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ABSTRACT

The problem of intrusion detection in wireless mesh networks (WMN) is challeng-

ing, primarily because of lack of single vantage points where traffic can be analyzed

and the limited resources available to participating nodes. Although the problem

has received some attention from the research community, little is known about the

tradeoffs among different objectives, such as high network performance, low energy

consumption, and high security effectiveness. In this research, we show how accurate

intrusion detection can be achieved in such resource constrained environments. The

major challenges that hinder the performance of intrusion detection systems (IDS) in

WMN are resources (e.g., energy, processing, and storage capabilities) accompanied

by the adhoc-dynamic communication flows.

In light of these challenges, we classify the proposed solutions into four classes:

1) Resourceless Traffic Aware (RL-TW) IDS, 2) Resourceless Traffic Agnostic (RL-

TG) IDS, 3) Resourceful Traffic Agnostic (RF-TG) IDS, and 4) Resourceful Traffic

Aware (RF-TW) IDS. To achieve a desirable level of intrusion detection in WMN,

we propose a research program encompassing five thrusts. First we show how traffic-

awareness helps IDS solutions achieving high detection rates in resource-constrained

WMN. Next, we propose two RL-TG (i.e., cooperative and non-cooperative) IDS

solutions that can optimally monitor the entire WMN traffic without relying on

WMN traffic information. The third (RF-TG) and fourth (RF-TW) IDS solutions

propose energy-efficient monitoring mechanisms for intrusion detection in battery-

powered WMN for traffic-agnostic and traffic-aware scenarios, respectively. We then

investigate the Attack and Fault Tolerance of our proposed solutions and finally

enumerate potential improvements and future works for our proposed solutions.
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1. INTRODUCTION

1.1 Motivation

Wireless Mesh Networks (WMN) are self-managing networks that provide Inter-

net, intranet, and other services to mobile and fixed clients using a multi-hop multi-

path wireless infrastructure consisting of mesh nodes [2,4,40]. The number of deploy-

ments of cost-effective mesh networks is continuously increasing as they are suitable

for many application domains such as disaster response [5,16–18,25,28,63,80], rural

IT services [1,6,10,44,45], environmental monitoring [27,92,93] and many others, as

surveyed in [2].

Because of the intrinsic sharing of the wireless medium and the emerging infor-

mation security threats, security has become one of the most critical issues WMN

deployments face today. Although Intrusion prevention methodologies, e.g., cryp-

tography, are known as the first line of defense in wireless networking, this may not

be enough in mission critical scenarios that require strictly secure communication.

It has been argued [97] that regardless of the number of intrusion prevention strate-

gies used in a network, some vulnerabilities can always be found to allow intruders

passing the first line of defense. To address the issues of intrusion prevention, one of

the most effective ideas proposed was to add layers of additional security tools, e,g.,

intrusion detection systems (IDS), that take appropriate actions when the network

is perceived to be under attack.

Simply adopting IDS from wired networks is challenging because WMN lack:

• Single Vantage Points where traffic can be analyzed, which is typical in

wired networks (e.g., a gateway or router in a corporate network).
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• Hardware Resources available to wired networks, e,g., processing power,

storage and practically unlimited energy for powering WMN devices.

Due to the lack of concentration points in WMN where network traffic can

be analyzed, research community has proposed decentralized monitoring mecha-

nisms [42, 62, 69, 75] for intrusion detection in WMN. Decentralized (also known

as distributed) solutions have been investigated mainly in the context of MANET

and sensor networks [21,47,67,84,85,98]. There, IDS were completely decentralized,

and an intrusion detection agent was placed on each node [97]. These solutions were

very inefficient since nodes in the network would execute intrusion detection in a

redundant manner (e.g., a multi-hop stream was analyzed multiple times) thus con-

suming both hardware resources (that could be allocated to other network functions)

and energy. Additionally, the research [42, 58] has recently shown that the number

of attacks detectable by an intrusion detection agent placed on each node is limited

by the amount of resources available on the node (resulting in high false negative

rates). Therefore, a significant number of intrusion detection mechanisms proposed

for WMN have only considered a specific type of service/attack in a particular WMN

application (e.g., Wormhole and Grayhole attacks) and proposed a detection tech-

nique/rule for it with respect to resource limitations [22, 29, 48, 60, 62, 69, 73, 74, 90].

The other few efforts in intrusion detection for WMN, regardless of attack types,

aim at finding an optimal monitoring mechanism (e.g., IDS node placement or IDS

rule assignment) that is practical based on WMN characteristics [30,42,58,75]. Our

motivating scenario for this research is the second group of IDS solutions and their

design and implementation challenges.

Among the research efforts on the optimal monitoring mechanisms for intrusion

detection in WMN, OpenLIDS [42] proposes a Lightweight detection engine that im-
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poses less computational load than off-the-shelf IDS (e.g., Snort [78] and Bro [65])

when executing on WMN nodes. This solutions is a distributed solution that re-

quires every WMN node to run the proposed lightweight IDS to monitor the entire

network. However, when compared to off-the-shelf IDS, OpenLIDS has even higher

false negative rates because fewer IDS functions are implemented in the detection

engine to conserve more processing and storage resources. Hence, we believe with

ever increasing security threats against such networks, lightweight IDS solutions are

not suitable for intrusion detection in WMN.

The identified inefficiencies have triggered significant research on optimal moni-

toring for intrusion detection in WMN [19,30,46,75,76,83]. The optimal monitoring

has been typically solved by selecting a few nodes (called monitoring nodes) that

execute the same set of IDS rules/functions but each of them is responsible for a

distinct part of the network. The research has shown that these solutions are only

suitable for resourceful mesh networks in which WMN nodes have sufficient resources

for executing a complete set of IDS functions. Otherwise, the IDS will suffer from

high false negative rates because the hardware resources does not allow node to

perform a full IDS [42, 58]. We believe that state-of-the-art solutions proposed for

optimal monitoring in WMN do not consider:

1. Detecting link-based attacks since they are formulated to cover WMN nodes

which is shown [37] to leave some communication links uncovered and conse-

quently some link-based attacks undetected.

2. Energy efficiency in battery-powered WMN [7, 16, 57] where executing IDS

tools imposes higher energy consumption rates to WMN devices [37].

These two inefficiencies in optimal monitoring solutions are our motivating scenarios

in some of research thrusts in this dissertation.
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Recently, in order to decrease the number of nodes responsible for monitoring

network traffic and consequently to reduce the total resource consumption for intru-

sion detection purposes, it was proposed that knowledge about network traffic (i.e.,

traffic-awareness [59]) be used for optimal monitoring for intrusion detection [30,70].

The traffic awareness is particularly helpful in networks with significant constraints

on hardware resources (designated herein as resourceless). Some WMN may fall in

this category and can benefit from such solutions while other WMN have wireless

nodes with more hardware capabilities (designated herein as resourceful), that can

be dedicated to performing full IDS functions [16, 75, 92]. In this research, we show

that traffic-aware IDS solutions proposed for wired network [70] are infeasible for

resource-constrained WMN, however, inspired by the idea proposed in [70], we show

how the idea can be modified and practically used in real-world resource-constrained

WMN. We hypothesize that traffic awareness can also be helpful for resourceful

WMN. More precisely, we are motivated by the facts that traffic-awareness can be

applied to:

1. Resourceless WMN where nodes are not able to perform a complete set of

IDS functions, but distributing IDS functions efficiently along traffic paths will

increase intrusion detection rates while ensuring that nodes are not overloaded

by IDS function [39].

2. Resourceful WMN where number of monitoring nodes, being able to perform

full IDS, decreases because only few traffic paths (consequently few communi-

cation links) have to be monitored [31].

Applying traffic-aware mechanisms to the state-of-the-art IDS solutions in WMN is

another motivating scenario in this research.
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Research has shown [14,16,64] that even static WMN topology and routing paths

are subject to change due to: a) link-quality variations, especially in outdoor deploy-

ments, caused by weather, noise and other radio signals, etc.; b) mobility of clients

and their requested services that result in changes of WMN routing paths; c) node

failure (e.g., running out of power) or node replacement (e.g., administrative rea-

sons) during network lifetime. Thus, traffic-awareness might be a strong assumption

for many WMN applications where traffic paths change very often and consequently

degrade the performance of the IDS solution. Therefore, the traffic knowledge has

to be very accurate and up-to-date in traffic-aware solutions, which is not always

feasible. In fact, a traffic-agnostic IDS solution that monitors all communication

links instead of only few paths is more reliable and also applicable to all types of

WMN, at the price, however, of putting IDS load on all WMN nodes and consuming

more resources for intrusion detection.

As a traffic-agnostic solution for resource-constrained networks, cooperative IDS

have been investigated mainly in the context of ad hoc and sensor networks [41,

49, 50, 52, 54, 62, 81, 84]. In these solutions every node is assigned a few IDS func-

tions to detect attacks based on local observation. A cooperative IDS engine is then

employed for detecting more attacks, based on neighbor information [62,94]. Cooper-

ative mechanisms incur high communication overhead, caused by message exchange

required for intrusion detection, and high detection latency since some of decisions

are made only after receiving other nodes’ reports. Therefore, although cooperative

IDS have proven viable for low-traffic networks, e.g., sensor networks, they are not

practical (i.e., degrades the network performance and delays intrusion response) in

most of WMN applications [1,2,23,59]. Although cooperative IDS has received some

attention from the research community, little is known about the tradeoffs among

different objectives, such as high detection rate, low resource consumption and detec-
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tion latency. Motivated by the fact that cooperative IDS are not practical solutions

for most of WMN applications, another research thrust in this dissertation concen-

trates on proposing non-cooperative IDS where each node, depending on its available

resources, is assigned a subset of IDS functions, i.e., a customized IDS configuration,

and investigates the entire network traffic on the set of communication links it can

monitor (i.e., in its coverage area). This solution does not require message exchange

in order to make intrusion detection decision and eliminates communication overhead

and detection delay.

Finally, although intrusion detection mechanism in WMN have received consid-

erable focus, little attention has been paid to attacks-and-failures against/of IDS

nodes. Undoubtedly, when an IDS node is compromised or faulty, it is unable to

participate in intrusion detection process, thus, the intrusion detection rate will de-

crease and some malicious activities will remain undetected (i.e., high false negative

rates). Therefore, as the last research truth in this dissertation, we investigates the

attack-and-fault tolerance of IDS solutions we propose.

1.2 Dissertation Statement

Intrusion detection in WMN is challenging because a set of requirements and

constraints that need to be considered when proposing an optimal monitoring mech-

anism for IDS. Since the network characteristics vary from one to another WMN

application, an IDS designed for a particular WMN has to consider all WMN char-

acteristics:

• processing power and storage of the nodes

• energy constraints in WMN

• networking services provided by the WMN
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• administrative knowledge (e.g., user traffic patterns)

• vulnerabilities and potential threats

Taking into consideration that each of these characteristics has a significant im-

pact on both regular networking functionality and intrusion detection performance,

it is our belief that the all IDS design and implementation requirements related to

the characteristics above have to be met in optimal monitoring mechanisms proposed

for intrusion detection in WMN.

Our thesis is that the following goals can be achieved by an intrusion detection

system in WMN:

• Practical: An intrusion detection mechanism designed for a specific WMN

application should consider the amount of available resources and also the im-

portance of networking services currently available in the WMN. It is shown in

recent research that most of the proposed IDS solutions cannot be practically

employed by mesh networks due to resource limitations (e.g., mesh node runs

out of memory and crashes after running IDS). Additionally, a desired IDS al-

ways considers all active services and their potential threats instead of focusing

on few specific attacks (i.e., leaved many types of attacks undetected resulting

in high false negative rates). Finally, since WMN is known as a cost-effective

easy-to-deploy networking solution, a practical IDS solution for WMN must

also be an easy-to-deploy mechanism (e.g., no need for extra hardware).

• Efficient: Similar to other processes, intrusion detection process impose mem-

ory and CPU loads to WMN nodes. In addition, research has shown that

some WMN hardware consume more electrical current (energy) as CPU load

increases. Thus, an efficient intrusion detection imposes minimum amount of
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memory and CPU loads (consequently minimum energy consumption) to WMN

nodes.

• Accurate: The most important evaluation metrics for intrusion detection sys-

tems are detection rates and false alarm rates. When designing an IDS for a

WMN application, the attacker model and detection rules must be accurately

defined and evaluated to achieve maximum detection rate and reduce false

alarms.

• Scalable: Some IDS mechanisms perform complex optimization algorithms

to solve the optimal monitoring problem and optimal IDS rule assignment.

Due to limited amount of processing resources on WMN nodes, these solutions

require a central and computationally powerful node (e.g., base station) to

execute complex algorithms. In addition, in order to find optimal solutions for

a given network, the central nodes needs to collect nodes’ information. The

communication overhead imposed by the message exchange between WMN

nodes and the central node increases as network size increases. Hence, it is

very important to propose solutions that impose less communication overheads

or can be implemented in a distributed mode.

• Reliable: A severe and challenging attack against a WMN network could

be an attack against IDS nodes or an attack in which the attacker is already

aware of the intrusion detection mechanism. Unlike the considerable effort in

designing IDS solutions for WMN from the research community, little effort

has been dedicated to the attack-and-fault tolerance of IDS themselves.
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Table 1.1: Taxonomy for Traffic and Resource Aware Intrusion Detection in WMN

Hardware Resources
Resourceless Resourceful

Traffic Awareness
Traffic Agnostic [33, 34], RAPID [36] EEMON [31,37]
Traffic Aware PRIDE [38,39] TRAIN [31]

1.3 Main Contributions

In light of the aforementioned objectives, the contributions of this dissertation

are the following (as listed in Table 1.1):

• PRIDE: Traffic Aware and Resourceless IDS [38, 39]: The fact that

WMN are resource constrained poses significant challenges for intrusion detec-

tion. The main idea in PRIDE is to use the knowledge a security administrator

has about the WMN traffic to distribute IDS functions more efficiently. More

precisely, a security administrator, knowing the routing paths of the traffic in

the WMN, would employ a traffic-aware framework that optimally places IDS

functions on the nodes along the routing paths. The information about the

busiest and most frequently used paths in the WMN is obtained from rout-

ing algorithms (e.g., OLSR) and network monitoring tools (e.g., tcpdump).

PRIDE has no detection latency in making the intrusion detection decision. In

this solution, each node along a routing path, runs a distinct and customized

IDS. This customized IDS (technically a subset of IDS functions) allows re-

source conservation. The combination of distinct IDS along the path allows for

a complete set of IDS functions to be applied to the entire network traffic.

• RAPID: Traffic Agnostic and Resourceless IDS [36]: This research

thrust is motivated by the fact that in many WMN applications traffic paths
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change very often, which consequently degrades the performance of traffic-

aware IDS solutions. For example, routing paths in large scale WMN that

provide networking services for mobile clients are subject to change due to

client mobility. Additionally, WMN topology, especially in outdoor deploy-

ments, may change due to node failures or drastic link-quality changes. Hence,

the traffic knowledge has to be very accurate and up-to-date in traffic-aware so-

lutions, which is not always feasible. In RAPID, we propose a traffic-agnostic

intrusion detection mechanism for resource-constrained WMN that monitors

all communication links, instead of only few paths. Each node, depending on

its available resources, is assigned a subset of IDS functions and investigates

the entire network traffic on the set of communication links it can monitor

(i.e., in its coverage area). This customized IDS allows resource conservation

on resource-constrained WMN nodes and also increases the probability of mon-

itoring a WMN link with multiple distinct IDS functions activated on all WMN

nodes that can monitor the link. It is worth mentioning that for a given net-

work size, the complexity of traffic-agnostic solution is larger than traffic-aware

solution as it needs to find optimal IDS function distribution for all nodes.

• Cooperative IDS: An Optimal Monitoring Mechanism for Coopera-

tive IDS [33, 34]: When WMN nodes are extremely resource-constrained and

the network density is low, RAPID intrusion detection rate degrades because

nodes can only execute few IDS functions and communication links are poorly

covered. Cooperative solutions propose information exchange among WMN

nodes (e.g., their local observation) in order to achieve higher detection rates.

This solution is practical for low traffic WMN where the communication over-

head caused by intrusion detection message exchange does not influence the
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network performance. In this research thrust, we propose a cooperative solu-

tion in which a base station which has knowledge about network (e.g., node

resources, locations, etc.) and security requirements (e.g., maximum permis-

sible delay in reporting an event, minimum network coverage), computes the

optimal distribution of roles specific to cooperative IDS. Our proposed solution

allows execution of sophisticated algorithms that optimize multiple objectives

related to network performance and security effectiveness.

• EEMON: Energy Efficient Traffic Agnostic and Resourceful IDS [31,

37]: This research considers battery-powered WMN where resourceful nodes

are able to perform full IDS configurations. Thus, the optimal monitoring

mechanism for intrusion detection is to select a few monitoring nodes that

can monitor the entire network traffic. However, despite the attention energy

efficient operation in WMN has received there is no provision in the 802.11s

standard for power saving mode operation. This led to the absence of mesh

node hardware that operates in a power saving mode. Given the urgent need

for energy saving, most of the solutions propose duty-cycling which has ad-

verse effects on the IDS operation where monitoring nodes are required to be

on/awake at all times. Consequently, the research challenge/problem we ad-

dress in this work is how to reconcile energy efficient operation, which requires

nodes to be asleep as much as possible, with an effective intrusion detection,

which requires nodes to be awake, to monitor traffic.

• TRAIN: Traffic Aware and Resourceful IDS [31]: As the last class of

IDS we investigate in this research, TRAIN proposes a traffic-aware monitoring

mechanism for battery-powered mesh networks where nodes are resourceful and

able to execute full IDS. In fact, TRAIN studies the effect of traffic-awareness
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on EEMON in which, instead of monitoring all communication links, the mon-

itoring mechanism has to monitor only a few links in the WMN (i.e., those

located on traffic paths).

• AFT-IDS: Attack and Fault Tolerant IDS: Although the design and im-

plementation of specific intrusion detection mechanisms have received consider-

able attention, little effort has been dedicated to the attack-and-fault tolerance

of IDS themselves. In this research thrust, we investigate the attack-and-fault

tolerance of our all intrusion detection systems we have designed and imple-

mented for wireless mesh networks (as listed in Table 1.1). We first survey a

series of administrative mechanisms for attack-and-fault tolerant (AFT) IDS

design and proposes a classification for all AFT mechanisms and then concen-

trates on preventive solutions. These solutions use redundant IDS nodes to

maintain high IDS availability ratio after IDS compromise/failure times. Fi-

nally, we propose redesigned IDS solutions that are attack and fault tolerant

and then show that these mechanisms, at the price of higher resource consump-

tion, increase the attack/fault tolerance level.

1.4 Organization

This dissertation is organized in nine sections. The current section motivates our

work and states the contributions of the research. In Section 2 we review state-of-the-

art solutions and investigate their practicality and effectiveness in different WMN

applications. Section 3 presents the system and security (attacker) models considered

in the entire research for different intrusion detection mechanisms. From Section 4

to Section 7, we introduce the four classes of IDS proposed for different WMN appli-

cations. In Section 4, we present PRIDE, a traffic-aware and resourceless intrusion

detection proposed for resource-constrained WMN. Section 5 introduces RAPID, a
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traffic-agnostic and resourceless intrusion detection inspired by the fact that PRIDE

performance degrades when WMN topology varies frequently and traffic-awareness is

not a realistic assumption. We also present a cooperative IDS for extremely resource-

constrained WMN where a multi-objective optimization algorithm is used to pro-

duce an optimal cooperation model for intrusion detection mechanism. In Section

6, we present EEMON, an energy-efficient intrusion detection proposed for battery-

powered WMN that benefits from memory-rich nodes. EEMON is a traffic-agnostic

and resourceful IDS. Section 7 studies the effect of traffic-awareness on resourceful

class of IDS, e.g., EEMON. Section 8 investigates the attack and fault tolerance of all

of our intrusion detection mechanisms and proposes attack-and-fault tolerant (AFT)

design for each of our proposed IDS.

Finally, in Section 9, we summarize this research, discuss the possibilities of

applying the proposed intrusion detection systems to other networking areas, discuss

future works and conclude the dissertation.
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2. STATE OF THE ART

In this section, we first present background material on wireless mesh network

and their applications. Next, we present related work in the area of intrusion de-

tection systems for different wireless networks (e.g., mesh, sensor and mobile ad hoc

networks) and emphasize the practicality and effectiveness of each solution. It has

been more than a decade from the time first intrusion detection system for wireless ad

hoc networks [97] was published. Since then, a significant amount of research papers

have been presented in the area of intrusion detection in different infrastructure-less

networks. We mainly focus on the solutions proposed for optimal monitoring for

intrusion detection of these networks and do not cover the efforts in proposing intru-

sion detection engines (e.g., detection rules) for a specific type of attack in wireless

networks. Additionally, we survey a series of administrative mechanisms for attack-

and-fault tolerant (AFT) IDS design in different networking areas and show how they

can be applied to AFT-design IDS in WMN. Aside from related work on intrusion

detection, we also review energy efficient mechanisms and evolutionary algorithms

that have been previously applied to wireless mesh network as we will use them as

our optimization tools in designing different class of IDS in this research.

2.1 Background

As the first step towards providing dynamic and cost effective network services in

environments with no network infrastructure, wireless mesh networks are becoming

more popular. As an instance of real WMN implementations the rural wireless

mesh network project in Zambia [6] provides telephony and internet access in some

remote physical areas. Moreover, the lack of cellular network in disaster areas has

convinced researchers [5, 16] to propose mesh networks as a cost-efficient and easy-
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to-deploy solution in order to provide networking services in disaster situations. In

addition to these applications, mesh networks have been deployed in academic and

research centres as test-bed for developing and evaluating networking protocols for

WMN [4,87].

As wireless mesh networks become a popular choice for offering wireless ser-

vices, security challenges grow in importance [9]. The problem of intrusion detection

in wireless mesh networks has received some attention from the research commu-

nity. Some existing solutions address specific attacks (e.g., Man-in-the-Middle and

Wormhole Attacks [29], Selective forwarding [73] and Grayhole attack [74], selfish

routing [90] and scheduling in WMN [48]). Other solutions are general IDS solutions

for mesh networks, which consider memory, processing [42,58], and energy [37] con-

straints. In [58], a set of technical challenges associated with IDS solutions in mesh

networks are presented. The authors provide interesting evaluation results on the

CPU utilization of a Netgear WG302 router and propose an initial design of a mod-

ular IDS but do not evaluate their solution. Performance evaluations of the Netgear

WG302 mesh router, when running off-the-shelf IDS have also been reported [42].

2.2 Decentralized Intrusion Detection Systems

Adopting traditional intrusion detection mechanisms from wired networks is not

practical because: a) WMN lack single vantage points (e.g., gateways in wired net-

works) where network traffic can be inspected; b) WMN hardware has limited re-

sources (e.g., CPU and RAM) to run resource-demanding intrusion detection systems

(IDS). The lack of concentration points where network traffic can be analyzed has

been investigated mainly in the context of MANET and sensor networks. There, IDS

were completely decentralized, and an intrusion detection agent was placed on each

node [97]. These solutions were very inefficient since nodes in the network would
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execute intrusion detection in a redundant manner (e.g., a multi-hop stream was

analyzed multiple times) thus consuming both hardware resources (that could be

allocated to other network functions) and energy.

A recent work [42] investigates challenges in applying off-the-shelf IDS (Snort [78]

and Bro [65]) on mesh devices and proposes a lightweight (i.e., customized) IDS for

WMN. The proposed lightweight IDS requires less memory and decreases the packet

drop rate, when compared to off-the-shelf IDS. These achievements, however, are

at the price of detecting fewer types of network attacks (smaller detection coverage

and higher false negative rates), since most IDS functions are not implemented. In

addition, although deploying same lightweight intrusion detection agent on every

single WMN node may decrease the IDS loads on the nodes, it is still suffer from

inefficient redundant monitoring for multi-hop traffic.

2.3 Optimal Monitoring Mechanisms

The identified inefficiencies in section 2.2 have triggered significant research on

optimal monitoring for intrusion detection. In a optimal monitoring solution, a min-

imum subset of nodes are strategically selected to perform intrusion detection to

monitor the entire network. More recently, several methods have been proposed

for selecting nodes that run intrusion detection functions. While these nodes are

primarily selected based on connectivity in wired networks, in resource constrained

wireless networks the selection criteria is much more complicated. The proposed

methods fall largely in two categories: distributed algorithms and centralized algo-

rithms. Nodes selected by either distributed or centralized methods are referenced

in different papers as: monitoring nodes, cooperators, aggregators, or cluster heads.

In a distributed solution each node decides individually which neighbor is the best

monitor for it. Some distributed solutions use the concept of local elections and vot-
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ing for monitoring node selection (and the cluster of nodes each monitoring is respon-

sible for) [13, 15, 54, 89]. Nodes may either use, as selection criteria, their neighbors’

capability, e.g., residual battery charge [47, 79] or degree of connectivity [46]. Other

solutions employ simple random selection as an election protocol [41,95]. The prob-

lem with this type of algorithms is that the best possible clustering is only optimal

at the local level due to lack of global information. Centralized solutions guaran-

tee that the decision will be made based on more complete information about the

nodes and the network. For this, a powerful central node is required to run more

complicated algorithms. There are several centralized algorithms for selecting the

location of monitoring nodes that run in polynomial time [19, 75, 83]. These algo-

rithms, however, consider only node coverage as an optimization objective. Taking

into account other issues, e.g., amount of information collected by the nodes, total

power consumption, and delay in detection process, may significantly affect the role

assignment. The tradeoffs that centralized and distributed solutions have, and how

these tradeoffs affect network performance and intrusion detection rate will be ex-

plored in this research. Centralized algorithms produce near optimal solutions since

more information is used by the selection algorithm. Distributed algorithms, with

lower time and message complexities, produce locally optimal solutions.

Recently, an optimized solution for selecting monitoring nodes in a multi-radio

multi-channel wireless mesh network is proposed [76]. The problem is formulated as

an ILP and solved with rounding techniques. We will propose an energy efficient

monitoring technique for intrusion detection in battery powered WMN. Since the

number of IDS functions running on the monitoring node is limited by the amount

of available resources, these solutions, in resource-constrained WMN, only detect a

limited number of attacks even though all communication links and network traffic

are monitored. Since the number of services provided byWMN is expected to increase

17



(e.g., delay tolerant services [16], VoIP services [1]), fewer resources will be available

for intrusion detection. Consequently, the intrusion detection rate is expected to

degrade if the WMN nodes are not resourceful. In order to achieve higher detection

rates, some solutions [75,76,83] assume that monitoring nodes are resourceful devices

and are able to perform a complete IDS configuration. Thus, a monitoring node in

a resourceful class of IDS solutions investigates its local data with all IDS functions,

i.e., no need for cooperation. Most of the state-of-art monitoring node solutions [42,

75, 76, 83] assign the same set of IDS functions to monitoring nodes (where each

monitoring node is responsible for a distinct part of the network).

2.4 Cooperative IDS

When considering resource-constrained WMN where nodes are not able to per-

form full IDS, optimal monitoring solutions cause high false negative rates as most

of IDS functions have to be deactivated due to memory limitations. Another class

of IDS solutions proposed for resource-constrained networks relies on cooperation

mechanisms between resourceless nodes. Cooperative IDS solutions (e.g., hierarchi-

cal [33,54,69,84], group-based [49,50,52], or zone-based [81], or neighbor-assisted [67,

94] cooperation) distribute IDS agents [97] on wireless nodes. IDS agents consist of

a local detection engine (to detect attacks based on local observation) and also a

cooperative detection engine (to detect attacks based on local data and neighbors’

reports [62,94]).

The main reasons for using cooperative detection engine are: 1) to achieve higher

detection rates through nodes collaboration [33,34,41,81]; and 2) to reduce the IDS

load on the resource constrained ad hoc nodes [42,58] by distributing IDS functions

to multiple nodes. Cooperative mechanisms, however, incur high communication

overhead since nodes have to exchange their local observations with others run-
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ning different IDS functions. Moreover, waiting to receive neighbors’ data and then

making the decision imposes high latency in cooperative intrusion detection systems.

Therefore, although cooperative IDS have proven viable for low-traffic networks, e.g.,

sensor networks, they are not practical (i.e., degrades the network performance and

delays intrusion response) in WMN with significant traffic [1, 2, 23, 38, 59] caused by

mesh clients and external hosts.

2.5 Traffic Awareness in Intrusion Detection

The fact that neither monitoring node solutions nor cooperative IDS techniques

can practically solve the intrusion detection problem in resource-constraint WMN

motivates researchers to propose non-cooperative IDS solutions for these WMN net-

works. As a traffic-aware approach to overcome resource constraints and increase

the detection rate, TRAM [30] uses mesh routers to monitor multi-channel WMN.

Another research, in wired networks [70], proposed a scheme where each node along

a network path executes a full Bro IDS. To save resources (processing and memory

that would be allocated based on traffic), each node investigates only a portion of

the network traffic. Although we will show that this method cannot be directly ap-

plied to resource-constrained WMN since it assumes that each node performs all IDS

functions, we use the traffic-aware IDS rule distribution in the RL-TW class of IDS.

Traffic-aware solutions considers static resource-constrained WMN where network

topology does not change often (compared to other ad hoc networks). In fact, they

assumes that network information periodically collected by central node reflects the

most recent network topology. However, research has shown [14, 16, 64] that even

static WMN topology and routing paths are subject to change due to link-quality

variations, mobility of clients and their requested services , and node failure (e.g.,

running out of power) during the network lifetime. Hence, traffic awareness might
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be a strong assumption for many WMN applications. Motivated by this fact, traffic-

agnostic IDS solutions are of paramount importance for many WMN applications.

2.6 Attack and Fault Tolerant IDS

Although intrusion detection mechanism in WMN have received considerable

focus, little attention has been paid to attacks-and-failures against/of IDS nodes.

Undoubtedly, when an IDS node is compromised or faulty, it is unable to participate

in intrusion detection process, thus, the intrusion detection rate will decrease and

some malicious activities will remain undetected (i.e., high false negative rates). The

IDS attack/failure problem has received some attention in other computer network-

ing areas [11, 55, 56, 61, 96]. Some of the proposed solutions use redundant/backup

nodes [55] to increase the network/service availability after node compromise/failure

while others concentrate on camouflaging mechanisms [61, 96] to make monitor-

ing/IDS nodes localization [11] very hard for the attacker. Furthermore, few other

solutions propose fast and efficient fault detection mechanisms to detect compromised

or faulty nodes [56] and recover the network from that situation [55,61].

2.7 Optimization Techniques in WMN

This research proposes five different intrusion detection mechanisms that all of

them aim at providing optimal monitoring mechanisms -each for a specific WMN

application (e.g., battery-powered, resource-constrained, etc.) We have used different

optimization tools (e.g., integer linear programming, evolutionary algorithms, and

combinatorial optimization) throughout this dissertation. Moreover, the energy-

efficient monitoring solution presented in Section 6 in motivated by other research in

battery-powered WMN. Thus, this section reviews energy-efficient and evolutionary

algorithms previously used by research community.

Energy-efficient intrusion detection in wireless networks has received some atten-
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tion [47, 71, 82]. As in the case of other efforts in power-constrained WMN, some

power-aware algorithms have been proposed for solar-powered WMN [7,24,57]. Re-

ducing the load on battery was proposed for giving battery recovery time [24, 57].

An on/off controller was proposed theoretically for battery recovery [66]. The idea of

reducing the battery load is proposed to give the battery a recovery time to prolong

its total lifetime. This idea led us to apply a duty-cycling method to WMN nodes

(similar to the on/off controller proposed in [24]) to recover the battery residual

charge [66].

Our proposed cooperative IDS solution, presented in Section 5, is influenced by

recent developments in applying evolutionary algorithms to intrusion detection and

cluster formation in wireless networks. In [72] a grammatical evolution is proposed for

creating an intrusion detection engine in wireless nodes. The authors have extended

their work in [71] to make optimal tradeoffs between the detection rate of intrusion

detection programs and the amount of power they consume. [43] suggests using a ge-

netic algorithm (GA) to form intelligent, energy-efficient clusters in wireless sensor

networks (WSN). A similar approach for data aggregation in wireless sensor network

is presented in [3]. The authors propose a genetic algorithm to find an optimal grid-

based routing with minimum energy dissipation and latency in WSN. Other efforts

in data aggregation and event detection in wireless sensor network employ neural

network to find more efficient aggregation paths and to predict sensor outputs accu-

rately. In [68] the authors employ a neural network function to predict the changes in

sensor outputs. Such a signal change detection, as authors claim, could improve data

compression and consequently enhance the network reliability and security. In order

to eliminate redundant data and improve the aggregation accuracy, [86] proposes a

neural network-based method for data aggregation in wireless sensor network. The

authors show how distributing input layer and hidden layer neurons to cluster mem-
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bers and cluster heads, respectively, would improve data aggregation and reduce the

energy consumed for event reporting to the base station.
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3. SYSTEM AND SECURITY MODELS

This section presents the system and security (attacker) models for all solutions

proposed in this research and highlight their similarities and differences. Depending

on the WMN application we consider, the system model, the amount of available

resources, traffic patterns, client accessibility, etc. would change. Moreover, the

attacker model in each class of IDS solutions depends on the WMN application and

also the system model. This section uses “mesh router” and “node” interchangeably

and refers to a “WMN client” as “client.”

3.1 System Model

The WMN system we consider in this research is as specified by the IEEE 802.11s

WLAN Mesh Standard [40]. The system, as shown in Figure 3.1, consists of: i)

mesh access points (MAP) that connect WMN clients to the mesh network and

external hosts (i.e., Internet); ii) a wireless mesh backbone consisting of relay nodes,

also known as mesh points (MP); and iii) gateways that connect the mesh network

(internal hosts) to the Internet (external hosts). The network traffic, as shown in

Figure 3.1, is either between WMN clients and external hosts (i.e., external traffic)

or between two internal hosts (clients or local servers) inside the mesh network (i.e.,

internal traffic). The system proposed for PRIDE [38] and RAPID [36] considers

resourceless AC-powered nodes. EEMON [37] and TRAIN [31], on the other hand,

assume resourceful battery-powered nodes. All of these systems, however, assume

that the WMN is connected to the Internet through more powerful gateway routers

that do not have energy constraints (AC powered). Some nodes in the WMN operate

in a duty-cycled manner to save energy.

Each router in a WMN has some local information (e.g., its communication load
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Figure 3.1: A typical mesh network with internal and external traffic flows.

and its residual energy, processing/memory loads, connectivity and traffic informa-

tion) and periodically sends it, via a middleware and secure communication links,

to the base station. For both EEMON and TRAIN, used in battery-powered WMN

applications, each node sends its communication load and residual energy to the

base station. In TRAIN (i.e., a traffic-aware solutions), however, traffic information

is also sent to the base station. WMN nodes in PRIDE and RAPID send their

processing/memory loads and connectivity, however, the traffic information also has

to be sent to the base station in PRIDE. Based on the collected information, the

base station assigns intrusion detection tasks to the nodes. The role of each node

(i.e., performing what IDS functions) is securely broadcast to the network using the

energy-efficient flooding protocol presented in [35].
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3.1.1 WMN Topology

Throughout this research, we evaluate our proposed intrusion detection systems

using real-world WMN and simulations. In both scenarios, WMN topologies are

based on IEEE 802,11s WLAN Mesh Standard [40] and consist of at least one MAP,

one Gateway, and one MP. More precisely, every random topology that is generated

in simulations is first investigated for following the aforementioned standard rules,

if verified, it will be considered as a valid WMN topology and used for performance

evaluations. For example, a disconnected graph created randomly will not be consid-

ered as a valid WMN topology in our simulation. Moreover, the radio range, network

density, and number of paths in each WMN are chosen carefully and based on our

real-world experiments. More details about number of random topologies for each

experiment and their characteristics for each proposed IDS mechanism are explained

in details in each section of this dissertation.

3.2 Intrusion Detection Engine

The IDS we consider in this research (i.e., for PRIDE, RAPID, EEMON, and

TRAIN) is Snort [78]. We chose Snort because it is a mainstream off-the-shelf IDS

that consumes less resources than other IDS, e.g., Bro (as was recently shown [42]).

Moreover, Snort is readily available for mesh hardware, as part of the OpenWrt (i.e.,

a Linux distribution for embedded networking devices) development tree. Snort can

be configured for different levels of intrusion detection. More complex actions per-

formed by the detection engine (e.g., number of active rule sets) require more system

resources. Therefore, the configuration of the detection engine provides opportunities

to trade off intrusion detection rate for resource availability.

Resourceful IDS solutions, EEMON and TRAIN, use two configurations for the

detection engine: complete (CP-DS) and lightweight (LW-DS). IN CP-DS configu-
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ration, all Snort detection rules are activated (same as Snort default configuration),

while a few of them are activated in LW-DS configuration. The detection rules in

CP-DS are configured to investigate all traffic flows, while LW-DS detection engine

investigate only local clients’ traffic flows. EEMON and TRAIN assign monitoring

or non-monitoring roles to nodes. A monitoring node runs a complete IDS configu-

ration (CP-DS), while a non-monitoring node runs a lightweight IDS configuration

(LW-DS). In fact, non-monitoring nodes only monitor their clients’ activities and

do not monitor WMN backbone traffic. A monitoring node is always awake, while

a non-monitoring node executes with a duty-cycle. The gateway is always a mon-

itoring node. Nodes in resourceless IDS, PRIDE and RAPID, use customized IDS

configuration (i.e., customized to perform a few IDS functions to no function at all)

for the detection engine.

From detection engine perspective, intrusion detection systems can be catego-

rized in three classes; a) anomaly-based IDS, b) misuse-based IDS, and c) hybrid

IDS, which is a combination of the former two. The proposed intrusion detection

system might seem to detect only known attacks since Snort is a signature-based

detection engine. However, unknown attacks are also detected if the intrusion de-

tection engine employs anomaly-based inspection (as claimed on the Snort Website

“http://ww.snort.org”). Another example of an anomaly-based engine employed

by an off-the-shelf IDS is Bro [65], also ported to OpenWrt in [42]. Bro is able to

discern traffic anomalies and to detect unknown attacks. Thus, our proposed solu-

tions are not limited to detecting only known attacks, but also stealth attack with

appropriate detection engine. We also emphasize here that our contribution in this

research is not to propose a new intrusion detection rule, but to propose optimal

approaches of applying proposed intrusion detection rules and engines to different

WMN applications.
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Table 3.1: Attacker models
Attacker Target

Insider¶ Outsider Single-hop Multi-hop

Traffic Agnostic
Resourceless RAPID X X X X
Resourceful EEMON X X X X

Traffic Aware
Resourceless PRIDE X ×· × X
Resourceful TRAIN X ×· × X

¶ A malicious client or a compromised router.
· Only external hosts, as a type of outsider attackers, are considered.
Unauthorized clients are not considered.

3.3 Attacker Models

Table 3.1 summarizes the types of attacks considered in our IDS solutions. An

Insider attacker is either a malicious client connected to a MAP or a compromised

router. As shown in Table 3.1, all four IDS classes address insider attackers. An

Outsider attacker is either an external host (connected to WMN through gateways)

or an unauthorized client not connected to WMN. For example, a malicious external

host communicating with a mesh client is considered as an outsider attacker. Fur-

thermore, a malicious unauthorized wireless node physically located in the WMN

coverage area, but not associated to a WMN MAP, is also considered as an outsider

attacker. As depicted in Table 3.1, PRIDE and TRAIN do not consider unauthorized

clients. When evaluating the performance of these IDS solutions, we will show how

this type of attack impacts the performance (i.e., intrusion detection rates) of these

traffic-aware solutions.

Depending on the attacker type, i.e., insider or outsider, the target can be either

single-hop or multi-hop. When considering single-hop targets, the attack can be

either a node-based attack (targeting a WMN router or a host) or a link-based attack

(targeting a communication link). A multi-hop attack, however, is always against

hosts. An insider attacker, a malicious client or a compromised router can launch
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attack against both single-hop or multi-hop targets. When considering outsider

attackers, external hosts can only launch multi-hop attacks (against an internal host)

while unauthorized nodes can only launch attacks against single-hop nodes or links.

As shown in Table 3.1, TRAIN and PRIDE, as two traffic-aware solutions that

monitor traffic paths, do not consider single-hop attacks. However, EEMON and

RAPID, as two RF-TG solutions, consider both multi-hop and single-hop (i.e., node-

based and link-based) attacks.

In order to detect both node-based and link-based attacks, EEMON and RAPID’s

novel approach for monitoring node selection is to monitor “wireless links” and not

“nodes,” as existing solutions [75, 83]. The link coverage detects attacks that affect

functionality of communication links (e.g., jamming, wormhole, selective forwarding,

etc.). Consider a linear topology of four nodes (as shown in Figure 3.2). They are in

order ABCD and each node is connected to nodes that are physically adjacent. State

of art solutions that monitor nodes (i.e., node coverage approach), may select nodes

A and D as monitors (which cover all the nodes). However, this monitoring solution

cannot cover the communication link between B and C. For example, if node C in

Figure 3.2 is compromised and randomly drops some packets traveling from B to D

(a single-hop link-based attack), node C will never be detected by monitors at A and

D, unless there is a cooperation mechanism between them through another path. The

link coverage approach can also improve the performance of traffic-aware solutions

(e.g., TRAIN and PRIDE), in addition to traffic-agnostic solutions performance. For

example, when selecting nodes to monitor a traffic path, the monitoring node can be

chosen from nodes not necessarily located on the path but also those able to cover

at least one link on the path. Therefore, we propose the link coverage approach for

RAPID, EEMON and TRAIN and expect to achieve higher intrusion detection rate

than node coverage approaches.
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Figure 3.2: An example of selective forwarding attack.

Table 3.2: Detectability of different attacks in our proposed solutions.

Traffic Agnostic Traffic Aware
Resourceless Resourcefuls Resourceless Resourceful

Single-hop
Severe if covered by Only at Monitors single-hop attacks Only at Monitors
Normal detecting modules Detectable are not considered Detectable

Multi-hop
Severe if covered by

Detectable
if covered by

Detectable
Normal detecting modules detecting modules

Since the detection engine used by EEMON/TRAIN has two different configura-

tions, the attacks can be categorized into two different severity levels: one detectable

by the LW-DS detection engine (i.e., Normal attack), and one by the CP-DS detec-

tion engine (i.e., Severe attack). Table 3.2 summarizes the detectability of these types

of attacks in state-of-the-art solutions and the expected detectability in EEMON and

TRAIN. Resourceless solutions, e.g., RAPID and PRIDE, that use customized IDS

configuration can detect an attack only if its corresponding detection module is acti-

vated in the customized IDS. Hence, regardless of the attack’s severity level, there is

no certainty as to whether the attack will be detected by the resourceless solutions

or not. Resourceful solutions (e.g., EEMON and TRAIN), on the other hand, are

expected to detect Normal attacks since they are detectable by LW-DS detection

engines performed by non-monitors. Obviously, CP-DS detection engines performed
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by monitoring nodes can also detect Normal attacks. Severe attacks can be only de-

tected by monitoring nodes running CP-DS engines. Hence, as depicted in Table 3.2,

we expect Single-hop Severe attacks to be detectable if launched in the coverage area

of a monitoring node. Multi-hop Severe attacks are expected to be detectable by

resourceful solutions due to the fact that at least one monitoring node on each path

performs CP-DS detection engine.
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4. RESOURCELESS AND TRAFFIC-AWARE IDS

In this section∗, we propose PRIDE, a PRactical Intrusion DEtection system for

resource constrained WMN. The main idea in this section is to use the knowledge a

security administrator has about the WMN traffic to distribute IDS functions more

efficiently. More precisely, a security administrator, knowing the routing paths of

the traffic in the WMN, would employ a traffic-aware framework that optimally

places IDS functions on the nodes along the routing paths. For example, the idea of

interference-load aware routing metric [59] in WMN, aims to route the mesh traffic

through congestion free areas and provides a traffic-aware framework for the security

administrator. The information about the busiest and most frequently used paths in

the WMN is obtained from routing algorithms (e.g., OLSR) and network monitoring

tools (e.g., tcpdump).

A related idea for traffic-aware IDS deployments in wired networks was recently

proposed [70], where different IDS responsibilities (i.e., different portions of network

traffic) are assigned to each node along the traffic paths while ensuring that no node

is overloaded. However, as we will show in Section 4.1, [70] cannot be directly ap-

plied to WMN since it assumes that each node performs all IDS functions - infeasible

for resource constrained mesh devices. Our proposed solution has no communication

overhead (message exchange for cooperative decision making), has no detection la-

tency (i.e., it provides real-time intrusion detection, in contrast to cooperative IDS)

and it has a higher detection rate, when compared with traditional monitoring node

∗Parts of this section are reprinted with permission from “PRIDE: Practical Intrusion Detection
in Resource Constrained Wireless Mesh Networks” by Amin Hassanzadeh, Zhaoyan Xu, Radu
Stoleru, Guofei Gu, and Michalis Polychronakis, In Proceedings of 15th International Conference on
Information and Communications Security (ICICS), pages 213-228, Beijing, China, 2013, Copyright
2013 by Springer.
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solutions. In our proposed solution, each node along a routing path, runs a distinct

and customized IDS. This customized IDS (technically a subset of IDS functions)

allows resource conservation. The combination of distinct IDS along the path allows

for a complete set of IDS functions to be applied to the entire network traffic.

4.1 Motivation and Background

The research presented in this section is motivated by the challenges we faced

when we attempted to deploy a common off-the-shelf IDS with a full configuration

(i.e., configured to detect the largest set of attacks) on existing WMN router hard-

ware. When loading Snort [78] with its full configuration on a Netgear WNDR3700

router, the router crashes because the RAM is not sufficiently large. In the remain-

ing part of this section we describe in detail the hardware capabilities of our mesh

routers, background information on Snort, and experimental results that illustrate

how different Snort configurations of increasing complexity and detection capabilities

impact the memory load of the router.

The Netgear WNDR3700 router has an Atheros AR7161 processor running at

680MHz, 64MB RAM, 8MB flash memory. It has two wireless cards with Atheros

AR9223-bgn and Atheros AR9220-an chipsets, working on 2.4GHz and 5GHz, respec-

tively. The operating system on the router is the most recent release of OpenWrt

(i.e., Backfire 10.03.1), a Linux distribution for embedded networking devices, with

kernel version 2.6.32.10. We emphasize that our mesh hardware is more powerful

(in terms of processing and memory resources) than devices used in some existing

real world deployments [1, 4, 6]. Although in this research we focus mainly on Net-

gear WNDR3700 router hardware, later in this section we present our experience

and results with more sophisticated and expensive mesh hardware, e.g., Meshlium

Xtreme [53] which has a 500MHz CPU, 256MB RAM, 8/16/32GB disk memory and
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WiFi, Zigbee, and GPRS wireless interfaces.

The router runs Snort [78], an off-the-shelf intrusion detection system. Snort’s

detection engine is based on thousands of detection rules (categorized in multiple

rule files, corresponding to known network threats) and several preprocessors. All

files are listed in “snort.conf”, a global configuration file. Upon activating each rule

file in “snort.conf” and running Snort, all detection rules present in the rule file are

loaded in memory and are used for packet investigation. A full Snort configuration

activates all preprocessors and rule files. A customized configuration activates only

some preprocessors and rule files (i.e., IDS functions), thus, the network traffic is

analyzed by fewer detection functions.

The intrusion detection in Snort is performed by packet-level rule matching.

Each packet is preprocessed, following preprocessing directives for extracting pos-

sible plain-text content. The preprocessed packet is then inspected by Snort detec-

tion rules, to expose whether it is an intrusion attempt or not. Preprocessors parse

network packets and provide abstract data for some high-level detection rules in the

rule files. It is important to note that a rule file that contains high-level detection

rules has preprocessor dependency. This dependency means that the rule file cannot

be activated (i.e., Snort generates an error message and stops) unless all the prepro-

cessors required by its rules (usually one or two preprocessors) are also activated.

From here on, we refer to a Snort rule file as an “IDS function.”

To understand how different Snort configurations impact the memory load on

the Netgear WNDR3700 and Meshlium Xtreme, we performed several experiments.

Running Snort causes two types of memory loads to the router: 1) static, the initial

load imposed by packet capturing modules, preprocessors, detection rules, etc. when

Snort is loaded; 2) dynamic, the variable load imposed by stateful preprocessors (e.g.,

Stream5 ) which is a function of the traffic load and some configuration parameters.
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Figure 4.1: The effect of Snort configuration on memory consumption.

We first investigate the static memory load of Snort on the routers when no net-

work traffic is applied. We have observed that a typical memory load on a Netgear

WNDR3700 router is ∼30% and on the Meshlium Xtreme router it is ∼60%. This

accounts for OS firmware and various services (OLSR routing, DHCP, etc.). With-

out preprocessors or rule files active, loading Snort on Netgear WNDR3700 increases

memory load to 43% (“Snort(S)” in Figure 4.1). Memory load increases to 46% if

preprocessor Stream5 is activated (“S+str5” in Figure 4.1), and to 48% if preproces-

sors http-inspect, smtp and ftp-telnet are also activated (“S+4Pre” in Figure 4.1).

The memory load of a rule file is a function of the number of detection rules

in it and the pattern matching algorithm Snort uses (e.g., Aho-Corasick). We

note here that in this research, we use the default search method of Snort, i.e.,

ac-bnfa-nq, as we experimentally observed that it consumes the minimum memory

among all low memory search methods, e.g., lowmem. For example, using ac-bnfa-nq

search method, “dos.rules” which has 20 detection rules and requires the Stream5

preprocessor, increases memory load to 47% (“S+dos” in Figure 4.1). A very large

file such as “spyware-put” (“SpyConf” in Figure 4.1) which contains ∼1,000 rule
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files increases the RAM load to 70%. The memory load caused by activating a set

of rule files also depends on their sizes. For example, activating 20 small rule files

(i.e., 10 rules per file on average) and the Stream5 preprocessor (which the rules

require) increases memory load to 49%. Activating two large rule files, “spyware-

put.rules” and “backdoor.rules” (“SpyBack” in Figure 4.1) increases memory load

to 98%. We have experimentally verified that adding a few small rule files on top

of “spyware-put.rules” and “backdoor.rules” causes the router to crash. We have

observed a similarly overloaded operation for the Meshlium Xtreme router, where a

full configuration Snort increases the memory load to 98.5%, leaving almost no room

for processes/services beyond stock deployment. We also emphasize here the rapid

increase in the number of Snort rule files (i.e., currently about 70 files) and their

sizes as functions of the number of threats. Some rules might not be needed in a

particular setting, but conversely, that setting might require many more rules of some

other kind (e.g., custom signatures for suspicious or blacklisted domains, which can

increase significantly).

Dynamic memory load, imposed by Stream5 when tracking traffic sessions, is the

other considerable type of Snort memory load since almost all rule files require this

preprocessor. Two configuration parameters of Stream5, max tcp and memcap, spec-

ify the maximum simultaneous TCP sessions it tracks (similarly, max udp, max icmp,

and max ip) and the maximum buffer size for TCP packet storage, respectively. We

have experimentally observed that the value of max tcp affects both dynamic and

static memory loads. When using the Snort version available on the OpenWrt devel-

opment tree, the default configuration has max tcp=8192. Choosing max tcp=100,000,

imposes ∼10% more static load than default “S+Str5” to the routers. Moreover, this

value allows more simultaneous TCP sessions to be inspected which also imposes

more dynamic load and may cause the router to crash at high traffic rates (note: we
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Figure 4.2: The effect of Snort configuration and traffic rates on CPU utilization.

observed that for max tcp≥150,000 the router crashes if a simple HTTP request is

sent using the Linux wget tool). Throughout this research, we use the default setting,

i.e., max tcp=8192, and consider the maximum dynamic load this setting imposes

on the router. Hence, from here on, the total memory load of Stream5 is assumed to

be its static load plus its maximum allowable dynamic load. It is worth mentioning

that although hardware improves, also transmission speeds get faster, the amount of

traffic that needs to be inspected grows, and the complexity of the applied processing

increases. Hence, the fundamental challenge for a resource-limited node to handle

ever-increasing traffic still remains.

In addition to RAM, processing power (CPU) is also limited on current mesh

hardware. Consequently, investigating the impact of Snort IDS on this limited re-

source might seem worthwhile. Experimentally we have found that network traffic,

actually, has a much larger influence on CPU utilization than executing Snort IDS

functions. Our experimental results are depicted in Figure 4.2 where we enabled

tcp track and icmp track in Stream5 and used hping3 to generate TCP and ICMP

traffic. As shown, for an extremely high traffic rate, both lightweight and heavy Snort

configurations impose more than 95% CPU utilization. Similar with our result, it
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was shown [42] that even a lightweight IDS exhausted the CPU when traffic rate

was extremely high. However, as shown in Figure 4.2, “S+dos”, a lightweight IDS

configuration, imposes less processing load than “SpyBack”, a heavyweight IDS con-

figuration, when the traffic rate is not high. Consequently, our main concern in this

research is the reduction of RAM utilization as we have experimentally observed that

it also improves the CPU utilization in regular traffic rates (as shown in Figure 4.2).

4.2 Preliminaries and Problem Formulation

In this section, we formulate the optimal distribution of IDS functions as an

optimization problem and we propose a method to solve it. Although Snort is our

target IDS (and present a problem formulation that uses Snort terminology), we

believe that other IDS can be analyzed similarly, if their internals and functionality

are publicly available. For example, in Di-Sec [88], a security framework recently

proposed for wireless sensor networks, the sub-components of M-Core can be modeled

as Snort preprocessors while the detection and defense modules play the same roles

as Snort rule files.

4.2.1 IDS Function Distribution

We denote the number of nodes and number of links in the wireless mesh network

by N and Q, respectively. Considering the information collected from the nodes, we

denote the number of nodes and links actively contributing in traffic routing by n

(n ≤ N) and q (q ≤ Q), respectively. Thus, we model the wireless mesh network

(i.e., after removing idle nodes/links) as a reduced graph G = {V,E}, where V is the

set of nodes {v1, v2, · · · , vn}, and E is the set of links {e1, e2, · · · , eq}. An example

of a reduced graph, in Figure 4.3, V = {v1, v2, ..., v9} and E = {e1, e2, ..., e8}.

We denote the set of routing paths for the network traffic by P = {p1, p2, · · · , pl},

where set Pi = {vj | vj is located in pi} and Pi ⊆ V . In Figure 4.3 two paths are
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present: p1 and p2. Additionally, we denote by matrix Tl×n the mapping between

nodes and paths, i.e., tij = 1 iff node j is located on path i. For the example shown

in Figure 4.3, the matrix T is as follows:

T =

1 1 1 1 1 0 0 0 0

0 0 1 0 0 1 1 1 1

 .

We denote the set of all IDS functions by F = {fk | fk is a set of detection rules}

with size K (i.e., |F| = K). We denote the set of IDS preprocessors by C =

{cr |∃ fk ∈ F that requires cr} of size R (i.e., |C| = R). For the example in Fig-

ure 4.3, F = {f1, f2, ..., f7} and C = {c1, c2}. The dependency between IDS functions

and preprocessors is stored in matrix DK×R where dkr = 1 means that activation of

function fk requires the activation of preprocessor cr. For the example shown in

Figure 4.3, the matrix DT is as follows:

DT =

1 1 1 1 0 0 0

0 0 0 0 1 1 1

 .

Let w : {F , C} −→ [0, 1] be a cost function that assigns memory load wf
k and

wc
r to IDS function fk and IDS preprocessor cr, respectively. Consequently, vectors

W f = [wf
1 , w

f
2 , · · · , w

f
K ] and W c = [wc

1, w
c
2, · · · , wc

R] represent memory loads for the

IDS functions in F and for the IDS preprocessors in C, respectively (we remark

that wc
Stream5 is the summation of its static load and its maximum dynamic load).

We denote by B = [b1, b2, ..., bn] the base memory load (i.e., without IDS functions

loaded) of all nodes.

Finally, we use vector Λ = [λ1, λ2, · · · , λn] (also called Memory Threshold) to rep-

resent the maximum allowable memory load after IDS functions are loaded. Memory
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Figure 4.3: An example graph for a mesh network, consisting of 9 nodes and 8 links.
As shown, two paths p1 and p2 are present. The nodes run different configurations of
Snort, e.g., node v5 runs Snort functions f3, f4 and f5, which require preprocessors
c1 and c2.

threshold is an important parameter. It is typically set by a network administrator

based on the number of active services in the mesh network and the memory space

they require.

Definition 1 An IDS Function Distribution, A = {(vj,Fj, Cj)| vj ∈ V, Fj ⊆

F , and Cj ⊆ C}, is a distribution of IDS functions in the network, such that node vj

only executes IDS functions Fj and their corresponding preprocessors Cj.

For example, the IDS Function Distribution in Figure 4.3 is:

A = {(v1, {f2, f7}, {c1, c2}), (v2, {f6}, {c2}), ..., (v9, {f6, f7}, {c2})}.

We represent an IDS Function Distribution by matrices Xn×K and Zn×R, corre-

sponding to IDS functions and preprocessors active on each node, respectively. For

X, xjk = 1 iff IDS function fk is activated on node vj. For Z, zjr = 1 iff preprocessor

cr is activated on node vj. Matrices X and Z for the network in Figure 4.3 are:
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X =



0 1 0 0 0 0 1

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1



, Z =



1 1

0 1

1 0

0 0

1 1

1 0

1 0

1 1

0 1



.

Considering the above mathematical formalism, the dependencies between IDS

functions and preprocessors can now be represented more compactly as:

zjr =

 1 if (X · D)jr ≥ 1

0 if (X · D)jr = 0
(4.1)

Equation 4.1 indicates that preprocessor cr must be activated on node vj if there

exists at least an IDS function fk requiring cr, assigned to it. It is important to note

that zjr = min{1,ΣK
k=1xjkdkr} and zjr ∈ {0, 1}.

After the IDS Function Distribution, the total memory load for node vj becomes

Lj = bj + Σcr∈Cjw
c
r + Σfk∈Fj

wf
k where wc

r ∈ W c and wf
k ∈ W f . It is important to

mention that an IDS Function Distribution in which Lj > λj, i.e., the load Lj is

greater than threshold λj, for any node vj, is deemed infeasible.

From a network security administrator point of view, we aim for an IDS Function

Distribution where all IDS functions are activated on each path. This means that

the entire network traffic will be investigated by all IDS functions (albeit at different
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times), eliminating the possibility of false negatives.

Definition 2 For a given path pi and its corresponding set of nodes Pi, Coverage

Ratio (CR) is defined as CRi = |Ui|/K, where Ui =
∪

vj∈Pi
Fj is the set of IDS

functions assigned to nodes along the path. Path pi is called covered if CRi = 1

(Ui = F), i.e., for ∀fk ∈ F , ∃ vj assigned by Fj such that fk ∈ Fj.

Considering the effect of IDS Function Distribution on the memory load of each

node and the desired distribution of IDS functions to the nodes, in order to achieve

higher intrusion detection rate, we define Path Coverage Problem (PCP) as follows:

Definition 3 Path Coverage Problem (PCP)

Given G = {V,E}, a set of paths P in WMN, the dependency matrix D, and vectors

W f and W c, find a distribution A = {(vj,Fj, Cj)| vj ∈ V and Fj ⊆ Fand Cj ⊆ C},

such that 1
l

∑
pi∈P CRi is maximized and Lj ≤ λj ∀vj ∈ V .

PCP is an optimization problem which has the objective of maximizing the av-

erage coverage ratio, while guaranteeing that memory loads on nodes are below a

memory threshold. Although a lower memory threshold λj allows more additional

processes to execute on the mesh router, it makes solving PCP much more difficult.

4.2.2 Optimal IDS Function Distribution

We formulate PCP as an Integer Linear Program (ILP) that can be solved by an

ILP solver. The objective function is maximizing the average coverage ratio of all

paths. Additionally, preprocessor dependency and memory threshold are considered

as ILP constraints. More specifically, the ILP formulation is as follows:
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maximize
1

l
(1T · T)(X · 1) (4.2)

subject to: BT + Z ·W cT + X ·W f T ≤ ΛT (4.3)

(T · X)ik ≤ 1 , ∀i, k (4.4)

zjr ≥
(X · D)jr

K
,∀j, r (4.5)

zjr ≤ (X · D)jr , ∀j, r (4.6)

xjk, zjr ∈ {0, 1} , ∀j, k, r (4.7)

To better understand the mathematical formulation of the objective function,

one can expand it as 1
l
Σl

i=1Σ
n
j=1Σ

K
k=1tijxjk where tij = 1 means node vj is located on

path pi and xjk = 1 means node vj is assigned by function fk. In other words, the

average CR has to be maximized.

Constraint 4.3 limits the memory load on every node vj, i.e., Σ
R
r=1zjrw

c
r+ΣK

k=1xjkw
f
k ,

to be less than its memory threshold λj. Most importantly, (to ensure that we can

formulate PCP as a linear program), this constraint computes the total memory load

as the sum of individual memory loads of preprocessors and rule files. Obviously,

one needs to investigate if this linearity assumption always holds (we will discuss

this in the next section). Constraint 4.4 ensures that only one copy of each function

is assigned to the nodes along each path. Constraints 4.5 and 4.6 ensure that if an

IDS function is assigned to a node, its required preprocessors are also assigned to

the node. As presented in Equation 4.1, zjr = 1 if at least one of the IDS func-

tions assigned to node vj requires preprocessor cr, otherwise zjr = 0. The maximum

number of functions that require a specific preprocessor is at most K. Hence, Con-

straint 4.5 ensures that 0 < zjr ≤ 1 if there is a function assigned to node vj that
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requires preprocessor cr. On the other hand, if none of the functions assigned to

node vj requires preprocessor cr, then Constraint 4.6 enforces zjr to be zero. Taking

into account Constraint 4.7, i.e., zjr has to be either 0 or 1, Constraint 4.5 enforces

zjr = 1 if preprocessor r is required on node j, otherwise, Constraint 4.6 enforces

zjr = 0.

4.3 PRIDE: Challenges and Solutions

Considering the aforementioned ILP formulation for PCP, we investigated two

major challenges that impact the accuracy and time complexity of a solution. First,

we experimentally observed that the total memory load of multiple Snort rule files

is generally linear (i.e., it is equal to the sum of their individual memory loads), but

not always (e.g., for some small rule files and certain rule types). This influences the

accuracy of our proposed model for calculating the total memory load on each node

(i.e., Challenge 1). Next, one can observe that the complexity of ILP depends on

the number of paths in the network, the path lengths, the number of IDS functions,

the number of preprocessors, and the memory threshold. For example, considering

the number of Snort preprocessors (i.e., more than 20) and the number of Snort

rule files (i.e., more than 60), for single path pi, the number of ILP constraints

grows to more than 1400× |Pi|, where |Pi| is the path length. Additionally, a lower

memory threshold λj increases the number of infeasible solutions, thus requiring

more iterations for the ILP solver. Hence, the ILP performance degrades as network

size increases or memory threshold decreases (i.e., Challenge 2). In this section,

we investigate the aforementioned challenges and propose techniques to overcome

them. Finally, we present PRIDE protocol that distributes IDS functions to the

nodes accurately and fast (i.e., practical).
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4.3.1 Memory Consumption Modeling

Experimentally, we observed that when activating multiple small rule files (i.e.,

containing at most 50 detection rules), Snort memory load is much less than the

sum of individual memory loads. However, we observed that when multiple large

rule files (i.e., containing more than 250 detection rules) were activated, the memory

load is closer to the sum of the rule file’s individual memory loads. When a rule file is

activated, depending on: 1) the number of detection rules it has; 2) the preprocessors

it activates (if already not activated); and 3) the Snort search method, a different

amount of memory load will be imposed to the node. In this subsection we investigate

how the aforementioned three factors impact our assumption about memory load

linearity (i.e., Constraint 4.3).

Every Snort detection rule has the following structure:

[alert_type] [protocol] [src][src_port] ->

[dst][dst_port]:[Options][ContentMetaData][Operations].

The string patterns of each rule are organized in an automaton, which has a

tree-like structure, thus, we expect a sub-linear behavior when activating new rules.

Besides the strings, Snort keeps additional information per rule in its internal data

structures, and this increases linearly with the number of rules. The metadata for

each rule usually consumes more memory than the strings contained in the rule

(most strings are small, and many rules do not even have string patterns). In order

to investigate the linearity of memory load, we put all detection rules in a single rule

file and then measured the memory load for different number of detection rules being

enabled. Since in addition to preprocessor dependency, there exists a dependency

between detection rules of each Snort rule file, we had to remove all dependencies

(i.e., dependency relaxation) so that we could arbitrarily add/delete rules and change
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the size of the file. For this, we removed all keywords that appear in the options.

Algorithm 1 presents how the dependency relaxation is implemented.

Algorithm 1 Dependency Relaxation

1: Pr = {set of all preproc. directives}

2: Rr = {set of all Snort detection rules}

3: while ∃pr ∈ Pr do

4: Kr ← GET KEY S(pr)

5: end while

6: for ∀r ∈ Rr do

7: Hr ← GET KEY S(r)

8: for ∀h ∈ Hr do

9: if h ∈ Kr then

10: RLX(r, h)

11: for ∃r′ ̸= r and r′ ◃ r do

12: RLX(r, h, r′)

13: end for

14: end if

15: end for

16: end for

Given the set of Snort preprocessing directives and Snort detection rules, Algo-

rithm 1 first creates two sets Pr and Rr (Lines 1, 2). Next, for each preprocessing di-

rective in Pr, the Algorithm extracts a set of keys that are keywords dependent to the

preprocessing directive (Lines 3-5). The extraction is based on our intimate/expert
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knowledge about preprocessing directives. Next, for each rule in Rr it extracts all

keywords seen in the rule (Line 7). Since one rule may depend on several preprocess-

ing directives, the Algorithm examines each extracted keyword (Line 8) and checks

whether it exists in set Kr or not. If it exists, the Algorithm removes the keyword

from the rule (Lines 9, 10). The Algorithm also examines if any of the other rules

have a dependency on the current rule r and its keyword h (Line 11). If so, the

keyword will be also removed from rule r′ (Line 12).

After all dependencies are removed, we can arbitrarily enable/disable each de-

tection rule in the single large file. We group the rules in two ways: i) by simply

concatenating their files (”regular” case) and ii) by shuffling them into the single

file (”shuffled” case) and plot Snort’s memory consumption as we increase the num-

ber of loaded rules in each case. We performed the experiment for the ac-bnfa-nq

and lowmem search methods. Figures 4.4(a) and 4.4(b) depict the results for the

ac-bnfa-nq and lowmem search methods, respectively. Thus, irrespective of rule or-

der and search method, we observe a linear behavior (consistent to our intuition, as

explained above) when adding blocks of 250 rules to the set of active rules. Although

the string patterns from all rules are organized in a single automaton for fast string

searching (which alone would result to a sub-linear memory consumption pattern)

the observed linear behavior is due to other dominant rule-specific data that increase

with the number of rules. Such data includes the descriptive message to be printed

in the alert, reference numbers and identification codes, numerous other keywords

like rawbytes, byte test, and pcre, as well as other rule metadata. We use these

findings to address the non-linearity of memory load for the variable-size rule files in

the following subsection.
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Figure 4.4: Linearity of memory consumption in different search algorithms as the
number of activated rules increases: a) AC-bnfa-nq; b) Lowmem.

4.3.2 Rule Files Modularization

To reduce the complexity of the problem the ILP solver faces (i.e., Challenge

2), we propose to reduce the number of individual preprocessors and IDS functions,

which would result in a decrease in the number of constraints in ILP. Our proposal

is to group multiple IDS functions together and consider them as a single function.

From here on, we refer to each group of rule files as a “detection module” and use

the term “group” for a group of preprocessors. If a detection module is assigned to

a node, all rule files in that module will be activated. We experimentally observed

that grouping rule files not only reduces the problem complexity (Challenge 2), but

also decreases the variance in memory load estimation (Challenge 1). When several

small rule files are grouped in a single detection module, it acts as a larger rule file

(same as a block of 250 rules), and the estimated memory load is more accurate.

In addition, considering the preprocessor dependency mentioned in Section 4.2, an

efficient rule file grouping reduces the number of preprocessor dependencies. For

example, if two rule files require the same preprocessor(s), they can be grouped in
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the same detection module. Similarly, multiple preprocessors required for the same

rule files, can be grouped together. Hence, when activating a new detection module,

the load imposed by rules’ data structure dominates the load imposed by the new

activated preprocessor (that can be ignored). This is very similar to the behavior

observed in Figures 4.4(a) and 4.4(b) in the absence of preprocessors.

Grouping rule files together, however, has a disadvantage when the memory

threshold set by the system administrator is very low. For low memory thresholds,

we cannot assign larger modules to nodes, which results in low coverage/detection

ratio. Consequently, despite the positive aspects of grouping small rule files together,

memory threshold forces us to avoid large detection modules. Unfortunately, there

already exist large detection modules. For example, the memory space required by

the “backdoor” rule file is twice the memory space required by a detection module

with 25 small rule files. This illustrates the need to also split extremely large rule

files into some smaller ones (i.e., creating several detection modules out of a large

rule file).

We thus define “modularization” as the procedure that, for a given set of IDS

functions (e.g., Snort rule files), i) groups small IDS functions together in order

to reduce the problem complexity and load estimation error, and ii) splits large

IDS functions into several smaller functions so that they can be activated with low

memory thresholds.

4.3.2.1 Rule File Splitting

When splitting a rule file, we consider the dependency between detection rules

and the dependency between preprocessors and detection rules. This is to ensure

that two dependent rules along with all of their essential preprocessing directives

are included in the same split rule file. In order to split a rule file into several
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detection modules, we first pre-parse each detection rule and specify its preprocessing

dependency in advance. For example, a detection rule using TCP traffic match

(i.e., protocol:TCP) requires the Stream5 preprocessor directive, which enforces all

HTTP-relevant rule files to also contain same directive. We summarize all these

preprocessing dependencies before splitting the rule files.

In addition, rule dependency is expressed by the options’ keywords, e.g., “flow-

bits.” To meet the rule dependency requirements, we parse each detection rule and

specify whether the rule contains such keywords or not, if it does, it must be rele-

vant. For example, the “flowbits” options can help us maintain the stateful check in

a set of Snort detection rules. When some keys are set by “flowbits” in a detection

rule, every other detection rule which does not set the “flowbits,” is dependent on

that detection rule. Similarly, the keyword “rev:VALUE” in a detection rule, that

identifies revisions of Snort rules, denotes that it is related to a detection rule whose

“sid” is “VALUE.” Thus, using these two types of dependency, we split large rule

files properly.

4.3.2.2 Proposed Modularizations

We propose three modularizations with different numbers of detection modules

and different sizes. We then compare the execution time of the solver, i.e., Matlab

ILP solver, for each modularization.

In the first modularization, the entire set of Snort rule files is classified into 23

detection modules where 6 different groups of preprocessors are required. The aver-

age memory load of the 23 detection modules is 3.98% and the standard deviation

is 1.68%. The second modularization consists of 12 detection modules of average

memory load 6.76% and standard deviation 2.31%, while the third modularization

has only 6 detection modules of average memory load 15.06% and standard deviation
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Figure 4.5: ILP execution time for different modularizations.

1.88%. The second and the third modularizations require three groups of preproces-

sors. Figure 4.5 shows the execution time of the ILP solver when solving the problem

for different lengths of a single path. As depicted in Figure 4.5, 12-module and 6-

module configurations are much faster than 23-module configuration, especially for

longer paths (i.e., more complex problems). With these two modularizations, the

ILP solver finds the optimal solution in less than 2 sec, which is very fast, thus prac-

tical in real deployments. The longer execution time for the 6-module configuration,

comparing to the 12-module configuration, is because of its larger detection mod-

ules that increase the number of infeasible solutions for a given memory threshold

(increasing the solver’s execution time). Details about each modularization, e.g.,

the rule files in each module, are provided in Section 4.4. We use 6-module and

12-module configurations in our system evaluations.

4.3.3 PRIDE Protocol

Given a modularization chosen for the IDS configuration, PRIDE periodically

collects the local information from the nodes, removes idle nodes from the network,

i.e., those not contributing in the traffic routing, and optimally distributes IDS func-
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tions to the nodes along traffic paths. If the reduced graph is disconnected, each

graph component is considered as a sub-problem and solved separately. Algorithm 2

presents PRIDE protocol.

Algorithm 2 PRIDE Protocol

1: Data Collection(V,E,N,Q)

2: Relaxation(V,E, n, q)

3: Path Extract(V,E, P )

4: P = P

5: g = 0

6: while ∃ pi ∈ P do

7: g ++

8: Sg = {pi}

9: P = P\{pi}

10: while ∃ pj ∈ Q and
∪

pk∈Sg

(Pj ∩ Pk) ̸= ∅ do

11: Sg = Sg ∪ {pj}

12: P = P\{pj}

13: end while

14: end while

15: for ∀Sg do

16: Vg = {vj|vj ∈ Pi and pi ∈ Sg}

17: for ∀Vg do ILP(Vg, P )

Given the set of nodes, the protocol first collects information from nodes and then

produces the reduced sets V and E by removing idle nodes/links (Lines 1, 2). Next,
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the set of active routing paths P is extracted in Line 3. Given P , the Algorithm

creates the set P of unvisited paths (Line 4), and then defines variable g as the

number of sub-problems (Line 5). For every unvisited path pi in set P (Line 6), the

Algorithm first creates a new sub-problem Sg (Lines 7, 8) and marks it as a visited

path (Line 9). The Algorithm then searches P to find any unvisited path pj which is

connected (Two paths are connected if they are in the same component of the reduced

graph) to at least one path in the current Sg (Line 10). If so, the corresponding path

pj will be added to the current sub-problem Sg and removed from P (Lines 11, 12).

When no more paths in P can be added to the current Sg, the Algorithm increases g

and creates a new sub-problem. This process repeats until there is no unvisited path

in P . Next, for every sub-problem Sg, the Algorithm creates the corresponding set

Vg as the set of nodes located on the paths of component Sg (Lines 15, 16). Finally,

the Algorithm runs ILP on the nodes and paths of each sub-problem Sg (Line 17).

4.4 System Implementation and Evaluation

In this section, we evaluate the performance of PRIDE in a department-wide

mesh network. Our mesh network (as shown in Figure 4.6) consists of 10 Netgear

WNDR3700 routers deployed in a 50×30m2 rectangular area (Note: comparing with

other testbeds, DistressNet 8 nodes [16], SMesh 14 nodes [4], and QuRiNet (a large-

scale research platform) 30 nodes [92], PRIDE uses an average size testbed.). The

presence of the walls in this area makes it a suitable environment for a multi-hop mesh

network. Additionally, the “tx-power” parameter in the network configuration file of

OpenWrt is used to adjust the communication range of the routers. The routers use

OLSR as the routing protocol and provide mesh connections on their 5GHz wireless

interfaces. In Figure 4.6, each node is labeled with its local subnet IP address.

We will refer to the nodes using the third number in the subnet IP address, e.g.,
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Figure 4.6: Our department-wide wireless mesh network.

192.168.5.0 is node 5. Some routers work as Mesh Access Points (MAP), e.g., node

3, and provide network access for the clients on the 2.4GHz wireless interface. Node

9 is the network gateway that connects WMN to the Internet. PRIDE periodically

(i.e., 5 minutes in the current implementation) collects nodes/traffic information

and runs ILP. This interval can be optimally chosen by administrator in dynamic

networks.

We evaluate the intrusion detection rate (coverage ratio) and average memory

load of nodes. The parameters that we vary are the Path Lengths (PL) and mem-

ory threshold (λ). In all our experiments, the memory thresholds of all nodes are

equal and some of the preprocessors (e.g., perfmonitor) are not used as they are

not activated by default or not required by rule files. Since the maximum path

length in our mesh network is 4 hops, we consider 2-hop, 3-hop and 4-hop paths

(PL = 2, 3, and 4). We consider two different paths for each given PL (six paths in

total) in our evaluation. As listed in Table 4.1, for example, in the 2-hop scenario

(PL = 2), P1 = {5, 10} and P2 = {9, 10}, and in the 3-hop scenario, P1 = {5, 10, 8}

and P2 = {9, 10, 8}. The initial memory load on the routers is ∼ 30% (as caused
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Table 4.1: Different paths considered in the system evaluation
Path Length Nodes

2 hops p1: 5, 10 p2: 9 ,10
3 hops p1: 5, 10, 8 p2: 9 ,10, 8
4 hops p1: 5, 10, 8, 6 p2: 9 ,10, 8, 3

by DHCP, OLSR, and other services). We vary the Snort memory threshold from

30% to 60% (i.e., 60% ≤ λ ≤ 90%). Since implementing the related traffic-aware

solution [70] on the mesh devices is infeasible (as shown in Section 4.1), we compare

PRIDE with monitoring node solutions ( [37,76]). We implement a monitoring node

solution [37] to which we refer as “MonSol”. A monitoring node loads detection

modules up to a given memory threshold based on the indices of detection modules

presented in Section 4.4.2. If a monitoring node monitores at least one link of a given

path, the entire path is considered as monitored.

4.4.1 Intrusion Detection Evaluation Tool

We define the intrusion detection rate as the ratio between the number of detected

attacks and the number of detectable attacks by all modules. For example, for the

12-module configuration, we ran 12 distinct attacks for each path where each attack

can be detected by only one of the detection modules (i.e., because the corresponding

detection rule is put in that module), and then measure the number of detected ones.

To generate attack traffic, we modify an open source Snort test framework - the Rule

to Attack (R2A) tool. R2A is a rule-based tool which parses each Snort detection

rule and generates an exploitation packet targeting that rule. We modify the R2A’s

source code to generate real-time exploits for a given set of detection rules. The

exploits are launched against the multi-hop remote target through wireless mesh

links. If the module that can detect the attack is assigned to the nodes along the
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path, then the attack is detected and relevant alerts are generated.

Table 4.2: Snort rule sets and modularizations used in our experiments and evalua-
tions

Rule File Size M6 M12 M23 Rule File Size M6 M12 M23

community-nntp 1 1 1 2 shellcode 25 1 2 3
community-oracle 1 1 1 2 ddos 30 1 2 3
x11 2 1 1 2 pop3 35 1 2 3
pop2 2 1 1 2 specific-threats 36 2 4 8
community-icmp 2 1 1 2 web-frontpage 38 2 4 9
comm.-inapproprate 3 1 1 2 chat 42 1 2 3
other-ids 3 1 1 2 web-coldfusion 44 2 5 9
community-web-iis 4 2 4 8 community-bot 45 1 2 3
community-policy 4 2 4 8 voip 45 1 2 3
community-exploit 5 1 1 2 imap 60 1 1 3
comm.-web-attacks 5 2 4 8 misc 62 2 4 8
multimedia 5 2 4 9 policy 74 1 2 4
community-game 5 2 4 9 ftp 76 1 3 7
community-dos 6 1 1 2 sql 87 1 3 4
community-smtp 6 1 3 5 icmp-info 93 1 1 1
bad-traffic 6 1 1 2 smtp 94 1 3 5
community-sip 7 1 1 1 web-iis 95 2 5 9
community-web-client 8 2 4 9 web-client 135 2 5 9
community-imap 8 1 1 2 web-php 142 2 5 9
comm.-sql-injection 9 2 4 9 rpc 168 1 3 4
community-virus 10 2 4 9 comm.-web-misc 190 2 5 10
info 10 1 1 2 exploit 208 2 5 10
scan 12 1 1 2 oracle 310 2 6 11
finger 13 1 1 2 web-cgi 357 2 6 11
rservices 13 1 1 2 web-misc 370 3 6 12
comm.-web-cgi 13 2 4 9 netbios 430 3 7 13
nntp 13 1 1 2 comm.-web-php 463 3 7 12
tftp 16 1 3 7 web-activex 587 3 8 14
snmp 16 1 1 2 backdoor-frag1 172 6 8 15
attack-response 17 1 1 2 backdoor-frag2 172 4 9 16
telnet 19 1 3 6 backdoor-frag3 172 4 9 17
dos 20 1 1 2 backdoor-frag4 171 6 10 18
porn 21 1 1 2 spyware-put-frag1 196 4 10 19
dns 22 1 1 2 spyware-put-frag2 196 5 11 20
mysql 22 1 1 2 spyware-put-frag3 195 5 11 21
icmp 22 1 1 1 spyware-put-frag4 195 5 12 22
p2p 23 2 4 8 spyware-put-frag5 195 6 12 23
community-misc 24 2 4 8

4.4.2 Snort Rule Sets and Modularizations

The Snort rule files we used in our experiments and evaluations are shown in

Table 4.2. The second column, namely “Size”, specifies the number of detection
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rules in each rule file. Columns “M6”, “M12”, and “M23” specify the index of

the detection module that each file belongs to, when that modularization is used.

For example, in the 6-module configuration, “community-nntp”, “shellcode”, and

“community-smtp” rule files are put in the first detection module, however, in the

12-module configuration, “community-nntp” belongs to the first detection module,

“shelcode” belongs to the second one, and “community-smtp” belongs to the third

detection module. As depicted in Table 4.2, “backdoor” and “spyware-put”, as

two very large rule files, are split into 4 and 5 smaller files, respectively. The 23-

module configuration uses less rule files in each detection module. For example,

only “community-sip”, “icmp”, and “icmp-info” rule files belong to the first module

in 23-module configuration. Similarly, for large rule files such as “backdoor” and

“spyware-put” which are split two nine detection modules, we can see that each rule

file fragmentation is considered as an individual detection module in the 23-module

configuration.

Table 4.3: Load of detection modules in different modularizations
Config. ID Mem.(%) ID Mem.(%)

6-Module
M1 13.32 M4 17.33
M2 14.66 M5 14.66
M3 13.04 M6 17.33

12-Module

M1 3.4 M7 6.99
M2 5.14 M8 9.57
M3 3.75 M9 9.03
M4 4.52 M10 9.53
M5 5.49 M11 8.77
M6 6.13 M12 8.81

Our modularizations are based on the size of the rules files and also preprocessor

dependencies, such that the memory loads of detection modules are roughly same

and the rule files in each detection module require the same preprocessors. The
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amount of memory load caused by each detection module in 6-module and 12-module

configurations are shown in Table 4.3. As depicted, the average memory load of

detection modules in the 6-module configuration is much higher than the 12-module

configuration. We omit the details about memory loads in the 23-configuration here,

due to space constraint.

Table 4.4: List of Snort rule files used by the R2A tool for generating exploit against
each detection module and the number of generated alarms by each module

Mod. ID Rule File #Alarms Mod. ID Rule File #Alarms

M1
other-ids 3

M7
community-web-php 2

dns 17 netbios 15

M2
ddos 16 M8 backdoor-frag1 33
chat 33

M9
backdoor-frag2 51

M3
rpc 9 backdoor-frag3 36
telnet 4

M10
backdoor-frag4 31

M4
p2p 18 spyware-put-frag1 30
misc 26

M11
spyware-put-frag2 32

M5 exploit 10 spyware-put-frag3 31

M6
oracle 4

M12
spyware-put-frag4 44

web-cgi 3 spyware-put-frag5 29

Depending on the rule files and modularizations we use, the attacks chosen for

intrusion detection evaluation may change. In order to evaluate the detection rate

of PRIDE, we choose one or two rule files from each detection module and give them

to the R2A tool as the input file. We also provide the IP address of multi-hop tar-

gets for R2A so that the attack exploits (malicious traffic) will be sent to the target

through a multi-hop network path. Upon running each attack, the detection mod-

ules distributed along the path generate corresponding intrusion detection alarms.

Table 4.4 specifies the rule files chosen from each detection module of the 12-module

configuration and also the number of alarms generated by the corresponding detec-

tion module. It is worth mentioning that the same files are used for the 6-module
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configuration. For example, in order to generate exploit(s) against module 1 in the

6-module configuration, all rule files in module 1 and module 2 of Table 4.4 are used,

as they are all grouped in the module 1 of the 6-module configuration (according to

Table 4.2).

4.4.3 Proof-of-Concept Experiment

When assigning IDS functions to multiple nodes on a path, each node can detect

only a subset of attacks depending on the detection modules it executes. As a

proof-of-concept experiment, we show that distributing two IDS functions to two

nodes generates exactly the same alerts as if both detection modules were assigned

to a single node (e.g., MonSol). For that purpose, we used two routers and one

laptop connected wireless to each router (one laptop was the attacker and the other

was the target). We ran a customized Snort on each router (monitoring the mesh

traffic) ensuring that every Snort rule file is activated on at least one of the routers.

We then generated two R2A exploits such that their corresponding rule files, e.g.,

“dos.rules” and “exploit.rules”, were activated on routers 1 and 2, respectively. When

running attacks, the Snort on node 1 generated 4 alerts, while the one on node 2

generated 10 alerts (real-time detection, unlike cooperative IDS). We repeated the

experiment where only node 1 was running Snort and both rule files were activated

on node 1 (many other rule files were deactivated due to memory constraint). In this

experiment, node 1 generated exactly the same 14 alerts upon launching the same

exploits. Hence, we have shown that PRIDE can distribute IDS functions to nodes

along a path such that network packets are inspected by all IDS functions.

4.4.4 Effects of Memory Threshold and Path Length

Given the network paths in our test-bed mesh network, we evaluate the intrusion

detection rate of PRIDE and the average memory load on nodes, using 6-module
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and 12-module configurations. For each modularization, we change λ and PL as our

evaluation parameters to see their effects on PRIDE performance. Given a memory

threshold, we show PRIDE can achieve higher detection rate than MonSol.

Figure 4.7 shows the effect of memory threshold and path length on intrusion

detection rate and average memory load on the nodes when using the 6-module

configuration. As depicted in Figure 4.7(a), maximum detection rate for MonSol is

50% which occurs when λ = 90%. However, PRIDE can achieve 100% detection

rate even in a lower memory threshold (e.g., at λ = 80% for PL = 4 and PL = 3).

This is because more than one node is assigned with IDS functions and packets are

inspected by more detection modules. In this modularization, for a low memory

threshold (e.g., λ = 60%), only module 3 can be activated on the nodes, and thus,

PRIDE cannot achieve a higher detection rate than MonSol. Figure 4.7(b) depicts

the average estimated memory load on the nodes for different memory thresholds.

It can be observed that PRIDE usually impose less memory load than MonSol,

especially for the longer paths, since the modules are distributed to multiple nodes.

The results for the same evaluations performed on the 12-module configuration

are shown in Figure 4.8. As depicted in Figure 4.8(a), the intrusion detection rate

for the 12-module configuration is higher than the detection rate for the 6-module

configuration (for the same memory threshold). This is because the size of the

detection modules in the 12-module configuration is smaller than for the 6-module

configuration, which allows more modules to fit in the small free memory spaces.

In contrast with the 6-module configuration, where at low memory thresholds the

detection rate was similar to MonSol, in the 12-module configuration the detection

rate at 60% (a low memory threshold) is higher than for MonSol. This is because

more modules are activated on the nodes even at this low memory threshold. The

average estimated memory loads for this modularization are shown in Figure 4.8(b).
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Figure 4.7: 6-module configuration: effect of λ and PL on a) Intrusion detection
rate, and b) Average estimated memory load.
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Figure 4.8: 12-module configuration: effect of λ and PL on a) Intrusion detection
rate, and b) Average estimated memory load.

Similar to the 6-module configuration, it is observed that the 12-module configuration

usually impose less memory load than MonSol solution for the longer paths.

When considering PRIDE and MonSol, one can observe that for an adversary it

will be significantly harder to compromise multiple IDS nodes (as in PRIDE), than a

single monitoring node (as in MonSol). A compromised IDS node in PRIDE implies

the loss of few IDS functions while, in MonSol, it means the loss of the entire set

of activated functions on the monitoring node (i.e., higher vulnerability). Hence,
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in addition to achieving higher detection rates and lower memory loads, PRIDE

provides a higher degree of IDS attack tolerance than MonSol.

We also compare the estimated memory loads and the actual memory loads of

the two configurations in all of the experiments, i.e., different memory thresholds

and path lengths. Figures 4.9(a) and 4.9(b) show the difference between estimated

memory load and actual load measured on the routers when using 6-module and 12-

module configurations, respectively. One can see that the difference is below ∼5%,

thus giving confidence in our ILP formulation and memory consumption modelling.

It is also worth mentioning that the estimated values for the 12-module configuration

are closer to the real values than the 6-module configuration because the modules

are roughly the same size as 250-rule blocks.

Figure 4.10 shows the ILP solver execution time for PL = 3 and PL = 4, and for

each modularization. As depicted, the execution time of the algorithm ranges from a

few seconds to tens of seconds, thus making it practical for real world deployments.

As shown, the lower the memory threshold is, the longer the execution time is.

This is because lower memory thresholds increase the number of infeasible solutions

and the solver requires more iterations to obtain feasible and optimal solutions. As

shown in Figure 4.10, the execution time increases with the path length as well. As

mentioned in Section 4.3, this is because the number of ILP constraints (i.e., the

problem complexity) is a direct function of path length.

Although we showed that PRIDE can achieve high detection rates by solving

an ILP in less than a minute, one may argue about the communication overhead

caused by the message exchange between nodes and the base station. For example,

a question that arises here would be “Is it possible for the nodes along each path to

randomly choose an IDS configuration and still achieve reasonable intrusion detec-

tion (path coverage) rates for WMN paths?” It is obvious that such a distributed
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Figure 4.9: The difference between estimated and actual average memory load: a)
6-Module configuration, and b) 12-Module configuration.
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Figure 4.10: ILP solver execution time for different parameters.

approach will provide a locally optimal solution since the decision is made based on

the local information available on each node, however, centralized approaches (e.g.,

PRIDE) make decision based on global information about WMN routing paths that

results in optimal solutions. In order to compare PRIDE with an ad-hoc IDS Func-

tion Distribution mechanism, we implemented a distributed mechanism where each

active node, based on its memory threshold, randomly chooses the set of IDS func-

tions (i.e., detection modules) it can perform. The average path coverage rates for
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100 random solutions produced for the WMN topology and its corresponding paths

shown in Figure 4.6 are depicted in Figure 4.11. The results show that PRIDE out-

performs distributed approach in most of situations, especially when there is enough

memory for activating multiple detection modules. It is worth mentioning that al-

though PRIDE achieves higher detection rates at the price of higher communication

overhead, it is very important to achieve 100% detection rates (at higher prices)

in mission critical scenarios and a sub-optimal solution will not be accepted as an

applicable solutions.

4.4.5 PRIDE-aware Attacks

This section evaluates PRIDE’s performance for PRIDE-aware attacks. We cat-

egorize PRIDE-aware attacks in two levels of severity: 1) the attacker is aware of

PRIDE in the WMN but cannot compromise the secure communication between

nodes and the base station (Level 1); 2) the attacker is aware of PRIDE and also the

content of secure information exchanged between nodes and the base station (Level

2). Obviously, the later type of attack is more severe and very difficult to defend. In

fact, the second attack type assumes that the attacker has broken the secure commu-

nication link between the base station and all routers and has access to all information

(i.e., memory loads and traffic paths) and the IDS distributions. Unlike our attacker

model presented considered for PRIDE, we assume that a PRIDE-aware attacker can

launch an attack against an intermediate node in a traffic path (not necessarily the

multi-hop destination on the path). This type of attack sounds reasonable because a

PRIDE-aware attacker aims to compromise some intermediate nodes running specific

detection modules, and finally attack the destination.

We concentrate on Level-1 attack because the possibility of running Level-2 at-

tack in WMN depends on the robustness of key distribution and also encryption
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Figure 4.11: Distributed approach based on random module selection: effect of λ and
PL on the intrusion detection rates in a) 6-Module Configuration, and b) 12-Module
Configuration.

mechanisms used in wireless networks, which is out of our scope in this research.

In Level-1 attack, the attacker can not produce the same IDS distribution (to find

the most beneficial node to be compromised) as the base station produces. This is

because the ILP solutions depend on nodes information (securely sent to the base

station) and the initial random solutions. Thus, we consider an attacker that knows

WMN nodes are assigned some IDS functions but does not know which node is

running which module. The attacker first connects to an AP, then chooses a node

(destination or an intermediate) as the target and a random type of attack (i.e., an

attack among those detectable by 6 or 12 modules), and finally lunches the attack.

It is obvious that the average detection rate for the PRIDE-aware attacks against

destination nodes is always equal to the PRIDE coverage ratio (i.e., as shown in

Figures 4.7(a) and 4.8(a)). Hence, we only consider attacks against intermediate

nodes.

We perform an experiment to evaluate the PRIDE performance (detection rate)

when a PRIDE-aware attacker at Level 1 runs attacks against intermediate nodes.

Considering the IDS distributions produced for our real-world WMN, with the detec-
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Figure 4.12: Average detection rate for PRIDE-aware attacks: a) 6-Module configu-
ration, and b) 12-Module configuration.

tion rates shown in Figures 4.7(a) and 4.8(a), we ran 1000 random attacks for each

modularization. In each of 1000 attacks, the attacker chooses a random intermediate

node and a random attack (among those detectable by 6 or 12 modules). If the cor-

responding detection module is not activated on the nodes along the path (starting

from the attacker AP towards the intermediate node) the attack cannot be detected,

otherwise it is detectable. Figures 4.12(a) and 4.12(b) show the average detection

rate for Level-1 PRIDE-aware attacks against intermediate nodes, for 6-module and

12-module configurations, respectively. As depicted, the detection rate increases as

the λ increases. We observe that the 12-module configuration has a higher detection

rate than the 6-module configuration (for the same reason we explained about aver-

age detection rate in PRIDE). One may argue about the detection rate for (PL=4)

in the 6-module configuration that decreases at higher memory thresholds. This is

because we perform all 1000 random attacks against a specific IDS distribution used

in our real test. In that experiment, for higher thresholds, most of the IDS modules

were assigned to the destination, thus, intermediate nodes ran less IDS modules and

were unable to detect attacks. Same argument applies for (PL=3) in the 12-module
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configuration.
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5. RESOURCELESS AND TRAFFIC-AGNOSTIC IDS

The research presented in this section∗ is motivated by the fact that in many

WMN applications traffic paths change very often, which consequently degrades the

performance of traffic-aware IDS solutions. For example, routing paths in large scale

WMN that provide networking services for mobile clients are subject to change due

to client mobility. Additionally, WMN topology, especially in outdoor deployments,

may change due to node failures or drastic link-quality changes. Hence, the traffic

knowledge has to be very accurate and up-to-date in traffic-aware solutions, which

is not always feasible. In this section, we propose two traffic-agnostic intrusion

detection mechanisms for resource-constrained WMN that monitor all communica-

tion links, instead of only few paths. Such an approach in WMN IDS is traffic-

independent, but requires more mesh nodes to participate in detection mechanism.

5.1 Non-Cooperative IDS

This section introduces RAPID, an IDS based on traffic-agnostic and link-coverage

approaches that irrespective to the changes in WMN traffic paths, is able to monitor

the entire WMN traffic, at the price, however, of putting IDS load on all WMN nodes

instead of those located only along routing paths. In RAPID, each node, depending

on its available resources, is assigned a subset of IDS functions, i.e., a customized IDS

configuration, and investigates the entire network traffic on the set of communication

links it can monitor (i.e., in its coverage area). This customized IDS allows resource

conservation on resource-constrained WMN nodes and also increases the probabil-

∗Parts of this section are reprinted with permission from “On the optimality of cooperative
intrusion detection for resource constrained wireless networks” by Amin Hassanzadeh and Radu
Stoleru, Computers & Security (Elsevier), Volume 34, pages 16 - 35, 2013, Copyright 2013 by
Elsevier.
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ity of monitoring a WMN link with multiple distinct IDS functions activated on all

WMN nodes that can monitor the link. It is worth mentioning that for a given

network size, the complexity of traffic-agnostic solution is larger than traffic-aware

solution as it needs to find optimal IDS function distribution for all nodes. Hence,

RAPID has to be fast and scalable.

5.1.1 Goals and Features

PRIDE considers static resource-constrained WMN where network topology does

not change often (compared to other ad hoc networks). It assumes that network

information periodically collected by the base station reflects the most recent network

topology. However, research has shown [14, 16, 64] that even static WMN topology

and routing paths are subject to change due to: a) link-quality variations caused by

weather, noise and other radio signals, etc.; b) mobility of clients and their requested

services that result in changes of WMN routing paths; c) node failure (e.g., running

out of power) or node replacement (e.g., administrative reasons) during network

lifetime. Hence, traffic awareness might be a strong assumption for many WMN

applications. Motivated by this fact, we propose a traffic-agnostic IDS solution.

PRIDE is not a scalable solution because its execution time (i.e., to find opti-

mal IDS function distribution for WMN nodes) significantly increases when network

size, number of paths, and number of IDS functions increase, or when the memory

threshold on the nodes decreases. The results shown in [39] are for a 10-node WMN

for only 2 paths (for each given path length). When applied to a larger network

(e.g., 30 nodes and 15 paths), however, it takes more than an hour to obtain the

optimal IDS function distribution. Thus, a practical IDS solution must be able to

quickly produce optimal results when used for large scale WMN. We note here that

the traffic-agnostic solution, proposed here, has to solve a more complex problem
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because all WMN nodes perform IDS operations. Therefore, we need to develop an

algorithm that can produce optimal IDS function distribution for a large WMN in a

short period of time.

PRIDE only considersmulti-hop attacks which means the attack traffic (malicious

packets(s)) is routed across multiple nodes (i.e., at least one WMN backbone link).

In addition, the experimental results [39] show that the longer the path is, the higher

the detection rate will be. We aim to design an IDS that can detect both single-

hop attacks (i.e., both attacker and target are clients connected to same router) and

multi-hop attacks, routed through short paths (e.g., 2 hops).

PRIDE proposes a centralized algorithm that requires periodic data collection

from WMN nodes and a computationally powerful base station to produce the opti-

mal IDS function distribution. In this research, we propose an IDS solution that can

also be implemented in a distributed manner where WMN routers independently

choose the optimal set of IDS function to perform. The distributed approach is

based on random IDS function selection by the nodes that incur no communication

overhead (caused by data exchanges between nodes and the base station). It also

no longer requires a computationally powerful base station. We show that random

IDS function selection surprisingly achieves near optimal network coverage ratios

especially for high density WMN.

PRIDE uses a node-coverage approach, which means that only nodes along each

routing path participate in traffic monitoring. However, RAPID uses link-coverage

approach to achieve a higher link/path coverage ratio in WMN. Hence, in addition

to the nodes located on each routing path, other nodes can also participate in traffic

monitoring if they can monitor at least one link of that path. We use a link-coverage

approach in our proposed IDS and show how it increases the link/path coverage

ratio.
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Figure 5.1: AWMN graph, consisting of 10 nodes and 16 links. As shown, a 6-module
configuration is used in this WMN where Snort preprocessors are also grouped in
three sets of preprocessors [38]. The nodes run different Snort configurations, e.g.,
node v1 runs detection modules f1 and f4, which require preprocessors c1, c2 and c3.

5.1.2 Preliminaries

Given a wireless mesh network, we denote the number of its nodes and number

of its links by n and q, respectively. We model the wireless mesh network as a graph

G = {V,E}, where V is the set of mesh nodes (routers) {v1, v2, · · · , vn}, and E is

the set of backbone links {e1, e2, · · · , eq}. An example of such a graph, is shown in

Figure 5.1 where V = {v1, v2, ..., v10} and E = {e1, e2, ..., e16}. Figure 5.1, represents

the network graph a real-world WMN deployed over the floor of a building. We

denote by matrix Mq×n the mapping between nodes and links, i.e., mij = 1 iff node

vj can monitor link ei. Based on the link-coverage definition [37], vj can monitor ei if

ei is incident to vj or vj is connected to the two end points of ei. The set of all links

that can be monitored by node vj is called Covering Set of node vj represented by

CSj [37]. Accordingly, we denote by MSi the set of all nodes that can monitor link

ei, i.e., Monitoring Set of link ei. For the example shown in Figure 5.1, the matrix

M is as follows:
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M16×10 =



0 1 0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 0 1 1

...
... · · · ...

0 0 0 1 0 1 1 0 0 0


.

We denote the set of all IDS functions (detection modules) by F = {fk | fk is

a set of detection rules } with size K (i.e., |F| = K) where K = 6 in 6-module

configuration and K = 12 in 12-module configuration. We also denote the set of IDS

preprocessors (as in Snort) by C = {cr |∃ fk ∈ F that requires cr} of size R (i.e., |C| =

R) where R = 3 in both 6-module and 12-module configurations. For the example

presented in Figure 5.1, F = {f1, f2, ..., f6}, i.e., 6-Module configuration is used, and

C = {c1, c2, and c3}. The dependency between IDS functions and preprocessors is

stored in matrix DK×R where dkr = 1 means that activation of module fk requires

the activation of preprocessor cr. For the example shown in Figure 5.1, the matrix

DT is as follows:

DT
3×6 =


1 1 1 1 1 1

1 0 0 0 0 0

0 1 1 1 1 1

 .

Let w : {F , C} −→ [0, 1] be a cost function that assigns memory load wf
k and

wc
r to detection module fk and preprocessor cr, respectively. Consequently, vec-

tors W f = [wf
1 , w

f
2 , · · · , w

f
K ] and W c = [wc

1, w
c
2, · · · , wc

R] represent memory loads for

the detection modules in F and for the preprocessors in C, respectively. Consider-

ing the 6-module configuration in PRIDE, for the configuration used in Figure 5.1,
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W f = [13.3%, 14.6%, 13%, 17.4%, 14.6%, 17.3%] and W c = [15.6%, 1.1%, 1%]. It is

worth mentioning that wc
1 = 15.6% is the total load caused by Snort base line,

stream5 (both static and dynamic loads as explained in PRIDE), and frag3 - the

most common and required Snort preprocessors for all detection modules [38]. We

denote by B = [b1, b2, ..., bn] the base memory load (i.e., before performing IDS) of all

nodes. Finally, the maximum allowable memory load (after detection modules and

preprocessors are loaded) is represented by vector Λ = [λ1, λ2, · · · , λn], (also called

Memory Threshold). Vector Λ depends on the memory space required by active

services in WMN, and it is typically set by the security administrator.

5.1.3 Problem Formulation

The main objective of our proposed IDS is to monitor all WMN links using the

maximum allowable number of detection modules that can be performed on WMN

nodes (i.e., activated and executed by Snort on nodes). A higher number of detection

modules executed by node vj means more attack traffic can be detected on the links

in CSj. Thus, our IDS solution aims at assigning Snort detection modules on the

WMN nodes, such that all of WMN links are monitored by the maximum number of

modules and none of the nodes is overloaded. In order to mathematically formulate

this problem, we first introduce several definitions.

Definition 4 IDS Function Distribution,

represented by T = {(vj,Fj, Cj)| vj ∈ V, Fj ⊆ F , and Cj ⊆ C}, is a distribution of

detection modules and preprocessors in the WMN, such that modules Fj and their

corresponding preprocessors Cj are assigned to node vj (i.e., they will be activated on

the customized Snort executed on vj).

After the IDS Function Distribution, the set of detection modules and preproces-

sors assigned to WMN nodes are represented by binary matrices Xn×K and Zn×R,
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respectively. Accordingly, xjk = 1 means module fk is activated on node vj and

zjr = 1 implies that preprocessor cr is activated on node vj (i.e., there is at least

one module assigned to node vj that requires preprocessor cr). For example, the IDS

Function Distribution, and matrices X and Z for the example given in Figure 5.1 are:

T = {(v1, {f1, f4}, {c1, c2, c3}), (v2, {f4, f5}, {c1, c3}), ..., (v10, {f2, f6}, {c1, c3})},

X10×6 =



1 0 0 1 0 0

0 0 0 1 1 0

1 0 1 0 0 0

1 0 0 0 0 1

...
... · · · ...

0 1 0 0 0 1


, Z10×3 =



1 1 1

1 0 1

1 1 1

1 1 1

...

1 0 1


.

The total memory load of node vj, after the IDS Function Distribution, becomes

Lj = bj + Σcr∈Cjw
c
r + Σfk∈Fj

wf
k . Obviously, an IDS Function Distribution in which

there is at least one vj such that Lj > λj is deemed infeasible because the load Lj is

not allowed to exceed the threshold λj.

Definition 5 For a given link ei and its corresponding monitoring set MSi, Link

Coverage Ratio (LCR) is defined as LCRi = |Ui|/K, where Ui =
∪

vj∈MSi
Fj is

the set of detection modules assigned to nodes that can monitor the link.

Definition 6 Link ei is called Fully Covered if LCRi = 1 (Ui = F), i.e., for
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∀fk ∈ F , ∃ vj ∈MSi assigned with Fj such that fk ∈ Fj.

Definition 7 Link Coverage Problem (LCP)

Given G = {V,E}, vectors W f and W c, and matrix D, find a distribution T =

{(vj,Fj, Cj)| vj ∈ V and Fj ⊆ Fand Cj ⊆ C}, such that 1
q

∑
ei∈E LCRi is maximized

and Lj ≤ λj, ∀vj ∈ V .

LCP aims at maximizing the average link coverage ratio while ensuring that

memory loads on nodes are below their memory thresholds.

Given matrices M and X, we denote by matrix Y = M · X the mapping between

links and the modules activated on the monitoring set of the links, i.e., yik is in the

range [0, n]. For example, yik = 0 means that module k is not activated on any of

nodes in MSi while yik > 0 implies that there is at least one node in MSi running

module k. According to the LCR (union of all Fj for ∀vj ∈MSi), yik > 0 is equivalent

to yik = 1 since both of them mean link ei is monitored by detection module fk

(redundant modules do not count). Thus, we define function BN : {Y} −→ {0, 1}

that converts yik to a binary value, i.e., if yik = 0, BN(yik) = 0, otherwise BN(yik) =

1. For the example shown in Figure 5.1, matrices Y16×6 andBN(Y16×6) are as follows:

Y16×6 =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 2 1

1 1 1 0 1 1

...
... · · · ...

1 1 1 1 0 1


, BN(Y16×6) =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 0 1

1 1 1 0 1 1

...
... · · · ...

1 1 1 1 0 1


.
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The objective function of LCP is non-linear. This is because the link-coverage

requires the non-linear function BN. Thus, unlike PRIDE, LCP cannot be formulated

as an ILP. In addition to non-linearity, LCP is more complex than path coverage

problem (as defined in PRIDE) for a given network. This is because the number

of paths to be covered is usually less than the number of communication links in

WMN [39]. Moreover, we aim for a scalable IDS solution that can be applied to

large WMN (i.e., more links have to be monitored). Thus, we need to develop a

technique to reduce the complexity of link coverage problem when compared to path

coverage problem.

One can observe that matrix D, for both 6-module and 12-module configura-

tions [38], can be summarized as: i) every detection module requires the first group

of preprocessors of size 15.6%; ii) every detection module requires either the second

group of preprocessors (1.1% load) or the third group of preprocessors (1% load). We

propose a dependency relaxation to run all three groups of preprocessors on every sin-

gle node at the price of at most 1.1% extra load. Accordingly, the total memory load

of node vj, after the IDS Function Distribution, becomes Lj = bj+17.7%+Σfk∈Fj
wf

k .

However, it reduces the complexity of LCP when compared to path coverage problem

in PRIDE.

Thus, LCP can be formulated as a non-linear optimization problem with integer

(binary) variables as follows:

maximize
1

q
(1T · BN(M · X) · 1) (5.1)

subject to: BT + (17.7)1T + X ·W f T ≤ ΛT (5.2)

xjk ∈ {0, 1} ,∀j, k (5.3)
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where the objective function is to maximize the average link coverage ratio in the

network; constraint 2 limits the memory load on every node vj to be less than its

memory threshold λj; and constraint 3 forces xjk to be either 1 or 0 meaning node

vj is either running module fk or not.

5.1.4 RAPID Protocol

In this section, we propose RAPID, a protocol to solve LCP in centralized and

distributed manners. The centralized approach requires a base station that periodi-

cally collects nodes’ information (e.g., network connectivity and memory utilization),

solves LCP, and finally broadcasts IDS function distributions to the nodes. The dis-

tributed solution does not need the base station (i.e., nodes locally decide which

detection modules they should run).

5.1.4.1 Centralized Solution

Given a modularization chosen by the security administrator for the IDS configu-

ration (e.g., the 12-module configuration imposes higher execution time to the solver

but is suitable for low memory thresholds [39]), the centralized RAPID periodically

collects the local information from nodes, decides on an optimal set of detection

modules to be executed by each node, and distributes them to the nodes. Since

LCP has a non-linear objective function, linear constraints, and integer variables,

we cannot use integer linear programming. Thus, we propose a Genetic Algorithm

(GA), a popular and effective type of evolutionary algorithms.

GA starts with a set of random solutions and then derives better solutions using

the Darwinian process of “survival of the fittest.” The survival of the fittest process

is iterative, and uses genetic operations, such as Selection, Crossover, and Mutation

on the current set of solutions (from here on we will use “set of solutions” and

“population” interchangeably). Selection gives the most fit solutions the chance
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Figure 5.2: The matrix X for the 10-node mesh network shown in Figure 5.1 is
encoded as a chromosome.

to survive. Crossover combines solutions in each generation to produce offsprings

(i.e., new solutions) of the next generation, and mutation is used to maintain genetic

diversity in two consecutive generations. GA solutions are encoded as bitstrings (i.e.,

chromosomes) of specific length and tested for fitness. In our formulation, matrix

X is a solution that can be encoded as a chromosome of length n × K. Figure 5.2

depicts the chromosome corresponding to the IDS function distribution (i.e., the

solution represented by matrix X) of the WMN shown in Figure 5.1. The fitness

(objective) value of each solution is the average LCR in the network. The genetic

operations used in this RAPID are based on operations explained in [34].

The centralized RAPID protocol is presented in Algorithm 3 as performed on the

base station. Given the set of WMN nodes, the base station first collects information

from nodes and then produces matrix M (Lines 1 and 2). Moreover, matrix X,

number of initial solutions (POP SIZE ) and number of generations (GEN SIZE )

are initialized in Line 2. Next, the base station generates a set of POP SIZE random

solutions called SX (Line 3). Starting from the first population, the Algorithm then

iteratively performs genetic operations and creates another population for the next

generation (Lines 4-9). The Algorithm stops generating a new population if either

the number of generations exceeds GEN SIZE (Line 5) or the stopping criteria holds

(Lines 10-12), i.e., no improvement in the recent α optimal values has been observed,

where α is set by the network administrator. Algorithm 3 then extracts matrix X

from the best solution in SX of last generation (Line 15) and securely broadcasts the
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Algorithm 3 Centralized RAPID

1: Data Collection(V,E, n, q)
2: Initialization(M,X, POP SIZE,GEN SIZE)
3: Initial Solutions(POP SIZE, SX)
4: g = 1
5: while g ≤ GEN SIZE do
6: Elitism(POP SIZE, SX)
7: Selection(POP SIZE, SX)
8: Crossover(POP SIZE, SX)
9: Mutation(POP SIZE, SX)
10: if Stopping holds(α) then
11: break
12: end if
13: g ++
14: end while
15: X = Best Sol(SX)
16: Sec BRDCST (X)

IDS functions to the WMN nodes (Line 16).

5.1.4.2 Distributed Approach

The main purpose of a distributed approach for RAPID is to remove the commu-

nication overhead caused by message exchange between nodes/base station and the

computation overhead of running GA for large networks. Additionally, this approach

is adaptive to frequent path and topology changes where the base station might not

have the most recent routing information (unless the nodes’ information is collected

frequently, which might incur very high communication and computation overhead).

Hence, in the distributed RAPID (presented in Algorithm 4), each node, depending

on its memory threshold, chooses a set of random detection modules to perform.

As shown in Algorithm 4, Line 1, each node requires some preliminary infor-

mation such as the set of modules and their corresponding memory weights, set of

preprocessors, and memory threshold λ which are assumed to be already set on the
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Algorithm 4 Distributed RAPID

1: Mod Setting(F , C, K,R,W f ,W c, b, λ)
2: L = b+

∑R
r=1w

c
r //

∑R
r=1w

c
r = 17.7%

3: Rand Perm(F ′,F)
4: for f = 1 to K do
5: Mod = F ′(f)
6: if L+ wf

Mod ≤ λ then
7: Activate(F ,Mod)
8: L = L+ wf

Mod

9: end if
10: end for

device by the security administrator. The base memory load b is obtained from sys-

tem logs (Line 1) and added to the total memory load imposed by all preprocessors

(Line 2). The algorithm then creates a new set of detection modules in a random

order denoted by F ′ in Line 3. Next, detection modules in F ′ are iteratively checked

(Lines 4-6) if they can be activated on the Snort configuration (depending on their

memory weight and threshold λ). If so, the module will be activated and the total

memory load L will be updated (Lines 7-8).

We will show that this approach works very well (produces near optimal solutions)

and its performance surprisingly increases (i.e., achieves the centralized performance)

in high memory thresholds or high network density. It is worth emphasizing that

such a good performance is achieved without any communication overhead and with

a very simple algorithm when compared to the centralized RAPID.

5.1.5 Performance Evaluation

In this section, we first demonstrate, through a proof of concept experiment

using WMN hardware, that the ideas of link-coverage and multi-interface Snort are

practical. Next, through extensive simulations, based on real data obtained from real-

world WMN deployment and memory measurements, we evaluate the performance
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of our proposed centralized and distributed RAPID solutions. The main reason we

use simulation is to be able to evaluate RAPID’s performance for large networks and

for different network densities, which are extremely difficult to be evaluated in a real

testbed.

5.1.5.1 Proof of Concept Experiment

Multi-interface Snort: A common way for running Snort and other similar

passive network monitoring applications on multiple network interfaces is to bridge all

interfaces into a single virtual network interface (a process also known as “bonding”),

and run a single instance of the IDS on that virtual interface. On a mesh router,

however, this solution is not possible because in Linux the bonded interfaces cannot

be configured with routable IP addresses, and consequently the router cannot perform

its main task of routing packets. Another option would be to run two Snort instances,

one for each interface. Snort includes support for running multiple instances, but

due to its single-threaded design, each instance is a different process, with separate

copies of all buffers and data structures. Although this approach works well for

typical multi-core IDS sensors with ample RAM, it is not practical for a mesh router

with very limited CPU and memory resources [39].

To be able to run a single Snort instance that receives traffic from both network

interfaces without altering the network configuration of each interface, we followed an

alternative approach and modified Snort to capture packets concurrently through two

Libpcap handles. This is possible by opening two Libpcap packet capture handles,

one for each interface, and then asynchronously retrieving packets from either handle

through select(), whenever packets are available. A Libpcap handle can be put into

“non-blocking” mode using pcap setnonblock(), and then a file descriptor that can

be monitored using select() can be obtained through pcap get selectable fd().
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This design allows us to: i) avoid the overhead of running a second Snort instance

(context switches, duplicate data structures); ii) capture traffic from both local and

upstream network interfaces concurrently; and iii) preserve the routing configuration

of both interfaces. We experimentally observed that our multi-interface Snort im-

poses only ∼ 4% extra memory load (compared to the original Snort) when running

on a Netgear WNDR3700 router used in the PRIDE testbed.

Experimental Verification: We performed an experiment in a small-size in-

door WMN to validate link-coverage monitoring and multi-interface monitoring. We

note here that the idea of intrusion detection using a set of detection modules dis-

tributed on multiple WMN nodes was previously demonstrated and evaluated in

PRIDE.

In our experiment, we used three Netgear WNDR 3700 routers (e.g., nodes A, B,

and C) connected to each other creating a triangle WMN topology. Each router was

configured to run a multi-interface Snort instance, monitoring network traffic on both

2.4 GHz (local traffic among its clients) and 5 GHz (WMN backbone traffic) wireless

interfaces. Each of routers A and B had one client, while two clients (laptops) were

connected to router C. Using the Rule to Attack (R2A) tool [38], we launched two

different types of attacks: i) A’s client targeting B’s client (multi-hop attack); ii) a C’s

client targeting another C’s client (single-hop attack). The corresponding detection

modules for each attack were activated on multi-interface Snort running on node C.

The alerts generated by the multi-interface Snort on router C proved the detection of

both single-hop and multi-hop attacks simultaneously. Therefore, our proposed link-

coverage (i.e., monitoring WMN backbone traffic on A-B link) and multi-interface

Snort (i.e., monitoring both local and upstream interfaces concurrently) was shown

to be practical for WMN.
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5.1.5.2 Simulation Results

We performed a thorough set of simulations to evaluate the performance of cen-

tralized and distributed RAPID in covering WMN links and detecting different types

of attack. We compare our simulation results with PRIDE and monitoring node so-

lutions as two state-of-the-art solutions. We implemented a monitoring node solution

(Mon.Sol.) based on the formulation presented in [37]. The objective function, how-

ever, was changed to select nodes with higher total memory so that more detection

modules can be run on monitoring nodes, thus having a fair comparison with RAPID.

All algorithms are implemented in MATLAB and run for different network sizes

and densities. More precisely, our evaluation metrics are Average LCR in WMN,

Average Memory Load on WMN nodes, and Average Intrusion Detection Rates for

different types of attack with respect to two tuning parameters, Memory Threshold

λ and Network Density. The average base line memory of the nodes (vector B) was

20%. Our simulation results are based on 6-module and 12-module configurations.

5.1.5.3 Average LCR and Memory Consumption

To evaluate the average LCR and average memory load, we created 100 random

networks of size 30 (Note: PRIDE performance is evaluated on a 10-node WMN.)

The average LCR and its standard deviation obtained from centralized RAPID,

distributed RAPID and monitoring node solution are depicted in Figure 5.3. Fig-

ure 5.3(a) shows the average LCR for 6-module configuration while Figure 5.3(b)

depicts the average LCR for 12-module configuration.

As shown, the average LCR increases as λ increases which means more detection

modules are executed on the nodes. The monitoring solution (consistent to the re-

sults shown for path coverage in) has the minimum coverage ratio since the selected

monitoring nodes are resource-constrained and cannot perform all detection mod-
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Figure 5.3: The effect of λ on the average link coverage in: (a) 6-Module configura-
tion; (b) 12-Module configuration.

ules and do not help each other to achieve higher coverage ratios. Obviously, the

average LCR in centralized RAPID is higher than that of distributed RAPID as the

centralized approach uses global information and produces optimal IDS distribution.

The distributed RAPID, however, achieves an almost similar LCR to the centralized

RAPID for large λ.

These results are comparable to the path coverage ratio obtained for 2-hop paths

in PRIDE. We note here that the execution time for the centralized RAPID is at most

∼ 5 seconds (for 30-node WMN) while it was more than 1 minute for the 10-node

WMN in PRIDE (using ILP solver) and more than 1 hour for 30-node WMN. More-

over, when considering the average LCR, both centralized and distributed RAPID

outperform PRIDE because RAPID uses the link-coverage approach, which allows

more nodes to participate in traffic monitoring. As expected, the average LCR is

slightly higher in 12-module configuration especially for small λ. This is because the

size of detection modules are smaller than those in 6-module configuration, which

allows more modules to fit in the small free memory spaces. It is worth mentioning

that such a better performance obtained from 12-module configuration is at the price
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Figure 5.4: The effect of λ on the average memory load in: (a) 6-Module configura-
tion; (b) 12-Module configuration.

of slightly longer execution time in RAPID, PRIDE, and Mon.Sol.

The average memory load on WMN nodes and its standard deviation of all three

IDS solutions for the 6-module and 12-module configurations are depicted in Fig-

ures 5.4(a) and 5.4(b), respectively. It is important to note that the average memory

load for the RAPID solution (both centralized and distributed) is always higher than

that of monitoring node solution, i.e., consistent with results shown in PRIDE. This

is because in monitoring node solution, only monitoring nodes are assigned with

detection modules and the non-monitoring nodes are not loaded with any detection

modules. Therefore, only few selected nodes will have high memory load as opposed

to RAPID where all WMN nodes are loaded with the maximum number of detec-

tion modules that can fit. The large standard deviation of average memory load in

Mon.Sol. indicates the difference between total memory load on monitoring nodes

and non-monitoring nodes.
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Figure 5.5: The effect of λ on the detection rate of single-hop (local) attacks in: (a)
6-Module configuration; (b) 12-Module configuration.
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Figure 5.6: The effect of λ on the detection rate of multi-hop attacks in: (a) 6-Module
configuration; (b) 12-Module configuration.

5.1.5.4 Average Detection Rates for Different Attacks

As mentioned in our attacker model, we consider both single-hop (local) and

multi-hop attacks in WMN. For a given WMN of size n, we simulated 10× n single-

hop attacks and 2×n multi-hop attacks of random types (i.e., detectable by random

detection modules as listed in [38]) and measured the detection rates based on the

activated detection modules on the nodes.
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Figure 5.5 shows the average detection rate of all 10 × n single-hop attacks ob-

tained from different IDS solutions. The results are produced for 100 random WMN

of size n=30. Figure 5.5(a) depicts the average detection rates of single-hop attacks

in all IDS solutions when the 6-module configuration is used. As shown, the larger

the λ, the higher the detection rate is. This is because a larger memory thresh-

old allows nodes to load and execute more detection modules and detect more local

attacks, since the neighbors cannot help the node in detecting local attacks. As

depicted in Figure 5.5(b), the average detection rate for 12-module configuration is

slightly higher than those of 6-module configuration in all three IDS solutions. It

is worth mentioning that, although the detection rates for both centralized and dis-

tributed RAPID are at most ∼ 60%, they are much better than for the monitoring

node solution (i.e., at most ∼ 20%) and for PRIDE (i.e., 0% for local attacks).

To evaluate the performance of IDS solutions in detecting multi-hop attacks, we

considered 100 random networks of 30 nodes and 60 random paths. The path length

of each attack is randomly chosen between 2 and 5 hops. Figures 5.6(a) and 5.6(b)

depict the average detection rates of multi-hop attacks in all three solutions for

6-module configuration and 12-module configuration, respectively. As shown, the

detection rates for multi-hop attack in RAPID and Mon.Sol. are much higher than

those for single-hop attacks. This is because as traffic packets go through more

IDS nodes, they will be more likely inspected by more distinct detection modules.

Moreover, as previously observed, the larger the λ, the higher the detection rate will

be. Also, the 12-module configuration again outperforms the 6-module configuration

(at the price of slightly larger time complexity).

Figures 5.7(a) and 5.7(b) show the simulation results for average detection rates

of compromised node attacks in 6-module and 12-module configurations, respectively,

in all IDS solutions. The results are obtained from 100 random networks of 30 nodes
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Figure 5.7: The effect of λ on the detection rate of compromised node attacks in:
(a) 6-Module configuration; (b) 12-Module configuration.

where 60 random attacks are considered for each network. The compromised node is

randomly chosen among WMN nodes to run either a single-hop (targeting a neighbor

WMN node) or multi-hop attack. As shown, the results are slightly worse than multi-

hop attacks because the compromised node itself is considered unable to detect the

attack, which results in inspecting attack traffic with less detection modules.

The last type of attack we consider for intrusion detection evaluation is unau-

thorized client attack. An unauthorized client is assumed to be physically located

in WMN area but not associated with any of MAPs (i.e., outsider). The attacker

can launch attacks against WMN nodes (e.g., DoS, battery depletion, spoofed de-

authentication, etc.) or WMN links (e.g., jamming, blackhole/grayhole, etc.). We

assume that in the attack against a WMN node, the target is unable to participate

in the intrusion detection process. Figures 5.8(a) and 5.8(b) show the average de-

tection rate of unauthorized client attacks targeting WMN nodes for 6-module and

12-module configurations, respectively. The results are obtained from 100 random

networks of 30 nodes where 300 random attacker locations and targets are considered.

The results show that these attacks are highly detectable by RAPID algorithms as
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Figure 5.8: The effect of λ on the detection rate of unauthorized client (outsider)
attacks: (a) against nodes in 6-Module configuration; (b) against nodes in 12-Module
configuration; (c) against links in 6-Module configuration; (d) against links in 12-
Module configuration.

opposed to Mon.Sol. solution that can achieve at most ∼ 60% detection rate. We

note here that PRIDE cannot detect such attacks since the attack traffic is not

routed through WMN nodes. Figures 5.8(c) and 5.8(d) show the average detection

rate of unauthorized client attacks targeting WMN links, when using 6-module and

12-module configurations, respectively. As depicted, the results are slightly better

than those targeting WMN nodes because more nodes participate in monitoring the

target WMN link.
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Figure 5.9: The effect of λ and network density on the average link coverage in:
(a) 6-Module configuration of distributed RAPID; (b) 12-Module configuration of
distributed RAPID; (c) 6-Module configuration of centralized RAPID; (d) 12-Module
configuration of centralized RAPID.

5.1.5.5 The Effect of Network Density on RAPID Performance

In order to show the effect of network density on performance of RAPID, we

repeated all previous simulations (i.e., network density was 8 nodes per radio range)

for two more network densities, 4 and 13 nodes per radio range. Intuitively, the

higher the network density should result in participating more neighbors in traffic

monitoring that would increase the average link coverage ratio and consequently the

intrusion detection rate. In this section, we show the simulation results for average
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LCR and average detection rates of different attacks as functions of λ and network

density.

Figures 5.9(a) and 5.9(b) show the average LCR obtained from distributed RAPID

for 6-module and 12-modules configurations, respectively. The results confirm that

the average LCR increases asλ or network density increase. Figures 5.9(c) and 5.9(d)

depict the average LCR obtained from centralized RAPID for 6-module and 12-

modules configurations, respectively. The results obtained from centralized RAPID

are better than those obtained from distributed RAPID, at the price of some commu-

nication and computation overheads. We note here that the network density has no

effect on the average LCR of PRIDE (because of using node-coverage instead of link-

coverage approach) and Mon.Sol (because it only affects the number of monitoring

nodes and not the number of detection modules they perform).

Figures 5.10(a) and 5.10(b) show the effect of λ and network density on the

detection rate of multi-hop attacks in the distributed RAPID for 6-module and 12-

modules configurations, respectively. Surprisingly, the multi-hop attacks are almost

always detectable for λ ≥ 70% and network density larger than 8 nodes per radio

range in both 6-and-12-module configurations. Figures 5.10(c) and 5.10(d) show the

results for the centralized RAPID which are above 90% even for the lowest network

density and memory threshold. We note here that network density has no effect

on single-hop attack detection as only one node (the local router) is responsible

for intrusion detection and other WMN nodes do not participate in the intrusion

detection process.

Figures 5.11(a) and 5.11(b) show the effect of λ and network density on the de-

tection rate of compromised node attacks in the distributed RAPID for 6-module

and 12-modules configurations, respectively. As depicted, the detection rate in-

creases as network density and λ increase which means more nodes with more detec-
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Figure 5.10: The effect of λ and network density on the detection rate of multi-hop
attacks in: (a) 6-Module configuration of distributed RAPID; (b) 12-Module config-
uration of distributed RAPID; (c) 6-Module configuration of centralized RAPID; (d)
12-Module configuration of centralized RAPID.

tion modules inspect the attack traffic generated by the compromised nodes. Fig-

ures 5.11(c) and 5.11(d) show the same results for the centralized RAPID when

using 6-module and 12-modules configurations, respectively. The results show that

centralized RAPID outperforms distributed RAPID, however, at the price of higher

computation and communication overheads.

The effect of λ and network density on the detection rate of unauthorized client

(outsider) attacks against WMN nodes in the distributed RAPID are shown in Fig-

ures 5.12(a) and 5.12(b) for 6-module and 12-modules configurations, respectively.

91



 0

 20

 40

 60

 80

 100

 60  65  70  75  80  85  90

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

λ (%)

4 Node/Radio
8 Node/Radio

13 Node/Radio

(a)

 0

 20

 40

 60

 80

 100

 60  65  70  75  80  85  90

D
e
te

c
ti
o
n
 R

a
te

 (
%

)

λ (%)

4 Node/Radio
8 Node/Radio

13 Node/Radio

(b)

 0

 20

 40

 60

 80

 100

 60  65  70  75  80  85  90

D
e
te

c
ti
o
n
 R

a
te

 (
%

)

λ (%)

4 Node/Radio
8 Node/Radio

13 Node/Radio

(c)

 0

 20

 40

 60

 80

 100

 60  65  70  75  80  85  90

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

λ (%)

4 Node/Radio
8 Node/Radio

13 Node/Radio

(d)

Figure 5.11: The effect of λ and network density on the detection rate of com-
promised node attacks in: (a) 6-Module configuration of distributed RAPID; (b)
12-Module configuration of distributed RAPID; (c) 6-Module configuration of cen-
tralized RAPID; (d) 12-Module configuration of centralized RAPID.

Also, Figures 5.12(c) and 5.12(d) show the same results for the centralized RAPID

when using 6-module and 12-modules configurations, respectively. The results con-

firm that the larger the λ and network density, the higher the detection rate will be.

Moreover, centralized approach works better than distributed approach as 12-module

configuration also works better than 6 module configuration.

Finally, we show the effect of λ and network density on the detection rate of unau-

thorized client (outsider) attacks against WMN links in both distributed and central-

ized RAPID. Figures 5.13(a) and 5.13(b) show the detection rates in the distributed
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Figure 5.12: The effect of λ and network density on the detection rate of unauthorized
client (outsider) attacks against nodes in: (a) 6-Module configuration of distributed
approach; (b) 12-Module configuration of distributed approach; (c) 6-Module config-
uration of centralized approach; (d) 12-Module configuration of centralized approach.

RAPID for 6-module and 12-module configurations, respectively. The results are

slightly better than those obtained from attacks against WMN nodes since more

nodes participate in traffic monitoring. Figures 5.13(c) and 5.13(d) show the same

results for centralized RAPID when using 6-module and 12-module configurations,

respectively.
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Figure 5.13: The effect of λ and network density on the detection rate of unauthorized
client (outsider) attacks against links in: (a) 6-Module configuration of distributed
approach; (b) 12-Module configuration of distributed approach; (c) 6-Module config-
uration of centralized approach; (d) 12-Module configuration of centralized approach.

5.2 Cooperative IDS

Another approach to conserve resources and manage the intrusion detection mech-

anism for resource-constrained WMN is to use cooperative IDS solutions. In cooper-

ative IDS, the network topology used for communicating intrusion detection reports

has an important effect on network performance and resource consumption. Find-

ing the optimum network topology for nodes that execute cooperative IDS has been

shown to be an NP-hard problem [75,83]. Previous research investigated distributed
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solutions in which nodes, using information about their neighbors, elect a local can-

didate for executing cooperative IDS functions [46, 79]. These solutions, however,

are suboptimal and incur high communication overhead. In this section, we pro-

pose a solution in which a base station which has knowledge about network (e.g.,

node resources, locations, etc.) and security requirements (e.g., maximum permissi-

ble delay in reporting an event, minimum network coverage), computes the optimal

distribution of roles specific to cooperative IDS. Our proposed solution allows execu-

tion of sophisticated algorithms that optimize multiple objectives related to network

performance and security effectiveness.

5.2.1 Cooperative IDS Architecture and Problem Formulation

Our target system is a battery-powered WMN [28] consisting of resource con-

strained wireless networks (i.e., battery powered wireless mesh and sensor networks)

with a single base station (e.g., a Command & Control Center). The network is

loosely time synchronized and all nodes know their locations. The base station, with

extensive computational capabilities, periodically collects network information and

uses this information to decide which IDS functions to run, and where to run them.

This decision is done periodically, or when network conditions change, e.g., when

nodes’ residual energy is below a threshold.

The decision of how to distribute IDS functions, results in a network organized

as a set of cluster trees, each running a distributed cooperative IDS. Figure 5.14(a)

depicts an example of a network cooperative IDS, which consists of a cluster tree

with 5 nodes and one additional node, not associated with the cluster tree. The

dotted lines in the figure 5.14(a) represent network connections while the arrow lines

show the cooperation direction. Figure 5.14(b) shows a generic node architecture

in a cooperative IDS. The Data Collection module, executed by all nodes, collects
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Figure 5.14: (a) Example of a network with a cooperative IDS (nodes responsibilities
vary). (b) A generic architecture for nodes in a cooperative IDS.

local system and network data, for intrusion detection purposes. Nodes also have a

Local IDS module that evaluates a set of intrusion detection rules. The remaining

two modules, “Cooperation” and “Data Aggregation” are explained below within

the context of Aggregator and Leader roles for a node.

Inspired by previous intrusion detection research [49, 54, 81, 84] we identify four

distinct roles for the nodes in our distributed IDS:

• Joined nodes are leaves in a cluster tree. They monitor local activity (e.g.,

communication, processes running, data produced) and run a local IDS, as

depicted in Figure 5.14(b). Results are reported to the parent, which can be

an Aggregator or a Leader.

• Aggregator nodes also monitor local activity, as a joined node does, receive

reports from children, either joined or other aggregator nodes, and aggregate

this data with their information, using the Data Aggregation module in Fig-

ure 5.14(b). The aggregated data is reported to a parent, i.e., either an aggre-
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gator or a leader.

• Leader is the root of a cluster tree. A leader receives reports from its children,

either joined or aggregator nodes, and executes sophisticated IDS functions,

e.g., alert correlation, as part of a Cooperation module (Figure 5.14(b)). The

results are reported to the base station. Leaders of all cluster trees form a

connected graph, which contains the base station. As shown in Figure 5.14(a)

there is a single-cluster tree, with node c as its leader.

• Orphan nodes are not part of a cluster tree. They run local IDS and do not

forward their observations to their neighbors.

The nodes with the aforementioned roles can largely be described as: 1) Tasked

nodes if they are either Joined, Aggregator, or Leader; 2) Untasked nodes - the

Orphan nodes. Similarly we will refer to all children of a node as its Followers.

Individual nodes, organized in cluster trees, communicate and aggregate data for

the purpose of detecting intruders, in a collaborative manner. The proposed cluster

tree organization impacts energy consumption (hence, network lifetime), event re-

porting delay, network coverage, and quality of data collected. Each of these proper-

ties represents an individual optimization objective in a multi-objective optimization

problem, formally described in Section 5.2.1.1.

The proposed system architecture, based on cooperative IDS, is the main focus

of our research. For the intrusion detection system we employ existing IDS engines,

e.g., Snort [78], which is based on rulesets. For our approach, it is critical to ob-

serve that more complex actions performed by the detection engine (e.g., number of

rules evaluated, processing stages involved) will pose a higher demand on available

resources (e.g., computation, communication). Consequently, the configuration of

the IDS engine presents opportunities to tradeoff intrusion detection accuracy for
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resource availability. Thus, we consider three types of intrusion detection engines:

lightweight (LW-DS), employed by joined and orphan nodes; medium (RE-DS), em-

ployed by aggregators; and heavy (HW-DS), employed by leaders. The types of

attacks we consider in this research are the following:

• Flooding: the purpose of this attack is to exhaust both network and host

resources by sending a rapid succession of many request-type packets. As

examples for this attack, we consider the SYN and ICMP flood attacks. For

detecting these attacks an LW-DS is sufficient.

• Port scanning: this is a generic attack that probes a target node for open

ports. As an example, we consider TCP port scanning employing TCP SYN

and FIN packets. For detecting a port scanning attack, an RE-DS or HW-DS

is required.

• Web exploits: for this, the attacker hosts an HTTP server and executes HTML

exploits (e.g., information disclosure), against clients. Due to the complexity

of this attack, only a HW-DS is capable of detecting it.

5.2.1.1 Problem Formulation

Given a set N = {n1, n2, ..., nk, b} of k + 1 nodes, which includes base station

b, and the roles of nodes identified at the beginning of the section, let L be the

set of leader nodes, A the set of aggregator nodes, J the set of joined nodes and

O the set of orphan nodes in the network. We denote by bni
, the residual battery

charge of node ni. Each node ni in the network is assigned a single responsibility.

Using the proposed cooperative IDS architecture, nodes are organized in cluster

trees. Let G = {T1, ..., Tq} be the set of q cluster trees formed in the network. Each

cluster tree Ti has only one leader (|LTi
| = 1), and one or more aggregators ATi
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and joint nodes JTi
: Ti = LTi

∪ ATi
∪ JTi

. As mentioned, the set of leader nodes

forms a connected graph. All nodes communicate with radio range R. Leaders can

communicate over greater distances using radio range R′ = βR. More formally, we

define GL(L ∪ {b}, L × L) as the graph formed by leaders Li ∈ L such that Li is

connected to Lj iff dist(Li, Lj) ≤ R′,∀i ̸= j.

Different cluster tree topologies exhibit different characteristics for energy con-

sumption, event reporting delay, network coverage, and data accuracy. Some of these

properties need to be minimized (e.g., energy consumption and delay), while others

need to be maximized (e.g., network coverage and data accuracy). Individually, each

of these properties can be treated naively as a single objective optimization problem.

However, a more complex, but more commonly sought goal in a cooperative IDS for a

set of cluster trees, is to find the lowest aggregate energy consumption and delay with

the highest aggregate data accuracy and network coverage. It is obvious that single

objective optimizations may negatively impact the performance of other objectives

in a multi-objective environment. Therefore, for any set of cluster trees, we define

the network performance F (G) = f (PG, HG, DG, CG), as a multi-variate objective

function, where PG, HG, DG and CG are functions for Power, Information, Delay and

Coverage, respectively, in network G. This multi-variate objective function trades

off Power and Delay, two minimization objectives, in order to improve Information

and Coverage, two maximization objectives. In addition, since the objective values

of these functions are in different scales, they are normalized using Cp, Cd, Ch and

Cc:

F (G) = f

((
1− PG

Cp

)
,
HG

Ch

,

(
1− DG

Cd

)
,
CG

Cc

)
Consequently, our Multi-objective Optimization (MOO) problem is:
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maximize

[(
1− PG

Cp

)
,
HG

Ch

,

(
1− DG

Cd

)
,
CG

Cc

]
(5.4)

subject to: |LTi
| = 1, ∀i = 1, ..., q (5.5)

if nj ∈ ATi
, JTi

then

parent (nj) ∈ ATi
∪ LTi

, ∀i = 1, ..., q (5.6)

|JTi
| ≥ 1, ∀i = 1, ..., q (5.7)

GL is a connected graph (5.8)

bLi
≥ bthL ,∀Li (5.9)

|Ti| ≤ |T |th,∀i = 1, ..., q (5.10)

where (5.4) is a vector of all objective functions; constraint (5.5) indicates that a

single leader node is in each cluster tree; constraint (5.6) enforces the construction of

the cluster tree (to conform with our cooperative IDS architecture); constraint (5.7)

indicates that at least one joined node must be in each cluster tree; constraint (5.8)

enforces the leaders to be connected to the graph GL formed by leaders including base

station; and constraint (5.9) says that the residual battery charge of the leader has

to be greater than a defined threshold value bthL . Finally, constraint (5.10) enforces

the size of cluster trees to be smaller than a defined threshold |T |th, to prohibit the

creation of large cluster trees. This constraint seeks solutions that are sets of trees

instead of one large tree (a typical single point of failure).

For investigating solutions for MOO, we need normalizing constants Cp, Cd, Ch

and Cc. These upper bound values are obtained by solving the corresponding Single

Objective Optimization (SOO) problems. As an example, for maximizing Informa-

tion in the network and finding Ch, the corresponding SOO is:
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maximize

q∑
i=1

|Ti|∑
j=1

hij (5.11)

subject to: same constraints as MOO (5.12)

where hij represents the information available to node j in cluster tree i. Similarly

we can formulate single optimization problems that minimize Delay and Power, and

that maximize Coverage.

5.2.2 Models for Single Objectives

In this section we develop mathematical models for PG, HG, DG, CG, the Power,

Information, Delay, and Coverage functions, respectively, i.e., individual objectives

that compose the multi-objective optimization problem.

5.2.2.1 Power Model

Nodes in the network, depending on their roles, consume different amounts of

energy for communication and computation. Leader and aggregator nodes perform

functions that consume more power (i.e., cooperation module in leaders and aggre-

gation module in aggregators). Similarly, cluster trees may vary in the number of

tasked and untasked nodes and in the number and distribution of followers for each

leader and aggregator. This means that the total power consumption of any set of

cluster trees will vary from other possible sets. Thus, one single objective optimiza-

tion problem is to minimize total power consumed by all nodes in a set of cluster

trees G formed in the network, as given by:

PG =
k∑

i=1

pi =

|L|∑
i=1

pLi
+

|A|∑
i=1

pAi
+

|J |∑
i=1

pJi +

|O|∑
i=1

pOi
(5.13)
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where pi is the power consumption of node i for both communication and computa-

tion activities, which will depend on the role assigned to it (i.e., leader, aggregator,

joint or orphan). In the remaining part of the section, we present the power con-

sumption models for leader nodes pLi
, aggregator nodes pAi

, joined nodes pJi , and

orphan nodes pOi
.

For our power consumption model, we extend the one proposed in [26]. We

consider the power consumed for radio communication or processing (computation).

We denote by PTX and PRX the power consumed for transmitting and for receiv-

ing a report, respectively. We denote by PRep and PRecv the power consumed for

transmitting and for receiving an intrusion detection alarm, respectively. The power

consumed for processing/computation, denoted by PProc, depends on the role as-

signed to a node. The following notations are with reference to the proposed system

architecture, shown in Figure 5.14(b) - the “Cooperation” and “Data Aggregation”

modules. For an aggregator node, which has the “Data Aggregation” module active,

PProc = PModA + PCodA where PModA is a fixed power consumed for maintaining the

module active and PCodA is a variable power, consumed for coding/aggregating data

from follower nodes. For a leader node, which has the “Cooperation” module active,

PProc = PModC + PCodC where PModC is a fixed power consumed for maintaining the

module active and PCodC is a variable power, consumed for coding/cooperating data

from follower nodes.

We denote by Ei an event vector, which is a set of observed security parameters

reported by node i. We denote by lEi
its length (lEi

= |Ei|). We remark here that

lEi
is the same for all joined nodes (since they do not have followers) and that it

increases with the number of descendants. Considering our system architecture for

cooperative IDS, each tasked node i, except for leaders, sends Ei in each time slot,

at a rate λ packets per second. We assume that λ is equal for all nodes. We use Fi
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as the set of followers of node i. Considering the tasks mentioned in Section 5.2.1,

the power consumed by a leader node becomes:

pLi
= PRXi

+ PProci + PRepi + PRecvi

= prx

|Fi|∑
j=1

λlEij
+ PCodC

λlEi
+

|Fi|∑
j=1

λlEij


+ PModC + ηlA(ptx + p′tx + p′rx)

where ptx and prx are the power consumptions required to transmit and receive

one bit, respectively, and p′tx and p′rx are the power consumptions required for trans-

mitting one bit over a long distance between leaders. Similarly, pAi
= pLi

+ PTXi
=

pLi
+ ptxλlEi

.

Reporting activity consumes PRep = ηlAp
′
tx, depending on the attack frequency

η in the network (0 ≤ η ≤ 1) where lA is the size of alarm. Leaders need to

communicate with each other, using long distance communication, to exchange alerts

in case of attack detection as well as sending alert to the followers, using regular

radio range communication. Since aggregators forward alerts to their children, they

consume PRep and PRecv for transmitting/receiving alarms, respectively.

In contrast to leaders and aggregators, the only tasks of joined nodes are to trans-

mit their event vector to their parents and to receive alarms from them. Therefore,

the power consumption of a joined node is pJi = PTXi
+ PRepi = ptxλlEi

+ ηlAprx.

Since orphan nodes do not execute any cooperative IDS processes, their power con-

sumption is 0 (pOi
= 0).
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5.2.2.2 Information Model

For IDS cooperation, in which each node has a local IDS and sends reports to

its parent, the way nodes are organized in cluster trees and cooperate affects the

amount of data collected. An optimal solution for our MOO problem collects as

much data as possible, but, at the same time reduces the amount of useless data

collected. Thus, for defining one additional objective in our MOO, we develop a

model for data collected in a cooperative IDS.

We already mentioned that each node i sends an event vector Ei to its parent.

Here, for simplicity, we assume that each vector contains only one security parameter

which is a random variable xi with a Gaussian distribution (xi ∼ N(µ, σi
2)). The

amount of information contained in x is its entropy, H(x). We denote by H(xi) the

data entropy of a reporting parameter of node i, and by H(xi, xj) the joint entropy

of two variables xi and xj, where node i is the parent of node j. So, the data entropy

at an aggregator is the joint entropy of all received data from its followers combined

with its own observations.

For a set of cluster trees, the Information function is defined as summation of all

data entropy at the nodes asHG =
∑k

i=1 hi, where hi = H(xi) for any joined node and

hi = H(xi, ..., xn), as the entropy of all parameters received by aggregator i combined

with its own security parameter. This model guarantees that upper level aggregators

get access to all information reported by their descendants but it does not require

an aggregator node to forward all received packets. Hence, this reporting process

ensures that all cooperators have access to all information in the local cooperating

cluster tree. This data aggregation reduces the total amount of transmitted data

between aggregators. Each observed parameter contains H(x) = 1
2
log(2πeσ2) bits

of information where σ2 is the variance of Gaussian random variable x. The joint
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entropy of n Gaussian random variables is H(x1, ..., xn) =
1
2
log[(2πe)ndet(Σ)], where

Σ is the covariance matrix of the joint variables [20]. Matrix Σ contains all σi’s as

standard deviation of Gaussian random variables, σ2
i ’s as their variances, and ρij as

the correlation coefficient of any pair of variables i and j as follows:

Σx1,x2,...,xn =



σ2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ2σ1 σ2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 ρn2σnσn · · · σ2
n


In Σ, the correlation coefficient ρij is a function of nodes i and j locations. For-

mally, ρij = f(Xi, Yi, Xj, Yj), where Xi and Yi are the x and y coordinates of node

i. This means that ρ depends on the location, length and orientation of the line

segment between two nodes. We assume that the location of the attacker has a

random distribution in the network area, so that variable x is a stationary ran-

dom variable and independent of node location. Thus, ρ = f(dij), which means

that ρ is only a function of the distance between two communicating nodes regard-

less of their location in the network. In this research, we assume σ = 1 consid-

ering security parameter xi as standard Gaussian random variable. Assuming the

same circular radio range for all nodes A = πR2, then ρij = (Ai

∩
Aj)/A, if dij ≤

2R, and 0, otherwise, where Ai = Aj = A. Overlapping area (Ai ∩ Aj) is calculated

as Ai ∩ Aj = 2R2 cos−1
(

dij
2R

)
− d

2

√
4R2 − d2ij.

5.2.2.3 Delay Model

In the proposed IDS cooperation model, we assume that an aggregator node

processes all received reports during timeslot τ and sends the aggregated report to

its parent during timeslot τ +1. The delay between a report transmitted by a node,
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until it is received by a leader located at a distance µi hops is equal to the number of

hops. Thus, the total event reporting delay in the network becomes DG =
∑k

i=1 µi.

5.2.2.4 Network Coverage Model

The final objective function to be maximized is the coverage of nodes in the

network. A node which is a member of cluster tree Ti, regardless of its role, is

considered covered (cij = 1 iff ∃Ti where nj ∈ Ti). Accordingly, the only nodes in the

network that are not covered are orphan nodes. Thus, the node coverage function in

the network is CG =
∑q

i=1

∑|Ti|
j=1 cij = k − |O|.

5.2.3 Solutions for Optimal Monitoring in Cooperative IDS

The optimization problem described by Equations 5.4-5.10, has properties that

limit the methods that can be used for solving it.

First, the number of possible cooperation topologies grows exponentially with

the number of nodes. Cayley’s theorem [77] gives the number of trees and clusters

in a graph: 1) given n labeled nodes, the number of different trees is nn−2; 2)

given n labeled nodes, of which k nodes are chosen as root nodes, the number of

forests (clusters) that can be formed is knn−k−1. Although, lower network densities

affect trees and clusters formation, the number of possible cooperation topologies

is extremely large, primarily because nodes in our clustering method are assigned

different tasks. Any permutation of tasks in a cluster tree results in a new cooperative

IDS solution which we need to consider (as an example, consider 3 nodes connected

in a straight line; each of the nodes can be a leader, while the other two nodes

can be either joined or aggregator nodes). To conclude, the exponential growth in

the number of feasible solutions, i.e., Ω(nn), makes the search space of the problem

extremely large and the optimization problem NP-hard.

Second, our multi-objective optimization problem has some non-linear constraints
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(e.g., constraint (3)), which makes the problem impossible to be solved by linear

methods. Moreover, the solutions of our optimization problem are not numeric val-

ues, but complex cluster trees. Thus, the objective functions are discrete functions.

Given the aforementioned challenges, we propose to employ evolutionary algo-

rithms for solving the optimization problem. In the following sections we present

two evolutionary algorithms-based solutions to our MOO, and analyze their time

complexity and the optimality of their solution.

5.2.4 Evolutionary Algorithms for MOO

For solving our MOO, we propose to use a Genetic Algorithm (GA), one popular

type of evolutionary algorithm. A GA starts with a set of random solutions (from here

on we will use the terms “solution”, “individual” and “chromosome” interchangeably;

consequently we will use “set of solutions” and “population” interchangeably), and

derives better solutions by combining older solutions using the Darwinian process

of “survival of the fittest” [8, 71]. This “survival of the fittest” process is iterative,

and uses genetic operations, such as Selection, Crossover, and Mutation. Selection

gives the most fit solutions chance to survive. Crossover combines solutions in the

previous generation to produce offsprings (i.e., new solutions), and mutation is used

to maintain genetic diversity from one generation to the next.

Our optimization problem has multiple objectives. For assessing the goodness

of GA solutions, all objectives must be encapsulated in a single fitness function

(which computes solution’s fitness). Generally, there is no unique solution for a

multi objective optimization problem. Instead, a set of solutions, called the Pareto

set, is sought. Some multi-objective problems, however, can be reformulated such

that some of the objectives act as constraints (also called regularization terms for

objectives). In this research we pursue this latter approach primarily because Pareto
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frontier produces a variety of optimal solutions with respect to different objectives. A

security administrator, however, has to choose only one solution. Choosing the most

suitable solution among all in the Pareto set, is an administrative decision which

depends on the network situations, e.g., average battery level and attack frequency

in the network. In our approach, i.e., the Penalized method, some objectives act as

secondary constraints and are specified by administrator, based on the characteristics

of the optimization problem. The question that remains, and will be addressed

shortly, is which constraints to use as secondary, and why these constraints.

The cooperative intrusion detection techniques proposed [41, 49, 81] aim to ex-

change security information among intrusion detectors distributed throughout the

network. In the optimal monitoring problem that we formulated, every node has

a certain amount of information (obtained from its local observation) that can be

exchanged with neighbors, to improve the intrusion detection rate. On one hand, the

model enforces the nodes to participate in clusters, to achieve higher Information and

Coverage values (i.e., we prefer to not have orphan nodes in the network). Hence,

as clustering occurs in the network (to maximize Information objective, the main

objective of the system), Power and Delay objectives suffer. To conclude, Informa-

tion model is a primary optimization function while the other objective functions are

considered secondary.
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Algorithm 5 Genetic Algorithm
1: nSol← S

2: Collect Network Info()

3: Create Adjacency Matrix()

4: First Population (nSol)

5: Fitness Values(nSol, α)

6: for NumGen = 1 to g do

7: Find Elite (nSol)

8: Selection(nSol, ϕ1)

9: Crossover(nSol, ϕ2, ω)

10: Mutation(nSol, ϕ3, φ)

11: Replace Elite(Elite)

12: Fitness Values(nSol, α)

13: end for

In the following subsections we present our GA, with pseudocode shown in Al-

gorithm 5. Our algorithm, based on the Penalized function method for solving the

MOO, uses Power, Delay, and Coverage objectives as regularization terms (or sec-

ondary constraints) for the Information objective.

5.2.4.1 Problem Encoding

First, GA solutions are encoded as bitstrings (i.e., chromosomes) of specific

length, and tested for fitness. The goodness of a solution is evaluated by its fitness

value. Second, a solution to our problem is a set of cluster trees G = {T1, T2, ..., Tq}.

The set of cluster trees G can be conveniently represented as an adjacency matrix

(e.g., our GA collects necessary information in Algorithm 5 Lines 2-3). Consequently,

an immediate way to encode a solution (feasible or not) as a chromosome, is to con-
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catenate the rows of G’s adjacency matrix in a single bitstring. The chromosome

is thus composed of multiple segments, where each segment is a row from G’s adja-

cency matrix. In the example depicted in Figure 5.15, the chromosome titled “Instant

Chromosome” is the encoding for the cluster tree presented in Figure 5.14(a). Based

on our proposed architecture (i.e., a set of cluster trees) a chromosome must have a

single bit set to 1 in each segment. Figure 5.15 also depicts two infeasible solutions

(non-chromosomes) in the bitstrings titled “Infeasible Solution”. In one infeasible

solution, two bits in the same segment are set to 1, while in the second a node has an

invalid parent. Through our proposed encoding, it is easy to observe that the length

of a chromosome is k2.

5.2.4.2 Initial Population

The initial population, consisting of S individual chromosomes -each representing

a single solution- is randomly generated. A population of large size S allows the

GA to start with a large set of feasible solutions. A chromosome is obtained from a

randomly generated bitstring, if it abides by constraints (5.5-5.9) of our optimization

problem. If the bitstring conforms, then the GA considers it a solution (Algorithm 5,

Line 4).

5.2.4.3 Computation of Fitness

The fitness of a chromosome (i.e., a solution) represents its ability to keep genetic

properties for next generations. As mentioned earlier, our proposed GA computes

the fitness value of a solution G through a Penalized function technique (Algorithm 5

Line 5). Since any objective function can be considered as an optimizing objective,

we discriminate among objectives through parameter α.

In our proposed solution, Information is considered as primary objective function,

while the other objectives are secondary constraints and regularization terms. As the
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Instant 
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Set of all feasible solutions

Node “c” cannot have two parents in tree 

Infeasible 

Solution

A typical solution (representation of Figure 1(a))

Node “c” cannot be connected to node “a” 

according to graph connectivity

Infeasible 

Solution

Node

Figure 5.15: The connectivity graph is encoded as a string suitable for GA. All
feasible solutions can be derived from graph connectivity string.

Power and Delay values of a solution increase, or the Coverage becomes less than

100%, the function penalizes the Information value to a smaller value, so that the

corresponding solution has less chance to survive. The penalized function for MOO

approach is f(G) = [2 − (PG/CP ) − (DG/CD)] × ((1 + ⌊CG/k⌋)/2) × HG, where a

set of constraints penalizes the fitness value for each solution: the penalty method

maximizes data entropy (HG), while normalized values of power (PG) and delay (DG)

operate as inverse coefficients of the fitness value. We use coverage (CG) as a penalty

parameter as well. To find the constants CP and CD (i.e., the maximum delay and

power consumption), we solve the corresponding two single objective optimization

problems. The maximum outcomes of several iterations of these SOO problems are

assigned as constants CP and CD.

Once the fitness of the initial population is computed, our GA attempts to find

better solutions in an iterative manner (Algorithm 5 Line 6), by applying genetic

operations, further described below.
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5.2.4.4 Elitism

The purpose of Line 7 in Algorithm 5 is to ensure that the best solution of each

generation will not be lost during crossover and mutation. After computing the

fitness values, the best solution among all individuals is passed on directly to the

next generation.

5.2.4.5 Selection

This step chooses the best individuals whose descendants will form the next

generation. Chromosomes in the current population are selected using either “tour-

nament” or “roulette wheel” mechanisms, and are weighted with the chromosome’s

fitness value. In the tournament method, two random individuals are selected from

the current population and the individual with the highest fitness value is selected

for mating. The process is repeated S times. If the selection method is set to roulette

wheel, S random chromosomes are chosen. Selection probability for each chromo-

some G is f(G)/ΣS
1 f(G). Our algorithm invokes this function in Line 8, and it uses

ϕ1 = 1 for tournament, and ϕ1 = 2 for roulette wheel.

5.2.4.6 Crossover

New solutions, or offsprings, are formed by mating, which is handled as an ex-

change in our algorithm on Line 9. Three different recombination schemes are avail-

able: block exchange (B) (where a block is a contiguous sequence of segments),

segment exchange (S), and multi-segment exchange (M). Block exchange selects a

random node (segment) of each chromosome and replaces all subsequent segments

with the same segments of another parent. Segment exchange trades one segment

from each parent with each other, while multi-segment exchanges more than one seg-

ment. Algorithm 5 Line 9 uses ϕ2 to specify the crossover method (i.e., ϕ2 = 1, 2, 3).
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Crossover induces change. In order to control the rate of change, the crossover prob-

ability (ω) must be set to a conservative value.

5.2.4.7 Mutation

Considering the specific requirements of our problem (e.g., cluster tree formation

for cooperative IDS), our GA employs two mutation methods. Composition (C) is a

mutation method useful for maximization problems while decomposition (D) is useful

for minimization problems. Both methods, specified by ϕ3 in Line 10 of Algorithm 5,

randomly mutate the parent of a random node in a valid solution (ϕ3 = 1 means

compositions and ϕ3 = 2 means decomposition). This may result in merging of

cluster trees to form a single, larger, tree (composition), or the splitting of one tree

into two (decomposition). An important observation is that mutation may also cause

the loss of fittest solutions. Because of such possibility, the mutation probability (φ)

must be very low.

Finally, before computing the next generation, our GA replaces the worst solution

obtained from the three aforementioned processes, with the elite solution from the

previous generation.

5.2.4.8 Genetic Algorithm Analysis

It is well known that the optimality of a solution obtained by GA is strongly

correlated to the size of the population under consideration, and the number of

generations. A large population prevents the GA from falling into a local minima

and a large number of generations allows the GA to generate near-optimal solutions.

As mentioned at the beginning of Section 5.2.3, the search space of our optimization

problem is extremely large, especially for very large networks (e.g., hundreds to

thousands of nodes). If optimality of the obtained solution is of primary concern,

the execution time of our GA could still be very large (e.g., a large population and
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a large number of generations are required).

Additionally, the GA does not control the distribution of leaders and their cor-

responding followers in the network. For example, the followers are not necessarily

located evenly around their leader. It is possible to have a follower node connected

to a more distant leader, then to one leader nearby. Also, the size of cluster trees is

not necessarily the same. It is possible to have cluster trees varying from very small,

to very large.

Motivated by the aforementioned observations, we propose a Hybrid Algorithm

(HA) which, primarily, trades off solution optimality for speed of obtaining a solution.

As a consequence, for very large networks, the HA algorithm might be able to obtain

a better solution than GA, in a limited, short, amount of time. The proposed HA

executes in two phases. In the first phase the algorithm, building on state of art

solutions in leader selection [54,85], selects a set of leader nodes that exhibit higher

connectivity with follower nodes and higher residual battery charge. The selected

leaders must also abide by the connectivity constraint of our MOO (e.g., the leaders

and base station form a backbone communication, a connected graph). In the second

phase, the HA algorithm finds the optimal role assignment for the followers of each

leader, employing our proposed GA technique. We provide more details about HA

in the following section.

5.2.4.9 Two-phase Hybrid Algorithm for MOO

As already mentioned, our proposed HA consists of two major phases. In the

first phase, called the r-hop leader selection, our HA selects a set of suitable nodes

as leaders (i.e., the leaders will form clusters in a cluster tree organization), while

the second phase assigns roles to each leader’s r-hop neighbors. Algorithm 6 shows

the HA pseudocode.
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Algorithm 6 Hybrid Algorithm

1: find Fi for ∀i

2: L = {}

3: while O ̸= ∅ do

4: Li = maxi∈N\b{|Fi| × bi}

5: L = L ∪ {Li}

6: O = O − FLi

7: update-followers()

8: end while

9: Modify-Clusters()

10: for i = 1 to |L| do

11: run GA on Li ∪ Fi

12: end for

Constraints 5.9 and 5.10 of our MOO problem require the set of leaders and base

station to form a connected graph, and the residual battery charge of leaders to

exceed a threshold. In addition, each leader will have followers in at most r-hops.

Since a larger r imposes a larger event reporting delay, our algorithm will select as

leaders, nodes with more r-hop neighbors and with sufficient battery charge.

Initially, the algorithm computes Fi, the set of followers-to-be in at most r-hops,

for every node i in the network (Algorithm 6 Line 1). Next, the algorithm iteratively

selects leaders based on their residual battery charge and number of r-hop neighbors,

if and only if they meet the connectivity requirement for leaders (Algorithm 6 Line 4).

Upon selecting a node as leader, the node is added to the set of leaders L (Algorithm 6

Line 5) and all of its r-hop neighbors are removed from the set of Orphan nodes,
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i.e., O = N \ {b} (Algorithm 6 Line 6). Since adding/removing nodes changes the

number of r-hop neighbors for the remaining nodes, the algorithms updates Fi for all

unselected nodes (Algorithm 6 Line 7). The algorithm repeats the leader selection

until no more orphan nodes exist.

At the end of the first phase, a set of leaders and their corresponding sets of

followers are selected. We remark here that it is possible to have a few single-node

clusters (i.e., Orphan nodes) at the end of the first phase, and that these orphan nodes

may have many neighbors (the leader election algorithm prevented these orphan

nodes/clusters from joining adjacent clusters because the fixed r). To address this

issue, we add one step to the first phase of the algorithm. In this step, a single-node

cluster is merged with the smallest cluster it is connected to (Algorithm 6 Line 9).

This step guarantees full coverage with clusters and aims to balance cluster size.

The clusters obtained as the results of executing the first phase can now be

considered as individual networks of smaller size. The nodes in these clusters can

now be assigned roles for cooperative IDS. In the second phase, our proposed HA

(Algorithm 6 Lines 10-12) executes the proposed GA in each cluster.

5.2.5 Simulation Results

In this section we present the performance evaluation of our proposed GA and

HA. We also compare the time complexity of GA and HA and the optimality of their

solutions. Finally, we evaluate the intrusion detection delay against random attack

locations for both SOO and MOO (as solved using GA and HA).

5.2.5.1 Performance Evaluation of GA

We implemented the proposed GA in Matlab for SOO (for each objective) and

MOO. We investigate SOO for two reasons: to obtain the scaling factors CP and

CD of the penalized MOO, and to compare SOO solutions with those obtained from
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penalized MOO. For comparison we use GA convergence and the balance in cluster

formation. Before comparing SOO and MOO solutions, we are interested in the

effects various algorithm parameters (e.g., genetic operations, population size, num-

ber of generations, etc.) have on SOO/MOO solution optimality. To find the best

combination of genetic operations for our problem, we investigate all combinations

of selection, crossover, and mutation operations. The probability of crossover and

mutation are set to 65% and 10%, respectively. Other GA parameters are listed

in Table 5.1. These values are chosen after several evaluations of GA convergence

history and final fitness values.

As mentioned in Section 5.2.4.8, the population size must be chosen based on

the network size, to ensure GA does not fall into a local minima in the search space.

The papulation size in our simulation is set to Max{50, 2 × k}. The number of

generations, i.e., 200× k, also varies with the network size and is set large enough so

that crossover and mutation operations get sufficient chance to generate variety of

offsprings. We perform simulations for different network deployments and network

sizes: uniform deployment in a grid topology of 9, 16, 25, 36, and 49 nodes; and

random deployment of 10, 20, 30, 40, and 49 nodes.

Effects of Genetic Operations on Performance: As presented in Section 5.2.4,

our GA employs different methods for selection, crossover and mutation. We solve

the penalized MOO problem starting from the same initial population and applying

all twelve combinations for genetic operations. We use a 3-digit number, called com-

bination ID, to indicate each combination where the first digit specifies the selection

method and two next digits determine crossover and mutation methods, respectively

(i.e., Cmb. ID = ϕ1ϕ2ϕ3). For example, combination ID 121 uses the “tourna-

ment” selection method, “segment exchange” crossover method, and “composition”

mutation method.
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Table 5.1: GA Parameters

Selection Meth.(ϕ1) Tournament, Roulette wheel

Crossover Meth.(ϕ2) Block, Segment, Multi Seg.

Mutation Meth.(ϕ3) Composition, Decomposition

Crossover Prob.(ω) 65%

Mutation Prob.(φ) 10%

Population Size(S) Max {50, 2 × Network Size}
# of Generations (g) 200 × Network Size

Table 5.2 depicts the final fitness values of penalized function for both random

and grid networks. To find the best genetic operations combination, we compare the

average objective value for each combination, over all network sizes. Since the objec-

tive value varies with the network size, the objective values for different networks are

normalized using the maximum value achieved for the corresponding network size.

The average normalized values are shown in the rightmost column of Table 5.2.

As shown, combination 211 has the highest average objective value among all of

the combinations. It is worth mentioning that the objective value for combinations

that use the decomposition method for mutation, is always less than the objective

value obtained by composition. One explanation for this is that the decomposition

method tends to split cluster trees into smaller ones, an undesired goal in maximiza-

tion problems in which larger cluster trees are desired.

Table 5.2 also depicts the standard deviation (STD) of the objective values. We

use this metric to show how much variation there is in the objective values, due

to different combinations. As we mentioned earlier, the values in columns are in

different ranges, because of different network sizes. It is interesting to observe that

the fitness value for two equal size networks can also be in different ranges, due

to the deployment type (e.g., 49-node grid or random network). This is because for
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Table 5.2: Optimal objective value of penalized function achieved by different genetic
operations

Random Grid
Cmb. 10 20 30 40 49 9 16 25 36 49 Norm.
111 27.72 61.40 99.01 151.69 197.53 25.47 47.00 80.39 141.45 208.20 0.992
112 27.21 58.65 94.73 143.25 185.16 24.49 45.83 76.18 137.07 199.87 0.951
121 27.72 61.40 99.21 151.44 198.45 25.47 46.60 80.32 141.82 207.61 0.992
122 26.73 59.44 95.28 146.66 187.88 24.49 45.69 75.76 134.90 199.82 0.953
131 27.72 61.40 97.87 150.81 197.32 25.47 46.48 80.64 142.00 207.33 0.989
132 26.76 58.93 94.85 148.02 187.01 24.37 45.68 76.78 137.26 197.74 0.953
211 27.82 61.58 99.47 152.10 200.34 25.47 47.14 80.61 142.46 210.25 0.997
212 26.76 58.18 95.11 142.83 186.38 24.81 45.85 77.44 134.97 198.09 0.950
221 28.06 61.76 99.80 150.34 199.83 25.47 47.03 80.96 142.24 208.75 0.996
222 26.27 59.60 96.83 144.79 189.20 24.81 45.82 76.64 135.60 199.96 0.955
231 27.82 61.76 99.55 151.08 199.47 25.47 47.03 80.61 143.19 207.12 0.995
232 26.67 59.19 95.14 144.60 186.39 24.72 45.68 76.63 134.31 198.77 0.951
Avg. 27.27 60.27 97.24 148.13 192.91 25.04 46.32 78.58 138.94 203.63
STD 0.60 1.38 2.11 3.53 6.29 0.46 0.61 2.13 3.52 4.89
CV 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.02 0.02

Information as objective, the value is a function of the distance between nodes, which

varies in a random deployment, and is constant in a grid network. Consequently,

to compare objective values, we use the coefficient of variation (CV), defined as

the ratio of the standard deviation to the mean value. Small values of CV (i.e.,

CV << 1) indicate that all genetic operations perform well. We also note here that

larger networks have larger CV values, since the search space is considerably larger

(this imposes a higher variation in the final fitness value).

Figures 5.16(a) and 5.16(b) show the convergence history for the objective value

in 49-node random and grid networks, respectively, when only composition is con-

sidered. First, the methods that use “tournament” selection (i.e., 111, 121, and 131)

help GA remove solutions with very low objective value (i.e., bad solutions) from

the population, during early generations. Removing those solutions, however, pre-

vents the algorithm to create near-optimal solutions from bad solutions by genetic

operations (e.g., mutation). Thus, such approaches achieve high objective values in

the early generations, which do not improve in subsequent generations because the
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Figure 5.16: Convergence of penalized objective value using different combinations
of genetic operations for: (a) 49-node Random network; (b) 49-node Grid network.

algorithm falls in a local minimum. These approaches are useful when optimally

is not as important as algorithm execution time. For fast solutions, the number of

generations can be small, with GA obtaining a near-optimal solution. Second, the

“roulette wheel” selection, can usually pass a few undesired solutions to the next

generations where a mutation process may produce a desired solution. From here

on, all simulations use genetic combination 211, i.e., “roulette wheel” for selection,

“block exchange” for crossover, and “composition” for mutation.

Effects of Initial Population on Performance: Evolutionary algorithms start

with a random initial population as a set of sample solutions from the entire search

space. Hence, they may lack robustness in producing optimal solutions, owing to

their probabilistic nature (i.e., the genetic operations and the initial population).

To show the robustness of our algorithm, we run simulations on different network

sizes using the best combination (211) found in the previous experiment. This ex-

periment is repeated 10 times for each network size, starting with different initial

populations for each run. We reduce the number of generations to 6,000 generations

(i.e., min{6000, 200 × k}) because the major improvements in fitness value for the
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larger networks occurred before 6,000 iterations.

Table 5.3: Optimal objective value of penalized function when combination 211 is
applied on different initial populations

Random Grid
Run ID 10 20 30 40 49 9 16 25 36 49

1 27.58 61.80 99.09 151.91 199.25 25.47 47.16 80.49 143.65 203.00
2 27.78 61.32 98.24 150.97 198.24 25.47 47.53 81.10 142.37 209.79
3 27.58 61.75 98.41 151.96 194.41 25.47 47.77 80.81 142.94 209.35
4 27.72 61.76 99.50 151.81 193.76 25.47 47.03 80.55 143.13 207.39
5 27.58 61.76 99.38 150.38 196.57 25.47 47.77 81.01 141.71 208.63
6 27.58 61.58 99.39 152.97 198.93 25.47 47.53 81.11 142.08 209.61
7 27.58 61.80 99.45 152.93 196.28 25.47 47.15 81.30 143.00 204.69
8 27.58 61.58 99.01 150.84 195.75 25.47 47.53 80.62 142.37 207.12
9 27.58 61.75 99.55 151.56 197.27 25.47 47.16 81.52 143.48 209.81
10 27.58 61.75 99.02 151.46 199.89 25.47 47.15 81.06 142.14 208.58

Average 27.61 61.69 99.11 151.68 197.04 25.47 47.38 80.96 142.69 207.80
STD 0.07 0.15 0.45 0.83 2.06 0.00 0.27 0.33 0.64 2.31
CV 0.002 0.002 0.004 0.005 0.01 0 0.005 0.004 0.004 0.01

Table 5.3 shows the average fitness values for the penalized function over all

experiments. As shown, the CV values are extremely small (i.e., CV << 0.1), thus

the dispersion in the final values is negligible. Considering the smaller number of

generations in this experiment and comparing the CV values with Table 5.2, the

proposed algorithm is robust in achieving near-optimal solutions regardless of the

initial population.

Figures 5.17(a) and 5.17(b) depict convergence history for 49-node random and

grid networks, respectively. Although we show only seven instances in each figure,

due to space limit, the graphs contain the whole distribution of final values. It is also

worth mentioning that the convergence is smoother, when compared with the results

presented in Figures 5.16(a) and 5.16(b), where different genetic combinations were

used.
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Figure 5.17: Convergence of penalized objective value using different initial popula-
tion and same genetic operations. (a) 49-node Random network. (b) 49-node Grid
network

Cluster Count RMSE: As mentioned, the larger the clusters are, the higher

their Information objective value is. Thus, it is obvious that the maximum Informa-

tion is achieved in a single large cluster. However, other objectives, namely Power

and Delay, are minimal when nodes are individual clusters without followers. The

Power and Delay minimization objectives prevent formations of large clusters, thus

trading off high Information for low Power/Delay.

Considering the importance of the Information objective in our cooperative IDS,

one may be tempted to consider only the SOO problem that maximizes Informa-

tion and Coverage, and to disregard minimizing the Power and Delay. This SOO

formulation will seek as solution a single large cluster tree. This solution presents a

single point of failure and will incur high energy consumption near the leader. Addi-

tionally, the delay in intrusion detection and power consumption will likely be very

high. Instead, we prefer that GA produces a set of clusters, as indicated by con-

straint 5.10 in our problem formulation. By tuning the parameter |T |th, we tradeoff

fault-tolerance (i.e., number of cluster trees) with compromised node-tolerance (i.e.,

maximum number of nodes that must be compromised before a system fails).
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Table 5.4: RMSE value for number of cluster trees

Random Grid
10 20 30 40 49 9 16 25 36 49

RMSE - SOO 0 0 0.04 0.07 0.02 0 0 0 0.01 0.02
RMSE - MOO 0.25 0.44 0.57 1.2 0.72 0 0.11 0.1 0.17 0.32

In this section, we investigate how the parameter |T |th affects the number of

cluster trees. We chose different values, depending on the network size: 5 for 10-

node network and 7 for 20-node network. By changing |T |th we expect that solutions

to the SOO and MOO problems will have different numbers of cluster trees. We

use the root mean square error (RMSE) in the cluster count, to show the bias and

variance of number of cluster trees obtained by the GA. We normalize the expected

number of cluster trees, for different network sizes to 1 and then calculate RMSE for

each network size. Tables 5.4 depicts the RMSE of our estimator’s expected value

(number of clusters) for both SOO and MOO approaches in different deployments

(i.e., random and uniform) and network sizes.

As shown, the cluster count RMSE for the SOO formulation, is very close to zero

and it is smaller than that for the MOO formulation. The explanation for this is

that SOO, in which Information is the objective function, tends to create as large

clusters as possible. Consequently, the number of clusters we expect (as specified by

|T |th) is achieved. MOO formulation, however, avoids solutions with large clusters

because of high Power and Delay costs. The cluster count RMSE for both SOO

and MOO approaches increases with the network size. The increasing RMSE can be

explained by the fact that for larger size networks the search space is much larger,

thus preventing the GA from reaching the optimal value in a limited amount of time.

Finally, very small RMSE (i.e., close to zero) throughout this experiment, indicates

that solutions produced by our GA, in terms of number of cluster trees, approach an
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intuitively optimal value.

SOO Solutions vs. MOO Solutions: In this section, we compare the conver-

gence and cluster tree formation for SOO and MOO, given a fixed amount of time

and a set of random initial populations. We investigate the convergence to the best

fitness values, of the GA for both random and grid networks to compare their speed

and monotony. We also show how considering more objectives in the optimization

problem affects clustering, preventing GA from producing long linear cluster trees.

Figures 5.18(a) and 5.18(b) show the convergence of the objective value for 49-

node random and grid networks, respectively. The figures show that the objective

value for SOO converges faster than for MOO, which fluctuates. The explanation for

this is as follows. Starting with an initial population, SOO selects better solutions

in terms of Information objective value. These solutions are passed to the next

generation without restrictions (e.g., high Power value), causing the GA to converge

very fast. A good solution for MOO, however, is a solution that meets all objectives.

Thus, it is possible to have a solution with a lower value of Information, passed to the

next generation, instead of a solution with higher Information value, simply because

the penalized value of the former is better. This happens because maximization and

minimization objectives are not independent.

Figures 5.19(a) and 5.19(c) depict cluster tree solutions obtained by the GA, when

the objective to maximize is Information, without considering Power or Delay. The

obtained topologies are largely linear and, while producing solutions that maximize

Information, incur high Power and Delay costs. To assess the effect of the penalized

fitness function on these solutions, we ran our GA on the same networks, using

Power and Delay as penalties to the fitness function. Figures 5.19(b) and 5.19(d)

show that smaller cluster trees, which achieve a balance between all objectives, are

obtained. It is also shown how SOO achieves less number of cluster trees of larger
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Figure 5.18: Convergence of SOO and MOO objective values in 49-node networks:
(a) Random; (b) Grid.

sizes while MOO benefits from more cluster trees of smaller sizes, a tradeoff among

all objectives.

Pareto Curve: A Pareto curve shows the non-dominated solution space of one

objective, i.e., Power, Information or Delay, in terms of two other objectives. It

presents the optimal front and the diversity across objectives along this front. We

performed simulations using a penalized MOO on a 49-node random network. The

Pareto curve of the Penalized Function is shown in Figure 5.20. As shown, the

Pareto curve contains solutions with different objective values for Information, but

the average penalized value of them is definitely the maximum possible values that

GA could achieve during generations. The Pareto curve also shows that Power,

Information and Delay are highly correlated, giving one other explanation for the

observed fluctuations in the convergence graph of the multi-objective fitness value.

It is worth mentioning that in all other experiments, we chose a solution with a max-

imum penalized value. This allows us to compare final objective values of multiple

approaches (i.e., combination of different GA operations, initial solution set, etc.)

for convergence and cluster formation results.
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Figure 5.19: Effects of constraints on the output of the optimization problem: (a)
SOO of Information in 49-node Random. (b) Penalized MOO of Information in 49-
node Random. (c) SOO of Information in 49-node Grid. (d) Penalized MOO of
Information in 49-node Grid.

Given the Pareto curve, we can identify the maximum possible value for In-

formation in a given network, while the other objectives are constrained. For ex-

ample, maximization of Information may be used as the objective function while

Power, Delay and Coverage objectives are constrained to threshold values P th, Dth,

|N \ {b}| = k, as
∑q

i=1

∑|Ti|
j=1 pij ≤ P th,

∑q
i=1

∑|Ti|
j=1 dij ≤ Dth and

∑q
i=1

∑|Ti|
j=1 cij = k.

This set of solutions can help a network administrator choose the optimal one at

any time, based on the importance of objectives. For example, in a newly deployed

network, which benefits from fully charged nodes, an optimal solution can be chosen

from those with higher Information, even if more power is consumed. The same
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Figure 5.20: A Pareto diagram emphasizes the relationship among objective func-
tions. The high degree of correlation is evidenced by the narrow surface displayed.

reasoning can be applied to scenarios where the network might be under attack and

intrusion detection delay is important.

5.2.5.2 Performance Evaluation of HA

In this section we compare GA and HA. We implemented HA in Matlab for both

SOO and MOO. Considering our analysis in Section 5.2.4.8 we are interested in the

execution time and solution optimality. We show how HA provides solutions consist-

ing of well-formed cluster trees considerably faster than GA, while the optimality of

the SOO solution is still close to that of GA (for small networks). We will remark

that HA may provide more optimal solutions than GA, especially for larger networks.

We will also investigate HA solutions for our MOO problem.

First, we investigate how HA forms clusters for both SOO and MOO. The clus-

ter trees for grid and random topologies shown in Figure 5.19 are depicted in Fig-

ure 5.21. As shown in Figures 5.21(a) and 5.21(c), the cluster trees produced for

SOO formulation (i.e., Information) have similar characteristics: long linear topolo-

gies with many aggregator nodes. The HA solution does not contain single-node or
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Figure 5.21: Cluster trees obtained by HA from the same networks as Figure 5.19:
(a) SOO of Information in a 49-node Random. (b) Penalized MOO of Information
in a 49-node Random. (c) SOO of Information in 49-node Grid. (d) Penalized MOO
of Information in 49-node Grid.

2-node cluster trees (e.g., Figure 5.19(a) vs. Figure 5.21(a)). Moreover, as depicted

in Figures 5.21(b) and 5.21(d), the produced cluster trees for MOO problem for-

mulation are completely separated from each other (i.e., there is no overlap and no

link crossing between clusters). As presented before, the number of cluster trees is a

metric indicating the robustness of our algorithm. It is worth mentioning that HA

has stronger control over this metric, as we can see in the results depicted in Fig-

ure 5.21(b) where we obtain 5 clusters (as expected in a 50-node network). We will

show, however, that this balanced clustering incurs higher Power and Delay costs in

the MOO formulation, where HA has less control over the minimization objectives.
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Next, we investigate execution time and SOO solution optimality. As we men-

tioned in Section 5.2.4.8, the execution time of GA and optimality of solutions are

highly correlated with the network size, number of initial solutions and number of

generations. From extensive simulations we observed that for larger networks, we

need more initial solutions and generations for reaching the optimal solution. Hence,

to have a fair comparison for execution time and optimality of GA and HA, we ex-

perimentally define a relation between network size and number of initial solutions

and generations: the number of initial solutions is twice the network size, and the

number of generations is min{6000, 2 × k}. Figures 5.22(a) and 5.22(c) depict the

execution times of GA and HA for solving SOO, i.e., Information objective, for dif-

ferent network sizes and deployments. As shown, GA obtains a solution for 49-node

random network in more than 400 minutes (using the values we specified for number

of solutions and generations). HA splits the network into five smaller clusters, and

runs GA on each cluster. The execution time for HA is the summation of execution

time of GA on smaller clusters, 35 minutes in total.

We note here that the execution times for both GA and HA are obtained from

running the simulation on Dell PC with 3 GHz Intel Core 2 Duo CPU and 4 GB RAM.

The proposed algorithms (GA and HA) are not parallelized and are run only on one

core. However, considering the currently powerful PCs (using 8-core CPU) that can

be used as the base station in our system model, and the possibility of parallelized

implementation of GA and HA, the execution time would be much smaller.

Finally, we compare solutions optimality for GA and HA when Information is

considered as the only maximization objective. Considering the Information model

discussed in Section 5.2.2.2, HG = Σq
i=1Σ

|Ti|
j=1hij is a function of the distance between

communicating pair of tasked nodes. The maximum possible Information in a highly

dense network (given a number of nodes) is much smaller when compared with a low
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Figure 5.22: Comparison between the execution time and optimality of the solutions
both GA and Hybrid solutions for different network sizes. (a)(b) Random Network.
(c)(d) Grid Network.

density deployment of the same number of nodes. Hence, the final value for SOO

can only be compared when the same deployment topology is used. As a result,

the optimal objective values for the 49-node random deployment can not be directly

compared with the 49-node grid deployment.

Figures 5.22(b) and 5.22(d) depict the objective value of Information model for

different networks sizes. For a given network, we performed simulations for both GA

and HA with different random seeds. We assigned random residual battery levels to

nodes and started simulations with different initial solutions. We then compared the

solutions’ optimality. As we can observe from results, for a given population size and
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number of generations, there is not much difference between the optimality of the

solutions produced by GA and HA for small network sizes. However, HA produces

better solutions for larger networks. We remark here again that the scale for the

objective value is not relevant since network sizes and deployments are different.

Considering the first phase of HA, i.e., a heuristic approach, a solution produced

by HA is expected to have large cluster trees of equal size and, possibly a few smaller

ones, depending on r and node density. This means the HA solutions potentially have

larger Information objective values, because of the large clusters. GA, on the other

hand, may not reach near-optimal objective values in the specified number of gen-

erations. Thus, HA has better performance than GA, when maximum Information

is needed. Considering the high correlation between Information, Delay, and Power,

however, HA cannot produce optimal solutions for MOO. Since the potential clusters

are formed in the first phase of HA, there will be a relatively high lower bound for

Power and Delay, which HA can not lower significantly.

5.2.5.3 Intrusion Detection Delay

In this section, we investigate the intrusion detection delay for insider and outsider

(randomly distributed in the network) attackers. The cooperative IDS solutions we

focus on are those obtained in Section 5.1.5 where the proposed GA and HA were

used for solving SOO and MOO problems. The results are depicted in Figure 5.19(a)

and Figure 5.19(b) for GA and Figure 5.21(a) and Figure 5.21(b) for HA, respectively.

For this investigation, we considered the most sophisticated attack reported in this

research, namely Web exploits. In our scenario, a leader node within the radio range

of an outsider attacker, can detect the attack with a delay of 0 time units (i.e.,

timeslots employed by our TDMA protocol), since a HW-DS intrusion detection

engine is employed by a leader.
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In our simulations, we considered 105 random locations for the outsider attacker.

For the insider attacker case, we randomly chose non-leader nodes as attackers. We

estimated the detection delay as the shortest hop count between a node within

attacker’s radio range, and node’s leader. Our simulation results for an outsider

attacker scenario against GA solution are presented in Figure 5.23(a), where two

topologies are analyzed (i.e., Figures 5.19(a) and 5.19(b)). Our results indicate that

most attacks will be detected in 0 or 1 hops, if the solution is obtained by solving

the MOO (Figure 5.19(b)). If the solution used is the one obtained from solving the

SOO (Figure 5.19(a)), then the detection delay is much larger. More precisely, the

mean detection delay for the SOO solution is 2.28, and for the MOO solution it is

0.58.

The results for the same attack scenarios against HA solutions (i.e., Figures 5.21(a)

and 5.21(b)) are shown in Figure 5.23(b). The mean detection delay for the SOO

solution is 2.37, and for the MOO solution it is 0.87, slightly larger than the GA so-

lutions. Simulation results for the insider attacker scenario, for GA and HA solutions

are presented in Figures 5.23(c) and 5.23(d), respectively. Similar with the outsider

attacker scenario, a GA solution for the MOO problem is able to detect an insider

attacker much quicker than the case when the solution is only for the SOO problem

formulation. For the insider attacker scenario against GA solutions, the mean detec-

tion delay for the SOO solution is 2.3, and for the MOO solution it is 0.25. However,

these values are respectively 2.12 and 0.58 in SOO and MOO solutions produced by

HA, which means the SOO solution of HA is better than GA, but its MOO still has

larger delay compared with GA solution.
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Figure 5.23: Probability mass function for delay in reporting attacks to the nearest
leader for different cluster trees of a 50-node network produced by GA and HA.

5.2.6 System Evaluation

As a proof of concept of our proposed architecture for cooperative IDS, we de-

veloped an adhoc network, consisting of six laptops, and deployed it in an indoor

area. The two laptop configurations were: 1.8 GHz Intel processor with 2 MB cache

and 1 GB RAM running Linux (Ubuntu 6.10); and Intel Core 2 Duo 2 GHz, 2 MB

cache, 4 GB RAM running Windows 7. These hardware configurations were used by

both attacker and target nodes, to mainly show that our proposed solution is not OS

dependent and that any detection engine and operating system could be used. For

the intrusion detection engine we used Snort [78] in NIDS mode, the most complex
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Figure 5.24: (a) Connectivity graph of adhoc network and random attacker locations.
(b) Random solution. (c) SOO solution. (d) MOO solution.

and configurable mode, that analyzes captured network traffic to find any matches

between them and activated rule sets [78].

To have different configurations of Snort with diverse power, memory and CPU

consumption and detection power (i.e., LW-DS, RE-DS,and HW-DS), we disabled

portions of rulesets. We disabled 2/3 of detection rules (excluding bad-traffic and

icmp) in the LW-DS configuration (run by either orphan or joined nodes). Thus,

nodes that had LW-DS version only detected flooding attacks. For aggregator nodes

that used the RE-DS configuration, only 1/3 of rules (excluding bad-traffic icmp and

scan), were disabled, so that flooding and port scanning attacks could be detected.

Leader nodes ran the HW-DS version of Snort which used all rulesets for detecting

any possible attack, among the three we consider in this research. Although we did

not consider event reporting among nodes, the different types of detection engines

we used (i.e, LW-DS, RE-DS and HW-DS) emulated such costs, if we had reporting

capabilities available. The locations of the 6 adhoc nodes were randomly chosen,

and are shown in Figure 5.24(a). We selected 5 random positions for the outsider

attacker. Attackers were enabled to run the 3 types of attacks considered in this
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research. Adhoc nodes had different configurations of Snort depending on their

assigned role by our proposed cooperative IDS architecture.

To evaluate the effectiveness of our collaborative IDS, we evaluated 5 different

cluster tree topologies. Two were obtained from the proposed GA for SOO and

MOO problems. These solutions are depicted in Figure 5.24(c) and (d), respectively.

A third solution we considered was a “Random” solution, shown in Figure 5.24(b),

which assigns detection responsibilities in a random manner. The final two solutions

we considered (not presented in a figure) were: “All LW”, in which all 5 nodes execute

the LW-DS; and “All HW”, in which all 5 nodes execute the HW-DS detection engine.

The results show that the “All HW” scenario achieves a detection rate (DR) of

100%. In this solution, however, all nodes execute the most sophisticated IDS, and

thus exhaust resources the fastest. At the other extreme, when all nodes execute

the lightest IDS, the detection rate suffers - it was only 33%. The solution obtained

by the proposed GA that solves both SOO and MOO achieve high detection rates

of 73% and 93%, respectively, superior to a random assignment of roles to nodes,

which achieves only a 60% detection rate. Consequently, the MOO solution achieves

a higher intrusion detection rate, when compared with a random role assignment [41]

and with the SOO solution (i.e., an indicator of state of art solutions [46, 47] that

consider only one objective), while ensuring maximum Information. Both MOO and

SOO solutions would achieve 100% detection rate if an event reporting/correlation

mechanism is used. MOO, however, would still provide lower detection delay and

lower power consumption.
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5.2.7 Discussion

5.2.7.1 Cluster Reformation: Conditions and Solutions

In this research we consider static resource constrained wireless networks, e.g.,

static mesh or sensor networks or a combination of them. We assume that some

nodes might be relocated for administrative reasons, that nodes may run out of

power, become faulty or become compromised by attackers. Also, leader’s residual

energy might fall below a threshold. Despite all these network condition changes, the

network topology does not change often (or not as often as in mobile adhoc networks).

We remark that it is still necessary for the base station to periodically collect the

network information in order to decide whether cluster reformation is required or not.

Considering the expected infrequent nature of network topology (i.e., the information

collected by base station most likely reflects the most recent network situation), the

cluster reformation interval will be much longer than for mobile adhoc networks.

We learned from our performance evaluation results that the execution time of

GA for large networks is very high, i.e., the algorithm execution time increases expo-

nentially with the network size. Dividing a large network into smaller subnetworks,

as HA does, helps the algorithm execute faster. Once a change in the network trig-

gers cluster-reformation, it is desired to re-execute the GA or HA algorithms only in

the subnetwork in which the change has occurred, instead of the whole network. For

example, once a leader can no longer hold the leadership role, an efficient solution is

to upgrade one of its children to leader role, if feasible (e.g., upgrading a child node

to a leader role might be forbidden by a constraint in our problem formulation). We

also note that some network changes may cause a cluster to be disconnected from

neighboring clusters, which will require a rearrangement in clusters. In this case, for

sake of efficiency, we can re-run the algorithm for a subset of neighboring clusters,
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instead of the entire network.

5.2.7.2 Intrusion Detection Engine

From intrusion detection engine perspective, systems can be categorized in three

classes; a) anomaly-based intrusion detection, b) misuse-based intrusion detection,

and c) hybrid intrusion detection, which is a combination of the former two. One

may argue that our proposed system can only detect known attacks since Snort is a

signature-based detection engine. However, unknown attacks would also be detected

if the intrusion detection engine would employ anomaly-based inspection (as claimed

in Snort Website ). An another example of an anomaly-based engine employed

by an off-the-shelf IDS, is Bro [65], which is able to discern traffic anomalies and

to detect unknown attacks. Thus, our proposed cooperative IDS is not limited to

detecting only known attacks, but also stealth attack with appropriate Local IDS and

Cooperation modules substitutions. The problem of dealing with unknown attacks

through anomaly-based intrusion detection has received some attention from research

community [12,32,51,91].

5.2.7.3 Scalability of HA

The idea behind a hybrid algorithm (HA) is to divide the optimization problem

such that the algorithm execution time for larger networks is reduced considerably.

When partitioning a large network into smaller subnetworks, the size of each sub-

network is an important parameter to be considered. On one hand, the size of a

subnetwork/cluster is limited by a predefined threshold, as constraint |Ti| ≤ |T |th

shows. The reasons for considering an upper bound for cluster size are: 1) to avoid

a single point of failure in large clusters; 2) to limit the maximum Delay and Power;

2) to avoid scenarios where HA needs to handle large subnetworks, because of, po-

tentially, high execution time. On the other hand, dividing the network into many
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smaller subnetworks is not desired since a higher objective value for Information (i.e.,

primary objective in cooperative IDS - as we discussed in Section 5.2.4) is obtained

from larger clusters. Consequently, the parameter r in HA has to be carefully cho-

sen, so that a high objective value for Information can still be obtained, while cluster

sizes are smaller than |T |th. Considering the network sizes we used for performance

evaluation in this research, r = 2 is the best choice for HA; as r = 1 produces less

optimal solutions and r ≥ 3 leads to infeasible solutions (because of large subnet-

works/clusters). For larger networks, which we have not considered in this research

(e.g., 100 nodes or larger), |T |th and consequently r might need to be set to larger

values.
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6. RESOURCEFUL AND TRAFFIC-AGNOSTIC IDS

This section∗ focuses on battery-powered WMN consisting of resourceful nodes

that are able to run full IDS. We assume that the complexity of network topology

and user traffic does not allow the security administrator to have up-to-date and ac-

curate information about traffic paths and he/she has to monitor the entire network

traffic on all communication links. Our motivating application is DistressNet [18,28],

a system, developed for situation management in disaster response. In DistressNet,

WMN are used for providing an infrastructure in triage areas for collecting physiolog-

ical data from victims and in the disaster area for communication among emergency

responders. Since in disaster areas electric power is almost always unavailable (see

earthquake and tsunami disaster in Japan 2011, with energy blackouts going as far

as 200+ miles away from the affected area), DistressNet needs to operate predomi-

nantly on batteries. Battery powered WMN pose major challenges given the typical

high power consumption of mesh nodes. Despite the attention energy efficient oper-

ation in WMN has received [7, 24, 57], there is no provision in the 802.11s standard

for power saving mode operation. This led to the absence of mesh node hardware

that operates in a power saving mode. Given the urgent need for deploying Distress-

Net, we are proposing, as a first step for energy efficient operation, to allow mesh

nodes, when feasible, to duty-cycle by turning on-off their wireless interfaces. As we

uncover experimentally, the duty-cycling has an interesting effect, in that it allows

the battery to recover some of its capacity, thus allowing for a longer total operation

time.

∗Parts of this section are reprinted with permission from “Energy efficient monitoring for intru-
sion detection in battery-powered wireless mesh networks” by Amin Hassanzadeh, Radu Stoleru,
and Basem Shihada, In Proceedings of the 10th International Conference on Ad Hoc Networks and
Wireless (ADHOC-NOW), pages 44-57, Paderborn, Germany, 2011., Copyright 2011 by Springer.
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Duty-cycling, however, has adverse effects on the operation of intrusion detection

systems, which are required to be on/awake at all times, to monitor network traffic.

As proposed in the literature, in wireless networks, some nodes can be selected as

“monitoring” nodes. It is obvious that duty-cycling mesh nodes are not suitable

to be monitoring nodes, since they are not awake all the time. Consequently, the

research challenge/problem we address in this section is how to reconcile energy

efficient operation, which requires nodes to be asleep as much as possible, with an

effective intrusion detection, which requires nodes to be awake, to monitor traffic.

We define this problem as an optimization problem and propose centralized and

distributed algorithms for solving it, algorithms that trade off communication and

computation overhead for optimality of the solution.

6.1 Validation of Duty-Cycled Operation in WMN

DistressNet, being deployed in an environment where electric power is very limited

(if at all available), needs to aggressively pursue energy efficient operation, including

in the WMN. Unfortunately, no native procedure is included in IEEE 802.11s to

allow mesh routers to work in power saving mode. Moreover, a power saving mode

is not supported by current wireless routers available on the market. Consequently,

we propose to use an application-layer controlled duty-cycling, as a means for saving

energy on mesh routers.

We ran experiments involving Linksys WRT54GL wireless routers (we tested

different OpenWrt firmware versions as well) powered by 12V-7Ah Power Sonic

rechargeable lead acid batteries (as illustrated in Figure 6.1(a)) to investigate if

duty-cycling affects connectivity between mesh routers and their clients and esti-

mate an expected increase in the mesh router lifetime. A wireless client establishes

an ssh session when the mesh router is initially turned on and starts a terminal appli-
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cation. Then, the duty-cycling operation is initiated by turning the wireless interface

of a mesh router on and off using “iwconfig eth1 txpower on/off ”, at different time

intervals. When using duty-cycling the power consumption of a mesh router was re-

duced by 840mW (the current consumption drops from 250mA, to 180mA when the

wireless interface is turned off). We have validated experimentally that the proposed

duty-cycling does not close the ssh session - our terminal application continues to

work despite the duty-cycled operation of the router.
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Figure 6.1: (a) Experimental setup. (b) Battery consumption for different on/off
intervals.

Figure 6.1(b) depicts the battery lifetime when the mesh router has the wireless

interface constantly on, and when it operates at a 50% duty-cycle, with different

on/off periods (e.g., 30s on/off and 60s on/off). As expected, we observe that when

the router operates in duty-cycle mode, its lifetime is extended. Surprisingly, differ-

ent on/off periods (30s vs 60s) extend the lifetime of the router differently, despite

operating at the same 50% duty-cycle. As shown in Figure 6.1(b) the router lifetime

is prolonged by 5h when using the 60s on/off duty-cycling, and by 3h when using

the 30s on/off interval. This experiment validated battery recovery effects [66], that
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have been mentioned briefly in the context of WMN [57]. We used the data col-

lected during these experiments to enhance a simulator we have developed so that it

accounts for the new source of energy efficiency, namely battery recovery.

The proposed energy efficient operation based on duty-cycling, however, has ad-

verse effects on solutions for monitoring network security in wireless networks. If

a mesh router is assigned an intrusion detection/monitoring task or if it helps in

relaying high network traffic, then the router has to be awake all the time. This im-

plies that routers with higher available energy and with higher network traffic load

should be better suited candidates for becoming monitoring nodes. Deciding which

routers should be selected as monitoring nodes, for reducing total energy consump-

tion, while not affecting intrusion detection functions is a challenging problem. In

the sections that follow, we introduce our systems and security models and formulate

mathematically our problem.

6.2 Problem Formulation and its NP-Hardness

We model a WMN as a graph G = (V,E), in which V is the set of mesh nodes

{v1, v2, · · · , vn}, and E = {e1, e2, · · · , em}, is the set of links between them. We

denote the residual energy and the network load of a mesh node vi by bi and li,

respectively. Let w : V −→ [0, 1] be a cost function that assigns a weight wi to a

node vi based on li and bi (wi = w(li, bi)), such that higher normalized li and bi

values result in lower weight being assigned to vi.

Definition 8 The Covering Set Ci = {eij : j = 1..c}, Ci ⊆ E, for a monitoring

node vi, contains any edge eij where either eij is incident to vi or vi is connected to

the two end points of eij. (Figure 6.2).

Considering our link coverage (as opposed to node coverage) and the desired

effect of selecting mesh routers with higher residual energy and higher network load
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Figure 6.2: Examples of monitor nodes M and corresponding covering sets C.

as monitoring nodes, we define the Weighted Monitor Coverage (WMC) Problem as

follows:

Definition 9 Weighted Monitor Coverage (WMC) Problem

Given G = (V,E) with a set of vertices in V and a set of edges in E, let wi be

the weight of vi, find the set of monitors M = {m1,m2, · · · ,mk} with the minimum

cost Σi∈Mwi, such that
∪

i∈M Ci = E, i.e., the monitors cover all edges in G and

bi ≥ bth,∀i ∈ M , i.e., the residual energy of each monitor node exceeds a threshold

bth.

We set bth based on real battery profile; however, if it is not possible to cover all the

links by monitor nodes with residual energy higher than the threshold, the threshold

value is reduced by ∆b until there exists a feasible solution. It is important to observe

that our problem is different than the Maximum Coverage and 1-hop Dominating Set

problems as proposed in earlier research. Similarly, it may seem that our problem is

the same as the Weighted Vertex Cover problem, since both problems aim to cover

all the network links, while minimizing the total weight assigned to the selected mesh

nodes. It is key to observe that in the Vertex Cover problem when we pick a vertex,

incident edges to the vertex are considered covered. In our problem, however, all

edges in the communication range of the node are considered to be covered. As an
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illustration of these key observations, consider Figure 6.2, which depicts the covering

sets and monitoring set of different networks. As shown, only one node is enough to

monitor all the edges of a 3-node network.

Theorem 1 WMC is NP-hard even for wi = 1.

Proof 1 First we assume that each node has a unit weight, so that the problem is to

find minimum number of nodes to cover all the edges, i.e., Monitor Coverage (MC)

problem. We show that even with this assumption MC is NP-hard, thus same proof

is valid for WMC. To prove this, we reduce the Set-Cover to MC in polynomial time.

Given a universe U = {x1, x2, · · · , xn}, subsets Si ⊆ U , and a positive integer k,

the Set-Cover is to determine if ∃ a collection C of at most k such subsets such

that union of the k subsets cover all of U , i.e., ∃C ⊆ {1, 2, · · · ,m} s.t. |C| ≤ k

and
∪

i∈C Si = U . Given the instance of the Set-Cover, we attempt to construct the

instance of MC. We let E = U , and for each vi ∈ V , define the subset Ci ⊆ E such

that Ci = {e|e is within communication range of vi, e ∈ E}.

Next we show that our construction is correct, i.e., we prove the claim, “Set-Cover

has a valid instance if and only if MC has a valid instance.” Suppose Set-Cover has

a valid instance. By our construction, each Si corresponds to Ci. Since |Si| = k,

we have at most k monitors. Furthermore, since
∪

i=1,··· ,k Si = U , and we defined

E = U , the k monitors cover all the edges in G. Therefore, MC has a valid instance.

Next suppose that MC has a valid instance. This implies that there exists at most k

monitors in G. By our construction, each subset Ci of covered links by monitor mi

corresponds to the subset Si, so |Si| is k. And since the monitors cover all edges in

G, and E = U , it is trivial to see that
∪

i=1,··· ,k Si = U , thus proving the claim. This

proof is also valid for the case that weights are more than one unit. �
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One other problem to consider is how to optimally choose duty-cycle values for

non-monitoring nodes, to extend WMN lifetime, but to also ensure WMN availability

to clients. Obviously, the longer a mesh router sleeps, higher the lifetime extension

will be. WMN availability, however, limits the maximum time interval a mesh router

can sleep. Therefore, the actual duty-cycle a non-monitoring mesh router will use

trades off network availability for WMN lifetime. In this research, we assign the

duty-cycle value for a non-monitoring nodes inversely proportional its network load.

We leave the computation of an optimal duty-cycle value for a mesh router, for future

work.

6.3 Proposed Solutions

In this section, we present centralized and distributed solutions for our WMC

problem. As centralized solutions, we propose a greedy algorithm and an integer

linear programming (ILP) algorithm. These algorithms are executed on the WMN

gateway (i.e., base station). The base station collects information from WMN nodes

(i.e., connectivity, communicating load, and residual energy), executes the moni-

toring node selection algorithm (either greedy or ILP) and distributes back in the

network the decisions. The distributed algorithm, however, is executed by individ-

ual nodes using 1-hop neighbor information. It is notable that these algorithms have

different time complexity, message complexity, and approximation ratios.

6.3.1 Greedy Algorithm

We propose a greedy algorithm, shown in Algorithm 7. The algorithm selects

monitor nodes based on the number of links per unit weight a node covers and based

on the remaining energy level bi which needs to be above a threshold bth. When a

node vi is selected, all the links in Ci are covered. Hence, they are removed from the

uncovered set E ′. This selection is repeated until all the links become covered. The
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Algorithm 7 Greedy Monitor Coverage
1: M = {}
2: E′ = E , V ′ = V
3: while E′ ̸= ∅ do
4: if ({m} = maxi∈V ′{|Ci ∩ E′|/wi}) ̸= ∅ then
5: M = M ∪m
6: V ′ = V ′ −m
7: E′ = E′ − Ci

8: else
9: bth = bth −∆b

10: end if
11: end while

proposed algorithm runs in time polynomial of |E| and |V |. Similar to the Set Cover

problem, the approximation ratio of our greedy algorithm is H(maxi∈V |Ci|), where

H(n) = Σn
j=1(

1
j
) ≤ lnn+ 1.

6.3.2 Integer Linear Programming

The second solution we propose is based on Integer Linear Programming (ILP).

Let Sj be a set of selected monitor nodes out of all possible nodes that can monitor

link j. The proposed WMC can be formulated as follows:

minimize
∑
i∈V

wimi (6.1)

subject to: |Sj| ≥ 1, ∀j ∈ E (6.2)

bi ≥ bth, ∀mi ∈M (6.3)

mi ∈ {0, 1} (6.4)

where constraint (6.2) indicates that every link has to be covered, constraint (6.3)

enforces the algorithm to select the nodes with residual energy greater than a thresh-
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old. We reduce bth by ∆b and run the ILP again if there is no feasible solution for

the given bth.

6.3.3 Distributed Algorithm

We propose a distributed algorithm, shown in Algorithm 8. In our protocol

each node periodically broadcasts a HELLO message containing its residual energy,

network traffic it handles and the number of links it covers, and sets a local timer TBC .

When TBC fires, every node builds an adjacency table AdjTbl using the collected

HELLO packets. Then each nodes computes the weight per link for each neighbor and

for itself. Based on this computed value, a node vi will broadcast an IS-MONITOR

message to announce itself as monitor or it will set another timer TMon, waiting

to receive an IS-MONITOR message from a neighbor. If node vi receives an IS-

MONITOR message before TMon expires, it checks all its links to see whether the

elected monitor(s) can monitor all of them. If there are still uncovered links, then vi

will also broadcast IS-MONITOR to its neighbors, indicating it will be a monitor.

To avoid redundancy, the higher the weight (wi) of a node, the longer timer TMon

will be.

6.3.4 Solution Analysis

The proposed algorithms have different time complexities, message complexities,

and approximation ratios. The Set Cover problem has a relatively high approxi-

mation ratio (i.e., O(ln |Ci|max)). Improving this ratio has not been addressed by

research. Our greedy algorithm has the same approximation ratio as Set Cover,

while the ILP solution is considered near optimal. The distributed algorithm, how-

ever, has worse approximation ratio because the solution is locally optimal. On

the other hand, the time complexity of the distributed algorithm is O(|V |), which is

smaller than that of the centralized algorithms; greedy algorithm has time complexity
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Algorithm 8 Distributed Monitor Coverage

1: Broadcast (HELLO)
2: delay (TBC)
3: create (AdjTbli)
4: if bi ≥ bth and wi

|Ci| >
wj

|Cj | for all j ̸= i then
5: mi = 1
6: Broadcast (IS-MONITOR)
7: else
8: delay (TMon) //should receive IS-MONITOR
9: if ({el} = uncover-link(i)) ̸= ∅ and bi ≥ bj , ∀vj that can cover el then
10: Broadcast (IS-MONITOR)
11: else
12: duty-cycle(li)
13: end if
14: end if

of order O(|V ||E|min(|V |, |E|)) and the time complexity of ILP algorithm depends

on the solver. The message complexity of the distributed algorithm is less than

that of the centralized algorithms, since the distributed algorithm requires |V |+ |M |

network-wide packet exchanges. The message complexity of centralized algorithms

is O(|V |log|V |).

Considering the above analysis, we expect that centralized algorithms produce

a smaller set of monitors than the distributed algorithm. On the other hand, the

distributed algorithm, with lower time and message complexities, produces larger

set of monitors with higher average weight. Therefore, we expect that centralized

algorithms will save more energy than the distributed one. The distributed algorithm,

however, will select more monitoring nodes, improving the intrusion detection rate.

6.4 Performance Evaluation

All algorithms presented in this section are implemented in MATLAB except

for ILP solver which is already implemented in bintprog function of MATLAB. We

consider networks ranging in size from 10 to 90 nodes for all of our simulations while
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maintaining the network density constant at 3 neighbors per radio range. The radio

range is fixed at 50m.

6.4.1 Link Coverage vs. Node Coverage

We first evaluate the network coverage and resource consumption of link coverage

and node coverage approaches. We show that a solution for node coverage problem

which guarantees 100% node coverage, does not necessarily guarantee 100% link

coverage. Motivated by the fact that traditional node coverage approaches are not

suitable for detecting attacks against wireless communication links, we are curious

to investigate what percentage of network links are usually left uncovered by the

node coverage approach. It is also important to know how many extra monitoring

nodes a link coverage imposes to the monitoring mechanism when comparing to node

coverage approaches.

To compare with node coverage solutions, we implemented a greedy Maximum

Coverage algorithm [75, 83] (called “MAX Coverage” for the remainder of the sec-

tion). To fairly compare the results, we ran MAX Coverage for several upper bounds

(maximum number of monitors), and found the minimum upper bound (called k)

that guarantees 100% node coverage in a 50-node network. As depicted in Fig-

ure 6.3(a), roughly 35% of nodes have to be selected for guaranteeing 100% node

coverage. We use this upper bound in all of our simulations.

Figure 6.3(b) shows that the number of uncovered links increases as network

size grows. In contrast, link coverage approach always guarantee full link coverage.

Hence, using traditional node coverage approaches has the risk of not monitoring all

communication links (i.e., false negative rate in intrusion detection systems) and this

risk increases to more than 10 % of the links forN = 90. However, one may argue that

link coverage approach requires more monitoring nodes to cover all communication
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Figure 6.3: (a) Average number of monitor and uncovered nodes for different K
values in Max Coverage of 50-node network. (b) Link coverage percent. (c) Average
number of monitors in different algorithms. (d) Percentage of nodes selected as
monitor in link coverage and node coverage approaches.

links. Figure 6.3(c) shows the average number of nodes selected as monitoring nodes

in different EEMON algorithms and also in MAX Coverage algorithm. These results

were obtained from 500 random networks for each given network size. As expected,

Distributed EEMON has the worst results among other algorithms and requires a

large number of monitoring nodes. However, the centralized algorithms of EEMON

select only few monitoring nodes to cover all communication links.

To have a better comparison between Greedy EEMON and ILP EEMON with

traditional node coverage approaches, Figure 6.3(d) depicts the percentage of the
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nodes selected as monitoring nodes in different network sizes. As shown, for 10-

node WMN, ILP EEMON achieves 100% link coverage with less monitoring nodes

than Max Coverage algorithm. For mid-size networks (e.g., 20 to 50 nodes as the

most common sizes in WMN [87]), ILP EEMON requires 1∼3% extra monitoring

nodes than Max Coverage to achieve 100% link coverage (5∼9% greater than Max

Coverage). Finally, for larger WMN, 60 to 90 nodes, ILP EEMON requires less

than 5% extra monitoring nodes than Max Coverage to cover all communication

links (i.e., 10% improvements in link coverage rate). Figure 6.3(d) also shows that

Greedy EEMON requires less than 10% extra monitoring nodes than MAX Cover-

age to achieve 100% link coverage. Hence, it is quite reasonable to have few more

monitoring nodes than traditional solutions for covering all communication links and

consequently increasing the intrusion detection rate.

6.4.2 Comparison of Different EEMON Algorithms

In this section, we evaluate the performance of all EEMON algorithms used for

link coverage and show how different algorithms select optimal sets of monitoring

nodes with maximum residual battery charge and communication load (i.e., to keep

the average cost per monitoring nodes as low as possible). All experiments in this

section are performed for 500 random networks for each given network size. The

average residual charge and communication load among all nodes in each network

is always 50%. The metrics we evaluate for each algorithm are the average residual

charge among monitoring and non-monitoring nodes, the average communication

load among monitoring and non-monitoring nodes, the threshold reduction in Bth

required for covering all communication links, and finally, the time complexity of

monitoring node selection algorithms. According to the WMC formulation, we ex-

pect EEMON algorithms to select nodes with higher residual charge and also higher
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communication load as monitors. It is also worth mentioning that traditional node

coverage solutions [46,47,75,83,98] do not necessarily consider both residual charge

and communication load together in their optimal monitoring formulation, as we do

for Max Coverage.

Figures 6.4(a) and 6.4(b) depict the average residual charge among selected nodes,

i.e.,(1/|M |)Σvj∈Mbj, and unselected nodes, i.e., (1/N −|M |)Σvj /∈Mbj, respectively, in

all EEMON algorithms and the Max Coverage algorithm. Considering that the

average residual charge among all nodes is always 50%, the results shown in these

two figures confirm that the proposed algorithms always select monitoring nodes

among those with higher residual charge. As depicted in Figure 6.4(b), the set of

non-monitor nodes includes nodes with low residual charge.

Greedy EEMON and Distributed EEMON select nodes with minimum weight

per links first (higher residual energy and communication load). Therefore, selected

nodes in the last iterations are most likely among low-battery nodes since we may

have to select nodes that cover a single wireless link; simply because all the links must

be covered. When considering Figures 6.4(a) and 6.4(b) together, one can observe

that distributed EEMON has the lowest average residual charge among selected nodes

because 1) distributed solution is locally optimal, and 2) as network size increases

more monitoring nodes are required (see Figure 6.3(c)). This increase in monitoring

nodes results in selecting more monitors among low-battery nodes. In contrast, Max

Coverage algorithm has the highest average among all since it does not need to

cover all links, and thus, fewer monitoring nodes are always required. In conclusion,

the more nodes selected as monitors by an algorithm, the higher is the chance of

selecting low-battery nodes. It is worth mentioning that the higher residual charge

of monitors in Greedy EEMON, compared to the ILP EEMON, forces the selection

of more monitoring nodes as previously shown in Figure 6.3(c).
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Figure 6.4: Average residual battery charge of (a) Nodes selected as monitoring
nodes. (b) Nodes NOT selected as monitoring nodes. Average communication load
of (c) nodes selected as monitoring nodes. (d) Nodes NOT selected as monitoring
nodes.

Figures 6.4(c) and 6.4(d) depict the average communication load of monitoring

nodes, i.e., (1/|M |)Σvj∈M lj, and non-monitoring nodes, i.e., (1/N − |M |)Σvj /∈M lj,

respectively, an evidence that the proposed algorithms select monitors with higher

values of communication load. As one can observe, the average communication

load among selected nodes is always above 50% (the average among all) while it is

below 50% for non-monitoring nodes. However, the results average communication

load, especially for Distributed EEMON, are much better than those for average

residual charge. This is because there is no exception in selecting nodes with lower
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Figure 6.5: (a) Bth−Minimum Charge among selected nodes. (b) Average Execution
Time.

communication loads, as is the case for residual charge (i.e., ∆b).

Next, we show how different EEMON Algorithms require different ∆b for selecting

monitor nodes. Using the battery profiling data, we set a threshold of bth =60%,

slightly higher than the average among all nodes, for the residual energy of a node

to be a monitoring node candidate. The reduction in the residual energy threshold

is considered as penalty by EEMON algorithms since monitoring nodes with low

residual energy most likely die in a short time. The reduction in the residual energy

threshold (i.e., ∆b) is shown in Figure 6.5(a). Negative values for ∆b mean that the

minimum residual energy among selected nodes is larger than bth and no threshold

reduction is required. As shown, larger networks are penalized more than smaller

ones because more nodes are required to be selected as monitors. This increases

the probability of choosing low-battery nodes and increasing the ∆b. We can also

see that Distributed EEMON is penalized more than Greedy and ILP EEMON. As

expected, Max Coverage solution (that was shown to leave a considerable percentage

of links uncovered) causes lower ∆b than EEMON.

Finally, we compare the execution time of Greedy EEMON, ILP EEMON, and
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Figure 6.6: The distribution of ILP EEMON execution time.

Max Coverage. Figure 6.5(b) shows the average execution time of these algorithms

for 500 random networks of each given network size. As depicted, Greedy EEMON

and Max Coverage produce results in a few milliseconds while the execution time for

ILP EEMON is in the order of a few seconds (e.g., 35 seconds for 90-node networks).

We plot the distribution of the ILP execution time as a function of network size

for all 500 random networks in Figure 6.6. As depicted, the higher average for ILP

execution time is because of few outliers (e.g., one topology among 500 random 70-

node networks) that rarely occur. Hence, considering the optimal solutions that ILP

EEMON produces, an efficient approach for security administrators might be to set

a time threshold for ILP solver and choose the greedy solution if the ILP exceeds the

threshold.

6.4.3 Impact of Duty-Cycling on WMN Lifetime

We investigate the impact of duty-cycling on WMN lifetime through a system im-

plementation on five Linksys WRT54GL routers. One router acts as an AC powered

gateway. The other mesh routers are battery powered. We assigned a fixed random

network load to each router as 62%, 49%, 33%, 67% of the maximum network load
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b) Distributed algorithm selects nodes 3, 4, and 5 as monitor

Figure 6.7: Five-node mesh network topology and different monitoring solutions.

a mesh router can handle. As depicted in Figure 6.4.2, we created a linear network

topology to ensure that centralized and distributed algorithms produce different set

of monitoring nodes. The Centralized algorithms (Greedy WMC and ILP WMC)

selected nodes 3 and 5 as monitoring nodes, while the distributed algorithm selected

nodes 3, 4 and 5 as monitoring nodes. We used 12V-3.4Ah Power Sonic rechargeable

batteries for powering the mesh routers. We observed that the centralized solution

prolonged the network lifetime (defined as the time when the first battery dies) by

8%, while the distributed solution did not increase it. The explanation for this is

that battery attached to the router 4, that was the first one died, was not monitor in

centralized solution, however, in the distributed solution it was selected as monitor.
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7. RESOURCEFUL AND TRAFFIC-AWARE IDS

This section investigates the effect of traffic-awareness on the performance of in-

trusion detection systems proposed for battery-powered resourceful WMN. In fact,

we will show how traffic-awareness, as an administrative assumption for some WMN

applications, will reduce the amount of resources (e.g., energy) consumed by perform-

ing IDS on WMN nodes. We introduce TRAIN, as a resourceful and traffic-aware

IDS that uses link-coverage mechanism as used in EEMON. Because of the similar-

ities between EEMON and TRAIN detection systems, the performance of TRAIN

will be compared to EEMON.

7.1 Problem Formulation

We model a WMN backbone (i.e., only WMN nodes and backbone links) as a

graph G = (V,E), in which V is the set of mesh nodes {v1, v2, · · · , vN}, and E =

{e1, e2, · · · , eQ} is the set of links between them. Considering the information about

active traffic paths in the WMN, we denote the number of nodes and links actively

participating in WMN routing paths by n (n ≤ N) and q (q ≤ Q), respectively.

Thus, the set of active nodes and links in WMN, after removing idle nodes/links,

is modeled as a reduced graph G′ = {V ′, E ′}, where V ′ is the set of n active nodes

(V ′ ⊆ V ), and E ′ is the set of q active links (E ′ ⊆ E). The set of selected monitoring

nodes are denoted by M = {mj |mj is a monitoring node}. We also denote the

set of routing paths for the network traffic by P = {p1, p2, · · · , pl}, where P v
i =

{vj | vj is located on pi} and P v
i ⊆ V ′. We also use P e

i = {er | er is a link in pi} for

P e
i ⊆ E ′ to show the set of edges (links) on each path.

Additionally, we denote the residual energy and the communication load of a

mesh node by bj and lj, respectively. Based on the maximum residual charge and
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communication load a node can have, both bj and lj are considered normalized values

in range [0, 1]. Let w : V −→ [0, 1] be a cost function that assigns a weight wj to a

node vj based on lj and bj (wi = w(lj, bj) = 1/(lj× bj)), such that higher normalized

lj and bj values result in lower weight being assigned to vj. Finally, we use vectors

β = [β1, β2, · · · , βN ] (i.e., Battery Threshold) to represent the minimum energy

charge required for being selected as monitoring node. This threshold is important

parameters and typically set by a network administrator based on energy resources.

7.1.1 Optimal Monitoring Problem

In this section, inspired by EEMON’s problem formulation, we present optimal

monitoring problem statement in resourceful and traffic-aware IDS class.

Definition 10 The Path Covering Set is a set of paths in WMN that a node

can monitor, i.e., at least one link on the path is in the Covering Set of that node

(PCj = {pi | ∃er ∈ P e
i such that er ∈ Cj}).

This definition shows the difference between PRIDE (node coverage approach)

and TRAIN (link coverage approach) in their traffic monitoring mechanisms. TRAIN

uses monitoring coverage to benefit from every possible node in the network that can

contribute in monitoring a path (as opposed to PRIDE that only uses those located

on the path).

Definition 11 Path Monitoring Problem (PMP) Given G = (V,E ′) with a

set of vertices in V and a set of edges in E ′ and a set of paths P in WMN, let wj be

the weight of vj, find the set of monitors M = {m1,m2, · · · ,mk} with the minimum

cost Σj∈Mwj, such that
∪

j∈M PCj = P , i.e., the monitors cover all paths in G, and

bj ≥ βj,∀j ∈ M , i.e., the residual energy of each monitoring node exceeds a battery

threshold.
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In order to formulate PMP as an ILP, very similar to WMC, let S ′
i be a set

of selected monitor nodes out of all possible nodes that can monitor path pi. We

formulate PMP Problem as follows:

minimize
∑
vj∈V

wjmj (7.1)

subject to: |S ′
i| ≥ 1 ,∀pi ∈ P (7.2)

bj ≥ βj (or bth) ,∀mj ∈M (7.3)

mj ∈ {0, 1} (7.4)

where constraint (7.2) indicates that every path has to be covered; constraint (7.3)

enforces the algorithm to select the nodes with residual energy greater than a thresh-

old.

EEMON/TRAIN and PRIDE formulations are compared in Table 7.1. Let con-

sider these pseudo-formulations as representatives for optimal monitoring problem

in intrusion detection systems of infrastructureless wireless networks. Such a con-

sideration is because a variety of system and security assumptions (generally placed

in two resourceful and resourceless categories) are already encompassed in these two

examples: 1) the amount of resources (i.e., processing, storage) and the energy avail-

able for monitoring activity; 2) the network component (i.e., link, node, path) that

has to be monitored.

As shown in Table 7.1 for EEMON and TRAIN, when nodes can fully monitor

a network component with all IDS functions (i.e., monitoring nodes), the objective

functions is to minimize the number of them. This considers wireless device as a

resourceful hardware, e.g., Meshlium [53], that can act as an IDS node detecting
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Table 7.1: Objective functions and constraints in all formulations.

PRIDE EEMON/TRAIN

Objective
cover paths with maximum cover links/paths with minimum

detecting modules monitoring nodes

Constraints
every path has to be covered every link/path has to be covered
one detecting module per path one monitoring node per link/path
Resource Awareness: available memory/processing/energy resources for IDS is limited

every possible attack. On the other hand, the objective function in PRIDE, that

assumes resourceless wireless devices, is to maximize the number of IDS functions

activated for monitoring a network component. Other than the difference in the

objective function of resourceless and resourceful IDS classes, all of the constraints

in the optimal monitoring problem are similar, as shown in Table 7.1.

7.2 TRAIN Protocol

TRAIN uses a centralized approach in which, similar to EEMON, the base station

can either apply an ILP solver or use a greedy algorithm to solve PMP. The base

station collects information from WMN nodes (i.e., connectivity, traffic information,

communication load, and residual energy), executes the monitoring node selection

algorithm (either greedy or ILP solver) and distributes the monitoring roles to the

network.

Lessons learned from PRIDE show that a centralized approach can impose very

large time complexity when dealing with large networks. Thus, inspired by PRIDE

protocol, we consider a time-efficient approach for the centralized algorithms. In

order to reduce the execution time, after collecting the local information from the

nodes, the base station removes idle nodes from the network, i.e., those not con-

tributing in the traffic routing, and optimally selects monitoring nodes that can

cover all traffic paths. If the reduced graph is disconnected, each graph component

is considered as a sub-problem and solved separately. Algorithm 9 presents TRAIN
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Algorithm 9 TRAIN Protocol
1: Data Collection(V,E,N,Q)
2: Relaxation(V ′, E′, n, q)
3: Path Extract(V ′, E′, P )
4: P = P
5: g = 0
6: while ∃ pi ∈ P do
7: g ++
8: Ug = {pi}
9: P = P\{pi}
10: while ∃ pj ∈ P and
11:

∪
pk∈Ug

(P e
j ∩ P e

k ) ̸= ∅ do

12: Ug = Ug ∪ {pj}
13: P = P\{pj}
14: end while
15: end while
16: for ∀Ug do
17: Vg = {vj |vj ∈ P v

i and pi ∈ Ug}
18: Eg = {er|er ∈ P e

i and pi ∈ Ug}
19: for ∀ g do Solve-PMP(Vg, Eg, P )
20: M =

∪g
1 Mg

protocol.

Given the set of nodes, the algorithm first collects information from nodes and

then produces the reduced sets V ′ and E ′ by removing idle nodes and links (Lines

1, 2). Next, the set of active routing paths P is extracted in Line 3. Given P ,

Algorithm 9 creates the set P of unvisited paths (Line 4) and then defines variable g

as the number of sub-problems (Line 5). For every unvisited path pi in set P (Line

6), Algorithm 9 first creates a new sub-problem Ug (Lines 7, 8) and marks it as a

visited path (Line 9). Algorithm 9 then searches P to find any unvisited path pj

which is connected (two paths are connected if they have links in common) to at

least one path in the current Ug (Lines 10, 11). If so, the corresponding path pj will

be added to the current sub-problem Ug and removed from P (Line 12, 13). When
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no more paths in P can be added to the current Ug, Algorithm 9 increases g and

creates a new sub-problem. This process repeats until there is no unvisited path in

P . Next, for every sub-problem Ug, the Algorithm creates the corresponding sets Vg

and Eg as the set of nodes located on the paths and the set of links on the paths

of component Ug, respectively (Lines 16, 17, 18). Finally, Algorithm 9 solves PMP

(running either an ILP solver or the greedy algorithm on the nodes, links, and paths

of each sub-problem Ug) in Line 19. The set of monitoring nodes M will be the union

of all set of monitoring nodes selected for each graph component, i.e., Mg (Line 20).

Greedy TRAIN is shown in Algorithm 10. This Algorithm first creates an empty

set of monitoring nodes for the corresponding graph components (Line 1) and then

puts the set of all paths of that component in Pg (Line 2). Next, Algorithm 10 selects

monitoring nodes based on the number of paths per unit weight which a node covers

and based on the remaining energy level bi that must be above threshold bth (Lines

3, 4). When a node vj is selected as a monitoring node (Lines 5, 6), all the paths in

PCj are covered. Hence, they are removed from the uncovered set of paths Pg (Line

7). This selection is repeated until all paths become covered. Similar to Greedy

EEMON, Algorithm 10 may reduce the threshold by ∆b to ensure that all paths are

covered (Line 9). The proposed Algorithm runs in time polynomial of |Pg| and |Vg|.

The approximation ratio of Greedy TRAIN is H(maxvj∈Vg |PCj|).

7.3 Simulation Results

We performed a thorough set of simulations to evaluate the performance of

TRAIN in selecting monitoring nodes with respect to the network energy consump-

tion and intrusion detection rates. The simulation results are presented in four sec-

tions: 1) evaluation of different TRAIN algorithms for complexity versus optimality;

2) comparison between the energy consumption of EEMON and TRAIN solutions;
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Algorithm 10 Greedy TRAIN
1: Mg = {}
2: Pg = {pi | ∀er ∈ P e

i , er ∈ Eg}
3: while Pg ̸= ∅ do
4: if ({m} = maxvj∈Vg{|PCj ∩ Pg|/wj}) ̸= ∅ then
5: Mg = Mg ∪m
6: Vg = Vg\m
7: Pg = Pg − PCj

8: else
9: bth = bth −∆b

10: end if
11: end while

and 3) evaluation of intrusion detection rates for all EEMON and TRAIN solutions

and the traditional node coverage mechanisms. Similar to EEMON, TRAIN is also

implemented in MATLAB.

7.3.1 Performance Evaluation of TRAIN Algorithms

In this section, we evaluate the performance of Greedy TRAIN and ILP TRAIN

for solving the PMP problem. Given a random network topology (repeated for sizes

of 10 to 90 nodes), we produce random communication paths and show how different

TRAIN algorithms solve PMP and select monitoring nodes. Since the number of

traffic paths can affect the number of required monitors, we consider three different

settings for |P | in this section: 1) |P | = 0.1 × N (i.e., 10% of network size); 2)

|P | = 0.3 × N ; and 3) |P | = 0.5 × N . The path length for each given network size

is set to ⌊
√
N⌋ and is constant for all different values of |P |.

Figure 7.1(a) shows the number of selected nodes as monitoring nodes for different

number of paths in each given network size. These results are obtained from applying

both Greedy and ILP TRAIN algorithms to 500 random networks (the same case

studies used for evaluating EEMON solution). As depicted, the number of monitoring

nodes increases as the network size or number of paths increase. However, the number
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Figure 7.1: (a) Average number of monitors. (b) Percentage of nodes selected as
monitors. (c) Average link coverage in the entire network. (d) Average battery
charge of selected nodes.

of monitors in TRAIN (a traffic-aware solution) is considerably less than in EEMON

(as EEMON has to cover all communication links). For example, given 90-node

networks, Greedy TRAIN selects about 5 monitoring nodes on average to cover 45

paths (i.e., |P | = 0.5×90) while ILP and Greedy EEMON select about 50 monitoring

nodes. We emphasize here the smaller number of monitoring nodes selected by ILP

TRAIN when compared to Greedy TRAIN.

Figure 7.1(b) shows the percentage of nodes selected as monitoring nodes for each

network size and number of paths. As depicted, the number of monitoring nodes

is usually less than 10% of the nodes in all of our considered settings. It is worth
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Figure 7.2: (a) Bth−Minimum Charge among selected nodes. (b) Average Execution
Time.

mentioning that unlike EEMON solution, the percentage of selected nodes in TRAIN

decreases as network size increases because of the number of paths we considered for

each network size. This also has a negative effect on the link coverage percentage

as shown in Figure 7.1(c). We note here that TRAIN, as proposed for traffic-aware

networks, does not aim at covering every single network link but every path with

traffic. Hence, when comparing TRAIN with EEMON, TRAIN is expected to have

fewer nodes selected as monitoring nodes and more uncovered links. Figure 7.1(d)

shows the average residual charge among selected nodes in TRAIN. As depicted,

the average charge among monitoring nodes in TRAIN is slightly above those in

EEMON because TRAIN requires less monitoring nodes and thtey are selected from

those with very high residual charge.

The last two metrics we evaluate for TRAIN in this section are the threshold

reduction in residual charge and the execution time. Figure 7.2(a) shows the thresh-

old reduction in all TRAIN settings. As shown, ∆b is always negative, which means

Greedy and ILP TRAIN do not select nodes with the residual charge below bth. For

the same reason explained for Figure 7.1(d), the negative value of ∆b in TRAIN
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Figure 7.3: The distribution of ILP TRAIN execution time for |P | = 0.5×N .

is because it requires fewer monitoring nodes than EEMON to cover traffic paths.

Hence, the probability of choosing a low-battery node as a path monitor is very low.

Figure 7.2(b) shows the average execution time of different TRAIN algorithms

for different path settings and network sizes. As depicted, the results are always

produced in less than 0.1 second, which is very fast. Similar to the execution time

for ILP EEMON, we also plot the distribution of the execution time for ILP TRAIN

(|P | = 0.5×N) as a function of network size. As shown in Figure 7.3, the execution

time is always less than 3 seconds and that means ILP TRAIN, unlike ILP EEMON, is

a practical approach to obtain the optimal set of monitoring node for large networks.

We observe that even the execution time of the outliers is less than 3 seconds.

7.3.2 Energy Consumption of EEMON vs. TRAIN

In this section, we evaluate the energy consumption of EEMON and TRAIN when

using duty-cycling for non-monitoring nodes. As we explained earlier, the network

lifetime of a battery-powered WMN can be extended through duty-cycling. Thus,
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Figure 7.4: Duty cycling at ratios of 50% and 80% uptime in a 40s period.

considering the power that each monitoring node consumes and also the number of

monitoring nodes selected for each given network, we evaluate the average energy

consumption of our proposed algorithms during network lifetime.

The current consumption of Linksys routers is 250mA, which means each router

consumes 3 Watts (12V×250mA). Thus, the regular energy consumed by each device

during one minute working time (i.e., an epoch in our experiment) is 180 Joule. Given

two different duty-cycling settings shown in Figure 7.4, the energy consumption in

an epoch can be reduced to 154.8 J and 169.92 J for 50% and 80% duty-cycling

settings, respectively. However, other duty-cycling intervals can also be considered

by network administrator. If all nodes are selected as monitoring nodes and have to

stay ON for an epoch, the average energy consumption of the nodes in that epoch

is 180 J, i.e., the maximum energy consumption and consequently the minimum

network lifetime. On the other hand, if there is no network traffic to be monitored

(no monitor is required) and node can perform duty-cycling, e.g., 50%, the average

energy consumption reduces, e.g., by 25.2 J for 50% duty-cycling, and the network

lifetime is extended. Considering the two aforementioned intervals and the hardware
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Figure 7.5: EEMON Energy Consumption (a) duty cycle 50%. (b) duty cycle 80%.
TRAIN Energy Consumption (c) duty cycle 50%. (d) duty cycle 80%.

specifications, the average energy consumption in an epoch for a given network and

given monitoring node mechanism (e.g., EEMON or TRAIN) varies between 154.8 J

and 180 J. The larger the number of monitoring nodes, the larger the average energy

consumption is.

Figure 7.5 shows the average energy consumption per node during an epoch (one

minute working time) as a function of the network size. Figures 7.5(a), 7.5(b),

show the average energy consumption of different EEMON algorithms for 50% and

80% duty-cycles, respectively. Figures 7.5(c), and 7.5(d), show the average energy

consumption of different TRAIN algorithms and paths for 50% and 80% duty-cycles,

respectively. The results show that those monitoring mechanisms and network set-
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tings that select more monitoring nodes (e.g., Distributed EEMON) have higher

energy consumption rates. Obviously, 80% duty-cycling consumes more energy than

50% duty-cycling when applying to the same networks and monitoring mechanisms.

We also emphasize here the possibility of having a small error in the amount of

energy calculated for the given epoch. This is because the current consumption, as

shown in Figure 7.4, slightly fluctuates, especially when the wireless interface is ON

(i.e., the 250mA level). Thus, calculating the energy consumption for a longer period

of time or even predicting the networks lifetime (based on the energy consumption

measured for a small epoch) is less accurate than that for the epoch and also depends

on the behavior of the batteries. Therefore, we do not evaluate the network lifetime

through simulation.

7.3.3 Security Analysis

In this section, we evaluate the intrusion detection rates of all aforementioned

monitoring mechanisms for the attack scenarios discussed in system and security

models. We also consider some unexpected scenarios, e.g., single-hop attacks for

TRAIN, to see if they can be detected even though they are not initially considered

by the proposed mechanisms.

Let Pathij be the path between routers vi and vj. Also let E
′
i = {e′ir|e′ir connecting

node i to its client r} be a set of all local links between a router and its clients.

Table 7.2 summarizes the paths for a client/host p (connected to router vi) launching

an attack against a single-hop or multi-hop target (either a router or a host). Let

vj be a multi-hop router and q be a client/host connected to router vj. We will use

this notation to explain and evaluate attacks we consider in this section.

Since in EEMON and TRAIN every traffic path is covered by at least one monitor-

ing node, they ensure full coverage for any path that includes Pathij, e.g., multi-hop
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Table 7.2: Different attack scenarios and the corresponding attack paths.
Attack Target Path

Single-hop
router {e′pi}
client/host {e′pi} ∪ {e′iq}

Multi-hop
router {e′pi} ∪ Pathij

client/host {e′pi} ∪ Pathij ∪ {e′jq}

attacks in Table 7.2. We note here that Pathij in TRAIN has to be a path in the

reduced graph G′. On the other hand, local links e′ir for any client r, are only mon-

itored by router vi. Thus, detectability of the attacks on such local links depends

on the role of the local router (monitor or non-monitor). For example, single-hop

attacks in Table 7.2 are detectable if router vi is a monitoring node.

To evaluate the intrusion detection rates of EEMON and TRAIN and compare

them with Max Coverage, we simulated several attack scenarios. In order to evaluate

each specific attack scenario, we launch 10×N random attacks for each given network

size N . The attack scenarios we consider in this section include insider and outsider

attackers, single-hop and multi-hop targets, severe and normal attacks, and also

link-based and host-based attacks.

7.3.3.1 Normal Attacks

Normal attacks include any attack considered in the low severity group of attacks

by the security administrator. Since the IDS running on every router (monitor and

non-monitor) is able to detect attacks in this category, the administrator may put

the most frequent attacks (e.g., port scan) reported in the WMN network in this

category. This increases the chance of detecting most of the attacks launched by the

attacker who is not aware of the attack categorization performed by the administra-

tor. Moreover, there is no need to consider the attacks against unavailable services in
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Figure 7.6: EEMON average Detection rate for (a) Severe Single-hop attacks. (b)
All combinations of Normal/Severe and Single-hop/Multi-hop attacks. (c) EEMON-
Aware attacks. (d) Jamming attack

the WMN as normal attacks. Hence, the detection rate of all monitoring mechanisms

(i.e., TRAIN, EEMON, and Max Coverage) for Normal attacks, either single-hop or

multi-hop, is 100% as the attack traffic is certainly monitored by a WMN router

running at least LW-DS configuration. We note here that this detection rate is for

those attackers either connected to the WMN network (insider) or communicating

with a WMN host through the gateway (authenticated outsiders). Those attackers

who are not connected to the WMN (unauthorized outsiders) are assumed to only

threat communication links and will be evaluated at the end of this section.
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Figure 7.7: TRAIN average Detection rate for (a) Severe Single-hop attacks, (b) All
combinations of Normal/Severe and Single-hop/Multi-hop attacks.

7.3.3.2 Severe Attacks

Severe attacks include those that are only detectable by monitoring nodes run-

ning CP-DS. Similar to the Normal attacks, Severe attacks are defined by security

administrator. Since multi-hop attacks are always detectable by both EEMON and

TRAIN, as they monitor all Pathij, the administrator must configure network such

that Severe attacks can only occur in a multi-hop manner. For example, the at-

tacks against WMN file servers can be defined as Severe attacks since the location

of file servers are always known (e.g., in DMZ) and the attacker has to run multi-

hop attacks against them. Hence, Severe Multi-hop attacks are also considered to

be always detected (100% detection rate) if they are properly defined by the ad-

ministrator. However, there is always a possibility for considering some attacks as

Severe while the attacker can launch them in a single-hop mode, e.g., an unknown

vulnerability on the operating system of local router or local clients/hosts. Single-

hop attacks are detectable if local router vi is a monitoring node and monitors all

e′ir by CP-DS. Thus, the monitoring solutions that select fewer nodes as monitoring
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nodes (e.g., ILP EEMON) are much more vulnerable to Severe Single-hop attacks.

We evaluate the detection rate of all monitoring solutions for 10×N of each network

size for Severe Single-hop attacks.

Figures 7.6(a) and 7.7(a) show the average detection rate for Severe Single-hop

attacks in EEMON and Max Coverage algorithms and TRAIN algorithms, respec-

tively. As depicted, the detection rates are very low since the number of monitoring

nodes are minimal in all these mechanisms. These results emphasize the trade off

between resource consumption and detection rate in WMN, although this type of

attacks are supposed to occur rarely. We repeated this experiment for previously

discussed attacks: 10×N Normal Single-hop, 10×N Normal Multi-hop, and 10×N

Severe Multi-hop, although the probability of having these attacks in the network

is not necessarily equal in real WMN. We then measured the average detection rate

over all these 40 ×N different attacks for the aforementioned attacks. The average

detection rate of these attacks are shown in Figures 7.6(b) and 7.7(b). As depicted,

the average detection rates are much higher than those for Severe Single-hop attacks

because the other attacks (e.g., all Normal attacks) are always detected.

7.3.3.3 EEMON and TRAIN Aware Attacker

EEMON and TRAIN aware attacker are those type of attacks where attacker

knows which monitoring solutions is used by the administrator (e.g., traffic-agnostic

or traffic-aware, link coverage or node coverage, etc.) but do not know which attack

is considered to be Severe or Normal. It is worth mentioning that the attacker might

be able to obtain more information about all other security settings through IDS

localization and IDS module localization attacks. However, these types of attacks

are out of the scope of this research and we assume that attacker only knows about

the monitoring solution. For example, if the attacker knows that EEMON is used by
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Figure 7.8: TRAIN average Detection rate for (a) TRAIN-Aware attacks, (b) Jam-
ming attack.

the administrator, it only runs single-hop attacks, although he/she does not know

which attack is considered as Severe or Normal. Similarly, if the attacker knows that

TRAIN is used by the administrator, he/she tries to run attacks against intermediate

nodes on WMN paths to avoid monitoring node on the route.

As shown in Figure 7.6(c) for 10×N attacks per each network size, an attacker

who is aware of EEMON has yet a very low chance of success (more than 95%

detection rates) since the only undetectable attacks are Severe Single-hop attacks

and the severity of the attacks are considered to be unknown to the attackers. The

detection rate for Max Coverage algorithm is slightly below EEMON algorithms as

it leaves some links uncovered. Figure 7.8(a) shows the average detection rate for

all TRAIN algorithms where the TRAIN-aware attacker may launch attack against

some intermediate nodes. As depicted, TRAIN-aware attacks are harder to detect as

there is only one monitoring node per path and if happen to be near the destination,

it cannot detect the attacks against intermediate nodes.
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7.3.3.4 Link-Based Attacks

Link-Based attacks are those that an unauthorized node (not connected to the

WMN but physically located in WMN area) can launch against WMN communi-

cation links, e.g., Jamming attacks. We consider this attack as a Severe attack

detectable by monitoring nodes. Depending on the total link coverage provided by

a monitoring mechanism, these single-hop link-based attacks may or may not be

detected. Figures 7.6(d) and 7.8(b) show the average detection rates for Jamming

attacks launched at random locations in WMN. The results are obtained from 10×N

attacks on 500 random networks for each given network size. As depicted, the mon-

itoring node selected by all EEMON algorithms can detect all link-based attacks

as they aim at monitoring all communication links. However, Max Coverage and

TRAIN mechanisms may miss up to 10% and 40% of the link-based attacks, respec-

tively. The high false negative rate in TRAIN is because it is a traffic-aware solution

and is not designed for single-hop attacks.
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8. ATTACK AND FAULT TOLERANT WIRELESS IDS

Although intrusion detection mechanism in WMN have received considerable

focus, little attention has been paid to attacks-and-failures against/of IDS nodes.

Undoubtedly, when an IDS node is compromised or faulty, it is unable to par-

ticipate in intrusion detection process, thus, the intrusion detection rate will de-

crease and some malicious activities will remain undetected (i.e., high false negative

rates). This research, inspired by similar efforts in other computer networking ar-

eas [11, 55, 56, 61, 96], investigates the attack-and-fault tolerance of IDS solutions

presented in this research. In order to develop AFT mechanisms for the proposed

IDS solutions, we first survey related works proposed for attack or fault tolerance

in all networking areas (e.g., wired, ad hoc and sensor networks). Some of the pro-

posed solutions use redundant/backup nodes [55] to increase the network/service

availability after node compromise/failure while others concentrate on camouflaging

mechanisms [61,96] to make monitoring/IDS nodes localization [11] very hard for the

attacker. Furthermore, few other solutions propose fast and efficient fault detection

mechanisms to detect compromised or faulty nodes [56] and recover the network from

that situation [55,61].

This research thrust proposes a classification for all AFT mechanisms and then

concentrates on preventive solutions that use redundant IDS nodes to maintain high

IDS availability ratio after IDS compromise/failure times. We will show that these

mechanisms, at the price of higher resource consumption, increase the attack/fault

tolerance level by: 1) increasing IDS availability; 2) reducing IDS compromise/failure

detection time; and 3) eliminating the need for recovery actions (i.e., adopting backup

nodes) [55, 61]. Taking into consideration the optimal monitoring mechanism em-

176



ployed by IDS solutions, we reformulate the optimal monitoring problem for intru-

sion detection in each class of IDS such that the solution becomes an AFT IDS. The

performance (e.g., intrusion detection rate) and efficiency (e.g., resource consump-

tion) of redesigned and preventive monitoring mechanisms proposed for each class

of IDS are evaluated and compared to those of the original solutions. The results

show how AFT design trades off attack-and-fault tolerance levels for the amount of

resources consumed by intrusion detection systems.

8.1 AFT Mechanisms Diagram

The IDS mechanism presented in this research are not AFT (except for some spe-

cial cases of the RAPID protocol, which we will explain in next sections). Therefore,

if an IDS node fails (e.g., runs out of memory and crashes or its battery dies) or

become compromised, part of the network will remain uncovered. This means that

some WMN nodes/links become vulnerable against network attacks and that false

negative rates will increase. Inspired by research in AFT design [11, 55, 56, 61, 96]

we propose a classification which, to the best of our knowledge, is the first for AFT

intrusion detection. Our proposed classification is based on the time of the action

taken for AFT purposes. As shown in Figure 8.1, the actions are either taken before

IDS attack or fault time (i.e., resulting in IDS compromise/failure) or after that.

8.1.1 Prevention Phase

As shown in Figure 8.1, prevention phase refers to the time while the IDS com-

promise/failure has not occurred yet. For example, a preventive AFT mechanism [61]

may aim at increasing the risk of IDS node attack for the attacker (e.g., by using

redundant monitoring node per link) or reducing the chance of node failure (e.g.,

by using high capacity storage or energy sources). Therefore, preventive solutions

pay the AFT prices (i.e., redundant resources) at the design and implementation
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Figure 8.1: A multi-phase process for designing an AFT IDS mechanism.

phase so that the IDS availability (detection coverage ratio) will not be affected after

IDS compromise/failure. This research focuses on preventive mechanisms and eval-

uates the performance of preventive AFT designs and their costs. It is important to

mention that there exists solutions focusing on IDS node camouflaging, so that IDS

localization (as shown in Figure 8.1) becomes very hard for the attacker [11,96].

8.1.2 Detection Phase

If preventive mechanisms are not used, the monitoring system must be able to

detect IDS compromise/failure immediately, so the security administrator can re-

cover the IDS mechanism quickly. The time between IDS compromise/failure and

its detection by security administrator is called detection time. A fast and accu-

rate detection mechanism can remarkably reduce the detection time and increase the

IDS availability time. Detection mechanisms [55,56] can be either proactive or reac-

tive. It is worth mentioning that a preventive AFT mechanism that uses redundant

monitoring nodes is already a real-time detection system since every IDS node is

monitored by at least another IDS node.

8.1.3 Response Phase

When the IDS compromise/failure occurs and it is detected, an appropriate ac-

tion is to recover the node(s) from the compromise/fault. The time between the IDS
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compromise/failure detection and its recovery is called response time. An optimal

recovery mechanism minimizes the response time [55, 61]. Recovery mechanism and

response time usually depend on the network topology, application, and IDS solution

used in the network. We note here that although preventive solutions do not need

detection and response mechanisms, it is very beneficial to consider these two mech-

anisms particularly for highly vulnerable WMN. This is because a preventive mecha-

nism ultimately becomes non-preventive after a few IDS node compromises/failures.

8.2 AFT-Design for WMN IDS

We model a mesh network as a graph G = (V,E), in which V is the set of

WMN nodes {v1, v2, · · · , vN}, and E = {e1, e2, · · · , eQ} is the set of links between

them. For the traffic-aware solutions, we denote the number of nodes and links

located on traffic routes by n (n ≤ N) and q (q ≤ Q), respectively. Therefore,

the reduced graph G′ = {V ′, E ′} represents the set of active nodes and links in

traffic-aware WMN, where V ′ is the set of n active nodes (V ′ ⊆ V ), and E ′ is

the set of q active links (E ′ ⊆ E). The set of selected monitoring (IDS) nodes in

the resourceful classes are denoted by M = {mj |mj is a monitoring node }. We

also denote the set of routing paths for the network traffic by P = {p1, p2, · · · , pl},

where P v
i = {vj | vj is located on pi} and P v

i ⊆ V ′. We denote by matrix GQ×N the

mapping between nodes and links, i.e., ghj = 1 iff node vj can monitor link eh. We

also denote by matrix Tl×n the mapping between nodes and paths, i.e., tij = 1 iff

node j is located on path i.

We denote the residual energy and the communication load of a WMN node by

bj and cj, respectively. Based on the maximum residual charge and communication

load a node can have, both bj and cj are considered normalized values in range

[0, 1]. Let w : V −→ [0, 1] be a cost function that assigns a weight wj to a node
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vj based on cj and bj (wi = w(cj, bj) = 1/(cj × bj)), such that higher normalized

cj and bj values result in lower weight being assigned to vj. We also denote the

set of IDS functions by F = {fr | fr is a set of detection rules } with size R (i.e.,

|F| = R). Let wf : {F} −→ [0, 1] be a cost function that assigns memory load

wf
r to IDS function fr (as used in resourceless IDS solutions). Consequently, vector

W f = [wf
1 , w

f
2 , · · · , w

f
R] represents memory loads for the IDS functions in F , i.e., the

amount of memory load each function imposes to the IDS node when activated on

that IDS node. We use matrix X to show whether node vj performs IDS function fr

(i.e., xjr = 1) or not. Finally, vectors β = [β1, β2, · · · , βN ] (i.e., Battery Threshold)

and Λ = [λ1, λ2, · · · , λN ] (i.e., Memory Threshold) represent the minimum energy

charge required for being selected as monitor and maximum allowable memory load

by IDS functions, respectively.

8.2.1 Resourceful IDS

EEMON aims at covering all communication links while TRAIN aims at covering

all traffic paths, both with minimum average cost per monitoring nodes. Let Sh

(Sh ⊆M) be the set of selected monitoring nodes out of all possible nodes that can

monitor link eh, and similarly S ′
i be the set of selected monitoring nodes out of all

possible nodes that can monitor path pi.
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minimize
∑
vj∈V

wjmj (8.1)

subject to: |Sh| ≥ 1(EEMON) , ∀eh ∈ E (8.2)

|S ′
i| ≥ 1 (TRAIN) , ∀pi ∈ P

bj ≥ βj (or bth) ,∀mj ∈M (8.3)

mj ∈ {0, 1} (8.4)

Therefore, the optimal monitoring problem in a battery-powered resourceful WMN

(both EEMON and TRAIN) can be formulated as an integer linear program (ILP),

where Constraint (8.2) indicates that every link/path must be covered; Constraint

(8.3) enforces the algorithm to select the nodes with residual energy greater than a

threshold. Constraint (8.4) means a node is either selected as a monitoring node or

not.

8.2.1.1 AFT Resourceful IDS

We define δ-AFT design as an AFT IDS mechanism in which each node is moni-

tored by δ+1 monitoring node(s) and the intrusion detection monitoring mechanism

can tolerate at most δ IDS compromise/failures per link/path. Hence, in EEMON

and TRAIN optimal monitoring formulations, δ-AFT design is achieved by modify-

ing constraint (8.2) to |Sh| ≥ δ for EEMON and |S ′
i| ≥ δ for TRAIN. It is worth

mentioning that δ is bounded by maximum number of monitoring nodes that can

potentially monitor a link/path, which is a function of network density.
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8.2.2 Resourceless IDS

The main objective of resourceless IDS solutions is to monitor all links/paths with

the maximum allowable number of IDS functions that can be performed on WMN

nodes. A higher number of detection modules executed on node vj means more

attack traffic can be detected on the links/paths monitored by that node. Hence,

the optimal monitoring problem in resourceless WMN is formulated as the following

ILP (for both PRIDE and RAPID):

maximize (1/l)(1T · T)(X · 1) (PRIDE) (8.5)

(1/q)(1T ·G)(X · 1) (RAPID)

subject to: X ·W f T ≤ ΛT (8.6)

(T · X)ir ≤ 1 (PRIDE) , ∀i, r (8.7)

(G · X)hr ≤ 1 (RAPID) ,∀h, r

xjr ∈ {0, 1} (PRIDE) ,∀vj ∈ V ′,∀fr ∈ Fj (8.8)

xjr ∈ {0, 1} (RAPID) , ∀vj ∈ V, ∀fr ∈ Fj

where Constraint 8.6 limits the IDS memory load on every node vj to be less than

its memory threshold λj. Constraint 8.7 ensures that only one copy of each function

is assigned to the nodes for each link/path. Finally, Constraint 8.8 means a node

either performs an IDS function or not.

8.2.2.1 AFT Resourceless IDS

This class of IDS may not be able to achieve 100% link/path coverage (i.e., every

link/path is monitored by all R IDS functions) due to memory constraint Λ. Suppose

λj = λ∀vj, the smaller the λ is, the lower the link/path coverage will be. Therefore,
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if the memory threshold is very low that does not allow us to achieve 100% coverage,

our IDS is always 0-AFT. When the memory threshold λ increases, it is most likely

possible to achieve δ-AFT design for δ > 0 in resourceless IDS. Hence, in PRIDE and

RAPID, achieving higher link/path coverage rate is more important than achieving

δ-AFT design.

In order to achieve δ-AFT design in this class of IDS, we have to remove Con-

straint 8.7 to ensure that more than one IDS function can be assigned to a link/path.

In this case, since redundant IDS functions do not count for coverage ratio (ILP objec-

tive) [36], we need to modify the ILP objective function so that it accurately measures

the link/path coverage ratio. Thus, we define function BN : {Y} −→ {0, 1} that

converts yij to a binary value, i.e., if yij = 0, BN(yij) = 0, otherwise BN(yij) = 1.

We reformulate the optimal monitoring problem for δ-AFT design of resourceless

IDS classes as follows:

maximize (1/q)(1T · BN(T · X) · 1) (PRIDE) (8.9)

(1/q)(1T · BN(G · X) · 1) (RAPID)

subject to: X ·W f T ≤ ΛT (8.10)

xjr ∈ {0, 1} , ∀vj, fr (8.11)

The new objective function is no longer linear [36] and cannot be solved with ILP

solvers. Therefore, we use Genetic Algorithm (GA), a popular and effective type

of evolutionary algorithms, as used in RAPID [36] to solve the optimal monitoring

problem proposed for δ-AFT design in resourceless WMN.

183



8.2.3 Solutions for AFT-Design of IDS

Although some of the solutions proposed for the optimal monitoring in our IDS

solutions are implemented in both centralized and distributed manners, here, we only

consider their centralized algorithms to compare with their centralized AFT designs.

The system and attacker models considered in this research (for AFT-designs) are

exactly the same as those in their original designs. Similar to the original centralized

solutions, the AFT-design solutions consider a WMN including mesh routers (i.e.,

battery powered in EEMON and TRAIN and AC-powered in RAPID and PRIDE)

and a computationally powerful base station. Each router in the WMN has some local

information (e.g., its communication load and its residual energy, processing/memory

loads and traffic information) and periodically sends it, via a middleware and secure

communication links, to the base station. Based on the collected information and the

δ and λ values chosen by the security administrator for resourceful and resourceless

IDS, respectively, the base station then solves the optimization problem and assigns

intrusion detection tasks to the nodes.

8.2.3.1 AFT-Design Resourceful IDS

Similar to original EEMON, upon collecting nodes’ information, the base station

uses an ILP solver (i.e., bintprog function of MATLAB) to find the optimal set of

monitoring nodes that can monitor all WMN links with δ+1 monitors. AFT-design

TRAIN, as a traffic-aware solution, first removes idle nodes from the network, i.e.,

those not contributing in the traffic routing, and then optimally selects monitoring

nodes (using bintprog) to monitor all traffic paths with δ+1 monitors. If the reduced

WMN graph after removing idle nodes is disconnected, each graph component is

considered as a sub-problem (to reduce the execution time) and solved separately.
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8.2.3.2 AFT-Design Resourceless IDS

The base station in this classes performs a Genetic Algorithm to find the optimal

IDS function distribution that provides maximum average link/path coverage ratio.

GA solutions are encoded as bitstrings (i.e., chromosomes) of specific length and

tested for fitness. In AFT-design PRIDE and RAPID formulations, matrix X is

a solution that can be encoded as a chromosome of length n × R and the fitness

(objective) value of each solution is the average link/path coverage in the WMN.

The genetic operations used in redesigned PRIDE/RAPID are based on operations

explained in [34] that their details are omitted here.

8.3 Performance Evaluation

This section presents simulation results of the proposed AFT design solutions for

both resourceful and resourceless classes.

8.3.1 Resourceful IDS

This section presents simulation results for AFT designs of two resourceful IDS

solutions, EEMON and TRAIN. As shown in EEMON and TRAIN and by consid-

ering their problem formulations presented in Section 8.2, the metrics we evaluate

in this section are: 1) average number of nodes selected as monitoring nodes; 2) av-

erage communication load and average residual energy charge among selected nodes

as monitoring nodes, in addition to the battery threshold reduction; 3) average link

coverage and intrusion detection rates; 4) time complexity and average energy con-

sumption; and 5) a new metric called expected δ for a given δ-AFT design as we will

explain it later in this section. The results are obtained from 100 random networks

for each network size. We note here that 0-AFT design in simulation results means

the original unmodified IDS design.
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Figure 8.2: Average number of monitoring nodes for different δ in: (a) EEMON; (b)
TRAIN 50%

8.3.1.1 Number of Monitors

The main objective in resourceful IDS solutions is to cover the entire network

links/paths with minimum number of monitoring nodes and minimum total cost.

Therefore, in a δ-AFT design, as δ increases, the number of nodes that must be

selected as monitoring nodes will also increase (redundant monitoring nodes provide

higher degree of attack and fault tolerance). Figures 8.2(a) and 8.2(b) show the

average number of monitoring nodes for different δ and network sizes in EEMON

and TRAIN, respectively. We note here that although TRAIN evaluates this metric

for different number of paths (e.g., number of paths equals to 10%, 30%, and 50% of

network size), we only consider the maximum case which is number of paths equals

to 0.5×N and omit the other results due to space limitations. As shown, the number

of monitoring nodes linearly increases (i.e., constant percentage of nodes are selected

for different N) as δ increases in both traffic-agnostic and traffic-aware solutions to

provide higher levels of attack and fault tolerance. For example, more than 80% of

the nodes in EEMON are selected as monitoring nodes in 4-AFT design (i.e., higher

costs to achieve larger δ).
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Figure 8.3: [Bth - Minimum Charge] among selected nodes for different δ in: (a)
EEMON; (b) TRAIN 50%.

8.3.1.2 Properties of Monitoring Nodes

In EEMON and TRAIN, the cost per monitoring node is defined as a function of

residual energy charge and the communication load. Therefore, the residual energy

charge and the average communication load among selected node is expected to be

higher than of those of non-monitoring nodes. In addition, it is possible that out

of all possible nodes that can monitor a link/path, none of them has residual charge

greater than threshold bth. In this case, as mentioned in EEMON and TRAIN, the

threshold decreases until at least one of the nodes is selected. Such a threshold

reduction has to be as low as possible meaning that most of the selected nodes have

residual energy charge above the threshold bth resulting in longer network life time.

Figures 8.3(a) and 8.3(b) show the average value of [Bth - Minimum Charge] for

different δ and network sizes in EEMON (TG-RF) and TRAIN (TW-RF), respec-

tively. Negative values mean that the minimum residual energy charge among all

selected nodes is larger than the threshold and no threshold reduction has occurred.

As shown, the greater the δ is, the larger the threshold reduction will be. This is

because selecting more monitoring nodes (required by large δ) increases the proba-
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Figure 8.4: Average residual energy charge of selected nodes for different δ in: (a)
EEMON; (b) TRAIN 50%; Average communication load of selected nodes for differ-
ent δ in: (c) EEMON; (d) TRAIN 50%.

bility of selecting low battery nodes, and consequently increases the [Bth - Minimum

Charge].

The next two metrics we consider are average residual charge and average com-

munication load among selected nodes, as evaluated in both EEMON and TRAIN.

Figures 8.4(a) and 8.4(b) depict the average residual energy charge among selected

nodes (as monitoring nodes) for different δ and network sizes in EEMON and TRAIN,

respectively. As depicted, the larger the δ is, the lower the average residual energy

charge of monitoring nodes will be. This is because larger δ requires more monitoring

nodes to achieve higher levels of attack and fault tolerance. Hence, the monitoring
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node selection algorithms have to select monitors among low battery nodes that de-

creases the average value. Figures 8.4(c) and 8.4(d) show the average communication

load of selected nodes for different δ and network sizes in EEMON and TRAIN, re-

spectively. Similar to the average residual charge, the average communication load

decreases as δ increases.

8.3.1.3 Intrusion Detection Rates

EEMON and TRAIN aim at covering all network links and paths respectively.

Average link coverage in EEMON is always 100% but TRAIN only covers a subset of

links located on active routing paths. Figure 8.3.1.2 shows the average link coverage

provided by TRAIN 50% when δ increases. As shown, although the original TRAIN

leaves some communication links uncovered, the AFT design of TRAIN increases the

average link coverage as it selects more monitoring nodes than original TRAIN.

EEMON considers two types of attacks, Severe (detectable by only monitoring

nodes) and Normal (detectable by monitoring and non-monitoring nodes). These

two attacks can be launched in single-hop and multi-hop modes. The detection

rate of EEMON and TRAIN for Normal attacks, either single-hop or multi-hop, is

100% as the attack traffic is certainly monitored by a node (either monitoring or

non-monitoring). In addition, Severe multi-hop attacks are also considered to be

100% detectable as both EEMON and TRAIN have at least one monitoring node

that monitors multi-hop traffic. The only attack that is hard to detect is Severe

single-hop attack which is only detectable by monitoring nodes.

We performed 10×N random attacks for each of 4 types (i.e., 2 types and 2 modes)

for different δ in EEMON and TRAIN 50% and measured the detection rates (40×N

random attacks for each network size). Figures 8.6(a) and 8.6(b) depict the average

intrusion detection rates for all combinations of Severe/Normal and single-hop/multi-
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Figure 8.6: Average intrusion detection rate of all 40 × N random Normal/Severe
and Single-hop/Multi-hop attacks in: (a) EEMON; (b) TRAIN 50%.

hop attacks in EEMON and TRAIN, respectively. As depicted, larger δ increases the

average intrusion detection rate since it results in selecting more monitoring nodes

in the network that can detect Severe single-hop attacks and consequently increases

the average detection rate. The lower detection rate in TRAIN (for similar δ-AFT

designs as EEMON) is because it aims at only covering few paths (a subset of links)

which results in selecting less monitoring nodes.

The next type of attack we consider is EEMON and TRAIN aware attack where

attacker knows which IDS solutions is used (e.g., traffic-agnostic or traffic-aware, link
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Figure 8.7: Average intrusion detection rate of EEMON/TRAIN aware attacks for
different δ in: (a) EEMON; (b) TRAIN 50%. Average execution time of the ILP
solver for different δ in: (c) EEMON; (d) TRAIN 50%.

coverage or node coverage, etc.) but do not know what type of attack is considered

to be Severe or Normal. For example, if the attacker knows that EEMON is used,

he will only run single-hop attacks and if TRAIN is used, he will try to run attacks

against intermediate nodes on traffic paths to avoid monitoring node on the route.

Figures 8.7(a) and 8.7(b) show the average intrusion detection rates of EEMON and

TRAIN aware attacks (10×N random attacks for each N) in EEMON and TRAIN

50%, respectively. It is worth mentioning that EEMON, at the price of using more

monitoring nodes, achieves higher detection rates than TRAIN for a given network

size. Also, as δ increases, the detection rate increases too because of selecting more
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Figure 8.8: Average energy consumption of 50% duty cycling for different δ in: (a)
EEMON; (b) TRAIN 50%. The ratio of number of selected monitors to the expected
number of monitors for different δ in: (c) EEMON; (d) TRAIN 50%.

monitoring nodes in the network.

8.3.1.4 Time Complexity and Energy Consumption

Figures 8.7(c) and 8.7(d) show the execution time of the ILP solver when solving

the optimization problem in EEMON and TRAIN, respectively. The results show

the average execution time of different δ and network sizes. Generally, the execution

time increases as network size (number of links/paths to be covered) increases. In

addition, smaller δ increases the time complexity of the ILP solver since it reduces

the solution space. As the results show, the execution time in TRAIN is always less

than 0.1 seconds since it only considers traffic paths, however, the execution time in
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EEMON is in the order of few seconds (as it considers all communication links). We

note here that higher execution times for large networks in EEMON are also because

of some outliers among 100 random networks.

In both EEMON and TRAIN, non-monitoring nodes work in duty-cycling mode

to save energy. Thus, the set of monitoring nodes changes periodically (based on the

problem formulation) to extend the network life time. The current consumption of

devices used in EEMON and TRAIN (i.e., Linksys mesh routers) is 250mA, which

means each device consumes 3 Watts (12V250mA). Thus, the energy consumed by

each device during one minute working time (i.e., an epoch in our experiment) is

180 Joule. When duty-cycling, the energy consumption decreases depending on the

duty-cycle interval. Figures 8.8(a) and 8.8(b) show the average energy consumption

per node during an epoch for different δ in EEMON and TRAIN, respectively. As

shown, the larger the δ is, the higher the average energy consumption will be. This

is because larger δ means more nodes will work in monitoring mode and less nodes

can save energy through duty-cycling.

8.3.1.5 Success Rate of δ-AFT Design

The last metric we evaluate in resourceful IDS class is the success rate of δ-

AFT design in assigning δ+1 monitoring node(s) to each communication link/path.

Since the number of monitoring nodes assigned to each link/path is limited by the

maximum number of nodes that can cover the link/path, it is sometimes impossible

to achieve δ-AFT for a given δ and network topology. In fact, the success rate

of δ-AFT design in assigning δ + 1 monitoring node(s) to a link depends on the

network topology. We performed simulations for 100 random networks of each given

network size and different δ and measured the average number of monitoring nodes

per links/paths divided by δ. Figures 8.8(c) and 8.8(d) depict the success rates of δ-
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AFT design for different δ in EEMON and TRAIN, respectively. As one can observe,

the success rate is always near 100% specially for TRAIN as it monitors less links

than EEMON.

8.3.2 Resourceless IDS

This section evaluates the performance of resourceless IDS solutions for AFT de-

sign. As we discussed in Section 8.2, the main parameter in designing resourceless

IDS for traffic-agnostic and traffic-aware networks is memory threshold (λ). The

larger the λ is, the higher the link/path coverage will be. This is because larger λ

allows nodes to execute more IDS functions which also increases the IDS function

redundancy (i.e., higher levels of attack and fault tolerance). Consequently, it in-

creases intrusion detection rates and average memory load on the nodes. Hence, in

resourceless IDS, unlike resourceful IDS, we cannot change δ as a tuning parameter

for AFT design, however, δ is a function of λ and network density. In other words,

the security administrator gives a higher priority to link/path coverage than AFT

design because for example, having two identical (redundant) IDS functions on a

path is not as useful as executing two different IDS functions on the nodes along the

paths. Obviously, the later provides higher path coverage (and consequently higher

detection rates) than the former (i.e., lower path coverage but higher level of attack

and fault tolerance).

Figures 8.9(a) and 8.9(b) show the average number of IDS functions per links

in RAPID for 6-module and 12-module configurations, respectively. As shown, this

metric is a function of memory threshold (λ) and network density. The larger the

λ and network density are, the more IDS function per link (i.e., the level of attack

and fault tolerance) will be. Similarly, Figures 8.9(c) and 8.9(d) depict the average

number of IDS functions per paths in PRIDE for 6-module and 12-module configu-
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Figure 8.9: The average IDS functions per link for different memory threshold (λ)
and network densities in: (a) 6-Module Configuration; (b) 12-Module Configuration
RAPID. The average IDS functions per path for different memory threshold (λ)
and path lengths (PL) in: (c) 6-Module Configuration; (d) 12-Module Configuration
PRIDE.

rations, respectively. In PRIDE, since only the nodes located on the path participate

in path monitoring, the level of attack and fault tolerance is a function of path length

(PL) and λ. The higher the λ and PL are, the higher the attack and fault tolerance

level will be. We note here that other metrics such as intrusion detection rates and

average memory loads (omitted here) in RAPID and PRIDE are exactly the same

as those shown in [36,39].
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9. CONCLUSIONS AND FUTURE WORK

In this section, we summarize the research, review the contributions, and discuss

the future work.

This research investigates the problem of intrusion detection in wireless mesh

networks (WMN). When compared to traditional intrusion detection systems (IDS)

proposed for wired networks, intrusion detection in WMN is more challenging due

to the limited resources (e.g., memory, CPU, and energy) available on WMN nodes

and also lack of single vantage points where traffic can be analyzed (e.g., gateways

and routers in wired networks). Inspired by thorough research on intrusion detec-

tion in wireless ad hoc and sensor networks, researchers have proposed decentralized

monitoring mechanisms for intrusion detection in WMN. Decentralized solutions pro-

pose to distribute IDS responsibility to all nodes such that the entire WMN traffic is

inspected. However, the major challenges that hinder the performance of these mech-

anisms are resources (e.g., energy, processing, and storage capabilities) accompanied

by the adhoc-dynamic communication flows.

In light of these challenges, we proposed a taxonomy for different monitoring

mechanisms proposed for intrusion detection in WMN. In fact, our objective in this

research is not to propose a new intrusion detection rule, but to propose optimal

approaches of applying proposed intrusion detection rules and engines to different

WMN applications. In order to do that, we investigated the feasibility of applying

state-of-the-art decentralized IDS solutions to different WMN applications. Our

proposed classification is based WMN nodes’ characteristics in different applications,

types of services that the WMN provides, and also the administrative knowledge

about network traffic. For each class of IDS, we propose optimal IDS role assignment
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that aims at providing maximum intrusion detection rates with respect to all network

characteristics and constraints. We also investigate the problem of IDS attack/failure

for all of the proposed IDS solutions in this research.

9.1 Contributions

We proposed five intrusion detection systems categorized in four classes where

each class of IDS is suitable for specific type of WMN. The first class of IDS solutions

considers resource-constrained WMN where network administrator has knowledge

about network traffic. We proposed PRIDE, a practical and traffic-aware intrusion

detection mechanism, for this class of IDS that optimally distributes IDS functions

along WMN nodes located on the traffic paths. We presented this problem as an

integer linear program (ILP) and used ILP solver to solve it. We evaluated the

performance of PRIDE solutions in a real-world department-wide testbed. Our ex-

perimental results show that PRIDE can achieve high detection rates in multi-hop

attack scenarios even for small path lengths and low memory thresholds.

The second class of intrusion detection we studied in this research focuses on

traffic-agnostic and resourceless WMN. This research thrust is motivated by the fact

that traffic-awareness is a strong assumption in many WMN application in which

traffic paths change very often. We proposed RAPID to monitors all communication

links, instead of only few paths. It was shown that the complexity of this prob-

lem, i.e., monitoring all WMN links with resource-constrained nodes, is more than

traffic-aware solutions that only consider few WMN link. Each node in RAPID,

depending on its available resources, is assigned a subset of IDS functions and inves-

tigates the entire network traffic on the set of communication links it can monitor

(i.e., in its coverage area). We proposed two algorithms to solve optimal IDS function

distribution problem; an optimization algorithm based on evolutionary algorithms
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and a random distributed mechanism. The results surprisingly showed that RAPID

can achieve high detection rates in memory-constrained WMN. We also considered

WMN application with extremely resource-constrained nodes where RAPID cannot

provide reasonable intrusion detection rates. In this case, we use cooperative IDS

where nodes optimally create cooperative intrusion detection groups with respect to

multiple characteristics and constraints. The problem of creating optimal coopera-

tive IDS clusters formulated as a multi-objective optimization problem and then an

evolutionary algorithm was proposed to solve it.

The other two IDS solutions we proposed in this research consider battery-

powered WMN consisting of resourceful nodes. The research challenge/problem we

addressed by these IDS solutions was how to reconcile energy efficient operation,

which requires nodes to save energy as much as possible, with an effective intrusion

detection, which requires nodes to perform intrusion detection tasks resulting in ex-

tra energy consumption. The problem of energy-efficient monitoring was studied in

these two classes of IDS while EEMON focuses on traffic-agnostic application and

TRAIN studies the effect of traffic-awareness on such IDS solutions.

The last contribution in this research is to investigate the problem of attack and

fault tolerance of the proposed IDS solutions. We first surveyed a series of admin-

istrative mechanisms for attack-and-fault tolerant (AFT) IDS design and proposes

a classification for all AFT mechanisms and then concentrated on preventive solu-

tions. We proposed redesigned IDS solutions that were attack and fault tolerant and

then showed that AFT mechanisms, at the price of higher resource consumption, can

increase the attack/fault tolerance level of IDS solutions in WMN.
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9.2 Future Work

Taking into consideration that intrusion detection in resource-constrained wireless

networks is a new promising research area and only few research efforts have been

devoted to it, we envision several interesting future directions:

9.2.1 Intelligent Routing for Traffic-Aware IDS

In two research thrusts of this dissertation, we concentrated on traffic-aware IDS

mechanisms where the knowledge about routing paths could help security adminis-

trators to optimally assign detection modules to WMN nodes (PRIDE) or optimally

select monitoring nodes (TRAIN). In PRIDE, we showed that for a given memory

constraint, the longer the path was, the higher the detection rates were. In addition,

TRAIN aims at selecting nodes with higher residual energy charge and communi-

cation loads as monitoring nodes. Looking to the future, we also plan to modify

WMN routing protocols (e.g., OLSR) and propose an intelligent routing mechanism

that aims at redirecting WMN traffic through longer paths (to increase the num-

ber of nodes participating in traffic investigation) when using resource-constrained

mechanisms, or also redirecting WMN traffic towards nodes that impose less costs

to the set of monitoring nodes (those that have higher residual charge). This intel-

ligent routing mechanism will tend to increase detection rates and lower monitoring

costs at the price of some routing delays. The tradeoff between routing delays and

intrusion detection rates would be an interesting research direction.

9.2.2 Intrusion Detection in Resource-Constrained and Dynamic Networks

This dissertation concentrates on static WMN where network topology does not

change very often. However, recent advances in mobile networks show that these type

of resource-constrained wireless networks are becoming more popular. Consequently
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security of these networks will be of paramount importance. RAPID proposed a

traffic-agnostic IDS for resource-constrained WMN, however, its performance in mo-

bile network, where there is no central administrator and network topology changes

very often, has to be evaluated. In such networks, only distributed algorithms can

be considered, but it is possible that some selfish node do not participate in intrusion

detection mechanism to conserve more energy.

9.2.3 Load-Awareness in IDS Role Assignment

PRIDE uses a fixed upper bound for number of concurrent network sessions that

the IDS on each node can investigate. Considering the ever increasing networking

services and consequently traffic loads, this setting will drastically degrade the IDS

performance. Looking to the future, we also plan to investigate how dynamic memory

allocation, e.g., Stream5 parameters such as “max tcp,” can be implemented based

on traffic loads on each part of the network. Dynamic memory allocation and IDS

function assignment This way, two nodes with the same memory space available but

different traffic rates, will dedicate their memory spaces to the static and dynamic

loads differently.

9.2.4 Intrusion Detection in Resource-Constrained IoT

The new trend in Internet is the network of interconnected wireless physical de-

vices, sensors, and object where they interact through a worldwide communication

infrastructure to provide different services. Internet of Things(IoT) has the potential

to be the next evolution in the area of information technology. For such a ubiqui-

tous technology, security is one of the top concerns. In order to provide a strong

security foundation for IoT, several parameters has to be taken into considerations.

Recently, intrusion detection and fault tolerance in IoT have received some attention

from research community. We believe that lessons learned from intrusion detection
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in resource-constrained wireless networks can help researchers in developing IDS

mechanisms for IoT.

9.2.5 Cyber Physical Systems Security

Recently, the boundary between cyber systems and physical systems has been

quite blurring. In fact, the number of cyber devices (e.g., phones) being able to

interact with physical world is increasing. This interaction is done through different

sensors (e.g., GPS, accelerometer, gyroscope, etc.) and help people to apply these

systems to different applications, e.g., medical, transportation, home-security, and

many other critical services. Taking into account the popularity of CPS application,

their security is among the top concerns. Securing CPS against malicious activities

or physical faults is of utmost importance. As a very new and promising research

area, intrusion and fault detection is considered as another future direction.
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