the first derivative of the shear force: 

Q = 2 c1 = dV/dx                                     (Eqn. A.6) 

h. The average pressure P acting on the pile is obtained by dividing the line load Q 

by pile diameter D: 

P = Q / D                                         (Eqn. A.7) 
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APPENDIX B 

 

Analysis of Laterally Loaded Pile 

 The analysis solves the fourth order differential equation: 

4

sec4
0

d y
EI k y

dz
                                      (Eqn. B.1) 

where E = elastic modulus of pile 

 I = moment of inertia of pile 

 y = lateral displacement of pile 

 z = depth 

 ksec = secant stiffness of soil spring   

This equation is subject to the following boundary constraints for a pile of length L: 

Imposed displacement δ at pile head:  y(0) = δ                (Eqn. B.2) 

 Zero moment at pile head:    y’’(0)=0                         (Eqn. B.3) 

 Zero moment at pile tip:   y’’(L)=0                           (Eqn. B.4) 

 Zero displacement at pile tip:   y(L) = 0                        (Eqn. B.5) 

Eqn. B.1 is solved with finite difference methods by discretizing the pile into n segments 

of length Δz = L/n, which will generate n+1 equations. Equations 3 through n-2 have the 

form: 

 Equation i: yi-2 – 4 yi-1 + (6 + ksec Δz4/ EI) yi -4 yi+1 + yi+2 = 0           (Eqn. B.6) 

The four boundary constraints are provided through the following additional equations: 

     y1 = δ                                           (Eqn. B.7) 

y1 - 2y2 + y3 = 0                                     (Eqn. B.8) 

yn-2 - 2yn-1 + yn = 0                                   (Eqn. B.9) 

yn = 0                                           (Eqn. B.10) 

If one chooses to impose a force F rather than displacement a displacement at the pile 

head, Eqn. B.7 may be replaced with the following 3rd order finite difference equation: 

-y1 + 3y2 - 3y3 + y4 = F Δz3/ EI                           (Eqn. B.11) 
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Eqns. B.6 through B.10 (or B.8 through B.11) comprise a non-singular matrix equation 

that can be solved directly through Gauss elimination.  

Finally, bending moments at any location along the pile can be computed from: 

Mi = EI (yi-1 - 2yi + yi+1)                               (Eqn. B.12) 

Eqn. B.6 is nonlinear due to the dependence of the secant stiffness ksec on displacement. 

The solution algorithm proceeds iteratively according to the following sequence: 

1. Estimate a displacement distribution for iteration j, yj(z). For the first estimate, 

assume displacement varies linearly from y= δ at the pile head to y=0 at the tip. 

2. Compute secant stiffness along the depth of the pile using Eqn. 2. 

3. Construct the system of equations defined by Eqns. B.7 - B.10. 

4. Solve for displacement for iteration j+1, yj+1(z). 

5. Compute the maximum difference between bending moments in iterations j and 

j+1. If the difference is within tolerance, the solution has converged. If not, 

repeat Steps 1-5 with the updated displacement distribution yj+1(z). A tolerance 

of 0.1% was used in this study. 

It is noted that the pile head displacements (or forces) used in the back analysis are not 

absolute displacements, rather, they are the amplitude of the cyclic component of 

loading. In the analysis of a given load cycle from the centrifuge tests, the cyclic 

component of displacement at the pile head was taken as: 

δ = (ymax - ymin)                                    (Eqn. B.13) 

Where, ymax and ymin are the maximum and minimum measured displacements at the pile 

head. Similarly, the moments in Eqn. B.12 denote the cyclic component of moments 

occurring in the pile.  The computed cyclic moments should be compared to measured 

cyclic moments, which were computed from measured moments as follows: 

Mcyc = (Mmax - Mmin)                                 (Eqn. B.14) 
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APPENDIX C 

 

Fig. C-1: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M1 

 

Fig. C-2: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M2 
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Fig. C-3: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M3 

 

Fig. C-4: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M4 
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Fig. C-5: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M5 

 

Fig. C-6: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M1 
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Fig. C-7: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M2 

 

Fig. C-8: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M3 
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Fig. C-9: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M4 

 

 

Fig. C-10: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M5 
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Fig. C-11: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 9, for Motion M1 

 

 

Fig. C-12: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 9, for Motion M2 

 

 

Fig. C-13: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 9, for Motion M3 
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Fig. C-14: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 9, for Motion M4 

 

 

Fig. C-15: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 9, for Motion M5 

 

 

Fig. C-16: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 8, for Motion M1 



 

74 

 

Fig. C-17: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 8, for Motion M2 

 

 

Fig. C-18: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 8, for Motion M3 

 

 

Fig. C-19: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 8, for Motion M4 
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Fig. C-20: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 8, for Motion M5 

 

 

Fig. C-21: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 7, for Motion M1 

 

 

Fig. C-22: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 7, for Motion M3 
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Fig. C-23: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 7, for Motion M4 

 

 

Fig. C-24: Power Law Fit To the Steady State Region of the Unload and Reload 

Loop of SG 7, for Motion M5 
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APPENDIX D 

 

 

Fig. D-1: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M1 

 

 

Fig. D-2: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M2 

 



 

78 

 

Fig. D-3: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M3 

 

 

Fig. D-4: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M4 
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Fig. D-5: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 11, for Motion M5 

 

 

Fig. D-6: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M1 
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Fig. D-7: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M2 

 

 

Fig. D-8: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M3 
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Fig. D-9: Ramberg-Osgood Fit to the Steady State Region of the Unload and Reload 

Loop of SG 10, for Motion M4 

 

 

Fig. D-10: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 10, for Motion M5 
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Fig. D-11: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 9, for Motion M1 

 

 

Fig. D-12: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 9, for Motion M2, due to scatter of the data points 
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Fig. D-13: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 9, for Motion M3 

 

 

Fig. D-14: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 9, for Motion M4, due to scatter of the data points 
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Fig. D-15: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 9, for Motion M5 

 

 

Fig. D-16: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 8, for Motion M1 
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Fig. D-17: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 8, for Motion M2 

 

 

Fig. D-18: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 8, for Motion M3 
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Fig. D-19: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 8, for Motion M4, due to scatter of the data points 

 

 

Fig. D-20: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 8, for Motion M5 
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Fig. D-21: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 7, for Motion M1 

 

 

Fig. D-22: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 7, for Motion M3 
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Fig. D-23: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 7, for Motion M4, due to scatter of the data points 

 

 

Fig. D-24: Ramberg-Osgood Fit to the Steady State Region of the Unload and 

Reload Loop of SG 7, for Motion M5 
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APPENDIX E 

 

 

Figure E-1: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M1 Load - Cycle 200 With Zero Offset. 
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Figure E-2: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M1 Load - Cycle 300 With Zero Offset. 

 

 

Figure E-3: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M1 Load - Cycle 400 With Zero Offset. 
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Figure E-4: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M1 Load - Cycle 500 With Zero Offset. 

 

 

Figure E-5: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M2 Load - Cycle 200 With 0.05 Offset. 
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Figure E-6: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M2 Load - Cycle 300 With 0.05 Offset. 

 

 

Figure E-7: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M2 Load - Cycle 400 With 0.05 Offset. 
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Figure E-8: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M2 Load - Cycle 500 With 0.05 Offset. 

 

 

Figure E-9: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M3 Load - Cycle 200 With Zero Offset. 
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Figure E-10: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M3 Load - Cycle 300 With Zero Offset. 

 

 

Figure E-11: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M3 Load - Cycle 400 With Zero Offset. 
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Figure E-12: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M3 Load - Cycle 500 With Zero Offset. 

 

 

Figure E-13: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M4 Load - Cycle 200 With 0.05 Offset. 
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Figure E-14: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M4 Load - Cycle 300 With 0.05 Offset. 

 

 

Figure E-15: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M4 Load - Cycle 400 With 0.05 Offset. 
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Figure E-16: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M4 Load - Cycle 500 With 0.05 Offset. 

 

 

Figure E-17: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M5 Load - Cycle 200 With Zero Offset. 
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Figure E-18: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M5 Load - Cycle 300 With Zero Offset. 

 

 

Figure E-19: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M5 Load - Cycle 400 With Zero Offset. 
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Figure E-20: Calculated Versus Measured Bending Moment Profiles from 

Centrifuge Test 4, M5 Load - Cycle 500 With Zero Offset. 




