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ABSTRACT 

 

Qatar holds the world's third-largest proven reserves of natural gas at 885 trillion cubic 

feet according to a recent report. Because of its desert climate, gas hydrate formation may 

seem an unlikely event in Qatar. However, its natural gas reservoirs are located 80 km 

offshore, in the North Field, and the production of liquefied natural gas (LNG) depends 

on reliable flow from offshore wellheads to onshore processing facilities. Classical 

methods for inhibiting hydrate formation are used in order to prevent pipeline plugging 

but changing gas concentrations and operating conditions make flow assurance quite 

challenging in the North Field. Between 2008 and 2011, sudden temperature drops near 

gas pipelines caused various incidents of gas pipeline blockage by hydrates, with a loss of 

US$ 10 million per day due to lost production for almost 4 weeks. Such unplanned shut 

downs jeopardize the reliable export of LNG to end users. 

 

This work presents the recent investigation on synthetic multi-component gas mixtures 

whose compositions are typical of Qatari natural gases with initiatives aimed at helping 

producers minimize costs, optimize operations, and prevent interruption of gas flow in 

offshore drilling and production. In addition, it presents hydrate inhibition data from a 

newly commissioned micro bench top reactor, a high-pressure autoclave and a rocking 

cell. The conditions for hydrate formation for pure methane and carbon dioxide were also 

measured, for validation purposes. The measured data were compared with literature 

results and those of a commercial simulator, HydraFLASH®. Upon validation of the 
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calibration data and determination of the apparatus uncertainty, results for hydrate 

formation equilibrium points for Qatari natural gas sample were collected and compared 

to HydraFLASH® predictions. Different percentages of 2-hydroxy-N,N,N-

trimethylethanaminium chloride, also known as choline chloride ionic liquid, were used 

as hydrate inhibitor for the same gas mixture. The ionic liquid’s inhibition performance 

was compared to that of classical thermodynamic inhibitors (e.g. methanol). Ionic liquid 

inhibition showed (0.7 – 1.8) oC and (2 - 2.6) oC shift in the hydrate equilibrium curve 

with 1 wt. % and 5 wt. % of choline chloride respectively. While the inhibition 

performance of 1 wt. % and 5 wt. % of methanol, obtained using HydraFLASH® software, 

were 2.8 oC and 4.4 oC respectively. 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

DEDICATION 

 

 

 

                                              To my Parents 

                                                      And 

                                             To my Husband 



 

v 

 

 ACKNOWLEDGEMENTS  

 

I would like to take the opportunity to thank all the individuals who helped and supported 

me during my study and research, ultimately leading to the successful completion of my 

Master of Science degree in chemical engineering. 

 

Firstly, I would like to sincerely thank my committee chair, Prof. Marcelo Castier, and my 

co-chair Associate Prof. Mert Atilhan, and my other committee member, Associate Prof. 

Mahmood Amani, for their guidance and support throughout the course of this research. 

 

Secondly, Thanks also go to my friends and colleagues and the department faculty and 

staff for making my time at Texas A&M University and Qatar University a great 

experience. I also want to extend my gratitude to postdoctoral Dr. Mohammad Tariq for 

his laboratory support and help with the experimental set-up.  

 

Finally, yet importantly, I would like to express my heartfelt thanks to my beloved parents 

for their blessings, support, and encouragement and to my husband for his patience and 

love. 



 

vi 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION ..................................................................................................................iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

TABLE OF CONTENTS ..................................................................................................vi 

LIST OF FIGURES .........................................................................................................viii 

LIST OF TABLES ...........................................................................................................xii 

1. INTRODUCTION..................................................................................................... 1 

1.1. Introduction ........................................................................................................ 1 

1.2. Research Project Statement  ............................................................................... 4 

2. LITERATURE REVIEW ........................................................................................... 8 

2.1. Hydrate Overview  ............................................................................................. 8 
2.2. Background  ..................................................................................................... 14 
2.3. Structure and Chemical Background ............................................................... 17 
2.4. Hydrate Formation and Dissociation Mechanism ............................................ 21 
2.5. Hydrate Mitigation Remediation and Inhibition  ............................................. 26 
2.6. Chemical Hydrate Inhibition  ........................................................................... 28 
2.7. Hydrate Inhibition Selection Criteria  .............................................................. 40 

3. METHODOLOGY  .................................................................................................. 41 

3.1. Advanced Hydrate Experimental Methods  ..................................................... 42 
3.2. Hydrate Measurements via Instrumental Techniques  ..................................... 48 

3.3. Temperature Control of Hydrate Experiments  ................................................ 50 
3.4. Experimental Set-up  ........................................................................................ 51 

3.5. Materials  .......................................................................................................... 60 
3.6. HydraFLASH® Software  ................................................................................ 62 
3.7. Experimental Procedure  .................................................................................. 65 

4. RESULTS AND DISCUSSION .............................................................................. 83 

4.1. Method to Obtain Thermodynamic (HLVE) Points  ........................................ 84 



 

vii 

 

 Page 

4.2. Method to Obtain Kinetic Induction Time  ...................................................... 87 
4.3. Micro Bench Top Reactor  ............................................................................... 89 
4.4. High Pressure Autoclave  ................................................................................. 94 
4.5. Rocking Cell  .................................................................................................... 97 
4.6. Discussion  ..................................................................................................... 106 

5. CONCLUSION ...................................................................................................... 108 

REFERENCES ............................................................................................................... 111 

 

 



 

viii 

 

LIST OF FIGURES 

 Page 

Figure 1 Conceptual representation of hydrate formation in an oil-dominated 
system in pipeline ………………………………………………….. 2 

Figure 2 World proven gas reserves, source Oil & Gas Journal, Jan. 1, 2014.. 5 

Figure 3 Map of state Qatar showing the extent of the north field………….... 6 

Figure 4 Hydrate crystal unit structures: (a) cubic structure sI (b) cubic  
 structure sII and (c) hexagonal structure sH ………………….…..... 8 

Figure 5 Formation of gas hydrate in a subsea pipeline (Petrobras - Brazil)… 9 

Figure 6 Effect of gas gravity on hydrate formation ………………………… 10 

Figure 7 Hydrate equilibrium curve in ocean (temperature vs. depth)…..…… 11 

Figure 8 The three common hydrate unit crystal structure ……………..…… 19 

Figure 9 Schematic model of labile cluster growth ……………………..…… 22 

Figure 10 Adsorption of gas molecules onto hydrate cavities at gas-water  
 Interface…………………………………………………………...... 23 

Figure 11 Methane hydrae equilibrium curve using micro bench top reactor.… 24 

Figure 12 Typical natural gas hydrate equilibrium curve ………………...…... 29 

Figure 13 A schematic diagram showing the mechanism of absorbing KHIs           
on hydrate surface ………………….…………………...………….. 31 

Figure 14 A schematic diagram showing the effect of AAs inside the pipeline.. 32 

Figure 15 Sapphire cell high pressure test equipment …………………..…….. 43 

Figure 16 A schematic diagram of sapphire rocking cell set-up (left) and   
individual cell (right) ……………………….…………………...….. 44 

Figure 17 Rocking cells used by Shell Global Solutions International ……….. 45 

Figure 18 Mini flow loop technique from inside (laboratory scale) …….…….. 46 



 

ix 

 

 Page 

Figure 19 A wheel-shaped flow loop technique (laboratory scale) ………….... 47 

Figure 20 Real plant large scale multiphase flow loop, France ……….….….... 47 

Figure 21 Gas hydrate properties and associated characterization methods            
and instrument ……………………….…………….……………….. 48 

Figure 22 Hydrate curves from micro DSC under variable methane pressure… 49 

Figure 23 The top bench reactor test equipment consist of 1) reactor          
controller, 2) reactor cell, 3) heater aluminum block, 4) water bath.. 53 

Figure 24 The head fitting of the reactor cell (Source: instrument manual)........ 54 

Figure 25 High pressure autoclave cell main parts are 1) autoclave cell,                   
2) thermostat, 3) light source, 4) gas cylinder, and 5) control-PC...... 56 

Figure 26 RC-5 experiment set-up are 1) base unit, 2) thermostat, 3) control  
 PC………………………………………………………………….... 58 

Figure 27 RC-5 base unit consist of 1) RC-5 bath, 2) temperature sensor,                
3) gas supply, 4) test cell. Not illustrated: front panel.……………... 59 

Figure 28 HydraFLASH® software main window expressing the main input         
for each run …………………………………………………..….….. 63 

Figure 29 Numerical result window for hydrate dissociation of QNG-S1 with     
20% methanol inhibitor …………………………………………….. 64 

Figure 30 Graphical representation for hydrate dissociation curve using           
QNG-S1 mixture with 20% methanol inhibitor of the aqueous            
mole fraction………………………………………………............... 65 

Figure 31 A general schematic diagram of the whole experiment set-up …...... 66 

Figure 32 Temperature vs. time for leak test via micro bench top reactor …..... 68 

Figure 33 Pressure vs. time for leak test via micro bench top reactor  ...…….... 68 

Figure 34 The relation between Parr thermocouple and pre-calibrated  
 thermocouple wire for calibration purpose ……………………….... 70 

Figure 35 The relation between Parr pressure sensor and pre-calibrated     
transducer for calibration purpose ……….……………..………...… 71 



 

x 

 

 Page 

Figure 36 SpacView – [Parr 4848] software main window …………………... 73 

Figure 37 A complete program schedule in Hydrate software …………….….. 76 

Figure 38 Hydrate software main window and camera preview window …….. 77 

Figure 39 An assembling aid used to loosen and fasten the test cell ………….. 79 

Figure 40 A complete program schedule in RC-5 software ……….………….. 80 

Figure 41 RC-5 software main window showing measurements values and 
graphical representation for monitoring propose………………….... 81 

Figure 42 Typical experimental hydrate liquid vapor equilibrium curve …….. 85 

Figure 43 A complete hydrate formation/dissociation loop zooming in the       
region where hydrate equilibrium point is found ……….………….. 86 

Figure 44 Red line shows a complete hydrate equilibrium curve for the three 
hydrate formation/dissociation loops of gas mixture composition          
and experimental set-up ……….…………………….……….…….. 87 

Figure 45 Schematic representation of the pressure changes with time during           
a typical kinetics hydrate formation ……………………………….. 88 

Figure 46 Pressure-temperature and pressure-time in the upper left corner           
used to obtain induction time ……………………………………..... 89 

Figure 47 HLVE curve for pure CH4 using Micro rector compared with those 
obtained by Sloan (1998), specific gravity method and  

 HydraFLASH®……………………………………………………... 91 

Figure 48 HLVE curve for pure CO2 using Micro rector compared with those 
obtained by Sloan (1998), K-factor method and HydraFLASH®...... 92 

Figure 49 HLVE curve for plain QNG-S1 system using micro rector           
compared  with those obtained by specific gravity method and 
HydraFLASH®……………………………………………………... 93 

Figure 50 Image of the hydrate formation/ dissociation process in high         
pressure autoclave.………..…………..…………………………….. 95 

 



 

xi 

 

 Page 

Figure 51 HLVE curve for plain QNG-S1 system using autoclave compared       
with those obtained by SG method and HydraFLASH® and the           
data obtained in micro reactor ………………………….…….…….. 96 

Figure 52 HLVE curves for both plain and nitrogen rich QNG-S1 obtained             
by SG. method and HydraFLASH® for plain QNG-S1.……...……. 98 

Figure 53 Inhibition effect of 1 wt % and 5 wt% choline chloride on  
 NR-QNG-S1 using RC-5 compared with that obtained using SG 

method.………………………………………………………….....… 99 

Figure 54 Inhibition effect of 1 wt % and 5 wt% choline chloride on plain       
QNG-S1using RC-5 compared with those data obtained using       
autoclave, micro bench top reactor SG method and HydraFLASH..... 102 

Figure 55 Comparing the inhibition effect of classical inhibitor and ionic       
liquid………………………………………………………………… 104 

Figure 56 Induction time measurement for 1 wt. % and 5 wt. % of choline    
chloride applied on plain QNG-S1 using RC-5 at starting pressure          
of 60 bar………………………………………………………...…... 105 

 

 



 

xii 

 

LIST OF TABLES 

 Page 

Table 1 Experimental set-up used to study thermodynamic and kinetic       
behavior for hydrate formation/dissociation ..…………………...…. 15 

Table 2 Characteristics for the three structures ……………………..………. 20 

Table 3 Chemical structure and authority for the common THIs, KHIs,            
AAs and ionic liquid inhibitors ……………………………….……. 33 

Table 4 Application, benefits and limitation of chemical inhibitors ……….……. 40 

Table 5 Micro bench top reactor specifications …………….………………. 54 

Table 6 High pressure autoclave cell specifications ………………..………. 57 

Table 7 RC-5 main specifications .………………………………….………. 59 

Table 8 QNG-S1mixture composition used in this work .….………………. 60 

Table 9 NR-QNG-S1mixture calculated composition used in this work …... 61 

Table 10 Chemical structure and physical constants for ionic liquid inhibitor     
used in this work …………………………...………………………. 62 

Table 11 Inhibitor fraction on mass bases of aqueous phase ...………………. 67 

Table 12 The set conditions used in the three different devices utilized in this 
project ……………………………………………………...………. 82 

Table 13 Measured hydrate liquid vapor equilibrium points for pure methane  
using micro bench top reactor ……………………………..………. 90 

Table 14 Measured hydrate liquid vapor equilibrium points for pure CO2         
using   the micro bench top reactor.……………………….….……. 92 

Table 15 Measured hydrate liquid vapor equilibrium points for plain               
QNG-S1 system using micro bench top reactor ………………...…. 93 

Table 16 Measured HLVE points for plain QNG-S1 system using autoclave.. 95 

Table 17 Measured HLVE points for NR-QNG-S1 system using rocking cell  99 



 

xiii 

 

Table 18 Measured HLVE points for plain-QNG-S1 system using rocking          
cell compared with autoclave ……………………………..…….…. 102 



 

1 

 

1. INTRODUCTION 

 

1.1. INTRODUCTION  

 

The State of Qatar has been economically booming since the late 1990’s due to the 

exploration and utilization of gas fields. Oil and gas form about 60 % of gross domestic 

product, approximately 85% of the export earnings, and 70 % of government revenues. 

Industrial activities in both oil and gas sectors have resulted placing Qatar one of the 

wealthiest countries in the world with second highest per-capita income country. Yet Qatar 

is one of the world's fastest growing economy according to International Monetary Fund 

report [1]. With proved reserves of natural gas at approximately 885 trillion cubic feet, 

Qatar’s natural gas production will continue to be a major income stream for the 

foreseeable future.  

 

Natural gas processing has its own operational problems in both exploration and 

processing stages. One of the most widely known problems that natural gas industry 

suffers is formation of gas hydrate in gas distribution networks, pipelines, and exploration 

sites. Gas hydrates form wherever there are low enough temperatures, high enough 

pressures, and adequate amounts of free water in the environment (e.g., pipeline). As the 

gas hydrates are inevitably form in the confined areas in the process, they pose significant 

problems in two aspects: 1) health and safety risk and, 2) loss in production rate due to 

blockage and thus economic loss. Production problems from hydrates occur in a number 
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of critical areas, mainly in pipelines, where blockage can result in both gas and oil 

dominated systems as shown in Figure 1 [2; 3]. 

 
 
 

 
Figure 1: Conceptual representation of hydrate formation in an oil-dominated system in 

pipeline [3]. 
 

Similar problems can occur at valves and orifice plates due to the Joule-Thompson effect 

which lowers the temperatures as the gas expansion and thus causing water condensation, 

and eventually leading conditions that favor hydrate formation. Hydrates can build-up on 

control surfaces making the valve inoperable or cause damage to the valve seat. Such 

problems are especially apparent around the wellhead choke valves upon start up and 

could lead to catastrophic overpressure [4; 5; 6]. Thus, formation of hydrates within these 

units can cause plant shutdown due to blockages or can cause the gas to go beyond the 

desired production specifications. 

 

More importantly, what concerns the industry the most are the safety issues related to 

hydrate plug motion. Hydrate density is analogous to that of ice and, if formed within 
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upstream pipes, the pressure can propel dense plugs at very high velocity. In such 

conditions the risk of occurrence of rupture in the pipeline through the downstream 

increases significantly. Similarly, hydrates can form single or multiple plugs which lead 

to problems when depressurizing lines for maintenance, particularly as hydrates contain 

around 164 volumes of hydrate former gas (e.g. methane) per volume of hydrate cage [7; 

8; 9; 10]. 

 

As the exploration and production of natural gas moving to extreme conditions with 

unconventional drilling and exploration techniques, the problem of gas hydrate formation 

has become much more challenging in recent years. Typically, four techniques have been 

established to prevent gas hydrate formation in industry. These techniques are removing 

water prior to gas distribution to process (known as gas dehydration), keeping pressure 

below the hydrate equilibrium condition at the operating temperature, heating the gas to a 

temperature above the hydrate equilibrium condition at the operating pressure, or injecting 

a thermodynamic inhibitor [9]. 

 

Additionally, there are several commercial packages that are used to predict and determine 

the thermodynamics state of hydrate formation during the operation with specific gas 

mixtures in process facilities. Programs such as CSMHYD, CSMGem and 

HydraFLASH® have been used widely in recent years and they have shown appreciable 

accuracy for several hydrate phase equilibrium prediction for both single component and 
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multicomponent gas mixtures. In this project, HydraFLASH® is used to predict hydrate 

formation conditions to the best of its predefined limits. 

 

This work addresses issues related to hydrate formation in Qatar natural gas systems, as 

discussed in section 1.2. 

 

1.2. RESEARCH PROJECT STATEMENT 

 

Between 2008 and 2011, Qatar oil and gas industry faced various incidents of gas pipeline 

blockage by hydrates because of a sudden temperature drop in the vicinity of gas pipelines. 

These incidents caused a loss of 10 million USD per day due to lost production from the 

pipelines for almost 4 weeks in the above mentioned industry [11]. Hydrate formation has 

a huge impact on gas industry, especially in Qatar, since it holds the world's third-largest 

reserves of natural gas at 885 trillion cubic feet according to proven reserves in the latest 

report of the Oil and Gas Journal, in 2014, as shown in Figure 2 [12].  
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Figure 2: World proven gas reserves, source Oil & Gas Journal, Jan. 1, 2014. 
 

This abundant natural resource makes Qatar one of the most important key players in LNG 

business around the globe. Qatar’s natural gas reservoirs are located 80 km off the shore 

in its North Field (Figure 3). Qatar’s LNG production is highly dependent on the reliable 

natural gas feed from the offshore wellheads to onshore processing facilities. Typical gas 

composition and pipeline operating conditions make flow assurance quite challenging in 

the North Field, causing unplanned shut downs and jeopardizing reliable LNG export to 

end users. Classical hydrate formation inhibition methods are used in order to prevent 

pipeline plugging.  
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Figure 3: Map of state Qatar showing the extent of the north field [12]. 
 

Having mentioned all these facts about hydrate formation in pipelines and at wellheads, 

the primary objective of this study to establish academic know-how in gas hydrates in 

Qatar. Moreover, on the technical side, this study aims at obtaining hydrate equilibrium 

curves of Qatari natural gas mixtures and at evaluating the performance of classical and 

ionic liquid inhibitors using three different, newly commissioned high pressure hydrate 

cells. This goal has been achieved through the completion of the following phases: 

1. Conducting a comprehensive research literature review. 

2. Apparatus installation and validation. 

3. Hydrate formation test using: 

a. Micro bench top reactors (novelty) 

b. Rocking cell (RC-5) 

c. High pressure autoclave cell  
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4. Inhibition test with: 

a. Classical inhibitor (HydraFLASH®)  

b. Ionic liquid (Experimentally)  

5. Hydrate curve determination (pressure and temperature conditions and 

induction time). 

6. Comparing the collected hydrate formation equilibrium points of Qatar natural 

gas samples with theoretical predications of the HydraFLASH® software. 

 

After this introductory chapter, chapter 2 presents a literature review that discusses the 

fundamentals of gas hydrates, their formation mechanism and the role of inhibitions. 

Chapter 3 describes briefly hydrate experimental methods and instrumental techniques 

used in different laboratories to study hydrate thermodynamic and kinetic behaviors. 

Additionally, it presents a detailed description of the experimental set-up used in this 

project, the way of administrating them and analyzing their data. Chapter 4 shows and 

investigates the data aimed to be studied in this project. Chapter 5 lists the main outcomes, 

recommendations and future work.  
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2. LITERATURE REVIEW 

 

2.1. HYDRATE OVERVIEW  

 

Clathrates of nature gas, commonly called gas hydrates, are ice-like compounds and have 

crystalline structures, which are formed with the proper combination of small guest 

molecules, like methane, and carbon dioxide, which are trapped in cavities of a hydrogen-

bonded water framework. They are available in nature in three forms: cubic structures (sI) 

and (sII) as well as the hexagonal structure (sH), as shown in Figure 4. Geographically, 

gas hydrate can be formed at continental boundaries and permafrost regions or areas of 

similar environment, such as Gulf of Mexico, Black Sea and Caspian Sea.  

 
 
 

 
Figure 4: Hydrate crystal unit structures: (a) cubic structure sI (b) cubic structure sII and 

(c) hexagonal structure sH [13]. 
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Natural gas hydrates can be formed at the gas-liquid interface over the whole pipeline 

length. This can generate small amount of gas hydrate over a long period of time, but it is 

often insufficient to clog the pipeline. Yet, upon pipeline restart, flow regimen and the 

mixing of the phases enhances gas-water contact and favors hydrates formation, increasing 

the amount and accumulation of hydrates that eventually can plug the pipeline as shown 

in the very famous picture in Figure 5. Small amounts of hydrates are typically formed 

and cannot be avoided in pipelines; in specific conditions, small hydrate agglomerates are 

detected as well in the bulk fluid phase. Hydrate formation does not become a hazard to 

pipeline flow unless hydrate agglomerates accumulate in large amounts. In such cases, 

blockage occurs as hydrates accumulate on the pipe walls, narrowing of the flow area very 

rapidly. This growing amount of hydrates can eventually shut-in the entire pipeline or field 

till hydrates can be completely dissociated [14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Formation of gas hydrate in a subsea pipeline (Petrobras - Brazil) [10]. 
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The temperature and pressure conditions for hydrate formation are based on gas 

composition. Typically, high molar mass (molecular weight) natural gas such as those rich 

in CO2 and/or H2S will more easily form hydrates at high temperature and low pressure 

compared with low molar mass gases as shown in Figure 6, reported by Katz [15]. 

However, in the absence of additional information, the formation condition of natural gas 

hydrate is usually taken to be equal to that of the methane hydrate, which is about 38 bar 

and 277 K. At the high pressure conditions that natural gas pipelines are operated, hydrates 

will typically form as a result of fluid cooling, because of heat exchange with the external 

environment or induced by flow line processes, such as depressurization across valves or 

turbo expanders. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Effect of gas gravity on hydrate formation (Notz et al.1995). 
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The source of water for hydrate formation is either free water from reservoir or condensed 

water from cooling the hydrocarbon fluid. During the cold winter months, when the 

outside temperature is low, onshore pipelines are usually at risk of hydrate formation. 

Offshore, at water depths below 900 m, the temperature is usually uniform around 3.8°C; 

pipeline temperature drops to this value within a few miles of the wellhead, setting the 

fluid conditions in the pipeline within the hydrate stability zone as presented in Figure 7 

[10; 16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Hydrate equilibrium curve in ocean (temperature vs. depth) [17]. 
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Besides economic losses associated with lost production caused by hydrate plugs, gas 

hydrates also pose serious safety concerns as hydrate formation divides the pipe into two 

segments of different pressure: the upstream region with high pressure and the 

downstream with low pressure. This difference in pressure can result in severe pipe 

rupture, ejecting a solid projectile which is dangerous for people nearby. This is a serious 

concern not only during construction stages but also during operation of process facilities, 

mainly within pipelines, and platforms, as hydrates can easily form there and agglomerate 

into large masses. As such, the prevention of hydrates in pipelines requires substantial 

investments, as much as 10 to 15% of the production cost [18].  

 

Despite the significant problems experienced by industry due to hydrates formation, they 

play an important role in some industrial applications such as gas mixture separation, 

storage and transportation as reported by Changyu et al (2011). Once gas hydrates are 

formed, the water-free composition of each species in the hydrate phase will be different 

from that in the residual vapor phase. The faster hydrate forming compound will be present 

largely in the hydrate phase. According to this phenomenon, gas mixture separation 

processes, using hydrate-based separation, have been widely implemented. The main 

industrial processes that apply this principle are: (1) the recovery of CO2 and H2S from 

flue gas and other global warming gases; (2) the recovery of methane from low-

concentration coal mine methane; (3) the recovery of organic contaminants from gaseous 

or aqueous mixtures; (4) the recovery of hydrogen from hydrogen-containing light 

hydrocarbon gas mixtures; and (5) the separation of methane and ethane in natural gas, oil 
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processing, and ethylene production. Furthermore, hydrate-based gas separation is much 

more efficient and has various advantages over traditional separation methods, such as gas 

absorption, selective adsorption, membrane process, and cryogenic fractionation [19].  

 

Thus, despite being a problem-causing substance in industry, natural gas hydrates have 

great potential in storage and transport as they can capture a large amount of methane in 

the cage structure. As estimation, natural gas volume at standard condition can be shrunk 

up to 164 times when it is in the form of hydrate [10; 20]. This reduction in volume varies 

according to the structure of hydrate crystal. Consequently, avoiding extra cooling and 

compression of natural gas will dramatically decrease the operational cost during 

tranportaion. Natural gas in the hydrate form is very stable especially in cold climates such 

as Russia and Norway [20].  
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2.2. BACKGROUND  

 

Hydrates were discovered  in 1810 when Sir Humphrey Davy observed the first 

crystallization of chlorine hydrate during his research on the synthesis of newly discovered 

elements and compounds [21]. However, it remained somewhat of a scientific curiosity 

until Hammerschmidt reported in 1934 that natural gas hydrates were identified to be an 

irritant for gas industry [22]. Hydrate significance increased in the 1970s when they 

plugged large offshore pipelines, arctic fields, and wells of high-pressure facilities. Studies 

over the past two decades indicated that gas hydrates form in large masses after shutdown 

and restart of the process pipelines facilities. 

  

A review of literature and past researches showed that hydrates can be studied from two 

different perspectives; thermodynamic conditions (hydrate liquid vapor equilibrium 

points) and kinetic behavior (induction time). To do so, there are several method and 

techniques that can be implemented in laboratories and industry. The most common 

methods used to study thermodynamic and kinetic behaviors were high-pressure cells and 

reactors. Experimental set-ups applied by different groups to study thermodynamic and 

kinetic behavior of hydrate formation/dissociation are summarized in Table 1.  
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Table 1: Experimental set-up used to study thermodynamic and kinetic behavior for 
hydrate formation/dissociation. 

 
Research 
group  Experimental set-up Research investigation  Ref. 

Gayet et al.  
Isochoric high pressure 
stainless steel cell, no 
agitation 

Investigate hydrate formation 
of methane–water system via 
monitoring pressure variation 
using constant cooling rate. 

[23] 

Kim et al. 
Stainless steel high-pressure 
cell with large observation 
window.  

Investigate hydrate 
dissociation curve of 
methane/ethane–water system 
via monitoring temperature 
variation using constant 
heating rate. 

[24] 

Sakaguchi 
et al. 

Pyrex cell equipped with 
charge coupled device camera 
(CCD).  

Investigate hydrate formation 
and growth at atmospheric 
conditions. 

[25] 

Kang et al. 
& Fleyfel  
et al. 

Visual rocking cell, attached 
with nuclear magnetic 
resonance (NMR) 

Investigate hydrate formation 
by visual observation and 
NMR peak monitoring.  

[26; 27] 
 

Koh et al. Differential scanning 
calorimetry (DSC). 

Quantify and compare the 
effect of different kinetic 
hydrate inhibitors on hydrate 
mitigation  

[3; 7] 

Gaillard  
et al. 

Mini flow loop with pressure 
up to 75 bar. 

Investigate methane hydrate 
formation, administrate  kinetic 
modeling and test the inhibitor 
performance  

[28] 

Lee et al. Visual mini flow loop with 
pressure up to 80 bar 

Investigate hydrate plugging  
mechanism and inspect  
inhibitor performance  

[29] 

Del Villano 
& Kelland 

Stainless steel-sapphire high 
pressure autoclave  

Investigate hydrate kinetic 
behavior via studying the rate 
of crystal growth.    

[30] 

 
 
 
 
 
 

https://www.google.nl/search?biw=1366&bih=667&q=Charge+coupled+device+camera&spell=1&sa=X&ei=jB3tUu9ix7G0BuK3gKgD&ved=0CCUQvwUoAA
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This research attempts to study hydrate formation and mitigation for Qatar natural gas 

(QNG-S1) from the viewpoints of thermodynamics and kinetics. From a thermodynamic 

point of view, three different apparatus were used to obtain Hydrate liquid Vapor 

Equilibrium (HLVE) points and curves, to determine the hydrate stability zone (hydrate 

hazard region) and to examine the effect of ionic liquid inhibitors with different 

concentration. Such equipment are micro bench top reactor, high pressure autoclave and 

rocking cell available at Qatar University. Commissioning a micro bench reactor as a 

typical hydrate cell is considered a novelty of this project. This study proves that this piece 

of equipment can be used as an economical hydrate cell for preliminary studies. From a 

kinetic point of view, the rate of hydrate crystal growth (induction time) was inspected 

using two different investigations: first, the hydrate was examined to see if the memory-

effect phenomenon influences the induction time. Secondly, the effect of the presences of 

hydrate inhibitors at different concentrations, on the induction time, was studied.   
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2.3. STRUCTURE AND CHEMICAL BACKGROUND 

 

Gas Hydrates, are solid crystalline composed of water and gas molecules, formed when 

the small guest molecule (< 0.9 nm) such as methane or carbon dioxide is entrapped in a 

cage of host, which is hydrogen bond water molecules, under optimum temperature and 

pressure [2; 10]. There is no bonding between host and guest molecule which makes the 

latter free to rotate within the cavity of water molecules [10]. 

 

In the 19th century, hydrate was classified by Humphry Davy depending on the captured 

guest molecule: (1) simple hydrates, where each cavity contains a single guest molecule; 

(2) mixed hydrates, in which the same kind of cavities contain two or more gas species; 

(3) double hydrates, which have two different types of cavity containing unlike gas species 

[31; 32]. In the middle of the 20th century, a group of scientists (von Stackelberg & Muller) 

came with a new classification based on polyhedral with twelve or more vertices. The 

main types are cubic structures I (sI), cubic structures II (sII) and the hexagonal structure 

H (sH) formed by different types of cavities as illustrated in Figure 8 [13; 33; 34]. 

 

2.3.1. Cubic Structure I 

 

Cubic Structure I (sI), which is called Type I, contains small guest molecules (0.4-0.55 

nm).  It has 46 water molecules per 8 gas molecules. The water molecules form two small 

pentagonal dodecahedrons (512) and six tetrakaidecahedrons (51262). The pentagonal 
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dodecahedron, which is a basic part in all hydrate structures, has a 12-sided cavity of equal 

sided pentagonal faces formed by 20 water molecules. On the other hand, 12 pentagons 

and 2 hexagons are combined to form tetrakaidecahedron leading to a slightly larger cavity 

than the previous one [2]. 

 

2.3.2. Cubic Structure II 

 

Cubic Structure II, called Type II, holds guest gas molecule larger than sI (0.6-0.7nm). 

This structure contains the highest number of water molecules (136 water molecules per 

24 gas molecules). The water molecules form 16 pentagonal dodecahedrons (512) and  8 

hexakaidecahedrons (51264), which consists of 12 pentagonal faces and 4 hexagonal faces 

[2]. 

 

2.3.3. Hexagonal Structure H 

 

Hexagonal Structure H (sH), which is called Type H, is much more complex than the sI 

and sII. It is formed only when large and small guest molecules are mixed together (0.8-

0.9 nm) [1]. Structure H has the lowest number of water molecules (i.e., 34 water 

molecules per 6 gas molecules) and three different cavity sizes. Moreover, it is the only 

structure in nature that has a cavity with three square faces together with six pentagonal 

and three hexagonal faces (435663). Accordingly, structure H unit cell consists of three 
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pentagonal dodecahedrons (512) with two irregular dodecahedrons (435663) and one 

icosahedron (51268), which is the largest cavity [2]. 

 

The basic building block of each hydrate structure is presented in Figure 8. It is clearly 

shown that there is at least one non-polar guest molecule within each cage in all of the 

three structures. The guest molecule size should not be too large to fill the whole cavity; 

however, it has to be big enough to stabilize in cavity [2]. Nevertheless, under unusual 

conditions such as at low temperature and very high pressure, they can have multiple cage 

occupancy with unusually small guest molecules e.g. hydrogen and noble gasses [2; 35]. 

Table 2 shows the main unit cell’s characteristics for the three structures discussed above.  

 
 
 

 
Figure 8: The three common hydrate unit crystal structure [2]. 
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Table 2: Characteristics for the three structures [2]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hydrate crystal structure (sI) (sII) (sH) 

Cavity Small Large Small Large Small Medium Larg
e 

Description 512 51262 512 51264 512 435663 51268 
Number of cavities per unit cell 2 6 16 8 3 2 1 
Average cavity radius (oA) 3.95 4.33 3.91 4.73 3.91 4.06 5.71 
Coordination number * 20 24 20 28 20 20 36 
Number of water per unit cell 46 136 34 

Resources 
Earth’s Natural 

environment 
(ocean depth) 

Human made 
environment 

(industry) 
Both environments 

Formers examples 
Methane, 
ethane, 

carbon dioxide 

Propane, 
iso-butane, 

Methane + neohexane, 
Methane + cycloheptane 
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2.4. HYDRATE FORMATION AND DISSOCIATION MECHANISM 

 

The understanding of the hydrate formation/dissociation kinetics is important for 

predicting the amount of hydrate formed at certain times and conditions. The general 

reaction for gas hydrate formation can be expressed as: 

                                          M (g) + nH2O (l) ↔ M•nH2O (s)                                          (1) 

where M denotes natural gas molecules, n is number of water molecules required to form 

a gas hydrate per one molecule of gas, and M•nH2O is the gas hydrate [36; 37]. 

 

Gas hydrate formation is a time-dependent process that can be divided into hydrate 

nucleation, hydrate growth, and dissociation as illustrated in Figure 9 [16; 35]. 

 

2.4.1. Hydrate formation 

 

The hydrate formation process is divided into two main steps: hydrate nucleation and 

hydrate growth. Hydrate nucleation is basically defined as a microscopic process in which 

tens of thousands molecules form small clusters that build up to hydrate nuclei, and then 

the growth step follows [16]. These steps will be presented briefly. 
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2.4.1.1. Hydrate nucleation  

 

There are two main hypothesized mechanisms for hydrate formation, namely, labile 

cluster nucleation and nucleation at interface/local structuring. In the first mechanism, the 

nucleation is driven by gas molecules dissolved in the aqueous phase at the interface; here, 

the dissolved molecules cause a local structuring of the surrounding water molecules into 

clusters. These clusters tend to face share stress/force and agglomerate due to a reduction 

in free energy. If these agglomerated clusters reach a critical value, a nucleus is formed 

onto which further hydrate formation agglomerates [35]. This mechanism is clearly 

displayed in Figure 9. 

 
 
 

 
Figure 9: Schematic model of labile cluster growth [35]. 

 

In the second mechanism, the gas gets adsorbed onto the liquid surface rather than 

dissolving in the bulk phase. Here, gas adsorption causes a local structuring of the water 

to create half a clathrate cage, the gas migrates via surface diffusion into the cage, and 
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then a full cage is formed around it. This process continues with one clathrate cage forming 

on the face of another until a critical mass of nucleus is formed causing further rapid 

growth. Molecular simulations have provided support for this model as shown in Figure 

10 [38].  

 
 
 

 
Figure 10: Adsorption of gas molecules onto hydrate cavities at gas-water interface 

[38]. 
 

2.4.1.2. Hydrate growth  

 

Hydrate growth is an exothermic process and can be defined as the growth of stable 

hydrate nuclei into gas hydrate agglomeration. Mass transfer, heat transfer, and kinetics 

of crystal growth such as gas composition, agitation, surface area, and displacement from 

equilibrium conditions play significant roles in the process of agglomeration. The effect 

of the first two parameters has been evaluated in an isochoric system with varying 
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temperature throughout this experimental project, as present in Figure 11. Linear pressure 

drop between point 1 and 2 indicates the formation of labile cluster which is structured 

because of meta-stability [16; 39]. In contrast, sharp pressure drop, which starts at point 

2, indicates the start of hydrate formation. The dramatic fall continues till point 3 where 

rapid hydrate agglomeration is finalized. Then, a slow heating process starts to dissociate 

the beginning formed hydrate through point 3 to A, causing a little pressure rise in the 

followed by a significant increase till point A, which represents the temperature and 

pressure of the hydrate equilibrium point [16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Methane hydrae equilibrium curve using micro bench top reactor. 
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2.4.2. Hydrate Dissociation  

 

Hydrate dissociation is an endothermic process. This means that external heat must be 

supplied to decompose gas hydrate into gas molecule and water by breaking the hydrogen 

bonds between water molecules and the van der Waals interaction forces between the 

guest and host molecules of the hydrate lattice [16]. The former one is a stronger bond 

than the latter due to polar bonding between hydrogen and oxygen atoms.   

 

Typically, in the oil and gas industry, there are various techniques to delay and change the 

conditions of hydrate formation that blocks pipelines. These methods are depressurization, 

thermal dissociation, dehydration, and inhibitor injection as it will be discussed in detail 

in the next section. 
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2.5. HYDRATE MITIGATION REMEDIATION AND INHIBITION 

  

Much attention is still given to ways of preventing hydrate formation in pipelines. Based 

on the three conditions mentioned for hydrate formation, availability of gas and water 

under low temperature and/or high pressure, various methods are typically used to prevent 

hydrates [14]: 

 

 Gas dehydration methods: In gas dehydration, water condensation from the gas 

phase is prevented by drying the gas using either triethylene glycol or molecular 

sieves. 

 Thermal methods (temperature control): the system can be prevented from 

entering hydrate formation zone by controlling the temperature through passive 

insulation or active heating. Passive insulation functions well in preventing hydrate 

formation during normal operation as hot production fluid is continuously heating 

the system. The role of active heating becomes important once the system is 

shutdown, when no more hot fluid is produced.  

 Hydraulic method (pressure control): The system should be designed and 

operated at low pressure to eliminate and mitigate hydrate formation in the 

pipeline. However, keeping the system pressure outside the hydrate envelop is not 

practical at ambient temperature as fluid transportation usually takes place at 

pressure higher than that needed for hydrate formation.    
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 Chemical methods (injection chemical inhibitors): The most practical way of 

preventing gas hydrate is by injecting chemical inhibitors such as methanol and 

monoethylene glycol. This approach has a significant effect on the hydrate 

morphology kinetics and phase diagram.  

 

All these methods have drawbacks associated with the nature of the application. Gas 

dehydration or removing water may not be feasible or practical between the wellhead and 

the platform, so it is not widely used. Heating or insulating the pipeline is another 

alternative; however, it is costly and impractical to install over long distances. Maintaining 

low pressures in the pipeline is another option; however, it is inefficient and not cost 

effective, as high production rates require higher pressures. The most common method for 

hydrate prevention is injection of a chemical hydrate inhibitor into the pipeline.  
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2.6. CHEMICAL HYDRATE INHIBITION 

 

In industry, chemical inhibitors are classified as thermodynamic inhibitors (THIs) and low 

dosage hydrate inhibitors (LDHIs) beside the newly discovered ionic liquid inhibitors. The 

description of these inhibitors is summarized below [40]. 

 

2.6.1. Thermodynamic inhibitors  

 

Thermodynamic hydrate inhibitors are the most common chemicals for preventing hydrate 

formation. They work by decreasing water activity and changing bulk thermodynamic 

properties as they make hydrogen bonds with water molecules and prevent them from 

forming ordered cages to entrap gas molecules. Consequently, the equilibrium curve for 

hydrate formation is shifted to higher pressure and lower temperature; hence, the hydrate 

stability zone is compressed as illustrated in Figure 12 [40]. Nevertheless, THIs are very 

expensive  because of the high concentration, up to 60%, needed for complete prevention 

[41]. Additionally, they are environmentally prohibited in deeper seas and oceans due to 

their huge impact on marine life.  

 

The most common chemicals that act as THIs are alcohols, glycols, and salts. For instance, 

methanol (CH3OH) and monoethylene glycol (MEG, HOCH2CH2OH) are extensively 

used in inhibiting gas hydrate formation, removing and melting gas hydrate blockage. In 

industry, the use of diethylene glycol (DEG) and triethylene glycol (TEG) is limited as 
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THIs due to their poor efficiency; however, they are widely used in the dehydration 

process [40; 42]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Typical natural gas hydrate equilibrium curve [40]. 
 

2.6.2. Low dosage hydrate inhibitors  

 

Low dosage hydrate inhibitors (LDHI) have caught the attention of the researchers in 

academia and industry in hydrates research. Furthermore, they have been developed as an 

effective alternative to THIs depending on the field and fluid conditions. The name of LDHIs 

is derived from their efficient performance at low concentration compared with THIs 

(typically less than 1 wt % in the liquid phase). There are two main subdivisions of LDHIs: 

kinetic inhibitor (KHIs) and anti-agglomeration (AAs) [43]. 
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2.6.2.1. Kinetic hydrate inhibitors  

 

Kinetic hydrate inhibitors (KHIs) are polymer and co-polymers, such as Poly-vinyl-

pyrrolidone (PVP), that are added to retard the formation of clathrate hydrate, and they 

contain small cyclic amide groups (active unit) [40; 43; 44]. Unlike THIs, KHIs limit or 

delay the formation of hydrate (i.e., nucleation and growth) by reducing the nucleation 

rate of hydrate, suppressing  hydrate formation for time longer than the residence time of 

the water in the hydrate formation region, and preventing the formation of critical nucleus 

as shown in Figure 13 [6; 10]. In other words, hydrate crystal growth is controlled with 

KHIs; accordingly, their effect is time dependent, and eventually hydrate will form and 

block the pipeline if the traveling process is significantly long through the pipeline [40; 

42]. However, this problem can be overcome by combining KHIs with THIs as their 

hybrid results in longer induction time and higher sub-cooling temperature, which is the 

difference between the hydrate equilibrium temperature and the operating temperature at 

a given pressure as illustrated in Figure 12 [44; 45]. Generally, KHIs are more preferable 

than THIs since they have higher efficiency in preventing hydrate formation with low 

concentration (< 1 wt. %) [46]. However, the only concern in using this method is the 

large molar volume or size of the molecule used. As it was observed recently that hydrate 

inhibition performance is less for high molecular weight inhibitors for both KIs and THIs. 
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Figure 13: A schematic diagram showing the mechanism of absorbing KHIs on hydrate 
surface [10]. Reprinted with permission from Gas Hydrates Immense Energy Potential 
and Environmental Challenges, by Carlo Giavarini and Keith Hester, 2011, Springer, 

London. Copyright [2011] by Springer. 
 

2.6.2.2. Anti-agglomeration (AAs)  

 

Another class of LDHIs widely used in the prevention of hydrate blockage is anti-

agglomerants (AAs), which work by keeping hydrate crystals dispersed and nonstick, thus 

preventing their agglomeration into large masses and plugging the pipelines as per Figure 

14 [10]. Furthermore, they are typically used with surface-active agents, which provides 

emulsification that occurs between the gas/condensate phases and free water within the 

pipeline. This prevents the agglomeration of hydrate crystal, keeps the fluid viscosity low, 

and allows the hydrates to be transported along with the produced fluids [47]. Typically, 

anti-agglomerants are less dependent of time and the degree of sub-cooling of the system 

compared to KHIs. In deep and ultra-deep water cases, where very extreme conditions 

prevail as in the Gulf of Mexico, North Sea and West Africa-Nigeria, anti-agglomerant 

are observed to perform better than KHIs [48; 49]. 
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Figure 14: A schematic diagram showing the effect of AAs inside the pipeline [10]. 
Reprinted with permission from Gas Hydrates Immense Energy Potential and 

Environmental Challenges, by Carlo Giavarini and Keith Hester, 2011, Springer, 
London. Copyright [2011] by Springer. 

 

2.6.2.3. Ionic liquid (ILs) 

 

Ionic liquid inhibitors are a newly discovered type of inhibitors, firstly described by Xiao 

et al. in the first decennium of the 21st century [50]. It has a dual function inhibition-effect 

as a thermodynamic and kinetic inhibitor for methane hydrate and carbon dioxide hydrate 

as well. These inhibitors not only shift the HLVE curve to a lower temperature and higher 

pressure but also have the ability to prolong the induction time by delaying hydrate 

nucleation and growth. This type of inhibitor gained popularity due to their green and safe 

character, inflammability, stability in high temperature, and liquidity in a wide 

temperature range. Furthermore, it allows the choice between numerous cations and 

anions, making it tunable agents [50; 51; 52; 53]. 
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Table 3 lists chemical components along with their chemical structures and issuing 

authority for the most common THIs, both kind of LDHIs and ionic liquids. 

 
Table 3: Chemical structure and authority for the common THIs, KHIs AAs and ionic 

liquid inhibitors [41] 
 

Chemical Name Chemical Structure Issuing 
Authority 

Thermodynamic Hydrate Inhibitors 

Methanol  - 

Ethylene Glycol  - 

Diethylene Glycol  - 

Triethylene Glycol  - 

Kinetic Hydrate Inhibitors 

 
Polyvinylpyrrolidone 

(PVP) 
 

 

CSM 

 
Polyvinylcaprolactam 

(PVCap) 
 

 

CSM 

Terpolymer Gaffix 
(VC-713) 

 

 

CSM 
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Table 3: Continued  
 

 
 
 

Chemical Name Chemical Structure Issuing 
Authority 

Kinetic Hydrate Inhibitors 

 
Polyethyacrylamide 

 

 

CSM 

 
Polyvinyl-Nmethyl 

acetamide 
 

 

CSM 

Polyethyloxazoline 
 

 

CSM 

Poly-L-proline 

 

RF/ 
ExxonMobil/

total 

N-methyl-N 
vinylacetamide:vinyl 

caprolactam 1:1 
copolymer 

(VIMA:VCap) where a = 
b. 

 

RF/ 
ExxonMobil/

total 
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Table 3: Continued  
 

 
 
 
 
 
 

Chemical Name Chemical Structure Issuing 
Authority 

Kinetic Hydrate Inhibitors 

 
Polyacryloylpyrrolidine 

 

 

EPR 

 
Polydiethylacrylamide, 

 

 

EPR 

Polyisopropylacrylamide 

 

EPR 

Polyethylmaleimide 
 

 

EPR 
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Table 3: Continued  
 

 
 
 
 
 

Chemical Name Chemical Structure Issuing 
Authority 

Kinetic Hydrate Inhibitors 

Opened ring 
polyethyloxazoline, 

 

 

EPR 

Closed ring 
polyethyloxazoline 

 

EPR 

Polyisobutylacrylamide 

 

EPR 

Polyisopropylmethacryla
mide 

 

EPR 
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Table 3: Continued  
 

 
 
 

Chemical Name Chemical Structure Issuing 
Authority 

Kinetic Hydrate Inhibitors 

Polyisopropylmethacryla
mide:N-vinyl-Nmethyl 
acetamide copolymer 

(VIMA:iPMA) 

 

EPR 

Anti-agglomeration (AAs) 

Polyetherdiamine 

 

BJ Unichem 
Chemical 
Services 

Dodecyl-2-(2-
caprolactamyl) 

ethanamide 
 

 

CSM 

Amine oxide surfactant 
(dodecylbutylmethylami

ne oxide) 

 

 

RF 
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Table 3: Continued  
 

 
 
 

Chemical Name Chemical Structure Issuing 
Authority 

Anti-agglomeration (AAs) 

 
Carbonylpyrrolidine  
surfactant (R = C8-14) 

 

RF 

Isopropylamide 
carboxylic acid 

surfactants (R = C8-14) 

 

 
RF 

Betaine surfactants. R is 
a long alkyl chain with 
various spacer groups. 

 

RF 

Alkyl ether 
tributylammonium 

bromide (R = C12-14). 

 

Goldschmidt. 



 

39 

 

Table 3: Continued  
 

 
* CSM: Colorado School of Mines  

* EPR: Exxon Production Research  

* RF: RF- RF-Rogaland Research 

 

 

Chemical Name Chemical Structure Issuing 
Authority 

Ionic Liquid  

1-Butyl-3-
methylimidazolium 

tetrafluoroborate  
 

 

- 

1-Butyl-3-
methylimidazolium 

dicyanamide  
  

- 

 
Tetraethyl ammonium 

chloride  
 

 

- 

2-hydroxy-N,N,N-
trimethylethanaminium 
chloride, also known as 

choline chloride   

- 
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2.7. HYDRATE INHIBITION SELECTION CRITERIA  

 

The selection criteria of hydrate inhibition mainly depends on technical and economic 

considerations. The applications, benefits, and limitations of THIs, KHIs, and AAs are 

shown in Table 4. 

 
Table 4: Application, benefits and limitation of chemical inhibitors [44]. 

 
Thermodynamic 

Hydrate inhibitors 
Kinetic hydrate Inhibitors Anti-Agglomerant 

Inhibitors 
Application 

1. Multiphase  
2. Gas & condensate  
3. Crude oil 

1. Multiphase 
2. Gas & condensate  
3. Crude oil  

1. Multiphase 
2. Gas & condensate  
3. Crude oil  

Benefits 
1. Robust & effective 
2. Well understood  
3. Predictable  
4. Proven track-record 

1. Lower OPEX/CAPEX 
2. Low volumes (<1 wt. %) 
3. Environmentally friendly  
4. Non-toxic 
5. Tested in gas systems 

1. Lower OPEX/CAPEX 
2. Low volumes (<1 wt %) 
3. Environmentally friendly  
4. Non-toxic 
5. Wide range of 

subcooling  
Limitations 

1. Higher 
OPEC/CAPEX 

2. High volume (10-60 
wt. %) 

3. Toxic / hazardous  
4. Environmentally 

harmful 
5.  Volatile-losses to 

vapor 
6. Salting out  

1. Limited subcooling 
(<10oC) 

2. Time dependency  
3. Shutdowns 
4. System specific-testing  
5. Compatibility 
6. Precipitation at higher 

temps 
7. Limited exp. in oil system   
8. No predictive models 

1. Time dependency  
2. Shutdowns 
3. Restricted to lower 

water-cuts 
4. System specific-testing  
5. Compatibility 
6. Limited experience  
7. No predictive models 
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3. METHODOLOGY 

 

This section sheds light on four main things. It first provides a brief background on the 

experimental methods and techniques used in the field of gas hydrates. Secondly, it gives 

a short description of equipment and materials utilized in this work. In addition, it includes 

a brief description of the HydraFLASH® software, which is used to obtain theoretical data 

to compare with the experimental data. Lastly, detailed description of the procedure for 

the three apparatus used in this work is provided towards the end of this section. These 

pieces of equipment are: micro bench top reactor, high pressure autoclave, and rocking 

cell.  

 

As by the time the project was started, the micro reactor was commissioned to test 

materials, execute the designed experimental plan, and develop the certain backbone 

know-how of dealing with hydrate studies as it was required to execute the experimental 

project. Moreover, using this high-pressure reactor at the initial stages of the proposed 

project was necessary. It provided the team with the necessary experience dealing with 

high-pressure cells as it was fully recalibrated - including pressure and temperature 

controlling and monitoring systems. After being able to work within +/- 1o C accuracy 

level, newer cells arrived to the laboratory, which are designed as the typical hydrate 

experimental set-up (i.e., rocking cell and high pressure autoclave). These cells are 

designed for more accurate hydrate studies and have programmable temperature ramping 

options, better heat transfer, temperature/pressure monitoring systems.  
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3.1. ADVANCED HYDRATE EXPERIMENTAL METHODS  

 

Natural Gas hydrate equilibrium curves and inhibitor performances can be studied via 

various techniques that can be categorized in to real field fluid and gas flow simulation. 

There are various equipment that can be used for this propose and they are discussed in 

the following subsection. 

 

3.1.1. High-pressure autoclave cell 

 

A high-pressure autoclave cell is commonly used to examine gas hydrate formation and 

to test the effectiveness and efficiency of mostly THIs and as well as LDHIs. The main 

feature of this device is that long term experiments, of up to 30 days or longer, are possible. 

This piece of equipment is designed to: 1) study gas hydrate formation and dissociations, 

2) measure the induction time for formation of hydrates by monitoring the temperature 

increase and pressure drop as a function of time during the process of hydrate formation, 

and 3) detect transition visually [45]. 

 

The autoclave cell can be either a sapphire cell or a stainless steel cell, as shown in Figure 

15 [54]. A sapphire cell is placed in a water bath in which the two stainless steel holders 

fix the sapphire cylinder. This cell is supported with by a magnetic stirrer mechanism at 

the bottom to create a magnetic rotating field [41]. Moreover, this cell is connected to a 

temperature control unit. 
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Figure 15: Sapphire cell high pressure test equipment [54]. 
 

3.1.2. Rocking cell 

 

Another technique for testing mostly the performance of LDHIs uses a rocking cell, which 

can be a rocker rig, or ball stop rig. There are two types of such cells: stainless steel rocking 

cell (RC-5) and sapphire rocking cell (RC-S) as shown in Figures 16 and 17 respectively. 

The RC-5 is well engineered, user friendly, and allows long-time runs, of up to 30 days 

[55]. It was reported as such that this technique is used by Shell to analyze the anti-hydrate 

activity of KHLs [56]. 
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Figure 16: A schematic diagram of sapphire rocking cell set-up (left) and individual cell 

(right) [55]. 
 

On the other hand, sapphire rocking cell saves considerable development and measuring 

time and, accordingly, the project cost is reduced. Sapphire rocking cells are entirely 

transparent and the whole measurement environment is visible for better visual  

observation of the samples behavior and the development of the gas hydrates [55]. The 

measuring principle of the rocking cell is based on the constant rocking of temperature-

controlled, pressurized test cells [55]. Sapphire rocking cells work by moving  a steel ball 

in motion (forward and backward), which remarkably enhances the mixing effect of the 

enclosed mixture and leads to strong shear forces and turbulence, simulating pipeline 

condition [55]. This rocking cell only allows spread and limited size of hydrate to form in 

order not to impact the movement of the steel ball. This is a simple but effective for testing 

natural gas hydrate with AAs [41]. 
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Figure 17: Rocking cells used by Shell Global Solutions International. Picture A shows 
the whole cell which contains 24 cells. Picture B shows an individual cell with its main 
parts: the 1’’ tee (1), the end-nuts (2), the pressure transducer (5), a HP quick-connect 

gas inlet (6), a ball valve (8), and O-ring tightened blind flanges (11)[56]. 
 

3.1.3. Mini flow loop   

 

The mini flow loop, vertical placed pipe-wheel or loop-wheel is a complicated technique 

that simulates real field flow conditions, as shown in Figure 18 [57]. The pipe has a 

window allowing visual observation, with diameters of ¼” to 3” or even bigger sizes if 

desired. This equipment consist of a pipe, a pump, and a mixing tank to circulate a mixture 

of water and liquid hydrocarbon through the loop [41]. Each part of the loop has its own 

thermometer and pressure meter that is used to monitor the pressure drop due to hydrate 

formation [58]. Micro flow loop, recently developed, are smaller in size, simpler to 

A B 
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operate, and easier to maintain and clean than conventional loops that is explained in 

details elsewhere [57]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18: Mini flow loop technique from inside (laboratory scale) [57]. 
 

The main restriction to using flow loops is that the pump might get damaged due to the 

reason of the crushed hydrates at the suction side of the pump that also leads to some 

difficulties in interpreting the experimental data [41]. Figures 19 and 20 show examples 

of wheel shaped a flow loop and a real flow loop respectively [10].  
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Figure 19: A wheel-shaped flow loop technique (laboratory scale) [57]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Real plant large scale multiphase flow loop, France [10]. 
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3.2.  HYDRATE MEASUREMENTS VIA INSTRUMENTAL TECHNIQUES  

 

There is a broad range of molecular studies and analytical techniques applicable to natural 

gas hydrate characterization, including hydrate crystal structure, composition, and cage 

occupancy determination. For these purposes, several analyses are required such as 

thermal analysis, crystallographic analysis, topographic analysis, size and size distribution 

analysis, spectroscopic analysis, interfacial tension and intermolecular particle force 

analysis, and methods involving gas hydrates inhibition [59]. For each of them, different 

testing instruments are used depending on the states of matter as per Figure 21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Gas hydrate properties and associated characterization methods and 
instrument [59]. Reprinted with permission from “Instrumental Analysis of Gas 

Hydrates Properties” by Y. Rojas and X. Lou, 2009. Journal of Chemical Engineering, 
5, 310-323, Copyright [2009] by John Wiley and Sons. 
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3.2.1. Differential scanning calorimetry (DSC) Method 

 

One of the most common methods of thermal analysis is differential scanning calorimetry 

(DSC), which can be defined as “the measurement of the change of the difference of heat 

flux to the sample and to a reference sample while they are subjected to a controlled 

temperature program” [60] . This technique can be used in several fields such as material 

characterization, measurements comparison, kinetic, stability and safety examination. 

Furthermore, it can be used to study hydrate dissociation in different aqueous media such 

as extremely concentrated salt solutions and water/oil emulsions at pressures up to 12 MPa 

[60; 61; 62; 63]. Another use of this technique is measuring the inhibition effect (low 

dosage level) on the formation and dissolution of natural gas hydrates [3]. Examples of 

hydrate dissociation curves using variable methane pressure are shown Figure 22. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Hydrate curves from micro DSC under variable methane pressure [64]. 



 

50 

 

3.3.  TEMPERATURE CONTROL OF HYDRATE EXPERIMENTS  

 

Various methods are used to evaluate inhibition performance on gas hydrate formation. 

The most commonly used ways are: 1) constant temperature or isothermal method, 2) 

constant cooling method, and 3) ramping method. A brief description of each of them 

follows. 

 

3.3.1. Constant temperature  

 

In this method, the fluid temperature is reduced to a specific sub-cooling point and kept at 

this condition for a sufficient time until hydrate is formed. This can be performed with or 

without stirring. Most of thermodynamic and kinetic studies prefer using this method due 

to the simplicity in indicating induction time [65; 66].   

 

3.3.2. Constant cooling  

 

The constant cooling method is achieved by cooling the system to an extremely low 

temperature (high sub-cooling) with stirring [54]. The drawback of this method is the 

difficulty in determining induction time, especially in a closed system under rapid cooling. 

This is because pressure drop usually occurred with fluid cooling [54]. The sudden pressure 

drop and temperature rise indicate hydrate formation. This is mainly due to gas uptake and 

heat release (exothermic reaction) during hydrate formation [54; 67]. 
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3.3.3.  Ramping  

 

Ramping method is preferred in determining induction time as the pressure is maintained 

constant for a sufficient period of time  [54]. This method typically needs longer time than 

others since the cooling process is done in a stepwise manner. This means that the fluids are 

cooled to a specific sub-cooling temperature and then kept at this temperature for a few hours, 

followed by another cooling step and kept again. Ramping process can be repeated until the 

hydrate crystals are formed [54].  

 

3.4. EXPERIMENTAL SET-UP 

 

Natural gas hydrate equilibrium curves and inhibition performances can be studied via 

various techniques that are applied to simulate real field fluid/gas flow conditions. This 

section presents the equipment used in this thesis.  

 

3.4.1. Micro bench top reactor (Parr Instrument Company) 

 

A micro bench top reactor is an isochoric system (i.e., constant volume) normally used to 

carry out reactions on a micro level scale in order to minimize the costs of expensive gases 

and chemicals. The reactor used was a micro bench top reactor 4590 (Parr Instrument 

Company). The novelty of this work was to modify it into a hydrate cell. The modifications 

were:  

1. Exchanging movable heater down to heater aluminum block. 
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2. Heating and cooling the vessel using temperature water bath instead of internal 

heating.  

3. Redesigning the connection between vessel and cylinder such as fittings and tubing 

(i.e. replacing all rubber tubing by metal). 

4. Calibrating both of thermocouple and pressure gage by comparing their reading 

with pre-calibrated thermocouple wire (Omega) and pressure transducers 

(Paroscientific, Inc. model 735) respectively and finding a correlation between 

their data that applied for whole results obtained using this device. 

The set-up of this cell after the above mentioned modification is shown in Figure 23 and 

consists of: 

1. Cell to carry out the reaction.  

2. Controller to turn on and control the stirrer motor, and monitor temperature (oC), 

pressure (bar) and stirrer speed (RPM). 

3. Rough vacuum pump to remove air by depressurizing the cell to around zero bar.  

4. Water bath “thermostat” for heating and cooling purpose. 

5. Heater aluminum block to isolate the vessel from surrounding conditions.  

6. Gas booster with control panel to increase the pressure inside the vessel. 

7. Gas cylinder. 

8. PC with SpecView – [Parr4848] software to control temperature variables and 

stirrer rate. Also, it is used to collect and record temperature, pressure and stir rate 

as a function of time. 
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Figure 23: The top bench reactor test equipment consist of 1) reactor controller, 2) 
reactor cell, 3) heater aluminum block, 4) water bath. The remaining for parts are not 

shown in this figure due to positioning issue. 
 

The vessel is made of stainless steel with a volume of 100 ml.  The head fitting of this 

vessel consists of a magnetic drive, pressure gage, and thermocouple. The specifications 

of this vessel are shown in Table 5, followed by a photograph of the individual cell in 

Figure 24. The magnetic drive is important for speeding up hydrate formation by 

simulating the fluid flow condition in the pipeline. Pressure gage and thermocouple are 

used for reading the pressure and temperature within the vessel.  
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        Table 5: Micro bench top reactor specifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: The head fitting of the reactor cell (Source: instrument manual). 
 
 
 
 
 

Micro bench top reactor specifications 

Material Stainless steel 

Sizes (mL) 100 ml 

Maximum temperature 225 oC 

Temperature accuracy +/-2oC 

Maximum pressure 2900 psi (200 bar) 

Pressure accuracy 0.01% up to max. 10000 psi 

Stirring speed range 1-1999 RPM 
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3.4.2. High-pressure autoclave cell (PSL Systemtechnik GmbH)  

 

A high-pressure autoclave cell is a device frequently used to test gas hydrate formation 

because of its ability to simulate pipeline conditions. The apparatus used in this project 

was a gas hydrate autoclave GHA 200 - PSL Systemtechnik GmbH. This cell is made of 

stainless steel with a pressure-resistant sapphire glass window to enable capturing the 

whole process of hydrate formation inside the autoclave using a boroscope-camera. The 

set-up of this cell is shown in Figure 25 and consists of: 

 

1. Autoclave with integrated stirrer to carry out the reaction.  

2. Thermostat to monitor and regulate the temperature inside the autoclave. 

3. Light source to supply the camera with the light needed to film hydrate formation 

process. 

4. Gas cylinders of the test sample. 

5. Control-PC with software (Hydrate V4) to program the whole experiment and 

record time, temperature, and pressure data. 
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Figure 25: High pressure autoclave cell main parts are 1) autoclave cell, 2) thermostat, 

3) light source, 4) gas cylinder, and 5) control-PC. 
 

The autoclave body volume is 450 mL in total; however, it was recommended by the 

supplier to fill it up to 200 mL with fluid. The autoclave body consists of a joined magnetic 

stirrer which is placed at the bottom of the vessel. This stirrer is intended to simulate real 

life pipeline situations via high-mixing turbulence, which in turn enhances hydrate 

formation. It is also fitted with pressure and temperature sensors. The former is connected 

to the control-PC, while the latter is connected to the sensor socket of the thermostat to 

control the target temperature set by the control-PC. Furthermore, it is equipped with a 

boroscope-camera and a light source to allow the capturing hydrate formation within the 

autoclave. The specifications of the autoclave are shown Table 6. 
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                   Table 6: High pressure autoclave cell specifications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4.3. Rocking cell (PSL Systemtechnik GmbH) 

 

Rocking cell is a well-known technique for testing the performance of LDHIs on hydrate 

formation. There are two types: rocking cell (RC-5) and sapphire rocking cell (RC-S). The 

former was used in this project. It contains five test cells that can be run simultaneously 

for different mixtures and at different conditions. This equipment was also bought from 

PSL Systemtechnik GmbH. The whole experimental set-up is shown in Figure 26 and 

consists of: 

 

1. RC-5 base unit, where hydrate formation process takes place. 

2. Thermostat to monitor and regulate the temperature in the RC-5 bath. 

3. Gas cylinders of the test sample. 

High pressure autoclave cell specifications 

Material Stainless steel 

Sizes  450 mL, 200 mL fluid (recommended) 

Temperature range -10 up to 60  oC 

Temperature accuracy 0.1 oC 

Maximum pressure 2900 psi (200 bar) 

Pressure accuracy 0.5 % full scale 

Stirring speed range 12-2000 RPM 
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4. Control-PC with WinRCS V1.4 software to program the whole experiment and 

record time, temperature and pressure data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26: RC-5 experiment set-up are 1) base unit, 2) thermostat, 3) control-PC. 
 

The RC-5 base unit consists of three main parts as per Figure 27, 1) RC-5 bath, 2) test 

cells, 3) front panel. The RC-5 bath, also called an integrated bath, is filled with water-

glycol mixture as a coolant and it is where the test cells are mounted on a movable axis 

controlled by an integrated stepper-motor. Each test cell is made of stainless steel and has 

a volume of 40 ml. A gas supply is built on the top of every cell while the connection for 

the temperature sensor is attached to its side. Each cell contains a stainless steel mixing 

ball with a diameter of 10 mm in order to create strong shear forces and turbulences within 

the cell, intended to simulate realistic pipeline situation. The front panel is mainly used 

for controlling the cell inlet and outlet. The specifications of RC-5 are shown in Table 7. 
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Figure 27: RC-5 base unit consist of 1) RC-5 bath, 2) temperature sensor, 3) gas supply, 

4) test cell. Not illustrated: front panel. 
 

Table 7: RC-5 main specifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RC-5 specifications 

Material Stainless steel 

Sizes  Test chamber 40 mL 

Temperature range -10 up to 60  oC 

Maximum pressure 2900 psi (200 bar) 

Accuracy  +/- 0.5% 

Rocking rate 1-20 / min 
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3.5. MATERIALS  

 

The following mentioned were used: 

 Pure methane (99.995%) and carbon dioxide (99.999%), both purchased from 

Buzwair and used for calibration of the micro bench top reactor. 

 Synthetic Qatar natural gas mixtures (Plain-QNG-S1), representing north field of 

Qatar natural gas, purchased from National Industrial Gas Plants (NIGP). However 

due to laboratory safety concerns, this natural gas mixture contains no hydrogen 

sulfide (H2S). The composition of this gas mixture on mole basis is shown in Table 

8. It was supplied in cylinders with a maximum pressure of 68 bar.  

 
Table 8: Plain QNG-S1mixture composition used in this work. 

 
No. Component MW (g/mole) QNG-S1* mole fraction 

1 Methane 16.043 0.84990 

2 Ethane 30.070 0.05529 

3 Propane 44.097 0.02008 

4 2-methylpropane 58.123 0.00401 

5 Butane 58.123 0.00585 

6 2-methylbutane 72.150 0.00169 

7 Pentane 72.150 0.00147 

8 Octane 114.231 0.00152 

9 Toluene 92.140 0.00090 

10 Methylcyclopentane 84.160 0.00102 

11 Nitrogen 28.013 0.03496 

12 Carbon Dioxide 44.010 0.02331 

* Relative uncertainty for samples: CH4 0.2%, C2 to C4 2.0%, C5 plus higher 5%,  
N2 and CO2 2%. 
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 The second type of natural gas mixture used in this study is Nitrogen Rich Qatar 

Natural Gas mixture 1 (NR-QNG-S1). This mixture is prepared by adding about 

50% of N2 into the QNG-S1 mixture. The calculated compositions are shown in 

Table 9. 

 

Table 9: NR-QNG-S1mixture calculated composition used in this work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 One type of ionic liquid inhibitor called 2-hydroxy-N,N,N-trimethylethanaminium 

chloride, also known as choline chloride, was used as hydrate inhibitor as shown 

in Table 10. 

 

No. Component MW (g/mole) NR-QNG-S1 mole fraction 

1 Methane 16.043 0.42495 

2 Ethane 30.070 0.02765 

3 Propane 44.097 0.01004 

4 2-methylpropane 58.123 0.00200 

5 Butane 58.123 0.00293 

6 2-methylbutane 72.150 0.00085 

7 Pentane 72.150 0.00074 

8 Octane 114.231 0.00076 

9 Toluene 92.140 0.00045 

10 Methylcyclopentane 84.160 0.00051 

11 Nitrogen 28.013 0.51748 

12 Carbon Dioxide 44.010 0.01166 
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Table 10: Chemical structure and physical constants for ionic liquid inhibitor used in 
this work. 

 

 
 
 

3.6. HydraFLASH® SOFTWARE 

 

There are several user friendly predictive programs such as CSMHYD, CSMGem and 

HydraFLASH® that can be used to determine the thermodynamics of hydrate formation, 

and these have been shown to give accurate phase equilibria data for gas hydrates of simple 

and multicomponent gas mixtures within about 2 K and 10% in pressure [68]. In this 

project, the HydraFLASH® software (version 2.2.21) was utilized. This software was 

originally developed in 1986 and has proven to predict hydrate formation equilibrium 

points accurately (i.e., temperature and pressure). This can be achieved using different 

equations of state: (Soave-Redlich-Kwong (SRK), Peng-Robinson (PR) and Valderrama-

Patel-Teja (VPT)), cubic plus association equation of state (CPA), and perturbed chain 

statistical associating fluid theory equation of state (PC-SAFT). In this work, CPA was 

applied because it consistently good performance in systems having components that can 

form hydrogen bonds such as water and methanol. The van der Waals and Platteuw model 

is applied to describe the hydrate phase. The main window of this program is shown in 

Figure 28.  

Component Formula Molar mass (g/mol) Chemical Structure Supplier  

Choline 
Chloride C5H14ClNO 139.62 

 

IOLITCE 
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Figure 28: HydraFLASH® software main window expressing the main input for each 
run. 

 

An example of use of this software in this project is shown in Figure 29, which was 

prepared for QNG-S1 with aqueous mole fraction of 30% of which 20% methanol (as a 

classic THIs) and the remaining is water.  

Gas mixture composition  

Inhibitor concentration  

Salt concentration  

Aqueous fraction     

Calculation options  T/ P range  
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Figure 29: Numerical result window for hydrate dissociation of QNG-S1 with 20% 
methanol inhibitor. 

 

HydraFLASH’s results can be presented numerically, graphically or exported into an 

Excel sheet. A screenshot of the graphical output is illustrated in Figure 30.  
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Figure 30: Graphical representation for hydrate dissociation curve using QNG-S1 
mixture with 20% methanol inhibitor of the aqueous mole fraction. 

 

3.7. EXPERIMENTAL PROCEDURE  

 

In general, the same procedure for preparing the chemicals and filling the test cells was 

followed in all high pressure equipment; however, there are some minor difference from 

the technical point of view for each equipment that was used. This section discusses the 

main steps implemented in this project, which are chemical preparation, leaking test, and 

apparatus calibration with CH4, and CO2 before starting the experimenting with QNG-S1. 

Hydrate 
Stability Zone 

No Hydrate  
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In addition, it shows details of how to use the three different high pressure cells. A general 

schematic diagram of this experiment set-up is shown in Figure 31. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31: A general schematic diagram of the whole experiment set-up [69]. Reprinted 
with permission from “Hydrate Equilibrium Data of the CH4 + C3H8 Gas Mixture and 
Simulated Natural Gas in the Presence of 2,2-Dimethylbutane and Methylcyclohexane ” 

by Yutaek Seo, Seong-Pil Kang, Jonghyub Lee, Jiwoong Seol and Huen Lee, 2011. 
Journal of Chemical and Engineering Data, 56, 2316-2321, Copyright [2011] by 

American Chemical Society. 
 

3.7.1. Preparation of chemicals  

 

The inhibitors to be evaluated were dissolved in ultrapure water before starting the test up 

to the target concentrations choline chloride shown in Table 11.  

Magnetic Stirrer 
Magnetic Derive  
Mixing ball 
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Table 11: Inhibitor fraction on mass bases of aqueous phase. 
 

Inhibitor name Case 1 Case 2 

Choline chloride in aqueous phase/ mass % 1 5 

 
 
 

3.7.2. Leak test  

 

One of the major problems that high-pressure laboratory work includes is the gas leak. 

Therefore, a leak test is the first step to start working with any high-pressure cell. Water 

free leak test main steps are:  

 

1. Set water bath “thermostat” at 24 oC. 

2. Run the bath for three hours and ensure that the temperature profile is stable. 

3. Charge the used CO2 at 86 bar or any other available gases and close all valves. 

At this stage, the observed temperature increases slightly.  

4. Record temperature/pressure equilibrium for 12 hours. If there is a leak, pressure 

drop will be observed; otherwise, all readings should remain stable. 

 

Examples of the expected relation between temperature/pressure vs. time are shown in 

Figures 32 and 33 respectively. These graphs show no pressure drop after the temperature 

was equilibrated, which equilibrate earlier than pressure due to the fact that pressure react 

slower to fluctuations than temperature. These graphs state clearly means that there is no 

leak in this experimental set-up. 



 

68 

 

 

 

 
Figure 32: Temperature vs. time for leak test via micro bench top reactor. 

 
 
 

 

 
Figure 33: Pressure vs. time for leak test via micro bench top reactor. 
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3.7.3. Calibration of the equipment 

 

Calibration was performed for micro bench top reactor while the other two apparatus (i.e., 

RC-5 and Autoclave cell) were pre-calibrated by the manufactures. Pure methane and 

carbon dioxide were used to achieve this purpose. Micro reactor calibration was performed 

using the same method applied for the main target, QNG-S1, which is explained below.  

 

3.7.4. Apparatus usage mechanism  

 

 The semi-batch reactor, RC-5, and autoclave differ mainly in 1) opening, closing, and 

fixing the vessel, 2) creating agitation for a realistic simulation of fluid flow, similar to 

that in pipeline, 3) data acquisition software. These are minor operability differences, yet, 

the method for each of the used devices is explained separately.  

 

3.7.5. Micro bench top reactor 

 

The first was to calibrate the temperature and pressure sensors. They were standardized 

by comparing their readings with pre-calibrated sensors in an open system. Temperature 

sensor is manufactured by Minco Inc. brand 4 wire PRT which shows values as good as 

0.05 K level, this was used to calibrate the thermometer in Parr. Pressure sensor is 

Paroscientific brand and valid for maximum 10000 psi with accuracy of 0.05 in full scale 

and it is calibrated against dead weight gauge in Houston in 2011. The obtained data were 
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drawn and correlated as shown in Figures 34 and 35. This correlation was applied to all 

experimental results obtained in this isochoric reactor according to the following relations: 

Corrected temperature (oC): TC = 0.9923Tm- 1.143                 [1] 

Corrected pressure (bar): PC = 1.0002Pm + 1.5937                  [2] 

Where;  

TC: corrected temperature  

Tm: measured temperature, obtained using Parr thermocouple  

PC: corrected pressure  

Pm: measured pressure, obtained using Parr sensor 

 
 
 

 

 
Figure 34: The relation between Parr thermocouple and pre-calibrated thermocouple 

wire for calibration purpose. 
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Figure 35: The relation between Parr pressure sensor and pre-calibrated transducer 
for calibration purpose. 

 

The experiment was started by loading the cell with 30 ml of ultrapure water; then it was 

pressurized with CH4, CO2 or QNG-S1 to the target pressure, for each set of experiments, 

according to the following routine: 

1. The removable vessel was removed from the support stand and the gas release 

valve was opened to discharge any internal pressure before opening or closing the 

cell. 

2. The magnet housing of the vessel was washed carefully several times from inside 

with distilled water and filled with the aqueous solution enclosing the chemical to 

be studied (i.e., ultrapure water and inhibitors). Then the magnet housing was 

closed and sealed properly by mounting the head fittings and fixing the six cap 
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screws and the O-Ring closure. Thereafter, the whole cell was attached to the 

support stand again.  

3. The vessel with its aqueous content was flushed to remove any gas impurities. This 

process was achieved via two stages: 

a. The vessel was vacuumed by a rough vacuum pump for 4 hours to depressurize 

thy system up to zero bar.   

b. The vessel was purged with the gas that attempted to be used for three to four 

times to confirm that the vessel contained no impurities.  

4. The vessel was charged with the tested natural gas, and in order to reach the 

desired/started pressure (outside hydrate formation region) the boosting process 

was applied using the booster with its control panel. The booster is used whenever 

the supplied pressure is less than operational pressure. Then, the hydrate cell was 

left for an hour with agitation to saturate and stabilize (i.e., reach its temperature 

and pressure equilibrium condition). 

5. The experimental control software (Parr 4848 controller) was launched, logging, 

and recording the data for temperature, pressure, and time. The software’s main 

window is shown in Figure 36. The data were saved in a CSV format file which 

can be exported into an Excel file. 
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Figure 36: SpacView – [Parr 4848] software main window. 
 

6. Fluid inside the vessel was cooled rapidly at a rate of 2 oC/h from room temperature 

to 2oC with agitation. Then, the system was left overnight at this temperature to 

form hydrate. By the time hydrate was formed, the stirrer was stopped as the 

hydrated plugged the whole cell. 

7. After hydrate was formed, a heating process was started back to the initial 

temperature with a tremendously slow rate (0.05 oC/h) for complete hydrate 

melting.  
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8. Step 7 was repeated several times for the same fluid until a complete loop was 

obtained. This repeatability of the process was required because the water bath 

could be ramped for 50 hours maximum. 

 
3.7.5.1. High pressure autoclave cell 

 

The operation of the high pressure autoclave began by loading 30% of the cell volume 

(450 ml) with ultrapure water (135 ml), then pressuring it directly with the tested gas 

QNG-S1 to the target pressure, as desired by each set of the experiments, according to the 

following steps: 

 

1. Autoclave lid and all mounted head connections such as borescope-camera, 

temperature/pressure sensors, and inlet/outlet gas valves were detached from the 

vessel after discharging any internal pressure via opening the gas release valve.  

2. The magnet housing of the autoclave was washed carefully several times from 

inside with distilled water and filled with the aqueous solution enclosing the 

chemical to be studied (i.e., ultrapure water and inhibitors). Lid thread was also 

cleaned from foreign particles and well-greased with the lubricant. Then the 

magnet housing was sealed properly by mounting the head connections and 

carefully closing the lid by hand.  
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3. The aqueous content within the vessel was flushed twice by purging it with the 

tested gas up to the full bottle pressure (68 bar) to ensure that the vessel did not 

have any gas impurities.  

4. The vessel was charged with the tested sample of QNG-S1 up to 68 bar (bottle 

maximum pressure) and, in order to reach the desired/started pressure, the system 

was connected to a high pressure generator which is a manually operated piston 

screw pump used to compress the tested gas within a small volume to develop high 

pressure (i.e., up to 688 bar). Temperature/pressure conditions within the cell were 

monitored via pressure display of autoclave-software until they were stabilized. 

5. Autoclave-software main window was opened to design the whole experiment 

program Figure 37. The script was edited depending on isothermal cooling method 

according to the following steps:  

a. Initialization phase of the experiment was started to adjust autoclave 

temperature to 20 oC (start temperature) and to make an overall check for 

experiment cell. This was completed with fast stirring (500 RPM) in order 

to equilibrate and saturate the liquid/gas mixture.   

b. The experimental phase of the experiment was then started by cooling the 

fluid inside the vessel rapidly at a rate of 1.8 oC/h from 20oC to 2oC with 

agitation (150 RPM). Then, the system was left for two days at this 

temperature to form hydrate. By the time hydrate was formed, the stirrer 

was stopped as the hydrate completely plugged the cell. In the autoclave, 
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it took longer to form hydrate plug, because of its large volume (400 mL) 

compared to the isochoric reactor (100 mL). 

c. After hydrate was formed, a heating process was started back to the initial 

temperature with very slow rate (0.01 oC/h) for complete hydrate melting. 

Furthermore, and an additional isothermal heating step was applied in order 

to close HLVE loop and heating stage up to 30 oC to destroy any residual 

hydrate crystal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37: A complete program schedule in Hydrate software 
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The pressure, temperature, and time data can be monitored in Hydrate data acquiring 

software main window (Figure 38). These data were recorded and saved in a dat format 

file which can be exported into an Excel file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38: Hydrate software main window and camera preview window. 
 

3.7.5.2. Rocking cell  

 

The rocking rig used in this experiment was delivered by PSL Systemtechnik with two 

test cells, which can be upgraded later up to five cells. This means that two runs can be 
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performed simultaneously. However, the only variables possible, for these simultaneous 

runs, can be the composition of the sample and pressure. The test procedure with this 

experimental set-up was started by filling each cell (40 mL) with 15 mL of ultrapure water 

(30% of cell volume), then pressuring it directly with the sample gas QNG-S1 to the target 

pressure, as desired by each set of the experiments, according to the following approach: 

 

1. The test cell was removed from its platform axis after it was depressurized, and 

the temperature sensor, and pressure supply tube were disconnected. Then it was 

mounted on the assembling aid and the screw lid was opened with a jaw wrench 

as per Figure 39. 

2. The ball casing of the test cell and the mixing ball were washed carefully for 

several times with distilled water and filled with the prepared test mixture (i.e., 

ultrapure water and inhibitors) according to the experiment requirement. Then, the 

test cell was sealed properly in the same way it was opened, reinstalled to its 

corresponding place on the platform axis in RC-5 bath, and reconnected to the 

temperature sensor and pressure supply.  
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Figure 39: An assembling aid used to loosen and fasten the test cell. 
 

3. Each test cell with its aqueous content was flushed, filled with tested sample of 

QNG-S1, and pressurized up to the desired/started pressure following the same 

manner applied in high pressure autoclave vessel (step 3 and step 4). 

4. After temperature/pressure conditions within each test cell were stabilized, the RC-

5 software was started to design the whole experiment program (Figure 40). The 

script was edited depending on isothermal cooling method following the same 

initialization and experimental phases applied in the autoclave except for the hold 

time required to form hydrate plug and the way of creating turbulence and 

agitation. The liquid vapor mixture within each cell was left for 24 hour at 2 oC 

after it was cooled from 20 oC, which was half the time required for the same 

mixture within autoclave. This is because its volume (40 mL) is small compared 

to autoclave (450 mL). In addition, the mixing ball was programmed according to 

the following parameters:1) rocking rate: 10 rocks/min, and 2) rocking angle: 30o. 
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Figure 40: A complete program schedule in RC-5 software 
 

The pressure, temperature, and time data can be monitored in the RC-5 main window 

(Figure 41). These data were recorded and saved in a dat format file which can be easily 

exported into an Excel file. 
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Figure 41: RC-5 software main window showing measurements values and graphical 
representation for monitoring propose. 

 

The main parameters applied in the isochoric reactor, autoclave, and rocking cell 

experiments in order to find the hydrate equilibrium curve, are summarized in Table 12.  

 

 

 

 

 
 



 

82 

 

Table 12: The set conditions used in the three different devices utilized in this project  
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Parameter Micro bench 
top reactor 

High pressure 
autoclave Rocking cell 

Aqueous Sample volume (mL) 30 135 15 

Agitation source Magnetic derive Magnetic stirrer Mixing ball 

Cooling rate (oC/h) 2 1.8 1.8 

Heating rate (oC/h) 0.05 0.1 0.1 

Tested samples CH4, CO2 and 
QNG-S1 

QNG-S1 with 
C5H14ClNO 

QNG-S1 with 
C5H14ClNO 



 

83 

 

4. RESULTS AND DISCUSSION  

 

Preliminary studies on hydrate equilibrium curve measurements started at Qatar 

University’s Chemical Engineering laboratory in late 2011. A basic hydrate equilibrium 

cell was commissioned along with its pressure and temperature monitoring/control 

systems. The initial work on this thesis started in late 2012 with the intention of micro 

bench top reactor, which is a reaction cell, redesigned to become a hydrate cell. It was 

calibrated using pure methane and carbon dioxide to verify its performance and efficiency 

before it was used for measuring plain QNG-S1 hydrate equilibrium points. In the 

calibration phase, some deviation in HLVE point (around 2 oC) for the hydrate equilibrium 

cell was observed because of its poor heat transfer characteristics. However, the initial 

experiments with the micro bench top reactor helped in understanding the hydrate making 

process, sub-cooling effect, memory effect, induction time requirement, and dehydration 

temperature ramping effect, as well as the last isothermal step followed by heating stage 

up to 30 oC at the dissociation side. In a sense, the initial hydrate micro bench top reactor 

that was constructed and commissioned served for training purposes. Later on, the 

measurements were started using commercial hydrate cells: autoclave, and rocking cell.  

 

This section presents the experimental results using three different experimental set-ups 

at different temperature/pressure conditions. This study was performed to determine 

QNG-S1 hydrate equilibrium points using the micro bench top reactor and the autoclave. 
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In addition, the rocking cell was used to study the effect of injecting ionic liquid inhibitors 

on hydrate equilibrium points, induction time, and memory effect.  

 

4.1. METHOD TO OBTAIN THERMODYNAMIC (HLVE) POINTS  

  

Thermodynamic HLVE data for gas hydrate is usually obtained using the isochoric/high 

pressure method. In this method, 30% of the vessel volume is loaded with the aqueous 

phase (water with or without inhibitors) as required by each set of experiments. Thereafter, 

the cell is pressurized with the tested gas sample to the desired pressure, below the 

expected hydrate forming region, and left with agitation for an hour to saturate and 

equilibrate. As the temperature and pressure of the system stabilize, the gas/ liquid mixture 

is cooled rapidly (2 oC/h) to a temperature just above pure water freezing point to ensure 

hydrate formation. This mixture should be kept at that temperature for sufficient time (24 

hour) to allow system equilibration and hydrate agglomeration. Hydrate formation in the 

vessel can be detected by a sharp pressure drop and/or confirmed by visual observation 

when the cell is equipped with a boroscope-camera. The temperature should then be 

increased in very small steps of around (0.1 oC/h). A P-T diagram is obtained for each 

experimental run as shown in Figure 42, from which the equilibrium point can be obtained.  
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Figure 42: Typical experimental hydrate liquid vapor equilibrium curve  
 

Obtaining hydrate equilibrium points is the most critical concern in thermodynamic study 

as it should be selected carefully from hundreds of points. Typically, studying hydrate 

thermodynamic behavior means finding hydrate equilibrium points rather than developing 

a complete HLVE loop as per Figure 43.  
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Figure 43: A complete hydrate formation/dissociation loop zooming in the region where 

hydrate equilibrium point is found. 
 

These points can be obtained through zooming in the shaded region, splitting them into 

two segment lines and trying to fit them into two different trend-lines with linear 

regression almost equal to 1. Then, by solving their algebraic equations simultaneously, 

the first hydrate equilibrium point is obtained. The same procedure is repeated for all loops 

belonging to the same gas mixture composition and experimental set-up, obtained at 

different starting pressure, to build a complete hydrate equilibrium curve, represented by 

the red line in Figure 44. 
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Figure 44: Red line shows a complete hydrate equilibrium curve for the three hydrate 
formation/dissociation loops of gas mixture composition and experimental set-up. 

 

4.2. METHOD TO OBTAIN KINETIC INDUCTION TIME 

 

Induction time is one of the vital parameters used to characterize hydrate formation, 

because a longer induction time allows transport of the fluids through pipelines without 

hydrate crystallization. It can be defined as the time between the complete dissolution and 

the initiation of hydrate formation [70]. The induction time can be obtained from pressure-

time relationship for a hydrate forming system as shown in Figure 45. Usually, this 

measurements should be repeated several times to get the most accurate data.  
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Figure 45: Schematic representation of the pressure changes with time during a typical 

kinetics hydrate formation. 

 

In Figure 45, the dissolution of gas in the aqueous phase is represented by a little pressure 

drop between Po to Pdis. This, followed by steady-state condition where the pressure is 

stabilized till tind at which a sharp pressure drop, is obtained due to the begging of hydrate 

formation. The pressure keeps falling due to gas consumption till Pend where no more 

hydrate forms [70].  

 

In this work, induction time was measured as the difference between the time at which 

HLVE-temperature occurs, and the time at which catastrophic pressure drop occurs in a 

pressure-time diagram, as illustrated in Figure 46. Induction time measurements will be 
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presented for the data obtained using RC-5 to show the effect of varying experimental 

conditions and inhibitions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 46: Pressure-temperature and pressure-time in the upper left corner used to 
obtain induction time. 

 

4.3. MICRO BENCH TOP REACTOR 

 

The first goal of this study was to calibrate the micro bench top reactor using gases with 

known HLVE data to check its performance. In this work, calibration was performed using 

pure methane and carbon dioxide. Then, QNG-S1 was tested and its HLVE data were 

obtained.  
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4.3.1. Methane  

 

The accuracy of the HLVE points obtained using the micro reactor as described previously 

was verified by comparing them with published experimental data and model prediction. 

The results (Table 13) show a good agreement with Sloan’s experimental data and the gas 

gravity method’s (SG method) result as presented in in Figure 47 [5]. The gas gravity 

method is developed by Katz and it is widely used to predict hydrate equilibrium 

conditions [5]. Moreover, the equilibrium points recorded by this experimental work were 

compared with those obtained using HydraFLASH® software. There is a deviation of less 

than 2 oC between the obtain HLVE points and those from these three different sources. 

However, this deviation falls within the range of the expected system accuracy. 

Additionally, HydraFLASH® predicts that the type of hydrate structure formed is cubic 

structure (sI).  

 

Table 13: Measured hydrate liquid vapor equilibrium points for pure methane using 
micro bench top reactor. 

 
 
 
 
 
 
 
 
 
 
 
 

Experiment 
No. 

Initial Pressure at 
20oC (bar) 

HLVE-Temperature 
(oC) 

HLVE-Pressure 
(bar) 

I.1 115.82 15.74 113.48 

I.2 107.31 15.21 105.34 

I.3 96.71 13.56 95.04 
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Figure 47: HLVE curve for pure CH4 using Micro rector compared with those obtained 

by Sloan (1998), gas gravity method and HydraFLASH®. 
 

4.3.2. Carbon dioxide  

 

Carbon dioxide was used as a second calibration step to validate the micro bench top 

reactor performance by repeating the experimental procedure used for methane. The 

measurement’s accuracy was again detected by comparing the obtained data with those 

published by Sloan and calculated by K-factor method within the same 

temperature/pressure range [5]. Carbon dioxide data were compared with those obtained 

using K-factor method rather than gas gravity method because the latter cannot be used 

for gases with specific gravity greater than 1 (CO2 specific gravity is 1.5). Carbon dioxide 

structure (cubic structure sI) and hydrate equilibrium points were calculated using the 

HydraFLASH® software. In this case, the measured deviation compared with all above 

No Hydrate  

Hydrate zone 
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mentioned methods was around 1 oC. The experimental data is listed in Table 14 and 

plotted in Figure 48.  

 

Table 14: Measured hydrate liquid vapor equilibrium points for pure CO2 using the 
micro bench top reactor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 48: HLVE curve for pure CO2 using Micro rector compared with those obtained 

by Sloan (1998), K-factor method and HydraFLASH®. 
 

4.3.3. Plain QNG-S1 

 

Experiments with Qatar natural gas started after the reactor was calibrated with CH4 and 

CO2. These measurements are a novelty of the current study since QNG-S1 HLVE curves 

Experiment 
No. 

Initial Pressure at 
20oC (bar) 

HLVE-Temperature 
(oC) 

HLVE-Pressure 
(bar) 

II.1 41.77 10.23 41.18 

II.2 33.96 8.420 30.39 

Hydrate zone   

No Hydrate  
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were obtained for the first time. Accordingly, the obtained figures were compared with 

the calculated HLVE points using gas gravity method and HydraFLASH® software as 

presented in Table 15 and Figure 49. The deviation was again within the expected system 

accuracy (around 2 oC) compared with the theoretical prediction. For this type of natural 

gas, the hydrate structure, predicted by the software is cubic structure sII. The total 

uncertainty of these measurements is +/-0.5%. 

 

Table 15: Measured hydrate liquid vapor equilibrium points for plain QNG-S1 system 
using micro bench top reactor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 49: HLVE curve for plain QNG-S1 system using micro rector compared with 
those obtained by specific gravity method and HydraFLASH®. 

Experiment 
No. 

Initial Pressure at 
20oC (bar) 

HLVE-Temperature 
(oC) 

HLVE-Pressure 
(bar) 

III.1 102.61 21.91 102.55 

III.2 93.71 21.08 93.51 

No Hydrate  

Hydrate zone   
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Considering the above mentioned results, micro bench top reactor could be used as a 

typical hydrate cell once the modifications, mentioned in section 3.2.1, were applied to it. 

The obtained HLVE curves of CH4, CO2 and plain QNG-S1 show a deviation of around 

2oC in comparison with past literature and the HydraFLASH® software. Accordingly, this 

study proves that this reactor can be used as an economical hydrate cell for preliminary 

studies. 

 

4.4. HIGH PRESSURE AUTOCLAVE  

 

After presenting HLVE points and curves obtained using the modified non hydrate cell 

(micro bench top reactor), data acquisition using typical hydrate cells started. A high 

pressure autoclave is one of these typical hydrate cells, which is usually used to visualize 

the whole hydrate formation/dissociation processes. Figure 50 shows some captured 

photographs taken with a boroscope-camera.  
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Figure 50: Image of the hydrate formation/dissociation process in high pressure 
autoclave. Picture 1: start of the experiment; Picture 2 beginning hydrate formation; 

picture 7: completion of hydrate formation; picture 8: start of hydrate dissociation; and 
picture 10: end of the experiment.  

 

Since this apparatus was already pre-calibrated by the manufacture company, the 

measurements were started directly with plain QNG-S1. The obtained HLVE points of 

structure (sII) were compared with theoretical data and HydraFLASH® software as 

explained in micro bench top reactor section. The comparison shows very small deviation 

of less than 1.5 oC. These measurements are tabulated in Table 16 and plotted in Figure 

51. The total uncertainty of these measurements is +/-0.3%. 

 
Table 16: Measured HLVE points for plain QNG-S1 system using autoclave. 

 
 
 
 
 
 
 
 
 

Experiment 
No. 

Initial Pressure at 
20oC (bar) 

HLVE-Temperature 
(oC) 

HLVE-Pressure 
(bar) 

IV.1 91.78 20.2 91.00 

IV.2 71.10 18.68 70.37 

IV.3 58.48 17.61 57.65 

IV.4 50.34 16.55 49.39 
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The high pressure autoclave, as a typical hydrate cell, shows a better performance in 

acquiring HLVE points compared with the micro bench top reactor as shown in Figure 51. 

However, the deviation is less than 1 oC, which confirms the accuracy of the measurements 

obtained using the newly commissioned micro bench top reactor. The main advantage of 

using autoclave is the possibility to visualize the entire hydrate formation and dissociation 

processes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51: HLVE curve for QNG-S1 system using autoclave compared with those 
obtained by gas gravity method and HydraFLASH® and the data obtained in micro 

reactor. The dashed lines present the expected HLVE data for micro bench top reactor. 
 
 
 
 
 
 

No Hydrate  
Hydrate zone  
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4.5. ROCKING CELL 

 

Another typical hydrate cell is the rocking cell (RC-5 in this project), which is used to 

study the effect of ionic liquid inhibitors on QNG-S1 from the thermodynamics and 

kinetics inhibition points of view. In this section, two types of QNG-S1 mixtures are 

discussed: Nitrogen Rich Qatar Natural Gas (NR-QNG-S1), and plain QNG-S1.  

 

4.5.1.  NR-QNG-S1  

 

Hydrate measurement of NR-QNG-S1 was the first experiment performed using RC-5. 

This type of mixture is also called low quality natural gas in which nitrogen constitutes 

almost 50 mol. % of the mixture. The importance of preventing hydrate formation in this 

type of gas mixture arises from the fact that this mixture has huge impact on environment 

and human beings, as one of the main byproducts that could be formed during the 

combustion of nitrogen rich natural gas is nitrogen oxide (NOx). The emission of this 

byproduct at high concentrations can be detrimental to the environment.  

 

Specific gravity method is used as “gold standard” to predict NR-QNG-S1 HLVE points 

due to the absence of experimental equilibrium conditions for this mixture. This was due 

to time constrain since measuring HLVE points is a very slow process. The performance 

of HydraFLASH® is highly unpredictable for such a complex mixture and that is why it 

is neglected in this subsection.  
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Furthermore, when comparing plain QNG-S1 with NR-QNG-S1 based on SG method, the 

presence of nitrogen in large amount increases the hydrate risk region as illustrated in 

Figure 52.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52: HLVE curves for both plain and nitrogen rich QNG-S1 obtained by SG. 
method and HydraFLASH® for plain QNG-S1. 

 

The hydrate equilibrium curve for NR-QNG-S1 was shifted up to 5.6 oC and up to 5.8 oC 

using 1 wt. % and 5 wt. % of choline chloride respectively. The inhibition effect depends 

on the starting pressure in this experiment. Two main concerns arise: firstly, the inhibition 

effect is decreased at a high pressure; secondly, increasing the mass percentage of the 

inhibitor has little effect on hydrate formation. This means that increasing the mass 

percentage of choline chloride by 5 times added less than 1 oC to the inhibition effect when 

No Hydrate  

Hydrate zone 
Risk zone 
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using 1wt. % of the same type of inhibitor. These data are summarized in Table 17 and 

Figure 53. 

 
Table 17: Measured HLVE points for NR-QNG-S1 system using rocking cell. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 53: Inhibition effect of 1 wt % and 5 wt% choline chloride on NR-QNG-S1 
using RC-5 compared with that obtained using SG method  

Experiment 
No. 

Initial 
Pressure at 
20oC (bar) 

HLVE-
Temperature (oC) 

HLVE-
Pressure (bar) 

Inhibitor 
performance 

(oC) 

Induction 
Time (h) 

NR-QNG-S1 with 1 wt. % ChCl 

V.1 117.76 17.56 116.63 4.80 2.13 

V.2 74.12 14.59 72.22 5.00 2.00 

V.3 65.29 13.75 63.35 5.30 1.55 

V.4 57.21 12.64 55.58 5.60 1.25 

NR-QNG-S1 with 5 wt. % ChCl 

V.5 123.76 16.91 121.97 5.20 2.10 

V.6 105.35 16.21 103.33 5.30 2.50 

V.7 79.41 13.95 77.22 5.80 1.65 
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From the kinetic point of view, the influence of memory-effect phenomenon on the 

induction time was studied on NR-QNG-S1. This was achieved using the same hydrate 

test cell (Cell-2) without applying the constant isothermal step and heating stage up to 30 

oC in order not to destroy the residual hydrate crystals. In NR-QNG-S1 with 1 wt. % of 

choline chloride experiments (V.1, V.2, V.3 and V.4), induction time was decreased from 

2.13 h in V.1 to 1.25 h in V.4 as illustrated in Table 17. This rapid hydrate growth can be 

explained due to the presence of tiny hydrate crystals. However, no conclusion can be 

drawn regarding the effect of ionic liquid inhibition performance on induction time for 

different concentrations due the above mentioned phenomenon. 

 

4.5.2. Plain QNG-S1 

 

After testing the effect of choline chloride on NR-QNG-S1, the experiments with plain-

QNG-S1 started. In these experimental tests, the additional isothermal step and heating 

stage were applied to eliminate the memory effect by allowing the system to destroy the 

residual hydrate crystals. By doing so, the effect of using different ionic liquid 

concentrations on induction time can be examined. Hydrate measurements were 

performed to study the inhibition performance of ionic liquid with the presence of 1% and 

5% on a mass basis. The obtained HLVE data for both concentrations were compared with 

the result of the HydraFLASH® software and gas gravity method [5]. According to 

predictions of these methods and comparing them with the experimental results, there was 

no inhibition effect of choline chloride. There may be two main reasons for this: 



 

101 

 

1. It might be due to inaccuracy of theoretical calculations via HydraFLASH® and 

gas gravity method for the complex mixture used to predicting HLVE curves. 

Moreover, both methods deviate about 5% from the obtained HLVE curve using 

autoclave. 

2. Mixture preparation inaccuracy, mainly because of uncertainties in the 

manufacturing process as mentioned in Table 8. 

 

However, comparing plain QNG-S1 data obtained using autoclave and micro bench top 

reactor with those obtained in the presence of choline chloride using RC-5 show an 

inhibition effect as presented in Figure 54. The inhibition effect obtained using 1 wt. % of 

choline chloride was 0.7 – 1.1 oC and 1.5 – 1.8 oC compared with autoclave and micro 

bench top reactor respectively. Choline chloride inhibition performance was even better 

with 5 wt. % as it was able to shift HLVE curve up to 2.0 oC for autoclave and 2.6 oC for 

micro bench top reactor as shown in Figure 54 and Table 18. This effect of inhibition was 

also observed by Xiao in 2009 using 10 wt.% of different ionic liquid [50]. The total 

uncertainty of these measurements is +/-0.4%. 
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Table 18: Measured HLVE points for plain-QNG-S1 system using rocking cell 
compared with autoclave. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 54: Inhibition effect of 1 wt % and 5 wt% choline chloride on plain QNG-
S1using RC-5 compared with those data obtained using autoclave, micro bench top 

reactor SG method and HydraFLASH®. The dashed lines present the expected HLVE 
data for micro bench top reactor. 

Experiment 
No. 

Initial 
Pressure at 
20oC (bar) 

HLVE-
Temperature (oC) 

HLVE-
Pressure (bar) 

Inhibitor 
performance 

(oC) 

Induction 
Time (h) 

Plain-QNG-S1 with 1 wt. % ChCl 

V.1 79.55 18.64 78.73 0.70 2.35 

V.2 66.85 17.69 66.14 0.80 2.15 

V.3 58.83 16.69 57.80 0.91 1.80 

V.4 49.25 15.46 8.35 1.10 1.90 

Plain-QNG-S1 with 5 wt. % ChCl 

V.5 94.39 18.94 93.84 1.30 2.30 

V.6 78.67 17.93 77.94 1.40 2.80 

V.7 60.58 15.78 59.33 2.00 2.15 
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Additionally, the inhibition effect of choline chloride was compared with classical 

inhibitors such as methanol (MEOH) obtained using HydraFLASH® software as 

illustrated in Figure 55. The inhibition effect of 1% and 5 % on mass basis of MEOH are 

2.8 oC and 4.4 oC, respectively, compared with 1.1 oC and 2.0 oC for 1 wt. % and 5 wt. % 

of choline chloride obtained using autoclave high pressure cell.  

 

When only comparing the inhibition performance of these two class of inhibitors, one 

could argue that classical inhibitors are preferred in preventing hydrate formation in 

industrial application. Yet, classical inhibitors have many environmental and economic 

concerns for being toxic, corrosive especially in sweet system as oxygen diffuses to the 

metal surface and increases the corrosion rate, and expensive due to the high concentration 

required to prevent hydrate formation (> 50% by weight) and recovery unit which is 

necessary because of its high toxicity. On the other hand, ionic liquid inhibitors can be 

nontoxic, noncorrosive, green, and environmentally friendly with a proper tuning of 

cation/anion combination. In addition, using ionic liquid as inhibitors might be cheaper 

and more practical to be implemented especially in Qatar industry because of its desert 

climate (average temperature > 37 oC in summer and > 14 oC in winter) and only small 

shifting in HLVE curve is required.  
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Figure 55: Comparing the inhibition effect of classical inhibitor and ionic liquid. The 
dashed lines present the expected inhibition effects. 

 

From the kinetic point of view, by comparing 1 wt. % with 5 wt. % of choline chloride, 

the measured induction time increased for higher concentration. For instance, at starting 

pressure of around 60 bar and 79 bar, the induction time was 1.80 h and 2.35 h. for 1 wt. 

% vs. 2.15 h. and 2.80 h for 5 wt. %, respectively as tabulated in Table 18 and plotted in 

Figure 56. In this figure the two arrows illustrate the catastrophic pressure drop that 

indicates the start of hydrate formation.  

 

The above mentioned data show that the ionic liquid was able to shift the HLVE curve 

and delay hydrate formation by increasing induction time. This confirms the dual 

inhibition effect of choline chloride.  

 



 

105 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 56: Induction time measurement for 1 wt. % and 5 wt. % of choline chloride 
applied on plain QNG-S1 using RC-5 at starting pressure of 60 bar. The two arrows 
illustrate the induction time which increase with higher ionic liquid concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

106 

 

4.6. DISCUSSION  

 

4.6.1. Scientific point of view  

 

Current state of the art for gas inhibition is similar to CO2 capture routine in industry, 

where conventional type of inhibitors (or absorbents) are still used. For example MEA 

(monoethanolamine) is a substance well known for its CO2 affinity and absorption. For 

gas hydrate inhibition, MEG (monoethylene glycol), and methanol (so-called classical 

thermodynamic inhibitors), and PVCAP (a kinetic inhibitor) are industry favorites. 

However all of these chemicals, although their performances are appreciable, bring several 

serious environmental and processing problems along with them, which increase cost 

remarkably and reduce the pipe and equipment life time. Due to their toxicity and 

corrosive nature, researchers are seeking for more healthy, green, environmentally 

friendly, degradable, and, at the same time, better performance materials. That is why ionic 

liquids are important. These are recent-developed materials and fascinating solvents with 

tunable chemical and physical properties. In theory, an ionic liquid solvents can be 

designed with all desired physical properties. However, it needs some fundamental 

thermodynamic experiments to prove the concept. This is what the current work tried to 

achieve by testing the ILs performances. The next stage of this study is to investigate how 

much of KIs effect comes from the cation and THIs effect comes from the anion part of 

the ionic liquid.  
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4.6.2. Engineering point of view 

 

More experimental runs are needed on multi-component Qatar natural gas mixture to 

compare the efficacy and efficiency of classical thermodynamic inhibitors with respect to 

ionic liquid from different perspectives such as the inhibition performance and 

environmental impact. In addition, a better ionic liquid inhibitor can be designed with a 

better inhibition performance, where cation size and chain length is considered from 

fundamental scientific perspective. A systematic study is required to identify the effects 

of the above mentioned chain effect and the molecular size in order to bring forward the 

current study. In order to achieve this, a fundamental molecular dynamics study is 

essential to minimize the required experimental study in the laboratory.  

 

On the other hand, equation validation is equally important and essential for 

HydraFLASH® software predictions for QNG-S1 complex mixture. This might be 

achieved by comparing the HydraFLASH® software data output for simple binary or 

ternary gas mixtures that are rich in methane content with respect to the empirical data 

obtained using high pressure autoclave and rocking cell. Furthermore, the development 

(or optimizing existing models) of equilibrium model is necessary for hydrate equilibrium 

line prediction similar to the development of equation of state for density predictions, 

especially for the complex mixture compositions similar to the one presented in this work. 
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5. CONCLUSION  

 

In this thesis, the following tasks were completed successfully:  

1) Know-how establishment for gas hydrate research in Qatar. 

2) Commissioning micro bench top rector to a typical hydrate cell.  

3) Obtaining the hydrate equilibrium curve of a mixture that represents a typical Qatar 

North Field natural gas mixture. 

4) Testing the performance of novel inhibitors, ionic liquids, on Qatar natural gas 

mixture in laboratory conditions.  

 

Upon successful commissioning of the experimental apparatus, data were measured with 

and without inhibitor. These data were analyzed and the following conclusions were 

drawn:   

1. Commissioning of micro bench top reactor as a typical hydrate cell resulted with 

deviation of 2 oC from theoretical predictions and less than 1 oC compared with a 

high-pressure autoclave cell, also implemented in this study. This piece of 

equipment can be improved by using better quality thermocouples and if direct 

heat transfer is used. With better temperature control, it might be converted into a 

reference quality equipment. It is quite economical when compared with off-the-

shelf specific hydrate autoclaves and can be used for preliminary studies. It was 

quite important to use this cell at the initial stages of the work in order to establish 

the know-how part of the hands-on hydrate equilibrium experiments. 
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2. Thermodynamics point of view: when inhibition of gas hydrates is considered, 

choline chloride resulted in a moderate shift of the hydrate equilibrium curve on 

QNG-S1 sample up to (0.7 to 1.1) oC and (1.5  to 1.8) oC compared with autoclave 

and micro bench top reactor respectively for 1 wt. %. The performance is even 

better with 5 wt. % as it was able to shift HLVE curve up to 2 oC for the autoclave 

and 2.6 oC for the micro bench top reactor. 

 

3. The tested ionic liquid inhibitor was efficient but not as good as the current 

conventional thermodynamic inhibitors such as methanol and monoethylene 

glycol. Nevertheless, when the amount of inhibitor used, toxicity levels, and 

corrosion effects are considered ionic liquids still are good candidates for future 

alternative inhibitors. In this project, a common ionic liquid was used, however, a 

tailor-made ionic liquid may have better performance. 

 

4. From kinetics point of view: chorine chloride was able to delay hydrate formation 

as the induction time was increased from 2.35 h to 2.80 h for 1 % and 5 % on 

weight basis of choline chloride at starting pressure of 79 bar, respectively.  

 

5. Eliminating the memory effect at the end of loop experiments: heating step of up 

to 30 oC after the isothermal heating step is found to be necessary in order to 

prevent a quicker hydrate formation in subsequent experiments. This step helps to 
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eliminate any residual hydrate crystal that can act as a seed and accelerate hydrate 

nucleation and growth in subsequent experiments and cause the loop not to close.  

 

6. HydraFLASH® software: this excellent software provides an initial estimate of 

the hydrate equilibrium region of multi-component gas mixtures and makes it 

possible to identify the starting conditions of hydrate formation experiments. Yet, 

after comparing these predictions with the data from a typical hydrate cell, 

deviations of up to 5% were observed for multi-component gas mixtures. This 

suggests that the underlying mathematical model is not accurate enough to model 

multi-component gas mixtures as the Qatar natural gas studied in this work. 
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