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ABSTRACT

The access to information anywhere and anytime is becoming a necessity in our

daily life. Wireless technologies are expected to provide ubiquitous access to infor-

mation and to support a broad range of emerging applications, such as multimedia

streaming and video conferencing. The need to support the explosive growth in wire-

less traffic requires new tools and techniques that maximize the spectrum efficiency,

as well as minimize delays and power consumption.

This dissertation aims at novel approaches for the design and analysis of efficient

and reliable wireless networks. We plan to propose efficient solutions that leverage

user collaboration, peer-to-peer data exchange, and the novel technique of network

coding. Network coding improves the performance of wireless networks by exploit-

ing the broadcast nature of the wireless spectrum. The new techniques, however,

pose significant challenges in terms of control, scheduling, and mechanism design.

The proposed research will address these challenges by developing novel network

controllers, packet schedulers, and incentive mechanisms that would encourage the

clients to collaborate and contribute resources to the information transfer.

Our contributions can be broadly divided into three research thrusts: (1) stochas-

tic network coding; (2) incentive mechanism design; (3) joint coding and scheduling

design. In the first thrust we consider a single-relay network and propose an optimal

controller for the stochastic setting as well as a universal controller for the on-line

setting. We prove that there exist an optimal controller for the stochastic setting

which is stationary, deterministic, and threshold type based on the queue length. For

the on-line setting we present a randomized algorithm with the competitive ratio of

e/(e−1). In the second thrust, we propose incentive mechanisms for both centralized

ii



and distributed settings. In the third thrust, we propose joint coding and scheduling

algorithms for time-varying wireless networks.

The outcomes of our research have both theoretical and practical impact. We de-

sign and validate efficient algorithms, as well as provide insights on the fundamental

properties of wireless networks. We believe these results are valuable for the industry

as they are instrumental for the design and analysis of future wireless and cellular

networks that are more efficient and robust.
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1. INTRODUCTION

Communication systems and communication networks are vital for our day-to-

day live. Wireless technologies provide ubiquitous access to networking services.

Billions of people around the globe rely on wireless networks for voice and video

conferencing, video streaming, and files downloading. It has been predicted that the

amount of wireless traffic will keep increasing exponentially in the coming years.

Unfortunately, wireless networks are inherently less reliable than wired networks

due to interference and fading. Furthermore, the limited usable spectrum and energy

constrains pose significant challenges for network designers. Despite recent contribu-

tions from research initiatives spanning many years, several important issues, such as

providing robust performance guarantees to wireless applications, remain unresolved.

The novel technique of network coding has a significant potential for improving the

throughput and reliability of wireless networks by taking advantage of the broadcast

nature of the wireless medium. To fully realize the benefits offered by the network

coding technique, there is a need to address a broad range of challenges related

to control, scheduling, mechanism design, and performance analysis. The goal of

this dissertation is to address these challenges through developing novel network

controllers, scheduling algorithms, and incentive mechanisms for a broad range of

wireless network coding settings.

n1 n2nr

p1 p2

Figure 1.1: Nodes n1 and n2 exchange packets p1 and p2 via the relay node nr.
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The idea of network coding is to generalize the traditional routing algorithm by

allowing the intermediate network nodes to create and forward the the new packets

by combining the received packets. Different from the store-and-forward approach in

the traditional routing algorithm, the network coding solution uses a store-code-and-

forward approach. This technique has several important benefits such as an increase

in network throughput, as well as an improvement in the reliability and robustness

of networks. Fig. 1.1 illustrates a simple example, where two nodes n1 and n2 need

to exchange packets p1 and p2 through a relay nr. The traditional store-and-forward

approach needs four transmissions, i.e., n1 sends p1 to nr, n2 sends p2 to nr, nr sends

p1 to n2, and nr sends p2 to n1. In contrast, employing network coding, packets p1

and p2 are combined by means of a bit-wise XOR operation as p1 + p2 at nr and are

broadcast to nodes n1 and n2 simultaneously; as such, only three transmissions are

required, i.e., n1 sends p1 to nr, n2 sends p2 to nr, and nr sends p1 + p2 to n1, n2.

Nodes n1 and n2 can decode the packets they need by combining the received coded

packet with the packet they have, e.g., n1 performs the bit-wise XOR (p1 + p2) + p1

to recover the desired packet p2. Consequently, by means of the network coding

approach, the network throughput can be upgraded.

Since wireless transmissions are broadcast in nature, a wireless node can overhear

the information from the nodes in its vicinity. For example, in Fig. 1.2, there is an

information flow n1 → n2 → n3. Node n4 within the transmission range of n1, n2

can overhear the information sent by n1 and n2. Such information is referred to

as side information. While the side information is not utilized by the traditional

methods, the network coding schemes leverage the side information by broadcasting

linear combinations of the packets so that multiple nodes can decode the information

they need from a single transmission.

Fig. 1.3 depicts a scenario, in which the network coding decreases the transmis-

2



n1

n2

n3

n4

Figure 1.2: Information flow n1 → n2 → n3, where n4 lies in the transmission ranges
of n1 and n2.

p1 + p2 + p3

c1 c2 c3

p1 p2 p3

p1 p2p3p2 p3 p1

Figure 1.3: Server delivers p1, p2, p3 to clients c1, c2, c3 over a noiseless broadcast
channel. Clients c1, c2, c3 want packets p1, p2, p3 and have the side information
{p2, p3}, {p1, p3}, {p1, p2}, respectively.
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sion counts; this scenario is an instance of the Index Coding problem [1, 2]. The

server has three packets p1, p2, p3 that needs to be transmitted to clients c1, c2, c3

respectively over a noiseless broadcast channel. We assume that at most one packet

can be sent for each time. Moreover, each of clients c1, c2, c3 has a set of packets

{p2, p3}, {p1, p3}, {p1, p2}, respectively, available to it as the side information. It

can be verified that the demands of all clients can be satisfied by broadcasting one

packet p1 + p2 + p3. Note that the traditional approach without coding requires the

transmissions of all three packets p1, p2, p3.

p1 p2

p3

p1p3

p1

p2 p3

p2

p1p2 + p3 + p4

p1 p2

p4

p4 p4

p4 p3

1 2

3 4

want

Figure 1.4: Clients c1, c2, c3, c4 exchange packets over a noiseless broadcast channel.

Moreover, in Fig. 1.4, we show the potential of network coding and side informa-

tion in peer-to-peer (P2P) communications, which is an instance of the Direct Data

Exchange problem [3–5]. Without network coding, at least four transmissions are

necessary to satisfy the demands of all clients. Using the network coding technique,

all clients can be satisfied by just two transmissions: client c1 transmits a linear

combination of p2, p3 p4, and client c2 transmit p1.

Network coding research was initiated by the seminal work of Ahlswede et al.

[6] and since then it has attracted major interest from the research community.

Moreover, the network coding technique for wireless networks has been implemented
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and demonstrated by MIT’s COPE [7] and MORE [8]. COPE contains a special

network coding layer between the IP and MAC layers. In MORE, an opportunistic

routing protocol is proposed, that randomly mixes packets that belong to the same

flow before forwarding them to the next hop.

In spite of recent advances for the wireless network coding, many important set-

tings, such as time-varying networks and selfish network users, have received little

attention from the research community. The mainstream network coding research has

focused on static environments, where the communication channels are perfect, and

all packets are given in advance. However, the wireless environment is intrinsically

dynamic (or time-varying). The time variation occurs because the data information

is randomly generated by the wireless users, the mobile users are moving when con-

necting to the network, channels are assigned dynamically (e.g., in cognitive radio

networks), or radio signals reach the wireless users by more than one path (i.e., mul-

tipath effect). The traditional network coding schemes for the static network are not

applicable in such environment; accordingly, there is a paramount need to develop

new coding and scheduling approaches that are adaptive to the dynamic communi-

cation environment. The main question in this context is how to design a network

coding control scheme that maximizes the system performance in the presence of

uncertainties, e.g., data loss, user mobility, and time-varying channel conditions.

Moreover, network users will potentially be selfish; they only try to maximize the

utilities of themselves, rather than the total social welfare of the overall system. How-

ever, the traditional network coding techniques are designed under the assumption

that the users are cooperative, hence they are not applicable for the settings in which

network users are selfish. Accordingly, there is an increasing need for the design of

an incentive design, which provides an incentive for each network user to cooperate,

in order to achieve the expected network performance. The central question in this
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context is how to develop an incentive mechanism that motivates the selfish users to

participate in coding design and cooperative transfer of data.

The control theory and game theory play a central role in designing robust wire-

less network coding schemes for time-varying networks and networks with selfish

users. The control theory facilitates the design of a centralized controller that adap-

tively constructs the code and schedules the coded packets to be transmitted over

the channel, while game theory is instrumental for designing efficient mechanisms

for a distributed setting in the presence of selfish users. Accordingly, the overarching

goal of this dissertation is to create an integrative framework that uses tools and

techniques of control theory, game theory, and network coding theory to facilitate

efficient information exchanges in wireless environments. Our research includes algo-

rithm design, analysis of the optimality, complexity, and approximation ratio of the

proposed solutions, as well as distributed implementation. Our goal is to provide al-

gorithms with provable performance guarantees that are applicable to a broad range

of practical settings.

Our contributions can be broadly divided into three research thrusts. First, in

a stochastic environment some of the packets might not have coding pairs, which

limits the number of available coding opportunities. In this context, an important

decision is whether to delay the transmission of a packet in hope that a coding pair

will be available in the future or transmit a packet without coding. We addresses

this issue from the viewpoints of both stochastic optimization (average case analysis)

and competitive analysis (worst case analysis). By formulating a stochastic dynamic

program, we identify optimal control actions that would balance between costs of

transmission against the costs incurred due to the delays. We also show that a

stationary and deterministic threshold policy based on queue lengths is optimal.

The algorithm for stochastic dynamic optimization assumes an independent and
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identical distributed arrival process. Therefore, we take a second look on this prob-

lem with the objective of designing a universal algorithm that works for any input

distribution. We present an on-line algorithm based on the primal-dual approach.

The performance of the proposed algorithm is analyzed using the competitive anal-

ysis, which characterize the performance of the algorithm in the worst-case scenario.

We show that our algorithm achieves the competitive ratio of e/(e− 1).

Second, we focus on the scenarios in which clients are selfish. Our objective is to

motivate selfish clients to contribute to information transfer and coding design. For

both centralized communications and distributed P2P communications, we propose

incentive-compatible network coding mechanisms that achieve the social optimum.

In centralized communications, the classic Vickery-Clarke-Groves (VCG) mechanism

can be applied but it is not tractable; hence we propose approximate incentive-

compatible mechanisms that have provable performance guarantees. However, for

P2P topologies, the VCG mechanism is no longer effective. Accordingly, we propose

alternative distributed incentive-compatible mechanisms.

Third, we consider random arrivals to the server in centralized communications

with ON/OFF time-varying channels. We assume that packets arrive to the server

following a random arrival process. The problem can be viewed as a generalization of

the Index Coding problem with lossy channels and random arrivals. We characterize

the decodable capacity region, which captures the maximal arrival rates that can

be handled by the system without compromising the stability of its arrival queues,

as well as guarantee all clients can decode the packets they need. Specifically, we

present an universal scheduling scheme that can work with any given coding scheme

to handle all arrival rates within the decodable capacity region.
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2. OPPORTUNITIES FOR NETWORK CODING: TO WAIT OR NOT TO

WAIT∗

2.1 Introduction

In recent years, there has been a growing interest in the applications of network

coding techniques in wireless networks. It was shown that network coding can result

in significant improvements in the performance in terms of delay and transmission

count. For example, consider a wireless network coding scheme depicted in Fig.

2.1(a). Here, wireless nodes 1 and 2 need to exchange packets x1 and x2 through a

relay node (node 3). A simple store-and-forward approach needs four transmissions.

In contrast, the network coding solution uses a store-code-and-forward approach in

which the two packets x1 and x2 are combined by means of a bitwise XOR operation

at the relay and are broadcast to nodes 1 and 2 simultaneously. Nodes 1 and 2 can

then decode this coded packet to obtain the packets they need.

Effros et al. [9] introduced the strategy of reverse carpooling that allows two

information flows traveling in opposite directions to share a path. Fig. 2.1(b) shows

an example of two connections, from n1 to n4 and from n4 to n1 that share a common

path (n1, n2, n3, n4). The wireless network coding approach results in a significant

(up to 50%) reduction in the number of transmissions for two connections that use

reverse carpooling. In particular, once the first connection is established, the second

connection (of the same rate) can be established in the opposite direction with little

additional cost.

In this section, we will focus on the design and analysis of scheduling protocols

∗ Part of the data reported in this section is reprinted with permission from “Opportunities for
Network Coding: To Wait or Not to Wait” by Yu-Pin Hsu, Navid Abedini, Natarajan Gautam,
Alex Sprintson, and Srinivas Shakkottai, 2011. In IEEE International Symposium on Information
Theory Proceedings (ISIT), 791-795, Copyright 2011 by IEEE.
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Figure 2.1: (a) Wireless network coding (b) Reverse carpooling.

that exploit the fundamental trade-off between the number of transmissions and

delay in the reverse carpooling schemes. In particular, to cater to delay-sensitive

applications, the network must be aware that savings achieved by coding may be

offset by delays incurred in waiting for such opportunities. Accordingly, we design

delay-aware controllers that use local information to decide whether or not to wait

for a coding opportunity, or to go ahead with an uncoded transmission. By sending

uncoded packets we do not take advantage of network coding, resulting in a penalty

in terms of transmission count, and, as a result, energy-inefficiency. However, by

waiting for a coding opportunity, we might be able to achieve energy efficiency at

the cost of a small delay increase.

Consider a relay node that transmits packets between two of its adjacent nodes

with flows in opposite directions, as depicted in Fig. 2.2. The relay maintains two

queues q1 and q2, such that q1 and q2 store packets that need to be delivered to

node 2 and node 1, respectively. If both queues are not empty, then it can relay two

packets from both queues by performing an XOR operation. However, what should

the relay do if one of the queues has packets to transmit, while the other queue is

empty? Should the relay wait for a coding opportunity or just transmit a packet

from a non-empty queue without coding? This is the fundamental question we seek
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to answer. In essence we would like to trade off efficiently transmitting the packets

against high quality of service (i.e., low delays).

1 1f
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Figure 2.2: 3 nodes relay network.

2.1.1 Related work

Network coding research was initiated by the seminal work of Ahlswede et al. [6]

and since then attracted major interest from the research community. Network cod-

ing technique for wireless networks has been considered by Katti et al. [7]. They

propose an architecture, referred to as COPE, which contains a special network

coding layer between the IP and MAC layers. In [8], an opportunistic routing proto-

col is proposed, referred to as MORE, that randomly mixes packets that belong to

the same flow before forwarding them to the next hop. In addition, several works,

e.g., [10–15], investigate the scheduling and/or routing problems in the network cod-

ing enabled networks. Sagduyu and Ephremides [10] focus on the network coding in

the tandem networks and formulate related cross-layer optimization problems, while

Khreishah et al. [11] devise a joint coding-scheduling-rate controller when the pair-

wise intersession network coding is allowed. Reddy et al. [12] have showed how to

design coding-aware routing controllers that would maximize coding opportunities in

multihop networks. References [13] and [14] attempt to schedule the network coding

between multiple-session flows. Xi and Yeh [15] propose a distributed algorithm that
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minimizes the transmission cost of a multicast session.

References [16–18] analyze the similar trade-off between power consumption and

packet delays from different perspectives. Ciftcioglu et al. [16] propose a threshold

policy using the Lyapunov technique. The threshold policy in [16] is an approximate

solution with some performance guarantees. Nguyen and Yang [17] present a basic

Markov decision process (MDP) framework for the problem at hand. Huang et al. [18]

analyze the performance of the transport protocols over meshed networks as well

as several implementation issues. In contrast, we focus on the detailed theoretical

analysis of the problem at hand, present a provably optimal control policy, and

identify its structure.

In this section, we consider a stochastic arrival process and address the decision

problem of whether or not a packet should wait for a coding opportunity. Our objec-

tive is therefore to study the delicate trade-off between the energy consumption and

the queueing delay when network coding is an option. We use the Markov decision

process (MDP) framework to model this problem and formulate a stochastic dynamic

program that determines the optimal control actions in various states. While there

exists a large body of literature on the analysis of MDPs (see, e.g., [19–22]), there is

no clear methodology to find optimal policies for the problems that possess the pro-

prieties of infinite horizon, average cost optimization, and with a countably infinite

state space. Indeed, [22] remarks that it is difficult to analyze and obtain optimal

policies for such problems. The works in [23–26] contribute to the analysis of MDPs

with countably infinite state space. Moreover, reference [27] that surveys the recent

results on the monotonic structure of optimal policy, states that while one dimen-

sional MDP with convex cost functions has been extensively studied, limited models

for multi-dimensional spaces are dealt with due to the correlations between dimen-

sions. In many high-dimension cases, one usually directly investigates the properties
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of the cost function. As we will see later, this section poses precisely such a problem,

and showing the properties of optimal solution is one of our main contributions.

2.1.2 Main results

We first consider the case illustrated in Fig. 2.2, in which we have a single

relay node with two queues that contain packets traversing in opposite directions.

We assume that time is slotted, and the relay can transmit at most one packet via

noiseless broadcast channels during each time slot. We also assume that the arrivals

into each queue are independent and identically distributed. Each transmission by

the relay incurs a cost, and similarly, each time slot when a packet waits in the queue

incurs a certain cost. Our goal is to minimize the weighted sum of the transmission

and waiting costs.

We can think of the system state as the two queue lengths. We find that the

optimal policy is a simple queue-length threshold policy with one threshold for each

queue at the relay, and whose action is simply: if a coding opportunity exists, code

and transmit; else transmit a packet if the threshold for that queue is reached. We

then show how to find the optimal thresholds.

We examine three general models afterward. In the first model, the service ca-

pacity of the relay is not restricted to one packet per time slot. Then, if the relay

can serve a batch of packets, we find that the optimal controller is of the threshold

type for one queue, when the queue length of the other queue is fixed. Secondly, we

study an arrival process with memory, i.e., Markov modulated arrival process. Here,

we discover that the optimal policy has multiple thresholds. Finally, we extend our

results for time-varying channels.

We then perform a numerical study of a number of policies that are based on

waiting time and queue length, waiting time only, as well as the optimal deterministic
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queue-length threshold policy to indicate the potential of our approach. We also

evaluate the performance of a deterministic queue length based policy in the line

network topology via simulations.

Our contributions can be summarized as follows. We consider the problem of

delay versus coding efficiency trade-off, as well as formulate it as an MDP problem

and obtain the structure of the optimal policy. It turns out that the optimal policy

does not use the waiting time information. Moreover, we prove that the optimal

policy is stationary and based on the queue-length threshold, and therefore is easy

to implement. While it is easy to analyze MDPs that have a finite number of states,

or involve a discounted total cost optimization with a single communicating class,

our problem does not possess any of these properties. Hence, although our policy is

simple, the proof is extremely intricate. Furthermore, our policy and proof techniques

can be extended to other scenarios such as batched service and Markov-modulated

arrival process.

2.2 System overview

2.2.1 System model

Our first focus is on the case of a single relay node of interest, which has the

potential for network coding packets from flows in opposing directions. Consider

Fig. 2.2 again. We assume that there is a flow f1 that goes from node 1 to 2

and another flow f2 from node 2 to 1, both of which are through the relay under

consideration. The packets from both flows are stored at separate queues, q1 and q2,

at relay node R.

For clarity of presentation, we assume a simple time division multiple access

(TDMA) scheme, however or results are easy to generalize to more involved settings.

We assume that time is divided into slots and each slot is further divided into three
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mini-slots. In each slot, each node is allowed to transmit in its assigned mini-slot:

node 1 uses the first mini-slot and node 2 uses the second mini-slot, while the last

mini-slot in a slot is used by the relay. In particular, the time period between

transmission opportunities for the relay is precisely one slot. Our model is consistent

with the scheduled and time synchronized scheme such as LTE. Moreover, we use

slot as the unit of packet delays. We assume if a packet is transmitted in the same

slot when it arrived at the relay, its latency is zero.

The number of arrivals between consecutive slots to both flows is assumed to be

independent of each other and also independent and identically distributed (i.i.d.)

over time, with the random variables Ai for i = 1, 2 respectively. In each slot, n

packets arrive at qi with the probability P(Ai = n) = p
(i)
n for n ∈ N∪{0}. Afterward,

the relay gets an opportunity to transmit. Initially we assume that the relay can

transmit a maximum of one packet in each time slot.

2.2.2 Markov decision process model

We use a Markov decision process (MDP) model to develop a strategy for the relay

to decide its best course of action at every transmission opportunity. For i = 1, 2

and t = 0, 1, 2, · · · , let Q
(i)
t be the number of packets in qi at the tth time slot just

before an opportunity to transmit. Let at be the action chosen at the end of the tth

time slot with at = 0 implying the action is to do nothing and at = 1 implying the

action is to transmit. Clearly, if Q
(1)
t + Q

(2)
t = 0, then at = 0 because that is the

only feasible action. Also, if Q
(1)
t Q

(2)
t > 0, then at = 1 because the best option is to

transmit as a coded XOR packet as it reduces both the number of transmissions as

well as latency. However, when exactly one of Q
(1)
t and Q

(2)
t is non-zero, it is unclear

what the best action is.

To develop a strategy for that, we first define the costs for latency and transmis-
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sion. Let CT be the cost for transmitting a packet and CH be the cost of holding a

packet for a length of time equal to one slot. The power for transmitting a packet

is much higher than the processing energy for network coding because of the simple

XOR operation. We therefore ignore the effect of the processing cost. However, to

include the processing cost is a small extension and will not change the analytical

approach. Hence we assume that the cost of transmitting a coded packet is the same

as that of a uncoded packet.

We define the MDP{(Qt, at), t ≥ 0} where Qt = (Q
(1)
t , Q

(2)
t ) is the state of the

system and at is the control action chosen by the relay at the tth slot. The state

space (i.e., all possible values of Qt) is the set {(i, j) : i = 0, 1, · · · ; j = 0, 1, · · · }.

Let C(Qt, at) be the immediate cost if action at is taken at time t when the system

is in state Qt = (Q
(1)
t , Q

(2)
t ). Therefore,

C(Qt, at) = CH([Q
(1)
t − at]+ + [Q

(2)
t − at]+) + CTat, (2.1)

where [x]+ = max(x, 0).

2.2.3 Average-optimal policy

A policy θ specifies the decisions at all decision epoch, i.e., θ = {a0, a1, · · · }. A

policy is history dependent if at depends on a0, · · · at−1 and Q0 · · · , Qt, while that is

Markov if at only depends on Qt. A policy is stationary if at1 = at2 when Qt1 = Qt2

for some t1, t2. In general, a policy belongs to one of the following sets [19]:

• ΠHR: a set of randomized history dependent policies;

• ΠMR: a set of randomized Markov policies;

• ΠSR: a set of randomized stationary policies;
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• ΠSD: a set of deterministic stationary policies.

The long-run average cost for some policy θ ∈ ΠHR is given by

V (θ) = lim
K→∞

1

K + 1
Eθ

[
K∑
t=0

C(Qt, at)|Q0 = (0, 0)

]
, (2.2)

where Eθ is the expectation operator taken for the system under policy θ. We consider

our initial state to be an empty system, since if we view our system as an ad-hoc

network with some initial energy, then the initial state of all queue would be zero to

begin with.

Our goal is to characterize and obtain the average-optimal policy, i.e., the policy

that minimizes V (θ). It is not hard to see (as shown in [19]) that

ΠSD ⊂ ΠSR ⊂ ΠMR ⊂ ΠHR.

As in [19,21] there might not exist a SR or SD policy that is optimal, in what regime

does the average-optimal policy lie?

We first describe the probability law for our MDP and then develop a method-

ology to obtain the average-optimal policy. For the MDP{(Qt, at), t ≥ 0}, let

Pat(Qt, Qt+1) be the transition probability from state Qt to Qt+1 associated with

action at ∈ {0, 1}. Then the probability law can be derived as P0 ((i, j), (k, l)) =

p
(1)
k−ip

(2)
l−j for all k ≥ i and l ≥ j; otherwise, P0 ((i, j), (k, l)) = 0. Also, P1 ((i, j), (k, l)) =

p
(1)

k−[i−1]+p
(2)

l−[j−1]+ for all k ≥ [i− 1]+ and l ≥ [j − 1]+; otherwise, P1 ((i, j), (k, l)) = 0.

A list of important notation used in this section is summarized in Table 2.1.

2.2.4 Waiting time information

Intuition tells us that if a packet has not been waiting for a long time then perhaps

it could afford to wait a little more, but if a packet has waited for long, it might be
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Table 2.1: Notation table

Ai Random variable that represents the number of packets
that arrives at qi for each time slot

p
(i)
n Probability that n packets arrive at qi, i.e., P(Ai = n)

Q
(i)
t The number of packets in qi at time t

Qt System state, i.e., (Q
(1)
t , Q

(2)
t )

at Action chosen by relay at time t
CT Cost of transmitting one packet
CH Cost of holding a packet for one time slot

C(Qt, at) Immediate cost if action at is taken at time t when the
system is in state Qt

V (θ) Time average cost under the policy θ
Pat(Qt, Qt+1) Transition probability from state Qt to Qt+1 when action

at is chosen
Vα(i, j, θ) Total expected discounted cost under the policy θ when

the initial state is (i, j)
Vα(i, j) Minimum total expected discounted cost when the ini-

tial state is (i, j), i.e., minθ Vα(i, j, θ)
vα(i, j) Difference of the minimum total expected discounted

cost between the states (i, j) and (0, 0), i.e., Vα(i, j) −
Vα(0, 0)

Vα,n(i, j) Iterative definition for the optimality equation of Vα(i, j)
Vα(i, j, a) Vα(i, j) = mina∈{0,1} Vα(i, j, a), which is the optimality

equation of Vα(i, j)
∆V(i, j) Vα(i, j, 1)− Vα(i, j, 0)
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better to just transmit it. That seems logical considering that we try our best to

code but we cannot wait too long because it hurts in terms of holding costs. It is

easy to keep track of waiting time information using time-stamps on packets when

they are issued. Let T (i) be the arrival time of ith packet and D(i)
θ be its delay (i.e.,

the waiting time before it is transmitted) while policy θ is applied. We also denote

by Tt,θ the number of transmissions by time t under policy θ. Then Eq. (2.2) can be

written as

V (θ) = lim
K→∞

1

K + 1
Eθ

 ∑
i:T (i)≤K

CHD(i)
θ + CTTK,θ

 . (2.3)

Would we be making better decisions by also keeping track of waiting times of each

packet? We can answer this question by applying [19, Theorem 5.5.3].

Proposition 1.

(i) For the MDP{(Qt, at), t ≥ 0}, if there exists a randomized history dependent

policy that is average-optimal then there exists a randomized Markov policy

θ∗ ∈ ΠMR that minimizes V (θ).

(ii) Further, one cannot find a policy which also uses waiting time information that

would yield a better solution than V (θ∗).

2.2.5 Remark

To inform nodes 1 and 2 whether the transmitted packet is coded or not, we can

just put one bit in front of each packet, where 0 for a uncoded packet and 1 for a

coded packet. See [7] for more implementation issues.

In Subsections 2.3 and 2.4, we prove that there exists an optimal policy that is

stationary, deterministic, and queue-length threshold for the system model of this

subsection. The result will be generalized in Subsection 2.7.
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• In Subsection 2.7.1, we consider the batched service, where more than one

packet can be served for each time.

• In Subsection 2.7.2, instead of i.i.d. arrivals, we consider the Markov-modulated

arrival process.

• In Subsection 2.7.3, we consider time-varying channels.

2.3 Structure of the average-optimal policy: stationary and deterministic property

In the previous subsection, we showed that there exists an average-optimal policy

that does not include the waiting time in the state of the system. Next, we focus

on queue length based and randomized Markov policies, as well as determine the

structure of the average-optimal policy. In this subsection, we will show that there

exists an average-optimal policy that is stationary and deterministic.

We begin by considering the infinite horizon α-discounted cost case, where 0 <

α < 1, which we then tie to the average cost case. This method is typically used in

the MDP literature (e.g., [26]), where the conditions for the structure of the average-

optimal policy usually rely on the results of the infinite horizon α-discounted cost

case. For our MDP{(Qt, at), t ≥ 0}, the total expected discounted cost incurred by

a policy θ ∈ ΠHR is

Vα(i, j, θ) = Eθ

[
∞∑
t=0

αtC(Qt, at)|Q0 = (i, j)

]
. (2.4)

In addition, we define Vα(i, j) = minθ Vα(i, j, θ) as well as vα(i, j) = Vα(i, j)−Vα(0, 0).

Define the α-optimal policy as the policy θ that minimizes Vα(i, j, θ).
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2.3.1 Preliminary results

In this subsection, we introduce the important properties of Vα(i, j), which are

mostly based on the literature [26]. We first show that Vα(i, j) is finite (Proposition 2)

and then introduce the optimality equation of Vα(i, j) (Lemma 3).

Proposition 2. If E[Ai] <∞ for i = 1, 2, then Vα(i, j) <∞ for every state (i, j)

and α.

Proof. Let θ̃ be a stationary policy of waiting (i.e., at = 0 for all t) in each time

slot. By definition of optimality, Vα(i, j) ≤ Vα(i, j, θ̃). Hence, if Vα(i, j, θ̃) <∞, then

Vα(i, j) <∞. Note that

Vα(i, j, θ̃) = Eθ̃
[ ∞∑
t=0

αtC(Qt, at)|Q0 = (i, j)
]

=
∞∑
t=0

αtCH (i+ j + tE[A1 +A2])

=
CH(i+ j)

1− α +
αCH

(1− α)2
E[A1 +A2] <∞.

The next lemma follows from Propositions 1 in [26] and the fact that Vα(i, j) is

finite (by Proposition 2).

Lemma 3 ( [26], Proposition 1). If E[Ai] <∞ for i = 1, 2, then the optimal expected

discounted cost Vα(i, j) satisfies the following optimality equation:

Vα(i, j) = min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+

α

∞∑
k=0

∞∑
l=0

Pa
(
(i, j), (k, l)

)
Vα(k, l)]. (2.5)
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Moreover, the stationary policy that realizes the minimum of right hand side of (2.5)

will be an α-optimal policy.

We define Vα,0(i, j) = 0 and for n ≥ 0,

Vα,n+1(i, j) = min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+

α
∞∑
k=0

∞∑
l=0

Pa
(
(i, j), (k, l)

)
Vα,n(k, l)]. (2.6)

Lemma 4 below follows from Proposition 3 in [26].

Lemma 4 ( [26], Proposition 3). Vα,n(i, j)→ Vα(i, j) as n→∞ for every i, j, and

α.

Eq. (2.6) will be helpful for identifying the properties of Vα(i, j), e.g., to prove

that Vα(i, j) is a non-decreasing function.

Lemma 5. Vα(i, j) is a non-decreasing function with respect to (w.r.t.) i for fixed

j, and vice versa.

Proof. The proof is by induction on n in Eq. (2.6). The result clearly holds for

Vα,0(i, j). Now, assume that Vα,n(i, j) is non-decreasing. First, note that CH([i −

a]++[j−a]+)+CTa is a non-decreasing function of i and j (since CH is non-negative).

Next, we note that

α
∞∑
k=0

∞∑
l=0

Pa
(
(i, j), (k, l)

)
Vα,n(k, l)

=α
∞∑
r=0

∞∑
s=0

p(1)
r p(2)

s Vα,n([i− a]+ + r, [j − a]+ + s),

which is also a non-decreasing function in i and j separately due to the inductive

assumption. Since the sum and the minimum (in Eq. (2.6)) of non-decreasing func-
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tions are a non-decreasing function, we conclude that Vα,n+1(i, j) is a non-decreasing

function as well.

The next two lemmas, which can be proven via the similar arguments in [26],

specify the conditions for the existence of the optimal stationary and deterministic

policy.

Lemma 6 ( [26], Theorem (i)). There exists a stationary and deterministic policy

that is average-optimal for the MDP{(Qt, at), t ≥ 0} if the following conditions are

satisfied:

(i) Vα(i, j) is finite for all i, j, and α;

(ii) There exists a nonnegative N such that vα(i, j) ≥ −N for all i, j, and α;

(iii) There exists a nonnegative Mi,j such that vα(i, j) ≤Mi,j for every i, j, and α.

Moreover, for each state (i, j) there is an action a(i, j) such that

∞∑
k=0

∞∑
l=0

Pa(i,j)

(
(i, j), (k, l)

)
Mk,l <∞

.

Lemma 7 ( [26], Proposition 5). Assume there exists a stationary policy θ inducing

an irreducible and ergodic Markov chain with the following properties: there exists a

nonnegative function F (i, j) and a finite nonempty subset G ⊆ (N ∪ {0})2 such that

for (i, j) ∈ (N ∪ {0})2 −G it holds that

∞∑
k=0

∞∑
l=0

Pa(θ)((i, j), (k, l))F (k, l)− F (i, j) ≤ −C((i, j), a(θ)), (2.7)
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where a(θ) is the action when the policy θ is applied. Moreover, for (i, j) ∈ G it holds

that
∞∑
k=0

∞∑
l=0

Pa(θ)((i, j), (k, l))F (k, l) <∞.

Then, the condition (iii) in Lemma 6 holds.

2.3.2 Main result

Using lemmas 6 and 7, we show next that the MDP defined in this section has

an average-optimal policy that is stationary and deterministic.

Theorem 8. For the MDP{(Qt, at), t ≥ 0}, there exists a stationary and determin-

istic policy θ∗ that minimizes V (θ) if E[A2
i ] <∞ and E[Ai] < 1 for i = 1, 2.

Proof. As described earlier it is sufficient to show that the three conditions in Lemma 6

are satisfied. Proposition 2 implies that the condition (i) holds, while the condition

(ii) is satisfied due to Lemma 5 (i.e., N = 0 in Lemma 6). We denote by θ̃ the

stationary policy of transmitting at each time slot. We use this policy for each of

the three cases described below and show that condition (iii) of Lemma 6 holds.

Case (i): p
(i)
0 +p

(i)
1 < 1 for i = 1, 2, i.e., the probability that two or more packets

arrive for each time slot is non-zero. This policy θ̃ results in an irreducible and ergodic

Markov chain, and therefore Lemma 7 can be applied. Let F (i, j) = B(i2 + j2) for

some positive B. Then, for all states (i, j) ∈ (N ∪ {0})2 − {(0, 0), (0, 1), (1, 0)}, it
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holds that

∞∑
k=0

∞∑
l=0

Pa(θ̃) ((i, j), (k, l)) [F (k, l)− F (i, j)]

=
∞∑
r=0

∞∑
s=0

P1

(
(i, j), ([i− 1]+ + r, [j − 1]+ + s)

)
·
[
F ([i− 1]+ + r, [j − 1]+ + s)− F (i, j)

]
=
∞∑
r=0

∞∑
s=0

p(1)
r p(2)

s B
[
2i(r − 1) + (r − 1)2 + 2j(s− 1) + (s− 1)2

]
=B

(
2i
∞∑
r=0

p(1)
r (r − 1) +

∞∑
r=0

p(1)
r (r − 1)2 + 2j

∞∑
s=0

p(2)
s (s− 1) +

∞∑
s=0

p(2)
s (s− 1)2

)

=2B
(
i(E[A1]− 1) + j(E[A2]− 1)

)
+B

(
E[(A1 − 1)2] + E[(A2 − 1)2]

)
.

Note that E[Ai] < 1, hence 2B(E[Ai]− 1) < −CH for sufficiently large B. More-

over, since E[A2
i ] <∞, it holds that

∞∑
k=0

∞∑
l=0

Pa(θ̃) ((i, j), (k, l)) [F (k, l)− F (i, j)] ≤ −C((i, j), a(θ̃)),

when i, j are large enough, where

C((i, j), a(θ̃)) = CH([i− 1]+ + [j − 1]+) + CT .

We observe that there exists a finite setG that contains states {(0, 0), (0, 1), (1, 0)}

such that Eq. (2.7) is satisfied for (i, j) ∈ (N ∪ {0})2 − G. Then, for (i, j) ∈ G, it
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Figure 2.3: Case (ii) in the proof of Theorem 8: state (i, j) can only transit to the
states in the CSi and CSi−1.

holds that

∞∑
k=0

∞∑
l=0

Pa(θ̃) ((i, j), (k, l))F (k, l)

=B
∞∑
r=0

∞∑
s=0

p(1)
r p(2)

s

[
([i− 1]+ + r)2 + ([j − 1]+ + s)2

]
=B
{

(i− 1)2 + 2[i− 1]+E[A1] + E[A2
1]+

(j − 1)2 + 2[j − 1]+E[A2] + E[A2
2]
}
<∞.

Therefore, the condition of Lemma 7 is satisfied, which implies, in turn, that condi-

tion (iii) in Lemma 6 is satisfied as well.

Case (ii): p
(1)
0 + p

(1)
1 = 1 and p

(2)
0 + p

(2)
1 < 1. Note that θ̃ results in a reducible

Markov chain. That is, there are several communicating classes [28]. We define the

classes CS1 = {(a, b) : a = 0, 1 and b ∈ N ∪ {0}} and CSi = {(a, b) : a = i, b ∈

N ∪ {0}} for i ≥ 2, as shown in Fig. 2.3. Then each CSi is a communicating class

under the policy θ̃. The states in CS1 are positive-recurrent, and each CSi for i ≥ 2
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is a transient class (see [28]).

For i ≥ 2, let Ci,j be the expected cost of the first passage from state (i, j) (in class

CSi) to a state in class CSi−1. Moreover, we denote the expected cost of a first passage

from state (i, j) to (k, l) by C(i,j),(k,l). Let T0 = min{t ≥ 1 : (Q
(1)
t , Q

(2)
t ) = (0, 0)} and

for i ≥ 1, Ti = min{t ≥ 1 : Q
(1)
t = i}. Then we can express the expected cost of the

first passage from state (i, j) to (0, 0) as follows.

C(i,j),(0,0) = Ci,j +
i−2∑
k=1

C
i−k,Q(2)

Ti−k
+ C

(1,Q
(2)
T1

),(0,0)
.

Note that state (i, j) has the probability of p
(1)
0 to escape to class CSi−1 and p

(1)
1

to remain in class CSi. By considering all the possible paths, we compute Ci,j as

follows.

Ci,j =E

[
∞∑
k=0

(p
(1)
1 )kp

(1)
0

k∑
t=0

C((i, Q
(2)
t ), 1)|(Q(1)

0 , Q
(2)
0 ) = (i, j)

]

=p
(1)
0 E

[
∞∑
t=0

C((i, Q
(2)
t ), 1)

∞∑
k=t

(p
(1)
1 )k|(Q(1)

0 , Q
(2)
0 ) = (i, j)

]

=E

[
∞∑
t=0

(p
(1)
1 )tC((i, Q

(2)
t ), 1)|(Q(1)

0 , Q
(2)
0 ) = (i, j)

]
,

where C((i, Q
(2)
t ), 1) = CT +CH([i−1]++[Q

(2)
t −1]+). Following the similar argument

to the proof of Proposition 2, we conclude that Ci,j < ∞. Moreover, Proposition 4

in [26] implies that C(1,j),(0,0) <∞ for any j, where the intuition is that the expected

traveling time from state (1, j) to (0, 0) is finite due to the positive recurrence of

CS1. Therefore, we conclude that C(i,j),(0,0) <∞.

Let θ̂, be a policy that always transmits until time slot T0 after which the α-
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optimal policy is employed. Then, Vα(i, j) can be bounded by

Vα(i, j) ≤ Eθ̂

[
T0−1∑
t=0

αtC(Qt, at)|Q0 = (i, j)

]
+ Eθ̂

[
∞∑
t=T0

αtC(Qt, at)|Q0 = (i, j)

]
≤ C(i,j),(0,0) + Vα(0, 0).

Then the condition (iii) of Lemma 6 is satisfied by choosing Mi,j = C(i,j),(0,0).

In particular, it holds that vα(i, j) = Vα(i, j) − Vα(0, 0) ≤ Mi,j and Mi,j < ∞.

Moreover,
∑∞

k=0

∑∞
l=0 P1

(
(i, j), (k, l)

)
Mk,l =

∑∞
k=0

∑∞
l=0 P1

(
(i, j), (k, l)

)
C(k,l),(0,0) ≤

C(i,j),(0,0) <∞.

Case (iii): p
(i)
0 +p

(i)
1 = 1 for i = 1, 2, i.e., Bernoulli arrivals to both queues. Note

that in this case θ̃ also results in a reducible Markov chain. The proof is similar to

case (ii); we can define Mi,j = C(i,j),(0,0), and show that C(i,j),(0,0) is finite for this

case.

According to Borkar [29], it is possible to find the randomized policy that is

closed to the average-optimal by applying linear programming methods for an MDP

of a very generic setting, where randomized stationary policies are average-optimal.

However, since the average-optimal policy has further been shown in Theorem 8 to

be deterministic, in the next subsection we investigate the structural properties of

the average-optimal policy and using a Markov-chain based enumeration to find the

average-optimal polity that would be deterministic stationary.

2.4 Structure of the average-optimal policy: threshold type

Now that we know the average-optimal policy is stationary and deterministic,

the question is how do we find it? If we know that the average-optimal policy

satisfies the structural properties, then it is possible to search through the space

of stationary deterministic policies and obtain the optimal one. We will study the
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α-optimal policy first and then discuss how to correlate it with the average-optimal

policy. Before investigating the general i.i.d. arrival model, we study a special case,

namely Bernoulli process. Our objective is to determine the α-optimal policy for the

Bernoulli arrival process.

Lemma 9. For the i.i.d. Bernoulli arrival process and the system starting from the

empty queues, the α-optimal policy is of threshold type. In particular, there exist

optimal thresholds L∗α,1 and L∗α,2 so that the optimal deterministic action in state

(i, 0) is to wait if i ≤ L∗α,1, and to transmit without coding if i > L∗α,1; while in state

(0, j) is to wait if j ≤ L∗α,2, and to transmit without coding if j > L∗α,2.

Proof. We define

Vα(i, 0, a) = CH([i− a]+) + CTa+ α
∑
k,l

Pa
(
(i, 0), (k, l)

)
Vα(k, l).

According to Eq. (2.5),

Vα(i, 0) = min
a∈{0,1}

Vα(i, 0, a).

Let L∗α,1 = min{i ∈ N ∪ {0} : Vα(i, 0, 1) > Vα(i, 0, 0)} − 1. Then the α-optimal

policy is at = 0 for the states (i, 0) with i ≤ L∗α,1, and at = 1 for the state (L∗α,1+1, 0).

However, the system starts with empty queues; as such, the states (i, 0) for i >

L∗α,1 + 1 are not accessible as (L∗α,1 + 1, 0) only transits to (L∗α,1, 0), (L∗α,1 + 1, 0),

(L∗α,1, 1), and (L∗α,1 + 1, 1). Hence, we do not need to define the policy of the states

(i, 0) for i > L∗α,1 + 1. The similar argument is applicable for the states (0, j).

Consequently, there exists a policy of threshold type that is α-optimal.

Here we are providing an intuition of the threshold policy. If a packet is trans-

mitted immediately without coding, the system cost increases significantly due to a
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large transmission cost. To wait at present for a coding opportunity in the future

incurs a smaller waiting cost. Therefore, the packet might be delayed until the delay

cost cannot be compensated by the saving from coding. An optimal policy might be

as follows: to increase as time goes the probability to transmit the packet. Moreover,

we have shown in Subsection 2.3 that there is an optimal policy that is stationary

and deterministic; as such the optimal policy could be threshold type.

2.4.1 General i.i.d. arrival process

For the i.i.d. Bernoulli arrival process, we have just shown that the α-optimal

policy is threshold based. Our next objective is to extend this result to any i.i.d.

arrival process. We define that

Vα(i, j, a) = CH
(
[i− a]+ + [j − a]+

)
+CT ·a+αE[Vα

(
[i− a]+ +A1, [j − a]+ +A2

)
];

Vα,n(i, j, a) = CH
(
[i− a]+ + [j − a]+

)
+CTa+αE[Vα,n

(
[i− a]+ +A1, [j − a]+ +A2

)
].

Then Eq. (2.5) can be written as Vα(i, j) = mina∈{0,1} Vα(i, j, a), while Eq. (2.6)

can be written as Vα,n+1(i, j) = mina∈{0,1} Vα,n(i, j, a). For every discount factor

α, we want to show that there exists an α-optimal policy that is of threshold

type. To be precise, let the α-optimal policy for the first dimension be a∗α,i =

min {a′ ∈ arg mina∈{0,1} Vα(i, 0, a)}. This notation also used in [19] combines two

operations: First we let Λ = {a ∈ {0, 1} : minVα,n(i, 0, a)}, and then do min Λ.

In other words, we choose a = 0 when both a = 0 and a = 1 result in the same

Vα,n(i, j, a). We will show that a∗α,i is non-decreasing as i increases, and so is the sec-

ond dimension. We start with a number of definitions that describe the properties

of Vα(i, j).

Definition 10 ( [27], Submodularity). A function f : (N∪{0})2 → R is submodular

29



if for all i, j ∈ N ∪ {0}

f(i, j) + f(i+ 1, j + 1) ≤ f(i+ 1, j) + f(i, j + 1).

Definition 11 (K-Convexity). A function f : (N ∪ {0})2 → R is K-convex (where

K ∈ N) if for every i, j ∈ N ∪ {0}

f(i+K, j)− f(i, j) ≤ f(i+K + 1, j)− f(i+ 1, j);

f(i, j +K)− f(i, j) ≤ f(i, j +K + 1)− f(i, j + 1).

Definition 12 (K-Subconvexity). A function f : (N ∪ {0})2 → R is K-subconvex

(where K ∈ N) if for all i, j ∈ N ∪ {0}

f(i+K, j +K)− f(i, j) ≤ f(i+K + 1, j +K)− f(i+ 1, j);

f(i+K, j +K)− f(i, j) ≤ f(i+K, j +K + 1)− f(i, j + 1).

Remark 13. If a function f : (N∪{0})2 → R is submodular and K-subconvex, then

it is K-convex, and for every r ∈ N with 1 ≤ r < K,

f(i+K, j + r)− f(i, j) ≤ f(i+K + 1, j + r)− f(i+ 1, j);

f(i+ r, j +K)− f(i, j) ≤ f(i+ r, j +K + 1)− f(i, j + 1).

For simplicity, we will ignore K in definitions 11 and 12 when K = 1. We will

show in Subsection 2.4.3 that Vα(i, j) is non-decreasing, submodular, and subconvex,

that result in the threshold base of α-optimal policy. Note that the definition of K-

Convexity (Definition 11) is dimension-wise, which is different from the definition of

convexity for the continuous function in two dimensions.
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2.4.2 Proof overview

Before the technical proofs in Subsection 2.4.3, in this subsection, we overview

why submodularity and subconvexity of Vα(i, j) lead to the α-optimality of the

threshold based policy.

• We claim that to show that α-optimal policy is monotonic w.r.t. state (i, 0), it

suffices to show that Vα(i, 0, 1)− Vα(i, 0, 0) is a non-increasing function w.r.t.

i: Suppose that Vα(i, 0, 1) − Vα(i, 0, 0) is non-increasing, i.e., Vα(i + 1, 0, 1) −

Vα(i + 1, 0, 0) ≤ Vα(i, 0, 1)− Vα(i, 0, 0). If the α-optimal policy for state (i, 0)

is a∗α,i = 1, i.e., Vα(i, 0, 1) − Vα(i, 0, 0) ≤ 0, then the α-optimal policy for

state (i+ 1, 0) is also a∗α,i+1 = 1 according to Vα(i+ 1, 0, 1)− Vα(i+ 1, 0, 0) ≤

Vα(i, 0, 1)−Vα(i, 0, 0) ≤ 0. Similarly, if the α-optimal policy for state (i+ 1, 0)

is a∗α,i+1 = 0 then the α-optimal policy for state (i, 0) is a∗α,i = 0. Hence, the

α-optimal policy is monotonic in i.

• We claim that to prove that Vα(i, 0, 1)− Vα(i, 0, 0) is non-increasing, it is suf-

ficient to show that Vα(i, j) is convex: When i ≥ 1, the claim is true since

Vα(i, 0, 1)− Vα(i, 0, 0)

=CT − CH + αE[Vα(i− 1 +A1,A2)− Vα(i+A1,A2)].

• Similarly, to show that α-optimal policy of state (i, j) is monotonic w.r.t. i

for fixed j and vice versa, it suffices to show that Vα(i, j) is subconvex: When

31



i, j ≥ 1, we observe that

Vα(i, j, 1)− Vα(i, j, 0)

=Ct − 2Ch + αE[Vα(i− 1 +A1, j − 1 +A2)− Vα(i+A1, j +A2)].

• We claim that Vα(i, j) is submodular: We intend to prove the convexity and

subconvexity of Vα(i, j) by induction, which will require the relation between

Vα(i, j) + Vα(i + 1, j + 1) and Vα(i + 1, j) + Vα(i, j + 1). There will be two

choices: (i) Vα(i, j) + Vα(i + 1, j + 1) ≤ Vα(i + 1, j) + Vα(i, j + 1), or (ii)

Vα(i, j) + Vα(i+ 1, j + 1) ≥ Vα(i+ 1, j) + Vα(i, j + 1). First, We might assume

that Vα(i, j) satisfies (i). Then (i) and the subconvexity of Vα(i, j) implies the

convexity of Vα(i, j). In the contrary, the convexity of Vα(i, j) and (ii) lead to

the subconvexity of Vα(i, j). In other words, both choices are possible since

they do not violate the convexity and subconvexity of Vα(i, j). However, we

are going to argue that the choice (ii) is wrong as follows. Suppose that the

actions of α-optimal policy for the states (i, j), (i+ 1, j), (i, j+ 1), (i+ 1, j+ 1)

are 0, 0, 1, 1 respectively. If the choice (ii) is true, then when i ≥ 1, we have

CH(i+ j) + E[Vα,n(i+A1, j +A2)]+

CT + CH(i+ j) + E[Vα,n(i+A1, j +A2)]

≥CH(i+ 1 + j) + E[Vα,n(i+ 1 +A1, j +A2)]+

CT + CH(i− 1 + j) + E[Vα,n(i− 1 +A1, j +A2)].

By simplifying the above inequality, we can observe the contradiction to the

fact that Vα,n(i, j) is convex. Therefore, Vα(i, j) is submodular.
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Based on the above discussion, we understand that if we show Vα(i, j) is sub-

modular and subconvex, then the α-optimal policy of state (i, j) is non-decreasing

separately in the direction of i and j (i.e., threshold type). Next, we briefly discuss

how Lemmas 14-17 and Theorem 18 in the next subsection work together. Theorem

18 states that the α-optimal policy is of threshold type, while the proof is based

on an induction on n in Eq. (2.6). First, when n = 0 we observe that Vα,0(i, j)

is non-decreasing, submodular, and subconvex. Second, based on Lemma 14 and

Corollary 15, min{a′ ∈ arg mina∈{0,1} Vα,0(i, j, a)} is non-decreasing w.r.t. i for fixed

j, and vice versa. Third, according to Lemmas 5, 16, and 17, we know that Vα,1(i, j)

is non-decreasing, submodular, and subconvex. Therefore, as n goes to infinity,

we conclude that Vα(i, j) is non-decreasing, submodular, and subconvex, as well as

min{a′ ∈ arg mina∈{0,1} Vα(i, j, a)} is non-decreasing w.r.t. i for fixed j, and vice

versa.

2.4.3 Main results

Lemma 14. Given 0 < α < 1 and n ∈ N ∪ {0}. If Vα,n(i, j) is non-decreasing,

submodular, and subconvex, then Vα,n(i, j, a) is submodular for i and a when j is

fixed, and so is for j and a when i is fixed.

Proof. We define ∆Vα,n(i, j) = Vα,n(i, j, 1) − Vα,n(i, j, 0). We claim that ∆Vα,n(i, j)

is non-increasing, i.e., ∆Vα,n(i, j) is a non-increasing function w.r.t. i while j is fixed,

and vice versa (we will focus on the former part). Notice that

∆Vα,n(i, j) = CH([i− 1]+ + (j − 1)+) + CT +

αE[Vα,n([i− 1]+ +A1, [j − 1]+ +A2)]−

CH(i+ j)− αE[Vα,n(i+A1, j +A2)].
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To be precise, when i ≥ 1,

∆Vα,n(i, j) =CT − 2CH + αE[Vα,n(i− 1 +A1, j − 1 +A2)−

Vα,n(i+A1, j +A2)] for j ≥ 1; (2.8)

∆Vα,n(i, j) =CT − CH + αE[Vα,n(i− 1 +A1,A2)−

Vα,n(i+A1,A2)] for j = 0. (2.9)

Because of the subconvexity of Vα,n(i, j) in Eq. (2.8), when i ≥ 1 and j ≥ 1,

∆Vα,n(i, j) does not increase as i increases. The same is for i ≥ 1 and j = 0 in Eq.

(2.9) due to the convexity of Vα,n(i, j).

We proceed to establish the boundary conditions. When j ≥ 1,

∆Vα,n(1, j) = CT − 2CH + αE[Vα,n(A1, j − 1 +A2)− Vα,n(1 +A1, j +A2)];

∆Vα,n(0, j) = CT − CH + αE[Vα,n(A1, j − 1 +A2)− Vα,n(A1, j +A2)].

Note that E[Vα,n(1 +A1, j +A2)] ≥ E[Vα,n(A1, j +A2)] according to non-decreasing

Vα,n(i, j) and then ∆Vα,n(1, j) ≤ ∆Vα,n(0, j) when j ≥ 1. Finally, when j = 0 we

have

∆Vα,n(1, 0) = CT − CH + αE[Vα,n(A1,A2)− Vα,n(1 +A1,A2)];

∆Vα,n(0, 0) = CT .

Here, ∆Vα,n(1, 0) ≤ ∆Vα,n(0, 0) since E[Vα,n(A1,A2) − Vα,n(1 + A1,A2)] ≤ 0 as

Vα,n(i, j) is non-decreasing. Consequently, ∆Vα,n(i, j) is a non-increasing function

w.r.t. i while j is fixed.

Submodularity of Vα,n(i, j, a) implies the monotonicity of the optimal minimizing
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policy [19, Lemma 4.7.1] as described in the following Corollary. This property will

simplify the proofs of Lemmas 16 and 17.

Corollary 15. Given 0 < α < 1 and n ∈ N∪{0}. If Vα,n(i, j) is non-decreasing, sub-

modular, and subconvex, then min{a′ ∈ arg mina∈{0,1} Vα,n(i, j, a)} is non-decreasing

w.r.t. i for fixed j, and vice versa.

Lemma 16. Given 0 < α < 1 and n ∈ N ∪ {0}. If Vα,n(i, j) is non-decreasing,

submodular, and subconvex, then Vα,n+1(i, j) is submodular.

Proof. We intend to show that Vα,n+1(i + 1, j + 1) − Vα,n+1(i + 1, j) ≤ Vα,n+1(i, j +

1) − Vα,n+1(i, j) for all i, j ∈ N ∪ {0}. According to Corollary 15, only 6 cases of

(a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) are considered, where a∗i,j = min{a′ ∈ arg mina∈{0,1} Vα,n(i, j, a)}.

Case (i): if (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (1, 1, 1, 1), we claim that

E[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤ E[Vα,n([i− 1]+ +A1, j +A2)− Vα,n([i− 1]+ +A1, [j − 1]+ +A2)].

When i, j 6= 0, it is true according to submodularity of Vα,n(i, j). Otherwise, both

sides of the inequality are 0.

Case (ii): if (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 0, 0), we claim that

E[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤E[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].

This is obvious from the submodularity of Vα,n(i, j).
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Case (iii): if (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 0, 1), we claim that

CT − CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤CH + αE[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].

From the submodularity of Vα,n(i, j), it is obtained that

Vα,n(i, j)− Vα,n(i+ 1, j) + Vα,n(i, j)− Vα,n(i, j + 1)

≤Vα,n(i, j)− Vα,n(i+ 1, j) + Vα,n(i+ 1, j)− Vα,n(i+ 1, j + 1)

=Vα,n(i, j)− Vα,n(i+ 1, j + 1).

Since a∗i+1,j+1 = 1, we have ∆Vα,n(i+ 1, j + 1) ≤ 0, i.e.,

CT − 2CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j + 1 +A2)] ≤ 0.

The claim follows from the following equation:

CT − 2CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j +A2)+

Vn(i+A1, j +A2)− Vα,n(i+A1, j + 1 +A2)]

≤∆Vα,n(i+ 1, j + 1) ≤ 0.

Case (iv): if (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 0, 1, 1), we claim that

−CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j +A2)]

≤ CH([i− 1]+ − i) + αE[Vα,n([i− 1]+ +A1, j +A2)− Vα,n(i+A1, j +A2)]

When i 6= 0, it is satisfied because Vα,n(i, j) is convex. Otherwise, it is true since
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Vα,n(i, j) is non-decreasing.

Case (v): if (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 1, 0, 1), we claim that

CH(j − [j − 1]+) + αE[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤CH + αE[Vα,n(i+A1, j + 1 +A2)− Vα,n(i+A1, j +A2)].

When j 6= 0, it holds since Vα,n(i, j) is convex. It is true for other cases because of

the non-decreasing Vα,n(i, j).

Case (vi): if (a∗i,j, a
∗
i+1,j, a

∗
i,j+1, a

∗
i+1,j+1) = (0, 1, 1, 1), we claim that

CH(j − [j − 1]+) + αE[Vα,n(i+A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)]

≤CT + CH([i− 1]+ − i) + αE[Vα,n([i− 1]+ +A1, j +A2)− Vα,n(i+A1, j +A2)].

Based on the submodularity of Vα,n(i, j), we have

Vα,n([i− 1]+, j)− Vα,n(i, j) + Vα,n(i, [j − 1]+)− Vα,n(i, j)

≥Vα,n([i− 1]+, [j − 1]+)− Vα,n(i, [j − 1]+) + Vα,n(i, [j − 1]+)− Vα,n(i, j)

=Vα,n([i− 1]+, [j − 1]+)− Vα,n(i, j).

It is noted that a∗i,j = 0 and hence ∆Vα,n(i, j) ≥ 0, i.e.,

CT + CH([i− 1]+ + [j − 1]+ − i− j)+

αE[Vα,n([i− 1]+ +A1, [j − 1]+ +A1)− Vα,n(i+A1, j +A1)] ≥ 0.
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Therefore, it can be concluded that

CT + CH([i− 1]+ + [j − 1]+ − i− j)+

αE[Vα,n([i− 1]+ +A1, j +A2)− Vα,n(i+A1, j +A2)+

Vα,n(i+A1, [j − 1]+ +A2)− Vα,n(i+A1, j +A2)]

≥∆Vα,n(i, j) ≥ 0.

Lemma 17. Given 0 < α < 1 and n ∈ N ∪ {0}. If Vα,n(i, j) is non-decreasing,

submodular, and subconvex, then Vα,n+1(i, j) is subconvex.

Proof. We want to show that Vα,n+1(i+1, j+1)−Vα,n+1(i, j) ≤ Vα,n+1(i+2, j+1)−

Vα,n+1(i + 1, j) for all i and j. There will be 5 cases of (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1)

that need to be considered.

Case (i): if (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (1, 1, 1, 1), we claim that

CH(i− [i− 1]+) + αE[Vα,n(i+A1, j +A2)− Vα,n([i− 1]+ +A1, [j − 1]+ +A2)]

≤CH + αE[Vα,n(i+ 1 +A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)].

When i, j 6= 0, it is true according to the subconvexity of Vα,n(i, j). The argument

is satisfied for i = 0, j 6= 0 due to the the non-decreasing Vα,n(i, j), and for the case

i 6= 0, j = 0 due to the convexity of Vα,n(i, j). Otherwise, it holds according to the

non-decreasing property.
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Case (ii): if (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 0, 0), we claim that

E[Vα,n(i+ 1 +A1, j + 1 +A2)− Vα,n(i+A1, j +A2)]

≤E[Vα,n(i+ 2 +A1, j + 1 +A2)− Vα,n(i+ 1 +A1, j +A2)].

The above results from the subconvexity of Vα,n(i, j).

Case (iii): if (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 0, 1), we claim that

2CH + αE[Vα,n(i+ 1 +A1, j + 1 +A2)−

Vα,n(i+A1, j +A2)] ≤ CT .

Since a∗i+1,j+1 = 0, we have ∆Vα,n(i+ 1, j + 1) ≥ 0, i.e.,

CT − 2CH + αE[Vα,n(i+A1, j +A2)− Vα,n(i+ 1 +A1, j + 1 +A2)] ≥ 0.

Hence the claim is verified.

Case (iv): if (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 0, 1, 1), it is trivial since the both

Vα,n+1(i+ 1, j + 1)− Vα,n+1(i, j) and Vα,n+1(i+ 2, j + 1)− Vα,n+1(i+ 1, j) are zeros.

Case (v): if (a∗i,j, a
∗
i+1,j, a

∗
i+1,j+1, a

∗
i+2,j+1) = (0, 1, 1, 1), we claim that

CT ≤ CH(1 + j − [j − 1]+) +

αE[Vα,n(i+ 1 +A1, j +A2)− Vα,n(i+A1, [j − 1]+ +A2)].

Notice that a∗i+1,j = 1, so ∆Vα,n(i+ 1, j) ≤ 0, i.e.,

CT − CH(1 + j − [j − 1]+) +

αE[Vα,n(i+A1, [j − 1]+ +A2)− Vα,n(i+ 1 +A1, j +A2)] ≤ 0.
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Based on the properties of Vα(i, j), we are ready to state the optimality of the

threshold type policy in terms of the total expected discounted cost.

Theorem 18. For the MDP{(Qt, at), t ≥ 0} with any i.i.d. arrival processes to both

queues, there exists an α-optimal policy that is of threshold type. Given Q
(2)
t , the

α-optimal policy is monotone w.r.t. Q
(1)
t , and vice versa.

Proof. We prove by induction. Vα,0(i, j) = 0 is non-decreasing, submodular, and sub-

convex, that leads to the non-decreasing min{a′ ∈ arg mina∈{0,1} Vα,0(i, j, a)} based

on Corollary 15. These properties propagate as n goes to infinity according to lemmas

5, 16, 17, and Corollary 15.

Thus far, the α-optimal policy is characterized. A useful relation between the

average-optimal policy and the α-optimal policy is described in the following lemma.

Lemma 19 ( [26], Lemma and Theorem (i)). Consider MDP{(Qt, at), t ≥ 0}. Let

{αn} converging to 1 be any sequence of discount factors associated with the α-optimal

policy {θαn(i, j)}. There exists a subsequence {βn} and a stationary policy θ∗(i, j)

that is the limit point of {θβn(i, j)}. If the three conditions in Lemma 6 are satisfied,

θ∗(i, j) is the average-optimal policy for Eq. (2.2).

Theorem 20. Consider an i.i.d. arrival to both queues. For the MDP{(Qt, at), t ≥

0}, the average-optimal policy is of threshold type. There exist the optimal thresholds

L∗1 and L∗2 so that the optimal deterministic action in states (i, 0) is to wait if i ≤ L∗1,

and to transmit without coding if i > L∗1; while in state (0, j) is to wait if j ≤ L∗2,

and to transmit without coding if j > L∗2.

Proof. Let (̃i, 0) be any state which average-optimal policy is to transmit, i.e., θ∗(̃i, 0) =

1 in Lemma 19. Since there is a sequence of discount factors {βn} such that
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θβn(i, j) → θ∗(i, j), then there exists N > 0 so that θβn (̃i, 0) = 1 for all n ≥ N .

Due to the monotonicity of α-optimal policy in Theorem 18, θβn(i, 0) = 1 for all

i ≥ ĩ and n ≥ N . Therefore, θ∗(i, 0) = 1 for all i ≥ ĩ. To conclude, the average-

optimal policy is of threshold type.

2.5 Obtaining the optimal deterministic stationary policy

We have shown in the previous subsections that the average-optimal policy is

stationary, deterministic and of threshold type, so we only need to consider the

subset of deterministic stationary policies. Given the thresholds of the both queues,

the MDP is reduced to a Markov chain. The next step is to find the optimal threshold.

First note that the condition E[Ai] < 1 might not be sufficient for the stability of

the queues since the threshold based policy leads to an average service rate lower

than 1 packet per time slot. In the following theorem, we claim that the conditions

E[A2
i ] <∞ and E[Ai] < 1 for i = 1, 2 are enough for the stability of the queues.

Theorem 21. For the MDP{(Qt, at), t ≥ 0} with E[A2
i ] < ∞ and E[Ai] < 1 for

i = 1, 2. The reduced Markov chain from applying the stationary and deterministic

threshold based policy to MDP is positive recurrent, i.e., the stationary distribution

exists.

Proof. The proof is based on Foster-Lyapunov theorem [30] associated with the Lya-

punov function L(x, y) = x2 + y2. Notice that

Q
(i)
t+1 = [Q

(i)
t − at]+ +Ai

= Q
(i)
t − at + U

(i)
t +Ai,
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where

U
(i)
t =

 0 if Q
(i)
t − at ≥ 0

1 if Q
(i)
t − at = −1.

Then it can be observed that

E
[
L(Q

(1)
t+1, Q

(2)
t+1)− L(Q

(1)
t , Q

(2)
t )|Q(1)

t = x,Q
(2)
t = y

]
=E

[
2∑
i=1

(Q
(i)
t − at + U

(i)
t +Ai)2|Q(1)

t = x,Q
(2)
t = y

]
− (x2 + y2)

=
2∑
i=1

E
[
(Q

(i)
t − at +Ai)2|Q(1)

t = x,Q
(2)
t = y

]
+

2∑
i=1

E
[
(U

(i)
t )2|Q(1)

t = x,Q
(2)
t = y

]
+

2∑
i=1

E
[
2U

(i)
t (Q

(i)
t − at +Ai)|Q(1)

t = x,Q
(2)
t = y

]
− (x2 + y2)

≤
2∑
i=1

E
[
(Q

(i)
t − at +Ai)2|Q(1)

t = x,Q
(2)
t = y

]
+ 2 + 2E[A1] + 2E[A2]− (x2 + y2)

(2.10)

=2xE
[
A1 − at|Q(1)

t = x,Q
(2)
t = y

]
+ 2yE

[
A2 − at|Q(1)

t = x,Q
(2)
t = y

]
+

E
[
(A1 − at)2|Q(1)

t = x,Q
(2)
t = y

]
+ E

[
(A2 − at)2|Q(1)

t = x,Q
(2)
t = y

]
+

2E[A1] + 2E[A2] + 2

≤2xE
[
A1 − at|Q(1)

t = x,Q
(2)
t = y

]
+ 2yE

[
A2 − at|Q(1)

t = x,Q
(2)
t = y

]
+

E[A2
1] + 1 + E[A2

2] + 1 + 2E[A1] + 2E[A2] + 2 (2.11)

42



=E[A2
1] + E[A2

2] + 2E[A1] + 2E[A2] + 4+ 2x(E[A1]− 1) + 2y(E[A2]− 1) if (x, y) ∈ Bc

2xE[A1] + 2yE[A2] if (x, y) ∈ B,
(2.12)

where B = {(x, y) : (x = 0, y ≤ L2) or (x ≤ L1, y = 0)}. The inequality (2.10)

comes from (U
(i)
t )2 ≤ 1 and (Q

(i)
t − at)U (i)

t ≤ 0, while E[at] ≤ 1 results in Eq. (2.11).

Since E[A2
i ] < ∞ and E[Ai] < 1 for i = 1, 2, the value in Eq. (2.12) is negative for

(x, y) ∈ Bc and is bounded for (x, y) ∈ B. Then the result immediately follows from

Foster-Lyapunov theorem.

We realize that if E[A2
i ] < ∞ and E[Ai] < 1 for i = 1, 2, then there exists a

stationary threshold type policy that is average-optimal and can be obtained from the

reduced Markov chain. The following theorem gives an example of how to compute

the optimal thresholds.

Theorem 22. Consider the Bernoulli arrival process. The optimal thresholds L∗1

and L∗2 are

(L∗1, L
∗
2) = arg min

L1,L2

CTT (L1, L2) + CHH(L1, L2),

where

T (L1, L2) = p
(1)
1 p

(2)
1 π0,0 + p

(2)
1

L1∑
i=1

πi,0 + p
(1)
1

L2∑
j=1

π0,j + p
(1)
1 p

(2)
0 πL1,0 + p

(1)
0 p

(2)
1 π0,L2 ;

H(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j,
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for which

π0,0 =
1(

1−ζL1+1

1−ζ

)
+
(

1−1/ζL2+1

1−1/ζ

)
− 1

;

πi,0 = ζ iπ0,0;

π0,j = π0,0/ζ
j;

ζ =
p

(1)
1 p

(2)
0

p
(1)
0 p

(2)
1

.

Proof. Let Y
(i)
t be the number of type i packets at the tth slot after transmission.

It is crucial to note that this observation time is different from when the MDP is

observed. Then the bivariate stochastic process {(Y (1)
t , Y

(2)
t ), t ≥ 0} is a discrete-

time Markov chain which state space is smaller than the original MDP, i.e., (0, 0),

(1, 0), (2, 0), · · · , (L1, 0), (0, 1), (0, 2), · · · , (0, L2). Define ζ as a parameter such that

ζ =
p

(1)
1 p

(2)
0

p
(1)
0 p

(2)
1

.

Then, the balance equations for 0 < i ≤ L1 and 0 < j ≤ L2 are:

πi,0 = ζπi−1,0;

ζπ0,j = π0,j−1.

Since π0,0 +
∑

i,j πi,0 + π0,j = 1, we have

π0,0 =
1(

1−ζL1+1

1−ζ

)
+
(

1−1/ζL2+1

1−1/ζ

)
− 1

.
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The expected number of transmissions per slot is

T (L1, L2) = p
(1)
1 p

(2)
1 π0,0 + p

(2)
1

L1∑
i=1

πi,0 + p
(1)
1

L2∑
j=1

π0,j + p
(1)
1 p

(2)
0 πL1,0 + p

(1)
0 p

(2)
1 π0,L2 .

The average number of packets in the system at the beginning of each slot is

H(L1, L2) =

L1∑
i=1

iπi,0 +

L2∑
j=1

jπ0,j.

Thus upon minimizing we get the optimal thresholds L∗1 and L∗2.

Whenever CH > 0, it is relatively straightforward to obtain L∗1 and L∗2. Since it

costs CT to transmit a packet and CH for a packet to wait for a slot, it would be

better to transmit a packet than make a packet wait for more than CT/CH slots. Thus

L∗1 and L∗2 would always be less than CT/CH . Hence, by completely enumerating

between 0 and CT/CH for both L1 and L2, we can obtain L∗1 and L∗2. One could

perhaps find faster techniques than complete enumeration, but it certainly serves the

purpose.

Subsequently, we study a special case, p
(1)
1 = p

(2)
1 , p, in Theorem 22. Then

L1 = L2 , L as both arrival processes are identical. It can be calculated that ζ = 1

and πi,j = 1/(2L+ 1) for all i, j, and

T (L) =
2pL+ 2p− p2

2L+ 1
;

H(L) =
L2 + L

2L+ 1
.
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Define ν = CT/CH . The optimal threshold is

L∗(p, ν) = arg min
L

ν(2pL+ 2p− p2) + L+ L2

2L+ 1
.

By taking the derivative, we obtain that L∗ = 0 if ν < 1/(2p− 2p2) and otherwise,

L∗(p, ν) =
−1 +

√
1− 2(1− 2νp+ 2νp2)

2
.

We can observe that L∗(p, ν) is a concave function w.r.t. p. Given ν fixed,

L∗(1/2, ν) = (
√
ν − 1 − 1)/2 is the largest optimal threshold among various val-

ues of p. When p < 1/2, the optimal-threshold decreases as there is a relatively

lower probability for packets in one queue to wait for a coding pair in another

queue. When p > 1/2, there will be a coding pair already in the relay node with

a higher probability, and therefore the optimal-threshold also decreases. Moreover,

L∗(1/2, ν) = O(
√
ν), so the maximum optimal threshold grows with the square root

of ν, but not linearly. When p is very small, L∗(p, ν) = O(
√
νp) grows slower than

L∗(1/2, ν). Figure 2.4 depicts the optimal threshold L∗(p, ν) for various values of

arrival rate p, and ν = CT/CH .

2.6 Numerical results

In this subsection we present several numerical results to compare the perfor-

mance of different policies in the single relay setting as well as in the line network.

We analyzed the following policies:

1. Opportunistic Coding (OC): this policy does not waste any opportunities for

transmitting the packets. That is when a packet arrives, coding is performed

if a coding opportunity exists, otherwise transmission takes place immediately.
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Figure 2.4: Optimal queue length threshold for a single relay with symmetric
Bernoulli arrivals.

2. Queue-length based threshold (QLT): this stationary deterministic policy ap-

plies the thresholds, proposed by Theorem 22, on the queue lengths.

3. Queue-length-plus-Waiting-time-based (QL+WT) thre-sholds: this is a history

dependent policy which takes into account the waiting time of the packets in

the queues as well as the queue lengths. That is a packet will be transmitted

(without coding), if the queue length hits the threshold or the head-of-queue

packet has been waiting for at least some pre-determined amount of time.

The optimal waiting-time thresholds are found using exhaustive search through

stochastic simulations for the given arrival distributions.

4. Waiting-time (WT) based threshold: this is another history dependent policy

that only considers the waiting times of the packets, in order to schedule the

transmissions. The optimum waiting times of the packets are found through

exhaustive search.
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Figure 2.5: Trade-off between average delay and number of transmissions in a single
relay using queue-length based threshold (QLT) policy for different Bernoulli arrival
rates (p1, p2).

We simulate these policies on two different cases: (i) the single relay network with

Bernoulli arrivals (Fig. 2.5, 2.6, and 2.7) and (ii) a line network with 4 nodes, in

which the sources are Bernoulli (Fig. 2.8, and 2.9). Note that in case (ii), since the

departures from one queue determine the arrivals into the other queue, the arrival

processes are significantly different from Bernoulli. As expected, for the single relay

network, the QLT policy has the optimal performance and the QL+WT policy does

not have any advantage.

Moreover, there are results (see [31]) that indicate that the independent arrivals

model is accurate under heavy traffic for multi-hop networks. Hence, our character-

ization of the optimal policy does have value in a more general case. Our simulation

results indicate that QLT policy also exhibits a near optimal performance for the line

network. We also observe, from the simulation results for the waiting-time-based

policy, that making decisions based on waiting time alone leads to a suboptimal

performance. In all experiments, the opportunistic policy has the worst possible
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Figure 2.6: Comparison of the minimum average cost (per slot) in a single relay with
Bernoulli arrival rates (0.5, 0.5), for different policies, where the costs are normalized
by the transmission cost.

performance.

The results are intriguing as they suggest that achieving a near-perfect trade-off

between waiting and transmission costs is possible using simple policies; moreover,

coupled with optimal network-coding aware routing policies like the one in our earlier

work [12], have the potential to exploit the positive externalities that network coding

offers.

2.7 Extensions

We have seen that the average-optimal policy is stationary and threshold based

for the i.i.d. arrival process with the service rate of 1 packet per time slot. Two

more general models are discussed here. We focus on the character of the optimality

equation which results in the structure of the average-optimal policy.

49



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Symmetric Bernoulli Arrival (P
1
=P

2
=P)

Budget

M
a
x
 A

c
h
ie

v
a
b
le

 R
a
te

 P

 

 

QLT, C
H

=0.1

QLT, C
H

=0.02

OC

Figure 2.7: Achievable arrival rate versus average budget (per slot) in a single relay
with Bernoulli arrivals, using opportunistic coding (OC) and QLT policies, where
the costs are normalized by the transmission cost.

2.7.1 Batched service

Assume that the relay R can serve a group of packets with the size of M at end

of the time slot. At the end of every time slot, relay R decides to transmit, at = 1,

or to wait at = 0. The holding cost per unit time for a packet is CH , while CT is the

cost to transmit a batched packet. Then the immediate cost is

C(M)(Qt, at) = CH([Q
(1)
t − atM]+ + [Q

(2)
t − atM]+) + CTat.

We also want to find the optimal policy θ∗ that minimizes the long-time average cost

V (M)(θ), called M-MDP{(Qt, at), t ≥ 0} problem,

V (M)(θ) = lim
K→∞

1

K + 1
Eθ

[
K∑
t=0

C(M)(Qt, at)|Q0 = (0, 0)

]
.
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Figure 2.8: Comparison of different policies in a line network with two intermediate
nodes and two Bernoulli flows with mean arrival rates (0.5, 0.5).

Notice that the best policy might not just transmit when both queues are non-empty.

When M > 1, R might also want to wait even if Q
(1)
t Q

(2)
t > 0 because the batched

service of size less than M has the same transmission cost CT . The optimality

equation of the expected α-discounted cost is revised as

V (M)
α (i, j) = min

a∈{0,1}

[
CH([i− aM]+ + [j − aM]+) + CTa+

E[V (M)
α ([i− aM]+ +A1, [j − aM]+ +A2)]

]
.

We can get the following results.

Theorem 23. Given α and M, V
(M)
α (i, j) is non-decreasing, submodular, and M-

subconvex. Moreover, there is an α-optimal policy that is of threshold type. Fixed j,

the α-optimal policy is monotone w.r.t. i, and vice versa.

Theorem 24. Consider any i.i.d. arrival processes to both queues. For the M-

MDP{(Qt, at), t ≥ 0}, the average-optimal policy is of threshold type. Given j =
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Figure 2.9: Achievable arrival rate versus average budget (per slot) in a line network
with two intermediate nodes and two Bernoulli flows.

j̃ fixed, there exists the optimal threshold L∗
j̃

such that the optimal stationary and

deterministic policy in state (i, j̃) is to wait if i ≤ L∗
j̃
, and to transmit if i > L∗

j̃
.

Similar argument holds for the other queue.

2.7.2 Markov-modulated arrival process

While the i.i.d. arrival process is examined so far, a specific arrival process with

memory is studied here, i.e., Markov-modulated arrival process (MMAP). The service

capacity of R is focused on M = 1 packet. Let N (i) = {0, 1, · · · , N (i)} be the state

space of MMAP at node i, with the transition probability p
(i)
k,l where k, l ∈ N (i). Then

the number of packets generated by the node i at time t is N (i)
t ∈ N (i). Then the

decision of R is made based on the observation of (Q
(1)
t , Q

(2)
t ,N (1)

t ,N (2)
t ). Similarly,

the objective is to find the optimal policy that minimizes the long-term average cost,

named MMAP-MDP{((Q(1)
t , Q

(2)
t ,N (1)

t ,N (2)
t ), at) : t ≥ 0} problem. The optimality
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equation of the expected α-discounted cost becomes

V MMAP
α (i, j, n1, n2)

= min
a∈{0,1}

[CH([i− a]+ + [j − a]+) + CTa+

α
N(1)∑
k=0

N(2)∑
l=0

p
(1)
n1,k

p
(2)
n2,l
V MMAP
α ([i− a]+ + k, [j − a]+ + l, k, l)].

Then we can conclude the following results.

Theorem 25. Given n1 ∈ N (1) and n2 ∈ N (2), V MMAP
α (i, j, n1, n2) is non-decreasing,

submodular, and subconvex w.r.t. i and j. Moreover, there is an α-optimal policy

that is of threshold type. Fixed n1 and n2, the α-optimal policy is monotone w.r.t. i

when j is fixed, and vice versa.

Theorem 26. Consider an MMAP arrival. For the MMAP-MDP{((Q(1)
t , Q

(2)
t ,N (1)

t ,

N (2)
t ), at) : t ≥ 0}, the average-optimal policy is of multiple thresholds type. There

exists a set of optimal thresholds {L∗1,n1,n2
} and {L∗2,n1,n2

}, where n1 ∈ N (1) and

n2 ∈ N (2), so that the optimal stationary decision in states (i, 0, n1, n2) is to wait if

i ≤ L∗1,n1,n2
, and to transmit without coding if i > L∗1,n1,n2

; while in state (0, j, n1, n2)

is to wait if j ≤ L∗2,n1,n2
, and to transmit without coding if j > L∗2,n1,n2

.

2.7.3 Time-varying channel

We will examine the scenario in which the relay transmits packets over time-

varying ON/OFF channels, while we assume that the arrivals are i.i.d. and the relay

can serve at most one packet for each time slot. Let St = (S
(1)
t , S

(2)
t ) be the channel

state at time t, where S
(i)
t ∈ {0(OFF), 1(ON)} indicates the channel condition from

the relay to node i. We assume that the channel states are i.i.d. over time. Moreover,

when S
(i)
t = 1, to transmit a packet from the relay to node i takes the cost of C

(i)
T .
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Then the immediate cost C(Qt, St, at) is

C(Qt, St, at) = CH([i− atS(1)
t ]+ + [j − atS(2)

t ]+) + max(atS
(1)
t C

(1)
T , atS

(2)
t C

(2)
T ).

The objective is also to find the optimal policy that minimizes the long-run average

cost. The optimality equation of the expected α-discounted cost becomes

Vα(i, j, s1, s2)

= min
a∈{0,1}

[
CH([i− as1]+ + [j − as2]+) + max(as1C

(1)
T , as2C

(2)
T )+

αE[Vα([i− as1]+ +A1, [j − as2]+ +A2), S
(1)
t , S

(2)
t ]
]
.

Then we conclude the following results.

Theorem 27. Vα(i, j, 1, 1) is non-decreasing, submodular, and subconvex. Vα(i, j, 1, 0)

is convex in i for any fixed j and Vα(i, j, 0, 1) is convex in j for any fixed i. More-

over, there is an α-optimal policy that is of threshold type. For each channel state,

the α-optimal policy is monotone in i for fixed j, and vice versa.

Theorem 28. Consider any i.i.d. arrivals to both queues and time-varying ON/OFF

channels. The average-optimal policy is of threshold type. For state (s1, s2), there ex-

ist the optimal thresholds L∗1,s1,s2 and L∗2,s1,s2 so that the optimal deterministic action

in states (i, 0) is to wait if i ≤ L∗1,s1,s2, and to transmit without coding if i > L∗1,s1,s2;

while in state (0, j) is to wait if j ≤ L∗2,s1,s2, and to transmit without coding if

j > L∗2,s1,s2.
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3. OPPORTUNISTIC NETWORK CODING: COMPETITIVE ANALYSIS∗

3.1 Introduction

In recent years, there has been a growing interest in the applications of network

coding techniques in multi-hop wireless networks. It was shown that network coding

can significantly minimize the number of transmissions resulting in energy savings

and, in turn, longer battery life. The reverse carpooling technique allows to realize

the benefits of network coding while requiring only simple encoding and decoding

algorithms.

The reverse carpooling technique for a simple relay network is demonstrated in

Fig. 3.1(a). In this example, nodes n1 and n2 exchange packets through a relay node

R. The traditional approach that does not involve network coding requires four

transmissions (two for each packet). In contrast, the network coding approach only

requires three transmissions. In particular, with the network coding approach nodes

n1 and n2 send packets x1 and x2 to the relay node, and the relay node broadcasts

the linear combination x1 + x2 (e.g., over field GF (2n)) to both n1 and n2. Each of

the nodes n1 and n2 can then obtain the packet it needs by subtracting the packet

it transmitted previously from the mixed packet x1 + x2.

In a more general case, reverse carpooling includes two flows that traverse a path

in opposite directions. For example, Fig. 3.1(b) shows two flows, from n1 to n4

and from n4 to n1 that share a common path (n1, n2, n3, n4) with two relay nodes

n2 and n3. It is easy to verify that the network coding approach can save up to

50% of transmissions. Effectively, once one connection has been established, another

∗ Part of the data reported in this section is reprinted with permission from “Opportunistic Net-
work Coding: Competitive Analysis” by Yu-Pin Hsu and Alex Sprintson, 2012. In International
Symposium on Network Coding (NETCOD), 191-196, Copyright 2012 by IEEE.

55



n1 n2x1 x2

x1 + x2

n1 n2 n3 n4

q1

q2

n1 n2R

(a)

(b)

(c)

Figure 3.1: (a) Wireless network coding (b) Reverse carpooling (c) 3 nodes relay
network.

connection in the opposite direction can be supported with small additional cost.

To achieve the maximum benefit from the network coding, we need to make sure

that the relay nodes can create a sufficient number of coded packets. Note that a

relay node can only create a coded packet when it has at least one packet to transmit

in each direction. More specifically, consider relay node R depicted in Fig. 3.1(c).

Relay R maintains two queues, q1 and q2 that store packets that need to be delivered

to nodes n2 and n1, respectively. If both queues are not empty, then R can construct

a coded packet by combining the packets from the top of both queues. However, what

should the relay do if there are packets waiting to be transmitted in one of the queues,
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while the second queue is empty? Should the relay wait for a coding opportunity or

just transmit a packet from a non-empty queue without coding? Waiting for a coding

opportunity would reduce the number of transmissions, but incur a certain penalty

in terms of delay. Transmitting an uncoded packet would minimize the delay, but

would result in a larger number of transmissions.

In this section we present an on-line algorithm for this problem that strikes a

trade-off between the average delay and the number of transmissions. We analyze

the performance of this algorithm using the competitive analysis [32] techniques

which characterize the performance of the algorithm in the worst-case scenario.

3.1.1 Related work

Network coding research was initiated by the seminal work of Ahlswede et al. [6]

and since then attracted major interest from the research community. Network cod-

ing technique for wireless networks has been considered by Katti et al. [7]. They

propose an architecture, referred to as COPE, which contains a special network

coding layer between the IP and MAC layers. In [8], an opportunistic routing proto-

col is proposed, referred to as MORE, that randomly mixes packets that belong to

the same flow before forwarding them to the next hop. In addition, several works,

e.g., [10–15], investigate the scheduling and/or routing problems in the network cod-

ing enabled networks. Sagduyu and Ephremides [10] focus on the network coding in

tandem networks and formulate a cross-layer optimization problem, while Khreishah

et al. [11] devise a joint coding-scheduling-rate controller when the pairwise inters-

ession network coding is allowed. The paper [12] shows how to design coding-aware

routing controllers that would maximize coding opportunities in multihop networks.

References [13] and [14] attempt to schedule the network coding between multiple-

session flows. Xi and Yeh [15] propose a distributed algorithm that minimizes the
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transmission cost of a multicast session.

The works of [16–18] analyze the similar trade-off between power consumption

and packet delays from different perspec- tives. The authors in [16] propose a thresh-

old policy using the Lyapunov technique. The threshold policy in [16] is an approx-

imate solution with some performance guarantees. The paper [17] investigates the

problem using an Markov decision process (MDP) framework. Some implementation

issues are discussed in [18]. In previous section, we theoretically prove the structure

of the optimal policy by formulating a stochastic optimization problem. However,

the relevant papers [16–18] and the previous section assumes an independent and

identical distributed (i.i.d.) arrival process. In contrary, our purpose is to come up

with an on-line and universal algorithm that works with any arrival process.

The ski-rental problem [32] is a classical on-line problem, in which there is a

decision for each time epoch about either continuing renting skis or buy skis. Our

wait/transmission decision problem can be viewed as a generalization of the classcial

ski-rental problem.

3.1.2 Main results

We develop on-line algorithms that make a decision on whether to transmit or

to wait at each time epoch. The objective of the algorithm is to minimize the sum

of the transmission and waiting time costs. Thus, at any time slot, the decision of

transmitting a packet would incur a certain transmission cost, while the decision to

wait would incur a waiting cost, but will possibly allow to share the transmission

cost between two packets in the future.

In contrary to the previous section, where the statistical characteristics of the

arrival process are assumed to be known, in this section we analyze the problem

from the viewpoint of competitive analysis. We propose an on-line algorithm for
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the relay that makes wait/transmit decisions without the information of the future

arrivals.

The performance of the on-line algorithm is analyzed using the competitive anal-

ysis techniques [33]. The proposed algorithms can achieve the competitive ratio of

e/(e− 1).

3.2 System overview

3.2.1 Scenario from a relay’s perspective

Our first focus is on the case of a single relay node of interest, which has the

potential for network coding packets from flows in opposing directions. Consider

Fig. 3.1(c) again. We assume that there is a flow f1 that goes from node 1 to 2

and another flow f2 from node 2 to 1, both of which are through the relay under

consideration. The packets from both flows are stored at separate queues, q1 and q2,

at relay node R.

In this section, we consider a time division multiple access (TDMA) scheme.

Time is divided into slots that are further divided into 3 mini-slots. In each slot,

each node is allowed to transmit in its assigned mini-slot: node 1 uses the first mini-

slot and node 2 uses the second mini-slot, while the last mini-slot in a slot is used

by the relay. In particular, the time period between transmission opportunities for

the relay is precisely one slot. Our model is consistent with the scheduled and time

synchronized scheme, such as LTE. Moreover, we use slot as the unit of packet delays.

We assume if a packet is transmitted in the same slot when it arrived at the relay,

its latency is zero.

Note that the relay gets an opportunity to transmit at the end of the slot. When

both queues are non-empty, the relay pulls one packet from q1 and one from q2 and

transmits a linear combination of the packets (e.g., their sum over GF (2n)). Note
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that in this case, the relay is able to take the advantage of the network coding,

reducing the number of transmitted packets by one. We refer to this case a coding

opportunity. Note that if both of the queues are empty, that the relay will not able

to transmit during its mini-slot. In the case when one of the queues is empty and

the second one is not, the relay has to make a decision between the following two

options:

1. transmit a packet from an non-empty queue without coding;

2. wait for the next slot in the hope to receive a matching packet in the other

queue and be able to utilize the coding opportunity.

Note that the first option increases the number of transmissions, while the second

option increases packet delay in the hope of reducing the number of transmissions.

3.2.2 Competitive analysis

We develop an on-line algorithm for the decision problem at the relay and analyze

it using the competitive analysis techniques. Note that relay has to make its decisions

without the knowledge of the future arrivals. For i ∈ {1, 2} and t = 0, 1, 2, · · · , let

Q
(i)
t be the number of packets stored at queue qi at slot t, just before the beginning

of the relay’s mini-slot. We denote by Qt = (Q
(1)
t , Q

(2)
t ) the state of the system. We

also introduce the indicator Dt ∈ {0, 1} such that Dt = 0 if the decision at time slot

t was to wait and Dt = 1 if the decision at time slot t was to transmit. As discussed

above, if Q
(1)
t = Q

(2)
t = 0, then Dt = 0. Also, if Q

(1)
t > 0 and Q

(2)
t > 0, then Dt = 1.

When exactly one of Q
(1)
t and Q

(2)
t is non-zero, then the on-line algorithm has to

make a decision on whether to transmit an uncoded packet or to wait.

We use A
(i)
t ∈ {0, 1} to indicate an arrival of the packet to qi at slot t, such that

A
(i)
t = 0 if no packet arrived at slot t and A

(i)
t = 1 otherwise. The arrival pattern
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I = {(A(1)
t , A

(2)
t )}∞t=0 captures the arrival of packets to both queues. We assume that

there will be a finite number of packet arrivals to both queues.

The number of packets in at slot t+ 1 can be expressed as follows:

Q
(i)
t+1 = [Q

(i)
t −Dt]

+ + A
(i)
t+1,

where [x]+ = max(x, 0).

We proceed to define transmission and delay costs. We define by CT the cost

of transmitting a packet and CH be the cost for holding a packet for one slot. We

assume that if a packet is transmitted in the same slot it arrived, its delay is zero.

Clearly, the cost of transmitting a coded packet is the same as that of an uncoded

packet.

Let C(Qt, Dt) be the immediate cost incurred at time t if action Dt is taken when

the system is in state Qt:

C(Qt, Dt) = CH([Q
(1)
t −Dt]

+ + [Q
(2)
t −Dt]

+) + CTDt. (3.1)

Without loss of generality, we assume that CH = 1.

We define an algorithm θ = {D0, D1, . . . } as a sequence of decisions made at

different time slots. An algorithm θ can be deterministic or randomized, where a

randomized algorithm is a distribution over deterministic algorithms. Note that with

a randomized algorithm, {Dt|t = 0, 1, · · · } are random variables. For the given arrival

pattern I = {(A(1)
t , A

(2)
t )}∞t=0 to q1 and q2, the total cost V (I, θ) of a deterministic

algorithm θ at time T is defined as:

V (I, θ) =
∞∑
t=0

C(Qt, Dt).
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For a randomized algorithm, we define the expected cost V (I, θ) of θ as follows:

V (I, θ) = Eθ

[
∞∑
t=0

C(Qt, Dt)

]
,

where the expectation is over the randomized policy θ.

An off-line algorithm knows the arrival pattern in advance. We denote by

OPT (I) the cost of an optimal off-line algorithm, i.e., algorithm that minimizes

V (I, θ). In contrast to off-line algorithms, an on-line algorithm makes decisions at

time t without knowing A
(i)
j , i ∈ {1, 2} for j > t.

An on-line algorithm θ is said to be c-competitive if for every input pattern I it

holds that

V (I, θ) ≤ c ·OPT (I) + α,

where α is a constant independent of I.

3.2.3 Remark

In Subsections 3.3 - 3.5, we focus on the following setting illustrated in Fig. 3.2.

• q1 has K packets at time 0 (i.e., Q
(1)
0 = K);

• there are no arrivals to q1 (i.e., A
(1)
t = 0 for all t);

• q2 has zero packets at time 0, (i.e., Q
(2)
0 = 0).

• the adversary controls the arrival process of exactly K packets to q2.

We assume that K ≤ CT ; otherwise, there is no potential benefit for the relay to

wait for a coding opportunity. We propose an on-line algorithm for this setting

that achieves the competitive ratio of e/(e− 1). Subsections 3.6 and 3.7 extend the
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Figure 3.2: One adversarial process to q1.

algorithm for a more general model in which the adversary controls arrivals to the

both queues.

3.3 Primal-dual formulation

We need to introduce some additional notation. Consider a deterministic algo-

rithm θ. First, let x be the number of packets in q1 transmitted by the algorithm

without coding. We also denote by zt the number of packets waiting in q1 at time t

and by ηt =
∑t

τ=0A
(2)
τ we define the number of packets added to q2 by the adversary

by time t.

We observe that without loss of generality, we can assume that the algorithm

will never delay packets that arrive to q2. Indeed, since there are no arrivals to q1

delaying a packet in q2 only contributes to the increase in the overall waiting time.

The cost C(I, θ) of θ can be expressed as:

∞∑
t=0

C(Qt, Dt) = CT · K + CT · x+
∞∑
t=0

zt. (3.2)

Note that the first term in (3.2) covers the cost of transmitting all packets in q2 that

were sent uncoded, as well as the cost of coded packets. The second term, CT · x

covers the cost of transmitting uncoded packets from q1. Finally, the term
∑∞

t=0 zt

covers the cost associated with waiting time of packets in q1.
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The off-line decision problem can be formulated as the following integer program:

Primal program:

min CT · x+
∞∑
t=0

zt (3.3)

s.t. x+ zt ≥ K − ηt ∀t ≥ 0 (3.4)

x, zt ∈ {0, 1, 2, · · · } ∀t ≥ 0 (3.5)

Note that the objective function (3.3) is identical to (3.2), excluding the constant

term CT · K. Constraint (3.4) specifies that the number of packets stored at q1 at

time slot t is at least K − ηt − x. Indeed, out of K packets that were at queue q1 in

the beginning of the algorithm, at most x could be sent by time t without coding

and at most ηt could be sent as a combination of packets from q2.

The integer formulation can be relaxed by substituting the integrality constraint (3.5)

with a non-negativity constraint x, zt > 0 for all t ≥ 0.

Proposition 29. The relaxation has no integrality gap.

Proof. Let x∗ and z∗t be the optimal solution to the relax-LP. Then z∗t = K−ηt−x∗.

Suppose the optimal solution is non-integral x∗ = x + ε, where x ∈ N ∪ {0} and

0 < ε < 1. Then the optimal value in Eq. (3.3) is CT · (x + ε) +
∑∞

t=0K − ηt − ε.

Because of ε > 0, the optimal solution is −∞, which leads to a contradiction. We

can get the similar contradiction when we assume that x∗ = x − ε. Hence, we

conclude that the optimal solution to the relax-LP is integral, and therefore there is

no integrality gap when relaxing the integer program.

The dual program of the resulting linear program can be formulated as follows:
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Dual program:

max
∞∑
t=0

(K − ηt)yt (3.6)

s.t.
∞∑
t=0

yt ≤ CT (3.7)

0 ≤ yt ≤ 1 for all t (3.8)

In the following subsection, we use the framework developed by [33] to construct

a randomized algorithm for the problem at hand. The algorithm is based on the

primal-dual formulation developed in this section.

3.4 Fractional algorithm

3.4.1 Algorithm description

The off-line algorithm requires the prior knowledge of {A(2)
t }. This implies that

the algorithm knows at time 0 the values of ηt for all t ≥ 0. In an on-line setting,

at each time t = 0, 1, · · · , the algorithm only knows the value of ηt′ for t′ ≤ t. Thus,

the on-line algorithm does not know in advance all the constraints specified by (3.4),

they are revealed to the algorithm one constraint per time slot.

The purpose of Algorithm 1 is to compute a feasible fractional solution to the

primary problem in an on-line fashion. At each slot t, the algorithm obtains the

value of A
(2)
t which indicates whether an adversary decided to send a new packet to

q2. The algorithm computes the value of zt, as well as updates the current value of x

such that constraint that corresponds to slot t in the primal program is satisfied. The

output of the algorithm is used by Algorithm 2 (described below) which computes

a randomized integral policy at each time interval.

Since the design of both algorithms follow the primal-dual framework presented

in [33] we present only a sketch of the algorithms.

65



Algorithm 1 uses additional variables x̃, {xi}Ki=1, and z̃t for each time t. The

constant a in Line 14 is chosen to make the dual solution feasible. For each new time

slot t and the associated ηt, only {xi}Ki=ηt+1 are updated while {xi}ηti=1 remain the

same. The extra vector of the variables {χt, t = 0, 1, · · · } records the value of x at

slot t, and it is used later on by Algorithm 2.

Algorithm 1: Fractional Primal-Dual algorithm

1 zt, yt, ηt ← 0 for all t ;
2 x, x̃← 0 ;
3 x1, · · · , xK ← 0;
4 z̃t ← 0 for all t;
5 a← (1 + 1

CT
)CT − 1 ;

6 For each new time slot t, the parameters are updated as following.;
7 if x̃ < 1 then

8 if A
(2)
t = 1 then

9 ηt ← ηt−1 + 1;
10 else
11 ηt ← ηt−1;
12 end
13 z̃t ← 1− x̃;
14 x̃← x̃(1 + 1

CT
) + 1

aCT
;

15 for i = ηt + 1 to K do
16 xi ← x̃;

17 end

18 x←∑K
i=1 xi;

19 zt ← (K − ηt)z̃t;
20 yt ← 1;
21 χt ← x;

22 else
23 Terminate;
24 end
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3.4.2 Correctness proof

Lemma 30. Algorithm 1 produces a feasible fractional solution to primal program.

Proof. Let t be an arbitrary time slot, we show that the constraint specified by (3.4)

that corresponds to t in the primary program (i.e., x+ zt ≥ K− ηt) is satisfied. We

consider two cases:

• Case 1: x̃ ≥ 1. Then,

x =
K∑
i=1

xi ≥ (K − ηt)x̃ ≥ K − ηt.

• Case 2: x̃ < 1. Then, let x̄ be the value of x̃ at time t− 1, and we get

x+ zt =
K∑
i=1

xi + (K − ηt)(1− x̄) (3.9)

≥ (K − ηt)x̃+ (K − ηt)(1− x̄) (3.10)

≥ K − ηt. (3.11)

Here, the first inequality is due to the “for” loop in Line 15. The second inequality

is due to the fact that x̃ can only increase as the algorithm proceeds.

Lemma 31. Algorithm 1 produces a feasible fractional solution to the dual program

when a = (1 + 1
CT

)CT − 1.

Proof. To satisfy the dual constraint (3.7), the iterative updating process starting

from Line 7 should not be allowed to run more than CT times since yt is assigned

to be 1 at time t. Thus, it suffices to show that x̃ ≥ 1 after at most CT time slots.

Note that the increment of x̃ forms a geometric sequence with the ratio 1 + 1/CT ,
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and hence at the (CT − 1)th time slot it holds that

x̃ =
(1 + 1

CT
)CT − 1

a
. (3.12)

Therefore, the dual solutions are feasible when

a = (1 +
1

CT
)CT − 1.

Theorem 32. Let OPT be the optimal off-line solution to primal program. Then,

the cost of the solution computed by Algorithm 1 is upper bounded by

(1 +
1

(1 + 1/CT )CT − 1
)OPT.

Proof. By P and D, we denote the values of objective functions of the primal and

dual problem respectively. Let ∆P and ∆D be the change of the primal and dual cost

between the successive updates. Let ∆x be the change of x between two successive

time slot. Given time t with the associated ηt, we obtain

∆P = CT∆x+ zt (3.13)

= CT (K − ηt)(
x̃

CT
+

1

aCT
) + (K − ηt)(1− x̃) (3.14)

= (K − ηt)(1 + 1/a). (3.15)

It is easy to verify that ∆D = (K − ηt)yt = K − ηt. Therefore, P = (1 + 1/a)D and
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then P ≤ (1 + 1/a)OPT by the weak duality property, where

a = (1 +
1

CT
)CT − 1.

3.5 Randomized algorithm

3.5.1 Algorithm description

We use the fractional solution produced by Algorithm 1 to construct a random-

ized algorithm, Algorithm 2 for the original problem. The expected cost of the

randomized algorithm is less than or equal to the primal cost of Algorithm 1. In

particular, Algorithm 2 uses the values of χt (output of Algorithm 1) to derive

the probability to transmit uncoded packets. At any time t, at least bχtc packets

need to be transmitted without coding. The algorithm uses variable τ to keep the

record of the number of the uncoded packets transmitted. Clearly, if there is one

packet from the adversary (i.e., A
(2)
t = 1 in Line 4), the relay transmits a coded

packet.

In Line 7, if bχtc − τ ≥ 1, then bχtc − τ packets are transmitted immediately.

Lines 10 and 12 compute probability for the relay to transmit a packet in q1 in two

different cases. Once the relay decides to transmit a packet without coding, then τ

is increased by one in Line 18.

3.5.2 Example

To show the operation of Algorithms 1 and 2 we give an example of their ex-

ecution. Assume the transmission cost CT = 5 and the initial number of packets

in q1 is K = 3. Table 3.1 shows the values computed by Algorithms 1 and 2. The

arrivals to q2 are indicated by A
(2)
t . For each time slot, the values of x̃, x1, x2, x3 and
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Algorithm 2: Randomized algorithm

input : the value of χt from Algorithm 1
1 pt ← 0 for all t;
2 τ ← 0;
3 For each new time slot t, if there is a packet in q1, do:;

4 if A
(2)
t = 1 then

5 transmit one coded packet by combining packets from q1 and q2;

6 end
7 if bχtc − τ ≥ 1 then
8 transmit bχtc − τ packets from q1;
9 τ ← bχtc;

10 pt ← χt − τ ;

11 else if χt > τ then
12 pt ← (χt − χt−1)/[1− (χt − τ)];

13 end
14 if pt > 0 then
15 Choose α uniformly random in from [0, 1];
16 if α ≤ pt then
17 transmit 1 packet in q1 ;
18 τ ← τ + 1 ;

19 end

20 end
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Table 3.1: A example of execution of Algorithms 1 and 2.

Time t 0 1 2 3

A
(2)
t 0 0 0 1
x̃ 0.13 0.3 0.49 0.72
x1 0.13 0.3 0.49 0.49
x2 0.13 0.3 0.49 0.72
x3 0.13 0.3 0.49 0.72
χt 0.39 0.9 1.47 1.93
pt 0.39 0.84 0.47 0.87

Decision no yes no yes
τ 0 1 1 2

χt are computed by Algorithm 1. Algorithm 2 uses the value of χt to calculate

the probability pt of transmission. At time 0, p0 = 0.39 means the relay transmits

a packet with the probability 0.39, while “no” in Decision row shows that the final

decision is to wait at time 0. At time 1, χ0 = 0.9 implies that the cumulative prob-

ability to transmit a packet without coding is 0.9, i.e., the relay decides to transmit

at time 2 with the probability (0.9 − 0.39)/(1 − 0.39) = 0.84. At that time slot,

the relay decides to transmit, therefore τ is updated to 1. At time 2, χ2 = 1.47

suggests that one packet is supposed to have been transmitted while another packet

can be transmitted with the probability p2 = 0.47. At time 3, a coded packet would

be transmitted due to an arrival from the adversary. Moreover, only x2 and x3 are

updated and another packet in q1 would be transmitted with the probability 0.87.

3.5.3 Correctness proof

Theorem 33. Algorithm 2 achieves a competitive ratio of

1 +
1

(1 + 1/CT )CT − 1
.
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The algorithm is asymptotically e/(e− 1)-competitive as CT →∞.

Proof. It suffices to show that the expected primal cost of the solution computed by

Algorithm 2 is smaller than the fractional solution computed by Algorithm 1.

First notice that at slot t the expected number of transmissions without coding is

equal to the number χt computed by Algorithm 1.

Given the time slot t and the associated ηt, the expected number of packets

waiting in q1 is K− ηt − χt, which is less than zt obtained from Algorithm 1 since

K − ηt − χt = K − ηt −
K∑
i=1

xi (3.16)

≤ K − ηt − (K − ηt)x̃ (3.17)

≤ K − ηt − (K − ηt)x̄ (3.18)

= (K − ηt)z̃t, (3.19)

where x̄ is equal to the value of x̃ at the previous iteration.

We conclude that the expected primal cost from Algorithm 2 is less than that

from Algorithm 1.

The next lemma shows that in Algorithm 2 the relay transmits at most four

packets in its mini-slot.

Lemma 34. In Algorithm 2, the maximum numbers of packets transmitted in one

time slot is 4.

Proof. It is sufficient to show that ∆x ≤ 3. Since the successive increments of x̃ are

a geometric sequence, we have

∆x ≤ K
a · CT

(1 +
1

CT
)CT−1. (3.20)

72



Notice that (1 + 1/CT )CT−1 ≤ 3 and a ≥ 1. Then, ∆x ≤ 3 due to the assumption

that K ≤ CT .

3.6 Two adversarial arrival processes

Thus far, we have examined the scenario where there is only one queue that keeps

adversarial arrivals. In this subsection, we are considering a more general problem

by allowing both arrivals to q1 and q2 controlled by adversary, where K packets will

arrives at q1, and so does q2. Let pi,j be the jth packet in qi, i.e., there will be a

set of packets {p1,1 · · · , p1,K} and {p2,1, · · · , p2,K} added into q1 and q2 respectively

by the adversary. We focus on the decision of the packets in q1, while the packets

in q2 are always transmitted immediately. That is, in each time slot, we have to

determine whether or not to transmit a packet in q1. This assumption is inspired

by an interesting and practical network scenario, where packets from n2 is delay-

sensitive (e.g., real time traffic), while packets from n1 can tolerate delay; therefore,

we can take advantage of the delay of packets in q2 to increase the power efficiency

by means of combining the transmission from both of the queues.

We start by introducing the notations. Let xi,j indicate if the packet pi,j from

ni is transmitted without coding. In particular, xi,j = 1 if the corresponding packet

is transmitted without coding; otherwise, xi,j = 0. By zt, we denote the number of

packets waiting in q1 at time t. Then the total cost at relay including transmission

and waiting cost is CT · K +
∑K

i=1 x1,i +
∑

t zt, where the first term represents the

total cost of transmitting packets in q2, the second one means the additional cost

for transmitting packets in q1 that are transmitted without coding, and the last one

indicates the delay. Due to the constant of CT · K, the relay make decisions for

packets in q1 with the objective of minimizing
∑K

i=1 x1,i +
∑∞

t=0 zt.

In Subsection 3.6.1, we examine a formulation of the primal/dual program, how-
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ever from which we find the difficulty to work out an on-line algorithm. Accordingly,

Subsection 3.6.2 provides a genius interpretation of the primal/dual program, which

makes Alg. 1 work in the setting of two adversarial arrivals.

3.6.1 Naive primal/dual program

We have known the objective function of the primal program, and we are going

to propose the corresponding constraints. By ηi,t =
∑t

τ=0A
(i)
t , we define the number

of packets that arrived at qi by time t. Without loss of generality, we assume that

η2,t ≤ η1,t since if η2,t > η1,t for some t, then η2,t − η1,t packets in q1 cannot find the

coding pair in q2 and do not need any decision.

By time t, there are
∑η2,t

i=1 x2,i packets in q2 that are transmitted without coding,

and hence η2,t −
∑η2,t

i=1 x2,i packets in q1 are combined with the packets in q2. For

each time, there are three policies for the packets in q1: (1) transmitted immediately

without coding, (2) combined with the packet in q2, or (3) do nothing. Putting

together the packets corresponding the there decisions yells the constraint for each

time t being
∑η1,t

i=1 x1,i + (η2,t −
∑η2,t

i=1 x2,i) + zt = η1,t. Accordingly, the primal and

dual program can be written as follows.

Primal program:

min CT

K∑
i=1

x1,i +
∞∑
t=0

zt (3.21)

s.t.

η1,t∑
i=1

x1,i + zt ≥ η1,t − η2,t for all t. (3.22)
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Dual program:

max
∞∑
t=0

(η1,t − η2,t)yt

s.t.
∞∑
t=0

yt ≤ CT

0 ≤ yt ≤ 1 for all t.

Based on the idea of Alg. 1, the fractional primal-dual algorithm corresponding

to the above primal/dual program would update x1,i for at most CT times, i.e., set

yt ← 1 for all t and
∑∞

t=0 yt ≤ CT . Consider that the p1,1 arrives at q1 at t = 0 and

all other packets to q1 come after t = CT − 1, while all packets to q2 arrive after

t = CT . Using Alg. 1, the variable x1,1 is updated as x1,1 ← x1,1(1 + 1
CT

) + 1
aCT

, and

the variable yt is updated to be 1 for time 0 ≤ t ≤ CT − 1. Then the constraint in

the dual program is tight; as such, when p1,2 arrives at q1, the variable x1,2 cannot

be updated, i.e., packets p1,j, for j ≥ 2, are decided to be transmitted immediately

after arriving. From this perspective, Alg. 1 cannot be directly applied for an on-line

algorithm with the competitive ratio of e/(e− 1).

3.6.2 Alternative primal/dual formulation

We are facing the challenge because the primal constraint
∑η1,t

i=1 x1,i + zt = η1,t −

η2,t +
∑η2,t

i=1 x2,i result in limited dual variables that can be updated. Consequently,

we suggest another set of constraints that leads to the same optimal solution, as well

as makes Alg. 1 applicable.

By zi,t we indicate if packet p1,i in q1 waits at time t, where zi,t = 1 if it waits at

time t; otherwise, zi,t = 0. For each time t, the value of x1,i+zi,t would be either 0 or

1, i.e., x1,i+zi,t = 0 represents that the associated packet is transmitted with coding,

while x1,i + zi,t = 1 means that the packet is either transmitted without coding or

75



wait at time t.

Given the value of x2,i for all i, we intend to separate the original constraint∑η1,t
i=1(x1,i + zi,t) = η1,t − η2,t +

∑η2,t
i=1 x2,i to η1,t constraints, i.e., to specify x1,i + zi,t

is 0 or 1 for all 1 ≤ i ≤ η1,t. At time t, there are n1,t − η2,t +
∑η2,t

i=1 x2,i constraints

such that x1,i + zi,t = 1 and xi + zi,t = 0 otherwise, where 1 ≤ i ≤ η1,t. Let

It = {i : x1,i + zi,t = 1} be the set of all index i such that x1,i + zi,t = 1 at time t.

Intuitively, we are considering the constraints packet by packet; instead of the overall

effect. At each time t, there are
( η1,t

η1,t−η2,t+
∑η2,t
i=1 x2,i

)
possible choices of It. Let {It} be

the set of It for all t. Our objective is therefore to find the correct constraints, i.e.

to determine {It}, such that the optimal solution in Eq. (3.21) is maintained.

Note that packet p1,i in q1, with i ∈ It, is either transmitted without coding or

wait at time t, while other packets in q1 added before time t are transmitted with

coding. Now we relate It+1 with It as follows. First, we suppose no packet arrives at

time t+ 1. Then It+1 is equal to It, because no packet arrive at q2 at time t+ 1 and

packet p1,i in q1, with i ∈ It, is either transmitted without coding or wait at time t+1.

Second, if at time t+ 1 packet p1,i arrives at q1, then the packet is either transmitted

without coding or waits at time t + 1 because there is no packet in q2. Hence, in

addition to the constraints by time t, one more constraint x1,i + zi,t+1 = 1 should

be considered, i.e., It+1 = It ∪ {i}. Finally, we examine the case that at time t + 1

packet p2,i is added to q2. If x2,i = 1, then packet p1,i, with i ∈ It, is still transmitted

without coding or waits at time t+ 1; therefore It+1 = It. If x2,i = 0, then packet p2,i

in q2 is coded with p1,j, for some j ∈ It, in q1. Hence the corresponding constraint

at time t+ 1 is x1,j + zj,t+1 = 0 and It+1 = It\{j}.

However, we will observe in Ex. 35 that though every choice of j ∈ It results in

the same value of
∑η1,t+1

i=1 (x1,i + zi,t) in Eq. (3.22), i.e., which is equal to η1,t+1 −

η2,t+1 +
∑η2,t+1

i=1 x2,i, the different consideration of j ∈ It gets the different optimal
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value in Eq. (3.21). We associate {It} with the constraints: for all i, x1,i + zi,t = 1

for αi ≤ t ≤ βi, where αi is the time when the packet p1,i arrives at q1 and βi is the

largest t such that i ∈ It. Note that βi can be infinite. Moreover, by γi, we denote

the time when packet p2,i comes at q2.

Example 35. We assume that CT = 5 and K = 2. Packets p1,1, p1,2 arrive q1 at

time 0 and 2 respectively, while packets p2,1, p2,2 are added to q2 at time 4 and 5

respectively. We intend to minimize CT ·
∑2

i=1 x1,i +
∑2

i=1

∑∞
t=0 zi,t subject to the

constraints
∑η1,t

i=1(x1,i + zi,t) = η1,t − η2,t +
∑η2,t

i=1 x2,i for all t. We can calculate that

the optimal solution is x1,1 = 1, x1,2 = 0, x2,1 = 0, x2,2 = 1, and the optimal value is

7.

Now, we figure out the value of x1,i + zi,t for all i and time t, with the purpose of

keeping the optimal value. From time t = 0 to t = 1, it is obvious that x1,t+z1,t = 1.

At time t = 2, another packet is added to q1, resulting in the constraint in Eq. (3.22)

as
∑2

i=1(x1,i+zi,t) = 2 for t = 2, 3. Therefore, at time t = 2, 3, we have x1,1 +z1,t = 1

and x1,2 + z2,t = 1. At time t = 4, packet p2,1 arrives at q2, and the constraint

in Eq. (3.22) is
∑2

i=1(x1,i + zi,4) = 2 − 1 + x2,1. If x2,1 = 1, i.e., no packet in q1

is combined with packet p2,1, then we have x1,1 + z1,4 = 1 and x1,2 + z2,4 = 1. If

x2,1 = 1, then one of packets in q1 is coded and there will be two possible choices:

(1) x1,1 + z1,4 = 1, x1,2 + z2,4 = 0, i.e., packet p1,1 is determined to transmitted with

coding, while packet p1,2 is either transmitted without coding or wait at time t = 4;

(2) x1,1 + z1,4 = 0, x1,2 + z2,4 = 1. At time t = 5, another packet is added to q2 and

we have the constraint
∑2

i=1(x1,i + zi,5) = x2,1 + x2,2. Similarly, we have a couple of

choices to assign the value of x1,i + zi,t for t ≥ 5.

We assume that x2,1 = 0 and x2,2 = 1, and calculate the optimal value in Eq.

(3.21) for each choice. Note that each case produces the same value of
∑η1,t

i=1(x1,i+zi,t)
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as η1,t − η2,t +
∑η2,t

i=1 x2,i for all i and t.

Case (1) If the constraint is x1,1 + z1,t = 1 for 0 ≤ t ≤ 3, and x1,2 + z2,t = 1 for

t ≥ 2: The optimal solution is x1,1 = 0 and x1,2 = 1, while the optimal value is 9.

Case (2) If the constraint is x1,1 + z1,t = 1 for t ≥ 0, and x1,2 + z2,t = 1 for

2 ≤ t ≤ 3: The optimal solution is x1,1 = 1 and x1,2 = 0, while the optimal value is

7.

We conclude that even though x2,i for all i is given, the optimal value for different

choice to split the original constraint is different. J

Thus far, we understand that {It} needs to be carefully considered to maintain

the optimality. When the arrivals for each time are given, {It} cannot be selected

arbitrarily. Accordingly, we suggest the notion of the feasible {It} as follows.

Definition 36. Given the arrivals A
(i)
t for all i and t, we say {It} is feasible if {It}

satisfies the following condition.

• When A
(1)
t = A

(2)
t = 0, It = It−1.

• When A
(1)
t = 1, say packet p1,i arrives at q1, It = It ∪ {i}.

• When A
(2)
t = 1, It = It−1 or It = It−1\{j} for some j ∈ It−1.

Definition 37. Given the arrivals A
(i)
t for all i and t, we say a feasible {It} is optimal

if the optimal value in Eq. (3.21) is the same as the optimal value subject to the

constraints associated with {It}.

Remark 38. Here, we give an intuition of the optimal {It}. Assume that K = 2,

and packets p1,1 and p1,2 are added prior to p2,1, i.e., α1 < α2 < γ1.

If γ1 − α2 > CT , then p1,1 and p1,2 would not wait for coding since the waiting

cost cannot be compensated by the saving from the coding. Hence, x1,1 + z1,γ1 = 1

and x1,2 + z2,γ1 = 1.
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If γ1−α2 ≤ CT , then one of p1,1 and p1,2 would be combined with p2,1. Two cases

are discussed as follows.

• Suppose that the optimal solution is x1,1 = x2,1 = 0, i.e. packets p1,1 and p1,2

would wait for coding. Both packets p1,1 and p1,2 are in q1 at time t = γ1, and

therefore we can choose any of them to code with p2,1. That is, we can choose

x1,1 + z1,γ1 = 0 or x1,2 + z2,γ1 = 0.

• Suppose that the optimal solution is x1,1 = 1 or x1,2 = 1, i.e., one of packets

p1,1, p1,2 would be transmitted without coding, while the other one would wait

for coding. Then, it must be the case that x1,1 = 1 since packet p1,1 wait longer

than packet p1,2 for the purpose of combining with p2,1. Therefore, we have to

choose x1,2 + z1,γ = 0, but not x1,2 + z1,γ1 = 0.

To conjecture for the general K, when packet p2,j comes, if γj − αi > CT for all

i ∈ Iγj−1, then Iγj = Iγj−1; otherwise, Iγj = Iγj−1\{k} with k = arg maxi∈Iγj−1
αi,

i.e., choose the packet in q1 that is closest to time t = γj to encode with packet p2,j.

3.6.3 Compute the optimal solution when {It} is given

Before presenting how to find the optimal {It}, we examine the optimal solution

when It for all t is given. We consider the optimization problem as follows.

min CT

K∑
i=1

x1,i +
∞∑
t=0

K∑
i=1

zi,t

s.t. x1,i + zi,t ≥ 1 for all i and αi ≤ t ≤ βi

Lemma 39. The optimal value to the above problem is
∑K

i=1 min{βi − αi + 1, CT}.
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Proof. We compute the optimal solution via the associated dual program as follows.

max
K∑
i=1

βi∑
t=αi

yi,t (3.23)

s.t.

βi∑
t=αi

yi,t ≤ CT

0 ≤ yi,t ≤ 1 for all i and t

Since 0 ≤ yi,t ≤ 1, we have
∑βi

t=αi
yi,t ≤ min{βi − αi + 1, CT}, and the objective

function is upper bounded as follows.

K∑
i=1

βi∑
t=αi

yi,t

≤
K∑
i=1

min{βi − αi + 1, CT}

The equality in the above equation holds when yi,t = 1 for all αi ≤ t ≤ min{βi, αi +

CT − 1}. Therefore, according to the duality theory, we conclude that the optimal

value is
∑K

i=1 min{βi − αi + 1, CT}.

3.6.4 Optimal {It}

We understand in Subsection 3.6.2 that when a packet arrives at q2 at time t, it

is not obvious which j ∈ It−1 should be selected for x1,j +zj,t = 0. We are looking for

the optimal {I∗t }. Now we are ready to present an algorithm in Alg. 3 to compute

the optimal {I∗t }.

Theorem 40. Alg. 3 produces the optimal {I∗t }.

Proof. First, it is obvious that {I∗t } produced from Alg. is feasible. It suffices to

show that when a packet is added to q2 at time t, Alg. 3 produces the optimal I∗t .

We prove it by induction over the number of packets K.
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Algorithm 3: Optimal {It} computation

input : Arrivals A
(i)
t for all i and t

output: {It} and x2,i for all i
1 ηi,t ← 0 for all t;
2 t← 0
3 while η2,t ≤ K do

4 if A
(1)
t = 1 then

5 η1,t ← η1,t−1 + 1 ;
6 It ← It−1 ∪ {η1,t};
7 else
8 η1,t ← η1,t−1 ;
9 It ← It−1;

10 end

11 if A
(2)
t = 1 then

12 η2,t ← η2,t−1 + 1 ;
13 j∗ ← max{j ∈ It−1};
14 if t− αj∗ ≥ CT then
15 x2,η2,t ← 1 ;
16 else
17 x2,η2,t ← 0 ;
18 It ← It\{j∗};
19 end

20 else
21 η2,t ← η2,t−1 ;
22 end
23 t← t+ 1 ;

24 end
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First, we consider K = 1. If γ1 ≤ CT − 1, then the optimal solution to Eq.

(3.21) is x1,1 = x2,1 = 0, and z1,t = 1 for 0 ≤ t ≤ γ1 − 1; hence, x1,1 + z1,t = 1 for

0 ≤ t ≤ r1 − 1. If γ1 > CT − 1, then x1,1 = x2,1 = 1, and z1,t = 0 for all t; hence

x1,1 + z1,t = 1 for all t. It is easy to verify that Alg. 3 produces the optimal {I∗t }.

Second, we suppose that when K = k, Alg. 3 produces the optimal {I∗t }. Let

A = {(A(1)
t , A

(2)
t )}. By A\{(t1, t2)} we denote the the arrival process that is equal

to A except for A
(1)
t1 = 0 and A

(2)
t2 = 0, i.e., to remove the packet arrivals A

(1)
t1 and

A
(2)
t2 if any. By OPTk(A), we define the optimal value when the arrival process is

A = {(A(1)
t , A

(2)
t )}.

Now we are considering the case when K = k + 1 associated with the arrival

process A. We express OPTk+1 in terms of OPTk by means of Bellman equation

and Lemma 39.

OPTk+1(A) = min
i:αi<γ1

{
min{γ1 − αi, CT}+ OPTk(A\{αi, γ1})

}
Let ζ = max{i : αi < γ1}. Note that Alg. 3 produces OPTk(A\{(αi, γ1)}) for

all 1 ≤ i ≤ ζ. Given A\{(αζ , γ1)}, we assume that from Alg. 3 the constraints for

packets p1,i, with 1 ≤ i ≤ ζ − 1, are x1,i + zi,t = 1 for αi ≤ t ≤ β∗i . Then we compute

OPTk(A\{αζ , γ1}) as follows.

OPTk(A\{αζ , γ1}) =

ζ−1∑
i=1

min{β∗i − αi + 1, CT}+R,

where R include the the cost incurred due to the packets that arrive after γ1. More-
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over, for 1 ≤ j < ζ, we have

OPTk(A\{αj, γ1})

=

j−1∑
i=1

min{β∗j − αi + 1, CT}+

ζ∑
i=j+1

min{β∗i−1 − αi + 1, CT}+R

We note that, for a ≤ γ1 ≤ b,

min{b− a, CT} = min{γ1 − a, CT}+ [min{a+ CT , b} − γ1]+

Therefore, for 1 ≤ j < ζ, we can computer

min{γ1 − αj, CT}+ OPTk(A\{αj, γ1})−min{γ1 − αζ , CT}+ OPTk(A\{αζ , γ1})

=

ζ−1∑
i=j

[min{αi+1 + CT , β
∗
i } − γ1]+ −

ζ−1∑
i=j

[min{αi + CT , β
∗
i } − γ1]+ ≥ 0,

where the last inequality comes from αi+1 > αi for all i. Therefore, Alg. 3 results in

the optimal {It} when K = k + 1. We conclude that Alg. 3 produces the optimal

{It} by induction.

3.7 Fractional algorithm for the case of two adversaries

Given the arrivals A
(i)
t for all i and t, the off-line optimization problem can be

formulated as follows primal and dual program, where β∗i is computed using Alg. 3.

Primal program:

min CT

K∑
i=1

x1,i +
∞∑
t=0

K∑
i=1

zi,t (3.24)

s.t. x1,i + zi,t ≥ 1 for αi ≤ t ≤ β∗i
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Deal program:

max
K∑
i=1

β∗i∑
t=αi

yi,t (3.25)

s.t.

β∗i∑
t=αi

yi,t ≤ CT

0 ≤ yi,t ≤ 1 for all i and t

Now, we are ready to present the on-line fractional algorithm for case of the two

adversaries.

Using the similar proofs in Subsection 3.5.3, we conclude the results as follows.

Lemma 41. Algorithm 4 produces a feasible fractional solution to primal program.

Lemma 42. Algorithm 4 produces a feasible fractional solution to the dual program

when a = (1 + 1
CT

)CT − 1.

Theorem 43. Let OPT be the optimal off-line solution to primal program. Then,

the cost of the solution computed by Algorithm 4 is upper bounded by

(1 +
1

(1 + 1/CT )CT − 1
)OPT.
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Algorithm 4: Fractional Primal-Dual algorithm

1 zt, yt, ηt ← 0 for all t ;
2 xi, x̃i ← 0 for all 1 ≤ i ≤ K ;
3 z̃t ← 0 for all t;
4 a← (1 + 1

CT
)CT − 1 ;

5 For each new time slot t, the parameters are updated as following.;
6 while n2,t < K do

7 if A
(1)
t = 1 then

8 η1,t ← η1,t−1 + 1 ;
9 It ← It−1 ∪ {η1,t} ;

10 else
11 η1,t ← η1,t−1 ;
12 It ← It−1 ;

13 end

14 if A
(2)
t = 1 then

15 η2,t ← η2,t−1 + 1 ;
16 j∗ ← max{j ∈ It−1};
17 if t− αj∗ ≥ CT then
18 It ← It−1;
19 else
20 It ← It−1\{j∗};
21 end

22 else
23 η2,t ← η2,t−1 ;
24 It ← It−1;

25 end
26 forall the i ∈ It do
27 if xi < 1 then
28 zi,t ← 1− xi;
29 xi ← xi(1 + 1

CT
) + 1

aCT
;

30 yt ← 1;

31 end

32 end

33 end
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4. THE INDEX CODING PROBLEM: A GAME-THEORETICAL

PERSPECTIVE∗

4.1 Introduction

The Index Coding problem is one of the basic problems in wireless network coding

[1, 2]. An instance of the Index Coding problem includes a server, a set of wireless

clients, and a set P = {p1, ..., pm} of m packets that need to be delivered to clients.

Each client is interested in a certain subset of packets available at the server and has

a (different) subset of packets available to it as side information. Server can transmit

the packets or encoding thereof to clients via a noiseless broadcast channel. The goal

is to find a transmission scheme that requires the minimum number of transmissions

to satisfy the requests of all clients.

Fig. 4.1 depicts an instance of the Index Coding problem, where a server needs to

deliver four packets P = {p1, · · · , p4} to four clients. Each client requires a unique

packet in P and has side information as shown in the picture. It can be verified that

the demands of all clients can be satisfied by broadcasting three packets: p1 + p2,

p2 + p3, and p4 (all operations are over GF (2)). Note that the traditional approach

(without coding) requires the transmissions of all four packets p1, · · · , p4.

Recently, the Index Coding problem has attracted a significant interest from the

research community. The prior works on the Index Coding problem have focused on

developing algorithms, establishing rate bounds, and analyzing the computational

complexity of the problem [7,34–38].

This section focuses on the game-theoretic aspects of the Index Coding problem.

∗ Part of the data reported in this section is reprinted with permission from “The Index Coding
Problem: A Game-Theoretical Perspective” by Yu-Pin Hsu, I-Hong Hou, and Alex Sprintson,
2013. In IEEE International Symposium on Information Theory Proceedings (ISIT), 977-981,
Copyright 2013 by IEEE.
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p3 p4
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v1 = 0.2

b1 = 0.8

v2 = 0.9

b2 = 0.9
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b3 = 0.5

v4 = 0.6

b4 = 0.6

side information

desired packet

Figure 4.1: An instance of the Index Coding problem. Client ci, i = 1, . . . , 4 requests
packet pi. The side information sets of clients c1, . . . , c4 are {p3}, {p1}, {p2, p4}, and
{p3}, respectively; vi and bi denote the value and bid of packet ci, respectively.

In particular, we consider a setting in which each client is required to pay for the

packets it obtains from server. The payment process is implemented through an

auction. Each client submits a bid to the server for each packet it requests. The

server decides whether to accept or reject each bid and determines the payment

for all accepted bids. Clients are considered to be selfish, i.e., they consider the bids

with the objective to maximize their utility while minimizing the amount of payment

to the server. The utility of the clients is the difference between the true value of

the packet to the client and the payment submitted to the server for this packet.

Accordingly, our objective is to design a truthful mechanism, i.e., a mechanism that

incentivizes every client to bid the true value of the packet.

In contrast to the original Index Coding problem where the goal of the server is

to satisfy the demands of all clients, we focus on settings where the server’s decisions

are driven by the values of the transmitted packets to the clients. Intuitively, since

each transmission at server incurs a certain cost, the server may decide to transmit

a packet only when the packet is important enough for the clients. Thus, our goal is

to maximize the social welfare, i.e., the total value of the packets the clients are able
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to decode minus the total cost of transmitting the packets by the server. The social

welfare reflects the positive externalities in terms of clients’ valuations of packets and

the negative externalities related by the transmission costs of server.

The auction mechanism includes two main components, namely the coding func-

tion and payment function. The coding function determines which packets are trans-

mitted over the channel and how they are encoded. The payment function determines

the amount of money the client will pay to the server for each packet it is able to

decode.

4.1.1 Related work

The research on the Index Coding problem can be classified into two main di-

rections. The first direction is focused on achievable rate bounds, as well as on the

connections between the Index Coding and the Network Coding problems [34–36].

The second direction has on analyzing the computational complexity of the Index

Coding problem as well as developing heuristic approaches to this problem [7,37,38].

In particular, the Index Coding problem has been shown to be NP-hard in [38].

Chaudhry et al. [39] studied the related problem, referred to as the Complementary

Index Coding problem. In this problem, the objective is to maximize the number of

“saved” transmissions, i.e., n− µ, where n is the number of packets that need to be

delivered to the clients. The follow-up paper [40] focuses on finding sparse solutions

to the problem, i.e., solutions in which each transmitted packet is a combination of

at most two original packets.

4.1.2 Main results

First we design a truthful scheme, based on the Vickrey-Clarke-Groves (VCG)

mechanism [41–43], that maximizes the social welfare of the system. It turns out that

finding VCG based encoding functions for this scheme is an interesting optimization
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problem. We refer to this problem as the Price Collecting Index Coding (PCIC)

problem and show that this problem is NP-hard. To mitigate the intractability of

the PCIC problem, we present an approximation algorithm with provable perfor-

mance guarantees. Unfortunately, as we show through a counter-example, a VCG

based algorithm that relies on the approximation solution to the PCIC problem is

no longer truthful. Accordingly, we present a non-VCG based payment scheme that

achieves the truthfulness property in the presence of the approximation solution for

the problem.

4.2 Model

We begin with the definition of the Index Coding problem. The input to the

problem includes a server S, a set of n wireless clients Λ = {c1, · · · , cn}, and a noise-

less wireless broadcast channel. The server has a set of m packets P = {p1, · · · , pm}

that need to be distributed to clients in Λ. We assume, without loss of generality,

that each client requests a single packet in P and has access to a subset of packets

in P as a side information. Indeed, a client that wants more than one packet can be

substituted by multiple clients that share the same side information set. In partic-

ular, each client ci ∈ Λ is characterized by the ordered pair (wi, Hi), where wi ∈ P

is the packet requested by ci and Hi ⊆ P is the set of packets available to ci as a

side information. We assume that each packet pi represents an element of the Galois

field GF (q).

We assume that each client ci ∈ Λ has the internal (private) value vi for the packet

wi it requests. The transmission process includes an auction, in which each client

submits a bid bi for packet wi. We denote by V = {v1, · · · , vn} and B = {b1, · · · , bn}

the arrays that include the internal valuations and bids of the clients. Based on the

bid vectors, the server identifies linear combinations that will be transmitted over the
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channel. In this section, we focus on the scalar-linear coding schemes in which each

packet qi =
∑n

j=1 gi,jpj transmitted by server at the iteration i, 1 ≤ i ≤ η, is a linear

combination of packets in P . Here, η is the total number of transmissions made by

the server and gi = {gi,1, · · · , gi,n} ∈ GF (q)n is the encoding vector for the iteration

i. We denote by G = [gi] the encoding matrix, rows of G correspond to encoding

vectors of the packets transmitted over the channel. A sparse code is the general

linear code in which each transmitted packet from server is a linear combination of

at most two packets in P . The transmission of a packet by server incurs the cost

CT . Without lost of generality, we assume that CT = 1, i.e., the total cost incurred

by the server is equal to η.

To decode the packet wi, client ci uses a linear decoding function ri, such that

wi = ri(q1, · · · , qη, Hi). In our scheme, we do not require the server to satisfy the

requests of all clients. Therefore, for some clients the function ri might not exist.

We say that a client can immediately decode a packet if there exists packet qj and

function fi such that wi = qj + fi(Hi), where fj(Hi) is a linear combination of the

packets in Hi. Note that with the immediate decoding function the client can only

use one received packet. For example, in Fig. 4.1, client c2 can immediately decode

packet p2 by using packet p1 + p2 transmitted over the channel. In contrast, client c1

cannot decode packet p1 by using packet p1 + p2 or packet p2 + p3 separately (but it

can decode p1 using a combination of packets p1 + p2 and p2 + p3). The immediate

decoding scheme has a significant advantage in practical settings since a client only

needs to receive one packet and can use a simple decoding algorithm to obtain the

packet it needs.

The purpose of the server is to maximize the social welfare, defined as
∑n

i=1 vi ·

θi−η, where θi is the indicator function that specifies if client ci is able to decode the

required packet wi. In particular, θi = 1 if there exists a linear decoding function ri
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such that wi = ri(q1, · · · , qη, Hi); otherwise, θi = 0. We denote by Θ = {θ1, · · · , θn}

the vector of indicator functions.

For example, in the setting depicted in Fig. 4.1, the social welfare of broadcasting

the solution to the Index Coding problem, i.e. {p1 + p2; p2 + p3; p4}, is 0.2 + 0.9 +

0.5 + 0.6− 3 = −0.8, while the higher social welfare of the sequence consisting of a

single combination {p3 + p4} is equal to 0.5 + 0.6 − 1 = 0.1. Thus, transmitting a

single combination p3 + p4 would be more desirable than transmitting three packets

{p1 + p2; p2 + p3; p4} from the server’s point of view.

The payment function is an important part of the auction mechanism. Server

determines the amount of payment φi that each client needs to pay for the obtained

packet. We denote by Φ = {φ1, · · · , φn} the payment vector for all clients. The value

of φi is a function of B and Θ. The auction mechanism, including the algorithm for

determining the encoding function and the payment function is known to all the

parties.

We assume that every client ci is selfish and chooses its best bidding policy bi that

maximizes its utility defined by ui(B) = vi · θi − φi. We say that a mechanism (i.e.,

an encoding matrix associated with a payment function) is truthful if ui
(
vi, B−i

)
≥

ui
(
b̂i, B−i

)
for all b̂i and B−i, where B−i = B \ {bi}. That is, regardless of the bids

submitted by other clients, the utility of client ci is maximized when bi = vi.

In this section, we design the encoding matrix and the payment function such

that satisfies the following two conditions: (i) every client is incentivized to report

its true valuation of the desired packet (i.e., truthful property) and (ii) the social

welfare is maximized. We will consider two scenarios, multiple unicast and multiple

multicast. In multiple unicast environment, every client requires different packet

(i.e., wi 6= wj for i 6= j, and so m = n), while in the multiple multicast scenario, one

packet could be requested by multiple packets (i.e., m ≤ n).
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4.3 VCG-based mechanism design

Our problem belongs to the general framework of mechanism design with social

choices [44]. We leverage the celebrated Vickrey-Clarke-Groves (VCG) mechanism

[41–43] to design a truthful mechanism. In particular, we propose a scheme, that

include coding and payment functions, which is a variation of the VCG mechanism.

Note that the indicator functions Θ and the number of transmissions η are func-

tions of the encoding matrix G. In particular, it is easy to determine Θ and η

for a given matrix G. We define the social welfare function w(B,G) as w(B,G) =∑n
i=1 bi ·θi−η, where B replaces V in the definition of the social welfare. In addition,

let w−i(B,G) =
∑

j 6=i bj · θj − η.

In our mechanism, we choose the encoding matrix that maximizes the the value

of social welfare function for the given bids B.

VCG-coding scheme: The encoding matrix is chosen such that the function

w(B,G) is maximized, i.e. the optimal encoding matrix G∗ is given by

G∗ = arg max
G

w(B,G). (4.1)

If there are multiple encoding functions that maximize the social welfare functions,

we choose one that satisfies the larger number of clients. Thus, without loss of

generality, we can assume that vi ∈ [0, 1], since client ci is assured to get the desired

packet when submitting the bid bi = CT = 1.

The payment function φi is determined as follows.

VCG-payment function: The client ci is charged as follows.

φi =

(
max
G−i

w(B−i, G−i)

)
− w−i(B,G∗). (4.2)
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The first term in Equation (4.2) implies the optimal social welfare when client ci is

removed, while the second term represents the social welfare for all clients excluding

ci when the optimal encoding matrix G∗ determined by (4.1) is employed. The VCG-

payment function charges the “externality” of client ci, i.e., the decrease in optimal

social welfare when client ci is included in the system.

Proposition 44. The VCG-coding scheme associated with the VCG-payment func-

tion is a truthful mechanism, i.e. B = V . Moreover, the pricing function in (4.2) is

non-negative, and the utilities of all clients are non-negative, φi ≤ vi.

Proof. Follows directly from the properties of the VCG mechanism [44].

Proposition 44 implies that each client ci submits a bid bi = vi, i.e. B = V .

Then, by (4.1) the server will choose encoding matrix G∗ that maximizes the social

welfare. We conclude in the following.

Proposition 45. The VCG-coding scheme associated with the VCG-payment func-

tion maximize the social welfare.

4.4 Hardness results

The problem of finding an optimal coding scheme in (4.1) is an interesting com-

binatorial problem by itself. We refer to this problem as the Prize Collecting Index

Coding (PCIC) Problem. In the next lemma we show that this problem is NP-hard

for general linear encoding/decoding functions.

Proposition 46. The PCIC problem is NP-hard when considering general linear

encoding/decoding scheme.

Proof. We show reduction from the Index Coding problem which was shown to be

NP-hard. We start with an instance of the Index Coding problem and construct
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Table 4.1: Algorithmic hardness of PCIC problem

Immediate decoding General linear decoding

Multiple uni-
cast

Poly-time solvable
Truthful approximation algorithm:
Greedy-VCG-coding scheme
Greedy-VCG-payment function

Multiple mul-
ticast

NP-hard and hard to approximate within the factor n1−ε

an instance of the PCIC problem in which each client has a unit bid, i.e., bi = 1

for each client. Since bi = CT , all clients will get the desired packet, hence θi = 1

for all clients. This implies that w(B,G) = n − η. As the first term of w(B,G)

is constant, the problem of finding the code that maximizes w(B,G) is equivalent

to the problem of finding the encoding matrix G∗ that minimizes the number of

transmissions η. Thus, an optimal algorithm for the PCIC problem can be used

for finding an optimal solution to the Index Coding problem. This implies that the

PCIC problem is NP-hard

We understand that, in general, the PCIC problem is NP-hard. In the following,

we focus on the sparse code, where each packet is a combination of at most two

packets in P . The reason to study the sparse solution is that, with sparse coding,

both encoders and decoders can be implemented in a simpler manner which has a

significant advantage for practical applications. Our results are summarized in Table

4.1.

The multiple unicast scenario is considered in Subsections 4.5 and 4.6. We show

that there is a polynomial time algorithm for finding the optimal VCG-coding scheme

with immediate decoding. For the general decoding function, we propose an approx-

imation algorithm to the PCIC problem. Unfortunately, the VCG-payment function
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in (4.2) can only be used with an optimal solution G∗ from (4.1). An approximate

solution to (4.1) is not sufficient to guarantee the truthfulness property. Accordingly,

in Subsection 4.6, we propose a new pricing function that maintains the truthfulness

property for the case in which the approximation solution is used.

In Subsections 4.7 and 4.8, we focus on the multiple multicast scenario. We

show that in this scenario the PCIC problem is hard to approximate within a factor

n1−ε for any constant ε > 0 even when the decoding is restricted to the immediate

decoding.

4.5 Multiple unicast with immediate decoding

In this subsection we focus on the multiple unicast case with sparse coding and

immediate decoding. We show that in this case the PCIC problem can be solved

in polynomial time. We start by introducing the notion of the weight dependency

graph.

Definition 47 (Weight dependency graph G(V,A)). Given a multiple unicast in-

stance of the PCIC problem, we define a directed graph G(V,A) as follows:

• For each client ci ∈ C, there is a corresponding vertex vi in V .

• For any two clients ci and cj such that wi ∈ Hj, there is a directed arc (vi, vj) ∈

A.

• The weight of arc (vi, vj) is γi,j = bi.

Fig. 4.2 illustrates the weight dependency graph corresponding to the instance of

the PCIC problem depicted in Fig. 4.1. For each vertex-disjoint cycle in the weight

dependency graph, the server can save one transmission. The clients belonging to

cycle C share the transmission cost |C| − 1, resulting in the higher social welfare.

Indeed, in Fig. 4.2 we have a cycle (c1, c2, c3) that involves three clients. It is easy
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Figure 4.2: Weight dependency graph for the instance of the PCIC problem in Fig.
4.1

to verify that the three clients can be satisfied by two transmissions: p1 + p2 and

p2 + p3. Note that if there is no cycle in G(V,A) then sparse code can not improve

the value of social welfare function. Given a cycle C = (c1, c2, · · · , ck), server encodes

along cycle C means that server would transmit the sequence of k− 1 packets {p1 +

p2; · · · ; pk−1 + pk}.

Theorem 48. In multiple unicast scenario with the restriction of sparse code and

the immediate decoding, the PCIC problem can be solved in polynomial time.

Proof. We prove by presenting a polynomial-time algorithm for this problem. Note

that with immediate decoding we cannot use a cycle greater than two since a larger

cycle will not result in decreasing the number of transmissions. For example, in

Fig. 4.2 we cannot use the cycle (c1, c2, c3) to generate an encoded packets p1 + p2

and p2 +p3 since in this case client c1 will not be able to decode packet p1. Thus, any

optimal solution to the problem in this scenario corresponds to set of vertex-disjoint

cycles of length two.

Our algorithm can be described as follows. First, given an instance of the PCIC

problem, we construct the corresponding weight dependency graph G(V,A). Then,

we construct an undirected auxiliary graph G̃(Ṽ , Ẽ) through the following procedure.
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• The vertex set Ṽ of G̃ is the same as the vertex set V of G.

• For any two vertices vi, vj ∈ V such that both arcs (vi, vj) and (vj, vi) exist, we

create an edge (ṽi, ṽj) ∈ Ẽ.

• The weight of edge (ṽi, ṽj) ∈ Ẽ is set to γ̃i,j = γi,j + γj,i − 1.

Then, the algorithm performs the following steps:

1. Find the maximum weight matching M∗ in G̃(Ṽ , Ẽ).

2. For every edge (ṽi, ṽj) ∈M∗, transmit the packet wi + wj.

3. For the vertex vi such that vi is not matched and bi = 1 transmit wi.

The maximum weight matching can be solved in polynomial time (e.g., through

Edmonds’s algorithm). As discussed above, the only way to improve the social

welfare is to use the vertex-disjoint cycles of length two in G(V,A). Note that each

such cycle corresponds to an edge in G̃(Ṽ , Ẽ). For each vertex-disjoint cycle in

G(V,A), we can save one transmission. Therefore, the weight γ̃ẽ for ẽ = (i, j) ∈ Ẽ

is defined to be γi,j + γj,i − 1, where the first two terms represent the contribution

of the social welfare, while the last one is the shared transmission cost. Therefore,

the optimal code is associated with the maximum weight matching in G̃(Ṽ , Ẽ). The

third step in the algorithm is to make sure that the clients that submit the bid equal

to the transmission cost will get the desired packets.

4.6 Multiple unicast with general decoding

In this subsection, we assume that the clients can use a general linear decoding

functions (i.e., beyond immediate decoding). We first investigate the hardness of the

VCG-coding scheme in this setting.
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Lemma 49. In multiple unicast scenario with the restriction to the sparse code, the

PCIC problem is NP-hard.

Proof. We show a reduction from the cycle packing problem in directed graphs. The

objective of this problem is to find the maximum number of vertex-disjoin cycles in

a directed graph G(V,A). Let G(V,A) be an instance of the cycle packing problem.

We construct the weight dependency graph G(V,A) by associating the weight γa = 1

to each arc a ∈ A. We then create an instance of the PCIC problem that corresponds

to G(V,A). In this instance, the bid of each client is set to 1. Since bi = CT for all

clients, each client is guaranteed to decode the wanted packet. Thus, w(B,G) = n−η,

where the first term is constant. Thus, in this case, an optimal solution to the PCIC

problem will have the minimum possible number of transmissions. With sparse

coding, the number of transmissions can be reduced only when the server encodes

along vertex-disjoin cycles in the weight dependency graph. For each vertex-disjoint

cycle in G(V,A), one transmission can be saved. Thus, finding the minimum number

of transmissions is equivalent to find the maximum number of vertex-disjoint cycles

in G(V,A), which is NP-hard. Thus, we conclude that finding a sparse code in the

multiple unicast scenario is NP-hard.

We propose the greedy-VCG-coding scheme in Alg. 5 as an approximation algo-

rithm for the PCIC problem in this setting. Next, we present a corresponding pricing

scheme that motivates all clients to reveal the true value of the packets.

We define the weight of cycle C in G(V,A) as γ(C) =
∑

a∈C γa − (|C| − 1),

where the first term is the sum of all bids along the cycle, and the second one is

the total transmission cost of all packets that correspond to this cycle. Let C be a

set of vertex-disjoint cycles in G(V,A). Then w(B,G) =
∑

C∈C γ(C), where server

encodes along the cycles in C as the encoding matrix G.
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Algorithm 5: Greedy-VCG-coding scheme

input : Bids vector B and side information Hi for all clients
output: Encoding matrix G

1 Create the weight dependency graph G(V,A);
2 Define the cost λa of arc a ∈ A by λa = 1− γa;
3 By λ(C) =

∑
a∈C λa, we define the cost of cycle C;

4 S1,S2 ← ∅ ; // S1,S2 will include the clients that are served
5 while in G(V,A), there is a cycle with the cost less than or equal to one do
6 Find the cycle C in G(V,A) with the smallest cost;
7 Server encodes along cycle C;
8 S1 ← S1 ∪ {cv : v ∈ V, v ∈ C} ;
9 G(V,A)← G(V,A)\{vertices along C,

edges along or incidnet to C};
10 end
11 for i← 1 to n do
12 if bi = 1 but ci /∈ S1 then
13 Server will transmit wi;
14 S2 ← S2 ∪ {ci};
15 end

16 end

The idea of the greedy-VCG-coding scheme is iteratively to identify the cycle

of the maximum weight and then to remove it. However, this scheme cannot be

implemented directly since it is NP-hard to find a maximum weight cycle. We note

that γ(C) can be revised as γ(C) = 1−∑a∈C(1−γa). Thus, in this case, a maximum

weight cycle with respect to weight γ(C) corresponds to the minimum cost cycle with

respect to cost
∑

a∈C(1 − γa). Therefore, in lines 2 and 3 of Alg. 5, we define the

cost of arc a ∈ A by λa = 1 − γa and the cost of cycle C by λ(C) =
∑

a∈C λa.

Then, the algorithm finds the minimum cost cycle in Line 6. To this end, we can

use well-known polynomial time algorithms such as Floyd-Warshall algorithm. After

such a cycle is identified, it is removed from the graph in Line 9. The condition in

Line 5 guarantees that the maximum weight cycle in the remaining graph G(V,A)
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(i.e., the minimum cost cycle) has a non-negative weight. In Line 13, the clients with

the bids equal to the transmission cost are served. Such clients are then included

in set S2. In addition, set S1 contains the clients associated with the cycles chosen

in Line 6. Note that all procedures in Alg. 5 require a polynomial number of steps,

hence Alg. 5 can be executed in polynomial time.

Unfortunately, Alg. 5 cannot be used with the VCG-payment functions specified

by (4.2) (i.e to replace G∗ with the approximate solution). In particular, the following

example shows that such combination might not have the truthfulness property.

Server

p2

p4

c2

c4

p1

p1

c1

p3

c3

c2 c4c1 c3

p2

p3 p4

v1 = 0.55

b1 = 0.55

v2 = 0.6

b2 = 0.6

v3 = 0.6

b3 = 0.6

v4 = 0.55

b4 = 0.55

(a)

(b)

p2 p1 p3

p2 p4 p3

0.55

0.6

0.6

0.6

0.6

0.55

Figure 4.3: (a) Counter-example of the truthful property for the greedy-VCG-coding
scheme accompanied with the VCG-payment function (b) The weight dependency
graph

Example 50. Consider the instance of the problem depicted in Fig. 4.3. Given B−1

fixed, we will show that client c1 has the potential to lie. Suppose that client c1
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submits the bid b1 = 0.55 equal to its internal value of packet p1. In this case, Alg. 5

will identify the cycle (c2, c3) and output the corresponding solution p2 + p3. In this

case, the utility u1 of ci is equal to zero.

Now, suppose that c1 submits bid b1 = 0.7. In this case, Alg. 5 will transmit

the sequence of packets {p1 + p2; p3 + p4} that corresponds to cycles (c1, c2) and

(c3, c4), respectively. According to (4.2), the payment of client c1 is equal to φ1 =

(0.6 + 0.6− 1)− (0.6 + 0.6 + 0.55− 2) = 0.45. In this case, the utility of client c1 is

equal to one, which is bigger than the case in which the client is truthful. J

Accordingly, we present the greedy-VCG-payment scheme implemented by Alg. 6

to charge the clients ci. This scheme results in a truthful auction.

It can be easily verified that Alg. 6 has polynomial complexity. Note that in

Line 4 of Alg. 6, the cost function of G(V,A) is different from that in Alg. 5. To

compute the payment for client ci ∈ S1, we assign the unit cost for every outgoing

arc (i, j) of vertex i (i.e. set γi,j = 0 and bi = 0). For each iteration of Line 8, we

calculate the difference of the cost between the cycles C1 and C2 in G(V,A), where

C1 has the minimum global cost while C2 is the local optimal cycle that traverses

vertex i. We note that when the cycle Clast containing vertex i is selected in the last

iteration of Alg. 5, the “while” loop in Alg. 6 might not capture Clast because the

cost of arc (i, j) is set to be one. Line 20 deals with this case. When client ci submits

bi = λ† − 1, the weight of cycle Clast in G(V,A) is (1− λ†) + (λ† − 1) = 0, where the

first term is the weight when bi = 0 while the second term is the increment when

bi = λ†− 1. Therefore, the cost of Clast is one, which satisfies the condition of Line 5

of Alg. 5.

The set P includes the result of each iteration. If the difference is zero, client ci

will not be charged; otherwise, it will be charged the value equal to the minimum of
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Algorithm 6: Greedy-VCG-payment function

input : Bids vector B and side information Hi for all clients
output: Payment φi for client ci

1 Clients that are not in S1 and S2 do not be charged, return φi = 0;
2 The payment for the clients belonging to the S2 is 1, return φi = 1;

// Following deals with the clients in S1

3 Create the weight dependency graph G(V,A);
4 The cost is defined as follows;

• for arc (i, j) ∈ A, λ(i,j) = 1

• for arc a 6= (i, j), which is not outgoing from vertex i, λa = 1− γa

5 By λ(C) =
∑

a∈C λa, we define the cost of cycle C;
6 P ← ∅;

// set P will include the possible payments
88 while in G(V,A), there is a cycle of the cost less than or equal to one do
9 Find the cycle C1 in G(V,A) with the smallest cost, say the cost λ∗ ;

10 Find the cycle C2 in G(V,A) that traverses vertex i and has the smallest
cost among these that go through vertex i, say the cost λ†;

11 if λ† − λ∗ = 0 then
12 return φi = 0
13 end
14 else
15 P ← P ∪ (λ† − λ∗);
16 G(V,A)← G(V,A)\{vertices along C1,

edges along or incident to C1};
17 end

18 end
19 Find the cycle C2 in G(V,A) (if any) that traverses vertex i and has the

smallest cost among these that go through vertex i, say the cost λ†;
20 P ← P ∪ (λ† − 1);
21 return φi = minP
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an element in set P .

Given the bids of all clients, the coding algorithm determines the encoding matrix

G, which, in turn, determines the indicator vector Θ. We say that a coding algorithm

is monotone if, for any B−i, there exists a single critical value bi such that ci gets

the desired packet (i.e. θi = 1) when bi ≥ bi; otherwise, ci can not.

Theorem 51. The mechanism is truthful if and only if the coding algorithm is mono-

tone and the payment scheme is based on the critical value.

Proof. Follows immediately from Theorem 1 in [45].

Theorem 52. The Alg.’s 5 and 6 result in a truthful mechanism.

Proof. According to Theorem 51, it is sufficient to show that Alg. 5 is monotone, as

well as Alg. 6 is based on the critical value.

Suppose client ci is able to recover the desired packet. Then, a cycle containing

vertex vi will be chosen by Alg. 5. Alg. 5 prefers the cycle of the maximum weight

(i.e., minimum cost) in weight dependency graph G(V,A). When ci increases the

bid, so does the weight of the cycles that pass through vertex vi, and therefore a

cycle containing vertex vi will be selected by Alg. 5. Hence, the greedy-VCG-coding

scheme is monotone.

Given B−i, for each iteration in Alg. 6, we calculate the lowest bid bi for client ci

such that a cycle containing vertex vi would be selected by Alg. 5. Since the minimum

of these values are adopted as the payment for client ci ∈ S1, client ci ∈ S1 is charged

by the critical value. Other cases, i.e. client ci /∈ S1, follow immediately.

Let OPT be the optimal solution of the VCG-coding scheme, i.e. OPT =

w(B,G∗). Assume Ggreedy is the encoding matrix from the greedy-VCG-coding

scheme. We define the approximation ratio of Alg. 5 by OPT/APX, where APX =

w(B,Ggreedy).
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Theorem 53. The approximation ratio of Alg. 5 scheme is equal to the maximum

length of the cycle in the weight dependency graph.

Proof. The optimal solution G∗ in (4.1) corresponds to the maximum weight vertex-

disjoint cycle packing, say C∗, in the weight dependency graph G(V,A). The total

weight of these cycles in C∗ is OPT , i.e. w(B,G∗) =
∑

C∈C∗ γ(C)

Given a cycle C in the weight dependency graph, let C ∩ C∗ be the set of the

cycles in C∗ that have a shared vertex with C. For each iteration k of Alg. 5, we

encode along the cycle Ck of the minimum cost in Gk(V,A), where Gk(V,A) is the

remaining graph in iteration k.

Let C∗k be the set of cycles in C∗ that belongs to Gk(V,A). We define APXk =

γ(Ck) and OPTk =
∑

C∈(Ck∩C∗k) γ(C). Because Ck is the maximum weight cycle in

this iteration, the weight of the cycles in Ck ∩C∗k is smaller than APXk. Moreover,

since there are |Ck| vertices in cycle Ck, there are at most |Ck| cycles in Ck ∩ C∗k.

Hence, OPTk ≤ APXk · |Ck|, which results in the approximation ratio of the maxi-

mum cycle length in the weight dependency graph.

In the next example, we show that the approximation ratio proven in Theorem

53 is tight.

Example 54 (Tight example of Alg. 5). Consider the setting depicted in Fig. 4.4(a).

For this setting, Alg. 5 results in the following transmissions p1 + p2, p2 + p3, and

p3+p4. Note that these transmissions correspond to cycle (c1, c2, c3, c4) in Fig. 4.4(b).

In contrast, the optimal solutions is p1 + p5, p2 + p6, p3 + p7, and p4 + p8. Therefore,

the approximation ratio is 4(1− ε)/1 for any ε > 0. J

4.7 Multiple multicast with immediate decoding

In this subsection, we focus on the spare solution and the immediate decoding

in multiple multicast scenario. We will show that the PCIC problem is not only
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NP-hard, but hard to approximate.

We prove the results by presenting a reduction from the Independent Set (IS)

problem into the PCIC problem. Given an instance, i.e. a graph G(V,E), of the IS

problem, we construct an instance of the PCIC problem as follows. For each vertex

v ∈ V and edge e ∈ E, we create packet pv and pe. The packet set P is consist

of pv and pe for all v ∈ V and e ∈ E. For each edge e = (u, v) ∈ E, three clients

ce,1, ce,2, ce,3 are defined such that:

• we,1 = pe, He,1 = {pu, pv}, be,1 = 1

• we,2 = pu, He,2 = {pe}, be,2 = 1/deg(u)

• we,3 = pv, He,3 = {pe}, be,3 = 1/deg(v)

Three technical results are provided before the main proof.

Lemma 55. In the resulted instance of the PCIC problem, every client will get the

request packet by using the optimal encoding matrix G∗.

Proof. It is clear that, for any e ∈ E, client ce,1 is guaranteed to obtain the desired

packet owing to be,1 = 1.

Suppose that, for some e = (u, v) ∈ E, client ce,2 could not get the desired

packet when G∗ is applied. Let Cu = {ce,2 : e ∈ E incident to u}. Two cases are

considered.

First, if all clients in Cu do not obtain the desired packet, another packet pu can

be added to G∗ since the additional contribution of the bids is one, which is equal

to the transmission cost of pu.

Then, we study the case that some client in Cu (say client cẽ,2) gets the desired

packet. Since client ce,2 can not recover the the desired packet pu, server will encode

pu + pẽ for client cẽ,2. However, we can replace pu + pẽ by pu, and w(B,G∗) will be
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increased by at least 1/deg(u) because of the contribution of be,2. Then we construct

the contradiction to the optimality of G∗, and conclude that every client will get the

desired packets by applying the optimal encoding matrix.

Lemma 56. In the resulted instance of the PCIC problem, it holds that η∗ ≤ |E|+

OPTvc, where η∗ is the minimum number of transmissions such that every client

obtains the request packet, and OPTvc is the optimal solution to the Vertex Cover

problem.

Proof. Let V ∗ ⊆ V be the optimal solution to the Vertex Cover problem. Server

encodes as following rule.

• For each vertex v ∈ V ∗, server transmits packet pv;

• For each edge e = (u, v) ∈ E,

– If u, v ∈ V ∗, server transmits packet pe;

– Otherwise (assume v ∈ V ∗), server transmits packet pu + pe.

Transmitting packets pe or pu + pe for all e ∈ E get client ce,1 satisfied. If vertex

ξ ∈ V ∗, client ce,2 or ce,3 with e incident to ξ is satisfied due to the transmission of

pξ; otherwise, they can obtain the request packets by combining the packet pξ + pe

and the side information pe. By transmitting |E| + OPTvc packets from server, all

clients are assured to get the request packets. Hence, η∗ ≤ |E|+OPTvc.

Lemma 57. In the resulted instance of the PCIC problem, it holds that η∗ ≥ |E|+

OPTvc, where η∗ is the minimum number of transmissions such that every client

obtains the request packet, and OPTvc is the optimal solution to the Vertex Cover

problem.
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Proof. We note that in order to satisfy client ce,1 for edge e = (u, v) ∈ E, server must

send at least one (say qe) of the packets pe, pe+pu, and pe+pv due to the immediate

decoding. To satisfy client ce,1 for all e ∈ E, server needs at least |E| transmissions.

Let Ṽe include vertex u (and v) if ce,2 (and ce,3) can not recover the wanted packet

pu (and pv) from qe. Let Ṽ = ∪e∈EṼe. For each vertex ṽ ∈ Ṽ , there exists some edge

ẽ incident to ṽ such that cẽ,2 or cẽ,3 can not recover the wanted packet from qẽ. To

satisfy it, at least one of packets pṽ and pṽ +pẽ (different from qẽ) is required because

of the immediate decoding. Hence, to satisfy these clients that can not successful

decode from qe for all e ∈ E, server has to send at least another |Ṽ | packets.

Since qe can only help at most one of clients ce,2 and ce,3 recover the wanted packet,

then Ṽ is a vertex cover. To satisfy all clients, η∗ ≥ |E|+ |Ṽ | ≥ |E|+OPTvc.

Theorem 58. In the multiple multicast scenario with the restriction of the sparse

code and the immediate decoding, the PCIC problem is NP hard and hard to approx-

imate within the factor n1−ε for any constant ε > 0.

Proof. From Lemma 55, every client will successful recover the request packet by

using the optimal encoding matrix G∗, and hence

w(B,G∗) =
∑
e∈E

be,1 +
∑
e∈E

(be,2 + be,3)− η∗ (4.3)

= |E|+ |V | − η∗, (4.4)

where, due to the constant of |E| + |V |, G∗ agrees with the minimum number of

transmissions η∗ to satisfy all clients. From Lemma 56 and 57, η∗ = |E| + OPTvc,

and OPTvc is the optimal solution to the Vertex Cover problem in G(V,E). Let

OPT = w(B,G∗), and then OPT = |V | −OPTvc.

Let OPTis be the optimal solution to the IS problem. Since OPTis+OPTvc = |V |,
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we obtain that OPT = OPTis. Because of the hardness of the IS problem [46], the

result follows.

4.8 Multiple multicast with general linear decoding

Finally, we claim that, by using the general linear decoding function, the PCIC

problem in multiple multicast scenario is also NP-hard and hard to approximate.

The proof is similar to Theorem 58, but need more explains to Lemma 57 as follows.

Lemma 59. Consider the sparse code and the general linear decoding function.

Based on the reduction in the proof of Theorem 58, η∗ ≥ |E| + OPTvc, where η∗

is the minimum number of transmissions such that every client obtains the request

packet, and OPTvc is the optimal solution to the Vertex Cover problem.

Proof. To satisfy client ce,1 for edge e ∈ E, server must send at least one (say qe)

of the packets pe + p for some p ∈ P . Note that if qe1 = qe2 = pe1 + pe2 for some

e1, e2 ∈ E, at least two more transmissions are required for ce1 and ce2 respectively,

because they do not have pe2 and pe1 respectively as the side information. Without

loss of generality, we then assume qe is different for all e ∈ E. Therefore, to satisfy

client ce,1 for all e ∈ E, server needs at least |E| transmissions.

We use the same definition of the set Ṽ in Lemma 57. For each vertex ṽ ∈ Ṽ ,

there exists some edge ẽ incident to ṽ such that cẽ,2 or cẽ,3 can not recover the wanted

packet from qẽ. To satisfy it, at least one (say qṽ) of packets pṽ + p̃ (different from

qẽ) for some p̃ ∈ P is required. Let edges ẽ1, ẽ2 incident to ṽ1, ṽ2 ∈ Ṽ respectively,

such that cẽ1,2 (or cẽ1,3) and cẽ2,2 (or cẽ2,3) are not satisfied from qẽ1 and qẽ2 . If

qṽ1 = qṽ2 = pṽ1 + pṽ2 , two more transmissions are needed because cẽ1,2 (or cẽ1,3) and

cẽ2,2 (or cẽ2,3) do not have pṽ2 and pṽ1 as the side information. Hence, to satisfy these

clients that can not successful decode from qe for all e ∈ E, server has to send at

least another |Ṽ | packets.
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Since qe can only help at most one of clients ce,2 and ce,3 recover the wanted packet,

then Ṽ is a vertex cover. To satisfy all clients, η∗ ≥ |E|+ |Ṽ | ≥ |E|+OPTvc.

4.9 Numerical results

In this subsection, we numerically study the performance of the proposed greedy-

VCG-coding scheme in multiple unicast scenario. The greedy-VCG-coding scheme is

designed to approach the optimal social welfare when clients apply the general linear

decoding function. First, we evaluate the social welfare
∑n

i=1 vi · θi−η of the greedy-

VCG-coding scheme and compare it with the optimal social welfare when clients are

restricted to the immediate decoding, which optimal coding scheme is tractable in

polynomial time (Theorem 48).

Fig. 4.5 shows the results, and the experiment setting is as follows. We consider

n clients (x-axle), where client ci requires packet pi. The value vi of packet pi is

uniformly distributed between 0 and 1. Let bid bi = vi due to the truthfulness. The

fixed number of side packets are considered, i.e. |Hi| = 3 or |Hi| = 6. The side

information of client ci is randomly selected from P \ {pi}, e.g. when |Hi|=3, three

packets are chosen randomly for client ci. Throughout this subsection, each value

in the simulation plots represents the average over 500 runs. In Fig. 4.5, though

the greedy-VCG-coding is the approximation algorithm, for most cases the greedy-

VCG-coding associated with the general linear decoding outperforms the optimal

encoding matrix associated with the immediate decoding. For immediate decoding,

the optimal encoding matrix only focuses on the vertex-disjoint cycle of length two

in the weight dependency graph. When the number of clients is relatively fewer,

more cycles would be of length two. Accordingly, the performance of the greedy-

VCG-coding is slightly worse when |Hi| = 6 and n = 10, 16.

In multiple unicast scenario, the social welfare is zero when server transmits
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packets without coding. To display the advantage of coding, we show in Fig. 4.6 the

total values
∑n

i=1 vi · θi of the packets. Given an instance of the PCIC problem, we

first run the greedy-VCG-coding algorithm and calculate the total values as well as

the required number of transmissions η. Then, we explore the maximum total values

of packets when server does not apply coding and is restricted to η transmission. It

can be observed that the greedy-VCG-coding is not only improve the social welfare,

but also the total values of packets.
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5. INCENTIVE-COMPATIBLE AND NON-MONETARY DIRECT DATA

EXCHANGE WITH NETWORK CODING∗

5.1 Introduction

There is a growing interest in wireless device-to-device (D2D) communication

between mobile clients. In a typical scenario, the clients form a small ad-hoc network

to exchange the data directly with each other. For example, a small number of mobile

devices can exchange the data over a local network (such as Wi-Fi or Bluetooth) to

reduce delays and minimize the load on more expensive long-range cellular networks.

Communication over a local network has many advantages, such as reduced power

consumption and lower delays. The advantages of wireless D2D communications

have been demonstrated in several recent studies [47–50].

We focus on data exchange between a group of selfish wireless clients. Each client

initially holds a subset of files and is interested in some of the files held by other

clients. The clients use the network coding technique to increase the efficiency of

data exchange. For example, Fig. 5.1 shows three clients c1, c2, and c3 that need

files p1, p2, and p3 and have file sets {p2, p3}, {p1, p3}, {p1, p2} available to them as

a side information, respectively, i.e., client c1 holds files p2 and p3, client c2 holds

files p1 and p3, and client c3 holds files p1 and p2. Suppose that each of the files can

be delivered to all the clients with one transmission. Without network coding, at

least three transmissions are necessary to satisfy the demands of all clients. By using

the network coding technique, all clients can be satisfied by just two transmissions.

Indeed, it is easy to verify that if client c1 transmits a linear combination of p2 and

∗ Part of the data reported in this section is reprinted with permission from “Truthful and Non-
Monetary Mechanism for Direct Data Exchange” by I-Hong Hou, Yu-Pin Hsu, and Alex Sprintson,
2013. In Allerton Conference on Communication, Control, and Computing (Allerton), 406-412,
Copyright 2013 by IEEE.
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Figure 5.1: Coded information exchange between clients c1, c2, c3.

p3, and client c2 transmit p1, all three clients will be able to decode required packets.

While the problem of minimizing the number of transmissions with network cod-

ing has been considered in the previous studies [3–5], the problem of mechanism

design for the settings with selfish clients remained open. Indeed, a selfish client

might choose to become a “free rider” by choosing not to transmit or make as few

transmissions as possible. Indeed, in some cases such clients will be able to decode all

packets they need without making a single transmission (e.g., client c3 in Fig. 5.1).

This, in turn, could affect the data exchange process with negative consequences for

all clients. Furthermore, different clients might have different internal values for the

packets they request and the clients with low valuations are less likely to participate

in the data exchange process. Since the clients are selfish, they may not reveal their

internal valuation to other clients if this does not benefit them. Accordingly, in this

section, we focus on design and analysis of a incentive-compatible mechanism under

which each client optimizes its utility by reporting the true valuations of the required

packets.

We focus on a setting in which data exchange is managed by a distinguished

client (referred to as a broker). In the beginning of data transfer the broker ob-
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tains a bid from each client which specifies its maximum transmission rate (i.e.,

the ratio of transmitted and received packets). After receiving the bids, the bro-

ker determines the transmission rate of each client as well as the network coding

scheme. In a incentive-compatible mechanism, the clients have incentive to bid the

maximum transmission rate that corresponds to their valuations of the packets. A

popular incentive-compatible mechanism is the Vickery-Clarke-Groves (VCG) mech-

anism [41–43]. However, VCG mechanism and its variations involve monetary trans-

actions between clients and the broker, hence they cannot be applied to the problem

at hand.

5.1.1 Main results

In this section, we propose a incentive-compatible non-monetary mechanism for

the broker. We focus on the case in which each client needs a unique file and each

transmission can be received by all clients in the system (i.e., all the clients are in close

proximity of each other). We then show that our mechanism can be extended for a

setting where a transmission of a client can only be received by some of clients in the

group (i.e., some clients are too far away to receive the transmissions from each other)

and several clients require the same file. Since our mechanism is non-monetary and

does not require additional infrastructure, it can be easily implemented in practical

settings. We further demonstrate that this mechanism can be implemented in a fully

distributed fashion without the presence of the broker.

We further study the performance of our mechanism in terms of the social welfare,

i.e., the total value of the decoded files minus the total cost of all transmissions. We

establish an upper bound of O(logN) on the difference between the optimal social

welfare and the social welfare achieved by our algorithm, where N is the number of

clients in the group. Through simulations, we also demonstrate that this difference
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is actually very small for practical settings.

5.2 System overview

Consider a wireless network that consists of N clients Λ = {c1, · · · , cN} that need

to exchange a set P of files. We assume that client ci needs file pi ∈ P , and has side

information Hi ⊆ P available to it. We can assume without loss of generality that

each client requires a single file since a client that requires more than one file can be

substituted by multiple clients that share the same side information set. Each client

ci has a private value vi, where 0 ≤ vi ≤ 1, for file pi that captures its benefit of

receiving pi.

Clients are able to obtain the needed files via data exchanges over a wireless

broadcast channel. The transmission process between clients is mediated by a bro-

ker. The broker is only conceptual since we will show in Subsection 5.5 that the

transmission process can be determined in a fully distributed fashion. We assume

that files are of the same size and each contains Z packets. We will address both cases

where Z is a large number and Z = 1. When Z is large, clients exchange large files.

On the other hand, Z = 1 corresponds to the scenario where each client only needs

a small number of packets. One application is that a base station broadcasts a video

stream to a number of clients. Since wireless transmissions may be unreliable, each

client may miss a small number of packets. Clients then use D2D communications

to recover these missing packets.

We consider that clients need to pay some transmission cost for the packets they

transmit. Specifically, we define the upload ratio ri of client ci as

number of packets transmitted by ci
Z

. The transmission cost of client ci is then assumed to be C(ri), where C(·) is a
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non-decreasing and convex function with C(0) = 0 and C(1) = 1. The transmission

cost of a client can be interpreted as, for example, the cost of battery power or the

cost of channel access for transmitting packets. We denote by R = {r1, · · · , rN} the

array that contains the upload ratios of all clients.

In the beginning of the data exchange, each client is required to submit a bid bi to

the broker. The bid specifies the maximum transmission cost the client is willing to

incur in exchange for file pi. We denote by B = {b1, · · · , bN} the array that contains

the bids of the clients. Based on the clients’ bids B, the broker decides for each

client ci a transmission schedule that consists of the upload ratio ri, as well as the

combination of the packets client ci needs to transmit. When Z is large, ri can be

chosen to be any value between [0, 1]. On the other hand, when Z = 1, ri can only

be 0 or 1. In the case of Z = 1, the broker may determine transmission schedules

randomly.

Given the transmission schedules, we can determine if client ci is able to decode

the required file pi. We require that a client ci with ri > 0 must be able to decode

pi. We defined by χi the indicator function to specify if client ci can decode pi. The

net utility ui(B) of ci can then be written as ui(B) = vi · χi − C(ri). Note that the

net utility depends on the bids of other clients as well as the broker’s mechanism for

determining transmission schedules.

The algorithm for determining the transmission schedules is known to all the

parties. Each client ci is considered to be selfish and chooses its best bidding policy

bi that maximizes its utility ui(B), or E[ui(B)] when the broker makes decisions

randomly. We say that a mechanism is incentive-compatible if each client maximizes

its own net utility by choosing bi = vi.

Definition 60. Let B−i = B\{bi}. A mechanism is incentive-compatible if, for all bi
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and B−i, ui(vi, B−i) ≥ ui(bi, B−i), or E[ui(vi, B−i)] ≥ E[ui(bi, B−i)] when the broker

makes decisions randomly, under it.

In this section, our goal is to design an incentive-compatible broker mechanism

that does not involve in any monetary transactions. The performance of the proposed

mechanism is further evaluated in terms of the total social welfare, defined as
∑N

i=1 vi ·

χi −
∑N

i=1C(ri), which is the sum of net utilities over all clients.

5.3 Feasibility of the transmission schedule

The transmission schedule decided by the broker consists of two parts: the upload

ratio ri for each client ci, and the combinations of the packets that ci has to transmit.

When the vector R of the upload ratios is given, one important question is whether

there exists a transmission schedule under which a subset S ⊆ Λ of clients can

successfully decode their needed files. We establish a sufficient condition for the

existence of such a schedule.

Lemma 61. Assume that pi 6= pj, for all i 6= j. Given a vector R of upload ratios

and a subset S ⊆ Λ with ri = 0 for all ci /∈ S. Suppose that there exists a partition

of S = S1∪S2∪· · ·∪Sk with Sm∩Sn = φ, for all m 6= n, such that, for each Sm ∈ S

and for each ci ∈ Sm, we have

1. {pi} ∈ Hj, for all cj ∈ Sm, and j 6= i, and

2.
∑

cj∈Sm\{ci} rj ≥ 1.

Then there exists a transmission schedule such that

i) The upload ratio of each client ci is ri.

ii) All clients in S are able to decode their respective needed files.

iii) None of the clients outside S can decode their needed files.
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Proof. We prove this lemma by constructing a transmission schedule that satisfies

the conditions of the lemma. Let client ci ∈ Sm transmit Zri coded packets, each

containing a linear combination of one packet from each of the files {pj : cj ∈

Sm\{ci}}. This can be achieved because {pj : cj ∈ Sm\{ci}} ⊆ Hi by property (1).

Now, for a client cj ∈ Sm, it receives Zri coded packets from ci, for each other

ci ∈ Sm. Each of these coded packets contains a linear combination of one packet

from each of {pk : ck ∈ Sm\{ci}}. Since cj have the files {pk : ck ∈ Sm\{ci, cj}} as

its side information, by property (1), it can employ Gaussian elimination to obtain

Zri packets of the file pj, for each ci ∈ Sm. Thus, cj obtains a total number of∑
i∈Sm,i 6=j Zri ≥ Z packets of pj, and successfully receives the whole file pj.

On the other hand, in the above transmission schedule, no clients transmit any

packets that involve {pj : cj /∈ S}. Therefore, none of the clients outside S can

receive their needed files.

Given a vector R of upload ratios and a subset S ⊆ Λ with ri = 0, for all ci /∈ S,

if the condition in Lemma 61 is satisfied, we say (R, S) is feasible. The notion of

Lemma 61 is that if (R, S) is feasible, then each client ci ∈ S can receive enough

amount of packets to recover its needed file pi (i.e. χi = 1).

For the special case where Hi = P\{pi}, for all i, Lemma 61 can be greatly

simplified and strengthened as follows:

Corollary 62. Suppose Hi = P\{pi}, for all i. Consider a vector R of upload ratios,

and a subset S ⊆ Λ with ri = 0, for all ci /∈ S. Then (R, S) is feasible if and only if

∑
cj∈S\{ci}

rj ≥ 1,

for all ci ∈ S.
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Proof. By Lemma 61, it is straightforward to show that the condition is sufficient. To

show that it is necessary, assume that there exists ci ∈ S with
∑

cj∈S\{ci} rj < 1, then

the total number of packets that ci receives is no larger than (
∑

cj∈S\{ci} Zrj) < Z.

Hence, it is impossible for ci to obtain all packets in pi.

5.4 Infeasibility of VCG-based mechanism

A classical solution for the incentive-compatible mechanism design is to apply

the Vickery-Clarke-Groves (VCG) mechanism. However, VCG-based mechanisms

are not suitable for solving our problem. For clarity, we briefly discuss the design of

the VCG mechanism below.

Consider a system where a centralized server decides which set of clients to serve.

When it serves a set S of clients, it needs to pay some cost, defined as cost(S). Each

client ci has a secret valuation v̂i for being served. The social welfare of serving S

is defined as
∑

ci∈S v̂i − cost(S). The VCG mechanism then works as follows: First,

each client submits its valuations b̂i to the server. Note that we do not require b̂i = v̂i,

as clients may lie about their valuations. Then, the server does the following steps:

1. It chooses the set S that maximizes
∑

i∈S b̂i − cost(S).

2. It charges each scheduled client ci an amount of money as follows.

[( max
S′:ci /∈S′

∑
cj∈S′

b̂j − (cost(S ′)))− (
∑

cj∈S,j 6=i

b̂j − (cost(S)))]+,

where x+ := max{x, 0}. The expression for the charge is called the critical

price, since it is the minimum value that client ci needs to bid in order to be

scheduled in the previous step.

It is well-known that the VCG mechanism is incentive-compatible [44]. How-

ever, the VCG mechanism involves monetary exchanges, which requires additional
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infrastructure. Hence, it is not suitable for direct data exchange in wireless ad hoc

networks.

One may wonder whether there exists simple non-monetary adaptations of the

VCG mechanism to our problem. We can consider one with the following setting: We

treat the server as a broker, cost(S) to be the minimum total upload ratios required

to make (R, S) feasible. To be more specific, cost(S) ≡ minR:(R,S) is feasible

∑
i ri. With

this interpretation, the definitions of social welfare in the VCG mechanism and in our

setting are equivalent. In the second step of the VCG mechanism, the sever charges

each client some money. One naive adaptation is to treat the charges of clients

as the upload ratios in our system, i.e., ri ≡ [(maxS′:ci /∈S′
∑

cj∈S′ b̂j − (cost(S ′))) −

(
∑

cj∈S,j 6=i b̂j − (cost(S)))]+, for all ci ∈ S. However, with this adaptation, we fix the

vector R of upload ratios, and there is no guarantee that (R, S) is still feasible. A

numerical example that demonstrates this intuition is shown below.

Example 63. Consider three clients with the identical valuation vi = 0.6, and the

side information Hi = P\{pi}. Let the cost function be C(x) = x. In the first step,

the broker decides that the optimal decision is to schedule all three clients. Indeed, by

Corollary 62, there exists a transmission schedule with ri = 0.5, for all i, under which

all three clients get their needed files, and the social welfare is (0.6− 0.5)× 3 = 0.3.

However, the second step of the VCG-based algorithm results in ri = 0.3 for all i,

and, by Corollary 62, the set of all clients with such upload ratios are no longer

feasible. �

5.5 Incentive-compatible mechanisms

We first focus on the setting that each client ci has all files other than pi, i.e.

Hi = P\{pi}, while the more general model is discussed in Subsection 5.7. We

propose mechanisms for both cases where the number of packets in a file, Z, is large,
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and where Z = 1.

5.5.1 Mechanism for exchanging large files

The broker mechanism for large Z is designed as follows: First, we sort bids

in descending order such that b1 ≥ b2 ≥ . . . . We then find the maximum number

i∗ ∈ {1, · · · , N} with bi∗ ≥ C( 1
i∗−1

). A client whose bid is greater than or equal

to bi∗ is included in the set S∗, and is scheduled to transmit with the upload ratio

ri = 1
|S∗|−1

. All other clients neither transmit nor receive their needed files. We

notice that no monetary transaction occurs during the process. This mechanism is

formally stated in Alg. 7.

Algorithm 7: Broker mechanism for large files

input : Bids vector B, and side information Hi for all clients
output: Transmission schedules

1 Sorting bids: b1 ≥ b2 ≥ · · · ≥ bN ;
2 Find i∗ = max{i : bi ≥ C( 1

i−1
)};

3 S∗ ← {c1, · · · , ci∗} ;
4 ri ← 1

|S∗|−1
for ci ∈ S∗;

5 ri ← 0 for ci /∈ S∗;
6 Client ci ∈ S∗ transmits ri proportion of the coded file

∑
p∈{p1,··· ,pi∗}\{pi} p;

The following lemma is a direct result from Corollary 62.

Lemma 64. (R, S∗) produced from Alg. 7 is feasible.

Next, we will show that Alg. 7 is also incentive-compatible.

Theorem 65. Alg. 7 is incentive-compatible.

Proof. Consider a client cî, where the index of î is set to be the position of cî in Line

1 of Alg. 7 when it bids bî = vî. That is, we have b1 ≥ b2 ≥ . . . bî−1 ≥ vî ≥ bî+1 . . . .
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Let S∗(bî) be the set S∗ under Alg. 7 when cî bids bî. We consider the following two

cases:

Case (1) cî /∈ S∗(vî), i.e., cî is not scheduled by bidding its true value: By the

design of Alg. 7, we have that vî < C( 1
î−1

), and bi < C( 1
i−1

) for all i > î. Also, the

net utility of cî is 0 when it bids its true value.

Suppose cî bids bî 6= vî, we consider three possibilities based on the position of bî

in Line 1 of Alg. 7: bî−1 ≥ bî ≥ bî+1, i.e., the position is the same as that under the

true value; bk ≥ bî ≥ bk+1, for some k < î − 1, i.e., the position is higher than that

under the true value; and bk ≥ bî ≥ bk+1, for some k > î.

In the first and second cases, since the positions of all clients ci with i > î are

the same as those when cî bids its true value, they are still not scheduled by Alg. 7.

Hence, we have |S∗(bî)| ≤ î, and ri ≥ 1
î−1

, for all i ∈ S∗(bî). The net utility of î is

then no larger than max{0, vî − C( 1
î−1
}) ≤ 0, as vî < C( 1

î−1
).

In the third case, client cî is now placed on the kth position with k > î. We have

bî ≤ bk < C( 1
k−1

). Hence, cî is still not scheduled and have net utility 0. In sum,

when cî /∈ S∗(vî), cî cannot improve its own net utility by lying about its vî.

Case (2) cî ∈ S∗(vî), i.e., cî is scheduled by bidding its true value: Let i∗ =

|S∗(vî)|. We have vî ≥ bi∗ ≥ C( 1
i∗−1

), and the net utility of cî is greater or equal

to 0. Now, by the design of Alg. 7, we have bi < C( 1
i−1

) for all i > i∗, and each

client ci with i > i∗ will not be scheduled regardless of bî. Therefore, |S∗(bî)| ≤ i∗,

and ri ≥ C( 1
i∗−1

), for i ∈ S∗(bî), regardless of bî. The net utility of cî is then

upper-bounded by vî − C( 1
i∗−1

) ≥ 0, which is its net utility when bidding bî = vî.

Fully consider cases 1 and 2, we conclude that Alg. 7 is an incentive-compatible

mechanism.

In addition to being incentive-compatible, we note that Alg. 7 can also be easily
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implemented in a fully distributed fashion. Instead of relying on the broker, each

client simply broadcasts its bid bi. After receiving the values of all bids, each client

determines how many, and what, packets it should transmit by running Alg. 7. Thus,

our mechanism can still be implemented without the presence of the broker.

5.5.2 Mechanism for Z = 1

When Z = 1, we require that ri ∈ {0, 1}, for all i. The broker mechanism for Z =

1 is designed as follows: We also sort bids such that b1 ≥ b2 ≥ . . . . We then find the

maximum number i∗ with bi∗ ≥ 2
i∗
C(1) = 2

i∗
, and select the set S∗ = {c1, c2, . . . , ci∗}.

We select two clients from S∗ uniformly at random and make each of them transmit

a linear combination of files needed by all other clients in S∗. Therefore, all clients

in S∗ obtain their needed files, while none of the clients outside S∗ obtain any files.

Further, as each client in S∗ has 2
i∗

chance of being selected to transmit, the expected

net utility of a client ci ∈ S∗ is vi − 2
i∗

. Alg. 8 formally specifies the mechanism.

Algorithm 8: Broker mechanism for Z = 1

input : Bids vector B, and side information Hi for all clients
output: Transmission schedules

1 Sorting bids: b1 ≥ b2 ≥ · · · ≥ bN ;
2 Find i∗ = max{i : bi ≥ 2

i∗
};

3 S∗ ← {c1, · · · , ci∗} ;
4 Randomly select ci1 , ci2 ∈ S∗;
5 ci1 transmits a coded packet

∑
p∈{p1,··· ,pi∗}\{pi1}

p;

6 ci2 transmits a coded packet
∑

p∈{p1,··· ,pi∗}\{pi2}
p;

Theorem 66. Alg. 8 is incentive-compatible.

Proof. The proof is similar to that of Theorem 65. Consider a client cî, where the

index of î is set to be the position of cî in Line 1 of Alg. 8 when it bids bî = vî. That
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is, we have b1 ≥ b2 ≥ . . . bî−1 ≥ vî ≥ bî+1 . . . . Let S∗(bî) be the set S∗ under Alg. 8

when cî bids bî. We consider the following two cases:

Case (1) cî /∈ S∗(vî), i.e., cî is not scheduled by bidding its true value: By the

design of Alg. 8, we have that vî < 2/̂i, and bi < 2/i for all i > î. Also, the net

utility of cî is 0 when it bids its true value.

Suppose cî bids bî 6= vî, we consider three possibilities based on the position of bî

in Line 1 of Alg. 8: bî−1 ≥ bî ≥ bî+1, i.e., the position is the same as that under the

true value; bk ≥ bî ≥ bk+1, for some k < î − 1, i.e., the position is higher than that

under the true value; and bk ≥ bî ≥ bk+1, for some k > î.

In the first and second cases, since the positions of all clients ci with i > î are

the same as those when cî bids its true value, they are still not scheduled by Alg.

8. Hence, we have |S∗(bî)| ≤ î, and the probability that a client is selected to

transmit is greater or equal to 2/̂i. The expected net utility of î is then no larger

than max{0, vî − 2/̂i}) = 0, as vî < 2/̂i.

In the third case, client cî is now placed on the kth position with k > î. We have

bî ≤ bk < 2/k. Hence, cî is still not scheduled and have net utility 0. In sum, when

cî /∈ S∗(vî), cî cannot improve its own net utility by lying about its vî.

Case (2) cî ∈ S∗(vî), i.e., cî is scheduled by bidding its true value: Let i∗ =

|S∗(vî)|. We have vî ≥ bi∗ ≥ 2/i∗, and the net utility of cî is greater or equal to 0.

Now, by the design of Alg. 8, we have bi < 2/i for all i > i∗, and each client ci with

i > i∗ will not be scheduled regardless of bî. Therefore, |S∗(bî)| ≤ i∗, regardless of bî.

The net utility of cî is then upper-bounded by vî − 2/i∗ ≥ 0, which is its net utility

when bidding bî = vî.

Fully consider cases 1 and 2, we conclude that Alg. 8 is incentive-compatible.
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5.6 Performance analysis

We have developed two incentive-compatible mechanisms for the cases of large Z

and of Z = 1, respectively. In this subsection, we study the social welfare, defined

as the sum of net utility of all clients, of these two mechanisms by comparing it

against theoretical upper-bounds. We call the difference between the social welfare

achieved by our mechanisms and their respective performance upper-bounds the loss

of optimality.

5.6.1 Performance of algorithm 7

We first study the theoretical upper-bound of social welfare when Z is large.

Lemma 67. Maximum social welfare for large Z is achieved when all clients receive

their needed files, or none of the clients receive any files.

Proof. If, for any subset S ⊆ Λ, every feasible (R, S) gives rise to a negative social

welfare, i.e.
∑

ci∈S vi−
∑

ci∈S C(ri) < 0, then the maximum social welfare is achieved

by ri = 0 for all i, under which case none of the clients receive any files.

Suppose that there is a feasible (R, Ŝ), where Ŝ ⊆ Λ, such that
∑

ci∈Ŝ vi −∑
ci∈Ŝ C(ri) ≥ 0. By Corollary 62, we have, for each ci ∈ Λ,

∑
cj∈Λ\{ci}

rj =
∑

cj∈S\{ci}

rj ≥ 1.

Hence, (R,Λ) is also feasible. Further, the social welfare under (R,Λ) is greater or

equal to that under (R, Ŝ), since
∑N

i=1 vi −
∑

ci∈Ŝ C(ri) ≥
∑

ci∈Ŝ vi −
∑

ci∈Ŝ C(ri).

That is, we can construct another transmission schedule that makes all clients receive

their needed files, and the social welfare of this transmission schedule is at least as

large as that under (R, Ŝ). This concludes the proof.
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Corollary 68. The maximum social welfare for large Z is max{0,∑N
i=1 vi − N ·

C( 1
N−1

)}.

Proof. We study the maximum social welfare when all clients receive their needed

files. We have

N∑
i=1

vi −
N∑
i=1

C(ri)

≤
N∑
i=1

vi −N · C
(

1

N
·
N∑
i=1

ri

)
(5.1)

≤
N∑
i=1

vi −N · C
(

1

N − 1

)
. (5.2)

We note that (5.1) is based on the convex cost function C(.). On the other hand, (5.2)

holds because the feasibility condition
∑

cj∈Λ\{ci} rj ≥ 1, for all ci ∈ Λ, implies that∑N
i=1 ri ≥ N

N−1
. The equalities (5.1) and (5.2) are achievable when ri = 1/(N − 1)

for all ci ∈ Λ. By Lemma 67, the maximum social welfare is max{0,∑N
i=1 vi − N ·

C(1/(N − 1))}.

We are ready to study the loss of optimality of Alg. 7.

Theorem 69. The loss of optimality of Alg.7 is bounded by O(logN), when bi = vi,

for all i.

Proof. If the maximum social welfare is 0, then there is no loss of optimality, as the

social welfare under Alg. 7 is always non-negative.

Next consider the case when the maximum social welfare is
∑N

i=1 vi−NC(1/(N−

1)). Sort all clients so that v1 ≥ v2 ≥ . . . . Assume that Alg. 7 schedules a set

S∗ = {1, 2, . . . , i∗} of clients. We then have ri = 1/(i∗ − 1), for all i ≤ i∗, and vi <

C(1/(i−1)), for all i > i∗. The social welfare under Alg. 7 is
∑i∗

i=1 vi−i∗·C(1/(i∗−1)),
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and the loss of optimality is

N∑
i=1

vi −NC(
1

N − 1
)− (

i∗∑
i=1

vi − i∗ · C(
1

i∗ − 1
))

≤
N∑
i=1

vi −
i∗∑
i=1

vi + i∗ · C(
1

i∗ − 1
)

=
N∑

i=i∗+1

vi + i∗ · C(
1

i∗ − 1
)

≤
N∑

i=i∗+1

C(
1

i− 1
) +

i∗∑
i=2

C(
1

i− 1
) + C(1)

=
N−1∑
i=1

C(
1

i
) + C(1).

We note that the largest loss of optimality can only be achieved when the values

of vi are carefully selected. In Subsection 5.8, we will demonstrate that the loss of

optimality is actually very small when the values of vi are randomly generated.

5.6.2 Performance of algorithm 8

We now study the theoretical upper-bound of social welfare when Z = 1. In

this case, we require that ri ∈ {0, 1}, that is, a client either transmits a packet or

transmits nothing.

Lemma 70. The maximum social welfare for Z = 1 is at most max{0,∑N
i=1 vi− 2}

Proof. Since we require that a client with ri > 0 must receive its needed file from

other clients, we have
∑

j rj ≥ 2, if ri = 1, for some i. Therefore, if at least one of

the clients transmits, the social welfare is at most
∑N

i=1 vi−2C(1) =
∑N

i=1 vi−2.

Theorem 71. The loss of optimality of Alg. 8 is bounded by 1 +
∑N

i=2
2
i
.
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Proof. If the maximum social welfare is 0, then the loss of optimality of Alg. 8 is

also 0. Therefore, we only consider the case when the maximum social welfare is

larger than 0.

Sort all clients so that v1 ≥ v2 ≥ . . . . Assume that Alg. 8 schedules a set

S∗ = {1, 2, . . . , i∗}. The social welfare achieved by Alg. 8 is then
∑i∗

i=1 vi − 2.

Further, we have vi <
2
i
, for all i > i∗. The loss of optimality is then at most

(
N∑
i=1

vi − 2)− (
i∗∑
i=1

vi − 2) =
N∑

i=i∗+1

vi < 1 +
N∑
i=2

2

i
.

5.7 Extensions

Thus far, we focused on the setting that every client ci misses a unique file and

has all other files in P . We also assume that each client can receive the transmission

from each other. In this subsection, we discuss some extensions that can be applied

to more general scenarios.

5.7.1 Some clients cannot exchange files with each other

So far, we have assumed that each client can transmit a file that is useful for

another client. This may not be true in some realistic settings. For example, some

clients may be too far away from each other, and hence can not receive the transmis-

sions by each other. Also, it is possible that client ci does not possess the file that

another client cj needs.

To model this scenario, we say that pj ∈ Hi if and only if ci has the file pj, and

cj can receive transmissions from ci. It is easy to check that Lemma 61 still holds

with this slight modification. We then define a dependency graph as follows:

Definition 72. The dependency graph is an undirected graph G defined as follows:
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• For each client ci ∈ Λ, there is a corresponding vertex in G.

• For any two clients ci and cj such that pi ∈ Hj and pj ∈ Hi, there is an edge

between the corresponding vertices.

Based on the dependency graph, we propose a broker mechanism in Alg. 9 for

the case that Z is large.

Algorithm 9: Broker mechanism for the dependency graph with large Z

input : Bids vector B, and side information Hi for all clients
output: Transmission schedules

1 Create the dependency graph G;
2 S∗ ← φ;
3 ri ← 0,∀i;
4 for k ← N to 1 do
5 while there exists a k-clique in G such that bi ≥ C( 1

k−1
) for all

corresponding client ci in the clique do
6 S∗ ← S∗ ∪ { all corresponding ci in the clique};
7 ri ← 1

k−1
for all corresponding ci in the clique ;

8 Remove the clique from G ;

9 end

10 end

In Line 5 of the above algorithm, if there are multiple cliques that satisfy the

condition, ties are broken by a predetermined order that is independent of the bids

of clients.

Theorem 73. Alg. 9 produces a feasible (R, S∗) and is incentive-compatible.

Proof. Using Lemma 61, we can establish that Alg. 9 produces a feasible (R, S∗) by

treating the partitions S1, S2, . . . in Lemma 61 as the cliques found in Line 5.
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Consider a client cî, and the (R, S∗) produced by Alg. 9 when it bids bî =∞. If

cî is not scheduled by bidding∞, it will not be schedule regardless of its bid. Hence,

its net utility is always 0. On the other hand, suppose that cî is scheduled by bidding

∞, and let k be the size of the clique when cî is included in S∗ in Lines 5 – 9 of

Alg. 9. Since ties are broken by a predetermined order when multiple cliques satisfy

the condition in Line 5, cî will be included in S∗ with a clique of size k as long as

bî ≥ C( 1
k−1

), and, if bî < C( 1
k−1

), it will not be included in S∗. Therefore, if cî is

scheduled, its upload ratio is 1
k−1

, regardless of its actual bid. The net utility of cî

is then upper-bounded by max{0, vî − C( 1
k−1

)}, which can be attained by bidding

bî = vî. In sum, client cî cannot improve its net utility by lying about its true

value.

A similar mechanism can be developed for the case that Z = 1.

Algorithm 10: Broker mechanism for the dependency graph with Z = 1

input : Bids vector B, and side information Hi for all clients
output: Transmission schedules

1 Create the dependency graph G;
2 S∗ ← φ;
3 ri ← 0,∀i;
4 for k ← N to 1 do
5 while there exists a k-clique in G such that bi ≥ 2

k
for all corresponding

client ci in the clique do
6 S∗ ← S∗ ∪ { all corresponding ci in the clique};
7 Randomly select two clients in the clique and set ri = 1 for these two

clients ;
8 Remove the clique from G ;

9 end

10 end
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Theorem 74. Alg. 10 produces a feasible (R, S∗) and is incentive-compatible.

Proof. It is obvious that Alg. 10 produces a feasible schedule. We show that it is

also incentive-compatible.

Consider a client cî, and the (R, S∗) produced by Alg. 10 when it bids bî =∞. If

cî is not scheduled by bidding∞, it will not be schedule regardless of its bid. Hence,

its net utility is always 0. On the other hand, suppose that cî is scheduled by bidding

∞, and let k be the size of the clique when cî is included in S∗. Since ties are broken

by a predetermined order when multiple cliques satisfy the condition in Line 5, cî

will be included in S∗ with a clique of size k as long as bî ≥ 2
k
, and, if bî < frac2k,

it will not be included in S∗. Therefore, if cî is scheduled, its expected transmission

cost is 2
k
, regardless of its actual bid. The net utility of cî is then upper-bounded by

max{0, vî − 2
k
)}, which can be attained by bidding bî = vî. In sum, client cî cannot

improve its net utility by lying about its true value.

5.7.2 Multiple clients miss the same file

We consider the case that multiple clients require the same file. Assume that we

have a set of clients {c1,1, · · · , c1,κ1 , c2,1, · · · , c2,κ2 , · · · , cN,1, · · · , cN,κN}, where clients

{ci,1 · · · , ci,κi} miss the same file pi with the identical side information P\{pi}. We

propose Alg. 11 and Alg. 12 for the cases when Z is large, and when Z = 1,

respectively. These two algorithms are variation1 of Alg. 7 and Alg. 8. Intuitively,

Alg. 11 combines the clients {ci,1, · · · , ci,κi} to be a super-client ci and then uses

the same argument of Alg 7 and Alg. 8. Each client in the same super-client has

the same expected transmission cost if the corresponding super-client is scheduled.

Using Theorems 65 and 66, it is straightforward to show that both algorithms are

incentive-compatible.
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Algorithm 11: Broker mechanism when multiple clients need the same file
with large Z

input : Bids vector B, and side information Hi for all clients
output: Transmission schedules

1 bi ← κi ×min bi,j for all i ;
2 Sorting bids: b1 ≥ b2 ≥ · · · ≥ bN ;
3 Find i∗ = max{i : bi ≥ C( 1

i−1
)};

4 S∗ includes ci,j for i = 1, · · · , i∗ and j = 1, · · · , κi;
5 ri,j ← 1

κi
· 1
i∗−1

for ci,j ∈ S∗;
6 ri,j ← 0 for ci,j /∈ S∗;
7 Client ci,j ∈ S∗ transmits ri,j proportion of the coded file

∑
p∈{p1,··· ,pi∗}\{pi} p;

Algorithm 12: Broker mechanism when multiple clients need the same file
with Z = 1

input : Bids vector B, and side information Hi for all clients
output: Transmission schedules

1 bi ← κi ×min bi,j for all i ;
2 Sorting bids: b1 ≥ b2 ≥ · · · ≥ bN ;
3 Find i∗ = max{i : bi ≥ 2

i
};

4 S∗ includes ci,j for i = 1, · · · , i∗ and j = 1, · · · , κi;
5 Randomly select bi1 and bi2 from {b1, b2, . . . , bi∗};
6 Randomly pick one client in {bi1,1, bi1,2, . . . }, and one client in {bi2,1, bi2,2, . . . }

to transmit;
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Figure 5.2: Loss of optimality in terms of social welfare when the cost function is
C(x) = x.

Theorem 75. Alg. 11 and Alg. 12 produce feasible (R, S∗) and are incentive-

compatible.

5.8 Numerical results

In this subsection, we numerically study the performance of Alg. 7 of Subsec-

tion 5.5.

Fig. 5.2 and 5.3 show the results for C(x) = x and C(x) = x2, respectively, where

the triangle symbol represents the average result over 100000 runs, and the circle one

is the 10000th largest value of loss of optimality in the 100000 runs.

The experiment setting is as follows. We consider N clients (x-axle), where client

ci requires file pi and has the side information Hi = P\{pi}. The value vi of file

pi is uniformly distributed between 0 and 1. Let bid bi = vi due to the incentive-

compatibleness. We can observe that the proposed mechanism is close to optimal

one as the number of clients gets larger. Note that if vN ≥ C( 1
N−1

), there will

be no loss of optimality. Moreover, if we consider C(x) = x, then the probability

P(vN ≥ 1
N−1

) = (1− 1
N−1

)N approaches to 1 as N →∞. We can then conclude that

Alg. 7 performs well in average case when the number of clients is large enough.
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Figure 5.3: Loss of optimality in terms of social welfare when the cost function is
C(x) = x2.
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6. JOINT CODING AND SCHEDULING FOR WIRELESS BROADCAST

NETWORKS WITH SIDE INFORMATION

6.1 Introduction

The Index Coding problem is one of the basic problems in wireless network coding

[1, 2]. An instance of the Index Coding problem includes a server, a set of wireless

clients, and a set of packets that need to be delivered by the server to the clients. Each

client is interested in a certain subset of packets and has a different subset of packets

available to it as side information, e.g., through overhearing other transmissions.

The server can transmit the original packets or their combinations via a noiseless

broadcast channel. The goal is to find a coding scheme that requires the minimum

number of transmissions to satisfy the requests of all clients.

The prior works on the Index Coding problem have focused on developing algo-

rithms, establishing rate bounds, and analyzing the computational complexity of the

problem [7,34–38]. In contrast to the traditional Index Coding problem in which all

packets are available in advance, we assume that the packets arrive to the server ac-

cording to a certain random process. We also assume communications are performed

over a lossy and time-varying channel.

More specifically, the server has several data flows, such that each data flow has

it own arrival rate. Each of the clients is interested in some of the data flows and

has prior side information about packets that belong to other flows. We assume that

the server has an input queue for each flow that stores the packets of that flow that

have not been delivered to the clients.

The key components of the system are the coding oracle and the scheduler. We

will start with the instantaneous coding, in which the coding oracle identifies how

135



to encode for any set of new arrivals. The scheduler determines which of the coded

packets will be broadcast for any given transmission opportunity. The design of the

coding oracle is closely related to the solution of the Index Coding problem and it is

outside of the scope of this section. Rather, our goal is to design the scheduler that

will work with any given coding oracle.

In traditional wireless broadcast networks the capacity region describes the largest

arrival rate that can be handled by networks [51]. In particular, for each rate within

the capacity region there exists a scheduler that allows all packets to reach their

destinations while maintaining the stability of the queues. We introduce a similar

concept, referred to as a decodable capacity region, which captures the arrival rates

that can be handled by using the network coding technique. For each rate within

the decodable capacity region there exists a coding scheme and a scheduler that

ensure that all destinations can decode the packets they need while maintaining the

stability of the queues. Clearly, the decodable capacity region depends on the coding

oracle employed by the system and our goal is to design a scheduler that achieves

the maximal decodable capacity region for any given coding oracle.

We then extend our result by making the input to the coding oracle more flexible

and introducing the coding controller, which decides which packets need to be given

to the coding oracle for encoding. The joint coding and scheduling is proposed

accordingly.

6.1.1 Related work

Several works, e.g., [10–15,52–54], investigate the scheduling and/or routing prob-

lems in the network coding enabled networks. Reference [10] studies the network

coding in the tandem networks and formulates several related cross-layer optimiza-

tion problems, while [11] devises a joint coding-scheduling-rate controller for settings
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in which pairwise intersession network coding is allowed. References [13, 14, 52, 53]

present scheduling algorithms for inter-session network coding. Reference [15] pro-

poses a distributed algorithm that minimizes the transmission cost of a multicast

session. The work in [54] is the most relevant to this section; however, this work

focuses on the dynamic coding algorithm for a perfect channel, while we consider a

lossy time-varying channel.

6.1.2 Main results

We propose the idea of decodable capacity region. To cope with the fully dynamic

problem including coding and scheduling, we suggest to separate the scheduler and

coding controller from the coding oracle. While coding oracle is given and fixed, our

objective is to provide a framework of the scheduler and coding controller, that will

work with any coding oracle. We start with the optimal scheduler design for the

instantaneous coding. Then we propose the joint coding and scheduling design.

6.2 System model

For clarity, we present our results in the context of a simple broadcast topology

with a single source and two destinations as depicted in Fig. 6.1.

6.2.1 Broadcast networks

We consider a network system in Fig. 6.1 that includes a server S and two

wireless clients c1, c2. The server has a set of data flows F = {f1, f2} that need to

be broadcasted to clients, where each flow fi is composed of packets {pi,1, pi,2, · · · }.

We assume that each packet is a symbol of some alphabet Σ. Packets that belong

to fi are stored in queue qi at the server. Moreover, each client ci wants flow fi and

has the side information about all the packets in F\{fi} at beginning.

We consider the discrete time system, in which the server can transmit at most

137



one packet during each time slot. By Ai(t) we indicate if at time t a packet pi,j

for some j arrives at queue qi, i.e., Ai(t) = 1 if a packet pi,j is added to qi at time

t; otherwise, Ai(t) = 0. Each client is associated with an ON/OFF channel. By

S(t) = (s1(t), s2(t)) we describe the channel states at time t, where si(t) = 1 if the

server can successfully transmit a packet to client ci at time t; otherwise, si(t) = 0.

The packet arrivals and the channel states are assumed to be independent and

identically distributed (i.i.d.) over time. By λi = limt→∞
1
τ

∑t
τ=1Ai(τ), we define

the arrival rate to qi. The rate vector λ = (λ1, λ2) and the probability of the ON

channels are unknown to the server.

6.2.2 Coding oracle

The coding oracle is defined by the coding function γ(.) : Σh → Σ, which specifies

the combination for the h packets. In particular, we use a simple coding oracle as

shown in Fig. 6.1:

• γ(pi,j) = pi,j for i ∈ 1, 2 and some j: if only one packet pi,j arrives at qi, the

coding oracle specifies that an original packet pi,j needs to be sent.

• γ(p1,j, p2,k) = p1,j + p2,k for some j, k: if both packets p1,j and p2,k arrives at

the same time, the coding oracle specifies that the combination of p1,j and p2,k

needs to be delivered over the channel.

The coding oracle determines how to encode for the new arrived packets. We refer to

this coding scheme as the instantaneous coding. For example in Fig. 6.1, at time 1,

packets p1,1 and p2,1 that arrive at the server at time 1 are forwarded into the coding

oracle; therefore, a coded packet p1,1 + p2,1 combined from p1,1 in q1 and p2,1 in q2

needs to be transmitted. At time 2, an original packet p1,2 needs to be scheduled to

be transmitted at present or later.
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scheduler

Figure 6.1: Server S delivers flows f1, f2 to clients c1, c2, associated with the coding
oracle γ(.). Packets p1,1, p2,1, p1,2 arrive at the server at time 1, 1, 2 respectively.

Note that the coding oracle only results in how to encode, but not combining the

packets immediately and putting in another queue. In other words, via the coding

oracle, the server know how these packets in the queue match to each other as shown

in Fig. 6.1, and the server will combine the packets only when the associated coded

packet is scheduled to be transmitted.

The coding function γ(.) implies how to encode the packets of different flows such

that these packets can be decoded by the corresponding clients; therefore, the clients

can recover the desired packets by combining the received coded packets and the

side information, e.g. via γ(p1,1, p2,1) = p1,1 + p2,1 the server knows that p1,1 + p2,1 is

required to be successfully delivered to both c1, c2 such that the clients can decode

what they want.

6.2.3 Optimal scheduler

Given a coding oracle, we are focusing on the scheduler design. For each time t,

following the result of coding oracle the server schedules one coded packets ψ(t) ∈ Σ

to transmit, e.g., ψ(1) = p1,1 + p2,1. We assume that the server is prohibited to
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re-transmit the same coded packet.

The packets are removed from the queues only when their corresponding coded

packets are successfully received by the clients, e.g., in Fig. 1, if ψ(1) = p1,1 + p2,1

and S(1) = (1, 0), then both packets p1,1 and p2,1 are kept in q1 and q2 at time 1;

however, if S(1) = (1, 1), then both packets are removed.

Let Qi(t) be the length of qi at time t, and µi(t) be the number of packets removed

from qi at time t. Then the queueing dynamics can be described as

Qi(t+ 1) = [Qi(t)− µi(t)]+ + Ai(t),

where [x]+ = max(x, 0), as well as µi(t) depends on the scheduler and channel states

of the history, i.e, {ψ(τ)}tτ=1, and {S(τ)}tτ=1. We say qi is stable if

lim sup
t→∞

1

t

t∑
τ=1

E[Qi(τ)] <∞.

The decodable capacity region Λ is the set of all rate vectors λ for which there

exists a scheduler that makes every client recover the desired packet and all queues

stable. A scheduler is optimal if it can support all rate vectors λ ∈ Λ.

6.2.4 Remark

In Subsection 6.3, we develop the decodable capacity region and the optimal

scheduler for the network system described in this subsection. Our results can be

generalized as follows.

• In Subsection 6.4, re-transmitting the same coded packet is allowed.

• In Subsection 6.5, the proposed scheduler is extended by a joint coding and

scheduling design.
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(on, x) (x, on)

λv1 λv2 λv1+2
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v1 v2 v1+2

p1,2

Figure 6.2: Virtual network in Subsection 6.3 including there virtual queues needed
to be served, where “•” means an empty queue. The condition when the virtual
channel is ON is denoted in each link, where the character “x” is a “don’t care”
term, e.g., sv1(t) = 1 when s1(t) = 1, as well as sv1+2 = 1 when s1(t) = 1 and
s2(t) = 1.

Moreover, our results can be generalized to arbitrary broadcast topologies and coding

oracles.

6.3 Optimal scheduler design

In this subsection, we present the optimal scheduler for the network system in

Subsection 6.2. We note that there are two types of packets in qi, for i = 1, 2, which

includes the original packets and the packets that will be encoded. We hence simplify

the problem by introducing the virtual network in Fig. 6.2. The scheduling in the

virtual network are correlated to the scheduling in the real queueing network.

The virtual network in Fig. 6.2 consists of the virtual queues v1, v2, v1+2, with

the queue sizes at time t being V1(t), V2(t), V1+2(t), respectively. For each time, if

in the real network only one packet pi,j for some j arrives at qi, then pi,j is added

to vi of the virtual network as well. Moreover, if both packets p1,j and p2,k for some

j, k arrive at q1 and q2 at the same time, packet p1,j + p2,k is added to the virtual

queue v1+2. Let λvx , where x ∈ {1, 2, 1 + 2}, be the virtual arrival rate to vx. By

f(λ) , (λv1 , λv2 , λv1+2), we describe the virtual arrival rate as the function f(.) of λ
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in the real network. Then f(λ) = (λ1(1− λ2), (1− λ1)λ2, λ1λ2).

In the virtual network, we associate each virtual queue with a virtual ON/OFF

channel, and let the virtual channel states at time t be Sv(t) = (sv1(t), sv2(t), sv1+2(t)).

Then Sv(t) = (s1(t), s2(t), s1(t)s2(t)). Moreover, in the virtual network, at most one

queue can be served for each time. Let ψv(t) be the virtual queues that is selected

to be served at time t.

We are ready to make the connection between ψv(t) and the scheduler in the real

network. At time t, if in the virtual network packet pi,j for some j in vi is served,

i.e., ψv(t) = vi, then in the real network the server will schedule packet pi,j to be

transmitted over the channel and remove it from qi. Moreover, if packet p1,j + p2,k

for some j, k in v1+2 of the virtual network is served, i.e, ψv(t) = v1+2, then in

the real network the server will deliver packet p1,j + p2,k as well as remove both

packets p1,j and p2,k from q1 and q2. Then we obtain Q1(t) = V1(t) + V1+2(t) and

Q2(t) = V2(t) + V1+2(t). Therefore, if there exists a scheduling scheme that makes

the virtual queues stable for f(λ), the real queues are stable for λ. We conclude the

general result in Proposition 76.

Proposition 76. There exists a scheduling algorithm to stabilize the real queues for

λ if and only if there exists a scheduling algorithm to stabilize the virtual queues for

f(λ). Moreover, Λ is the decodable capacity region of the real queues if and only if

f(Λ) is the capacity region of the virtual network.

We first discuss the decodable capacity region, which implies the advantage of

the coding, and then suggest the dynamic scheduling algorithm.
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6.3.1 Decodable capacity region

We can characterize the capacity region of the virtual queues as follows.

λv1 ≤ P(s1(t) = 1);

λv2 ≤ P(s2(t) = 1);

λv1+2 ≤ P(s1(t) = 1 and s2(t) = 1);

λv1 + λv2 ≤ P(s1(t) = 1 or s2(t) = 1);

λv1 + λv1+2 ≤ P(s1(t) = 1);

λv2 + λv1+2 ≤ P(s2(t) = 1);

λv1 + λv2 + λv1+2 ≤ P(s1(t) = 1 or s2(t) = 1).

By substituting f(λ) = (λ1(1− λ2), (1− λ1)λ2, λ1λ2), the decodable capacity region

of the real queues is calculated as follows.

λ1 ≤ P(s1(t) = 1); λ2 ≤ P(s2(t) = 1).

Fig. 6.3 compares the decodable capacity region and the capacity region without

network coding, where we can see the potential of the network coding.

6.3.2 Optimal scheduler

Let X = {1, 2, 1 + 2} be the set of all indices of the virtual queues. We describe

the queueing dynamics in the virtual network as follows.

Vx(t+ 1) = [Vx(t)− µvx(t)]+ + Avx(t),

143



λ1

λ2

o.8

0.8

0.16

0.16

Figure 6.3: Decodable capacity region (dash line) versus capacity region without
coding (solid line) when P(s1(t) = 1) = P(s2(t) = 1) = 0.8.

where x ∈ X, µvx(t) is the number of packets in vx served at time t, and Avx(t)

indicates if a packet arrives at vx. In particular,

µvi(t) =

 si(t) if ψv(t) = vi

0 otherwise
for i ∈ {1, 2};

µv1+2 =

 s1(t)s2(t) if ψv(t) = v1+2

0 otherwise
.

To achieve the capacity region of the virtual network, we apply the MAX-Weight-

type algorithm [51] to choose the optimal ψ∗v(t):

ψ∗v(t) = arg max
ψv(t)

∑
x∈X

Vx(t)µvx(t)︸ ︷︷ ︸
weighted sum

.

To evaluate the weighted sum in the above equation, we get

• if ψv(t) = ∅: the weighted sum is 0.

144



(off, on)
(on, off)

(on, x) (x, on)

(on, on)

v
(0)
1

v
(1)
1

v
(1)
2

v
(0)
2 v

(0,0)
1+2

v
(0,1)
1+2 v

(1,0)
1+2

v
(1,1)
1+2

(on, x) (x, on)

λv1 λv2 λv1+2

Figure 6.4: Virtual network in Subsection 6.4.

• if ψv(t) = v1: V1(t)s1(t).

• if ψv(t) = v2: V2(t)s2(t).

• if ψv(t) = v1+2: V1+2(t)s1(t)s2(t).

We remark that in real network the server does not always choose a coded packet

to transmit even when both channels s1(t) and s2(t) are ON; however, the decision

depends on Vi(t) (where si(t) = 1) and V1+2(t).

Putting together Proposition 76 and the throughput-optimality [51] of the MAX-

Weight-type scheduling in the virtual network yields the optimal scheduler in the

real network, as stated in the following theorem.

Theorem 77. In the real network, the scheduler that follows the MAX-Weight-type

scheduling in the virtual network is optimal.
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6.4 Extension: re-transmission allowed

We have proposed the optimal scheduler for the setting where re-transmitting

the same coded packet is not allowed. In this subsection, the result is extended by

allowing the server to make multiple transmissions of the same coded packet. To

that end, we introduce another virtual network with the virtual queues as shown

in Fig. 6.4. The notion of the superscripts is to indicate if in the real network the

packet has been received by the corresponding clients, e.g., if in the virtual network

there is a packet p1,j + p2,k for some j, k in v
(1,0)
1+2 , then in the real network the coded

packet p1,j + p2,k has reached c1, but not c2 yet.

Now we are describing the external arrivals to the virtual queues v
(0)
1 , v

(0)
2 , v

(0,0)
1+2 .

For each time, if in the real network only one packet pi,j for some j arrives at qi, it

will also be put in v
(0)
i of the virtual network; however, if in the real network both

p1,j and p2,k for some j, k come, packet p1,j + p2,k is added to the virtual queue v
(0,0)
1+2 .

Similar to Subsection 6.3, let X = {1, 2, 1+2} be the set including all subscripts of

the virtual queues. Moreover, by Yx, with x ∈ X, we denote the set of all superscripts

associated with the subscript x. The links in Fig. 6.4 shows the packet flows in the

virtual network. We associate an ON/OFF channel to each link vmx → vnx , where

x ∈ X and m,n ∈ Yx:

• v(0)
1 → v

(1)
1 : the virtual channel state is s1(t).

• v(0)
2 → v

(1)
2 : s2(t).

• v(0,0)
1+2 → v

(0,1)
1+2 : (1− s1(t))s2(t).

• v(0,0)
1+2 → v

(1,0)
1+2 : s1(t)(1− s2(t)).

• v(0,0)
1+2 → v

(1,1)
1+2 : s1(t)s2(t).

146



• v(0,1)
1+2 → v

(1,1)
1+2 : s1(t).

• v(1,0)
1+2 → v

(1,1)
1+2 : s2(t).

Moreover, all links in the virtual network interfere to each other, i.e., for each

time, at most one virtual queue can be served, which idea comes from the fact that

at most one packet can be transmitted in real network. Let ψv(t) be the virtual

queue served at time t.

Let V y
x (t), with x ∈ X and y ∈ Yx, be the size of vyx at time t. The virtual queues

v
(1)
1 , v

(1)
2 , v

(1,1)
1+2 are empty queues, which implies that in the real network the coded

packet has been successfully delivered. Let 1x = (1, · · · , 1) ∈ Yx ,with x ∈ X, be the

superscript in which all elements are one’s. Now we describe the queueing dynamics

in the virtual network:

V y
x (t+ 1) = [V y

x (t)−
∑
m∈Yx

µvyx,vmx (t)]+ +∑
n∈Yx

µvnx ,vyx(t) + Avyx ,

where x ∈ X, y ∈ Yx\1x, Avyx(t) indicates if an external packet arrives to vyx at time

t, and µvyx,vmx is the number of packets moved from vyx to vnx . In particular,

µ
v
(0)
i ,v

(1)
i

=

 si(t) if ψv(t) = v
(0)
i

0 otherwise
for i ∈ {1, 2};

µ
v
(m,n)
1+2 ,v

(r,s)
1+2

=


1 if ψv(t) = v

(m,n)
1+2 ,

and the link v
(m,n)
1+2 → v

(r,s)
1+2 is ON

0 otherwise

.
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We define the weight Wvmx ,v
n
x
(t) of the link vmx → vnx at time t as

Wvmx ,v
n
x
(t) = [V m

x (t)− V n
x (t)]+.

Then we propose the Back-Pressure-type scheduling [51] to decide the optimal ψ∗v(t):

ψ∗v(t) = arg max
ψv(t)

Wvmx ,v
n
x
µvmx ,vnx .

Now we are ready to connect ψ∗v(t) in the virtual network with the scheduler in

the real network. If in the virtual network pi,j for some j in v
(0)
i is served, then

in the real network the server will schedule packet pi,j to be delivered and remove

it from qi. Moreover, if in the virtual network packet p1,j + p2,k for some j, k is

delivered from v
(m,n)
1+2 to v

(r,s)
1+2 , with (r, s) 6= (1, 1), then the server will deliver packet

p1,j +p2,k in the real network, but both p1,j and p2,k are still kept in q1 and q2. When

packet p1,j + p2,k arrives at v
(1,1)
1+2 in the virtual network, both packets p1,j and p2,k

are removed from q1 and q2 of the real network. Intuitively, coded packet p1,j + p2,k

will be sent in the real network until it achieves v
(1,1)
1+2 in the virtual network. Then

we obtain Qi(t) = V
(0)
i (t) + V

(0,0)
1+2 (t) + V

(0,1)
1+2 (t) + V

(1,0)
1+2 (t) for i = 1, 2; as such, the

real queues are stable for λ if f(λ) can be supported in the virtual network. We

therefore have the following theorem because of the throughput-optimality [51] of

Back-Pressure-type scheduling in the virtual network.

Theorem 78. In the real network, the scheduler that follows the Back-Pressure-type

scheduling in the virtual network is optimal.

6.5 Extension: joint coding and scheduling design

Thus far, we was focusing on the scheduler. We will present the joint coding and

scheduling in this subsection.
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Figure 6.5: Include coding controller to the system. Packets p2,1, p1,1, p2,2, p1,2 arrive
at time 1, 2, 3, 4, respectively.

packet pool

new arrivals

coding controller

coding 
oracle

γ(.)

φ(t)

Figure 6.6: Coding controller versus coding oracle.

Instead of giving all new arrivals to the coding oracle, the system includes the

coding controller, which for each time t determines a set φ(t) of packets in the queue

that will be forwarded to the coding oracle. In contrast to instantaneous coding,

we refer this coding system as the dynamic coding. In Fig. 6.5, if the server uses

the instantaneous coding as before, original packets p1,1, p1,2, p2,1, p2,2 need to be

scheduled to be transmitted; however, using dynamic coding the server is allowed

to apply the coding oracle to packets over different time. For example in Fig. 6.5,

φ(1) = {p2,1}, φ(2) = ∅, φ(3) = {p1,1, p2,2}, and φ(4) = ∅. Note that φ(2) = ∅ and

φ(3) = {p1,1, p2,2} means that there is no coding decision at time 2, and the coding

decision for p1,1 is delayed to time 3.
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Dynamic coding

Dynamic scheduling

va1 va2

(on, x) (x, on) (on, on)

v1 v2 v1+2

λ1 λ2

Figure 6.7: Virtual network in Subsection 6.5, where “•” means an empty queue.
The flow {va1 , va2} → {v1+2, ∅} is depicted in blue color.

Fig. 6.6 illustrates the notion of the coding controller, where all new arrivals are

put in the packet pool. For each time t, the coding controller chooses the packets

φ(t) from the packet pool and outputs the coding decision by passing the packets

φ(t) into the coding oracle γ(.). In this section, the coding decisions that have been

decided for φ(t) cannot be changed later, i.e., φ(t) needs to be removed from the

packet pool. Moreover, without loss of generality, we assume that φ(t) contains at

most one packets for each data flows.

We focus on the scenario where the re-transmission is not allowed. We propose

the virtual network in Fig. 6.7, where the lower part is for the scheduler similar to

Subsection 6.3. In this virtual network, we introduce more virtual queues vai , with

i ∈ {1, 2}, that store the virtual arrivals, i.e, when packet pi,j for some j is added to

qi, it is added to vai as well.

In this virtual network, the additional links are introduced, i.e., va1 → v1, va2 →

v2, and {va1 , va2} → {v1+2, ∅}, where the last one means that one of packets in va1

and va2 will go to v1+2 and the other one will be just removed from its virtual queue
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if both va1 and va2 are not empty.

Let Φ = {∅, 1, 2, 1+2} be the set including all the actions of the coding controller,

i.e., do nothing, original packet pi,j for some i, j, and the combination of packets

p1,j and p2,k for some j, k. Let φv(t) ∈ Φ be the coding action selected in the

virtual network at time t. In additional to ψv(t) in Subsection 6.3, φv(t) needs to be

determined for each time t. If φv(t) = i, with i ∈ {1, 2}, then a packet pi,j for some

j in vai will be delivered to vi. If φv(t) = {1 + 2}, one of p1,j and p2,k for some j, k

will be sent to v1+2 and be stored in another type p1,j + p2,k of the packet, while the

other is sent to the empty queue.

In this virtual network, the upper part is used for the coding controller in the real

network while the lower part is for the scheduler in the real network. At time t, if

in the virtual network a packet pi,j for some j is sent from vai to vx with x ∈ {1, 2},

then the server in the real network decides an original packet φ(t) = pi,j. If in the

virtual network, two packets p1,j, p2,k for some j, k are delivered to v1+2 and empty

queue, then in the real network the server selects φ(t) = {p1,j, p2,k} for encoding.

Since the Back-Pressure-type scheduling in the virtual network is throughput-

optimal, the corresponding coding controller and scheduler in the real network are

optimal, as stated in the following.

Theorem 79. In the real network, the coding controller φ(t) and scheduler ψ(t) that

follow φv(t) and ψv(t) of Back-Pressure-type scheduling in the virtual network are

optimal.

6.6 Numerical results

In this subsection, we numerically study the performance of the proposed jointly

coding and scheduling algorithm. The average system backlog is defined as the

summation of each time-averaged queue length. In Fig. 6.8 and 6.9, we show the
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Figure 6.8: Average system backlog versus λ2 when λ1 = 0.5.
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Figure 6.9: Average system backlog versus λ2 when λ1 = 0.75.

average system backlog versus λ2 when λ1 = 0.5 and 0.75 respectively. Moreover,

P(s1(t) = 1) = P(s2(t) = 1) = 0.8. The −©− line represents applying Max-Weight-

type scheduling algorithm to the real network when the server does not perform any

coding operation. The −4− and −�− lines stand for using the proposed dynamic

coding and scheduling under no retransmission policy and retransmission allowance

policy respectively.

6.7 Dynamic coding and scheduling for general coding oracle

In Subsection 6.5, we propose the jointly design of the coding controller and

scheduling controller for the simple topology. In this subsection, we discuss how to

extend the results to the more general settings, where there can be more than two

clients and any coding oracle.
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We will focus on the case when the retransmission is allowed. We build up the

virtual network as follows.

• Create the virtual queues vai for i ∈ {1, · · · , N} that stores the arrivals.

• For each coding function, say (g1, · · · , gm) = γ(f1, · · · , fn) with m coded

packets and n arrival packets, create the m virtual queues v
(y1,··· ,yn)
gi , where

i ∈ {1, · · · ,m} indicates how to encode for f1, · · · , fn, and (y1, · · · , yn) in-

cludes the indicators that implies if client ci, with i ∈ {1, · · · , n}, has received

the coded packet.

• The links in the upper part of the virtual network are connected according to

the coding oracle. For each coding function, say (g1, · · · , gm) = γ(f1, · · · , fn),

create the flows {va1 , · · · , van} → {v(0,··· ,0)
g1 , · · · , v(0,··· ,0)

gm , ∅}.

• The links in the lower part of the virtual network are connected according to the

channel condition. For each v
(y1,··· ,yn)
gi , create the links v

(y1,··· ,yn)
gi → v

(w1,··· ,wn)
gi

with wj > yj for some j’s. The link v
(y1,··· ,yn)
gi → v

(w1,··· ,wn)
gi is ON if for all

1 ≤ j ≤ n: (1) sj = 1 when wj = 1 and yj = 0 and (2) sj = 0 when wj = 0

and yj = 0.

• Each time one coding action is selected for the upper part.

• Each time only one queue in the lower part can be served.

The Back-Pressure-type algorithm is applied to the virtual network. According

to the result of the Back-Pressure in the virtual network, the upper part of the virtual

network implies how and when to assign the coding rule in the real network, while

the lower one indicates which coded packet to transmit at present. Therefore, we

can conclude as follows for the more general setting.
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Theorem 80. For any broadcast network associated any coding oracle, the controller

that follows the Back-Pressure-type scheduling in the upper and lower parts of the

virtual network is optimal.
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7. CONCLUSION

We have identified several cutting-edge issues and challenges at the intersections

of network coding, control theory, and game theory. By developing general method-

ologies, we offer new insights into network coding, controller design, and incentive

design. In general, these problems would require interdisciplinary components, e.g.,

network coding theory, control theory, game theory, network optimization, queueing

theory, complexity theory, approximation algorithm, and distributed computing.

7.1 Extension of opportunistic network coding problem

The theoretical results in this dissertation are focused on the three-hops network.

How to extend the results to a general network with noisy channels is critical. In gen-

eral, Markov decision process leads to a notorious “curse of dimensionality” problem,

and therefore is hard to be analyzed when it contains many random variables. The

Lyapunov theory plays an important role to investigate multi-hops networks. Using

the Lyapunov techniques, we expect to design an on-line algorithm and build up the

performance bound. Moreover, Markov decision process and Lyapunov theory focus

on the average behavior. How to interplay between Markov decision process, Lya-

punov theory, and competitive analysis (worst-case analysis) would be challenging.

7.2 Extension of network coding associated with game and control theory

We consider the selfishness and network dynamics separately in this dissertation.

The following question is still open: how to design an incentive mechanism that

works with any coding oracle and controller? To that end, we first have to answer

the feasibility question: what properties should a coding oracle and controller have

such that there exists an incentive mechanism that is tractable? Then, we can focus
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on the incentive mechanism design for these feasible coding oracles and controllers.

7.3 Future work

Our future plans will involve continuing the research discussed above. In parallel,

we note interesting topics at network robustness in power networks, since a large-

scale network leads to an increasing concern about the robustness of protocols. The

ultimate goal of our research is to address the problems posed in the design and

analysis of communication systems and networks. We believe that our work will

benefit both theoretical and practical developments.

7.3.1 Network robustness

Cascading failures in a smaller sub-system might be lead to a catastrophic failure

in a large-scale network. Therefore, how to design and analyze a robust protocol

against an unexpected event is significant. Markov decision process, Lyapunov tech-

niques, and large deviation theory can be applied to evaluate the probabilities of

an unexpected event in a stochastic system; meanwhile, a mitigation scheme can be

developed to improve the system performance. Without knowing the distribution of

an uncertainty, reachability analysis in control theory can be used for a worst-case

analysis, i.e., to compute the set that encloses all possible trajectories of a system

under an uncertainty. An application of this tool is to verify if a system can exclude

the undesired events, and ensure that the desired performance is met.

7.3.2 Set theory in a large-scale power network

The traditional reachability analysis is developed for a small system. We suggest

extending the concept of reachability analysis to a large-scale power network by

combining techniques from matrix decomposition and reachable set concept. Once a

system can be described in a matrix, we have candidate tools such as LU, SVD, and
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Schur decomposition. We expect to incorporate the decomposition and reachability

analysis to reduce the computational complexity in a large-scale power network.
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