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ABSTRACT 

 

Nearly annual record Kemp’s ridley sea turtle (Lepidochelys kempii) nesting activity on 

the upper Texas coast (UTC; defined as beaches from Sabine Pass to Matagorda 

Peninsula), where scientifically verifiable nesting commenced in 2002, has occurred 

concurrently with recent exponential increases in the nesting population of this critically 

endangered species. Increased likelihood for anthropogenic interaction with this growing 

assemblage of UTC nesters mandated documentation of nesting activity on rapidly 

developing UTC beaches and characterization of in-water movements of mature 

conspecifics.  

 

Standardized sea turtle nesting patrols implemented on the beaches of Bolivar Peninsula, 

Galveston Island, and Follets Island to quantify nesting activity, as well as associated 

beach habitat assessments, identified major deterrents to sea turtle reproductive success 

and established a scientific baseline necessary for resource managers to facilitate the 

perpetuation of nesting activity. During 2007-2009, weekday ATV and pedestrian 

patrols of stated beaches during nesting season (1 April – 15 July) aided the 

documentation of 15-16 UTC Kemp’s ridley nests annually. Nests were predominantly 

located on patrolled beaches and represented 8-12% of Texas’ annual statewide nesting 

total. Mean emergence success rate for four clutches incubated in-situ was 91.8%. 
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Eight nesting females intercepted on UTC beaches, as well as a rehabilitated adult male, 

were satellite tagged. Spatially- and/or temporally-restricted usage of breeding, 

internesting, migratory, and/or foraging areas in the northern Gulf of Mexico was 

identified and warrants further examination to facilitate the implementation of 

conservation initiatives designed to mitigate associated consequential mortality factors. 

Female internesting period movements were primarily confined to nearshore waters 

between Galveston and Matagorda Bays, while post-nesting movements in waters <83 m 

in depth ranged from Texas to the Florida Keys. Male movements near UTC beaches 

one year post-release were potentially indicative of breeding. Three years of subsequent 

monitoring indicated this male established long-term seasonal residency on offshore 

Louisiana foraging grounds. 

 

Nesting and telemetry data indicate the UTC is becoming increasingly important to the 

Kemp’s ridley population. However, current regulations do not support the sustainment 

of the UTC nesting cohort. Management recommendations to simultaneously foster UTC 

nesting and promote the continued recovery of the Kemp’s ridley sea turtle are provided 

herein. 
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CHAPTER I 

INTRODUCTION: SYNOPSIS OF THE KEMP’S RIDLEY SEA TURTLE  

(LEPIDOCHELYS KEMPII) 

 

KEMP’S RIDLEY: SPECIES CHARACTERIZATION 

First described by Samuel Garman in 1880 as Thalassochelys kempii [Carr 1952, U.S. 

Fish and Wildlife Service (USFWS) & National Marine Fisheries Service (NMFS) 

1992], the Kemp’s ridley (Lepidochelys kempii) is one of seven extant sea turtle species 

and one of two in the genus Lepidochelys. Mitochondrial DNA analysis suggests 

reproductive isolation and subsequent morphological differentiation (Pritchard 1989) of 

the Kemp’s ridley and its congener, the olive ridley sea turtle (Lepidochelys olivacea), 

likely occurred with the closure of the Isthmus of Panama approximately 2.5-3.5 million 

years ago (Bowen et al. 1998).   

 

The endangered Kemp’s ridley sea turtle has been federally protected under the U.S. 

Endangered Species Conservation Act and, subsequently, the Endangered Species Act 

(ESA; 50 US Code of Federal Regulations 17.11) since December 2, 1970. It is currently 

considered the most endangered marine turtle species in the world (Bowen et al. 1998, 

Márquez et al. 2005). Classified as ‘critically endangered’ by the World Conservation 

Union (IUCN 2011), international commercial trade in this species is prohibited by 

protections afforded under Appendix I of the Convention on International Trade in 

Endangered Species of Wild Fauna and Flora (CITES 2012).  
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HISTORICAL POPULATION STATUS 

Although anecdotal evidence suggests the Kemp’s ridley was once the Gulf of Mexico’s 

most abundant species (USFWS & NMFS 1992, Eckert et al. 1994, Landry et al. 2005), 

little is known about its historical nesting range or population level (Burchfield 2005). 

What is known is that an estimated 40,000 females nested at Rancho Nuevo, 

Tamaulipas, Mexico (23.2ºN, 97.5ºW; Hildebrand 1963), the ridley’s primary nesting 

beach, on a single day in 1947 (Burchfield 2005). Despite federal protection afforded 

these nesting grounds in 1966, documented ridley nesting activity at Rancho Nuevo 

declined to 702 nests for the entire 3.5-month nesting season by 1985 (USFWS & NMFS 

1992, Arroyo et al. 2003, Burchfield 2005). This decrease in nesting activity, likely 

precipitated by the concurrent anthropogenic pressures of comprehensive annual egg 

harvests (Hildebrand 1963) and incidental capture of juvenile and adult ridleys in U.S. 

and Mexican trawl fisheries (Woody 1989, Magnuson et al. 1990, Frazier et al. 2007), 

translated into a 99% reduction in breeding stock and eventual population collapse 

(Márquez et al. 2005). 

 

Historical data regarding marine turtle reproduction on Texas’ beaches are scarce 

(Hildebrand 1963). An article (Doughty 1984) detailing the 19th century Texas green sea 

turtle (Chelonia mydas) fishery describes unidentified “clusters of mammoth turtles” 

seen on a Galveston beach just prior to sunset during late April or early May 1851. This 

diurnal nesting assemblage and seasonal nesting period are more suggestive of ridleys 

than that of green or loggerhead turtles (Caretta caretta) that typically nest nocturnally 
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and in earnest beginning in June (Burchfield 2005). Potential ridley nesting activity is 

also noted by Hildebrand (1963), who provides an anecdotal account of “two small 

turtles nesting on the beach, on a hot and strongly windy day, approximately in May 

1938” on Padre Island. Texas’ first scientifically documented Kemp’s ridley nest was 

laid on Padre Island National Seashore (PAIS) in 1948 (Werler 1951, Carr 1967, Arroyo 

et al. 2003).  

 

BI-NATIONAL HEADSTART PROGRAM SYNOPSIS 

Prolonged diminution in the number of Kemp’s ridley females utilizing Rancho Nuevo’s 

beaches and concerns regarding the conceivable extinction of the species prompted the 

U.S. and Mexican governments to implement the bi-national headstart experiment in 

1978 (USFWS & NMFS 1992, Arroyo et al. 2003). One aspect of this experiment 

involved using nest products obtained from Mexico to establish a secondary nesting 

colony at PAIS by means of innovative imprinting techniques (Woody 1990; Fontaine & 

Shaver 2005; NMFS, USFWS & SEMARNAT 2011). Two distinct groups of head-

started Kemp’s ridleys were captive reared for approximately 9-11 months at the NMFS 

Galveston Laboratory before their release into Gulf of Mexico waters. Annually from 

1978 through 1988, approximately 2000 eggs laid at Rancho Nuevo were collected in 

polyethylene bags to prevent contact with native substrate, placed in polystyrene foam 

boxes containing moist sand sourced from PAIS, and subsequently transported to PAIS 

for incubation (Burchfield & Foley 1989). The resulting hatchlings were exposed to the 

beach at PAIS and permitted to enter the surf before collection and transportation to the 

3



 

NMFS Galveston Laboratory for rearing (Woody 1990). Each year from 1989 through 

the termination of the headstart experiment in 1992, approximately 2000 Rancho Nuevo-

imprinted hatchlings were transported directly to the NMFS Galveston Laboratory 

captive rearing facility (Byles 1993). Ultimately, 22,596 Kemp’s ridleys headstarted by 

the Galveston facility during the 15-year experiment were tagged and released at various 

locations within the Gulf of Mexico (Eckert et al. 1994). Lastly, the NMFS Galveston 

Laboratory annually captive reared 200 Rancho Nuevo ridley hatchlings for turtle 

excluder device (TED) certification trials from 1993 through 2000. However, these 

turtles were not part of the headstart experiment (Shaver & Wibbels 2007). 

 

CURRENT POPULATION STATUS 

 Exponential increases in the reproductively viable segment of the Kemp’s ridley 

population of approximately 15% per year have been documented since the mid-1980’s 

(Fig. 1.1; Heppell et al. 2005; Márquez et al. 2005; NMFS, USFWS & SEMARNAT 

2011). While analyses of the bi-national headstart program reveal numerous valuable 

scientific contributions, the experiment is not currently recognized as benefitting 

population levels (Fontaine & Shaver 2005; Shaver & Wibbels 2007; NMFS, USFWS & 

SEMARNAT 2011). Instead, management operations to improve survival at all life 

stages, including protection of nesting habitats, nest products, and commercial shrimp 

trawl fishery TED regulations and enforcement, have likely exerted the most substantial 

positive influence on the Kemp’s ridley population recovery (Turtle Expert Working 

Group (TEWG) 2000; NMFS, USFWS & SEMARNAT 2011). Federal regulations exist 
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Figure 1.1. Kemp's ridley nests documented at Rancho Nuevo, Mexico, 1947-2010 (compiled 

from: Peña et al. 2005; Witzell et al. 2005a; Burchfield 2009; NMFS, USFWS and SEMARNAT 

2011; L.J. Peña, pers. comm.).
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to conserve beach nesting habitats and protect nesting activity at Rancho Nuevo and 

PAIS, and seasonal trawling prohibitions are enforced for nearshore waters (Márquez et 

al. 1989; TEWG 2000; NMFS, USFWS & SEMARNAT 2011). 

 

 Kemp’s ridley nest numbers reached their highest recorded level since 1947 in 2009, 

when over 21,000 nests were documented on the beaches of Tamaulipas and Veracruz, 

Mexico (Burchfield 2009). With population models predicting sustained growth rates in 

nesting of 12-19% per year for the near future, it is expected that the ESA downlisting 

criterion of 10,000 nesting females utilizing the three primary nesting beaches in Mexico 

(Rancho Nuevo, Tepehuajes, and Playa Dos) within a season could be achieved at any 

time (NMFS, USFWS & SEMARNAT 2011). 

 

 Recent increases in nesting activity along the entire Texas coast (Fig. 1.2) are an 

auspicious indicator of a recovering population, although it is unclear if the species is 

reoccupying historic nesting sites or expanding its nesting range. The 911 Kemp’s ridley 

nests documented in Texas between 2002-2010 (NMFS, USFWS & SEMARNAT 2011) 

exceed by an order of magnitude the 81 nests recorded during the preceding 53 years 

(1948-2001; Shaver & Caillouet 1998, Shaver 2005b). However, implementation of 

patrols necessary to document the ephemeral tracks indicative of ridley nesting activity 

(Pritchard 1989) has occurred sporadically, with limited surveys first enacted at PAIS in 

1986. Sea turtle nesting surveys were expanded to certain lower Texas coast beaches 

beginning in 1999, while formal nesting investigations of the upper Texas coast were not 
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Figure 1.2. Kemp's ridley nests documented in Texas, USA, 1948-2011 (compiled from: Shaver 

and Caillouet 1998; Shaver 2000, 2001, 2002a, 2004, 2005a, 2006a, 2006b, 2007, 2008, 2009, 

2010, 2011, 2012).
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implemented until 2007. Currently, nesting patrols incorporating varying degrees of 

effort occur along the entire Texas coastline throughout the ridley nesting season 

(Shaver 2012). 

 

LIFE HISTORY & DEMOGRAPHICS 

Maturation of the Kemp’s ridley is estimated to occur at 10-17 years of age, with adults 

typically 25-54 kg in weight and 55-78 cm in straight carapace length (SCL; Márquez 

1994, Chaloupka & Zug 1997, Zug et al. 1997, Heppell et al. 2005, Snover et al. 2007). 

The universal gray-black pigmentation of hatchlings undergoes substantial alteration 

during maturation (Márquez 1994). Young post-pelagic juveniles possess the yellow-

white plastron retained by adults, and the carapace lightens to an olive gray color by 

adulthood (NMFS, USFWS & SEMARNAT 2011). Morphologically distinct 

characteristics allowing differentiation of adult L. kempii from other sea turtle species 

include comparatively short forelimbs, a dorsoventrally flattened and profoundly 

ossified carapace of a width approximately equal to its length, a nuchal scute that 

contacts the first of 5 pairs of costal scutes, and the presence of 4 pairs of pored 

inframarginal scutes spanning the carapace-plastron bridge (Márquez 1994, Pritchard 

2007a). The physiological purpose of the Rathke’s gland housed in the inframarginal 

pores (Márquez 1994) remains unconfirmed; however, the prevailing hypothesis 

suggests the glands emit pheromones that contribute to the formation of nesting beach 

arribadas (Pritchard 2007a). 
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Reproductively mature males are phenotypically distinguishable from females. To aid in 

copulation, males possess a prehensile tail that extends beyond the carapace margin, a 

robust curved claw on each front flipper (Márquez 1994), and a well vascularized, 

dekeratinized plastron (Owens 1997). Currently, relatively little is known about the 

seasonal, foraging, and reproductive movements of adult male ridleys (Shaver et al. 

2005, Morreale et al. 2007). Satellite telemetry data obtained from eleven mature males 

by Shaver et al. (2005) suggested primarily year-round residency in nearshore waters in 

the vicinity of the Rancho Nuevo nesting beach. However, this study’s small sample 

size, limited tracking durations (maximum 233 days), and evidence of one male’s 

directed movements to waters adjacent to Galveston, Texas, do not dismiss the potential 

for reproductively mature males to display significantly more migratory behavior than 

currently documented. 

 

Substantially more knowledge exists regarding the movements of females satellite-

tracked after nesting on western Gulf of Mexico beaches. Thirty-six tag deployments on 

28 females during 1997-2006 by Shaver & Rubio (2008) indicated Texas’ nesters 

sustained directed movements paralleling the coastline to neritic foraging grounds in 

northern or eastern Gulf of Mexico waters, with heavier concentrations noted between 

southern Texas and the Florida panhandle. Use of nearshore habitat adjacent to the PAIS 

nesting beach appeared to be primarily limited to the April – July nesting season. Tracks 

from 11 females satellite tagged by Byles (1989) after depositing clutches at Rancho 

Nuevo indicated plasticity in post-nesting season movements (north and south) and the 
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availability of neritic foraging grounds between Rancho Nuevo and Cabo Catoche, the 

northeastern point of the Yucatan Peninsula. While Rancho Nuevo nesters have been 

documented utilizing nearshore foraging habitats spanning from Florida to the Yucatan 

Peninsula (Shaver et al. 2013), Texas’ nesters do not appear to establish post-nesting 

residency in Mexican waters, although brief southward migrations to Tamaulipas’ 

coastal waters have been documented (Seney & Landry 2008, 2011; Shaver & Rubio 

2008; Shaver et al. 2013).  

 

The April through July Kemp’s ridley nesting season is preceded by a March breeding 

period in which females exhibit polyandry (Rostal 1991, Rostal et al. 1998, Kichler et al. 

1999). As with L. olivacea, L. kempii may display either solitary or arribada nesting 

behavior (Hildebrand 1963, Márquez 1994). Unique in regards to their diurnal nesting 

preference and egg deposition efficiency (the entire nesting process may be concluded in 

35-50 minutes; Márquez 1994, Witzell et al. 2005b), female Kemp’s ridleys typically 

nest biennially, although annual re-migrations have been documented (TEWG 1998, 

Shaver & Rubio 2008). Mean internesting interval separating each of the approximately 

3 clutches per season averages 21 days (Márquez 1994, Rostal 1991, Rostal 2005). 

Clutches, each containing approximately 100 eggs (Rostal 2005), incubate for 45-55 

days before nocturnal hatchling emergence (Witzell et al. 2005b). Kemp’s ridleys exhibit 

temperature-dependent sex determination with a pivotal temperature between 28.6-

30.4oC (Shaver et al. 1988, Shaver 2005b, Eich 2009). A heterogeneous assemblage of 

male:female sex ratios occurs in nests subjected to either naturally varying or artificially 
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constant temperatures averaging approximately 27 to 32oC  during the middle third of 

incubation, with warmer temperatures resulting in an increased frequency of female 

hatchlings (Shaver et al. 1988, Eich 2009).  

 

RELEVANT RECOVERY PLAN STIPULATIONS 

Upper Texas Coast Sea Turtle Nesting Dynamics 

Commencement of documented nesting by the Kemp’s ridley on the upper Texas coast 

(herein defined as beaches from Sabine Pass to Matagorda Peninsula; Fig. 1.3) occurred 

in 2002 (Seney 2008). Continued recovery of the Kemp’s ridley population will likely 

augment sea turtle nesting activity on UTC beaches, including those of Galveston Island, 

Bolivar Peninsula, and Follets Island. Increased likelihood for interaction between this 

growing assemblage of nesters and rapid development of the UTC mandates an analysis 

of sea turtle nesting activity prerequisite to the formation of conservation-oriented beach 

habitat management policies. This nesting investigation will facilitate attainment of the 

Kemp’s Ridley Recovery Plan needs of “implementing and strengthening coastal zone 

management plans” and ensuring “long-term protection of important nesting beaches in 

Texas.”  

 

Upper Texas Coast Nesting Habitat Assessment 

The primarily undeveloped (Shaver 2008) and federally protected beaches of Rancho 

Nuevo and PAIS, which currently support the preponderance of Kemp’s ridley nesting 

activity in Mexico and Texas, respectively, are composed mainly of fine grain sands 
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Figure 1.3. Location of upper Texas coast nesting beaches in relation to significant Kemp’s ridley rookeries in the U.S.         

and Mexico.  
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(Carls et al. 1995) and contain extensive unconstrained dune ecosystems stabilized by 

native coastal vegetation (McAtee & Drawe 1981, Márquez 1994). As such, data 

regarding the short- and long-term ramifications of common habitat alterations currently 

inflicted upon increasingly populated UTC beaches (coastal armoring, nourishment, 

mechanical beach raking, residential and commercial development, etc.) in relation to 

the Kemp’s ridleys’ ability to reproduce are nearly nonexistent. Resultant factors 

associated with these anthropogenic environmental perturbations may adversely affect 

sea turtle nesting success by negatively impacting female nest site selection, egg 

incubation, or hatchling seafinding behavior (McFarlane 1963; Horrocks & Scott 1991; 

Márquez 1994; Crain et al. 1995; Salmon et al. 1995; Rumbold et al. 2001; Bertolotti & 

Salmon 2005; Tuxbury & Salmon 2005; Chen et al. 2007; Brock et al. 2008; NMFS, 

USFWS & SEMARNAT 2011). As such, a detailed assessment of this region’s beaches 

is needed to identify and potentially rectify associated deterrents to sea turtle 

reproductive success. 

 

In-Water Movements of Adult Kemp’s Ridleys 

Currently, a paucity of data exists regarding in-water movements and nest site fidelity 

for the small but increasing number of Kemp’s ridleys utilizing UTC nesting habitats. 

Seney & Landry (2008, 2011) reported movement patterns similar to those documented 

by Shaver & Rubio (2008) for six females monitored after nesting on the UTC: 

internesting periods were characterized by restricted nearshore movements coincident 

with fidelity to UTC nesting beaches, whereafter post-nesting females migrated along 
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the 20 m isobath and established foraging sites offshore central Louisiana in waters 10-

30 m deep. However, data sourced from only six UTC nesters may be insufficient in 

developing management policies supporting the continuance of nesting activity in this 

region. Additional satellite telemetry research on UTC nesters is needed not only to 

examine nest site fidelity (both within and between seasons), but also in support of a 

recovery task in the Kemp’s Ridley Recovery Plan that mandates the protection and 

management of conspecifics in the marine environment, in part via the determination of 

migratory pathways between and among foraging grounds and nesting beaches (NMFS, 

USFWS & SEMARNAT 2011).  

 

RESEARCH OBJECTIVES 

The recent expansion of the Kemp’s ridley’s nesting range onto the UTC, combined with 

nearly annual increases in the number of females nesting on constituent beaches, create a 

unique opportunity to generate information assessing the importance of this region as sea 

turtle nesting habitat. Information such as this is needed by the Texas General Land 

Office (TGLO) and other state and federal agencies charged with managing use of 

Texas’ coastal zone by the beach-going public and sea turtle species protected under the 

ESA. To this end, the following research objectives were identified: 

1. To characterize sea turtle nesting activity on the upper Texas coast  

through 2009. 

2. To identify nester fidelity to upper Texas coast habitats (both within and 

between seasons), internesting interval, and post-nesting movement. 
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CHAPTER II 

SEA TURTLE NESTING DYNAMICS ON THE UPPER TEXAS COAST 

 

INTRODUCTION 

Concerns prominent in the 1970s and 1980s surrounding the conceivable extinction of 

the Kemp’s ridley sea turtle (Lepidochelys kempii; Carr 1977, Wibbels 1984, Andersen 

1987) have been superseded by prospects regarding the potential downlisting of this 

endangered species under the U.S. Endangered Species Act (NMFS, USFWS & 

SEMARNAT 2011). More than two decades of sustained exponential increases in 

reproductive output on the Kemp's ridley’s primary nesting grounds in Mexico, 

particularly Rancho Nuevo, are optimistically indicative of a recovering population 

(NMFS, USFWS & SEMARNAT 2011). Concurrent with this recovery, nearly annual 

record Kemp’s ridley nest numbers have been documented on both the upper Texas 

coast (UTC; herein defined as beaches from Sabine Pass to Matagorda Peninsula; Fig. 

2.1) and the entire Texas coast since 2002.  

 

Kemp’s ridley sea turtle nests were first reported on Texas’ beaches in 1948 (Werler 

1951, Carr 1967). Confirmed ridley reproductive activity remained highly sporadic 

through 1994 (Shaver & Caillouet 1998) despite the institution of Texas’ first (albeit 

limited) sea turtle nest detection patrols at Padre Island National Seashore (PAIS) in 

1986 (Shaver 2005b). Consequential to a record four ridley nests deposited on 

constituent beaches in 1995, increasingly comprehensive sea turtle nesting patrol efforts 
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Figure 2.1. Delineation of upper Texas coast beaches and associated historical sea turtle nesting activity through 2006.  
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were undertaken at PAIS (Shaver 2005b). Supplementary nest detection efforts were 

instituted on additional south Texas beaches beginning in 1999, including Boca Chica 

Beach (1999; Shaver 2000), South Padre Island (2000; Shaver 2001), Matagorda Island 

(2003; Shaver 2005a), and Mustang Island (2004; Shaver 2006a). By 2006, systematic 

nesting and/or stranding patrols were occurring at least intermittently on the majority of 

Texas Gulf Coast beaches, and annual Kemp’s ridley nesting on associated habitats had 

reached a previously unsurpassed 102 nests (Shaver 2007). 

  

Historical UTC Sea Turtle Nesting 

Scientifically verifiable Kemp’s ridley nesting first occurred on Brazoria, Galveston, and 

Matagorda County beaches in 2002 (Shaver 2004). Prior to 2007, sea turtle nesting 

activity data for the UTC were generated by National Oceanic and Atmospheric 

Administration Sea Turtle Facility (NOAA STF) personnel responding to sporadic 

reports of nesting events from the beach-going public. In 2004, HEART (Help 

Endangered Animals-Ridley Turtles) established a statewide, toll-free hotline (1-866-

TURTLE-5) to facilitate reporting of terrestrial sightings of sea turtles or their nesting 

tracks on Texas beaches. However, it is likely that records of UTC nesting through 2006 

are conservative estimates of this zone’s marine turtle reproductive activity, as 

formalized nesting patrols (hereafter also referred to as surveys or monitoring) were 

nonexistent, and constituent beaches did not receive adequate public recognition as sea 

turtle nesting grounds  (Seney & Landry 2008). 
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With the exception of one loggerhead sea turtle (Caretta caretta) nest deposited on 

Bolivar Peninsula in 1996 (B. Higgins pers. comm.), all other 28 sea turtle nests 

documented on the UTC through 2006 were laid by Kemp’s ridleys. Twenty-one ridley 

nests were laid on urbanized Galveston Island, the most densely populated UTC locale. 

Nests found elsewhere included 2 on Bolivar Peninsula in 2004, as well as single nests 

on Follets Island in both 2004 and 2006, Quintana Beach in 2002, and Matagorda 

Peninsula in both 2002 and 2005.  

 

All historical UTC nesting activity occurred between 5 April and 14 July, coincident 

with Kemps’ ridley nesting periodicity elsewhere in Texas and at Rancho Nuevo (this 

date range disregards the aforementioned Bolivar Peninsula loggerhead nest laid 27 July 

1996). These data suggest diurnally-restricted egg laying by Kemp’s ridleys in this 

region; 7 of the 15 females directly observed by permitted responders were engaged in 

nesting activity between 0800-1100 hours, although at least one turtle was detected 

within each hourly interval from 0700-1759 except 1400-1459. A total of 2782 eggs 

comprising all 28 Kemp’s ridley nests laid along the UTC through 2006 was transported 

to the sea turtle egg incubation facility at PAIS where an overall 74.9% emergence 

success rate resulted in the release of 2084 UTC hatchlings from PAIS beaches (D. 

Shaver pers. comm.).  

 

A minimum of twelve distinct Kemp’s ridley females have engaged in nesting activity 

on the UTC through 2006; insufficient data exist to permit identification of three 
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individuals observed nesting between 9 and 10 June 2002. All 12 identifiable females 

were neophyte nesters with no prior nesting history in Texas or Mexico (D. Shaver pers. 

comm.). In addition, 9 of these 12 (as well as 1 of 3 indiscernible nesters in 2002) were 

associated with the joint U.S. and Mexico Kemp’s ridley headstart experiment (USFWS 

& NMFS 1992, Shaver & Rubio 2008). As hatchlings, these nine females were 

imprinted at Rancho Nuevo between 1989-1992 and transferred to the NOAA STF, 

where they were captive reared (“headstarted”) for approximately one year before 

release into Gulf waters off Galveston Island (Shaver 2005b, B. Higgins pers. comm.). 

Two of the nine headstarted turtles were each documented nesting twice on Galveston 

Island while one engaged in a non-nesting emergence (false crawl) on Bolivar Peninsula. 

The remaining three neophyte nesters were wild conspecifics with no known affiliation 

to the UTC.  

 

Research Objectives 

The ramifications of a recovering Kemp's ridley population on UTC nesting 

productivity, particularly in light of the proliferation in nesting activity at PAIS since 

2003 (Shaver 2012), are unknown. However, historical data suggest continued 

sustainment of, and annual increases in, UTC marine turtle reproductive activity. 

Strategic implementation of standardized nesting surveys on UTC beaches is required to 

accurately assess this region’s potential as critical sea turtle nesting habitat. The creation 

and scrutiny of UTC sea turtle nesting activity projections are prerequisite to beach 
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management policy formation and will occur via thorough examination of nesting 

activity through 2009. Research objectives addressed in this chapter include: 

1. Identification of spatiotemporal nesting patterns on UTC beaches. 

2. Characterization of the UTC nesting assemblage including 

morphometrics, within-season reproductive potential (existence of 

vitellogenic follicles, atretic follicles, or oviductal eggs), and 

fidelity to UTC beaches. 

3. Comparison of reproductive behaviors and success exhibited by 

captive reared females versus that of wild conspecifics. 

4. Quantification of clutch parameters. 

5. Determination of environmental correlates of nesting. 

6. Ascertainment of the UTC’s current contribution to Texas’ total 

Kemp’s ridley reproductive output. 

 

METHODS   

Sea turtle nesting activity in Texas is comprehensively chronicled on the “Texas Data 

Sheet for Sea Turtle Tracks and Nests” (Figs. 2.2-2.3) developed by Dr. Donna Shaver 

(Chief, Division of Sea Turtle Science and Recovery, Padre Island National Seashore, 

Corpus Christi, Texas). Characterization of sea turtle nesting on the UTC from 2007 

through 2009 included a query of Texas’ standardized sea turtle nesting data sheets. 

Nesting data compiled for the UTC between 2007-2009 were collated with historical 

information (1996-2006) and analyzed in comparison with nesting trends at both Rancho 
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Figure 2.2. Data sheet on which observations of sea turtles, sea turtle tracks, and/or nests 

laid along the upper Texas coast were recorded during 2002-2006.  
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Figure 2.3. Data sheet on which observations of sea turtles, sea turtle tracks, and/or nests  

laid along the upper Texas coast were recorded during 2007-2009. (Data sheets utilized 

in 2007 requested identical information using slightly altered language in certain 

sections.) 
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Nuevo and PAIS to create a comprehensive baseline assessment of Kemp’s ridley 

nesting in this area. However, protocols used to generate historical nesting information 

differed significantly from that implemented in the form of standardized nesting patrols 

and increased beachfront signage in limited areas of the UTC during 2007-2009. 

 

Nesting Patrols 

Quantitative characterization of sea turtle nesting on the UTC, including spatial and 

temporal attributes of nests laid; nester stock (wild vs. captive reared), morphometrics, 

site fidelity, and internesting interval; as well as clutch size and hatching success; 

required the implementation of systematic surveys to detect nesting activity. 

Accordingly, standardized nesting patrols were instituted on nearly all Galveston Island 

beaches in 2007, with patrol coverage expanded to select beaches on Bolivar Peninsula 

in 2008 and Follets Island in 2009 (Fig. 2.1).  

 

To staff these patrols, an evolving team of approximately 30 student interns and 

volunteers sourced from Texas A&M University at Galveston (TAMUG), Master 

Naturalist chapters in the Houston-Galveston area, and local communities were 

recruited, trained, and deployed on Galveston Island (2007-2009), Bolivar Peninsula 

(2008-2009), and Follets Island (2009) beaches. Patrollers outfitted in conspicuous, 

bright green t-shirts proclaiming “Sea Turtle Patrol” concurrently surveyed designated 

sections of beach for sea turtle tracks while educating beachgoers about sea turtles and 
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the role of beach habitat in nesting activity, thus increasing the potential for public 

reporting of nesting activity. 

 

Weekday patrols were conducted from 1 April through 15 July in 2007 and 2008 to 

encompass the Kemp’s ridley nesting season (USFWS & NMFS 1992, Márquez 1994). 

In 2009, weekday surveys occurred between 15 April and 15 July. Patrols were 

scheduled to incorporate the 0800-1100 timeframe to maximize potential interception of 

Kemp’s ridley females, which are primarily diurnal nesters (Márquez 1994). Staffing 

and financial constraints mandated that each patrol section (Table 2.1, Figs. 2.4-2.7) be 

surveyed by one individual once each weekday; these limitations maintained a continued 

dependence upon public reporting of nesting events, particularly those occurring during 

non-patrol hours and on weekend days.  

 

Galveston Island 

Galveston Island was partitioned into two distinct patrol zones, West Beach (Fig. 2.4) 

and Seawall (Fig. 2.5), naturally divided by a 6.5 km section of shoreline situated 

between 8 Mile Road and 61st Street. This centrally located shoreline, which was 

predominantly devoid of sandy beach habitat and composed of riprap bordering a 

seawall, failed to provide a suitable environment for nesting sea turtles and thus was not 

formally surveyed. West Beach was comprised of 28.29 km of contiguous shoreline 

adjacent to residential development extending west of 8 Mile Road to San Luis Pass 

(Fig. 2.4). On Galveston’s commercially developed east end, the 12.11 km Seawall Zone 
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Patrol Section Time Time Total

Location Section Method Length1 (km) Start End Time (hrs)
Galveston Island 61st Street 

2
Foot 4.22 0800 1100 3.0

Galveston Island Flagship 
2

Foot 4.09 0800 1100 3.0

Galveston Island East Beach 
2

Foot 3.80 0800 1100 3.0

Galveston Island West Beach 
2

ATV 28.29 0800 
3

1230 
3, 4

4.5

Bolivar Peninsula Bolivar 
5

ATV 38.96 0700 1300 
4

6.0

Follets Island Follets Island 
6

ATV 22.26 0700 1100 
4

4.0

 

4 Actual patrol end times varied due to beach and weather conditions.

Table 2.1. Attributes of upper Texas coast sea turtle nesting patrol sections surveyed from 2007-2009.

2 Patrols occurred during 2007-2009.

5 Patrols occurred during 2008-2009.

3 In 2009, patrols were conducted from 0700-1130.

6 Patrols occurred in 2009 only.

1 Section length indicates one-way distance; however, all patrols were conducted as round-trip circuits.
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Figure 2.4. Delineation of west Galveston Island beaches patrolled for nesting sea turtles via ATV during 2007-2009. 
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Figure 2.5. Delineation of east Galveston Island beaches patrolled on foot for nesting sea turtles during 2007-2009. 
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Figure 2.6. Delineation of Bolivar Peninsula beaches patrolled for nesting sea turtles via ATV during 2008-2009. 
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Figure 2.7. Delineation of Follets Island beaches patrolled for nesting sea turtles via ATV during 2009. 
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was largely characterized by heavily utilized beaches constrained by a 5.2 m high 

seawall and associated revetments and groins. This zone was subdivided into three patrol 

sections: 61st Street, Flagship, and East Beach (Fig. 2.5). The 61st Street patrol 

encompassed 4.22 km of beach between 61st Street and the Flagship Hotel located at 25th 

Street. The Flagship Hotel patrol covered 4.09 km of beach situated between the 

Flagship Hotel and pilings positioned 0.5 km west of the Palisade Palms Condominiums. 

The northward deviation of the seawall inland that began near 12th Street diminished its 

influence on the eastern 2.4 km of this section’s beaches, particularly east of Stewart 

Beach. Consequently, the East Beach patrol incorporated 3.80 km of primarily 

undeveloped residential beachfront not noticeably constrained by this seawall that 

extended from the pilings 0.5 km west of the Palisade Palms Condominiums to 

Galveston Island’s eastern boundary at the South Jetty. Vehicular traffic was 

comprehensively prohibited on Galveston Island beaches with the exception of two 

locations in the West Beach Zone: 1) from 2nd Street west approximately 2.1 km to Salt 

Cedar Drive, and 2) the westernmost 2.2 km of beachfront adjacent to San Luis Pass.  

 

Bolivar Peninsula 

Nesting patrols of Bolivar Peninsula (Fig. 2.6), located to the northeast of Galveston 

Island, commenced in 2008 to survey the westernmost 38.96 km of primarily 

residentially developed beach habitat accessible by vehicle. These patrols extended from 

the eastern boundary of the Bolivar Flats Shorebird Sanctuary, located on the 

southwestern tip of the Peninsula, east to the beach immediately adjacent to the 
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intersection of Highways 87 and 124, just south of High Island. Beaches comprising this 

section permitted public vehicular travel and were contiguous with the exception of 

Rollover Pass, a man-made waterway 60 m in width.  

 

Follets Island 

Formal surveys were initiated in 2009 on 22.26 km of uninterrupted coastline on Follets 

Island (Fig. 2.7), located directly southwest of Galveston Island adjacent to San Luis 

Pass. These primarily undeveloped beaches were constrained by coastal County Road 

257 (Bluewater Highway) that bisected Follets Island lengthwise. Moderate residential 

and/or commercial development, although interspersed throughout the island, was 

concentrated at the southwestern terminus in the Village of Surfside Beach. Nesting 

patrols to monitor this contiguous shoreline extended from the fortified groin situated 

below the southern termination of Jolly Roger Drive in the Treasure Island subdivision 

southwest to Surfside Jetty. Vehicular beach access was permitted throughout the island 

with the sole exception of the westernmost 1.6 km of beach habitat located between 

Starfish Street and the Surfside Jetty, contiguous with Surfside Beach. 

 

Patrol Method 

Two distinct patrol methods, ATV (all-terrain vehicle) and foot, were utilized to survey 

designated beaches of Galveston Island, Bolivar Peninsula, and Follets Island for 

evidence of sea turtle nesting activity. Existing sea turtle nesting patrols in Texas and 

Mexico were primarily conducted via motorized vehicles such as ATV’s or UTV’s 
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(utility terrain vehicle; C.L. Hughes pers. obs.) as these transport modes enabled 

individual patrollers to survey a greater distance per unit of time than walking patrols. 

As such, ATV patrols were instituted on Galveston Island’s West Beach Zone and on the 

entirety of the patrolled sections of Bolivar Peninsula and Follets Island. Regulations 

prohibited the use of motorized vehicles on Galveston Island with limited exceptions; 

however, permission to operate a single daily ATV patrol along Galveston’s West Beach 

Zone was obtained from city officials.  

 

ATV’s on UTC beaches were operated at or slightly above the high tide line at speeds 

not exceeding 24 km h-1 to maximize the patroller’s ability to visually observe signs of 

nesting activity. On Galveston Island’s West Beach Zone, a single ATV patroller 

conducted one round-trip circuit (56.58 km) between San Luis Pass and 8 Mile Road 

from 0800 to approximately 1230 each weekday during 2007 and 2008, and from 0700 

to approximately 1130 each weekday in 2009. As the ATV and associated patrol 

equipment (Table 2.2) were stored at the Galveston Island State Park maintenance 

facility, this patrol began at the Park’s easternmost beach boundary adjacent to 13 Mile 

Road, initially proceeded west to San Luis Pass, returned east to 8 Mile Road, and 

concluded at the Park starting point. On Bolivar Peninsula, a single ATV patroller 

conducted weekday monitoring of constituent beaches from 0700 to approximately 1300 

(roundtrip distance: 77.92 km). Patrollers initially drove west from the Rettilon Road 

access point to the pilings delineating the eastern boundary of the Bolivar Flats 

Shorebird Sanctuary, traveled east along the beach to the intersection of Highways 87 
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beaches, 2007-2009.

Volunteer Provides:
Cell Phone

Patrol Backpack:
Action List

Brush (to clean turtle’s carapace)

Cable Ties

Disposable Camera

Disposable Rain Gear

Dry Erase Board & Pen (for photographs)

Educational Handouts

Extra Ziploc Bags (3-5)

First Aid Kit

Fix-a-Flat

Hand Sanitizer

Insect Repellant

Large Towel

Latex Gloves

Meat Tenderizer (for jellyfish stings)

Nest Marker (black rope)

Nesting Data Sheets (5)

Notepad, Sharpie, Pens, & Pencils

Permits & Authorization Letter

Soft Measuring Tape

Sunscreen

Items Required for Bolivar Peninsula ATV Patrol Only:
GPS in Ziploc Bag

GPS Instruction Booklet

Extra AA Batteries (2+)

Mandatory Item Provided at Storage Facilities:
Helmet

Optional Items Provided at Storage Facilities:
Lunch Cooler

Snacks

Water

Table 2.2. List of equipment required for ATV patrols of upper Texas coast
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and 124 at High Island, and returned west to exit the beach at Rettilon Road. Beach 

habitats comprising the Follets Island patrol zone were also surveyed once each weekday 

via ATV from approximately 0700 to 1030 (roundtrip distance: 44.52 km). Patrols, 

which originated and terminated on the beach adjacent to the Treasure Island 

subdivision’s reinforced groin, initially moved southwest to the Surfside Jetty before 

returning northeast. 

 

On Galveston’s Seawall Zone, substantial public use and anthropogenic alterations, 

including groins and rip-rap associated with the seawall, presented significant obstacles 

to ATV passage and thus mandated the implementation of pedestrian patrols. The 

institution of three foot patrols on Galveston Island’s Seawall Zone enabled individuals 

to conduct round-trip surveys of associated beaches at a moderate walking pace of 

approximately 3.2 km h-1 from 0800-1100 each weekday. Prior to arriving at designated 

patrol section starting points by 0800, foot patrollers obtained conspicuously labeled sea 

turtle patrol backpacks containing essential equipment (Table 2.3) from a storage trailer 

situated in the student parking lot of the TAMUG Fort Crockett campus located at 5007 

Avenue U. Both the 61st Street patrol (roundtrip distance: 8.44 km), which began and 

ended at 61st Street, and the Flagship patrol (roundtrip distance: 8.18 km), which 

commenced and concluded at the Flagship Hotel, initially proceeded east to previously 

designated midpoints. However, beach access restrictions required that the East Beach 

patrol (roundtrip distance: 7.60 km) initially proceed west from the South Jetty to the 

pilings delineating the midpoint jointly utilized by the Flagship and East Beach patrols. 
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beaches, 2007-2009.

Volunteer Provides:
Cell Phone

Patrol Backpack:
Action List

Brush (to clean turtle’s carapace)

Disposable Camera

Disposable Rain Gear

Dry Erase Board & Pen (for photographs)

Educational Handouts

First Aid Kit

Hand Sanitizer 

Latex Gloves

Meat Tenderizer (for jellyfish stings)

Nest Marker (black rope)

Nesting Data Sheets (2)

Notepad, Sharpie, Pens, & Pencils

Permits & Authorization Letters (Galveston & Parks Board)

Soft Measuring Tape (to measure turtle tracks)

Ziploc Bags (3-5)

Optional Items Provided at Turtle Trailer:
Insect Repellant

Snacks

Sunscreen

Water

Table 2.3. List of equipment required for foot patrols of upper Texas coast
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While patrollers were expected to walk at or immediately above the high tide line on the 

beach, tidal fluctuations and small areas composed of rip-rap bordering the seawall on 

both the 61st Street and Flagship patrol sections occasionally mandated that patrollers 

briefly travel along the seawall’s elevated sidewalk before returning to the beach at the 

first available opportunity. In addition, patrollers reaching their midpoints before 0930 

were required to delay their departure from the midpoint to permit conclusion of their 

patrol at precisely 1100.  

 

Patrol Protocol 

Patrollers tasked with pedestrian and/or ATV patrols participated in multiple training 

sessions prior to participation in this project to ensure sanctioned tasks were completed 

safely and in compliance with all pertinent federal, state, and local regulations. 

Mandated nest detection protocol and provisions ensured the safety of both human 

participants and nesting sea turtles throughout the duration of this research. Patrollers 

operated unaccompanied (a minimal number of exceptions were made for pedestrian 

patrollers only) and carried cell phones to ensure sea turtle sightings and emergencies 

were efficiently communicated.  

 

Both ATV and foot patrollers were instructed to consistently survey the beach at or just 

above the high tide line for sea turtle tracks, specifically traces of drag marks bound by 

bilateral claw impressions characteristic of Kemp’s ridleys. ATV patrollers returning 

over habitat previously monitored that day also observed their outgoing tire tracks for 
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signs of passage by a nester. Patrollers were cognizant of the need to avoid searching for 

cryptic nesting females or beach refuse, as these visual distractions interfered with the 

efficacy of patrol efforts (C.L. Hughes pers. obs.). All potential tracks, particularly those 

oriented perpendicular to the shoreline, required meticulous visual inspection to 

differentiate between sea turtle tracks and similar marks made by local wildlife or 

dragged items such as coolers or strollers.  

 

Patrollers who encountered a sea turtle or turtle tracks immediately safeguarded 

themselves and the animal and/or location and initiated the cooperative nesting response 

effort by NOAA STF staff and permitted TAMUG personnel; tasks to safeguard a live 

turtle are outlined on the Action List (Fig. 2.8) included in all patrol backpacks. 

Patrollers initiated this response by contacting the NOAA STF sea turtle stranding 

coordinator at 409-771-2872; this is the public contact number provided by the HEART 

hotline for the Texas coast from the Texas-Louisiana border south to Freeport. After 

confirming that site evidence warranted investigation, the NOAA STF stranding 

coordinator contacted TAMUG personnel to identify and activate a permitted responder.  

 

Nest Response 

As Kemp’s ridleys are highly efficient diurnal nesters that complete the nesting process 

in as little as 35-50 minutes (Márquez 1994, Witzell et al. 2005b), it was expected that 

the majority of nesting activity reports would involve sightings of tracks with no female 

present. Tracks are indicative of two potential nester activities: a non-nesting emergence 
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WHEN YOU FIND A TURTLE: 
 

 

Crawling up beach toward dunes: 
1. Keep the turtle safe!  Direct vehicles away from the turtle.   

2. CALL RESPONDERS: 409.771.2872. 

3. Keep bystanders well away from and behind turtle.  Inform bystanders who you 

are. Minimize bystander movement and commotion.  

 

 

Nesting (laying eggs): 
1. Keep the turtle safe! 

2. CALL RESPONDERS: 409.771.2872. 

3. Approach turtle from behind only after she has laid several eggs.  Dig a small 

deep hole ~12 inches directly behind turtle’s nest. Insert rope nest marker into 

this hole, and pack sand tightly around it.  Lay trailing rope on the sand behind 

turtle. 

4. Examine all flippers for tags. Record 6 digit tag number(s). 

5. Take pictures of turtle’s tracks, carapace, and flippers. 

 

 

Returning to the water: 
1. Keep the turtle safe!  Direct vehicles away from the turtle. Keep turtle’s path to 

water clear of bystanders and vehicles. 

2. CALL RESPONDERS: 409.771.2872. 

3. Take photographs of the turtle’s carapace. 

4. Take action only as directed by responders. 

 

 

Marine Mammal Strandings: 
1.800.9.MAMMAL 

 

Bird Rehabilitation: 
Barbara House – Dickinson: 281.337.3683 

Margaret Pickell – Friendswood: 281.648.2328 

 
 

 
Figure 2.8. Action list detailing patroller response to live nesting sea turtles intercepted 

on the beach. 
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or nest deposition. Patroller response for either activity was identical: patrollers 

preserved and outlined all visible evidence of the turtle’s crawl with locally available 

materials, including driftwood and litter; measured track width; and photographically 

documented the site.  

 

The federally protected status of sea turtles mandates that only permitted individuals 

handled these animals and their nest products. Thus, the permitted responder coordinated 

all activities associated with nest excavation, nester restraint, and transport of females 

for satellite tagging purposes (see Chapter IV). Responders documented nesting activity 

through completion of all pertinent fields on the nesting data sheet (Figs. 2.2-2.3) while 

investigating the site. After measuring track width, the responder attempted to locate a 

nest near the confluence of the incoming and outgoing tracks where a comparatively 

insubstantial body pit indicative of nest excavation may or may not have been visible. 

Nest detection primarily entailed exploration by hand through the compacted sand crust 

to locate the unconsolidated layers of previously excavated sand covering the nest neck, 

an area approximately 15 cm in width (C.L. Hughes pers. obs.). Upon locating the nest 

cavity, the responder donned latex gloves to transfer individual eggs from the nest to a 

polystyrene foam container lined with moist sand sourced from the nest site. A flexible 

temperature probe was centrally situated within the clutch to permit external 

computerized monitoring of incubation temperatures. Eggs were handled in a manner 

that minimized potential damage to the developing embryo by avoiding rotation and 

vibration (Limpus et al. 1979); clutches exceeding 100 eggs were split and housed in two 
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polystyrene incubators. Descriptively labeled incubators were secured in PVC transport 

containers (Fig. 2.9) for vehicular transport to the NOAA STF and, within 48 hours, the 

PAIS incubation facility. Nester species confirmation and hatch and emergence success 

rates were obtained from PAIS following hatchling release. 

 

The permitted responder managed the health and safety of retained post-nesting females, 

particularly maintenance of core body temperature. Females intercepted for tagging were 

restrained in an environment conducive to the avoidance of hypo- and hyperthermia. 

Restraint occurred on moist or dry beach sand and/or in a confining plastic transport box 

containing a 10 cm-thick protective foam cushion situated in an open pickup truck bed 

for a period not exceeding 2.5 hours before vehicular transport to, and arrival at, the 

NOAA STF in Galveston. Acceptable methods to detain post-nesting females included 

the use of handholds on the carapace in the vicinity of the nuchal notch by a responder 

situated at the turtle’s anterior or posterior end; as well as minimization of the turtle’s 

visual perception of the water, best accomplished by orientating the turtle anteriorly 

toward the dunes. Females were never placed in dorsal recumbency. Although turtles 

remained dry-docked during restraint, transport, and tagging, wet or dry towels were 

placed over the carapace to aid in temperature regulation and to minimize dehydration.  

 

Collection of morphometric data; sonography to determine the presence of calcified 

oviductal eggs or vitellogenic or atretic follicles; and application of flipper, PIT (passive 

integrated transponder), and satellite tags (see Chapter IV); occurred at the NOAA STF. 
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Figure 2.9. Polystyrene foam egg incubation container secured in PVC transport carrier 

with external temperature probe wire visible on right side. (Photo by Sharla Knoll.) 
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Daytime releases of these intercepted and tagged nesters occurred at their nesting site 

within 24 hours of initial detection. In 2008, procedures were modified slightly to avoid 

transportation and detainment of females retaining calcified eggs in the oviduct. 

Permitted responders previously trained in sea turtle sonographic techniques by Dr. Joe 

Flanagan, DVM, utilized a portable ultrasound on females returning to the water to 

verify oviposition had occurred. Turtles engaged in non-nesting emergences (i.e. 

retaining shelled eggs) were immediately released at their emergence location following 

procurement of measurements and application of flipper and/or PIT tags.  

 

Environmental Correlates of Nesting 

Temporal nesting data sourced from 26 sites where permitted responder(s) directly 

observed Kemp’s ridleys engaged in nesting behavior on the UTC during 2002-2009 

were utilized to compile relevant environmental data for the purpose of identifying 

correlations between nesting activity and the following: wind velocity, wind direction, 

tidal cycle, and lunar phase. (One additional direct observation in 2002 was excluded 

from analysis due to insufficient documentation.) Coastal oceanographic data, including 

mean sea level (MSL), wind speed and direction, and water temperature, were sourced 

from NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) 

database utilizing the Galveston Bay Entrance, North Jetty Station (ID: 8771341) located 

at 29º21.4’ N, 94º43.4’ W for all UTC nest sites. This station typically documented 

meteorological conditions in six-minute intervals through 2008 (no data were available 
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in 2009 due to damage from Hurricane Ike). As such, data utilized in analyses were 

recorded at the time closest to that when the turtle was first observed by responder(s).  

 

Lunar phase information was obtained from the United States Naval Observatory for all 

UTC nests documented at oviposition through 2008. Analysis was discontinued for 2009 

due to a lack of correlation with UTC nesting activity. 

 

RESULTS 

UTC Nesting Dynamics 

Two sea turtle species were documented utilizing UTC nesting habitats between 1996 

and 2009. A total of 75 Kemp’s ridley nests was confirmed on constituent beaches 

through 2009 (Table 2.4). Thirty-seven of these were laid on Galveston Island; Bolivar 

Peninsula and Follets Island each tallied 10 nests. Additional nests were deposited on 

Quintana Beach (4 nests), Bryan Beach (3 nests), Sargent Beach (2 nests) and Matagorda 

Peninsula (9 nests). Moreover, two loggerhead sea turtle nests were oviposited on 

Bolivar Peninsula by unique females on 27 July 1996 and 24 June 2008, while non-

nesting emergences on Sargent Beach (14 July 2002) and Galveston Island (31 May 

2003) were attributed to loggerheads (Shaver 2004). 

 

Record annual Kemp’s ridley nesting was documented on the UTC (Table 2.4) in both 

2007 (15 nests located between 1 May – 24 June) and 2008 (16 nests documented 

between 25 April – 27 June). The 2009 nesting season (2 May – 8 June), during which 
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Bolivar Galveston Follets Quintana Bryan Sargent Matagorda Upper Texas

Year Peninsula 1 Island 2 Island 3 Beach Beach Beach Peninsula Coast Total

2002 2 1 1 4

2003 1 1

2004 2 2 1 5

2005 7 1 8

2006 9 1 10

2007 1 7 2 1 4 15

2008 6 6 3 1 16
2009

4
1 3 3 2 2 2 3 16

Total 10 37 10 4 3 2 9 75

4 Northern upper Texas coast beach habitats were severely impacted by Hurricane Ike prior to the 2009 nesting season (Doran et al. 2009).

Table 2.4. Kemp's ridley sea turtle nests documented on upper Texas coast beaches, 2002-2009.

2 Formalized sea turtle nesting patrols were instituted on Galveston Island in 2007.
3 Formalized sea turtle nesting patrols were instituted on Follets Island in 2009.

1 Formalized sea turtle nesting patrols were instituted on Bolivar Peninsula in 2008.
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16 nests were also confirmed, followed the landfall of Category 2 Hurricane Ike (Doran 

et al. 2009) on Galveston Island 13 September 2008. Associated storm surge levels in 

Brazoria County, which encompasses Follets Island and Surfside Village, were between 

1.5 to 3 m. Maximum storm surge levels (5 m) and onshore wind speeds (175 km h-1) 

were recorded to the north on Bolivar Peninsula, where 1 to 3 m of water inundated the 

entire region and extensive destruction of residential beachfront development occurred 

(Doran et al. 2009). Monitored sea turtle nesting beaches along Follets Island, Galveston 

Island, and Bolivar Peninsula were profoundly altered via the eradication of dune 

habitats, extensive loss of sand, and adverse permutations in beach slope and width. Two 

thousand and nine marked the first year nesting to the south between Quintana Beach 

and Matagorda Peninsula exceeded that reported northward. The beaches of Bolivar 

Peninsula, Galveston Island, and Follets Island that collectively accounted for an average 

of 85.4% of UTC nesting annually through 2008 contained only 44% of nests in 2009.  

 

Galveston Island 

Documentation of Kemp’s ridley nesting activity (both nests and non-nesting 

emergences) on Galveston Island met or exceeded previous annual totals in both 2007 

and 2008 following the implementation of formalized nesting patrols. While nest counts 

on Galveston Island declined annually from a peak of 9 in 2006, non-nesting emergences 

on Island beaches were first reported in 2007 and were documented in both 2008 and 

2009. Responders confirmed 7 nests and 2 false crawls in 2007 (a total of 9 nesting 
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activity reports), 6 nests and 4 abandoned nesting attempts in 2008, and 3 nests and 2 

non-nesting emergences in 2009 (Table 2.4). 

 

 Five (71%) of the seven clutches located during the 2007 nesting season were 

discovered by the West Beach ATV patrol; tracks were the sole indicator of nesting 

activity at four of these sites. Beachgoers reporting sea turtles on the beach accounted for 

the remainder of documented nesting activity, including a hatchling emergence adjacent 

to the seawall at a previously undocumented nest site that occurred at 0900 on 6 August, 

post-dating the seasonal surveys. In 2008, patrollers located two non-nesting emergences 

(20% of documented nesting activity), including one on pedestrian-patrolled East Beach 

where nesting activity had previously never been reported. Five of the six documented 

clutches resulted from beachgoers notifying responders of nesting females outside active 

patrol times; four of these notifications were received before patrols commenced at 

0800. In 2009, 80% of nesting activity was identified by the West Beach ATV survey; 

tracks were again the sole evidence of nesting activity at three of these four sites. The 

remaining clutch was identified based upon visitor accounts of a nesting turtle near the 

Pointe West public beach access.  

 

Sea turtle nesting survey efforts on Galveston Island exceeded that on all other sections 

of the UTC from 2007 through 2009 in terms of both time and distance covered 

(Appendices A-H). Annual survey commitment on the Island ranged from 793.00-

808.00 h to cover a cumulative total of 5271.19–5457.52 km of beach via pedestrian and 
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ATV patrols (Appendices A, B, E). Galveston’s West Beach and Seawall Zones together 

attained a peak nesting density of 0.22 nests per kilometer in 2006, greater than that at 

any other UTC locale through 2009. 

 

Bolivar Peninsula 

Historic sea turtle nesting on Bolivar Peninsula prior to 2007 amounted to just three 

nests. A single Kemp’s ridley nest laid in 2007 raised the cumulative total to four and 

marked the beginning of consecutive annual nesting activity from 2007 through 2009 

(Table 2.4), although no females were observed by reporters or responders during this 

period. In 2008, the year nesting patrols commenced (Appendix C), 6 Kemp’s ridley 

nests, 1 loggerhead nest, and 2 non-nesting emergences were confirmed. Eighty-six 

percent of nesting activity documented before the conclusion of nesting surveys on 15 

July resulted from sea turtle track identification by ATV patrollers. Visitor reports of 

nocturnally emerging hatchlings on 16 and 25 July led to the procurement of two 

additional nests. In 2009, the first nesting season subsequent to the 13 September 2008 

landfall of Hurricane Ike, a single Kemp’s ridley nest was documented via the 

coordinated patrol effort (Appendix F). Peak nesting density, obtained in 2008, reached 

0.18 nests per kilometer of beach.  

 

Follets Island 

Beachgoer reports of females utilizing nesting grounds adjacent to developed sections of 

Follets Island accounted for the documentation of two Kemp’s ridley nests each in 2007 
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and 2008 (Table 2.4). In 2008, tracks leading to the third verified clutch, located on an 

undeveloped stretch of beach, were reported by an off-duty patroller associated with this 

project. Nesting surveys implemented on Follets Island in 2009 (Appendix G) directly 

resulted in the confirmation of 3 nests and 1 non-nesting emergence (80% of 

documented nesting activity), although no turtles were observed. A false crawl was also 

confirmed as a result of beach residents who witnessed a female emerge on a short 

segment of unpatrolled beach underneath the San Luis Pass bridge. These non-nesting 

emergences represent the first such recorded on Follets Island. Peak nesting density, 

documented in both 2008 and 2009, reached 0.13 nests per kilometer of beach. 

 

Attributes of Kemp’s Ridley Nesters 

Responders observed 28 instances of Kemp’s ridleys engaged in nesting activity on the 

UTC either directly (n=27) or via video documentation (n=1) during 2002-2009. 

Emergences of Kemp’s ridley females were temporally distributed diurnally, with 46.2% 

of nesters directly observed by responders between 0800-1059 (n=26 time-stamped 

records; Fig. 2.10). Eighteen identifiable individuals were derived from 3 distinct stocks: 

12 were sourced from the bi-national headstart experiment, 1 female originated from the 

1995 year-class associated with NOAA’s turtle excluder device research efforts, and 5 

ridleys were considered wild with no known affiliation to this region. Headstarted 

females derived from the 1989 (n=3), 1990 (n=1), 1991 (n=3), and 1992 (n=5) year-

classes were between 10 and 19 years of age when engaged in nesting activity. Captive 

reared females averaged 62.4 cm in straight carapace length (SCL; SD + 2.0), while wild 
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Figure 2.10. Diel distribution of observed Kemp's ridley nesting activity (n=26) on the upper Texas coast, 2002-2009.
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conspecifics averaged 64.5 cm SCL (SD + 2.8). All turtles were considered neophytes 

with no prior nesting history elsewhere in Texas or in Mexico (D. Shaver pers. comm.). 

 

A query of documented flipper, PIT, living, and/or satellite tags associated with the 18 

individuals observed by responders resulted in the confirmation of two wild and four 

headstarted Kemp’s ridleys that demonstrated fidelity to UTC nesting beaches, 

particularly Galveston Island, either within or between seasons. Five were documented 

twice on UTC beaches: RRV319 (Benjamina) nested twice in 2005 (35 d internesting 

interval); RRV371 (Bennie) nested in 2005 and engaged in a non-nesting emergence in 

2007; RRV255 (Caillie) laid single nests in 2006 and 2008; RRV258 (Smarttie) nested 

in 2006 and 2009; and RRV373, a female missing a significant portion of both rear 

flippers, made two abandoned nesting attempts 15 days apart in 2008. Three nesting 

records exist for the sixth female, RRV315 (Missy), who deposited two nests 0.70 km 

apart in 2006 (20 d internesting interval) and one in 2008. With the exception of the 

2008 nest laid by RRV255 (Caillie) on Follets Island, all stated philopatric nesting 

behavior occurred on Galveston Island with distance between documented emergences 

by individuals averaging 18.36 km (SD + 16.6, range = 0.70-46.53 km). 

 

Examination of within-season reproductive potential for the 10 individuals intercepted 

during the 2007, 2008, and 2009 nesting seasons resulted in the confirmation of 

vitellogenic follicles in eight instances. Sonography was used to identify reproductive 

status in all but one case in which a wild neophyte nester (YYP019) displaying aberrant 
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behavior on the beach was transported to the NOAA STF after depositing eggs on Bryan 

Beach 18 May 2009, and developing follicles were confirmed via necropsy after 

YYP019 perished overnight from an undiagnosed acute illness (J. Flanagan pers. 

comm.). Calcified oviductal eggs were identified via ultrasound for two turtles: RRV371 

(Bennie) on 26 May 2007, and RRV373 on both 12 and 27 June 2008, in which the latter 

instance revealed what appeared to be atretic follicles (J. Flanagan pers. comm.). Post-

ultrasound nesting confirmation was not obtained for either turtle that possessed 

calcified oviductal eggs. 

 

Clutch Parameters 

From 2002-2009, clutch sizes for Kemp’s ridleys nesting on UTC beaches ranged from 

52 to 123 eggs (mean = 98.4, SD + 16.3; n=75) while hatchling emergence success 

ranged from 0 to 100% (mean = 77.8%, SD + 26.1; n=75). All but four clutches that 

remained undetected in situ were transported to PAIS for incubation and subsequent 

hatchling release. Estimates regarding clutch size (mean = 81.3, SD + 14.2; n=4) and 

emergence success (mean = 91.8%, SD + 9.0; n=4) for UTC in situ nests were 

established by Dr. Donna Shaver upon receipt of excavated nest contents. Incubation 

period and nester stock are unknown for in situ nests. 

 

Although sample sizes were inadequate for statistical comparison, clutches laid by wild 

nesters tended to contain more eggs (mean = 104.2, SD + 12.4; n=5) and yielded 

improved rates of emergence (mean = 87.6%, SD + 8.4; n=5) than did those by captive 
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reared ridleys (clutch size mean = 98.4, SD + 12.8; n=17; emergence success mean = 

69.0%, SD + 32.2; n=17). One female from the 1989 year-class known to have deposited 

three clutches on Galveston Island through 2009, RRV315 (Missy), consistently laid 

smaller fertile clutches with abnormally poor emergence success rates (5.7%, 23.7%, and 

36.2%; D. Shaver pers. comm.). Removing known clutches by this ridley from pooled 

data resulted in a slight increase in overall clutch size (mean = 99.9, SD + 13.6; n=14) 

and improved emergence success (mean = 79.1%, SD + 24.8; n=14) for captive reared 

turtles. 

 

Both loggerhead nests laid on Bolivar Peninsula were transported to PAIS for incubation 

and subsequent hatchling release. Ninety hatchlings (81.8%) emerged from the 1996 

clutch of 110 eggs, while the 2008 nest containing 140 eggs produced 135 hatchlings 

(96.4%). 

 

Environmental Correlates of Nesting 

Documented nesting emergences by Kemp’s ridley sea turtles on the UTC occurred 

when sea surface temperatures ranged between 22.0 and 29.5ºC and most often under 

conditions of strong onshore winds from the southeast (Table 2.5). Wind velocities at 

time of nesting averaged 15.6 kn (range = 7.4-22.6 kn) and exceeded Galveston Island’s 

average monthly wind speeds as recorded by NOAA’s National Climatic Data Center 

(10.5, 10.0, and 9.3 kn during April, May, and June, respectively) 91.7% of the time. 
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Date Time Detected Nesting Phase
Time of 

Measurement
Height   

(MSL2; m) Phase Speed (kn) Bearing (º)
Compass 
Direction Temp (ºF) Temp (ºC)

7 May 2002 1120 NNE
 3

1118 0.22 Rising 18.3 159 SSE 80.8 27.1

9 June 2002 1630 Emerging 1630 0.10 Falling 15.2 147 SSE 85.1 29.5

10 June 2002 0930 Emerging 0930 0.37 Falling 14.2 149 SSE 83.5 28.6

5 April 2004 1100 Covering 1100 0.08 Falling 20.0 96 E 72.0 22.2

17 April 2004 1700 Laying 1700 -0.09 Falling 15.7 128 SE 71.6 22.0

11 May 2004 1215 Returning to Sea 1212 0.40 Rising 18.9 112 ESE 77.7 25.4

16 May 2005 1000 Laying 1000 0.30 Rising 17.9 80 E 77.7 25.4

29 May 2005 0800 Covering 0800 -0.04 Rising 12.4 96 E 79.9 26.6

30 May 2005 0700 Covering 0700 -0.05 Rising 18.5 205 SSW 80.8 27.1

4 June 2005 1000 Returning to Sea 1000 0.24 Falling 16.1 170 S 81.0 27.2

20 June 2005 0830 Digging 0830 0.32 Falling 11.3 58 ENE 82.8 28.2

28 April 2006 1330 Digging 1330 0.28 Rising 22.5 115 ESE 75.9 24.4

6 May 2006 1500 Returning to Sea 1500 0.31 Rising 7.4 214 SW 77.2 25.1

6 May 2006 1500 N/R 
4

1500 0.31 Rising 7.4 214 SW 77.2 25.1

27 May 2006 1030 N/R 
4

1030 0.23 Falling 15.0 131 SE 79.3 26.3

17 May 2007 1000 Returning to Sea 1000 0.32 Falling 15.4 40 NE 77.0 25.0

17 May 2007 1230 Covering 1230 0.31 Rising 11.7 46 NE 79.3 26.3

18 May 2007 0955 Laying 0954 0.49 Falling 20.0 60 ENE 77.5 25.3

26 May 2007 1000 Returning to Sea 1000 0.40 Rising 15.0 108 ESE 78.6 25.9

1 May 2008 1145 Digging 1142 0.32 Rising 18.7 145 SE 73.5 23.1

13 May 2008 1400 Digging 1400 0.37 Falling 16.1 132 SE 76.1 24.5

20 May 2008 0540 Returning to Sea 0542 0.22 Rising 14.4 209 SSW 77.0 25.0

12 June 2008 0830 Digging 0830 0.20 Rising 15.9 155 SSE 83.3 28.5

27 June 2008 0802 Emerging 0800 0.27 Falling 17.3 177 S 84.7 29.3

2 May 2009 0850 Returning to Sea 0848 0.07 Rising N/A 
5

N/A 
5

N/A 
5

N/A 
5

N/A 
5

18 May 2009 1630 Returning to Sea 1630 -0.03 Falling N/A 
5

N/A 
5

N/A 
5

N/A 
5

N/A 
5

Mean 0.23 15.6 131.1 78.7 26.0
SD 0.16 3.7 52.4 3.6 2.0

Range -0.09 to 0.49 7.4 to 22.6 40 to 214 71.6 to 85.1 22.0 to 29.5

5 Meteorelogical data were not available from Station #8771341 in 2009.

3 Non-nesting emergence.
4 Nesting phase was not documented by responders.

Table 2.5. Environmental data associated with Kemp's ridley sea turtles (n=26) observed nesting on upper Texas coast beaches, 2002-2009. Provided data were uniformly

sourced from Station #8771341 at the Galveston Bay entrance, North Jetty, Texas
1
.

Tide Wind Water

1 Data provided by NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) database.
2 Mean sea level.
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Nesting activity was equally distributed between rising and falling tidal cycles, although 

all four females documented at emergence did so during falling tides. However, 84.6% 

of nesting occurred during periods of increased tidal amplitude; MSL at time of 

observance averaged 0.23 m (range = -0.09 to 0.49 m).  Nesting activity also showed no 

correlation with primary moon phase. Through 2008, UTC nest deposition dates were 

nearly equally distributed between spring (n=32) and neap (n=35) tides.  

 

DISCUSSION 

Despite debatable historical utilization, the UTC currently represents the northernmost 

nesting range regularly – and increasingly – exploited by Kemp’s ridley turtles. During 

2007, 2008, and 2009, ridley nests deposited on all UTC beaches accounted for 12, 8, 

and 8% of Texas’ statewide total, respectively (Shaver 2008, 2009, 2010). Sea turtle 

nesting patrols sustained at varying degrees of effort on UTC beaches were instrumental 

in the documentation of a record 22 nests in 2011, including 15 on Galveston Island 

where ridley clutch deposition over the past decade exceeded that confirmed on the 

entire Texas coast during the 1990’s (Shaver 2012). Notably, near annual increases in 

reproductive activity by this endangered species on the UTC since 2002, although 

comparatively small in number, are occurring in parallel with exponential nesting 

increases at both Rancho Nuevo and PAIS (NMFS, USFWS & SEMARNAT 2011; 

Shaver 2012).  
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Nesting Patrols 

Patrol effort deployed to identify nesting on the beaches of Bolivar Peninsula, Galveston 

Island, and Follets Island was effective in detecting sea turtle reproductive activity. Most 

notably, survey implementation on Bolivar Peninsula in 2008 resulted in the 

confirmation of six ridley nests, a single year tally double the entire historical total for 

that location. Various additional positive impacts can be attributed to patrol initiation on 

all three northern UTC beaches, including but not limited to  

i) the education of residents, beachgoers, and beach workers regarding 

nesting and their role in maintaining habitat suitability and reporting 

sea turtle sightings, 

ii) the protection of nesting females and nest products, 

iii) the documentation of nesting activity via tracks when females were not 

observed, 

iv) the execution of associated research initiatives in support of the Kemp’s 

Ridley Recovery Plan (NMFS, USFWS & SEMARNAT 2011; see 

Chapter IV), and  

v) a heightened management focus for agencies governing local protected 

natural resources and anthropogenic beach uses via collection of 

standardized data regarding the UTC’s role in Kemp’s ridley population 

dynamics. 
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It is highly plausible that multiple UTC nests remained undetected each year. Factors 

confounding nest detection include the Kemp’s ridleys propensity to nest on windy days 

conducive to the swift obliteration of their distinctly ephemeral tracks (Pritchard 1989), 

limited surveying manpower and extensive tracts of undeveloped beachfront on the 

UTC, and the fact that females are intercepted at less than half of documented nest sites 

(Shaver 2005b). Despite these impediments, quantitative data procured through 

standardized patrol efforts described herein serve as the first legitimate barometer of sea 

turtle nesting activity on beach habitats associated with Bolivar Peninsula, Galveston 

Island, and Follets Island. This scientific baseline, which serves to establish trends in 

UTC nester stock and reproductive behaviors enacted on associated UTC habitats, may 

provide resource managers with information necessary to facilitate the perpetuation of 

sea turtle nesting activity on constituent beaches through conservation initiatives to 

benefit nesters, nest products, and beach habitats. 

 

Nester Parameters 

The consistent occurrence of wild nesters successfully exploiting UTC nesting habitats 

corroborates the theory of nesting ground expansion and/or recolonization by this 

species, and diminishes concerns that reproductive behaviors on constituent beaches are 

simply an unexpected result of the Kemp’s ridley headstart experiment. Although 74.1% 

of known UTC nesting activity through 2009 can be positively attributed to captive 

reared females, no significant differences in reproductive behavior or success were 

identifiable between either wild and headstarted UTC nesters, or between this nesting 
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contingent and those at PAIS and Rancho Nuevo. Captive reared female size; maturation 

rate; temporal, seasonal, and environmentally-linked reproductive behaviors; and clutch 

deposition and emergence success rates all fall within normal limits identified for this 

species (Márquez 1994; NMFS, USFWS & SEMARNAT 2011; Shaver 2012).  

 

However, the predominance of captive reared females within the UTC nesting 

contingent precipitates questions regarding the imprinting process in hatchlings and 

subsequent demonstration of nesting beach fidelity by mature females, as well as future 

expectations regarding sea turtle nesting in this region by both wild and headstarted 

turtles. Mexico-imprinted Kemp’s ridleys from the 1989-1992 yearclasses headstarted at 

the NOAA STF on Galveston Island were first documented nesting at PAIS (n=1) and 

on the UTC (n=2) in 2002, coincident with the commencement of annual nesting by this 

species on UTC beaches (Shaver 2004, 2005b). Generally, turtles hatched and 

experimentally imprinted in Mexico but reared in Galveston are not lacking philopatric 

behavior (defined as tending to return to a particular site or area) but instead are 

demonstrating fidelity to either the UTC, Mustang Island, or PAIS (D. Shaver pers. 

comm.). It must also be noted that, through 2011, headstarted turtles imprinted to PAIS 

have never been documented nesting on the UTC despite being reared in Galveston; in 

contrast, their reproductive activity has been limited to either PAIS or Mexico’s nesting 

beaches (A. Landry pers. comm., D. Shaver pers. comm.).  
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Through 2009, all wild and headstarted females documented on UTC beaches have 

remained reproductively faithful to this region (D. Shaver pers. comm.). Tenacity in 

natal homing (Carr 1975) is best demonstrated by RRV315 (Missy), a biennial nester 

documented depositing clutches on Galveston Island’s West Beach Zone in 2006, 2008, 

and 2010 (Shaver 2007, 2009; A. Landry pers. comm.). Despite this, extrapolation to aid 

future management of UTC nesting habitats is confounded by current protocol requiring 

prompt removal of all reproductive products to the PAIS hatchery, where incubation 

temperatures are elevated to produce predominantly female hatchlings (Shaver 2010). 

Following reproductive maturity, will females produced from UTC clutches incubated 

and released at PAIS display nest site fidelity to UTC beaches, or to those at PAIS? The 

potential ramifications of the current relocation protocol include the stagnation and/or 

eventual collapse of the UTC nesting cohort, particularly following the natural demise of 

the current nesting generation. The prospective loss of recently established UTC nesting 

beaches at the northernmost extent of the Kemp’s ridleys comparatively limited nesting 

range precludes the realization of numerous latent benefits to multifarious stakeholders 

(see Chapter VI) and bodes poorly for the expeditious recovery of this endangered sea 

turtle. 

 

Clutch Parameters 

The overall 91.8% emergence success rate attained by the four in situ nests incubated 

sans anthropogenic management on UTC beaches highlights the appropriateness of 

existing substrates on constituent habitats to support sea turtle reproductive products. 
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Current concerns surrounding anthropogenically-induced habitat destruction, climate 

change, and female-biased sex ratios on many sea turtle nesting beaches (Fuentes et al. 

2011, Caillouet 2012) could potentially be moderated for Kemp’s ridleys with the 

natural utilization of northern nesting grounds that may permit this species increased 

protection against certain negative human impacts and production of a relatively greater 

proportion of male offspring.  

 

Identification and characterization of male-producing nesting beaches is recommended 

by Mrosovsky & Godfrey (2010) to counteract climate change and its potential “massive 

feminizing bias” (Mrosovsky 1984) for sea turtle populations. Current latitudinal 

temperature gradients indicate that the northern beaches of PAIS provide cooler 

incubation environments than do those at Rancho Nuevo (NMFS, USFWS & 

SEMARNAT 2011); thus, UTC nesting beaches located north of PAIS may be cooler 

still. Research to quantify various incubation parameters on the UTC, particularly 

temperature and the resultant sex ratios of clutches incubated in situ, is recommended to 

confirm this region’s potential as male-producing Kemp’s ridley nesting habitat.  

 

Environmental Correlates of Nesting 

Kemp’s ridley nesting on UTC beaches appears strongly correlated with both increased 

tidal amplitude and vigorous onshore winds from the southeast. Robust winds have long 

been considered a stimulant for nesting by this species (Márquez 1990, Jiménez-Quiroz 

et al. 2005), although Pritchard & Márquez (1973) noted nesting at Rancho Nuevo 

59



 
 

corresponded to strong longshore winds from the north. These environmental conditions, 

and their resultant synergistic effect, may efficiently obscure tracks, facilitate behavioral 

thermoregulation, and reduce both energy expenditure and exposure to predators for 

females in terrestrial habitats (Pritchard & Márquez 1973, Spotila & Standora 1985).  

 

Although nesting by other sea turtle species has been closely associated with tidal and/or 

lunar cycles (Plotkin 1994, Girondot & Fretey 1996, Lamont & Carthy 2007, Pike 2008), 

this relationship was not evident for ridleys utilizing UTC habitats. Various factors may 

be inhibiting the visualization of a relationship between UTC ridley nesting activity and 

these meteorological parameters, including the small sample size of the current study 

(n=26) and microclimatic differences between UTC nesting beaches not reflected in data 

sourced from a single data station offshore Galveston Island. In addition, the simplicity 

of the stated method precluded a review of the cyclic nature or interrelationship of these 

environmental parameters, although Jiménez-Quiroz et al. (2005) stated “…it is probable 

that the periodicity of the variables is more important than their value” for Kemp’s 

ridleys nesting at Rancho Nuevo. However, observed correlations may be useful 

predictors of nesting activity for surveying purposes. 

 

Management Recommendations 

UTC beaches characterized by heavy public use and development require management 

strategies markedly different from those currently utilized on other ridley nesting 

beaches, including Rancho Nuevo and PAIS, that benefit from government-mandated 
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protection restricting public access and development. However, the UTC’s level of 

urbanization should not preclude the incorporation of this area into management 

schemes designed to recover the endangered Kemp’s ridley sea turtle. One needs only to 

examine the dense sea turtle nesting colonies utilizing the beaches of Florida, USA, to 

determine that successful implementation of beach habitat management policies meeting 

the needs of human-user groups while minimizing negative impacts to sea turtles is 

possible. Conservation efforts for the endangered Kemp’s ridley, particularly nest 

protection efforts, should encompass the entire Texas coast (Putman et al. 2010). 

 

The UTC can only realize its potential as a natal beach if current sea turtle nest 

management protocol is modified to permit local nest incubation and hatchling release. 

The 15 nests laid on Galveston Island in 2011 are comparable to the 14 nests 

documented at PAIS in 2003 (Shaver 2005a, 2012). However, UTC nesting likely cannot 

be sustained if all associated clutches continue to be transferred to PAIS. Excavated 

clutches undergo two separate vehicular transports to reach PAIS during the critical 6-48 

hour post-oviposition timeframe identified by Márquez (1994) as most susceptible to 

developmental deficiencies and mortality rates reaching 100% due to handling. Repeated 

manual manipulation of clutches for transport can result in egg inclination, embryo 

rotation, vibrations, contamination and/or overheating, all of which may negatively 

impact clutch hatching success. While hatching success rates obtained from Bolivar 

Peninsula nests subjected to cumulative vehicle transport times typically exceeding 6 

hours have been comparable to those from nests deposited and incubated at PAIS 

61



 
 

(Shaver 2009), this method involves substantial risk to developing embryos and may be 

a factor in poor hatch success rates obtained during 2005 and 2006 (Seney 2008). 

Although additional research beyond that provided in Chapter III is needed regarding 

incubation conditions on the UTC (an informational void currently exists regarding 

thermal regime, hydric environment, sand mineral content, gas exchange, etc. on 

constituent beaches), the 91.8% mean emergence success reported for all four in situ 

clutches suggests that UTC beaches can support sea turtle nest products. Viable options 

exist for clutches laid in constituent habitats; these alternatives deserve periodic re-

evaluation to confirm current management protocol prioritizes species recovery over 

historical convention.  

 

A nest management strategy whereby nests laid above the high tide line remain in situ to 

incubate and hatch with minimal human interference would significantly reduce 

relocation efforts. While this strategy is successfully utilized in Florida, where annual 

nest deposition numbers in the tens of thousands, it is an impractical solution for areas 

such as the UTC where public education related to sea turtles is lacking and low density 

nesting by the critically endangered Kemp’s ridley warrants protection of every nest. 

The well-executed relocation of nests and timely monitored release of emerged 

hatchlings pose significantly fewer threats to nest products than do natural predators and 

environmental variables (Márquez 1994). When considered in conjunction with existing 

UTC hazards such as vehicular beach traffic, beach nourishment and grooming 

activities, compromised dune environments, high levels of beach refuse, and coastal 
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development of homes and associated structures, nest relocation to either PAIS or an 

upper Texas coast hatchery currently appears necessary to maximize hatchling 

production and the continued recovery of the Kemp’s ridley. 

 

Currently, monitored corrals (hatcheries) secure from predation and poaching are 

successfully utilized at PAIS (Shaver 2010), on South Padre Island, and at Rancho 

Nuevo (Gladys Porter Zoo 2005, C. Hughes pers. obs.). Implementation of a corral on 

Galveston Island for UTC nest products is an alternative that would significantly reduce 

the risk of embryonic mortality associated with egg handling by permitting expeditious 

clutch relocation soon after deposition (Eckert et al. 1999). The protected beaches and 

vegetated dunes of Galveston Island State Park provide one such viable option, as a 

hatchery ensconced on this comparatively natural beach would be monitored and secured 

against anthropogenic intrusion by the on-site enforcement entity, the Texas Parks and 

Wildlife Department. Constraints to implementation do exist (Eckert et al. 1999 details 

caveats) but likely would not prohibit successful execution of this method. Beneficially, 

releasing hatchlings imprinted to natal UTC beaches would preclude the loss of an 

associated nesting cohort and would likely contribute to long-term nesting increases, 

thus creating exploitable ecotourism and public education opportunities with future 

expansion potential. 

 

 

 

63



 
 

Future Inquiries & Concluding Remarks 

Associated impacts of severe flooding and coastal erosion wrought by Hurricane Ike 

(Doran et al. 2009) on sea turtle nesting density along the northernmost beaches of 

Bolivar Peninsula, Galveston Island, and Follets Island appear confined to a single year 

post-storm. Despite the unprecedented predominance of ridley nests on southern UTC 

habitats between Quintana Beach and Matagorda Peninsula in 2009 following Hurricane 

Ike, more than 83% of UTC nests were located on Bolivar Peninsula, Galveston Island, 

and Follets Island in both 2010 and 2011 with no significant alterations in patrol effort at 

any locale (Shaver 2010, 2011, 2012). This displacement in nesting beach utilization 

without a reduction in nesting frequency is similar to that noted at Rancho Nuevo 

following the passage of Hurricane Gilbert in 1988 (Agardy 1990). Is this shift, and its 

subsequent reversal, indicative of the Kemp’s ridleys’ ability to prioritize the 

appropriateness of reproductive habitat over inherent site fidelity and respond via 

migration to locate suitable shoreline?  

 

Investigative research is recommended to determine the adaptability of nesting Kemp’s 

ridleys to significant natural and anthropogenic alterations of vulnerable beach 

ecosystems, a valid concern considering geographic nesting range restrictions (Pritchard 

& Marquez 1973); the likelihood of catastrophic beach degradation associated with 

hurricanes, the extraction of oil and gas minerals at PAIS (NMFS, USFWS & 

SEMARNAT 2011) and Gulf of Mexico oil spills like the Ixtoc 1 and Deepwater 

Horizon; as well as sea level rise correspondent with global warming (Intergovernmental 
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Panel on Climate Change 2007). Natural expansion of the endangered Kemp’s ridley sea 

turtle’s severely restricted nesting range, such as is occurring on the UTC, should be 

promoted by local, state, and federal resource managers not only to mitigate potentially 

catastrophic localized degradation of nesting habitats but also to promote recovery of 

this endangered species. 
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CHAPTER III  

AN ASSESSMENT OF GALVESTON ISLAND AND BOLIVAR PENINSULA 

BEACH HABITATS PRIOR TO HURRICANE IKE:  

IMPLICATIONS FOR CONSERVATION 

 

INTRODUCTION  

Annual nesting on the upper Texas coast (UTC; herein defined as beaches from Sabine 

Pass to Matagorda Peninsula) by the Critically Endangered Kemp’s ridley sea turtle 

(Lepidochelys kempii; IUCN 2011) since 2002 has coincided with recent exponential 

increases in the reproductively viable segment of the population (Márquez et al. 2005, 

Shaver 2005b, Seney & Landry 2008). Record nesting activity by the Kemp’s ridley has 

occurred nearly annually since 2004 on both the UTC and the entire Texas coast, with 

this trend mirroring recent annual increases in the number of nests deposited on the 

ridley’s primary nesting beach at Rancho Nuevo, Tamaulipas, Mexico (NMFS, USFWS 

& SEMARNAT 2011). Except for 2 loggerhead turtle (Caretta caretta) nests deposited 

on Bolivar Peninsula (1 apiece in 1996 and 2008), all other 59 sea turtle nests 

historically documented on the UTC prior to Hurricane Ike’s landfall 13 September 2008 

were laid by Kemp’s ridleys.  

 

Continued recovery of the Kemp’s ridley population will further augment sea turtle 

nesting activity on UTC beaches such as those along Galveston Island and Bolivar 

Peninsula. Increased likelihood for interaction between this growing assemblage of 
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nesters and rapid development of the UTC mandates implementation of management 

policies meeting the needs of human-user groups while reducing impacts to nesting sea 

turtles. Open access UTC beaches characterized by heavy public use and development 

require management strategies that differ markedly from those currently utilized on 

ridley nesting beaches at Rancho Nuevo and Padre Island National Seashore (PAIS), 

Texas, that benefit from government-mandated protection limiting public access and 

development. Information provided herein is intended to serve as guidance for local, 

state, and federal agencies responsible for addressing the unique sea turtle nesting habitat 

management challenges that exist on the UTC.  

 

Highly dynamic nesting beach environments, such as those along the UTC, continually 

erode and accrete in response to wind, waves, currents, storms, and alterations in sea 

level (Lebuff & Haverfield 1992, Peterson & Bishop 2005). Although sea turtles often 

exhibit strong nest site fidelity to natal beaches (Meylan et al. 1990, Bjorndal 1995, 

Shaver 2005b), a multitude of environmental factors may significantly impact the 

attractiveness of a specific beach to nesters (Santos et al. 2006) and the “seafinding” 

ability of hatchlings emerging from nests (Salmon et al. 1995, Bertolotti & Salmon 

2005). While coverage of all relevant environmental factors and human activities 

influencing nesting habitat on UTC beaches is beyond the scope of this chapter, those 

identified as critically important (vegetation coverage, beach slope and width, beach 

nourishment, artificial lighting) are summarized below. 
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Vegetation Coverage 

The Texas Open Beaches Act § 61.011, by utilizing the existing vegetation line to 

differentiate between public beach and private property bordering the Texas Gulf coast, 

underscores the critical importance of dune plant communities in policy making and 

beach habitat management. UTC species, including sea oats (Uniola paniculata), bitter 

panicum (Panicum amarum), seashore dropseed (Sporobolus virginicus), and marsh-hay 

cordgrass (Spartina patens), are essential components of healthy dunes that function as 

plant successional communities to build dunes, bind sediments, and reduce erosion 

(Márquez 1994, Feagin et al. 2005). However, engineering solutions to coastal erosion 

(including seawalls and geotextile tubes), beachfront development, and non-native lawn 

vegetation have created landward barriers to inland dune migration, thereby confining 

dune plant communities to shrinking zones where characteristic successional patterns are 

disrupted (Feagin et al. 2005). Failure of embryonic dunes to form Gulf-ward of human-

erected barriers disrupts natural seed dispersal mechanisms and isolates plant 

communities, with both impacts resulting in the loss of critical late-successional 

vegetation. It is this loss in vegetative cover that escalates beach erosion rates (Feagin et 

al. 2005). 

 

Vegetative cover is a critical component in sea turtle nest site selection and nesting 

success. Hawksbill turtle (Eretmochelys imbricata) nesting behavior is influenced by 

vegetative cover, with females displaying a significant preference for vegetated over 

non-vegetated sites (Horrocks & Scott 1991) and predisposed to nesting along the beach 
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perimeter adjacent to the vegetation line (Santos et al. 2006). Lower sediment 

compaction rates associated with vegetative cover and the ability of constituent rootlets 

to loosen substrate positively influence hawksbill nesting success, given the fact that 

hatchling emergence success is inversely correlated with compaction rate (Horrocks & 

Scott 1991). This correlation may be a function of increased probability of hatchling 

suffocation and exhaustion associated with emergence attempts from nests deposited in 

more compacted substrates (Horrocks & Scott 1991). The vegetation line is also a 

crucial component in green turtle (Chelonia mydas) nest site selection and subsequent 

reproductive success (Chen et al. 2007). Dune plant communities may function as nest 

placement indicators to females, as vegetated beaches minimize the risk of nest 

inundation and provide substrates with compaction values conducive to digging while 

maintaining nest cavity integrity without collapse (Chen et al. 2007). While insufficient 

data exist to support a positive correlation between dune vegetation and Kemp’s ridley 

nesting success, Márquez (1994) notes dune stabilization at Rancho Nuevo by an 

abundance of sea grasses and other coastal plants, as well as preferential nesting by 

female conspecifics adjacent to or on the foredune. 

 

Conversely, reproductive success may be lower for nests deposited in heavily vegetated 

areas. Chen et al. (2007) noted that females were deterred from excavating nests in 

locations where vegetation coverage exceeded 40%, as dense root systems reduced ease 

of digging. Embryonic mortality can be increased by root mats encompassing or 

perforating incubating eggs deposited in profusely vegetated areas (Whitmore & Dutton 
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1985). Hatchlings emerging in dense vegetation are denied visual orientation cues for 

seafinding, resulting in disorientation (hatchlings crawling in circuitous paths) or 

misorientation (hatchlings crawling toward light source), particularly on moonless nights 

(Godfrey & Barreto 1995). Thick dune plant communities can function to slow forward 

momentum and may entangle or entrap hatchlings, thus increasing predation and 

desiccation risks (Godfrey & Barreto 1995). Despite these findings, maintenance and 

enhancement of dune plant communities are essential to maximize overall sea turtle 

reproductive success. Females require visual cues from, but typically avoid nesting in, 

heavily vegetated areas while dune plant communities provide hatchlings emerging from 

nests deposited lower on the beach with critical visual seafinding cues (Bourgeois et al. 

2009). 

 

Beach Width & Slope 

Alterations in beach width and slope can arise from multiple anthropogenic activities, 

including shoreline development, beach nourishment, vehicular traffic (Santos et al. 

2006, Fish et al. 2008), and installation of erosion control structures (Lebuff & 

Haverfield 1992, Feagin et al. 2005). Female nest site selection and subsequent 

reproductive success are partially determined by the inverse correlation between beach 

width and slope that, in conjunction with tidal amplitude, regulate the potential for 

inundation-related embryonic mortality and hatchling survival on land (Whitmore & 

Dutton 1985, Márquez 1994, Garmestani et al. 2000). Nests laid below the high tide line 

typically experience lower hatching and emergence rates or complete embryonic 
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mortality, as increased salinity associated with seawater wash over of nests can disrupt 

egg metabolic processes and/or asphyxiate developing embryos (Whitmore & Dutton 

1985). Inadequately sloped beaches increase the crawl distance necessary for females to 

access elevated sites less vulnerable to tidal inundation (Horrocks & Scott 1991, Santos 

et al. 2006) and the susceptibility of incubating nests to flooding (Márquez 1994). 

Hatchlings emerging from nests located high on overly wide beaches of reduced slope 

expend more energy to reach the sea, thus increasing exposure time to land-based 

predators (Horrocks & Scott 1991, Márquez 1994, Mrosovsky 2006). Narrow eroded or 

steeply sloped beaches may visually deter nesters and decrease overall nesting frequency 

(Garmestani et al. 2000, Montague 2008); such is the case for females required to 

expend increased energy to reach preferred nesting sites on beaches with significant 

inclines (Santos et al. 2006). Nests deposited on narrow beaches whose width is 

constrained by development are exposed to negative impacts associated with 

infrastructure as well as increased risk of nest overlap and seawater saturation (Fish et al. 

2008). 

 

Although beach profile preference varies among sea turtle species (Mrosovsky 2006) 

and remains undetermined for Kemp’s ridleys, the moderate profile characteristics of 

Rancho Nuevo’s beach may be considered ideal for ridley females, nests, and nest 

products. Nests incubating on beaches of moderate slope may benefit from improved 

substrate drainage and proper humidity levels (Márquez 1994). Moderately sloped 

beaches that provide a multitude of nest placement options at varying distances above 
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the high tide line are advantageous to nesting success as spatially-distributed nests tend 

to mitigate negative impacts associated with dynamic beach environments affected by 

stochastic events (Mrosovsky 2006). In certain years, substantial land-based predator 

pressure may select for nests laid close to the surf, while nests located high on the beach 

may produce more hatchlings during seasons with unusually strong storms. Robust 

estimates of preferred nest locations along the horizontal beach gradient from forebeach 

to second foredune do not exist for Kemp’s ridleys nesting on the UTC. Although ridley 

nests in Texas have been laid at all positions along the horizontal beach slope, nearly all 

nests incubated in situ and documented at hatching through 2008 have been located high 

on the beach protected from tides (Shaver 2008, 2009), indicating that sufficiently wide 

beaches free of tidal inundation are crucial for ridley nesting success in Texas. 

 

Beach Nourishment 

Addition of fill material to elevate and extend beaches seaward in developed coastal 

zones prone to erosion and flooding is a common non-permanent engineering solution 

(Lebuff & Haverfield 1992, Crain et al. 1995) employed to stabilize shorelines (Peterson 

& Bishop 2005), protect property, and increase available recreational area (Rumbold et 

al. 2001). While beach nourishment significantly reduces altered sediment transport and 

downdrift erosion associated with hardened structures like seawalls and groins (Lebuff 

& Haverfield 1992, Feagin et al. 2005), it is not ecologically benign (Peterson & Bishop 

2005, Montague 2008). Ecological impacts of beach nourishment remain uncertain 

despite four decades of agency-mandated monitoring (Peterson & Bishop 2005, 
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Montague 2008). Monitoring studies typically lack standardization and scientific rigor, 

while research conclusions are flawed by inadequate evidence, data analysis or 

misinterpretation (Peterson & Bishop 2005). Nonetheless, available data indicate 

sediments obtained from offsite sources, including ship channels and offshore borrow 

pits, may adversely affect sea turtle nesting success. Such sediments may alter a beach’s 

slope; sand density, color, mineral content, and grain size; shear resistance; and moisture 

content (Nelson & Dickerson 1988, Benedet et al. 2004, Chen et al. 2007) due to 

compositional differences in the proportion of carbonate sand, quartz sand, shell, coral, 

clay, and/or silt (Crain et al. 1995).  

 

Benefits inherent in augmenting available nesting habitat through renourishment efforts 

(Lebuff & Haverfield 1992, Crain et al. 1995, Montague 2008) may be offset by 

degradation and disturbance of beach and nearshore environments (Peterson & Bishop 

2005), alteration of beach profiles (Brock et al. 2008) and constituent substrates’ natural 

physical and chemical properties, and formation of beaches unsuitable for nesting 

females and/or clutch incubation (Crain et al. 1995). Effects of physical and chemical 

substrate permutations on a nester’s short- and long-term nest site fidelity are poorly 

understood (Crain et al. 1995). Related research has documented substantial increases in 

the frequency of non-nesting emergences correlated with significant reductions in 

reproductive output from both loggerhead (Rumbold et al. 2001) and green sea turtles 

(Brock et al. 2008), particularly during the first season post-nourishment. Nourishment-

induced changes in female nest site selection and digging behavior may deleteriously 
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affect offspring survival and future reproductive contribution as nest success is, to a 

certain extent, dependent upon nest cavity configuration and the hydric and thermal 

environment of the substrate (Crain et al. 1995). Inappropriate incubation temperatures 

caused by alterations in sand color can negatively affect embryo development, and 

variations in substrate water potential can limit diffusion of water, nutrients or oxygen 

across the semi-permeable eggshell (Crain et al. 1995). In addition, sand compaction 

resulting from nourishment activities or alterations in substrate shear resistance can 

physically impede or prevent female nest excavation or hatchling emergence (Márquez 

1994, Crain et al. 1995, Chen et al. 2007), thus diminishing reproductive success. 

 

Artificial Lighting 

Nocturnal illumination of nesting beaches by artificial lighting associated with 

beachfront development negatively impacts sea turtle nesting habitat (Santos et al. 2006) 

and reproductive success. Nocturnal nesting activity is depressed on artificially 

illuminated beaches (Salmon et al. 1995, Bertolotti & Salmon 2005); unnatural lighting 

can disrupt nest site selection, increase non-nesting emergence ratios, and disorient 

females (Santos et al. 2006). Nocturnally emerging hatchlings, while able to locate and 

enter the sea within minutes on dark beaches, often perish due to dehydration, 

exhaustion or predation as misorientation or disorientation caused by artificial lighting 

results in seafinding failure (Horrocks & Scott 1991, Bertolotti & Salmon 2005, Tuxbury 

& Salmon 2005).  
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Hatchling seafinding behavior is primarily controlled by two visual cues: contrast in 

luminosity between landward and seaward horizons, and dissimilarity in landward and 

seaward horizon elevation (Salmon et al. 1995, Bertolotti & Salmon 2005, Tuxbury & 

Salmon 2005). Vegetated dunes on natural beaches absorb light, aiding hatchlings in 

orienting toward the naturally brighter reflective ocean surface. Potentially more 

influential than light intensity cues is orientation of hatchlings toward the lower seaward 

horizon and away from elevated solid silhouettes, such as those created by dunes or 

stands of trees. Background illumination, naturally occurring with a full moon, aids 

hatchlings in differentiating between seaward and landward horizons and enables 

accurate seafinding regardless of light pollution when adequate horizon cues exist 

(Bertolotti & Salmon 2005, Tuxbury & Salmon 2005). Hatchlings exposed to discrete 

light sources typically misorient; disorientation occurs when the landward silhouette is 

low and/or irregular, as when dunes are impaired or absent or with the occurrence of 

spaced structures on developed beaches (Salmon et al. 1995). 

 

Research Objectives 

Recent increased use of Galveston Island and Bolivar Peninsula beaches by nesting sea 

turtles accentuates the need for current data detailing impacts of the aforementioned 

environmental variables and anthropogenic beach activities on nesting habitat quality for 

management purposes. To this end, the following research objectives were identified: 

1. To characterize Galveston Island beaches with regard to sea turtle nesting 

potential. 
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2. To characterize Bolivar Peninsula beaches with regard to sea turtle nesting 

potential. 

 

METHODS 

Beach Surveys 

Data detailing specific attributes of all Galveston Island beaches patrolled for nesting sea 

turtles from 2007-2009 (see Chapter II) were collected during three separate surveys in 

February and March 2008. Beaches from San Luis Pass to 8 Mile Road (herein West 

End Zone) were surveyed via ATV on 13 February, beaches from 61st Street to 12th 

Street (herein Seawall Zone) were surveyed on foot 17 February, and beaches from 12th 

Street to the South Jetty on East Beach (herein East End Zone) were surveyed on foot on 

9 March. Bolivar Peninsula beaches patrolled for nesting sea turtles from 2008-2009 (see 

Chapter II) were comprehensively surveyed via ATV 21 July 2008.  

 

Parameters justifying inspection were chosen on the basis of an extensive literature 

review of environmental and anthropogenic variables known to impact sea turtle nest 

site selection and nesting success, and are similar to those quantified by Santos et al. 

(2006). Visual observations were made regarding beach width and slope; dune height, 

width, and vegetation coverage; nourishment activity; obstacles to nesting, nest success, 

and/or hatchling emergence; pedestrian and vehicular traffic; and commercial and 

residential development. This classification method of visual assessment and categorical 
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qualification of pertinent beach parameters is similar to that employed by de Araujo and 

da Costa (2008).  

 

Data Compilation & Mapping 

Galveston Island and Bolivar Peninsula beaches were partitioned into variable-length 

sections based upon the occurrence of homogenous characteristics recorded during the 

aforementioned beach surveys. Relevant locations (section start and end points, vehicle 

access points, obstacles, etc.) were marked with a Garmin GPS 72, converted to decimal 

degrees (WGS 84) format, and mapped with Google Earth 5.0. Sections were then 

categorically qualified as follows: 

 good, if there were no strong deterrents to nesting; 

  fair, if a balance of negative and positive habitat characteristics was identified; and  

  poor, if negative aspects of the habitat were perceived to exert an overriding  

  influence on sea turtle nesting habitat quality.  

 

To avoid bias in habitat quality determinations, all documented historical nesting 

locations through the 2007 (Galveston Island: n=28) or 2008 (Bolivar Peninsula: n=11) 

sea turtle nesting seasons, obtained from GPS data or verbiage recorded on the “Texas 

Data Sheet For Sea Turtle Tracks and Nests” developed by Dr. Donna Shaver (Chief, 

Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus 

Christi, Texas), were converted and plotted only after associated beach sections had been 

formally characterized as either good, fair, or poor. Additionally, data regarding two and  
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three documented non-nesting emergences on Galveston Island and Bolivar Peninsula, 

respectively, were obtained from the same source and plotted on habitat quality maps for 

comparison purposes.  

 

RESULTS 

Galveston Island 

Quality of Sea Turtle Nesting Habitat 

West End Zone: Twenty-three distinct sections, ranging in quality from poor to good, 

were identified along the 28.29-km West End Zone (WEZ) of Galveston Island (Fig. 3.1, 

Table 3.1). The WEZ was characterized by relatively natural beach habitat situated 

within a shrinking corridor between the seaward barrier of coastal erosion and a 

landward barrier of extensive residential development. While the location of the majority 

of these residential structures behind natural dune habitat presented no clear impediment 

to nesters, artificial lighting sourced from homes posed a threat to nocturnally emerging 

hatchlings. Vehicular traffic, including golf carts and all-terrain vehicles, was not 

allowed on the majority of this segment. However, numerous on- or off-beach vehicle 

parking areas existed and constituent beaches were heavily utilized by the public, 

particularly adjacent to beach access points (n=42). Nourishment was a commonly 

utilized remedy to erosion in this area, although no nourishment projects were apparent 

or in progress when this zone was surveyed. Overall, moderately wide beaches with 

well-vegetated, low to moderately high dunes were typical of the WEZ.  
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Figure 3.1. Delineation of sea turtle nesting habitat quality within the West End Zone of Galveston Island,  
Texas, per February 2008 survey. Balloon locations delineate section boundaries, while color correlates  

with quality of nesting habitat immediately to the northeast. 
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Section Length (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics
W1 1.31 29.08397 95.11488 29.09103 95.10525 - Vegetated dunes removed ~200 m from high tide line on overly wide beach.

- Increased vehicular traffic intensifies risk of sand compaction and injury to turtles and nests.

W2 4.02 29.09103 95.10525 29.11635 95.07618 + Wide beach with low, well-vegetated dunes.

+ Houses, when present, situated well behind beach.

W3 1.33 29.11635 95.07618 29.12393 95.06560 + Wide beach with low, well-vegetated dunes.

+ Houses immediately behind dunes do not present obstacle to nesting.

- Sand fences (parallel to water) block nester access to habitat behind base of foredunes along majority of beach.

W4 0.52 29.12393 95.06560 29.12653 95.06120 + Moderately wide beach with low, well-vegetated dunes.

+ Houses immediately behind dunes do not present obstacle to nesting.

- Three dune crossovers with unusually wide bases extend onto beach, are impediment to nesters and hatchlings.

W5 0.36 29.12653 95.06120 29.12888 95.05855 - Narrow beach may result in tidal inundation of nests.

- Beach lacks natural dunes and vegetation, contains piles of raked sargassum.

- Houses located directly on beach present major obstacle to nesters.

W6 0.82 29.12888 95.05855 29.13290 95.05152 + Moderately wide beach characterized primarily by low, well-vegetated dunes (dunes absent occasionally).

+/- Houses primarily located directly behind foredunes. Several situated directly on beach.

- Sand fences (parallel to water) block nester access to habitat behind base of foredunes along some sections of beach.

W7 0.14 29.13290 95.05152 29.13368 95.05022 - Dunes and vegetation absent.

- Six houses situated directly on beach near water.

- Sand fences block nester access to dunes behind and between houses.

W8 1.43 29.13368 95.05022 29.14117 95.03833 + Moderately wide beach with low, well-vegetated dunes.

+ Houses located behind foredunes.

+/- Sand accreting in front of fences (parallel to beach) which block nester access to habitat behind base of foredunes.

- One large poorly sited fence (29.13967, -95.04065) presents obstacle to nesters.

W9 0.63 29.14117 95.03833 29.14452 95.03315 +/- Minimal presence of low vegetated dunes between houses.

- Majority of houses located directly on beach.

W10 5.31 29.14452 95.03315 29.17178 94.98825 + Long stretch of moderately wide beach with low, well-vegetated dunes increasing in height to east.

+ Houses, when present, situated well behind beach.

+ Sand fences, when present, located in dunes and overgrown by vegetation, present minimal obstacle to nesters.

W11 0.34 29.17178 94.98825 29.17355 94.98537 - Houses located on beach or immediately behind foredunes.

- Cut wood pilings (~15 cm high) run parallel to beach for ~50 m, present major obstacle to nester and hatchling movement.

- Poorly sited sand fence blocks nester access to dunes along majority of section, no sand accretion in front.

W12 0.87 29.17355 94.98537 29.17800 94.97800 + Moderately wide beach with low, well-vegetated dunes.

+ Houses, when present, set well behind dunes.

W13 0.16 29.17800 94.97800 29.17862 94.97682 - No dunes or vegetation present.

- Four houses situated directly on beach.

- Cut wood pilings (~10 cm high) run parallel to beach for ~10 m, present major obstacle to nester and hatchling movement.

GOOD FAIR POOR

Table 3.1. Sea turtle nesting habitat quality assessment for the West End Zone of Galveston Island, Texas. Associated beaches were surveyed February 2008.

Section Start Section End

HABITAT QUALITY KEY
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Length
Section (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics

W14 0.85 29.17862 94.97682 29.18298 94.96955 + Moderately wide beach contains larger, well-vegetated dunes.

+ Houses, when present, set well behind dunes.

W15 2.42 29.18298 94.96955 29.19525 94.94895 + Moderately wide beach contains larger, well-vegetated dunes.

+/- Minimal sand accretion in front of sand fences (parallel to beach) which block nester access to dune nesting habitat.

+ Lack of vehicular traffic reduces risk of sand compaction and injury to turtles and nests.

W16 0.89 29.19525 94.94895 29.19970 94.94111 - Narrow beach may result in tidal inundation of nests.

+ Well-vegetated dunes of moderate height present.

+ Houses, when present, set well behind dunes.

W17 1.57 29.19970 94.94111 29.20767 94.92785 - Excessively narrow beach lacks dunes and vegetation.

- Geotube exposed at >3 locations due to tidal action; slope of geotube is prohibitive to nesters.

- Multiple houses located directly behind geotube close to waterline. 

- This is one of the poorest sections on the island for sea turtle nesting.

W18 0.92 29.20767 94.92785 29.21233 94.91990 + Moderately wide beach with low, well-vegetated dunes.

+ Primarily undeveloped stretch of beach. Houses, when present, located well behind beach.

W19 1.32 29.21233 94.91990 29.21888 94.90880 - Narrow beach primarily lacking dunes and vegetation.

- Houses located on beach present entrapment hazard; nesters and hatchlings able to access space directly under structures.

- Multiple locations of cut wood pilings (~5-15 cm high) present major obstacle to nester and hatchling movement.

W20 0.72 29.21888 94.90880 29.22270 94.90262 + Moderately wide beach with low, well-vegetated dunes.

+ Houses, when present, located well behind dunes.

- Poor nesting habitat exists in front of geotube located on extremely narrow terminal end of section.

W21 0.96 29.22270 94.90262 29.22768 94.89452 - Geotube slope prohibitive to nesters regardless of moderate sand accretion and vegetation present.

- Two dune crossovers (29.22532, -94.89815) with expansive bases present obstacle to nester and hatchling movement.

W22 0.72 29.22768 94.89452 29.23135 94.88850 + Moderately wide beach contains larger, well-vegetated dunes.

- Sand fences (diagonal to water, spaced ~2 m apart) present obstacle to movement, limit nester access to dune habitat.

W23 0.68 29.23135 94.88850 29.23462 94.88323 + Moderately wide beach with low, well-vegetated dunes.

+ No development. (One exception - horse rental business located at terminal end of section.)

- Tall branching shrub vegetation severely limits turtle movement in dunes on ~120 m stretch just prior to section terminus.

TOTAL 28.29

GOOD FAIR POOR
HABITAT QUALITY KEY

Table 3.1. Cont.

Section Start Section End
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Seven relatively short sections (W5, W7, W9, W11, W13, W17, W19) comprising 

16.0% of the WEZ were rated as poor habitat; houses were situated directly on beach 

habitat near the waterline on all sections except W17 (Fig. 3.1, Tables 3.1 & 3.2). These 

sections suffered from reduced or an absence of nesting habitat, particularly in front of 

residential structures where a lack of dunes and vegetation may have lead to visual 

disorientation of nesters and increased risk of nest flooding. Additionally, section W17, 

which utilized a geotube to protect homes located immediately behind it from beach 

erosion, was rated as one of the poorest sections in terms of nesting habitat on Galveston 

Island (Table 3.1). Multiple locations within section W17 were subject to erosive wave 

action that exposed bare surfaces of the geotube and rendered it submerged during high 

tide, thus eliminating beach nesting habitat.  

 

Five sections (W1, W4, W16, W21, W22) representing 15.5% of the WEZ were rated as 

fair nesting habitat (Fig. 3.1, Tables 3.1 & 3.2). Dunes within section W1 were located 

several hundred meters from the waterline and, at such a great distance, may have lead to 

visual disorientation of nesters (Table 3.1). In addition, high vehicular traffic at this 

popular fishing destination compacted substrate and was likely a visual deterrent to 

nesting, as well as a potential source of mortality to nesters and hatchlings. Obstacles to 

nesting or constituting a danger to sea turtles caused three short sections of otherwise 

good habitat (W4, W21, W22) to be classified as fair (Table 3.1). Section W4 contained 

three dune crossovers with excessively wide bases constructed in a way that presented an 

entrapment hazard to nesters and emerging hatchlings; W21 contained two dune 
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habitat quality within Galveston Island's West End Zone.

Section
Quality % of Zone Total Length (km) No. of Nests Nests/km

Good 68.5 19.37 17 0.88

Fair 15.5 4.40 1 0.23

Poor 16.0 4.52 4 0.88

Zone Total 100.0 28.29 22 0.78

Table 3.2. Correlation between sea turtle nesting activity documented through 2007 and beach
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crossovers whose expansive bases blocked nester movement toward dune habitat; and 

W22 contained sand fences with minimal to no sand accretion placed at an angle to the 

waterline, which may have entrapped or disoriented hatchlings and nesting females. 

Finally, section W16’s narrow beach increased the potential for tidal inundation of nests 

and, thus, was considered only fair habitat (Table 3.1). 

 

Eleven sections constituting 68.5% of the WEZ were rated as good nesting habitat, 

including the two longest sections (W2 and W10; Fig. 3.1, Tables 3.1 & 3.2). 

Characteristics of sections classified as good typically included moderately wide beaches 

with low, well-vegetated dunes with structures, if present, located well behind the dunes. 

However, three of these sections (W3, W6, W8) contained sand fences parallel to the 

water’s edge that effectively prevented females from accessing nesting habitat behind 

the base of the foredunes (Table 3.1). In addition, section W15 (Galveston Island State 

Park) contained sand fences placed diagonally at the base of the foredunes that not only 

limited nester access to dune habitat but also may have served to disorient or entrap 

nesters and hatchlings. However, these factors alone did not reduce quality ratings, as 

certain sections exhibited mitigating factors and historical data for the UTC through 

2007 indicated the majority of nesters (80%) did not nest behind the base of the 

foredunes.  

 

Seawall Zone: The presence of a prominent seawall that effectively eliminated nesting 

habitat at or behind the base of the foredunes combined with the lack of natural dunes 
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and associated vegetation, routine beach raking, recent nourishment activity (sections 

S1, S3, S10, S17), and artificial lighting from commercial development, prevented any 

section (n=20) within the 5.97-km Seawall Zone (SWZ) from being classified as good 

nesting habitat (Fig. 3.2, Table 3.3). While dunes were absent, occasional mounds of 

raked Sargassum spp. pushed to the foot of the seawall formed minimally vegetated 

surrogates for natural dunes; all references to dunes along the seawall imply the presence 

of these raked Sargassum spp. piles. The SWZ was a popular tourist destination 

characterized by high pedestrian traffic and operation of multiple beach furniture rental 

companies; however, vehicular traffic, other than that associated with early morning 

delivery of beach furniture, was prohibited. 

  

No beach nourishment activity was apparent on any of the 13 SWZ sections classified as 

poor, which comprised 49.6% of this zone (Fig. 3.2, Tables 3.3 & 3.4). Nesting habitat 

had been completely eliminated on four fully armored sections (S2, S4, S6, S19), and 

was negatively impacted on four partially armored sections (S7, S9, S13, S20; Table 

3.3). Partially armored sections consisted of narrow (S7, S9) or moderately wide (S13, 

S20) beaches heavily interspersed with large granite boulders serving as riprap originally 

deployed to prevent erosion at the seawall base. This riprap may have visually deterred 

nesters and/or presented an obstacle to nester and hatchling movement. Four of the five 

remaining sections classified as poor (S5, S8, S11, S16) consisted of narrow beaches 

with increased risk of tidal inundation of nests; three of these (S5, S8, S16) were also 

extremely short in length. Dune-like mounds of scraped Sargassum spp. with 
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Figure 3.2. Delineation of sea turtle nesting habitat quality within the Seawall Zone of Galveston Island, Texas,  

per February 2008 survey. Balloon locations delineate section boundaries, while color correlates with quality of  

nesting habitat immediately to the northeast. 
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Section Length (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics
S1 0.29 29.26635 94.82613 29.26773 94.82365 Nourishment: Yes.

+ Moderately wide beach.

- No dunes or vegetation.

- 61st St. fishing pier presents potential danger to turtles from increased pedestrian traffic, hook-and-line capture.

S2 0.29 29.26773 94.82365 29.26932 94.82125 - Armored beach: no nesting habitat available.

S3 0.60 29.26932 94.82125 29.27208 94.81603 Nourishment: Yes.

+ Moderately wide beach.

- No dunes, vegetation limited to sparse grasses colonizing nourishment sand.

S4 0.35 29.27208 94.81603 29.27393 94.81310 - Armored beach: no nesting habitat available.

S5 0.08 29.27393 94.81310 29.27425 94.81242 Nourishment: No.

- Narrow pocket of beach ~100 m long situated between armored sections, high likelihood nests inundated by tides.

+ Moderately vegetated dunes ~3 m wide at base of seawall.

S6 0.22 29.27425 94.81242 29.27557 94.81052 - Armored beach: no nesting habitat available.

S7 0.25 29.27557 94.81052 29.27675 94.80835 Nourishment: No.

- Extremely narrow beach, nests likely inundated with water.

- Sand interspersed with granite boulders presents major obstacle to nester and hatchling movement.

S8 0.13 29.27675 94.80835 29.27333 94.80722 Nourishment: No.

- Narrow, short stretch of beach, nests likely inundated with water.

- No dunes, few pockets of vegetation on scraped sargassum mounds.

S9 0.16 29.27733 94.80722 29.27820 94.80578 Nourishment: No.

- Narrow, short stretch of beach, nests likely inundated with water.

- Sand interspersed with granite boulders presents major obstacle to nester and hatchling movement.

S10 0.86 29.27820 94.80578 29.28273 94.79845 Nourishment: Yes.

+ Moderately wide, minimally sloped beach has increased potential for tidal inundation of nests.

- No dunes, vegetation limited to sparse grasses colonizing nourishment sand.

- Narrow beach at vehicle entry ramp (29.28118, -94.80100) presents obstacle to nester movement.

S11 0.43 29.28273 94.79845 29.28488 94.79473 Nourishment: No.

- Narrow beach, nests likely inundated with water.

+ Moderately well-vegetated dunes at base of seawall.

- Slope of scraped sargassum mounds prohibitive to nesters, irregularity of piles may disorient and trap hatchlings.

S12 0.35 29.28488 94.79473 29.28693 94.79205 Nourishment: No.

+ Moderately wide beach with vegetated dunes ranging extensively in width, most with prohibitive slopes.

S13 0.17 29.28693 94.79205 29.28780 94.79068 Nourishment: No.

+ Beach width moderate.

- Sand interspersed with granite boulders presents major obstacle to nester and hatchling movement.

GOOD FAIR POOR

Section Start Section End

Table 3.3. Sea turtle nesting habitat quality assessment for the Seawall Zone of Galveston Island, Texas. Associated beaches were surveyed February 2008.

HABITAT QUALITY KEY
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Length
Section (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics

S14 0.07 29.28780 94.79068 29.28823 94.79005 Nourishment: No.

- Short section below Flagship Hotel pier likely visual deterrent to nesters.

S15 0.23 29.28823 94.79005 29.28960 94.78833 Nourishment: No.

+/- Moderately narrow, short stretch of beach with narrow, well-vegetated dunes.

S16 0.25 29.28960 94.78833 29.29103 94.78652 Nourishment: No.

- Narrow, short stretch of beach, nests likely inundated with water.

- Minimal dunes and vegetation.

- Four piers overlying this section likely visual deterent to nesters.

S17 0.62 29.29103 94.78652 29.29460 94.78170 Nourishment: Yes.

+ Moderately wide beach.

- No dunes, vegetation limited to sparse grasses colonizing nourishment sand.

S18 0.06 29.29460 94.78170 29.29510 94.78130 Nourishment: No.

+/- Short section of moderately narrow beach.

+ Moderately well-vegetated dunes, slope not prohibitive to nesters.

S19 0.50 29.29510 94.78130 29.29830 94.77760 - Armored beach: no nesting habitat available.

S20 0.06 29.29830 94.77760 29.29868 94.77712 +/- Short section of moderately wide beach.

- Narrow dunes with minimal vegetation. 

- Sand interspersed with granite boulders presents major obstacle to nester and hatchling movement.

TOTAL 5.97

GOOD FAIR POOR
HABITAT QUALITY KEY

Table 3.3. Cont.

Section Start Section End
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habitat quality within Galveston Island's Seawall Zone.

Section
Quality % of Zone Total Length (km) No. of Nests Nests/km

Good 0.0 0.00 0 0.00

Fair 50.4 3.01 4 1.33

Poor 49.6 2.96 2 0.68

Zone Total 100.0 5.97 6 1.01

Table 3.4. Correlation between sea turtle nesting activity documented through 2007 and beach
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prohibitively steep slopes were present near the base of the Seawall on S11; the 

irregularity of these mounds represented an entrapment hazard to hatchlings emerging 

from any nest laid in the vicinity. Finally, the five commercial piers constructed over 

portions of two sections (S14, S16) likely presented a visual deterrent to nesters, while 

artificial lights located on these piers may have increased visual deterrence and posed a 

hazard to nocturnally emerging hatchlings (Table 3.3). 

  

The remaining seven sections, which constituted 50.4% of the SWZ, contained fair 

nesting habitat (Fig. 3.2, Tables 3.3 & 3.4). Four moderately wide sections (S1, S3, S10, 

S17) that were recently nourished exhibited an ensuing berm whose steep slope may 

have prevented females from accessing most of the beach above the high tide line (Table 

3.3). The three sections lacking nourishment (S12, S15, S18) possessed moderately 

vegetated dunes, although the slope of these dunes was prohibitive to nesters on S12, 

and beaches of S15 and S18 were moderately narrow. 

 

East End Zone: The East End Zone (EEZ) was composed of 6.14 km of beaches 

partitioned into eight sections that collectively ranged in habitat quality from poor to 

good (Fig. 3.3, Table 3.5). This highly variable zone was characterized only by its lack 

of recent nourishment activity and beach armor. (Note: Section E1, although bordered by 

the seawall, was included in this zone as beach armoring had little to no effect on nesting 

habitat east of 12th Street due to the seawall’s sharp redirection inland.) 
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Figure 3.3. Delineation of sea turtle nesting habitat quality within the East End Zone of Galveston Island, Texas,  

per March 2008 survey. Balloon locations delineate section boundaries, while color correlates with quality of  

nesting habitat immediately to the northeast. 
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Section Length (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics
E1 0.23 29.29868 94.77712 29.29985 94.77547 + Moderately wide beach contains wide, well-vegetated dunes.

- Slope and height of dunes likely prohibitive to nesters.

E2 0.25 29.29985 94.77547 29.30147 94.77367 - Excessively wide beach cleared for vehicle parking.

- Large, well-vegetated dunes situated behind parking lot difficult and hazardous for nesters to access.

- Wood pilings (~30 cm high) extend eastward parallel to water to delineate parking area, present obstacle to movement. 

- Vehicular traffic in parking area presents danger to nesters and hatchlings.

+/- 16 large concrete pilings (29.30082, -94.77433) situated far from waterline present minor obstacle to nester movement. 

E3 0.06 29.30147 94.77367 29.30197 94.77333 - Excessively wide beach.

+ Low, well-vegetated dunes begin at and extend behind tall wood pilings.

- Single commercial structure located at rear of wide beach bordered by flat, minimally vegetated foredunes.

- Wood pilings (~30 cm high) extend eastward parallel to water to delineate parking area, present obstacle to movement. 

- Tall wood pilings (~0.9-1.2 m high) located behind smaller pilings present second obstacle to nester and hatchling movement.

- Vehicular traffic between pilings presents danger to nesters and hatchlings.

E4 0.08 29.30197 94.77333 29.30245 94.77270 - Beach excessively wide as area behind larger wood pilings cleared for vehicle parking.

- Large, well-vegetated dunes located behind parking lot difficult and hazardous for nesters to access.

- Wood pilings (~30 cm high) extend eastward parallel to water to delineate parking area, present obstacle to movement. 

- Tall wood pilings (~0.9-1.2 m high) located behind smaller pilings present second obstacle to nester and hatchling movement.

- Vehicular traffic between pilings presents danger to nesters and hatchlings.

E5 0.11 29.30245 94.77270 29.30298 94.77183 - Short stretch of wide beach.

+ Moderate height, well-vegetated dunes present along majority of section.

+ Single commercial structure located behind dunes.

E6 0.79 29.30298 94.77183 29.30743 94.76510 - Excessively wide beach heavily utilized by public (Stewart Beach) likely visually disorienting to nesters.

- Tall dunes located several hundred meters from waterline likely not seen or utilized by nesters.

+/- Single commercial building located well behind waterline lacks dunes and vegetation in vicinity.

- High pedestrian traffic increases sand compaction and is visual deterrent to nesters.

- Low wood pilings (parallel to water) located far from waterline present minimal obstacle to turtle movement.

E7 3.23 29.30743 94.76510 29.32452 94.73838 + Long stretch of moderately wide beach contains wide, well-vegetated dunes varying extensively in height.

+ Minimal commercial and residential development all located well behind dunes.

- Excessively wide dune crossover base presents entrapment hazard to nesters and hatchlings (29.31452, -94.75408).

- Excessively wide base of dune crossover (29.31787, -94.74902) presents obstacle to nester and hatchling movement. 

E8 1.39 29.32452 94.73838 29.33178 94.72678 - Excessively wide beach cleared for vehicle driving and parking poses hazard to nests, nesters, and hatchlings.

- Dunes located several hundred meters from waterline likely not seen or utilized by nesters.

- Recreational hook-and-line fishing potentially dangerous to nesters.

- Variety of configurations of wood pilings delineating vehicle zones present obstacle to nester and hatchling movement.

TOTAL 6.14 km

GOOD FAIR POOR

Section Start Section End

HABITAT QUALITY KEY

Table 3.5. Sea turtle nesting habitat quality assessment for the East End Zone of Galveston Island, Texas. Associated beaches were surveyed March 2008.
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All five sections (E2, E3, E4, E6, E8) characterized as poor habitat, collectively 

comprising 41.9% of the EEZ zone (Fig. 3.3, Tables 3.5 & 3.6), had been artificially 

widened for public use and recreation and contained various configurations of wooden 

pilings that may have hindered turtle movement. While well-vegetated dunes were 

present on all sections, these dunes were located behind vehicle parking areas and up to 

several hundred meters from the tideline (Table 3.5). Nesters crawling onto these 

sections would likely have become visually disoriented and failed to see and/or utilize 

dune nesting habitat. In addition, all sections contained rows of wooden pilings placed 

parallel to the waterline to delineate vehicle access areas. Vehicular traffic is a 

significant hazard to nesters, nests, and hatchlings, particularly on East Beach (E8) 

where parking space exists for approximately 7000 vehicles. The two longest sections, 

Stewart Beach (E6) and East Beach (E8), were popular tourist destinations where 

significant pedestrian traffic may have deterred nesting.  

 

One section (E5) representing 1.8% of the EEZ qualified as fair nesting habitat (Fig. 3.3, 

Tables 3.5 & 3.6). While this section contained moderately high, well-vegetated dunes, it 

was a short, excessively wide stretch located between relatively long sections of poor 

habitat (Table 3.5).  

 

The majority (56.3%) of the EEZ was comprised of two sections (E1, E7) of good 

habitat containing moderately wide beaches with well-vegetated dunes (Fig. 3.3, Tables 

3.5 & 3.6). Section E7 spanned 3.23 km and, with the exception of two dune crossover 
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habitat quality within Galveston Island's East End Zone.

Section
Quality % of Zone Total Length (km) No. of Nests Nests/km

Good 56.3 3.46 0 0.00

Fair 1.8 0.11 0 0.00

Poor 41.9 2.57 0 0.00

Zone Total 100.0 6.14 0 0.00

Table 3.6. Correlation between sea turtle nesting activity documented through 2007 and beach
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bases that may have presented an obstacle and/or entrapment hazard to nesters and 

hatchlings, contained no obvious impediments to nesting sea turtles. However, artificial 

lights from the limited residential development on this section, particularly those 

associated with three large condominiums, may have posed a threat to nocturnally 

emerging hatchlings (Table 3.5). 

 

Historical Nesting Patterns   

West End Zone: From 2002-2007, 22 nests and 2 false crawls were documented within 

the WEZ (Figs. 3.4 & 3.5, Table 3.7), an average of 0.78 nests per kilometer of available 

habitat (Table 3.2). Four of these nests were documented on beaches of poor quality, 

resulting in an average of 0.88 nests/km (Table 3.2). Two nests were laid in poor habitat 

within section W17, a narrow beach lacking dunes and vegetation that was armored by a 

geotube exposed by wave action at multiple locations (Table 3.7). On 23 May 2006, a 

ridley nested at the base of this geotube. On 16 May 2003, a nest was deposited 0.16 km 

east of the previous nest site, although the state of this beach at that time is unclear as 

data indicate only that the turtle nested at the top of a dune, which may or may not refer 

to an unexposed geotube. Section W19 contained the two remaining nests located in 

poor habitat; this narrow beach lacked dunes and vegetation and exhibited multiple 

residential structures situated directly on the beach. On 6 May 2006, a nester crawled 

past one of those homes and onto a nearby street; beachgoers relocated her to the beach, 

where she ultimately completed nesting. On 14 June 2006, one female deposited her nest 

directly in front of a house on the western edge of this section. 
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Figure 3.4. Historical nest locations (     ) versus nesting habitat quality within the western half of the West End  

Zone of Galveston Island, Texas. Balloon locations delineate section boundaries, while color correlates with  

quality of nesting habitat immediately to the northeast. 
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Figure 3.5.  Historical nest locations (    ) versus nesting habitat quality within the eastern half of the West End Zone  

of Galveston Island, Texas. Balloon locations delineate section boundaries, while color correlates with quality of  

nesting habitat immediately to the northeast. 
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Time Beach Wild or SCL2 Primary
Date Detected Latitude1 Longitude1 Locality Section Deposition Site Headstart (cm) Tag

6/9/02 1630 29.12300 95.06683 Bay Harbor W3 / Good Base of Foredunes 1992 Headstart
3

N/R
4

N/R
4

6/10/02 0930 29.13472 95.04583 Sea Isle W8 / Good Top of First Foredune Unknown
5

- -

5/16/03 1008 29.20552 94.93158 Pirate's Beach East W17 / Poor Top of First Foredune Unknown
5

- -

4/17/04 1700 29.17597 94.98207 Jamaica Beach W12 / Good Base of Foredunes 1991 Headstart
3

62.5 RRV317

5/16/05 1000 29.15393 95.01765 Sandhill Shores - West Indian Beach W10 / Good Downslope of First Foredune 1992 Headstart
3

65.8 SSD127

5/29/05 0800 29.18860 94.96038 Galveston Island State Park W15 / Good Base of Foredunes Wild 62.5 RRV251

5/29/05 1000 29.13392 95.05003 Sea Isle W8 / Good Upslope of First Foredune Unknown
5

- -

6/4/05 0630 29.19363 94.95168 Galveston Island State Park W15 / Good Base of Foredunes Unknown
5

- -

6/20/05 0830 29.08635 95.11085 San Luis Pass W1 / Fair Backbeach 1992 Headstart
3

65.5 SSD127

5/6/06 1500 29.21595 94.91393 Bermuda Beach W19 / Poor Base of Foredunes 1991 Headstart
3

62.1 RRV255

5/6/06 1500 29.20873 94.92597 Galveston Island Pocket Park #3 W18 / Good Base of Foredunes 1989 Headstart
3

61.5 RRV315

5/20/06 0800 29.23485 94.88268 8 Mile Road W23 / Good Base of Foredunes Unknown
5

- -

5/23/06 0700 29.20452 94.93290 Pirates Beach W17 / Poor Embryonic Dunes Unknown
5

- -

5/26/06 1200 29.21238 94.92007 Bermuda Beach W18 / Good Base of Foredunes 1989 Headstart
3

61.5 RRV315

5/27/06 0900 29.11948 95.07153 Miramar Beach W3 / Good Embryonic Dunes Unknown
5

- -

6/14/06 0500 29.21262 94.91943 Bermuda Beach W19 / Poor Embryonic Dunes Unknown
5

- -

5/1/07 0845 29.16768 94.99545 Near Beach Access #18 W10 / Good Base of Foredunes Unknown
5

- -

5/3/07 1045 29.14700 95.02910 Sandhill Shores W10 / Good Base of Foredunes Unknown
5

- -

5/17/07 1000 29.13660 95.04558 Sea Isle W8 / Good Embryonic Dunes 1991 Headstart
3

64.0 RRV235

5/17/07
 6

1230 29.08403 95.11390 San Luis Pass W1 / Fair Backbeach
7

1989 Headstart
3

62.4 RRV237

5/18/07 0955 29.23443 94.88368 8 Mile Road W23 / Good Base of Foredunes 1995 Headstart
3

59.7 SSH496

5/26/07
 6

1000 29.22250 94.90325 Hershey Beach W20 / Good Base of Foredunes
7

1992 Headstart
3

61.0 RRV371

6/8/07 0945 29.16132 95.00595 Kahala Beach W10 / Good Top of First Foredune Unknown
5

- -

6/20/07 1010 29.16627 94.99767 Indian Beach W10 / Good Embryonic Dunes Unknown
5

- -

4 Responder observed turtle but did not collect data.

6 Non-nesting emergence.

Nest Location 

5 Nesting female not observed by biologists; species identified based upon nest contents (D. Shaver, pers. comm.).

3 Year class captive reared at the NOAA Sea Turtle Facility on Galveston Island, Texas.

Table 3.7. Historic Kemp's ridley sea turtle nesting activity in the West End Zone of Galveston Island, Texas, through 2007.  -: no data.

1 Reference coordinate system WGS 84.

Nester

7 Apex of false crawl.

2 Straight carapace length (notch-tip).
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One nest and one false crawl were located in fair habitat (0.23 nests/km; Table 3.2) 

within WEZ section W1 near San Luis Pass, where dunes were located several hundred 

meters from the waterline (Fig. 3.4). On 20 June 2005, a turtle nested approximately 45 

m from the waterline on the backbeach; this turtle was previously seen nesting 16 May 

2005 on the downslope of the first foredune in section W10 (Table 3.7). On 17 May 

2007, a different female was observed nesting on the backbeach approximately 5 m from 

the waterline, an area that was inundated during high tide. Although beachgoers 

observed the nesting process, this event was classified as a false crawl as responders 

were unable to locate the nest.  

 

The remaining 17 nests and 1 false crawl in the WEZ were located in good habitat (0.88 

nests/km; Table 3.2).  

 

Seawall Zone: Six nests were located within the SWZ, an overall average of 1.01 

nests/km of available habitat (Table 3.4), since nesting was first documented on 

constituent beaches in 2004 (Fig. 3.6, Table 3.8). Of the two nests in poor habitat (0.68 

nests/km; Table 3.4), one was located in embryonic dunes on section S11, a narrow 

beach where moderately vegetated dunes existed at the base of the Seawall (Table 3.8). 

The nest laid 28 April 2006 was deposited among large granite boulders near the base of 

the Seawall on the armored beach of section S19; no nesting habitat was visible when 

this beach was surveyed in 2008. The remaining four nests were located in fair habitat 
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Figure 3.6.  Historical nest locations  (     ) versus nesting habitat quality within the Seawall Zone of Galveston  

Island, Texas. Balloon locations delineate section boundaries, while color correlates with quality of nesting  

habitat immediately to the northeast. 
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Time Beach Wild or SCL2 Primary
Date Detected Latitude1 Longitude1 Locality Section Deposition Site Headstart (cm) Tag

4/5/04 1100 29.27405 94.81637 30th St. & Seawall Blvd. S11 / Poor Embryonic Dunes 1989 Headstart
3

58.5 RRV313

5/30/05 0700 29.28277 94.79860 33rd St. & Seawall Blvd. S12 / Fair Upslope of First Foredune 1992 Headstart
3

63.0 RRV253

6/4/05 1000 29.28583 94.79345 28th St. & Seawall Blvd. S10 / Fair Upslope of First Foredune 1992 Headstart
3

60.0 RRV371

4/28/06 1330 29.29533 94.78107 16th St. & Seawall Blvd. S19 / Poor Embryonic Dunes Wild 67.2 RRV232

5/28/06 0600 29.27132 94.81762 51st St. & Seawall Blvd. S3 / Fair Backbeach Unknown
4

- -

8/6/07
5

0900 29.27090 94.81837 52nd St. & Seawall Blvd. S3 / Fair Embryonic Dunes Unknown
4

- -

Table 3.8. Historic Kemp's ridley sea turtle nesting activity in the Seawall Zone of Galveston Island, Texas, through 2007. -: no data.

4 Nesting female not observed by biologists; species identified based upon nest contents (D. Shaver, pers. comm.).
5 Nest documented at hatching.

Nest Location Nester

2 Straight carapace length (notch-tip).
3 Year class captive reared at the NOAA Sea Turtle Facility on Galveston Island, Texas.

1 Reference coordinate system WGS 84.
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(1.33 nests/km; Table 3.4) and, with the exception of one laid on the backbeach of 

section S3 on 28 May 2006, were at or near the base of the Seawall (Table 3.8).  

 

East End Zone: Through 2007, no historical nesting activity had been documented on 

6.14 km of beaches of the EEZ (Table 3.6). 

 

Bolivar Peninsula 

Quality of Sea Turtle Nesting Habitat 

Forty-one distinct sections of beach habitat, ranging in quality from poor to good, were 

identified along the 38.96-km surveyed zone of Bolivar Peninsula (Figs. 3.7-3.9, Table 

3.9). Rollover Pass (section B31), an artificial waterway constructed to connect 

Galveston Bay with the Gulf of Mexico, was the only section void of nesting habitat. 

Beaches comprising Bolivar Peninsula were characterized by visible evidence of various 

anthropogenic activities, particularly those associated with vehicular traffic, beach 

grooming, beachfront residential development, and increased seasonal usage by tourists 

and residents, all of which may have visually deterred nesters. Vehicular traffic, a 

potential source of mortality for nesters and hatchlings, was facilitated by an open beach 

policy and a multitude of public beach access points distributed throughout the surveyed 

area (the majority of public roads provided vehicle beach access). Traffic was 

particularly heavy near access points associated with the extreme eastern and western 

sections (B1, B2, B42) and Rollover Pass (B31). Beachfront residential developments of 

varying magnitude occupied all sections with the exception of those on the eastern and 
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Figure 3.7. Delineation of sea turtle nesting habitat quality on the western segment (sections B1-12) of Bolivar  

Peninsula, Texas, per July 2008 survey. Balloon locations delineate section boundaries, while color correlates  

with quality of nesting habitat immediately to the northeast. 
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Figure 3.8. Delineation of sea turtle nesting habitat quality on the central segment (sections B13-29) of Bolivar  

Peninsula, Texas, per July 2008 survey. Balloon locations delineate section boundaries, while color correlates  

with quality of nesting habitat immediately to the northeast. 
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Figure 3.9. Delineation of sea turtle nesting habitat quality on the eastern segment (sections B30-42) of Bolivar  

Peninsula, Texas, per July 2008 survey. Balloon locations delineate section boundaries, while color correlates  

with quality of nesting habitat immediately to the northeast. 
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Section Length (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics
B1 1.10 29.37200 94.72763 29.38110 94.72308 + Low, well-vegetated dunes extend behind beach into bird sanctuary.

+ No housing development.

- Heavy vehicular traffic between Bolivar Flats Bird Sanctuary and Rettilon Road.

B2 0.30 29.38110 94.72308 29.38368 94.72185 +/- Well-vegetated dunes removed 150-200 m from high tide line on overly wide beach.

+ No housing development.

- Extremely heavy vehicular traffic as is first public beach access point east of ferry landing.

B3 1.34 29.38368 94.72185 29.39413 94.71520 + Well-vegetated dunes of moderate height.

+ No housing development.

+/- Large washout (29.38983, -94.71830) may deter nesters who encounter water pooled on beach.

B4 1.20 29.39413 94.71520 29.40282 94.70808 + Foredune fronts well-vegetated dune complex of moderate height. 

+ Sparse housing development set well behind dunes begins here and extends east.

- Well-constructed dune crossovers present minor obstacle to nesters and hatchlings.

B5 0.78 29.40282 94.70808 29.40813 94.70282 + Foredune fronts well-vegetated dune complex of moderate height. 

+ Housing development set adequate distance behind dunes.

- Low number of well-constructed dune crossovers present minor obstacle to nesters and hatchlings.

B6 1.70 29.40813 94.70282 29.41853 94.69015 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+ Sparse housing development set well behind dunes.

- Low number of well-constructed dune crossovers present minor obstacle to nesters and hatchlings.

+/- Washout (29.41083, -94.69978) may deter nesters who encounter water pooled on beach.

B7 1.10 29.41853 94.69015 29.42467 94.68130 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+ Housing development set well behind dunes.

B8 0.40 29.42467 94.68130 29.42682 94.67802 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+ No housing development.

B9 0.67 29.42682 94.67802 29.43033 94.67233 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+ Housing development set well behind dunes.

- Low number of well-constructed dune crossovers present minor obstacle to nesters and hatchlings.

B10 0.95 29.43033 94.67233 29.43497 94.66423 + Vegetated dunes of moderate height occasionally lack vegetation on dune face from beach grooming activities.

+ No housing development.

+/- Washout (29.43402, -94.66595) may deter nesters who encounter water pooled on beach.

B11 0.95 29.43497 94.66423 29.43952 94.65597 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+ Housing development set well behind dunes.

B12 0.94 29.43952 94.65597 29.44387 94.64765 +/- Low vegetated dunes lack vegetation on dune face from beach grooming activities.

+/- Housing development located immediately behind dunes.

- Poorly constructed dune crossover near section beginning presents obstacle to nester and hatchlings.

B13 1.15 29.44387 94.64765 29.44907 94.63742 + Vegetated dunes of moderate height.

+ No housing development.

+/- Washout (29.44740, -94.64087) may deter nesters who encounter water pooled on beach.

B14 0.52 29.44907 94.63742 29.45138 94.63273 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+ Housing development set well behind dunes.

B15 1.04 29.45138 94.63273 29.45587 94.62330 +/- Vegetated dunes of moderate height lack vegetation on dune face from beach grooming activities.

+/- Numerous houses located immediately behind dunes.

B16 1.33 29.45587 94.62330 29.46150 94.61115 +/- Vegetated dunes of moderate height typically lack vegetation on dune face from beach grooming activities.

+ Housing development set well behind dunes.

B17 0.12 29.46150 94.61115 29.46202 94.61002 +/- Vegetated dunes of moderate height typically lack vegetation on dune face from beach grooming activities.

+/- Row of six houses located immediately behind dunes.

GOOD FAIR POOR

Table 3.9. Sea turtle nesting habitat quality assessment for Bolivar Peninsula, Texas. Associated beaches were surveyed July 2008.

HABITAT QUALITY KEY

Section Start Section End
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Section Length (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics
B18 0.21 29.46202 94.61002 29.46293 94.60805 +/- Vegetated dunes of moderate height typically lack vegetation on dune face from beach grooming activities.

+ Housing development set well behind dunes.

B19 0.32 29.46293 94.60805 29.46420 94.60518 +/- Vegetated, low to moderate height dunes typically lack vegetation on dune face from beach grooming activities.

+/- Numerous houses located immediately behind dunes.

B20 0.07 29.46420 94.60518 29.46442 94.60460 - Sand fence running parallel to water blocks nester access to low, minimally vegetated dunes accreted behind it.

+/- Numerous houses located immediately behind dunes.

B21 0.58 29.46442 94.60460 29.46680 94.59923 +/- Vegetated, low to moderate height dunes lack vegetation on dune face from beach grooming activities.

+ Numerous houses primarily located well behind dunes.

- Multiple well-constructed dune crossovers present minor obstacle to nesters and hatchlings.

B22 0.88 29.46680 94.59923 29.47035 94.59115 +/- Dunes of low to moderate height intermittently lack vegetation on dune face from beach grooming activities.

+/- Numerous houses located immediately behind dunes.

B23 2.26 29.47035 94.59115 29.47920 94.57012 + Well-vegetated dunes of low to moderate height display minimal signs of beach raking activities.

+ Housing development set well behind dunes.

B24 0.32 29.47920 94.57012 29.48043 94.56707 + Well-vegetated dunes of low to moderate height have accreted around primarily buried sand fence.

B25 1.85 29.48043 94.56707 29.48740 94.54980 +/- Dunes of low to moderate height intermittently lack vegetation on dune face from beach grooming activities.

+ Two houses located well behind dunes.

B26 0.16 29.48740 94.54980 29.48798 94.54838 + Well-vegetated dunes of moderate height.

+/- Housing development under construction located immediately behind dunes.

- Two large dune crossovers present obstacle to nesters and hatchlings.

B27 0.78 29.48798 94.54838 29.49093 94.54102 + Well-vegetated dunes of moderate height.

+ Sparse housing development set well behind dunes.

B28 3.26 29.49093 94.54102 29.50310 94.51042 - Beach lacks vegetated dunes; exposed geotube eliminates dune nesting habitat.

- Beach width narrow.

+/- Western portion contains sparse housing development, eastern portion contains houses behind exposed geotube.

- Mulitple geotube crossovers with large bases present major obstacle to nesters and hatchlings.

- Large (5 m x 12 m) geotube crossover (29.49978, -94.51892) near tideline presents major obstacle to movement.

B29 0.18 29.50310 94.51042 29.50387 94.50878 - Beach lacks vegetated dunes; exposed geotube eliminates dune nesting habitat.

+ Beach width adequate due to nourishment activities in May/June 2008.

+/- Housing development located immediately behind exposed geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

B30 0.90 29.50387 94.50878 29.50690 94.50033 - Beach lacks vegetated dunes; geotube primarily covered with vegetated sand eliminates dune nesting habitat.

+ Beach width adequate due to nourishment activities in May/June 2008.

+/- Sparse housing development set well behind dunes; two homes situated immediately behind geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

B31 0.12 29.50690 94.50033 29.50727 94.49862 Rollover Pass - no nesting habitat.

B32 0.24 29.50727 94.49862 29.50808 94.49673 - Beach lacks vegetated dunes; exposed geotube eliminates dune nesting habitat.

- Beach width narrow; beach fully inundated at high tide.

+ Housing development set adequately behind geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

- Heavy vehicular traffic; this is first public access point to beaches east of Rollover Pass.

GOOD FAIR POOR  

Section Start Section End

HABITAT QUALITY KEY

Table 3.9. Cont.
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Section Length (km) Latitude Longitude Latitude Longitude Salient Habitat Characteristics
B33 1.71 29.50808 94.49673 29.51438 94.48067 - Beach lacks vegetated dunes; partially to fully exposed geotube eliminates dune nesting habitat.

+/- Beach width moderately narrow.

+/- Housing development located immediately behind geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

- Unoccupied house on beach in front of geotube (29.51033, -94.49110) presents major obstacle to movement.

B34 0.46 29.51438 94.48067 29.51613 94.47633 - Beach lacks vegetated dunes; geotube covered with vegetated sand eliminates dune nesting habitat.

+ Beach width moderate.

+ Housing development set well behind geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

B35 0.50 29.51613 94.47633 29.51793 94.47152 - Beach lacks vegetated dunes; geotube covered with vegetated sand eliminates dune nesting habitat.

- Beach width moderately narrow.

+/- Numerous houses located immediately behind geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

- Geotube crossover constructed parallel to tideline presents major obstacle to nester and hatchlings.

B36 0.66 29.51793 94.47152 29.52027 94.46525 - Beach lacks vegetated dunes; primarily exposed geotube eliminates dune nesting habitat.

- Beach width narrow; beach fully inundated at high tide.

+/- Houses located immediately behind exposed geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

- Beach substrate composed primarily of shells.

B37 0.27 29.52027 94.46525 29.52115 94.46273 - Beach lacks vegetated dunes; geotube covered with vegetated sand eliminates dune nesting habitat.

- Beach width moderately narrow.

+/- Houses located immediately behind geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

- Beach substrate composed primarily of shells.

B38 0.12 29.52115 94.46273 29.52155 94.46163 - Beach lacks vegetated dunes; exposed geotube eliminates dune nesting habitat.

- Beach width moderately narrow.

+/- Houses located immediately behind exposed geotube.

- Multiple geotube crossovers present obstacle to nesters and hatchlings.

- Beach substrate composed primarily of shells.

B39 0.19 29.52155 94.46163 29.52218 94.45973 - Beach lacks vegetated dunes; geotube covered with vegetated sand eliminates dune nesting habitat.

+ One house located well behind geotube.

- Beach substrate composed primarily of shells.

B40 4.55 29.52218 94.45973 29.53837 94.41663 + Well-vegetated dunes of moderate height contain increased plant biodiversity.

+ Beach width moderate; increased slope minimizes erosion.

+ No housing development.

- Beach substrate composed primarily of shells.

B41 0.34 29.53837 94.41663 29.53965 94.41343 + Well-vegetated dunes of moderate height contain increased plant biodiversity.

+ Beach width moderate; increased slope minimizes erosion.

+ No housing development.

- Beach substrate composed of shell/gravel mixture.

- Old fishing pier (~3 m wide) at section beginning presents obstacle to nesters and hatchlings.

B42 2.44 29.53965 94.41343 29.54832 94.39040 + Well-vegetated dunes of low to moderate height.

+/- Beach width moderately narrow; increased slope minimizes erosion.

+ No housing development.

- Beach substrate primarily shell/gravel mix interspersed with sand grains.

- Heavy vehicular traffic as endpoint at intersection of Highways 87 and 124 serves as beach access point.

TOTAL 38.96

GOOD FAIR POOR

HABITAT QUALITY KEY

Section Start Section End

Table 3.9. Cont.
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western endpoints of the surveyed beach (B1-B3, B40-B42). Artificial lighting sourced 

from these inhabited structures varied in intensity with housing density and proximity to 

the tide line, but was clearly visible from all beaches and likely posed a threat to 

nocturnally emerging hatchlings and nesters, particularly loggerheads. Beaches west of 

Rollover Pass contained an even distribution of approximately 98 refuse disposal 

stations, typically composed of 2 large circular receptacles mounted on 10.2 cm x 10.2 

cm posts immediately adjacent to the dune line; these stations occurred with reduced 

frequency east of Rollover Pass. While these minor obstacles had a small individual 

footprint, their density increased the potential to limit nester access to dune nesting 

habitats.  

 

While moderately wide beaches bordered by partially to fully vegetated dunes of low to 

moderate height were typical of Bolivar Peninsula, nine sections (B2, B28, B32, B33, 

B35, B36, B37, B38, B39) comprising 18.7% (7.25 km) of available nesting habitat were 

qualified as poor (Figs. 3.7-3.9, Tables 3.9 & 3.10). With the exception of sections B2 

and B39, nesting habitat on these eroded beaches was severely compromised by 

geotextile tubes or geotubes (Fig. 3.10, Table 3.9; Feagin et al. 2005) installed to protect 

residential development from frequent tidal inundation. These geotubes, which 

eliminated dune nesting habitat, were partially to fully exposed by wave action and thus 

lacked the sand and vegetative covering characteristic of natural dunes. In addition, 

wooden dune crossovers designed to facilitate public beach access traversed geotubes 

bordering these sections (Fig. 3.10, Table 3.9). While crossover design varied 

109



habitat quality on Bolivar Peninsula.

Section
Quality % of Zone Total Length (km) No. of Nests Nests/km

Good 45.0 17.50 7 0.40

Fair 36.3 14.09 3 0.21

Poor 18.7 7.25 1 0.14

Zone Total 100.0 38.84 1 11 0.28

Table 3.10. Correlation between sea turtle nesting activity documented through 2008 and beach

1 Section B31 lacks nesting habitat and thus is not included in these calculations.
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Figure 3.10. Geotextile tube and associated crossover (in background) on Bolivar Peninsula section B28 (poor quality)  

under high tide conditions 9 June 2008. (Photo by Christi Hughes.) 
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considerably, the beachside footprint of many was sizeable, increasing their potential to 

block nester access to preferred nesting habitat at the base of the geotube (simulated 

dune line) and magnifying the entrapment hazard for hatchlings.  

 

Section B39 contained an adequately wide beach constrained by a sand-covered, 

vegetated geotube of reduced height; however, this section (and all sections to the east) 

contained substrate with a high shell content, a drastic alteration from the small sand 

particles composing beaches in sections B1-B38. Substrate consisting mainly of large 

shell shards may deter nesters, interfere with nest excavation (Garmestani et al. 2000), or 

negatively affect hatching and emergence success of hatchlings through altered 

incubation properties. Section B2 lacked a geotube (as did all western sections) but 

contained Rettilon Road, the first public beach access east of the ferry landing. Heavy 

vehicular traffic and associated sand compaction at this access point, combined with the 

potential for nester visual disorientation created by the relocation of dunes 

approximately 135-180 m from the high tide line, negatively affected the quality of this 

section’s beaches (Table 3.9). 

 

Thirteen sections (B1, B6, B9, B12, B20, B21, B26, B29, B30, B34, B40, B41, B42) 

incorporating 14.09 km, or 36.3% of the surveyed zone, were classified as fair nesting 

habitat (Figs. 3.7-3.9, Tables 3.9 & 3.10). Section B1 contained low, well-vegetated 

dunes bordering the undeveloped Bolivar Flats Shorebird Sanctuary, where heavy 

vehicular traffic from Rettilon Road (B2) may have endangered turtles traversing this 
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wide beach and inhibited nest excavation through substrate compaction (Table 3.9). 

Beach raking and scraping activities on four sections (B6, B9, B12, B21) frequently 

deposited large quantities of sand against the base of dunes, preventing vegetative 

growth and stabilization of the dune face and drastically reducing or eliminating 

hatchling emergence potential from in situ nests covered by material after nest 

deposition. Nester access to dune nesting habitat was eliminated on four sections: the 

sand fence that confined section B20 was situated parallel to the tide line and void of 

accreted sand beachside, and geotubes spanned the moderate-width beaches of sections 

B29, B30, and B34 (Table 3.9). Nester and hatchling movement was impeded by dune or 

geotube crossovers on 7 sections (B6, B9, B12, B21, B26, B29, B34), while 2 substantial 

structures on section B26 increased the potential for turtle entrapment. The substrate of 

three sections contained prodigious quantities of shell (B40) or shell/gravel mixture 

(B41, B42) that may have hindered nest excavation (Garmestani et al. 2000) and/or 

reduced in situ nest hatching success through altered incubation characteristics. 

 

Nineteen sections (B3-B5, B7, B8, B10, B11, B13-B19, B22-B25, B27) containing 

17.50 km of beach characterized as good nesting habitat were confined to the western 

and central portions of the surveyed zone and constituted 45.0% of total available habitat 

(Figs. 3.7-3.9, Tables 3.9 & 3.10). All lacked engineered erosion control structures and, 

instead, contained vegetated dunes of low to moderate height. However, beach grooming 

activities that may have endangered in situ nests through deposition of sand at the dune 

line had prevented vegetation from colonizing and stabilizing dune faces on 12 sections 
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(B7, B8, B10, B11, B14-B19, B22, B25; Table 3.9). Three sections (B3, B10, B13) 

intermittently contained washouts that varied in volume and depth with tidal inundation; 

beaches containing pooled water above the high tide line may deter nesters and increase 

non-nesting emergence rates. While residential developments were constructed well 

behind the current dune line on most of these sections, homes located in close proximity 

to the dunes on four sections (B15, B17, B19, B22) represented a landward barrier 

prohibiting natural dune migration and contributed artificial light pollution on adjacent 

beaches. 

 

Historical Nesting Patterns 

Historical nesting patterns differentiate Bolivar Peninsula from all other UTC sea turtle 

nesting habitats. With the documentation of nesting activity by a loggerhead on 27 July 

1996 (Table 3.11), Bolivar Peninsula was utilized by nesting sea turtles a minimum of 8 

years prior to the recorded use of all other Texas beaches south to and including 

Matagorda Peninsula. Through 2011, it remained the only UTC site where nesting by a 

species other than the Kemp’s ridley is known to have occurred (see Chapter II). 

Between 1996-2008, 9 Kemp’s ridley nests, 2 loggerhead nests, and 3 false crawls were 

documented within the 38.84 km surveyed zone (Figs. 3.11-3.13, Table 3.11), resulting 

in an average of 0.28 nests/km of available habitat (Table 3.10). The majority of this 

activity (6 Kemp’s ridley nests, 1 loggerhead nest, 2 false crawls) was documented in 

2008 following the institution of formal nesting patrols (see Chapter II).  
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Time Beach Wild or SCL2 Primary
Date Detected Latitude1 Longitude1 Locality Section Deposition Site Species Headstart (cm) Tag

7/27/96 0300 29.46667
3

94.59833
3

3.2 km East of Ramada Beach B22 / Good Downslope of First Foredune Loggerhead Wild 87.5 none

5/7/02
4

1120 N/R
5

N/R
5

0.3 km East of Bolivar Flats Bird Sanctuary B1 / Fair N/R
5

Kemp's ridley 1990 Headstart
6

64.7 none

5/11/04 1215 29.45450 94.62652 Crystal Beach B15 / Good N/R Kemp's ridley 1992 Headstart
6

63.0 RRV311

6/3/04 0900 29.38645 94.72138 0.8 km East of Rettilon Road B3 / Good Base of Foredunes Kemp's ridley Unknown
7

- -

5/24/07 0740 29.52487 94.45302 Gilchrist B40 / Fair Embryonic Dunes Kemp's ridley Unknown
7

- -

4/25/08 1013 29.40742 94.70403  West of Trash Receptacle #18 B5 / Good Base of Foredunes Kemp's ridley Unknown
7

- -

5/13/08
4

1000 29.41068 94.70012 East of Trash Receptacle #21 B6 / Fair Backbeach
8

Kemp's ridley
9

Unknown - -

5/14/08 0800 29.39883 94.71208 West of Trash Receptacle #12 B4 / Good Foredune Depression Kemp's ridley Unknown
7

- -

5/30/08 0810 29.39587 94.71395 Adjacent to Trash Receptacle #10 B4 / Good Foredune Depression Kemp's ridley Unknown
7

- -

5/30/08 0826 29.40865 94.70257 ~100 m West of Magnolia Drive B6 / Fair Upslope of First Foredune Kemp's ridley Unknown
7

- -

6/9/08
4

0930 29.44850 94.63907 ~15 m East of Trash Receptacle #56 B13 / Good Base of Foredunes
8

Kemp's ridley
9

Unknown - -

6/24/08 1002 29.51157 94.48805 1.0 km East of Rollover Pass B33 / Poor Base of Foredunes Loggerhead Wild
7

- -

7/16/08
10

2250 29.44185 94.65213 Emerald Beach #1: Surfview Road Beach Access B12 / Fair Foredune Depression Kemp's ridley Unknown
7

- -

7/25/08
10

0944 29.45877 94.61750 West of Trash Receptacle #69 B16 / Good Base of Foredunes Kemp's ridley Unknown
7

- -

4 Non-nesting emergence.
5 Responder did not document coordinates or crawl data.

Table 3.11. Historic Kemp's ridley sea turtle nesting activity on Bolivar Peninsula, Texas, through 2008.  -: no data.

8 Apex of false crawl.

7 Nesting female not observed by biologists; species identified based upon nest contents (D. Shaver, pers. comm.).

9 Nesting female not observed by biologists; species identity based on crawl width.
10 Nest documented at hatching.

3 Geographic coordinates estimated based on nest site description.

Nest Location Nester

2 Straight carapace length (notch-tip).

6 Year class captive reared at the NOAA Sea Turtle Facility on Galveston Island, Texas.

1 Reference coordinate system WGS 84.
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Figure 3.11. Historical nest locations  (    ) versus nesting habitat quality within the western segment (sections B1-12)  

of Bolivar Peninsula, Texas. Balloon locations delineate section boundaries, while color correlates with quality of  

nesting habitat immediately to the northeast. 
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Figure 3.12. Historical nest locations  (    ) versus nesting habitat quality within the central segment (sections B13-29)  

of Bolivar Peninsula, Texas. Balloon locations delineate section boundaries, while color correlates with quality of  

nesting habitat immediately to the northeast. 
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Figure 3.13. Historical nest locations  (    ) versus nesting habitat quality within the eastern segment (sections B30-42)  

of Bolivar Peninsula, Texas. Balloon locations delineate section boundaries, while color correlates with quality of  

nesting habitat immediately to the northeast. 
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A loggerhead nest deposited within section B33 on 24 June 2008 constituted the sole 

nest located in habitat herein qualified as poor (Fig. 3.13, Table 3.11); no Kemp’s ridley 

nests were documented in poor habitat (Tables 3.11 & 3.12). While section B33 was 

characterized by residential development protected from tidal inundation by an exposed 

geotube, the visual attributes of the specific nest site differed significantly from those of 

the general zone (Fig. 3.14, Table 3.11). The nest site, centrally located between poorer 

quality portions of beach, lacked the visual deterrent of residential construction and 

contained a fully covered segment of geotube that more closely resembled a natural 

dune.  

 

Nesting activity by Kemp’s ridleys along habitat qualified as fair (0.21 nests/km) was 

less than that documented on beaches classified as good (0.34 nests/km; Table 3.12). In 

addition, two of three documented non-nesting emergences occurred in fair habitats 

(Table 3.11). On 7 May 2002, a nester encountering a large branch near dunes in section 

B1 returned to the Gulf without laying eggs. On 13 May 2008, a female encountering 

pooled water above the tide line on section B6 also failed to deposit eggs (Fig. 3.15); 

data suggest this female successfully nested on section B4 (good habitat) the following 

day. A nest discovered while hatching on 16 July 2008 in fair habitat on section B12 was 

laid in the foredune depression less than 2 m east of a paved beach access road leading 

into a well-developed residential area (Table 3.11). However, it is not clear if the female 

traversed the dunes or travelled approximately 7 m along the sandy access road before 
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beach habitat quality on Bolivar Peninsula.

Section
Quality % of Zone Total Length (km) No. of Nests Nests/km

Good 45.0 17.50 6 0.34

Fair 36.3 14.09 3 0.21

Poor 18.7 7.25 0 0.00

Zone Total 100.0 38.84 1 9 0.23

Table 3.12. Correlation between Kemp's ridley sea turtle nesting activity documented through 2008 and

1 Section B31 lacks nesting habitat and thus is not included in these calculations.
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Figure 3.14. Nest site selected by loggerhead turtle (Caretta caretta) in section B33 (poor habitat) on Bolivar Peninsula  

24 June 2008. (Photos by Mark Bane.) 
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Figure 3.15. Site of Kemp’s ridley sea turtle (Lepidochelys kempii) non-nesting emergence potentially caused by water pooled 

above high tide line in section B6 (fair habitat) on Bolivar Peninsula 13 May 2008. (Photo by Christi Hughes.) 
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turning east to access an unvegetated dune nest site. Individual nests were located in fair 

habitat of sections B6 (30 May 2008) and B40 (24 May 2007).  

 

The remaining 6 Kemp’s ridley nests, 1 loggerhead nest, and 1 false crawl were located 

in habitat classified as good (0.40 nests/km; Tables 3.10 & 3.11). 

 

DISCUSSION 

Qualification of Galveston Island and Bolivar Peninsula beach habitats presented herein 

represent only a snapshot in time of a dynamic environment susceptible to drastic 

alterations from both natural and anthropogenic sources. As such, recommendations 

presented in reference to specific sections should be considered generalizations 

adaptable to comparable situations, particularly in light of acute transmutations wrought 

by Hurricane Ike on constituent habitats in September 2008 [a comprehensive analysis 

of associated coastal alteration is provided by Doran et al. (2009)]. Additionally, while 

the generation of data specific to nesting beach habitats (particularly recently identified 

beaches on the UTC) is of paramount importance to long-term sea turtle conservation 

practices, managers must realize that the life history strategy and late maturation of these 

marine reptiles mean it may take decades for the effects of management decisions to be 

apparent. 
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Management of Threats to Sea Turtle Nesting Habitat 

Beach Erosion & Nourishment 

Huang’s (1997) findings that current shoreline loss rates accelerated by anthropogenic 

influences on coastal erosion, including subsidence and predicted sea level rise, will 

leave beach habitats confined by a landward barrier of residential development 

vulnerable to associated ecological ramifications and infrastructure increasingly 

susceptible to damage from environmental hazards are applicable to UTC nesting 

habitats, particularly those associated with Galveston Island and Bolivar Peninsula. 

Although data are deficient for Bolivar Peninsula, Galveston Island has historically 

attained relative projected rates of sea level rise; a continuation of this trend will 

accelerate erosion rates that already exceed several meters per year (Feagin et al. 2005). 

Because natural plant and dune migration processes are prevented by hardened 

structures, remedies such as beach nourishment are required to maintain beaches 

functionally useful for both humans and sea turtles.  

 

Minimizing detrimental biological impacts of nourishment on nesting sea turtles and nest 

products will require implementing a scientifically rigorous assessment process on the 

UTC that utilizes standardized methodology to analyze cumulative effects of 

nourishment activities. While previous research indicates sea turtle non-nesting 

emergence frequency is significantly increased on beaches during the first nesting season 

post-nourishment and subsequently decreases as natural processes restore beach slope 

equilibrium (Rumbold et al. 2001, Brock et al. 2008), data regarding false crawls in 
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relation to nourishment are non-existent for Kemp’s ridley nesting beaches, including 

those on the UTC. Biological, physical, and chemical characteristics of a nourished 

beach are largely determined by sand source and application technique; ideally, fill 

material should simulate natural sediments (Crain et al. 1995, Montague 2008). Sea 

turtle nesting success is correlated with nest microhabitat quality; it is critical that 

pertinent sediment parameters be analyzed before, during, and after application of fill 

material, as post-nourishment restoration of natural sediment attributes may be 

impossible (Peterson & Bishop 2005).  

 

Although an informational void exists regarding preferred beach width parameters for 

ridleys nesting on the UTC, nests at Rancho Nuevo are typically laid 10-35 m from the 

tide line (Márquez 1994). As ridleys preferentially nest between the base and top of the 

first dune (Márquez 1994), this may approximate the ideal crawl distance necessary to 

access dune habitat and serve as a rough estimate for beach extension distance on the 

UTC. The provision of adequate beach width (i.e., one that enables spatially diverse nest 

excavation options beyond the mean high tide line) is critical for undetected nests; all 14 

nests successfully incubated in situ and detected while hatching on the Texas coast 

through 2007 (Shaver 2008), as well as 2 in situ nests successfully incubated on Bolivar 

Peninsula in 2008 (C. Hughes pers. obs.), were laid high on the beach in areas typically 

free of seawater washover.  

 

125



 

When possible, nourishment activities should only occur outside of nesting season to 

avoid inherent detrimental impacts associated with increased activity, artificial lighting, 

construction equipment, and inadvertent burial of in situ nests. Projects occurring on the 

UTC between 1 April and approximately 15 August will require monitors to minimize 

possible negative interactions with nesters and hatchlings. Dissipation of steep scarps 

will occur naturally as beach profiles normalize (Crain et al. 1995). Nonetheless, scarps 

functioning as obstacles to nesters accessing more landward beach habitats, such as 

those documented on four recently nourished sections (S1, S3, S10, S17) of Galveston 

Island in 2008, should be removed manually.  

 

Nourishment is an appropriate, albeit temporary, solution to erosion of multiple poor 

sections on Galveston Island (W5, W7, W9, W11, W13, W17, W19, S5, S7-9, S11, S16; 

Figs. 3.1 & 3.2, Tables 3.1 & 3.3) and Bolivar Peninsula (B28, B32, B33, B35-38; Figs. 

3.8 & 3.9, Table 3.9) typified by narrow beaches with enhanced potential for tidal 

inundation of nests. It was effectively employed as a provisional solution in May and 

June 2008 for Bolivar Peninsula section B29 that, while characteristically similar to the 

aforementioned sections, is currently qualified as fair since it provides females with nest 

placement locations at varying distances above the high tide line.  

 

Dune Habitat & Vegetation Coverage 

Beach ecosystems managed to retain their natural morphology provide numerous 

multifaceted, crucial benefits to adjacent coastal communities and multiple user groups, 
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including beachgoers and sea turtles. For UTC economies reliant on tourism dollars, 

beach aesthetics improved by dunes and native plant communities are critical in 

attracting visitors to coastal regions. The presence of vegetation is essential for land 

management purposes associated with the Texas Open Beaches Act § 61.011, as the 

vegetation line delineates boundaries separating public and private coastal property. In 

addition, dunes function as natural buffers against storm systems and, thus, may 

financially benefit communities by protecting home and business owners from negative 

impacts associated with storm-induced wave action.  

 

Vegetated dunes provide a favorable environment conducive to sea turtle nesting and 

overall reproductive success. Visual composition of the nesting beach environment, 

specifically that produced by dunes, vegetation, and beach width and slope, is a critical 

component of sea turtle nest site selection. Females detecting unsuitable terrestrial 

environment conditions during their initial habitat assessment performed immediately 

before emergence onto the beach (Pike 2008) may fail to emerge and instead proceed to 

an alternative nesting location. Vegetation minimizes substrate compaction levels, and 

the elevated, darker silhouette created by vegetation and/or dunes (in contrast to the 

lower, brighter seaward horizon) is a critical component of hatchling seafinding success 

(Salmon et al. 1995, Bertolotti & Salmon 2005, Bourgeois et al. 2009). Robust estimates 

of preferred nest locations along the horizontal beach gradient between the forebeach 

and second foredune do not exist for Kemp’s ridleys nesting on the UTC, and nesting 

locations landward of the base of the foredunes are often inaccessible due to man-made 
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barriers such as the seawall, sand fences, and residential structures. However, only 2 of 

39 total nest sites documented herein were laid seaward of the embryonic dunes, thus 

signifying the potential importance of dune habitat in nest site selection for sea turtles on 

the UTC. 

 

Beach raking and scraping activities, which intensify during the co-occurrence of nesting 

and tourist seasons, have prevented the perpetuation of dune face vegetation on various 

sections of Bolivar Peninsula classified as fair or good (B6-B12, B14-B19, B21-B23, 

B25; Figs. 3.7 & 3.8, Table 3.9). The practice of depositing scraped sand on the dune 

face should be reevaluated in comparison to alternatives that support dune vegetation 

persistence while concurrently benefitting sea turtles, as the former endangers 

undetected in situ nests. Excess sand covering in situ nests may negatively alter 

incubation temperatures, and hatchlings may be incapable of digging through surplus 

substrate before succumbing to exhaustion or suffocation.  

 

Current rates of beach erosion on the UTC will likely be exacerbated in the near future 

by anthropogenic factors, including sea level rise and continued loss of native dune 

vegetation due in part to increasing coastal development (Feagin et al. 2005). 

Accelerated beach erosion will increase habitat managers’ dependence on temporary and 

costly mitigation measures, such as beach nourishment, to maintain beach widths 

enabling dune habitat persistence. Cost-effective, long-term beach habitat management 

strategies must incorporate the maintenance and/or regeneration of natural sand dunes 
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and associated plant communities (Feagin et al. 2005, Ficetola 2007, de Araujo & da 

Costa 2008, Montague 2008, Bourgeois et al. 2009, Mazaris et al. 2009), as dune 

vegetation minimizes erosion, binds sediments, and enhances dune formation (Márquez 

1994, Feagin et al. 2005), thus reducing dependence on expensive erosion control 

measures. Dune restoration also significantly improves sea turtle reproductive success, 

particularly on developed beaches compromised by artificial lighting, by intensifying 

hatchling seafinding cues associated with disparities in landward and seaward horizon 

elevation (Salmon et al. 1995, Bertolotti & Salmon 2005, Tuxbury & Salmon 2005). 

  

Restoration of natural dune systems (and adjacent beach width adequate to maintain 

them) is recommended for a multitude of sections on Galveston Island (W5, W7, W9, 

W11, W13, W17, W19, W21; Fig. 3.1, Table 3.1) and Bolivar Peninsula (B28, B32, 

B33, B35-B39; Figs. 3.8 & 3.9, Table 3.9), particularly narrow beaches bordered by a 

geotube. Habitat restoration should incorporate dune building with replanting multiple 

species of native vegetation, particularly perennial, late successional species capable of 

binding sediments. Maintenance of beach width and cohesive dune ecosystems on 

multiple Galveston Island (W1-4, W6, W8, W10, W12, W14-16, W18, W20-23, E1, E5, 

E7; Figs. 3.1 & 3.3, Tables 3.1 & 3.5) and Bolivar Peninsula (B1, B3-B5, B13, B24, 

B26, B27, B40-B42; Figs. 3.7-3.9, Table 3.9) sections characterized as good or fair 

should also be prioritized, as these comparatively healthy natural systems assist in 

reducing beach erosion and serve as a seed source for associated habitats. 
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Residential & Commercial Development 

Beach environments, particularly those utilized by nesting sea turtles, should be 

protected from unplanned, uncontrolled development (Ficetola 2007, de Araujo & da 

Costa 2008). Implementation of setback regulations prohibiting development within a 

defined distance from shore would aid in maintaining natural beach morphology and 

vegetation and substrate characteristics (Mazaris et al. 2009) critical to sea turtle 

reproductive success. Setback regulations preserving the natural ecology of beaches 

susceptible to weather-related disturbances like hurricanes allow them to function as 

migratory buffers, thus minimizing damage to residential and commercial structures 

(Fish et al. 2008). Opposition to setback regulations could be minimized with 

implementation schemes applicable only to future development. Benefits accrued from 

restricting development of beach habitat include increased tourism revenue for local 

communities (sea turtle-related tourism is successfully exploited globally on nesting 

beaches), reduced short- and long-term financial costs associated with hurricane damage, 

and improved quality of beach environments.  

  

Artificial lighting from residential and commercial development is currently the least 

likely factor to negatively impact UTC nesting beaches. However, expected increases in 

sea turtle nesting and continued beachfront development will amplify the detrimental 

effects of lighting on sea turtle reproductive success if light pollution is not eliminated or 

controlled. Implementation of lighting ordinances encompassing the Kemp’s ridley nest 

hatching season (approximately 15 May – 15 August) would aid survival and seafinding 
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of hatchlings emerging from in situ nests by reducing mortality associated with lighting-

induced misorientation and disorientation. While lighting is unlikely to affect diurnally 

nesting Kemp’s ridleys, previous research has shown the majority of this species’ nest 

emergences occurs between 0200 and 0400 (J. Peña pers. comm.), thus justifying the 

need for lighting ordinances on ridley nesting beaches. As nocturnal nesting activity on 

developed beaches is inversely correlated with lighting (Salmon et al. 1995), lighting 

restrictions may facilitate an increase in nesting activity by loggerhead females while 

reducing the potential for nester disorientation, particularly on Bolivar Peninsula. 

Specifics of lighting ordinances should include extinguishing all non-critical lights; 

reducing wattage and/or altering luminaire type [i.e. Witherington (1992) demonstrated 

that low pressure sodium vapor bulbs had no significant effect on nesting when 

compared to that from mercury vapor bulbs; LED’s warrant examination]; and filtering, 

lowering, and/or shielding light sources to reduce beachside visibility of lights. 

Integrating lighting ordinances with dune and beach habitat restoration would greatly 

reduce associated negative impacts as normal hatchling orientation can occur on light-

polluted beaches when horizon elevation cues are enhanced (Bertolotti & Salmon 2005, 

Tuxbury & Salmon 2005). 

  

On Bolivar Peninsula, where beachfront habitat wasn’t as heavily developed as that on 

Galveston Island, 5 of 6 Kemp’s ridley nests laid in 2008 were located in sections where 

residential development was situated well behind vegetated dunes of moderate height 

(B4, B5, B6, B16; Figs. 3.11 & 3.12, Table 3.11); 3 of these nests were in sparsely 
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developed areas with minimum potential for visual deterrence of nesters. In addition, the 

loggerhead nest documented in 2008 was situated in habitat lacking manmade structures 

within the visual frame of reference utilized by females during nest site selection 

(Salmon et al. 1995, Fig. 3.14). Although additional research is required to determine the 

influence beachfront development has on nest site selection, particularly that by Kemp’s 

ridleys utilizing UTC beaches, results reported herein indicate turtles may preferentially 

nest on undeveloped or minimally developed beaches containing vegetated dunes and 

lacking permanent erosion control structures.  

 

Obstacles to Nesting 

Visual contamination of beach habitats by solid waste from terrestrial and oceanic 

sources, particularly plastics (Fig. 3.16), is of widespread and growing global concern 

due to its negative effects on tourism and wildlife, including sea turtles (de Araujo & da 

Costa 2008). Ensuring an aesthetic state of Texas’ beaches should be of significant 

concern to upper coast economies dependent upon income generated by tourism. Beach 

litter may visually deter nesting females or serve as an obstacle to nest site selection 

and/or digging (Santos et al. 2006), subsequently increasing the incidence of non-nesting 

emergences (Montague 2008). Refuse creates a significant obstacle to a hatchling’s 

forward movement, potentially increasing time necessary to access the sea and thus 

reducing survivorship by increasing predator exposure (Montague 2008). UTC beaches, 

associated wildlife, and corresponding local economies would benefit significantly from 

remediation of refuse-strewn beach habitats; supplementations to current beach cleanup 
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Figure 3.16. Typical Bolivar Peninsula beach habitat (section unknown) littered with refuse following post-holiday  

tourism activity 7 July 2008. (Photo by Christi Hughes.) 
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efforts include bolstering and enforcement of beach litter policies and public education 

efforts aimed at source reduction. 

 

Anthropogenic structures constructed on beach habitats may also pose an obstacle to sea 

turtle reproductive success (Márquez 1994, Santos et al. 2006). A multitude of beach 

sections on Galveston Island (W4, W21; Fig. 3.1, Table 3.1) and Bolivar Peninsula (B4-

B6, B9, B12, B21, B26, B28, B29, B32-B37; Figs. 3.7-3.9, Table 3.9) contain dune or 

geotube crossovers enabling public beach access while preventing damage to sensitive 

dune habitats. While the majority of these structures are designed to minimize their 

footprint on beach habitat, a significant number are constructed in a manner that 

maximizes the potential to obstruct nester and hatchling movement (Fig. 3.10). 

Entrapment by crossovers is a potential source of mortality (due to hyperthermia during 

daylight hours) for nesters and hatchlings. Emerging hatchlings may also fail at 

seafinding due to disorientation or misorientation sourced from the visually altered 

landscape created by crossovers. While conflicts between nesting or hatchling turtles and 

dune crossovers have not been documented, beach habitats should be managed to reduce 

the potential for negative interactions between these federally protected animals and 

beachside constructions. These concerns mandate that construction of new dune 

crossovers occur only as needed and employ designs minimizing impacts to sea turtles. 

  

Finally, policies permitting vehicular traffic on beach habitats, particularly those utilized 

by nesting sea turtles, are of great concern (Santos et al. 2006). While vehicular traffic is 
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prohibited on the majority of Galveston Island’s beaches (Chapter II specifies vehicle 

access policy), it remains unrestricted on all surveyed sections of Bolivar Peninsula and 

is encouraged through the provision of numerous beach access points. Through 2008, 

Texas’ beach driving policies have resulted in the documented deaths of three nesting 

females, including a loggerhead struck and killed after nesting on Bolivar Peninsula 

(section B22) in 1996 (Shaver 2009, B. Higgins pers. comm.). Vehicles also served as a 

source of mortality for multiple hatchlings emerging from both in situ nests detected 

while hatching on Bolivar Peninsula (sections B12 and B16) in 2008 (C. Hughes pers. 

obs.). The beach-going public’s lack of knowledge regarding use of UTC beaches as 

nesting habitat is of growing concern. Failure to inform this constituency may lead to an 

increase in vehicular-related deaths to sea turtles, given the likelihood that the ongoing 

recovery exhibited by the Kemp’s ridley will precipitate increased nesting activity on the 

UTC. Habitat managers and policy makers should periodically evaluate the efficacy of 

instituting spatial and/or temporal driving limitations on Bolivar Peninsula beaches to 

protect sea turtles. In addition, workers operating machinery on all UTC beaches during 

nesting season (beach rakers, nourishment crews, etc.) should receive training in sea 

turtle identification and nesting response.  

 

Management of Sea Turtle Nest Products 

An informational void exists regarding the ability of UTC beaches to provide suitable 

incubation conditions (thermal regime, hydric environment, sand mineral content, gas 

exchange, etc.) for sea turtle nests. However, hatching success rates estimated for all 3 in 
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situ nests detected while hatching on the UTC through 2008, including 1 on Galveston 

Island (2007) and 2 on Bolivar Peninsula (2008), were between 80.6-94.3% (D. Shaver, 

pers. comm.), suggesting that nests can be successfully incubated in constituent habitats.  

 

Nearly all detected nests deposited on the Texas coast (with the exception of those on 

South Padre Island and Boca Chica Beach) are transported by vehicle to an incubation 

facility operated by the National Park Service at PAIS following excavation by trained, 

permitted responders. However, multiple management options for sea turtle nest 

products located on the UTC exist and should be periodically re-evaluated to ensure 

implementation and/or continuance of the most viable and appropriate course of action 

to maximize sea turtle reproductive success while minimizing time and monetary costs. 

  

Nest relocation practices utilized on the UTC since the 1996 inception of nesting involve 

excavation and placement of eggs into Styrofoam incubation boxes lined with sand 

obtained at or near the nest site. These eggs undergo two separate transfers by vehicle to 

reach PAIS for subsequent incubation and hatchling release during the critical 6-48 hour 

post-oviposition timeframe identified by Márquez (1994) in which inappropriate egg 

handling can result in complete clutch failure. Lethal developmental deficiencies and 

mortality rates reaching 100% can occur during nest relocation or transport which results 

in egg inclination and embryo rotation, vibrations, contamination and/or overheating 

(Márquez 1994). While hatching success rates obtained from Bolivar Peninsula nests 

subjected to cumulative vehicle transport times typically exceeding six hours have been 
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comparable to those from nests deposited and incubated at PAIS, this method involves 

substantial risk to developing embryos.  

 

State and federal resource managers must carefully consider the long-term effects of 

continued relocation of sea turtle nest products from the UTC to PAIS, as this practice 

may endanger the role of constituent beaches as important natal nesting habitat and thus 

negate associated socioeconomic and ecological benefits. While the imprinting process 

that enables natal philopatry by nesters is not fully understood (Meylan et al. 1990, 

Márquez 1994, Crain et al. 1995, Shaver 2002b), hatchlings incubated and released at 

PAIS will likely return to PAIS, and not their natal beach, to nest, thus reducing the 

potential for increased nesting fidelity to the UTC. In addition, further increases in 

number of nests laid on UTC beaches, combined with expected growth in nesting 

activity at PAIS, may soon render transfer of clutches to PAIS time- and cost-

prohibitive. 

 

Relocation of UTC nests to a centrally located corral secured against egg poaching and 

natural predation, such as a facility located within Galveston Island State Park and 

safeguarded by the Texas Parks & Wildlife Department (TPWD), should be assessed as 

an alternative to transferring clutches to PAIS. This protocol is utilized effectively at 

PAIS (Shaver 2010), in South Texas (South Padre Island and Boca Chica Beach; C. 

Hughes pers. obs.), and on the ridley’s primary nesting beach at Rancho Nuevo (NMFS, 

USFWS & SEMARNAT 2011). Risk of embryonic mortality associated with egg 
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handling is minimized in clutches relocated to a hatchery within 2 hours of deposition 

(Eckert et al. 1999). Furthermore, hatching success rates from sea turtle nests relocated 

promptly can be comparable to nests incubated in situ (Mrosovsky 2006). Increased 

hatching and emergence success rates may be obtained with use of improved transport 

boxes, as occurred with the experimental container used to convey Kemp’s ridley eggs 

described by Vazquez-Sauceda et al. (2008). As such, local relocation poses 

considerably less risk to nest products than does long-distance translocation to PAIS. 

More importantly, release of hatchlings imprinted to natal UTC beaches will preclude 

the loss of an associated nesting cohort and will likely contribute to long-term nesting 

increases, thus creating exploitable ecotourism and public education opportunities with 

future expansion potential. 

 

Conclusions 

Habitat quality along the UTC, including that on Galveston Island and Bolivar 

Peninsula, significantly impacts the economic health of constituent communities 

dependent upon tourism revenue and the potential to establish a self-sustaining cohort of 

nesting sea turtles. State and federal agencies responsible for implementing management 

policies must carefully consider interdependent socioeconomic and environmental 

concerns in developing strategies for the long-term governance of UTC beach habitats. 

While public use of UTC beach environments is very diverse, restoration and 

maintenance of constituent habitats successfully serving a multitude of user groups does 
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not preclude the simultaneous provision of beaches able to support sea turtle 

reproductive success.  

 

The evolution of sea turtle management practices on the UTC will require additional 

research in relation to the following questions, which are adapted from those originally 

posed by Santos et al. (2006). First, what actions can be taken to maintain existing high 

quality nesting habitat in undeveloped areas, and what can be done to improve 

compromised nesting habitat, particularly in areas with extensive coastal development? 

Second, if current nest product management procedures are altered to allow eggs laid on 

the UTC to remain for subsequent incubation and release, what criteria will be used to 

identify surrogate incubation habitat? Finally, how much and what kinds of terrestrial 

habitat disturbances can sea turtles, particularly Kemp’s ridleys, tolerate?  

While current nesting totals indicate that the population of the critically endangered 

Kemp’s ridley turtle, Texas’ dominant nester, remains significantly reduced from 

historic abundance levels, the recovery of this species is ongoing (NMFS, USFWS & 

SEMARNAT 2011). Continued examination of the role of the UTC in providing nesting 

habitat to increasing numbers of conspecifics is critical, and must be coupled with 

successful beach habitat conservation and management plans minimizing conflicts 

between nesters and other beach user-groups while promoting ecotourism benefiting sea 

turtles and local economies. 
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CHAPTER IV 

INTERNESTING AND FORAGING HABITATS AND ASSOCIATED 

MIGRATORY CORRIDORS UTILIZED BY KEMP’S RIDLEY SEA TURTLES 

INTERCEPTED ON UPPER TEXAS COAST NESTING BEACHES 

 

INTRODUCTION 

Decades of conservation measures employed on historically significant Kemp's ridley 

sea turtle (Lepidochelys kempii) nesting beaches, particularly those at Rancho Nuevo, 

Tamaulipas, Mexico, have contributed to exponential increases (approximately 15% 

annually) in the propagative female population of since the mid-1980’s demographic 

bottleneck (Heppell et al. 2005; Márquez et al. 2005; NMFS, USFWS & SEMARNAT 

2011). Regulations protecting nesters and nest products, in conjunction with significant 

reductions in at-sea mortality via enforcement of turtle excluder device (TED) utilization 

by U.S. and Mexican shrimp trawlers, are primarily credited for optimistic indicators of 

recovery for this Critically Endangered sea turtle (IUCN 2011). However, current 

population assessments are primarily based on temporally robust nesting beach data sets 

that lack essential in-water demographic information critical to proactive management 

schemes ensuring the ridley’s continued recovery (NRC 2010). 

 

Protection and management of in-water life stages is a Priority 1 Recovery Task in the 

2011 revision of the Kemp’s Ridley Recovery Plan, yet data describing spatially and 

temporally discrete neritic habitats currently utilized by mature ridleys in the Gulf of 
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Mexico are insufficient (NMFS, USFWS & SEMARNAT 2011). Life stage comparisons 

suggest increasing survivorship of breeding adults in long-lived species, including the 

Kemp’s ridley, has a significant positive impact on population growth rate (Heppell et al. 

1999, Gerber & Heppell 2004). Therefore, further reductions in adult mortality, 

particularly that associated with negative human impacts and achieved through 

geographically distinct and seasonally appropriate management strategies, may aid 

recovery efforts. Successful implementation and evaluation of habitat conservation tools, 

such as spatially delineated marine protected areas (MPA; NMFS, USFWS & 

SEMARNAT 2011), will require substantive information to identify seasonal usage of 

breeding, inter-nesting, and foraging habitats and behaviors, as well as associated 

connective migratory corridors. 

 

Reproductively mature female ridleys primarily inhabit neritic Gulf of Mexico waters 

less than 37 m in depth spanning from the northern tip of the Yucatan Peninsula to 

southern Florida (Byles 1989; Morreale et al. 2007; Shaver & Rubio 2008; NMFS, 

USFWS & SEMARNAT 2011). Nesters utilizing Mexico’s beaches engage in directed 

northern or southern post-nesting migrations throughout the majority of this range (Byles 

1989, Renaud et al. 1996, Shaver et al. 2013), while Texas’ nesters primarily establish 

residency in northern and eastern Gulf of Mexico foraging habitats (Seney & Landry 

2008, 2011; Shaver & Rubio 2008; Shaver et al. 2013). However, seasonal movements 

between foraging grounds, nesting beach remigration, and courtship and breeding 
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habitats remain poorly defined (NMFS, USFWS & SEMARNAT 2011) as satellite 

tracking durations have typically spanned less than one year. 

 

A paucity of data exists for the small but increasing number of Kemp’s ridleys 

recurrently utilizing upper Texas coast (UTC) nesting habitats. Telemetry research 

conducted by Seney & Landry (2008, 2011) on six UTC nesters suggests inter-nesting 

residency off Galveston Island in waters <10 m in depth, followed by directed post-

nesting movements along the 20 m isobath to neritic foraging grounds offshore central 

Louisiana. Additional satellite telemetry research on UTC nesters is warranted to 

examine intra- and inter-annual nest site and foraging area fidelity, as well as to permit a 

more robust quantification of movements in the marine environment. The investigation 

herein also addresses a Kemp’s Ridley Recovery Plan task mandating the protection and 

management of marine habitats utilized by conspecifics, in part via the identification of 

“important marine foraging, breeding, and inter-nesting habitats” and the determination 

of migratory pathways between and among foraging grounds and nesting beaches.  

 

METHODS 

All sea turtles intercepted while engaged in nesting activity on the UTC during 2007-

2009 were examined for existing tags and assessed for potential in-season fecundity and 

suitability for satellite tagging (Chapter II details obtainment of nester morphometrics 

and nesting data). Existing external metal flipper and living tags, as well as internal 

passive integrated transponder (PIT) and coded wire tags, permitted differentiation 
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between headstarted and wild turtles. Metal flipper and/or PIT tags were deployed on 

females lacking such identifiers to aid in future nesting activity documentation. 

Ultrasonography (via the inguinal region) of females at their nest site enabled 

confirmation of non-nesting emergences via the detection of calcified oviductal eggs, 

while further ultrasound inspection of post-nesting females at the National Oceanic and 

Atmospheric Administration Sea Turtle Facility (NOAA STF) facilitated identification 

of vitellogenic or atretic follicles, both of which are indicative of short-term reproductive 

potential (Rostal et al. 1990, Rostal 2005). One female possessing calcified eggs after 

engaging in a non-nesting emergence was retained for transmitter attachment in 2007 

without incident; however, protocol instituted in 2008 prevented future retention of such 

nesters. Turtles were never placed in dorsal recumbency. 

 

Satellite Telemetry 

Transmitter Attachment 

Eight intercepted females were outfitted with a 480 g Sirtrack KiwiSat 101 platform 

transmitter terminal (PTT) incorporating a Tygon reinforced 4NC antenna and a 2 x C 

cell battery package. Transmitters were programmed to broadcast messages at a 

frequency of 401.65 MHz using a 40 second repetition rate and set to operate with a duty 

cycle of 6 h on:6 h off, thus requiring activation at the beginning of their duty cycle at 

either 0900 or 2100 GMT (0400 or 1600 CDT). Throughout the 3 to 4 h duration of the 

PTT attachment process, turtles were dry-docked within a foam-padded transport 

container or empty fiberglass tank inside an ambient temperature NOAA STF building. 
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Females retained longer than required for transmitter attachment (i.e. overnight) were 

held in circular tanks containing locally sourced, ambient temperature seawater until 

release, which occurred no later than 24 h after initial interception.  

 

PTTs were attached to the first and second vertebral scutes of the nester’s carapace with 

the antenna oriented anteriorly following protocol developed by Seney & Landry (2008; 

also described in Seney et al. 2010) and similar to other commonly used techniques for 

hard-shelled sea turtles. This process involved priming the sides and bottom of the PTT 

(previously coated in aerosol anti-fouling paint) and relevant sections of the turtle’s 

carapace for transmitter attachment with 60-grit sandpaper, followed by an acetone 

wash. Two coats of Power-Fast two-part standard set epoxy were applied, with sufficient 

drying time allowed between coats for the outer layer to moderately solidify. Three to 

four tubes of Sonic-Weld marine epoxy (Mansfield 2006) were distributed over the 

entire transmitter attachment, smoothed with minimal application of soapy water, and 

allowed to set for approximately 10 minutes. Finally, two coats of Interlux Micron Extra 

antifouling paint were brushed onto the entire attachment (excluding PTT saltwater 

switches and antenna). Releases of telemetered turtles occurred during daylight hours at 

their nest site or a suitable alternate UTC location. 

 

Data Analysis 

Turtle movement data obtained from the transmitters via NOAA’s Polar Orbiting 

Environmental Satellites (POES) were processed and communicated by CLS America to 
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provide location (latitude and longitude derived from the Doppler effect on frequency of 

received transmissions) and location class (LC) information yielding estimations 

regarding location accuracy (Table 4.1; Argos 1996). In addition, broadcast messages 

provided the PTT’s unique identifier; transmission date and time; duration of, and 

number of messages received during, each satellite communication; battery current 

drain; and saltwater switch moisture level. Accession of archived tagging data via the 

Satellite Tracking and Analysis Tool (STAT; Coyne & Godley 2005), freely available on 

SEATURTLE.ORG, enabled obtainment of integrated environmental data for each 

location including bathymetry, weekly sea surface temperature (SST), and distance to 

shoreline. 

 

STAT was employed to remove locations of class Z (indicative of a data processing 

failure; Table 4.1) and those exceeding 1.0 m in elevation. Minimization of 

autocorrelation in spatial analyses was achieved via the selection of a single “best” daily 

location (Hawkes et al. 2011, Arendt et al. 2012a) in which only the first occurrence of 

the highest quality LC during each 24-hour period was retained. Following intensive 

categorization and filtering of satellite tracking data obtained in the current study, LC 0 

was considered either more precise than, or equally reliable as, LC A, despite recent 

evidence to the contrary (Hays et al. 2001a, Scott 2006, Royer & Lutcavage 2008). 

Hence, location classes were prioritized upon traditional estimates of accuracy, as 

supported in recent field studies by Costa et al. (2010): LC 3 > 2 > 1 > 0 > A > B. 
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Location No. of Estimation of
Class Messages Accuracy (m)

3 ≥4 <150

2 ≥4 150 - 350

1 ≥4 350 - 1000

0 ≥4 >1000

A 3 none

B 2 none

Z
2

N/A N/A

1 PTT: platform terminal transmitter.

2 Location class information categorized as "Z" indicates a processing failure.

Table 4.1. CLS America's Argos location class (LC) accuracy, including potential latitudinal

and/or longitudinal deviations from a PTT's
1
 true position (Argos 1996).
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Data were then subject to simultaneous filters pioneered by Arendt et al. (2011) that 

omitted locations requiring turning angles of <5° and/or linear swimming speeds 

exceeding 5 km h-1 (Renaud 1995). Failure of the initial best daily location to meet 

subsequent filtering criteria resulted in either the substitution of corresponding alternate 

tracking information or complete omission of that day’s location from the data set, with 

this protocol permitting a mean retainment of 99.2% (SD + 0.5, range = 98.5 – 100%; 

Table 4.2) of original observation days for the eight monitored turtles. 

 

Retained coordinates were imported into ArcGIS 9.3. Discernibly erroneous 

geolocations, which averaged 3.8% (SD + 3.6, range = 0.9 – 12.0%; Table 4.3) of 

filtered data across eight individuals, were manually omitted. Internesting periods, 

migratory routes, and foraging areas were deduced based upon directionality and 

displacement of plotted locations from each turtle’s release site, similar to criteria 

utilized by Hawkes et al. (2011). As no subsequent nesting events were confirmed for 

any individuals tracked in this study, internesting intervals were deemed terminated 

when turtles initiated directed movements east or northeast for a minimum of 7 

consecutive days to destinations excepting the UTC, criteria similar to that employed by 

Mansfield et al. (2009). Migratory phases consisted of consecutive directional 

movements (Griffin et al. 2013), while foraging areas were characterized by restricted, 

primarily non-directional movements utilized by an individual for a minimum of 12 

consecutive days (≥11 geolocations). This temporally- and behaviorally-based 

termination of migratory behavior (including post-nesting migration) is more robust than 
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Turtle ID
No. of STAT 
Geolocations

No. of 
Substitutions3

% Rejected 
Geolocations

No. of  Retained 
Geolocations

74912 407 4 0.5 405

74913 273 1 0.4 272

74914 534 4 0.9 529

74915 349 1 0.9 346

74917 25 0 0.0 25

75421 343 7 1.5 338

83239 439 8 1.1 434

83242 356 9 1.4 351

2 STAT: Satellite Tracking and Analysis Tool (Coyne & Godley 2005).

angle filters
1
 on data exported from STAT

2
.

Table 4.2. Modification of "best" daily location information following application of simultaneous speed and turning

1 Filtering method pioneered by Arendt et al. (2011).

3 Corresponding alternate tracking information used when initial "best" daily location failed to meet filtering criteria.
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Turtle ID
No. of Imported 

Geolocations
% Rejected 

Geolocations
No. of Retained 

Geolocations

74912 405 4.4 387

74913 272 3.3 263

74914 529 0.9 524

74915 346 0.9 343

74917 25 12.0 22

75421 338 4.4 323

83239 434 1.4 428

83242 351 3.1 340

Table 4.3. Modification of discernibly erroneous "best" daily location information coincident

with importation of filtered data into ArcGIS 9.3.

149



	
  

that utilized in other sea turtle tracking studies (Zbinden et al. 2008, Marcovaldi et al. 

2010). 

 

Subsequent unconfirmed nesting events for tagged ridleys were inferred based upon 

filtered Argos data as tag duty cycles prevented comprehensive documentation of turtle 

movements during the internesting period. Duty cycles incorporated to maximize PTT 

battery life negated the transmission of geolocation information from 1000 to 1559 CST, 

a time period during which ridleys frequently nest on UTC beaches (see Chapter II). 

Probable nesting events were deduced based upon plotted location coordinates examined 

in conjunction with LC, pass duration, salt water switch parameters, and movement 

behavior (Seney & Landry 2008, Tucker 2010) during the two days preceding and 

subsequent to such events.  

 

Home Range Tools (HRT; Rodgers et al. 2007) for ArcGIS generated travel paths to, 

and kernel density estimates (KDE; 50% and 90%) for, each foraging ground with ≥34 

daily locations (Millspaugh & Marzluff 2001). Geolocations for foraging grounds 

utilized during temporally-distinct periods by a post-nesting female were coalesced to 

generate single cohesive KDE contours. Distortion in KDE contours was minimized by 

associating location coordinates with the proper Universal Transverse Mercator 

coordinate system zone (15N, 16N, or 17N) in ArcGIS. Data were subject to the fixed 

least squares cross-validation smoothing factor and rescaled to unit variance if the ratio 

of standard deviations exceeded 1.5. For the purposes of estimating core activity areas 
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(50% probability contour; Hooge et al. 1999) and calculating utilization distributions 

(90% probability contour; Borger et al. 2006), migration was considered to have ceased 

when the directional path crossed the established foraging zone boundary (Griffin et al. 

2013), resulting in the potential inclusion of up to several days of directional movement 

inside the foraging ground for KDE estimate generation. Resultant KDE contours were 

not clipped to exclude limited terrestrial areas contained within specified 50% (n=1) and 

90% (n=4; Table 4.4) probability contours for four individuals (74912, 75421, 83239, 

83242).  

 

Bureau of Ocean Energy Management (BOEM) Official Protraction Diagram and 

Leasing Map boundaries, which delineate federal continental shelf Boundary Areas used 

in exploration and development of Gulf mineral resources such as oil and gas, were 

incorporated into certain figures exhibiting turtle location data. Boundary Areas were 

defined to facilitate sea turtle management efforts in the Gulf of Mexico in coordination 

with resource extraction interests. 

 

RESULTS  

Satellite transmitters attached to eight Kemp’s ridleys intercepted following nesting 

activity on UTC beaches between 2007-2009 broadcast location information for an 

average of 422 days/female (SD + 194, range = 26 - 710 d; Fig. 4.1, Table 4.5). Seven 

females were tracked beyond the internesting period; no probable cause was evident for 

the premature failure of turtle 74917’s tag after only 26 days of tracking. Nester stock 
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Turtle ID 50% (km2) 90% (km2)
No. of 

Geolocations 50% (km2) 90% (km2)
No. of 

Geolocations 50% (km2) 90% (km2)
No. of 

Geolocations 50% (km2) 90% (km2)
No. of 

Geolocations

74912 285.9 894.6 76 N/A
2

13 116.6 696.6
3

251

74913 N/A
2

15 1933.8 6181.6 120 465.1 1389.5 75

74914 183.4 876.6 401 513.8 1471.9 43 N/A
2

15

74915 585.8 1803.6 39 2053.6 6115.9 119 153.8 531.9 41 N/A
2

11

74917
4

N/A

75421 52.8
3

375.8
3

218

83239 926.4 3684.5
3

156 564.8 1927.7 112 298.8 876.1 73 361.2 1272.8 47

83242 674.0 2133.1 55 N/A
2

15 288.4 1005.4 34 2098.6 8091.3
3

105

2 Excluded from calculations due to an insufficient number of geolocations.

4 PTT failed prior to commencement of foraging behavior.

1 Denotes initial foraging ground used by an individual. Subsequently utilized foraging grounds are designated F2, F3, and F4.

3 Area was not modified to exclude terrestrial components and thus overestimates accessible marine habitat utilized by the individual.

Table 4.4. Core use activity areas (50% KDE) and utilization distributions (90% KDE) for Kemp's ridley foraging grounds (n=17) in the Gulf of Mexico with ≥34 locations.

F11: KDE      F2: KDE      F3: KDE      F4: KDE     
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Turtle Tag Deployment Release Tracking Geolocation

ID Date Location Duration (d) Nester Stock SCL2 (cm) Date Location Date Location on Land?

74912 5/18/2007 Galveston Island 467 Headstart: 1991
3

64.0 5/17/2007 Galveston Island

74913 5/18/2007 Galveston Island 376 Headstart: 1989
3

62.4 5/17/2007 Galveston Island 6/7/2007
4,5

Galveston Island Yes

74914 5/26/2007 Galveston Island 710 Headstart: 1992
3

61.0 6/4/2005
6

Galveston Island

5/26/2007
7

Galveston Island

6/13/2011
8

Galveston Island

6/28/2011
8

Galveston Island

74915 5/18/2007 Galveston Island 405 Captive Reared: 1995
3

59.7 5/18/2007 Galveston Island

74917 5/1/2008 Galveston Island 26 Headstart: 1992
3

64.0 5/1/2008 Galveston Island 5/20/2008
4,9

Matagorda Island Yes

75421 5/14/2008 Surfside Village 409 Headstart: 1991
3

62.4 5/6/2006
6

Galveston Island 6/2/2008
4,10

Follets Island Yes

5/13/2008 Surfside Village

83239
11

5/20/2008 Galveston Island 562 Headstart: 1989
3

62.0 5/6/2006
6

Galveston Island 6/3/2008
4,12

Galveston Island N/A

5/26/2006
6

Galveston Island

5/20/2008 Galveston Island

5/19/2010
8

Galveston Island

83242
11

5/2/2009 Galveston Island 419 Wild 67.6 4/28/2006 Galveston Island

5/2/2009 Galveston Island

9 Telemetry Data: LC 3, Depth +0.9 m, SWS 254, 13 messages received, 697 s pass duration.

10 Telemetry Data: LC 3, Depth -0.1 m, SWS 247, 10 messages received, 520 s pass duration.

12 Attributed based upon beachgoer sighting of satellite-tagged nester; turtle's demonstrated nest site fidelity, track width, and consistently low clutch hatching success; and post-nesting migration date.

Table 4.5. Confirmed and postulated upper Texas coast nesting events
1
 for Kemp's ridleys (n=8) satellite tracked between 2007-2009. 

6 Seney 2008.

7 Confirmed non-nesting emergence.

8 A Landry pers. comm.

Confirmed Nesting Activity Speculated Nesting Activity

1 Provided information includes data obtained through 2011 only.

2 SCL: straight carapace length (notch-tip); measurement derived coincident with PTT attachment by this study (2007-2009).

3 Yearclass headstarted or captive reared at the NOAA Sea Turtle Facility in Galveston, Texas.

4
 Nesting activity unconfirmed but speculated based on comprehensive analysis of telemetry data and individual's internesting behavior.

5 Telemetry Data: LC 2, Depth +0.9 m, SWS 243, 9 messages received, 351 s pass duration. Location is within 9 km of previous nest site and 2 km of 6/5/2007 geolocation (also on land).

11 Previously satellite tracked by Seney & Landry (2008).
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Figure 4.1. Composite movements of female Kemp’s ridleys (n=8) tracked from upper Texas coast nesting beaches, 2007-

2010.            : Denotes general nesting location;    : denotes final PTT transmission location;            : denotes 50 m isobath.      
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(Table 4.5), as well as within-season reproductive potential assessed via 

ultrasonography, for associated females are further detailed in Chapter II. 

 

Internesting Period 

Mean post-tagging internesting period duration was 20 days/female (SD + 9.3, range =  

0 - 29 d; Table 4.6). One female (74912) that possessed developing follicles (J. Flanagan 

pers. comm.) but was not included in subsequent analyses of the internesting period 

engaged in a post-nesting migration immediately following tag attachment and release 

on 18 May 2007 (Fig. 4.2a). Throughout the internesting period, females remained in 

waters averaging 26.3º C SST (SD + 1.4, range = 23.0 - 29.8°C), 6.1 m in depth (SD + 

6.7, range = 1.0 to -25.6 m), and 6.4 km from the nearest shore (SD + 6.4, range = 0 - 29 

km; Table 4.6). Swimming speeds during this period, which ranged from 0 to 3.0 km h-1, 

averaged 0.7 km h-1 (SD + 0.6).  

 

Study-wide, internesting ranges (the geographical extent of documented movement by 

an individual during the internesting period) were primarily restricted to inner 

continental shelf waters extending from the Galveston Bay entrance south to Matagorda 

Bay (Figs. 4.2a & b). Six of seven monitored ridleys immediately traversed coastal 

waters south to (n=3) or beyond (n=3) nearshore (≤ 10 km from the nearest shoreline) 

habitats adjacent to East Matagorda Bay (EMB) following tag attachment and release. 

Of these, only one (74915) did not make corresponding movements northward during 

the internesting period. Turtles 74913 and 74914, although exhibiting preferences for 
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Turtle Release Internesting No. Accepted Mean Distance from
ID Date Duration (d) Daily Locations Mean Depth (m) Shore (km) Mean SST (oC) Mean Speed (km h-1)

74912 5/18/2007 0
1

N/A N/A N/A N/A N/A

74913 5/18/2007 26 20 4.0 3.8 26.3 0.6

74914 5/26/2007 29 24 3.9 4.7 27.5 0.8

74915 5/18/2007 22 21 11.5 12.1 25.9 0.5

74917 5/1/2008 27 22 3.9 3.1 25.4 0.9

75421 5/14/2008 20 18 9.4 8.2 26.4 0.7

83239 5/20/2008 14 13 5.4 9.6 27.0 0.4

83242 5/2/2009 22 18 5.2 5.1 25.7 0.5

Mean 20.0 19.4 6.1 6.4 26.3 0.7
SD 9.3 3.6 6.7 6.4 1.4 0.6

Range 0 to 29 13 to 24 ASL
2
 to 25.6 0 to 29 23.0 to 29.8 0 to 3.0

Table 4.6. Internesting period movements for Kemp's ridleys (n=8) satellite tagged on the upper Texas coast between 2007-2009 .

1 Turtle 74912 migrated northeast in a directed manner immediately following release.

2 Filtering criteria permitted inclusion of depths ≤1.0 m above sea level (ASL).
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Figure 4.2. Internesting movements of (a) six and (b) two Kemp’s ridleys satellite tagged 

after nesting on the upper Texas coast between 2007-2009.       : Denotes specific nesting 

location,           : denotes general nesting location,       : denotes final PTT geolocation 

(74917 only; tracking duration 26 d),        : denotes 20 m isobath. Initial post-nesting 

movements are also displayed. 
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nesting habitat on opposite ends of Galveston Island, displayed consistently similar 

internesting behaviors in 2007 (Fig. 4.2a). Both made directed post-tagging movements 

south to the coastal midpoint flanking Matagorda Bay before returning northward to 

Galveston Island in early June, at which point both engaged in post-reproductive 

migrations east and offshore (>10 km from the nearest shoreline).  

 

Two singular behavioral patterns emerged for females monitored during the internesting 

period. Female 83239’s movements were comparatively confined and restricted to travel 

perpendicular to her Galveston Island nest location, extending offshore approximately 19 

km (Fig. 4.2b). Ridley 74917, whose transmitter failed after 26 d, moved approximately 

130 km farther south than other monitored turtles and was the only female whose plotted 

coordinates (LC 0, A, and B) occurred inside a bay system (Fig. 4.2b). 

 

Nine of ten confirmed (see Chapter II) and postulated UTC nest sites documented during 

this study (2007-2009; Table 4.5) were located at (n=7) or near (n=2) the northernmost 

extent of each individual’s internesting range (Figs. 4.2b & 4.3a, b, d, e, f); 74912’s 

single nest is excluded from this tally due to an unknown internesting range extent (Fig. 

4.2a, Table 4.6). Re-nesting intervals for three presumed nesting emergences identified 

via satellite telemetry (one each attributed to Turtles 74913, 74917, and 75421) ranged 

from 19 - 21 d. A nest laid by an unidentified satellite-tagged nester on 3 June 2008 is 

herein attributed to 83239 based upon this female’s demonstrated nest site fidelity and 

tag location data obtained from all UTC tracked females; 83239 nested 14 d prior in the 
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Figure 4.3. Movements of individual Kemp’s ridleys (n=6) satellite tracked after nesting 

on the upper Texas coast between 2007-2009.        : Denotes internesting period 

movements,        : denotes migratory movements,        : denotes foraging ground (F) 

movements,        : denotes movement between geolocations during extended period of 

transmitter silence (83239 only),     : denotes nesting location when tagged,      : denotes 

final PTT geolocation,          : denotes 50 m isobath.  
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Figure 4.3 cont.  
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same vicinity. It is likely that all seven females who remained near the UTC prior to 

their post-nesting migration nested once following tag attachment, a theory supported by 

ultrasonography results and observed internesting period durations of 14 - 29 d.  

 

Migratory Phases 

Post-Nesting Migrations 

Migrations from UTC nesting habitats eastward to initial Gulf of Mexico foraging 

grounds off Texas (n=1), Louisiana (n=5), and Florida (n=1) averaged 27.6 days (SD + 

13.4, range = 7 - 41 d) for the seven ridleys monitored during this phase (Fig. 4.4, Table 

4.7). Directed post-nesting movements were initiated in May (n=2) or June (n=5) by 

females traversing routes a mean distance of 32.4 km from shore (SD + 24.6, range =  

0 - 93 km) in waters averaging 13.4 m in depth (SD + 9.0, range = 0.7 to -61.6 m) and 

28.6ºC SST (SD + 1.3, range = 24.7 - 30.4ºC). Mean speed of movement, which ranged 

from 0 - 4.3 km h-1, was 0.9 km h-1 (SD + 0.6).  

 

Isolation of offshore migrations (both post-reproductive and subsequent inter-foraging 

ground movements) between the UTC and the Ship Shoal Area off Louisiana, which 

required the exclusion of Turtle 74912’s unique coastal movements, permitted 

identification of a heavily utilized, albeit expansive, migratory corridor (Fig. 4.5). 

Movements of six females were almost exclusively located between the 10 - 30 m 

isobaths regardless of gradient magnitude (i.e. proximity of depth contours), with plotted 

migratory geolocations dispersing or condensing coincident with isobath separation 
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Turtle Start of Duration of No. Accepted Location of Initial Mean Distance from
ID Migration Migration (d) Daily Locations Foraging Ground Mean Depth (m) Shore (km) Mean SST (oC) Mean Speed (km h-1)

74912 5/18/2007 39 26

Western Mississippi    

River Delta 3.2 7.2 27.6 0.9

74913 6/13/2007 7 7

Waters South of 

Beaumont, TX 9.4 27.1 29.2 0.6

74914 6/24/2007 19 19

Waters South of 

Terrebonne Bay, LA 14.7 44.2 29.3 1.2

74915 6/9/2007 41 39

Waters South of          

Grand Lake, LA 19.9 55.3 29.0 0.6

74917 N/A 0
1

N/A N/A N/A N/A N/A N/A

75421 6/3/2008 38 33 St. Joseph Bay, FL 11.8 14.1 29.0 1.3

83239 6/3/2008 16 16

Western Mississippi     

River Delta 14.0 39.7 28.8 1.2

83242 5/24/2009 33 30

Waters South of       Marsh 

Island, LA 14.9 33.6 27.8 0.7

Mean 27.6 24.3 Texas (n=1) 13.4 32.4 28.6 0.9
SD 13.4 11.0 Louisiana (n=5) 9.0 24.6 1.3 0.6

Range 7 to 41 7 to 39 Florida (n=1) ASL
2
 to 61.6 0 to 93 24.7 to 30.4 0 to 4.3

1 Turtle 74917's transmitter failed prior to the documentation of directed movements indicative of migration.

Table 4.7. Post-nesting migrations to initial foraging areas for Kemp's ridleys (n=8) satellite tagged on the upper Texas coast between 2007-2009 .

2 Filtering criteria permitted inclusion of depths ≤1.0 m above sea level (ASL).
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2007-2009.

Figure 4.4. Duration and bathymetry
1
 of post-nesting migrations to initial foraging grounds by Kemp's ridleys (n=7) nesting on the upper Texas coast between 

1 The two greatest documented depths, both associated with turtle 75421, were derived from geolocations of LCA (-41.8 m) and LCB (-61.6 m).
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Figure 4.5. Post-reproductive and inter-foraging ground migrations of Kemp’s ridleys (n=6) monitored after nesting on the 

upper Texas coast between 2007-2009. Only movements occurring within the Ship Shoal Area westward are displayed.  

          : Denotes general nesting location,        : denotes 10 m isobath,         : denotes 30 m isobath.     
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distance. Six females moved eastward along this corridor during late May (n=1), June 

(n=6), and July (n=3), including 74914, who also utilized this corridor during two 

partially documented (via telemetry) westward migrations during March-May (Figs. 4.5 

& 4.6). 

 

The two smallest females (74914 and 74915; Figs. 4.3a & 4.6), exhibited multiple 

deviations from linear routes to foraging destinations, engaging in direction reversals or 

circular swimming patterns. In contrast, four of the five largest females traversed 

consistently sequential trajectories (74912, 75421, 83239, and 83242; Figs. 4.3b-e).  

 

Migration Bottleneck - South Pass Area Corridor 

Five of seven females monitored post-nesting traversed a relatively narrow corridor 

through the South Pass Area (SPA) adjacent to the Mississippi River Delta Basin (Fig. 

4.7), a neritic zone spatially confined by proximity to the continental shelf. Mean 

distance from shore while transiting the Delta was 6.3 km (SD + 3.6, range = 0 - 16 km). 

Bathymetry during transit averaged 38.2 m (SD + 21.5, range = 1.0 to 77.8 m). 

Geolocations obtained from ridleys proximate to the SPA corridor, areas of increased 

shelf width, were comparatively widespread. Directed eastward crossings of the SPA 

corridor to foraging areas (n=4) or unknown destinations (n=1) were made by two 

(74915, 75421; Figs. 4.3a & d) and three females (74912, 83239, 83242; Figs. 4.3b, c, & 

e), respectively, in June and September; however, corridor usage was documented year-

round. Two females (75421, 83239; Figs. 4.3b & d) made multiple treks through this 
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Figure 4.6. Westward movements indicative of nesting beach remigration documented for Kemp’s ridley 74914 two years post-

tagging.         : Denotes internesting, post-nesting, and foraging ground (F) movements;          : denotes first transit 17 

February-26 March 2009;           : denotes second transit 24 April-5 May 2009;       : denotes 2007 non-nesting emergence 

location;       : denotes final PTT geolocations prior to temporary (red) or permanent (green) cessation of transmissions,  

          : denotes 30 m isobath. Bureau of Ocean Energy Management Boundary Areas are abbreviated as follows: SMI (South 

Marsh Island), EIA (Eugene Island Area), SSA (Ship Shoal Area), STA (South Timbalier Area). 
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Figure 4.7. Migration corridor “bottleneck” south of the Mississippi River Delta used by 5 of 7 Kemp’s ridleys tracked beyond 

the internesting period after nesting on the upper Texas coast between 2007-2009. Corridor usage was not confined temporally; 

two ridleys made multiple passes through this corridor.           : denotes 50 m isobath. 
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corridor, which also comprised the less utilized eastern segment of 83239’s largest 

foraging zone. However, movements by all ridleys excepting 83239 across the southern 

Delta were entirely transitory in nature. Turtle 75421, who initially traversed the SPA 

corridor in June en route to Florida, demonstrated fidelity to her corridor route during an 

extended migratory phase from late December to mid-January in which she passed 

westward through the corridor to a location just west of East Bay, Louisiana, before 

returning east to her Florida Panhandle foraging site.  

 

All five females who travelled east of the Mississippi River Delta avoided eastern 

Louisiana’s barrier island-fringed inshore waters, specifically those comprising Breton, 

Chandeleur, and Mississippi Sounds (Fig. 4.8). Three ridleys (74912, 75421, 83242) 

remained tens of kilometers east of these barrier islands, transiting a fairly homogeneous 

northward route toward the Mississippi-Alabama border, at which point all resumed 

nearshore eastward movements. This was particularly exceptional for turtle 74912, who 

demonstrated an intense preference for coastal migratory habitats with the sole exception 

of her linear passage from the Delta through offshore waters en route toward Petit Bois 

Island (Fig. 4.3c). Turtle 75421 displayed an imprecise fidelity to this offshore passage 

during three separate transits (Fig. 4.3d). 

 

Nesting Beach Remigration 

Although 2 females (74914, 83239) tracked in this study were subsequently witnessed 

nesting on UTC beaches (Table 4.5), none were actively monitored during confirmed 
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Figure 4.8. Offshore movements of post-nesting Kemp’s ridleys (n=5) east of the Mississippi River Delta after nesting on the 

upper Texas coast between 2007-2009.       : denotes final PTT geolocation (74915 only),          : denotes 50 m isobath. 
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remigration intervals. Movements indicative of remigration, however, were obtained 

from female 74914 two years following tag attachment (Fig. 4.6). In 2009, 74914 

initiated directed westward movements toward the UTC on multiple occasions, although 

transmissions ceased before confirmation of a destination was obtained. Five days of 

westward movements commenced on 17 February prior to a short-term resumption of 

non-directional behavior at a novel foraging site. On 18 March, westward migrations 

resumed and this female traveled to within 120 km of Galveston Island in 9 days (mean 

speed of movement: 0.8 km h-1). Following nearly a month of transmitter silence, 74914 

was geolocated back on her primary foraging ground south of Lake Pelto, Louisiana, for 

a single day prior to beginning a second westward migration on 24 April (mean speed of 

movement: 1.0 km h-1). Unfortunately, this ridley’s final transmission was received on 5 

May at an offshore location 250 km east of Galveston Island, and various transmission 

parameters do not provide a clear explanation for turtle 74914’s odd movement behavior 

or cessation of transmissions. This female was not observed nesting in 2009. 

(Responders observed only one nester in 2009 in the course of documenting seven nests 

on the beaches comprising Galveston Island, Bolivar Peninsula, and Follets Island; see 

Chapter II.) 

 

Foraging Ground Utilization 

Analyses of movements by seven telemetered post-nesting Kemp’s ridleys between May 

2007 and June 2010 permitted documentation of 22 distinct, albeit intermittently 

overlapping, neritic foraging grounds located in nearshore or offshore waters ranging 
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from approximately 80 km due south of Galveston Island east to the Florida Keys (Figs. 

4.3a-f, 4.6, 4.9, Table 4.8). Females utilized one (n=1), three (n=3), or four (n=3) 

geographically discrete foraging sites each throughout the duration of their tracking 

period (376 - 710 d).  

  

Integrating Gulf of Mexico foraging ground data (n=2039 accepted locations) for all 

individuals (n=7) over the study period permitted general site characterization (Table 

4.8). Neritic foraging grounds (n=22) occupied a bathymetric range of 1.0 to -83.0 m 

(mean = -17.3 m, SD + 11.9) and were situated 0 - 117.0 km from shore (mean = 35.5 

km, SD + 24.7). Mean speed of movement during foraging phases was 0.4 km h-1 (SD + 

0.5, range = 0 - 4.5 km h-1). All females appeared to actively avoid deep oceanic 

features, including the relatively nearshore Mississippi and DeSoto Canyons (Fig. 4.9). 

Mean SST documented during foraging phases was 24.8°C (SD + 4.6, range = 14.2 - 

31.9°C). Turtle residency intervals at discrete sites prior to either transmitter failure 

(n=5) or directed movement between foraging locations (n=27) or to unknown 

destinations (n=2) ranged from 4 - 418 d (mean = 75.9 d, SD + 85.1; Figs. 4.3a-f & 4.6). 

However, comprehensive assessments regarding utilization of discrete sites over each 

individual’s entire tracking period required pooling data pertaining to recurrent use of 

previously exploited foraging grounds by five females. Mean foraging site residency for 

pooled data was 117.4 d (SD + 120.2, range = 12 - 512 d).  
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Turtle No. Accepted No. Foraging Mean Distance from
ID Daily Locations Grounds Used Mean Depth (m) Shore (km) Mean SST (oC) Mean Speed (km h-1)

74912 340 3 6.3 14.2 24.4 0.4

74913 210 3 21.8 60.9 24.8 0.4

74914 461 3 21.2 49.6 24.9 0.4

74915 210 4 25.9 65.3 24.6 0.5

74917
1

N/A N/A N/A N/A N/A N/A

75421 219 1 6.5 4.2 23.9 0.3

83239 390 4 25.7 30.5 25.3 0.5

83242 209 4 8.9 25.8 25.3 0.6

Mean 291.3 3.1 17.3 35.5 24.8 0.4
SD 105.0 1.1 11.9 24.7 4.6 0.5

Range 209 to 461 1 to 4 ASL
2
 to 83.0 0 to 117 14.2 to 31.9 0 to 4.5

Table 4.8. Foraging ground movements for Kemp's ridleys (n=8) monitored between 2007-2010.

1 Turtle 74917's transmitter failed prior to commencement of foraging behavior.

2 Filtering criteria permitted inclusion of depths ≤1.0 m above sea level (ASL).
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Figure 4.9. Core foraging activity areas (50% KDE; n=22) for Kemp’s ridleys (n=7) monitored after nesting on upper Texas 

coast beaches between 2007-2009. Females each utilized one (n=1), three (n=3), or four (n=3) discrete foraging areas. 

Geolocations associated with an individual’s recurrent use of a discrete foraging site were coalesced to generate a single KDE; 

comprehensive site utilization durations ranged from 12-512 d.           : Denotes 50 m isobath. 
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Louisiana’s Neritic Feeding Grounds 

Gulf of Mexico foraging area density (i.e. degree of spatial overlap of all discrete 

foraging sites identified in this study) was highest in Louisiana’s nearshore and offshore 

waters (Fig. 4.9); this expanse was utilized year-round to some extent by 6 of 7 adult 

Kemp’s ridleys monitored beyond the internesting period. Multiple females established 

foraging grounds within the South Marsh Island and Eugene Island Areas (herein 

SMI/EIA; n=4), the Ship Shoal and South Timbalier Areas (SS/STA; n=5), as well as 

adjacent to the southwestern Mississippi River Delta in the Grand Isle and West Delta 

Areas (GI/WDA; n=2; Figs. 4.3a-f, 4.6, & 4.10).   

 

Disregarding year of use to achieve a comprehensive assessment of temporal utilization 

trends for offshore SMI/EIA foraging grounds revealed that one to three of the four 

turtles associated with this locale (74913, 74914, 74915, 83242) were in residence each 

month throughout the year (Figs. 4.3a, e, f; 4.6; & 4.10). With the exception of June, two 

of these four telemetered individuals occupied the SMI portion of their respective 

foraging sites each month from mid-March through mid-November; females were absent 

from SMI waters during cooler months (mid-November through mid-March). One to 

three females were resident within the EIA year-round with the exception of April. 

Ridley 74914 overwintered on a site spanning the EIA/SSA boundary and was the only 

female present within the EIA periodically from late December through mid-March (Fig. 

4.6). Two individuals (74913, 74915) made directed return movements to previously 

utilized SMI/EIA sites in March or April after migrating west from respective 
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Figure 4.10. Concentration of core foraging activity areas (50% KDE; n=15) for six of seven Kemp’s ridleys monitored long-

term after nesting on upper Texas coast beaches between 2007-2009. Bureau of Ocean Energy Management Boundary Areas 

are outlined in dark gray. 
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overlapping foraging grounds the previous November (Figs. 4.3a & f). Both SMI/EIA-

faithful individuals were documented on associated foraging grounds twice, with 

duration of residency for each occurrence ranging from 61 - 111 d.  

 

Five individuals (74913, 74914, 74915, 83239, 83242) utilized foraging grounds within 

the Ship Shoal (n=3) and/or South Timbalier (n=5) Areas (Figs. 4.3a, b, e, f; 4.6; & 

4.10); both areas were utilized by one to three females each calendar month. As with 

SMI/EIA sites, SSA foraging grounds overlapped and were restricted to offshore waters, 

whereas two of the four core activity areas within the STA were situated near the coast 

and represent the westernmost nearshore foraging hotspots documented in this study.  

 

Relatively brief residency periods at contiguous STA foraging sites of 12 and 17 d, 

respectively, were documented for 74915 and 83242 during spring or summer months 

prior to directed movements eastward (Figs. 4.3a & e). While STA foraging ground 

usage was not limited temporally, tracked females were absent from the Area’s eastern 

waters from mid-November through March. Ridley 83239, who established and 

maintained a foraging ground extending from eastern STA waters through the Delta 

from June through November 2008 and reoccupied this site the following spring, limited 

movements to the STA’s western region during this cooler time period (Fig. 4.3b).  

Ridley 74914 demonstrated intense site fidelity to a localized region spanning the 

offshore SS/STA border, with initial post-nesting utilization from July 2007 through 

December 2008 (Fig. 4.6). Despite previously overwintering on this site, 74914’s 
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movement behavior during late 2008 coincided with that documented for 83239. Ridley 

74914 initiated westward movements and subsequently occupied an adjacent foraging 

site along the southern EI/SSA boundary until mid-February, prior to being geolocated 

on her initial SS/STA border site again in April. 

 

Nearshore and offshore waters adjacent to the southwestern Mississippi River Delta 

(GI/WDA) were utilized by two individuals (74912, 83239; Figs. 4.3b, c; & 4.10), 

although neither occupied this region from December through March. Ridley 74912 

resided in a spatially concentrated, primarily nearshore zone for 78 d from June through 

September; however, this female displayed a propensity for nearshore migratory and 

foraging habitats throughout the duration of her tracking period (Fig. 4.3c). Turtle 83239 

demonstrated fidelity to this region, which comprised the eastern portion of her largest 

foraging area, on multiple occasions (Fig. 4.3b). Her initial intermittent presence 

spanned from mid-July through mid-November, at which point she relocated west to 

overwintering grounds along the western periphery of STA. She briefly reoccupied the 

GI/WDA site on two subsequent occasions, remaining for 8 d in April before migrating 

to nearshore foraging grounds off Alabama, and again for 10 d in November before a 

second migration to previously utilized foraging grounds offshore Timbalier Bay. 

 

Florida Panhandle’s Neritic Feeding Grounds 

Additional foraging habitats utilized by two females (74912, 75421) were concentrated 

along the Florida Panhandle at St. Joseph Bay (n=2) and Apalachee Bay (n=1; Figs. 
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4.3c, d; 4.9; & 4.11). Turtle 74912 inhabited a restricted foraging area at St. Joseph Bay 

for 22 d in October before continuing east to her primary foraging grounds in Apalachee 

Bay, where she remained for 302 d (31 October 2007 – 27 August 2008) prior to 

cessation of transmissions (Fig. 4.3c). The southernmost geolocations on the Apalachee 

Bay foraging site, which were predominantly recorded from 3 January through 8 

February 2008, represent the farthest offshore foraging positions inhabited by this coast-

preferring female on any of her three foraging sites.  

 

St. Joseph Bay usage occurred year-round except during December and January and was 

turtle 75421’s sole foraging site (Fig. 4.3d). After an initial residency period of 139 d, 

75421 initiated directed movements west on 29 November 2008. She maintained 

migratory swimming behavior for 68 d and demonstrated a rudimentary fidelity to her 

post-nesting route while paralleling the coastline westward through the SPA corridor 

before reversing direction to return to St. Joseph Bay on 6 February 2009, where she 

remained until transmissions ceased 142 d later. Deviations between 75421’s eastward 

post-nesting route and subsequent winter migration were only conspicuous while 

transiting offshore waters east of the Mississippi River Delta to the Alabama-Florida 

border (Fig. 4.3d). With the exception of outlying geolocations recorded from 6 

February to 11 March 2009, a period when this ridley primarily remained in offshore 

waters composing the western boundary of her relatively diminutive foraging site, she 

consistently utilized both the interior of the bay itself and proximate Gulf waters. 
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Figure 4.11. Utilization of neritic foraging grounds at St. Joseph Bay and Apalachee Bay, Florida, by Kemp’s ridleys (n=2) 

after nesting on the upper Texas coast during 2007-2009.         : Denotes 30 m isobath. 
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Seasonal Movements Between Adjacent Feeding Grounds 

Three individuals (74913, 74914, 83239) utilized adjacent foraging sites offshore 

Louisiana on a seasonal basis (Figs. 4.12 a & b; 74915 utilized non-adjacent sites on a 

seasonal basis). Extensive review of temporal usage of what initially appeared to be 

expansive foraging grounds for each individual revealed distinct boundaries between 

relatively larger eastern sites inhabited throughout the majority of the year (herein 

“summer range”) and uniformly smaller western segments used only during cooler 

months (herein “winter range”). It must be noted, however, that partial overlap occurred 

between different individual’s winter and summer ranges (e.g. 74914’s summer range 

overlied 83239’s winter range to some extent). Furthermore, female 74914 demonstrated 

behavioral plasticity in overwintering on her summer range the first year following 

transmitter attachment, but established and maintained an adjacent winter range the 

following year. 

 

All three ridleys initially inhabited eastern summer ranges, two immediately following 

post-nesting migrations, for a period of 111 - 520 d; these durations disregard brief and 

possibly unintentional excursions of 4 and 9 d west into winter ranges for 83239 and 

74914, respectively, both of which occurred nearly simultaneously the week prior to 

Hurricane Ike’s 13 September 2008 landfall on the UTC (Figs. 4.12a & b). Directed 

movement west to winter foraging ranges was initiated in mid-November (n=2) or mid-

December (n=1). Females remained on winter ranges for 61 - 128 consecutive days prior 

to re-inhabiting summer ranges in late March (74913, 83239; Fig. 4.12b) or initiating 
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Figure 4.12. Seasonal usage of adjacent foraging grounds by Kemp’s ridleys (n=4) after 

nesting on upper Texas coast beaches between 2007-2009. Locations in blue represent 

foraging areas used during cooler months; these were uniformly smaller and located 

west of foraging areas utilized during warmer months.          : Denotes 50 m isobath. 
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migrations toward more westerly foraging grounds and upper Texas coast nesting 

beaches (74914; Fig. 4.6). 

 

Similar seasonal movement behavior was evident in the foraging and migratory 

movements of the smallest turtle tracked in this study, 74915 (Fig. 4.12a). Analysis of 

74915’s tracks revealed multiple, primarily directional lateral movements of 12 - 28 d 

among three distinct foraging areas inclusively comprised of constrained, primarily non-

directional movements (Fig. 4.3a). Ridley 74915 utilized two adjacent easterly sites from 

July through mid-November and returned to inhabit the larger of these from March 

through May. Both summer ranges were located approximately 140 km from 74915’s 

winter range, where this female established residency for 52 consecutive days from mid-

December through early February. Two migrations of 19 and 28 d, respectively, were 

made in transitioning between summer and winter ranges.  

 

Kernel Density Analyses 

Five foraging grounds with <34 daily locational observations (one each attributed to 

turtles 74912, 74913, 74914, 74915, and 83242) were excluded from KDE analyses 

(Table 4.4). Mean core activity area (50% KDE contour) for the remaining 17 was 679.8 

km2 (SD + 680.9), while utilization distribution (90% KDE contour) averaged 2313.5 

km2  (SD + 2307.2; Table 4.4). Turtle 75421’s sole foraging area at St. Joseph Bay 

represented the smallest established site (50% KDE: 52.8 km2, n=218); while turtle 
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83242’s fourth foraging area, also the southernmost identified feeding site, occupied the 

largest area (50% KDE: 2098.6 km2, n=105). 

 

DISCUSSION  

Collective interpretation of historical Kemp’s ridley satellite tracking data reveals the 

importance of neritic habitats spanning the entire Gulf of Mexico for mature female 

conspecifics (Byles 1989, Mysing & Vanselous 1989, Renaud et al. 1996, Renaud & 

Williams 2005, Shaver & Rubio 2008, Seney & Landry 2011, Shaver et al. 2013). 

Implementation of effective and enforceable in-water Kemp’s ridley conservation 

measures, however, will require further analyses to better identify spatially and/or 

temporally constrained usage of significant migratory corridors and foraging grounds, as 

well as internesting area boundaries off other lesser known, auxiliary Kemp’s ridley 

nesting beaches like those comprising the UTC. Discernment of critical habitats 

supporting concentrations of reproductively mature conspecifics will then permit better 

identification and mitigation of associated consequential mortality factors through 

implementation of MPAs, seasonal fishery closures, and/or other justifiable conservation 

measures. 

 

Internesting Period 

While nesting and telemetry data indicate UTC nesters are becoming an increasingly 

important component of the recovering Kemp's ridley population, current regulations do 

not provide ridleys using associated habitats protections equivalent to those enforced 
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along the lower Texas coast. A Texas Parks and Wildlife Department (TPWD) 

regulation instituted in 2000 prohibits shrimp trawling within 8 km of shore along North 

Padre Island, South Padre Island, and Boca Chica Beach annually from 1 December 

through mid-May, supplementary to the pre-existing annual Texas Closure of state and 

federal waters effective from mid-May through mid-July. This additional protection 

measure, which likely reduces nester mortality (Lewison et al. 2003) while concurrently 

preventing excessive pressure on shrimp stocks, was based in part upon data provided by 

Shaver & Rubio (2008) at a time when Kemp’s ridley nesting at Padre Island National 

Seashore never surpassed 16 nests annually. Shaver & Rubio (2008) stated “the new 

closure likely contributed to the sharp increase in nesting documented on the Texas coast 

from 2002 to 2007.”  

 

Bycatch of Kemp’s ridleys in Gulf of Mexico shrimp trawling operations is substantial 

(Moore et al. 2008; National Marine Fisheries Service 2011; NOAA, NMFS & SERO 

2012), and excessive incidental take of nesting females may hinder population recovery 

efforts. Documented strandings of adult ridleys are typically greater in Texas than in any 

other U.S. state (Shaver 2012). Historically, lethal and non-lethal strandings of Kemp’s 

ridleys along the Texas Gulf coast have been highest in zone 18, which is centered 

around Galveston Island (Patella 1975, Lewison et al. 2003). Internesting movement and 

nesting (Chapter II) data reported herein and for previous years (Seney & Landry 2008) 

provide unequivocal support for statewide expansion of the effective TPWD seasonal 

shrimp trawling regulation afforded the lower Texas coast, particularly northward to 

185



	
  

incorporate documented nearshore nesting and internesting habitats from Matagorda 

Peninsula to Galveston Island and Bolivar Peninsula. 

 

Migratory Phases 

Corridors 

Tracking data generated from seven post-nesting females may be insufficient to 

comprehensively elucidate a suite of migratory behaviors characteristic of upper Texas 

coast nesters. However, despite expected permutations in transitory movements 

displayed across individuals (particularly 74912) and years, corresponding trajectories 

were documented for multiple females across two identified corridors. The first, a 

functional migratory bottleneck through the South Pass Area (Fig. 4.7), results from the 

confinement of the continental shelf proximal to the Mississippi River Delta Basin and is 

analogous to that defined by Griffin et al. (2013) for loggerhead sea turtles (Caretta 

caretta) off Cape Hatteras, North Carolina. Migratory movements of five ridleys east 

through this corridor were highly concentrated in June and September; June movements 

are coincident with results obtained by Renaud (1995) for a telemetered adult ridley 

released off Brownsville, Texas. Additionally, one turtle demonstrated moderate fidelity 

to her corridor route during additional transits in December and January, evidence that 

SPA corridor usage is not limited temporally. 

 

A second, more expansive corridor incorporating waters within the 10 - 30 m isobaths 

extending from the UTC to the Ship Shoal Area offshore Louisiana was utilized during 
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late May, June, and July by six of seven post-nesters progressing eastward toward 

discrete foraging sites (Fig. 4.5). Eastward UTC-SSA corridor movements were spatially 

and temporally consistent with those documented for Kemp’s ridleys satellite tagged 

after nesting in Texas by Seney & Landry (2008, 2011) and Shaver & Rubio (2008). 

This expanse, recently identified as a critical ridley foraging corridor by Shaver et al. 

(2013), may support consistently elevated concentrations of migrating post-nesters 

annually during June and July. 

 

The potential exists for these seasonal aggregations of migrating conspecifics, 

particularly post-nesters moving east through the UTC-SSA corridor in June and July, to 

further increase in density coincident with ridley nesting in Texas. Identification and 

mitigation of potential mortality factors impacting reproductively mature females, the 

population component most critical for species recovery, during intervals of ridley 

convergence in migratory corridors may facilitate ongoing recovery efforts.  

 

Nesting Beach Remigration 

While considerably less knowledge exists regarding ridley movements from Gulf of 

Mexico foraging areas to Texas’ nesting beaches, it can be speculated that westward 

nesting beach remigrations spatially replicate eastward post-nesting movements 

(Morreale et al. 2007) and permit arrival to nesting beaches prior to the April-July 

nesting season, such as was exhibited by one female monitored by Shaver & Rubio 

(2008). An incomplete westward transit across the SSA-UTC corridor by turtle 74914 (a 
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consistent biennial nester) during March 2009, initiated two years after nesting on 

Galveston Island, is consistent with expected nesting beach remigration (Fig. 4.6). This 

female’s motivation for subsequently returning to foraging grounds before initiating a 

second westward corridor transit in late April remains unclear, although plausible 

causative factors include Hurricane Ike’s detrimental effects on UTC nesting beaches in 

September 2008 (Doran et al. 2009) and potential sub-lethal effects of tag attachment 

(i.e. inflated metabolic cost of movement associated with increased hydrodynamic drag, 

associated diving and/or feeding behavior anomalies, etc.; Thompson et al. 1990, 

Watson & Granger 1998, Jones et al. 2011) leading to insufficient reproductive fitness.   

 

Seasonal Movements 

Prior tracking research suggests Kemp’s ridleys in the Gulf of Mexico employ multiple 

strategies in response to seasonally fluctuating thermal conditions; this is consistent with 

behavioral heterogeneity displayed by females in the current study. Renaud & Williams’ 

(2005) collective interpretation of movements by 106 monitored juvenile and adult 

Kemp’s ridleys revealed fall and winter migrations that were typically south and/or 

offshore into deeper waters along both the Texas and Florida shorelines, with ridleys 

returning to coastal feeding environments in spring. In contrast, seasonal movements 

have not been identified for post-nesting females satellite-tracked after nesting on the 

Texas coast (Seney & Landry 2008, 2011; Shaver & Rubio 2008; Shaver et al. 2013). 

 

188



	
  

Two disparate seasonal strategies were observed for five of seven females monitored at 

length after nesting on the UTC. Turtle 75421, the only female restricted to a sole 

foraging area for the duration of monitoring, engaged in an extended migration from late 

November to early February prior to reoccupying her St. Joseph Bay foraging site (Fig. 

4.3d). Persistent reductions in localized SST to a late November low of 18.3ºC at St. 

Joseph Bay likely induced this female’s prolonged travel, the initiation of which was 

temporally consistent with seasonal movements documented by Schmid & Witzell 

(2006) for six immature ridleys that departed from western Florida foraging sites when 

mean SSTs reached 17ºC. Geolocations recorded during 75421’s first month of 

reoccupation comprised the western offshore boundary of this feeding site, while 

subsequent positions from mid-March until cessation of transmissions in late June were 

primarily within a nearshore utilization hotspot. This late winter propensity to restrict 

use of an established foraging site to waters comprising the offshore boundary mirrors 

that documented for coast-preferring ridley 74912 on her Apalachee Bay foraging 

ground, also situated along the Florida Panhandle. While the drivers behind protracted 

winter migrations and late winter offshore positioning remain unclear, environmental 

parameters, particularly thermal regime, likely provide the proximate stimulus (Godley 

et al. 2008). 

 

Four females (74913, 74914, 74915, 83239) displayed compelling movements consistent 

with temperature-induced longitudinal migrations in Louisiana’s offshore waters, 

transiting west from larger easterly summer ranges to truncated winter ranges in 
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November (n=3) or December (n=1) and returning east to previously established 

summer ranges in March (n=3) or April (n=1; Figs. 4.12a & b). Migration periods and 

contrastive seasonal foraging area sizes coincide with that described by Broderick et al. 

(2007) for green (Chelonia mydas) and loggerhead sea turtles in the Mediterranean, 

wherein the authors hypothesized smaller winter ranges were the result of cooler 

temperatures reducing an individual’s propensity for movement. Waters below 20ºC 

induce physiological and behavioral alterations, including hypophagia, in captive reared 

juvenile Kemp’s ridleys (Moon et al. 1997). Therefore, it is plausible mature female 

conspecifics also exhibit a similar, temperature-dependent reduction in food intake and, 

thus, require less supportive habitat during the cold season. This theory is supported by 

mean winter range SSTs of 20.0º C (SD + 1.4, range = 18.0 - 22.8°C), 18.3º C (SD + 

1.0, range = 17.0 – 20.7°C), 19.6º C (SD + 1.5, range = 17.3 – 22.0°C), and 20.3º C (SD 

+ 1.2, range = 18.1 – 23.2°C) for females 74913, 74914, 74915, and 83239, respectively. 

 

Variability between individuals with presumably disparate tolerances for cooler 

temperatures, as well as variances in annual thermal regimes and prey abundance, likely 

contribute to the partial correspondence of summer and winter ranges documented 

herein. In addition to these factors, this study’s limited sample size precludes conclusive 

delineation of regions unsuitable for overwintering ridleys. However, the lack of 

previously resident females inhabiting the SMI Area (December-February), eastern STA 

(December-March), and GI/WDA (December-March) during cooler months suggests 

ridleys may be absent from associated areas at predictable intervals. Further research to 
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confirm regions that are consistently inhospitable for overwintering ridleys may permit 

increased anthropogenic utilization of localized resources without restrictions associated 

with this endangered species. In addition, seasonally accurate spatial knowledge of the 

Kemp’s ridley population will maximize the efficient implementation and enforcement 

of federal and state management strategies. 

 

Foraging Behaviors 

The significance of Louisiana’s coastal waters for foraging Kemp’s ridleys, particularly 

between Sabine Pass and the Mississippi River, has been established for decades 

(Hildebrand 1982). Corroborative, spatially delineated data published by Shaver et al. 

(2013) reveal concentrations of female conspecifics, originally intercepted on nesting 

beaches in both Texas and Mexico, subsequently congregated in Louisiana’s neritic 

zone, waters also utilized by four females tracked after nesting on the UTC by Seney & 

Landry (2008). Appreciable utilization of Louisiana’s waters <50 m in depth by six of 

seven captive reared and wild UTC females monitored post-nesting in the current study 

substantiates the importance of this region for post-nesting Kemp’s ridleys regardless of 

natal origin (Fig. 4.9).  

 

Dissimilarities exist, however, in attributes characterizing UTC post-nesters versus that 

documented by Shaver et al. (2013) for 18 females sourced from the lower Texas coast 

and Mexico, although this may simply be an artifact of the current study’s reduced 

sample size (n=7). While foraging site residency intervals for pooled data garnered from 
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UTC nesters were comparable to that described for “final” foraging sites by Shaver et al. 

(2013), UTC ridleys utilized deeper waters farther from shore over a much broader range 

of temperatures (Table 4.8). Mean SST reported by both studies was similar, however, 

and upper temperature range limits herein coincide with that obtained by Seney & 

Landry (2008). The increased use of deeper waters over an expanded temperature range 

(14.2 - 31.9ºC) by UTC Kemp’s ridleys is likely attributable to this study’s longer 

average tracking duration resulting in a greater proportion of overwintering data. 

 

Post-reproductive UTC females each occupied one to four discrete foraging areas 

spanning from northern Texas to the Florida Keys (Fig. 4.9, Table 4.8). In contrast to 

Louisiana’s numerous nearshore and offshore Kemp’s ridley feeding grounds, all four 

foraging sites associated with Florida’s Gulf Coast (St. Joseph Bay, Apalachee Bay, 

Charlotte Harbor region, and Florida Keys) were situated adjacent to the coastline, as 

evidenced by reduced mean values characterizing distance from shoreline and depth 

during foraging periods for three associated females (74912, 75421, 83242; Table 4.8). 

All three were located at St. Joseph Bay during October (Figs. 4.3c, d, & e), although 

duration of residency was brief for two individuals. Female 75421 demonstrated fidelity 

to St. Joseph Bay on two occasions; however, this individual’s movement and 

temperature data indicate this site is inhospitable for Kemp’s ridleys during December 

and January (Fig. 4.3d). In contrast with results obtained by Hawkes et al. (2011) for 

telemetered loggerheads, the Charlotte Harbor region may also be temporally limited at 

indeterminate intervals. Ridley 83242, the sole female geolocated here, initiated directed 
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movements south to the Florida Keys in early January following two consecutive days of 

temperatures below 17ºC, the two lowest SST recorded for this turtle (Fig. 4.3e). Year-

round residency did occur, however, at Apalachee Bay, situated 125 km east of St. 

Joseph Bay along the Florida Panhandle (74912; Fig. 4.3c). Nonetheless, it must be 

noted that associated SST values were intermittently documented below 16ºC from 

January through March. This temporally unconstrained inhabitation of the Apalachee 

Bay region is consistent with results obtained for juvenile and sub-adult ridleys by 

Rudloe et al. (1991). 

 

Mean foraging site core utilization area (50% KDE: 679.8 km2; Table 4.4) corresponds 

to that identified by Shaver et al. (2013; 660.8 km2) but not with that previously 

established for six UTC females by Seney & Landry (2011; 1389 km2). However, 

comparability is inhibited by each study’s employment of disparate tracking durations 

and methodologies used in telemetry data analysis. The utilization of a more advanced 

model to differentiate between migratory and foraging movements, such as switching 

state-space modeling, is not expected to significantly alter the results presented herein. 

However, such a model may be beneficial in further refining conclusions regarding post-

nesting ridley movements (particularly in regards to ridley 74915) and in increasing 

comparability of results herein with other published Kemp’s ridley data. 

 

Interannual Fidelity 

The strict nesting beach fidelity demonstrated by UTC Kemp’s ridley nesters has 
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facilitated the attachment of multiple satellite transmitters to four post-nesting females 

since 2006 (Seney & Landry 2008, 2011; K. Reich, pers. comm.). Individuals were 

predominantly faithful to internesting areas, migratory routes, and foraging sites during 

subsequent tracking events, consistent with results documented by Shaver & Rubio 

(2008) for telemetered ridleys nesting farther south in Texas, as well as within other sea 

turtle populations (Broderick et al. 2007, Marcovaldi et al. 2010, Hawkes et al. 2011). 

Minor disparities between tracking events may be attributed to plasticity in 

environmental resources and/or physical conditions. 

 

Conservation Implications 

Kemp’s ridley sea turtles face numerous anthropogenic threats in the marine 

environment that contribute to the imperiled status of this species. Potential in-water 

mortality factors include, but are not limited to, development and/or degradation of 

critical habitats and associated permutations in prey resources, vessel strikes, physical 

and chemical pollution, and commercial and recreational fishery bycatch (NMFS, 

USFWS & SEMARNAT 2011). Environmental perturbations associated with prolific 

extraction of oil and gas resources offshore Louisiana must also be considered in relation 

to Kemp’s ridley recovery efforts.  

 

Female Kemp’s ridleys from beaches throughout their nesting range demonstrate 

disparate predilections in internesting, migratory, and foraging behaviors that preclude 

an oversimplified determination of critical habitats worthy of population conservation 
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measures. Recently, significant contributions to quantify “important marine foraging, 

breeding, and inter-nesting habitats” in support of a Priority 1 Recovery Task in the 

Kemp’s Ridley Recovery Plan have been made (Seney & Landry 2008, 2011; Shaver & 

Rubio 2008; Shaver et al. 2013). Results provided herein not only augment these efforts 

but also reveal temporally limited inhabitation of specific areas by mature females 

during internesting, migratory, and foraging phases. This information is provided to aid 

environmental and extractable resource managers in implementing minimally restrictive, 

seasonally adaptable conservation measures to minimize lethal pressures and ensure the 

sustained recovery of this population. Ultimately, increased emphasis is needed on 

conservation activities to maintain or improve the health and accessibility of known 

feeding grounds, migratory corridors, and internesting areas in the Gulf of Mexico 

deemed critical for adult conspecifics.  

 

195



CHAPTER V 

MOVEMENTS OF AN ADULT MALE KEMP’S RIDLEY  

(LEPIDOCHELYS KEMPII) FOLLOWING STRANDING AND 

REHABILITATION ON THE TEXAS COAST 

 

INTRODUCTION 

Legal protections for the Critically Endangered Kemp’s ridley sea turtle (Lepidochelys 

kempii; IUCN 2011) were independently enacted by the Mexican and U.S. governments 

nearly a half-century ago (Márquez 1994; NMFS, USFWS & SEMARNAT 2011). Since 

that time, a diverse array of conservation initiatives have sought to identify and mitigate 

anthropogenic threats in both terrestrial and marine environments; these efforts have 

resulted in an auspicious beginning to the recovery of this species (NMFS, USFWS & 

SEMARNAT 2011). Reproductive output at major rookeries [including Rancho Nuevo, 

Tamaulipas, Mexico, and Padre Island National Seashore (PAIS), Texas, USA], a 

consistent barometer of population magnitude for this species, has increased at an 

exponential rate for more than a decade (NMFS, USFWS & SEMARNAT 2011). 

 

Research and recovery efforts for the Kemp’s ridley have predominantly focused on 

maximizing reproductive outcomes and/or minimizing lethal commercial fishery 

interactions (TEWG 2000; NMFS, USFWS & SEMARNAT 2011). While in-water 

protection measures, such as turtle excluder devices (TEDs), may benefit both male and 

female conspecifics at different life stages (Epperly 2003, Lewison et al. 2003), the 
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majority of conservation resources have been directed toward nesting beaches and 

increasing survivorship of terrestrially-accessible individuals (nesting females, eggs, and 

hatchlings; Coyne & Landry 2007). The ongoing recovery of the Kemp’s ridley sea 

turtle is being measured in terms of reproductive success (NMFS, USFWS & 

SEMARNAT 2011), yet insufficient quantitative data exist in regards to reproductive 

behaviors and associated environmental requirements of a crucial contributor: adult 

males. Despite recent insights into the spatial ecology of juvenile (Morreale & Standora 

2005, Renaud & Williams 2005, Mansfield 2006, McClellan 2009, Seney & Landry 

2011, Lyn et al. 2012) and post-nesting female ridleys (Seney & Landry 2008, 2011; 

Shaver & Rubio 2008; Shaver et al. 2013; see Chapter IV), breeding aggregations, 

migratory movements, and foraging behaviors of adult males remain largely unknown 

(Shaver et al. 2005). 

 

The current paradigm suggests that mature male Kemp's ridleys primarily reside in 

neritic foraging habitats in the vicinity of the nesting beach year-round and 

predominantly engage in courtship and mating activities in March, immediately prior to 

the commencement of the April-July nesting season (Owens 1980, Rostal 1991, Rostal 

et al. 1998, Rostal 2005, Shaver et al. 2005). In addition, field observations of mounted 

pairs near known nesting beaches have occurred between October-May (Rancho Nuevo) 

and in early June (PAIS), although confirmation of copulation is lacking (Pritchard & 

Márquez 1973, Shaver et al. 2005). This tendency for male Kemp’s ridleys to establish 

year-round residency near rookeries is behaviorally disparate from seasonal migratory 
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movements displayed by mature female conspecifics (Seney & Landry 2008, 2011; 

Shaver & Rubio 2008; Shaver et al. 2013; see Chapter IV) and male sea turtles of other 

species (L. olivacea: Beavers & Cassano 1996, Plotkin et al. 1996; Caretta caretta: 

Arendt et al. 2012b, Casale et al. 2013; Chelonia mydas: Limpus 1993, Hays et al. 

2001b; Dermochelys coriacea: James et al. 2005). 

 

Identification of spatially- and temporally-defined areas frequented by adult male ridleys 

for breeding, migrating, and/or foraging purposes is necessary to accomplish a Priority 1 

Recovery Task in the Kemp’s Ridley Recovery Plan that mandates the protection and 

management of important marine habitats (NMFS, USFWS & SEMARNAT 2011). 

Implementation of marine protected areas (MPAs) and/or other conservation measures to 

facilitate the protection of mature male conspecifics utilizing critical habitats will require 

a comprehensive effort to better delineate habitat boundaries, assess localized sources of 

mortality and, in foraging areas, to quantify and qualify prey resources and physical site 

characteristics. Published scholarly information on adult male Kemp’s ridleys is 

currently limited to a single source describing the movements of eleven individuals 

incidentally captured from waters near Rancho Nuevo (Shaver et al. 2005); thus, the 

long-term movements of a single adult male Kemp’s ridley from Texas described herein 

may provide valuable insight for conservation purposes. Research objectives addressed 

in this chapter include: 
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1) Identification of migratory and foraging behaviors displayed by an adult male 

Kemp’s ridley, including quantification of spatial and temporal use of feeding 

grounds. 

2) Ascertainment of potential breeding site(s) and frequency of reproductive 

activity. 

3) Discernment of correlations between movement behaviors exhibited by a 

rehabilitated adult male versus that documented for both non-rehabilitated male 

and female conspecifics. 

 

METHODS 

The adult male Kemp’s ridley (herein YYN955) selected for satellite tagging was 

encountered stranded with no external injuries 19 April 2009 on Harbor Island near 

Corpus Christi, Texas. Sex was determined based on external morphology (Pritchard & 

Márquez 1973, Bentivegna 2002, Hays et al. 2010); this turtle possessed robust curved 

flipper claws and a prehensile tail that extended beyond the carapace margin (Rostal 

1991, Márquez 1994; Fig. 5.1). Morphometrics were obtained coincident with the 

application of flipper and passive integrated transponder (PIT) tags 18 July 2009; 

YYN955 measured 66.3 cm maximum straight carapace length (SCL), 69.1 cm 

maximum curved carapace length (CCL), and weighed 31.2 kg. Following a 95-day 

rehabilitation period at the University of Texas Marine Science Institute’s Animal 

Rehabilitation Keep (ARK) in Port Aransas, YYN955 was outfitted with a satellite 
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Figure 5.1. Rehabilitated adult male Kemp’s ridley YYN955 upon release 23 July 2009 on Mustang Island, Texas.  

(Photo by Tasha Metz.) 
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transmitter and released 23 July 2009 on Mustang Island, Texas (27.781067, 97.094300; 

Fig. 5.2).  

 

Satellite Telemetry 

Transmitter Attachment 

YYN955 was dry-docked within a suitably confining plastic container at ARK 

throughout the 3-hour PTT attachment process. A 480 g Sirtrack KiwiSat 101 PTT, 

powered by a 2 x C cell battery package and programmed to broadcast messages at a 

frequency of 401.65 MHz using a 40 s repetition rate, was activated at 0900 GMT (0400 

CDT) and set to operate with a duty cycle of 6 h on:6 h off. Preparation and attachment 

of the PTT to the turtle’s first and second vertebral scutes with the 4NC antenna oriented 

anteriorly essentially followed protocol established by Seney & Landry (2008). Pertinent 

portions of the turtle’s carapace and the sides and bottom of the PTT (previously coated 

in aerosol anti-fouling paint) were primed with 60-grit sandpaper followed by an acetone 

wash. Two layers of Power-Fast two-part standard set epoxy were applied and 

manipulated to minimize hydrodynamic drag; each coat remained exposed to ambient air 

until it was no longer pliable. Six tubes of Sonic-Weld marine epoxy (Mansfield 2006) 

were then distributed over the entire attachment and permitted to solidify (approximately 

10 min). Lastly, the tag (excluding PTT saltwater switches and antenna) and cured 

attachment materials were coated with a brush-on antifouling paint. 
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Figure 5.2. Movements of rehabilitated adult male Kemp’s ridley sea turtle YYN955, 2009-2013.       : Denotes 19 April 2009 

stranding location;       : denotes 23 July 2009 release location;     : denotes 29 July 2013 final PTT geolocation,        : denotes 

migratory movements,         : denotes foraging ground (F) movements,           : denotes 50 m isobath. 
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Data Analysis 

Geographic location data, generated based upon the Doppler shift between successive 

transmissions by a PTT to NOAA’s Polar Orbiting Environmental Satellites (POES), 

were processed and communicated by CLS America’s Argos Service. Location 

information derived from ≥4 transmissions was classified (LC) based upon estimates of 

accuracy as follows: LC 3 (<150 m), LC 2 (150 – 350 m), LC 1 (350 – 1000 m), and LC 

0 (>1000 m; Argos 1996). Locations provided with no estimate of accuracy were 

classified based on derivation as LC A (3 messages) or LC B (2 messages); 

transmissions of LC Z indicated a processing failure (Argos 1996).  

 

Archived PTT location information, paired with relevant integrated environmental data 

including sea surface temperature [SST; source: Advanced Very High Resolution 

Radiometer (AVHRR) satellite-based sensors] and oceanic bathymetry [source: General 

Bathymetric Chart of the Oceans (GEBCO)], was compiled by the Satellite Tracking and 

Analysis Tool (STAT; Coyne & Godley 2005). The STAT filtering algorithm was 

utilized to remove locations of class Z and those with elevations exceeding 1.0 m. The 

traditional location class hierarchy (LC 3 > 2 > 1 > 0 > A > B; Costa et al. 2010) was 

then employed to generate a single “best” daily location (Hawkes et al. 2011, Arendt et 

al. 2012a); limiting use to the first occurrence of the highest quality LC during each 24-

hour period minimized autocorrelation in subsequent spatial analyses. Finally, a filtering 

protocol developed by Arendt et al. (2011) that simultaneously identified implausible 

locations requiring turning angles <5° and/or linear swimming speeds exceeding 5  
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km h-1 (Renaud 1995) was applied. If filtering criteria were not met by the initial best 

daily location, corresponding alternate tracking information was systematically 

substituted or that day’s location was omitted from the data set. This protocol resulted in 

18 substitutions and permitted retainment of 98.8% of the 1064 original observation 

days. 

 

Esri’s ArcGIS 9.3 was employed to visualize retained coordinates. Discernibly spurious 

geolocations consisting of LC 0 (n=5), LC A (n=27), and LC B (n=19) were manually 

omitted. Directionality and displacement of plotted geolocations from YYN955’s release 

site were scrutinized to deduce foraging versus migratory behaviors, similar to criteria 

used by Hawkes et al. (2011). Per criteria established for mature females tracked from 

upper Texas coast (UTC) beaches (see Chapter IV; UTC beaches are located 

approximately 250 km northeast of YYN955’s stranding location), migratory phases 

primarily consisted of consecutive directional movements (Griffin et al. 2013), while 

foraging areas were characterized by restricted, primarily non-directional movements 

utilized by an individual for a minimum of 12 consecutive days (≥11 geolocations). This 

temporally- and behaviorally-based termination of migratory behavior is more robust 

than that utilized in other sea turtle tracking studies (Zbinden et al. 2008, Marcovaldi et 

al. 2010). 

 

Home Range Tools (HRT; Rodgers et al. 2007) for ArcGIS was used to generate 

migratory routes to and kernel density estimates (KDE; 50% and 90%) for each foraging 
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ground with ≥34 daily locations (Millspaugh & Marzluff 2001). Recurrent use of 

spatially distinct feeding sites was coalesced to generate single cohesive KDE contours 

representative of use over the duration of the entire tracking period. Migratory phases 

were deemed terminated when the directional path traversed the previously established 

foraging zone boundary (Griffin et al. 2013), resulting in the potential inclusion of up to 

several days of directional movement within the foraging ground for KDE estimate 

generation. Core activity areas (50% probability contour; Hooge et al. 1999) and 

utilization distributions (90% probability contour; Borger et al. 2006) were calculated for 

each foraging ground using the fixed least squares cross-validation smoothing factor and 

rescaling to unit variance if the ratio of standard deviations exceeded 1.5. 

 

Official Protraction Diagram and Leasing Map boundaries, disseminated by the Bureau 

of Ocean Energy Management (BOEM), were plotted in conjunction with retained 

geolocations to provide a relevant spatial reference for movements by a mature male 

Kemp’s ridley in relation to the intense exploration, development, and extraction of the 

Gulf of Mexico’s profuse mineral resources. Displayed Boundary Areas situated on the 

federal continental shelf may aid in coordinating sea turtle conservation efforts with Gulf 

of Mexico resource extraction interests.  

 

RESULTS 

YYN955’s PTT transmitted location and sensor data for 1468 d (1000 retained 

geolocations between 23 July 2009 - 29 July 2013). All documented movement occurred 
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within neritic western Gulf of Mexico waters extending from YYN955’s release site on 

Mustang Island, Texas, northeast to offshore waters due south of Atchafalaya Bay, 

Louisiana, within the western Ship Shoal Area (Figs. 5.2 & 5.3a). This male remained 

almost exclusively in waters less than 50 m in depth during both migratory and foraging 

phases. Migratory movements (denoted as “M”) and foraging grounds (denoted as “F”) 

described herein are followed by a numerical designation denoting sequence of 

occurrence (migration) or initial use (foraging ground). 

 

Migratory Phases 

Eight distinct migrations, ranging in duration from 6 - 113 d (mean = 26.5, SD + 35.7), 

were made by YYN955 in transitioning to or among foraging sites (Fig. 5.4). Directed 

movements were initiated in January (n=1), May (n=1), July (n=2), August (n=2), and 

October (n=2) on routes situated a mean distance of 46.2 km from shore (SD + 39.1, 

range = 0 – 136.0 km) in waters averaging 22.6 m in depth (SD + 13.8, range = 1.0 to  

-44.9 m) and 23.3ºC SST (SD + 5.7, range = 14.1 – 31.6ºC).  Mean speed of movement, 

which ranged from 0 – 3.3 km h-1, was 0.5 km h-1 (SD + 0.5).  

 

Nearshore (≤ 10 km from the nearest shoreline) migrations, including post-release 

movements (M1) and the latter portion of this ridley’s itinerant movements from 16 

January – 8 May 2010 (M4), were principally composed of sequential linear trajectories 

that paralleled the coastline (Fig. 5.4). However, transitional movements in deeper 

waters, while consistently advancing and thus void of persistent delays or periodic 
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Figure 5.3. Seasonal usage of adjacent foraging grounds (a) F2 and F3 and (b) F4 and F6 

by rehabilitated adult male Kemp’s ridley sea turtle YYN955.    : Denotes summer range 

geolocations;      : denotes winter range geolocations;          : denotes 50 m isobath. 
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Figure 5.4. Migratory (M) movements of rehabilitated adult male Kemp’s ridley sea turtle YYN955, 2009-2013.        

      : Denotes 23 July 2009 release location;     : denotes 29 July 2013 final PTT geolocation,        : denotes foraging  

ground (F) movements,           : denotes 50 m isobath. 

208



	
  

direction reversals indicative of foraging behavior, intermittently incorporated circular 

swimming patterns. Four discrete circuitous movements were documented during 

YYN955’s protracted 113 d migration (M4) in which he transitioned from offshore (>10 

km from the nearest shoreline) feeding grounds (F3) east of Matagorda Bay, Texas, to a 

foraging site (F4) south of Atchafalaya Bay, Louisiana (Figs. 5.4 & 5.5a). In addition, 

two migratory routes commenced and concluded at roughly concordant locations (Fig. 

5.5b). Circuits occurred during a 14 d transition (M3) between adjacent foraging areas 

(F2 and F3) located east of East Matagorda Bay, Texas (a direction reversal occurred 

following a single day within F1’s borders, the most westerly geolocation) and 

subsequently in the course of a 23 d trek (M8) to and from F6, a feeding site offshore 

Louisiana (Figs. 5.4 & 5.5b).  

 

Extended Migratory Movements Encompassing the Kemp’s Ridley Breeding Season 

(March - April) 

YYN955’s initial movements following inception of a prolonged 113 d migration (M4) 

from foraging site F3 on 16 January 2010 were gradual (mean speed of movement: 0.2 + 

0.2 km h-1) and in a southwesterly direction until arrival at a southern terminus 1 March 

2010 (Fig. 5.5a). YYN955 then proceeded northeast, moving inshore adjacent to 

Matagorda and East Matagorda Bays in mid-March before transitioning offshore on 

approach to (but not utilization of) feeding site F5 by late March. On 3 April, 

geolocations again became coastal adjacent to Follets Island and this male remained just 

southwest of Galveston Island until 19 April. Straight-line distance traveled between 1 
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Figure 5.5. Extended (a) and circuitous (b) migratory movements of rehabilitated adult 

male Kemp’s ridley sea turtle YYN955.         : Denotes (a) extended migration 16 

January – 8 May 2010 and (b) circuits 14 October – 28 October 2009 and 18 October –  

9 November 2010;         : denotes remainder of track 23 July 2009 – 29 July 2013;        

      : denotes migration start;      : denotes migration end;         : denotes 20 m isobath;            

         : denotes 50 m isobath. 
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March and 19 April was approximately 180 km at a mean speed of 0.5 km h-1 (SD + 

0.4). Beginning 20 April, YYN955’s movements became more directed and paralleled 

the coastline northward until arrival at feeding ground F4 off Louisiana 10 May 2010. 

Rate of travel averaged 0.8 km h-1 (SD + 0.7) through shallow waters (mean depth: 1.9 + 

2.1 m) during the coastal segment of this extended migratory phase. 

 

Foraging Ground Utilization 

Six distinct neritic foraging grounds were identified in nearshore or offshore waters 

ranging from the southern reaches of Matagorda Peninsula in Texas east to Louisiana’s 

southwestern Ship Shoal Area (Figs. 5.2 & 5.3a). Integrating Gulf of Mexico foraging 

ground data (n=828 geolocations) over the study period permitted generation of a set of 

parameters characteristic of the physical environment utilized by this individual during 

non-migratory phases (Table 5.1). Neritic feeding sites occupied a bathymetric range of 

0.8 to -66.3 m (mean = 31.0 m, SD + 12.6) and were situated 0 – 128 km from shore 

(mean = 71.3 km, SD + 28.7). SST during feeding periods averaged 24.5°C (SD + 4.3, 

range = 15.9 – 31.7°C). Mean speed of movement during foraging phases was 0.4 km h-1 

(SD + 0.4, range = 0 – 4.3 km h-1). Residency intervals at discrete sites prior to directed 

movement between foraging locations ranged from 1 - 177 d (mean = 79.7 d, SD + 

63.3). However, comprehensive assessments regarding site utilization over YYN955’s 

entire tracking period required pooling data pertaining to recurrent use of previously 

exploited foraging grounds (n=3). Mean foraging site residency for pooled data was 186 

d (SD + 211.9, range 20 - 462 d).  
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Foraging Duration of Mean Swim No. Accepted Mean Distance from

Site Foraging (d) Speed (km h-1) Daily Locations 50% (km2) 90% (km2) Mean Depth (m) Shore (km) Mean SST (oC)

F1 20 0.2 19 N/A
1

N/A
1

3.6 2.4 29.5

(SD ± 0.2) (SD ± 4.1) (SD ± 2.7) (SD ± 1.0)

F2 44 0.5 35 354.5 1147.9 23.3 29.4 28.8

(SD ± 0.5) (SD ± 5.7) (SD ± 10.8) (SD ± 0.9)

F3 77 0.4 51 677.3 2139.2 34.9 54.2 21.6

(SD ± 0.3) (SD ± 3.8) (SD ± 9.1) (SD ± 2.6)

F4 462 0.5 328 1702.9 6087.0 22.6 54.6 25.9

(SD ± 0.4) (SD ± 8.4) (SD ± 16.3) (SD ± 4.1)

F5 58 0.6 40 880.5 3020.6 19.6 61.1 29.0

(SD ± 0.4) (SD ± 4.9) (SD ± 17.4) (SD ± 0.9)

F6 455 0.3 355 1348.4 4195.6 41.7 98.2 22.5

(SD ± 0.3) (SD ± 7.3) (SD ± 12.6) (SD ± 3.7)

Mean 186 0.4 138 992.7 3318.1 31.0 71.3 24.5

SD 211.9 0.4 158.2 536.3 1912.1 12.6 28.7 4.3

Range 20 to 462 0 to 4.3 19 to 355 354.5 to 1702.9 1147.9 to 6087.0 ASL
2
 to 66.3 0 to 128.0 15.9 to 31.7

KDE Site Characterization

Table 5.1. Western Gulf of Mexico foraging grounds (n=6) utilized by an adult male Kemp's ridley sea turtle, 2009-2013.

1 Excluded from calculations due to an insufficient number of geolocations.

2 Filtering criteria permitted inclusion of depths ≤ 1.0 m above sea level (ASL).

212



	
  

Residency Near A Known Kemp’s Ridley Rookery 

In mid-May 2010, approximately one year post-rehabilitation and release, YYN955 

initiated directed movements west (M5) from foraging grounds offshore Louisiana to a 

feeding site (F5) located east of a recently established ridley rookery centered on 

Galveston Island, Texas (Fig. 5.4). From 25 May – 21 July 2010, a residency period of 

58 d, this male remained a mean distance of 61.1 km from shore (SD + 17.4 km) in 

waters averaging 19.6 m in depth (SD + 4.9 m; Table 5.1). Mean swim speed while 

resident on F5 (0.6 + 0.4 km h-1) was the highest documented for this male on any 

foraging site and met (n=1) or exceeded (n=5) that recorded during 6 of 8 migratory 

phases. Upon departure from F5, YYN955 returned east and established two distinct 

foraging grounds offshore Louisiana, where he remained for the duration of the tracking 

period (1103 d). 

 

Seasonal Movements Between Adjacent Feeding Grounds 

YYN955 established two sets of adjacent feeding sites in which waters closer to shore 

were utilized during warmer months (herein “summer range”), while offshore areas were 

inhabited during cooler periods of the year (herein “winter range”). East of East 

Matagorda Bay, Texas, a convergent boundary differentiated foraging areas F2 (summer 

range) and F3 (winter range), both of which were occupied during a single interval 

throughout YYN955’s duration of monitoring (Fig. 5.3b, Table 5.1). Initial usage of the 

more coastal F2 site (mean distance from shore: 29.4 + 10.8 km) occurred from 29 

August – 11 October 2009 (44 d). YYN955 then engaged in a 14 d circuitous migration 
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(M3) prior to overwintering to the southeast on F3 from 29 October 2009 - 13 January 

2010 (77 d; mean distance from shore: 54.2 + 9.1 km). SST while resident on F2 

averaged 28.8°C (SD + 0.9); water temperatures averaged 27.8°C (SD + 0.5) during the 

final week of occupation. Mean winter range SST within F3 was 21.6°C (SD + 2.6).   

 

Offshore Louisiana, recurrent seasonal transitions were made between contiguous 

feeding grounds that extended from the East Cameron Area east to the southwestern 

sector of the Ship Shoal Area (Fig. 5.3a, Table 5.1). YYN955 initially established 

residency within F6, a winter range located a mean distance of 98.2 km (SD + 12.6 km) 

from shore, from 29 August 2010 - 21 February 2011 [this date range disregards a 23 d 

circuitous migration (M8) to and from F6 that occurred between 18 October – 9 

November 2010]. Following a temporary cessation of transmissions, this male was 

geolocated on summer range F4 (mean distance from shore: 54.6 + 16.3 km) from 7 

April – 30 September 2011. Consistent north/south transitions across the common F4/F6 

partition, which occurred annually in October and March, were documented for an 

additional two years until PTT transmissions ceased permanently on 29 July 2013. Mean 

SST recorded during YYN955’s inhabitation of the relatively smaller winter range was 

22.5°C (SD + 3.7°C), while summer range SST averaged 25.9°C (SD + 4.1°C). Mean 

site-specific rates of travel were also divergent (F6: 0.3 + 0.3 km h-1, F4: 0.5 + 0.4 km  

h-1). 
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Kernel Density Analyses 

Mean core activity area (50% KDE contour) for five identified foraging sites (F2-F6) 

occupied by YYN955 was 992.7 km2 (SD + 536.3 km2), while utilization distributions 

(90% KDE contour) averaged 3318.1 km2  (SD + 1912.1 km2; Fig. 5.6, Table 5.1). KDE 

contours were not generated for this male’s initial foraging site (F1) due to an 

insufficient number of geolocations (n=19). The two most substantial foraging grounds 

(F4 and F6), in terms of both physical expanse and duration of utilization, were located 

offshore Louisiana; all remaining sites were situated in nearshore or offshore Texas’ 

waters. 

 

DISCUSSION  

The ability to draw constructive conclusions on a suite of behaviors potentially 

characteristic of reproductively mature male Kemp’s ridleys based upon the movements 

of the single individual described herein is limited, both in terms of an insufficient 

sample size and by the inability to identify potential short- or long-term repercussions 

associated with this individual’s stranding and rehabilitation (i.e. post-release fitness, 

habituation, etc.). Nonetheless, the prolonged monitoring duration of 1468 d and the fact 

that this ridley is a wild conspecific that survived to maturity without previous medical 

intervention (based upon lack of prior tags) mean that information advantageous to our 

understanding of mature male conspecifics may be gleaned from his movements. 
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Figure 5.6. Core foraging activity areas (50% KDE; light gray) and utilization distributions (90% KDE; dark gray) for  

foraging grounds (n=5) utilized by rehabilitated adult male Kemp’s ridley sea turtle YYN955, 2009-2013. Geolocations 

associated with this individual’s recurrent use of three discrete sites (F2, F4, F6) were coalesced to generate a single  

KDE; comprehensive site utilization durations ranged from 20 – 462 d.          : Denotes 50 m isobath. 
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Movement Behaviors Indicative of Breeding 

Male Kemp’s ridleys exhibit seasonal reproductive behaviors in confluence with the 

relatively precise seasonality displayed by nesting female conspecifics (Owens 1980, 

Rostal et al. 1998, Rostal 2005). Direct observations of captive, reproductively mature 

Kemp’s ridleys held at the Cayman Turtle Farm (Grand Cayman, Cayman Islands) 

revealed male courtship and mounting behaviors increased in frequency in March and 

were not prevalent between June-January (Rostal et al. 1998, Rostal 2007). Thus, 

movements by YYN955 spanning the pre-nesting (March) and early nesting (April) 

periods during each of the four years he was tracked were of particular interest. 

 

Six months post-release, YYN955 initiated an extended migratory phase (M4) in 

January in which he initially traveled southwest from offshore Texas foraging site F3 

(Fig. 5.5a) in waters averaging 16.2°C (SD + 0.9°C) at a relatively sedentary rate (mean 

swim speed: 0.2 + 0.2 km h-1), a reduced swim speed consistent with expected metabolic 

deceleration during periods of cool temperatures. In early March, YYN955 reversed 

direction and traversed relatively more coastal waters between Matagorda Bay (mid-

March) and Follets Island (early April) at an increased rate of speed (0.5 + 0.4 km h-1), 

then remained in nearshore waters just south of Galveston Island until 19 April (Fig. 

5.5a). This unabridged nearshore environment, particularly that contained within the 20 

m isobath where YYN955 was often located, has been identified as an internesting 

corridor annually frequented in May and June by numerous females comprising the UTC 
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nesting cohort following nest deposition on associated beaches (Seney & Landry 2008, 

2011; see Chapter IV).  

 

While the spatial and temporal parameters associated with breeding by UTC nesters 

remain unknown, it is likely that associated females return to identified internesting 

ranges in March or early April (see Chapter IV) in accordance with documented ridley 

remigrations to Rancho Nuevo (Renaud et al. 1996) and PAIS (Shaver & Rubio 2008). 

Furthermore, it can be speculated that ridleys also breed in the vicinity of UTC nesting 

beaches following remigration from distant foraging grounds, in line with temporal 

peaks in breeding activity observed off Rancho Nuevo and PAIS (Pritchard & Marquez 

1973; Rostal 2007; NMFS, USFWS & SEMARNAT 2011). Thus, it is plausible that 

YYN955’s movements within this internesting corridor during the probable breeding 

period were purposeful and that this male may be associated with the UTC nesting 

cohort. The classification of YYN955’s movements during this time as migratory (based 

on displacement and general directionality) may be an artifact of the relatively small size 

of the recently established UTC nesting cohort and this male’s consequential need to 

search for suitable mates, thus also justifying his moderate rate of movement and 

circuitous (i.e. searching) swimming behavior. On 20 April, just prior to the 24 April 

2010 documented start of ridley nesting in Texas (Shaver 2011), YYN955 initiated 

linearly directed movements along the 2-m depth contour at an increased rate of speed 

(0.8 + 0.7 km h-1) to feeding grounds off Louisiana (Fig. 5.5a). This directed withdrawal 

from speculated breeding grounds and subsequent transit to a known Kemp’s ridley 
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foraging hotspot (Seney & Landry 2008, 2011; Shaver et al. 2013; see Chapter IV) is 

temporally consistent with the estimated conclusion of copulation activities (Rostal 

2007) and this individual’s behavioral shift toward replenishment of nutritional reserves 

depleted during reproduction. This departure is also in accordance with that observed for 

wild, post-breeding male olive ridleys (L. olivacea) that typically withdrew from the 

vicinity of the nesting beach coincident with the mid-season peak in egg laying by 

female conspecifics (Plotkin et al. 1996). 

 

If nearshore waters adjacent to the UTC function as breeding grounds for the small but 

increasing number of ridleys annually nesting on associated beaches (see Chapter IV), 

conjecture which is supported by the movements of YYN955 during March and April 

2010, then serious consideration must be given to the expansion of a Texas Parks and 

Wildlife Department (TPWD) regulation instituted in 2000 for the protection of 

conspecifics nesting on lower Texas coast beaches (Lewison et al. 2003, Shaver & Rubio 

2008). The TPWD regulation currently prohibits shrimp trawling, a principal source of 

anthropogenic mortality for the Kemp’s ridley (Moore et al. 2008, National Marine 

Fisheries Service 2011), within 8 km of the shoreline along North Padre Island, South 

Padre Island, and Boca Chica Beach annually from 1 December through mid-May. 

Extension of the marine environment impacted by this regulation northward to 

incorporate waters adjacent to the UTC would reduce the potential for fisheries-

associated mortality of conspecifics annually congregating for reproductive purposes, 

thus consequentially supporting the potential proliferation of the northernmost cohort of 

219



	
  

the Kemp’s ridley sea turtle. 

 

YYN955’s movements throughout the subsequent three breeding periods (2011 - 2013), 

during which he maintained strict fidelity to foraging grounds offshore Louisiana and 

thus did not migrate to breeding areas in the vicinity of nesting beaches, were not 

discernibly indicative of archetypal reproductive activity. 

 

Foraging Ground Utilization 

YYN955 established and maintained two foraging sites (F4 and F6) offshore central 

Louisiana in waters recently identified as “critical foraging habitat” for post-nesting 

female conspecifics sourced from both Rancho Nuevo and PAIS (Shaver et al. 2013). 

This aforementioned habitat is also heavily utilized by post-nesting females tracked from 

UTC beaches (Seney & Landry 2011, see Chapter IV). Although monitoring of this 

rehabilitated male and that of seven UTC post-nesting females during the foraging phase 

(see Chapter IV) occurred over heterogeneous time scales, significant overlap of core 

use activity areas (50% KDE) and/or utilization distributions (90% KDE) was identified 

(Fig. 5.7a&b). Collectively, UTC females’ use of Louisiana’s waters for foraging 

purposes on an annual basis was similar to that identified for YYN955, although female 

foraging areas had a broader longitudinal distribution. Moreover, proximity of the 

northern boundaries of all calculated utilization distribution contours to Louisiana’s 

shoreline was similar for all monitored adult male (n=1) and female (n=7) ridleys, thus 

potentially indicative of reduced foraging activity by mature conspecifics in waters less 
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Figure 5.7. Spatial relationship of foraging grounds (F4 and F6) offshore Louisiana used 

by rehabilitated adult male Kemp’s ridley YYN955 from 2010-2013 versus feeding sites 

(n=7) used by mature female conspecifics (n=4) during 2007-2009 (see Chapter IV). 

Male 50% (light gray) and 90% (dark gray) KDE contours are displayed as (a) polygons 

or (b) lines. Female foraging activity is represented by individually colored (a) lines 

(90% KDE) and (b) polygons (50% KDE).           : denotes 50 m isobath. 
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than approximately 25 km from shore between the East Cameron and Ship Shoal Areas 

(Fig. 5.7a). In contrast, this male’s primary winter range (F6) extended farther offshore 

(mean distance: 98.2 + 12.6 km) into deeper waters (mean depth: 41.7 + 7.3 m; Table 

5.1) than that documented for previously tracked UTC nesters during winter months, 

likely due to documented disparities in seasonal orientation of this male (north-south) 

versus that for UTC females (east-west; see Chapter IV).  

 

Seasonal Movements Between Adjacent Feeding Grounds 

Renaud & Williams’ (2005) analyses of movements by 106 juvenile and adult Kemp’s 

ridleys, including 3 individuals tracked from either the UTC or western Louisiana, 

detected temperature-induced positional shifts consisting of migrations south and/or 

offshore during the fall and winter and a subsequent return to coastal environments in 

the spring. YYN955’s southeasterly transition from F2 to F3 in October 2009 (Fig. 5.3b) 

and successive return to the nearshore environment in March 2010 (Fig. 5.5a) is 

consistent with this premise of seasonal shifts in locales effected by alterations in the 

thermal regime. In addition, YYN955 demonstrated similar seasonal migratory behavior 

while resident on, and faithful to, foraging grounds off central Louisiana from 10 

November 2010 until PTT transmissions ceased 29 July 2013. During this period, 

YYN955 made five sequential transitions between a relatively smaller offshore winter 

range (F6) consistently inhabited from October through mid-March and a larger, more 

northern (i.e. coastal) summer range (F4) occupied from mid-March through September 

(Fig. 5.3a). Abiotic site parameters characterizing winter ranges F3 and F6 correlate with 
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Renaud & Williams’ (2005) results regarding the use of deeper offshore waters during 

cooler periods. Furthermore, oceanic bathymetry associated with summer ranges F2 

(mean depth: 23.3 + 5.7 m) and F4 (mean depth: 22.6 + 8.4 m; Table 5.1) correspond to 

the 21.7 m depth identified by Renaud & Williams (2005) as characteristic of foraging 

grounds used by Kemp’s ridleys from April – September.  

 

In contrast, this adult male’s ostensibly conventional seasonal transitions are at variance 

with those identified for UTC post-nesting ridleys (n=4; see Chapter IV), as well as the 

lack of seasonality documented for adult males seemingly resident year-round near 

Rancho Nuevo (Shaver et al. 2005) and other adult female conspecifics monitored after 

clutch deposition on Texas’ beaches (Seney & Landry 2008, 2011; Shaver & Rubio 

2008; Shaver et al. 2013). Four UTC females who established residency offshore 

Louisiana, including three whose feeding grounds partially overlaid YYN955’s F4 

and/or F6 sites (74913, 74914, 74915; Fig. 5.7a&b), executed longitudinal fall 

(November/December) and spring (March/April) migrations between larger easterly 

summer ranges and truncated western winter ranges (see Chapter IV). Despite this 

difference in migration directionality, YYN955’s seasonal movements were similar to 

that of these mature females in: 1) the establishment of contiguous feeding sites offshore 

Louisiana, 2) the timing of seasonal movement, and 3) the contrastive size of winter 

versus summer ranges, the latter of which has also been described for green and 

loggerhead turtles (Broderick et al. 2007). The lack of detectable seasonality in the 
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monitored movements of other mature male and female Kemp’s ridleys may simply be 

an artifact of tracking durations averaging less than one year.  

 

Kernel Density Analyses 

This adult male’s mean foraging ground core utilization area (50% KDE: 992.7 + 536.3 

km2; Table 5.1) fell within the range of means (660.8 – 1389 km2) identified for mature 

female conspecifics sourced from nesting beaches in both Texas and Mexico (Seney & 

Landry 2011, Shaver et al. 2013, see Chapter IV). The majority of stated females also 

established foraging grounds within the U.S. Gulf of Mexico, particularly in Louisiana 

waters proximate to YYN955’s F4 and F6 sites. Conversely, YYN955’s mean foraging 

area size (i.e. 50% contour) was appreciably larger than that associated with seven males 

monitored by Shaver et al. (2005) who appeared to reside in the vicinity of the nesting 

beach year-round (mean home range: 95 km2). Comparability between the two studies is 

nearly futile, however, in light of potential sampling biases and disparate tracking 

durations and methodologies used in telemetry data analysis. 

 

Prolonged Foraging Site Fidelity 

YYN955’s long-term fidelity (29 August 2010 – 29 July 2013) to foraging grounds 

offshore Louisiana begets questions regarding his reproductive fitness during this 

protracted interval, particularly in light of potential breeding behavior observed during 

March and April 2010, less than one year following his stranding and subsequent release 

from a rehabilitation facility. The lack of telemetry data describing adult male Kemp’s 
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ridley movements, combined with behavioral plasticity inherent among individuals 

within a population, result in an inability to draw conclusions about the potential 

abnormality of a foraging site residency period of nearly three years. Female Kemp’s 

ridleys foraging in a similar region offshore Louisiana have previously engaged in 

consistent biennial remigrations to the UTC (see Chapter IV), which suggests that 

associated foraging grounds are sufficient to meet the nutritional needs of cancrivorous 

and reproductively active Kemp’s ridleys. That being said, the long-term ramifications 

of the 20 April 2010 Deepwater Horizon oil spill on both sea turtles and prey resources 

within these important foraging grounds remain unclear. Exposure to environmental 

toxins and a reduction in prey availability both have the potential to negatively alter an 

individual’s physiological status and, thus, ability to devote nutritional reserves to 

reproduction. However, limited prey availability may consequently induce relocation to 

more productive feeding sites, but migrations to other destinations were not observed.  

 

Lack of sexual maturity is unlikely the causative factor of the extended residency period 

given this male’s SCL (66.3 cm) in relation to other male ridleys considered 

reproductively active (Pritchard & Marquez 1973, Rostal 1991, Shaver et al. 2005). 

Additionally dubious is the theory of serious, long-term infirmity on the part of this 

male, especially when considered in conjunction with the consistency of timely seasonal 

migrations throughout the residency period. Verification of YYN955’s sex via blood 

work or laparoscopy was not obtained and identification based on physical traits alone is 
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not definitive (Hamann et al. 2003), but this individual’s secondary sexual characteristics 

were well developed (Fig. 5.1). 

 

Barring a complete lack of reproductive fitness, it is plausible this male was 

opportunistically breeding, likely asynchronously and potentially unsuccessfully, with 

female ridleys inhabiting proximate offshore Louisiana foraging grounds (Morreale et al. 

2007, D. Owens pers. comm., P. Plotkin pers. comm.). Although female receptivity is 

reduced outside of the predicted courtship and mating period (Owens 1980, Rostal et al. 

1998), a breeding dichotomy wherein less competitive males (i.e. smaller and/or of 

reduced vigor) can gain access to mates on common foraging grounds may be 

advantageous. In addition, the longevity of YYN955’s tracking duration may in itself be 

an indication of a lack of competitive (male-male) mounting behavior known to occur 

among sea turtles (D. Owens pers. comm.) as this type of contact may potentially 

dislodge PTTs epoxied to carapacial scutes or damage the antenna.  

 

Asynchronous and opportunistic breeding behavior may also account for this male’s 

increased level of activity on F5 (mean swim speed: 0.6 + 0.4 km h-1), a foraging site 

situated east and offshore Galveston Island (Fig. 5.2). YYN955’s temporal utilization of 

this site from 25 May – 21 July 2010 corresponds with the typical annual culmination 

period for the UTC nesting season and the initiation of post-nesting migrations by 

associated females (see Chapter IV). Although monitoring occurred over temporally 

divergent periods, generation of a composite map displaying the post-nesting migratory 
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routes for seven telemetered UTC females (2007 - 2009) and YYN955’s F5 utilization 

distribution contour reveals distinct spatial overlap, with the post-nesting routes of four 

females bisecting this male’s foraging site (Fig. 5.8). Female occurrence within F5’s 

boundaries occurred from early to mid-June and was typically of short duration due to 

the migratory nature of post-nesting movements, although one nester (74913) remained 

on a small adjacent feeding site through 7 July prior to moving eastward. While reduced 

female receptivity and the highly transitory nature of post-nesting movements might 

negate any true breeding opportunities available to YYN955 while resident on F5, this 

timely spatial overlap provides evidence of the ability of male ridleys to reconvene with 

mature female conspecifics at spatially and temporally predictable locations following 

periods of separation, including those induced by disparities in reproductive periodicity. 

 

Conservation Implications 

The ecological niche of adult male Kemp’s ridley sea turtles is poorly understood. 

Additional long-term monitoring of elusive male ridleys associated with both highly 

productive and small scale rookeries in Texas and Mexico is needed to fulfill significant 

gaps in our understanding of the ecological requirements of this critical population 

component during breeding, migratory, and foraging phases. Such data will permit 

development and implementation of inclusive conservation strategies in support a 

Priority 1 Recovery Task in the Kemp’s Ridley Recovery Plan that mandates the 

protection and management of important marine foraging and breeding habitats utilized 

by this species. 

227



 

Figure 5.8 Spatial relationship of foraging site F5 (90% KDE shown) used by rehabilitated adult male Kemp’s ridley  

sea turtle YYN955 from 25 May – 21 July 2010 versus June post-nesting migrations of four female conspecifics  

monitored between 2007-2009.       : denotes 30 m isobath. 
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CHAPTER VI 

CONCLUSIONS & RECOMMENDATIONS 

 

Information supplied in the preceding chapters provides substantive evidence regarding 

the viability of a self-sustaining cohort of Kemp’s ridley sea turtles dependent upon UTC 

nesting beaches. This recently established cohort is primarily composed of young 

females between 10-19 years of age at nesting (through 2009) sourced from the joint 

U.S. and Mexico Kemp’s ridley headstart experiment (USFWS & NMFS 1992, Shaver 

2005b, Shaver & Rubio 2008). The origin of these nesters may engender concerns 

regarding unintended consequences of the headstart program and associated ecological 

ramifications as these experimentally imprinted individuals were intended to recruit to 

Mexico’s nesting beaches (Shaver 2005b), and historic nesting by this species on UTC 

beaches remains unconfirmed (Vielé 1858, Hildebrand 1963, Doughty 1984). However, 

documentation of no fewer than five wild nesters concurrently utilizing UTC habitats 

through 2009, including two with demonstrated intra- or inter-annual nest site fidelity, 

supports postulation regarding a natural northward expansion of the Kemp’s ridley’s 

nesting range coincident with more than two decades of exponential increases in 

reproductive output at Rancho Nuevo, this species’ primary nesting location (NMFS, 

USFWS & SEMARNAT 2011). 

 

Regardless of its genesis, relevant local, state, and federal entities must assume 

responsibility for the protection of Critically Endangered Kemp’s ridleys (IUCN 2011) 
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utilizing UTC nesting beaches. Safeguarding this breeding population in associated 

terrestrial and marine environments will support current and future Kemp’s ridley 

conservation efforts through: 1) an expanded species distribution less susceptible to 

reproductive failure associated with catastrophic natural (i.e. hurricanes) and 

anthropogenic (i.e. oil spills) events (Heppell et al. 2007) and 2) augmented protection 

against a potential “massive feminizing bias” (Mrosovsky 1984) resulting from rising 

temperatures associated with climate change, as northern UTC beaches likely provide 

relatively cooler nest incubation environments (based on latitudinal temperature 

gradients) than do established rookeries at PAIS in Texas or in Mexico. In consideration 

of the fact that arribada nesting beaches are ephemeral by nature and undergo a natural 

decline in recruitment over time (Pritchard 2007b), reproductive output sourced from 

recently established and emergent rookeries operating below carrying capacity, such as 

that on the UTC, should not be underestimated with regard to sustaining future 

population growth.  

 

CONSERVATION IN THE TERRESTRIAL ENVIRONMENT 

UTC beaches used as nesting habitat by Kemp’s ridleys (see Chapter III) are fairly 

unique when compared to the almost continuously undeveloped beaches from PAIS 

south through central Veracruz, Mexico (Pritchard 2007b) in regard to the degree of 

anthropogenic alteration and development the former receive. While increased human 

presence on UTC beaches presents unique management challenges, it does not preclude 

significant anthropogenic utilization of associated coastal habitats compatible with the 
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persistence of nesting sea turtles. Beach management and/or restoration efforts should 

render nesting habitats that are attractive to nesting females (vegetated dunes, adequate 

beach width and slope, free of hazardous obstacles), provide a suitable egg deposition 

and incubation environment (appropriate hydric and thermal environment suitable for 

gas exchange), and support seafinding by hatchlings (lack of artificial lighting, presence 

of horizon elevation cues). Provision of these attributes would likely concurrently impart 

economic benefits to local UTC communities by: 1) promoting tourism, particularly on 

tourism-dependent Galveston Island and Bolivar Peninsula, 2) facilitating associated 

ecotourism and educational outreach activities (Wilson & Tisdell 2001), and 3) enabling 

naturalized barrier island beach ecosystems to mitigate wind and wave energy associated 

with episodic storm events like Hurricane Ike (Doran et al. 2009) and, thus, protect 

proximate residential and commercial development from costly damage.  

 

The first formal sea turtle nesting patrols instituted on the UTC (see Chapter II) were 

remarkably successful in documenting nesting activity on the beaches of Galveston 

Island (2007-2009), Bolivar Peninsula (2008-2009), and Follets Island (2009). Stated 

nest detection efforts aided confirmation of near annual increases in reproductive output 

on the UTC coincident with that occurring at both Rancho Nuevo and PAIS (NMFS, 

USFWS & SEMARNAT 2011). In addition, patrol efforts safeguarded nesters and nest 

products; fostered notable participation by local communities; persistently disseminated 

educational information to beachgoers and beach workers regarding sea turtles’ use of 

beach habitats and prompt reporting of nesting activity; facilitated in-water research 
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efforts (see Chapters IV & V); and cultivated collaborative relationships with local, 

state, and federal agencies charged with sea turtle management. Notably, the cooperative 

institution and administration of these UTC sea turtle nesting patrols served to educate 

and engage leaders in local municipalities and counties in the conservation of the Kemp's 

ridley and the beach habitats it is dependent upon for reproduction. Stated nest detection 

patrols initiated for this study continue today under the guidance of Texas A&M 

University at Galveston researchers (K. Reich pers. comm.). 

 

The intra- and inter-annual nest site fidelity demonstrated by multiple UTC females, as 

well as the 91.8% mean emergence success rate documented for four clutches incubated 

in situ on UTC habitats through 2009 (D. Shaver pers. comm.), provide compelling 

evidence regarding the suitability of associated beach environments to successfully 

support increasing numbers of nesting sea turtles. However, it is doubtful if the UTC 

nesting cohort can be sustained long-term without significant alterations in current nest 

product management policies that mandate transfer of all UTC clutches to PAIS for 

incubation and subsequent hatchling release. A management option whereby UTC 

clutches are instead relocated to a centralized corral at Galveston Island State Park 

(GISP) and secured throughout incubation and hatchling release by on-site Texas Parks 

& Wildlife Department (TPWD) personnel (with the support of other major 

stakeholders) has numerous merits, particularly a reduced risk of embryonic mortality 

associated with excessive transport time to PAIS and the preclusion of the loss of the 

UTC nesting contingent. Although the imprinting process that facilitates natal homing 
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by mature female sea turtles remains somewhat enigmatic (Lohmann et al. 2008), it is 

plausible that hatchlings sourced from UTC clutches incubated and released at PAIS will 

demonstrate fidelity to PAIS, and not the UTC, at maturity. This artificial alteration in 

nest site fidelity may hinder Kemp’s ridley conservation efforts by limiting or preventing 

the observed natural expansion (see Chapter II) of a nesting range already considered the 

most restricted of any sea turtle species in the world. In addition, the transport of all 

UTC clutches to PAIS negates the numerous educational benefits associated with a 

corral located at GISP. Corrals successfully operated at PAIS and on South Padre Island 

enable conservation education via public hatchling releases (C. Hughes pers. obs.). A 

similar corral facility at GISP, in conjunction with educational interpretation by park 

rangers, would likely promote better reporting of UTC sea turtle nesting activity and 

stewardship of beach and dune habitats by beachgoers while concurrently reducing 

anthropogenic sources of mortality for nesters and nest products (i.e. vehicle strikes, 

entrapment, etc.). 

CONSERVATION IN THE MARINE ENVIRONMENT 

Telemetry data sourced from eight nesting females intercepted on UTC beaches during 

2007-2009 (see Chapter IV) permitted further insight into research initiated by Seney 

and Landry (2008, 2011) regarding movement behaviors characteristic of this nesting 

cohort. Spatially and/or temporally constrained use of marine habitats, knowledge 

critical for effective conservation planning such as the implementation of Marine 

Protected Areas (MPAs), was identified for adult female ridleys within the Gulf of 
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Mexico during internesting, migratory, and foraging phases. Of note is the restriction of 

internesting period movements primarily to shallow (mean depth: 5.6 m) nearshore 

(mean distance from shore: 6.4 km) waters extending from the Galveston Bay entrance 

south to Matagorda Bay. Serious consideration should be given to the statewide 

expansion of a TPWD shrimp trawling regulation, currently applicable only in Texas’ 

waters south of the Corpus Christi Fish Pass, to protect this annual concentration of 

reproductively active UTC females. This regulation, which prohibits trawling within 8 

km of shore from 1 December through mid-May each year, has likely reduced nester 

mortality on the lower Texas coast (Lewison et al. 2003, Shaver & Rubio 2008) and 

would safeguard augmentation of ridley nesting on the UTC. Furthermore, enactment of 

this regulation within UTC waters would serve to protect known assemblages of 

immature ridleys (Metz 2004, Landry et al. 2005, Seney & Landry 2011) foraging 

within, or traversing, associated nearshore habitats. 

 

Essential information regarding the spatial ecology of adult male Kemp’s ridleys, of 

which very little is known (Shaver et al. 2005), was gained via long-term monitoring 

(tracking duration: 1468 d) of rehabilitated adult male YYN955 (see Chapter V). Despite 

initially stranding on the mid-Texas coast in the vicinity of the PAIS rookery in early 

April 2009, a time period speculated to reflect the annual culmination of the ridley 

breeding season (Rostal 1991, Rostal et al. 1998), YYN955’s movements during the 

subsequent 2010 breeding and nesting season were primarily restricted to nearshore 

environments associated with the UTC and may be indicative of this male’s association 
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with the UTC Kemp’s ridley nesting cohort. Although extensive in-water research is still 

required to accurately depict a suite of movement behaviors characteristic of adult male 

Kemp’s ridleys associated with rookeries throughout the nesting range, YYN955’s long-

term movements do provide critical insight necessary for effective conservation of this 

elusive life stage in the marine environment. In-water capture and monitoring of 

reproductively mature males associated with Texas’ nesting contingents (including the 

UTC) should be prioritized to approximate population size and facilitate quantification 

of the role these individuals play in reproductive success, ridley population genetics, and 

the long-term recovery of this endangered species. 

 

Satellite tracking data provided in Chapters IV and V contribute to a Priority 1 Recovery 

Task in the Kemp’s Ridley Recovery Plan (NMFS, USFWS & SEMARNAT 2011) that 

mandates the protection and management of conspecifics in the marine environment via 

the identification of “important marine foraging, breeding, and inter-nesting habitats.” 

Telemetry research herein permitted ascertainment of potential spatial and/or temporal 

constraints on adult male and female ridley movements during breeding, internesting, 

migratory, and/or foraging phases, including documented seasonal movements between 

adjacent foraging sites. While additional long-term monitoring (tracking duration >2 

years) of mature conspecifics is needed to confirm these marine habitat utilization 

patterns, such information may be conducive to the development of marine conservation 

policies (MPAs, seasonal fisheries closures, etc.) that promote the recovery of this 

endangered species while concurrently minimizing potential detrimental effects on 
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stakeholders and other marine resources. Inclusion of Bureau of Ocean Energy (BOEM) 

Official Protraction Diagram and Leasing Map boundaries in the description of ridley 

movements may facilitate improved coordination between conservation and resource 

extraction interests, as both serve crucial functions in the Gulf of Mexico.  

 

FUTURE RESEARCH PRIORITIES 

In conclusion, significant gaps remain in our understanding of the ecology of the 

Kemp’s ridley sea turtle. In the terrestrial environment, an in-depth assessment is needed 

to quantify the suitability of UTC beach habitats to support nesting sea turtles and nest 

products. The UTC provides a unique environment to ascertain the effects of numerous 

common anthropogenic habitat alterations (development, artificial lighting, nourishment, 

beach grooming, etc.) on the reproductive success of Kemp’s ridleys, as such 

information cannot be gleaned from federally protected nesting beaches which preclude 

the normal coexistence of humans and sea turtles in coastal areas. In the marine 

environment, much remains to be discovered regarding the in-water dynamics of all life 

stages, particularly reproductively mature male Kemp's ridleys. Marine habitat 

assessments are needed to understand the association of these marine reptiles with 

various biotic and abiotic ecosystem components. The recently revised Kemp’s Ridley 

Recovery Plan (NMFS, USFWS & SEMARNAT 2011) provides necessary guidance 

regarding prioritized recovery tasks deemed appropriate to support the resurgence of this 

endangered species; such efforts will be aided via conservation management policies that 

promote the proliferation of the UTC Kemp’s ridley nesting contingent. 
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Effort (h) Coverage (km) Effort (h) Coverage (km) Effort (h) Coverage (km)
April 148.34 393.60 56.71 851.02 205.05 1244.62

May 172.78 467.19 96.52 1321.44 269.30 1788.63

June 158.23 425.09 79.23 1091.62 237.46 1516.71

July 53.00 146.69 31.25 574.54 84.25 721.23

TOTAL 532.35 1432.57 263.71 3838.62 796.06 5271.19

APPENDIX A

SEA TURTLE NESTING PATROL EFFORT
 

ON GALVESTON ISLAND, TEXAS DURING 2007

2 Patrols were funded by a Texas General Land Office Coastal Management Program grant to TAMUG.

1 Effort shown occurred during 102 patrol days between 2 April and 13 July 2007.

Foot ATV Total

254

1,2



Effort (h) Coverage (km) Effort (h) Coverage (km) Effort (h) Coverage (km)
April 193.08 509.13 92.29 1252.72 285.37 1761.85

May 156.53 436.78 86.16 1134.27 242.69 1571.05

June 160.31 435.49 75.55 1069.41 235.86 1504.90

July 3.00 7.60 41.08 574.54 44.08 582.13

TOTAL 512.92 1389.00 295.08 4030.94 808.00 5419.94

SEA TURTLE NESTING PATROL EFFORT
 
ON GALVESTON ISLAND, TEXAS DURING 2008

APPENDIX B

Foot ATV Total

1 Effort shown occurred during 76 patrol days between 1 April and 15 July 2008.
2 Patrols were funded by a Texas General Land Office Coastal Management Program grant to TAMUG.
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Effort (h) Coverage (km)
April 64.35 944.11

May 100.71 1388.74

June 97.06 1303.86

July 41.92 712.62

TOTAL 304.04 4349.33

APPENDIX C

SEA TURTLE NESTING PATROL EFFORT1,2 

 
ON BOLIVAR PENINSULA, TEXAS DURING 2008

ATV

1 Effort shown occurred during 75 patrol days between 2 April and 15 July 2008.
2 Patrols were funded by a Texas General Land Office Coastal Management Program grant to TAMUG.
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Effort (h) Coverage (km)
April 349.72 2705.96

May 343.40 2959.79

June 332.92 2808.77

July 86.00 1294.75

TOTAL 1112.04 9769.27

APPENDIX D

TOTAL COORDINATED SEA TURTLE NESTING  PATROL EFFORT1,2 
 

ON THE UPPER TEXAS COAST DURING 2008

2 Patrols were funded by a Texas General Land Office Coastal Management Program grant to TAMUG.

1 Effort shown occurred during 76 patrol days between 1 April and 15 July 2008.

Total

257



Effort (h) Coverage (km) Effort (h) Coverage (km) Effort (h) Coverage (km)
April 72.34 210.89 52.40 653.40 124.74 864.29

May 153.29 425.88 130.01 1659.24 283.30 2085.12

June 176.70 483.51 94.58 1263.50 271.28 1747.01

July 68.33 186.56 45.35 574.54 113.68 761.09

TOTAL 470.66 1306.84 322.34 4150.67 793.00 5457.52

1 Effort shown occurred during 66 patrol days between 15 April and 15 July 2009.
2 Patrols were partially funded by a Texas General Land Office Coastal Management Program grant to TAMUG.

Foot ATV Total

APPENDIX E

SEA TURTLE NESTING PATROL EFFORT1,2 
 
ON GALVESTON ISLAND, TEXAS DURING 2009
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Effort (h) Coverage (km)
April 39.47 636.18

May 50.07 668.65

June 98.70 1482.24

July 47.37 746.90

TOTAL 235.61 3533.97

ATV

1 Effort shown occurred during 51 patrol days between 15 April and 15 July 2009.
2 Patrols were partially funded by a Texas General Land Office Coastal Management Program grant to TAMUG.

APPENDIX F

SEA TURTLE NESTING PATROL EFFORT1,2 
 

ON BOLIVAR PENINSULA, TEXAS DURING 2009
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Effort (h) Coverage (km)
April 35.74 441.35

May 75.21 880.09

June 72.43 925.50

July 36.62 486.31

TOTAL 220.00 2733.26

1 Effort shown occurred during 63 patrol days between 15 April and 15 July 2009.
2 Patrols were partially funded by a Texas General Land Office Coastal Management Program grant to TAMUG.

ATV

SEA TURTLE NESTING PATROL EFFORT1,2 
 

ON FOLLETS ISLAND, TEXAS DURING 2009

APPENDIX G
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Effort (h) Coverage (km)
April 199.95 1941.81

May 408.58 3633.86

June 442.41 4154.76

July 197.67 1994.31

TOTAL 1248.61 11724.74

Total

1 Effort shown occurred during 66 patrol days between 15 April and 15 July 2009.
2 Patrols were partially funded by a Texas General Land Office Coastal Management Program grant to TAMUG.

TOTAL COORDINATED SEA TURTLE NESTING  PATROL EFFORT1,2

 
 ON THE UPPER TEXAS COAST DURING 2009

APPENDIX H
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