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ABSTRACT 

 

Learned mate choice has a fundamental role in population dynamics and 

speciation. Social learning plays a ubiquitous role in shaping how individuals make 

decisions. Learning does not act on a blank slate, however, and responses to social 

experience depend on interactions with genetically-specified substrates – the so-called 

“instinct to learn”.  I develop a new software Admixsimul, which allows forward-time 

simulations of neutral SNP markers and functional loci, mapped to user-defined 

genomes with user-specified functions that allow for complex dominance and epistatic 

effects. Complex natural and sexual selection regimes (including indirect genetic effects) 

are available through user-defined, arbitrary fitness and mate-choice probability 

functions. Using simulation, I show that responses to learned stimuli can evolve to 

opposite extremes in the context of mating decisions, with choosers either preferring or 

avoiding familiar social stimuli, depending on the relative importance of inbreeding 

avoidance versus conspecific mate recognition. I also show that under certain scenarios, 

learned preference is sufficient to maintain reproductive isolation during secondary 

contact. Two sister species of swordtail fish have evolved such opposite responses to 

learned social stimuli. The interaction of learned and innate inputs in structuring mate-

choice decisions can explain variation in genetic admixture in natural populations. 

Olfactory preference of X. malinche females is affected by previous experience with 

adult cues. I compare gene expression levels of transcriptome libraries prepared from 

pooled sensory and brain tissues between 3 treatment groups that differ by social 
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experience. I found genes involved in neural plasticity differentially expressed not only 

between control and exposure groups, but also between groups exposed to conspecific 

and heterospecific models. I also found evidence that certain vomeronasal receptor type 

2 (V2R) paralogs may detect species-specific pheromone components and show 

differential expression between treatment groups. I then reconstruct evolutionary 

relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae). Using 

genomic data, I resolve a high-confidence species tree of Xiphophorus that accounts for 

both incomplete lineage sorting and hybridization. The results allow me to re-examine a 

long-standing controversy about the evolution of the sexually selected sword in 

Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the 

evolutionary history of this genus. 
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CHAPTER I  

INTRODUCTION 

 

Complete reproductive isolation is the landmark of speciation, during which gene 

flow is largely ceased, allowing for continuous divergence between incipient species and 

eventually lead to complete species. Many studies have focused on the biochemical and 

genetic underpinnings of isolating mechanisms between divergent species (Presgraves et 

al. 2003), and often find drastic reduction of hybrid fitness such as sterility of the 

heterogametic sex (Haldane’s rule) or lowered viability caused by incompatible 

interacting loci (Masly and Presgraves 2007). However, the seemingly strong isolating 

barriers observed in highly divergent species are unlikely to shed much light on the 

initial cause of divergence, because many of these strong barriers evolve much later after 

the divergence pattern has been canalized by genes that interact on a higher biological 

level, albeit the isolating effects of the initial barriers may be weak (Figure 1). During the 

early stage of divergence, pre-mating isolating may likely evolve by two mechanisms 

(Kaneshiro 1980): 1) lower relative fitness in hybrids (regardless of whether the 

selection against hybrid is “intrinsic” or “extrinsic”) selects for pre-mating isolation, the 

so called “reinforcement” process (Servedio and Noor 2003) or 2) premating isolation 

evolves as a by-product of allopatric local adaptation of loci that affect female 

preference.  Informed by the observation that closely related taxa can frequently 

hybridize, hybrid zones provide a window into the speciation process (Jiggins and Mallet 
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2000). In animals, pre-mating isolation often involves female mate choice (Andersson 

1994). 

 

Figure 1. Schematic drawing of genetic loci as cause and effects of lineage divergence. 

Many loci incompatibilities that setup the divergence patterns before the final speciation 

event interact on an ecological level. 

 

 Many models on preference-trait co-evolution assume female mate choice to be 

genetic, in the sense that females have a genetic locus or several quantitative loci that 

target an “optimal” male trait value (Boake 1991). Although convenient for modeling, 

whether such innate preference is generally plausible mechanistically is unknown. One 

possible mechanism is the sensory bias hypothesis (Endler and Basolo 1998; Ryan 

1998), where the female sensory periphery under natural selection constraints may 

become more sensitive to certain stimulus (e.g. wavelength of light, frequency of sound 

etc.). Under the strong assumption that stronger stimulus translates into stronger 

preference, male signals that “exploit” such pre-existing bias gain higher reproductive 
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success. Another mechanism is pleiotropic effects of a gene that controls both the signal 

and the preference (Marcillac et al. 2005). For example, both the call frequency and the 

auditory frequency sensitivity of frogs are correlated with body size, and thus the genes 

underlying body size have a pleiotropic effect on both the signal and the receiver (Ryan 

and Wilczynski 1988). Nonetheless, preference for signals of a more complex nature or a 

higher organization level, such as song structures in frogs and birds, complex color 

patterns, and behavioral courtship traits may not be easily explained by such a direct 

gene-to-gene targeting mechanism. Indeed, accumulating evidence suggests that mate 

choice is also affected by indirect genetic effects (Wolf et al. 1998) such as learning 

(Irwin and Price 1999). Learned mate preference alleviates the need for females to 

possess “innate preferences”. For example, a wide range of animals are found to base 

their preference on the experience with parents, peers or previous mates (Verzijden et al. 

2012b). The role of learned mate choice in speciation is debated, but at least in certain 

scenarios (e.g. paternal imprinting), learned mate choice generates similar results as if 

mate choice is genetically determined (Verzijden et al. 2005). Many previous models 

have assumed learning to have a positive effect on the outcome of mate choice. It has 

recently been shown in a model that negative effects of learning may prevent the 

Fisherian run-away process in signal-receiver coevolution (Bailey and Moore 2012). The 

evolution of learned mate avoidance per se, however, received little attention. For 

Chapter I, I develop a new individual-based simulation software package that allows 

convenient modeling of population dynamics incorporating learned/genetic mate choice, 

natural selection and complex genetic architectures. Then, I combine simulation and 
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empirical studies in two natural hybridizing Xiphophorus species to demonstrate that a 

negative effect of learning on mate preference can evolve under heterozygous advantage, 

and that opposing effects of learning may promote or prevent reproductive isolation.  

 

 

Figure 2. Studying mechanisms of mate choice may help to understand genomic 

patterns. 

 

 Behavioral mechanisms when operating on an evolutionary time scale can leave 

identifiable patterns in the genome. With the advent of the genomic era, many studies 

have strived to extract information about the underlying evolutionary processes from 

observable genomic patterns. A caveat is that very often, the genomic patterns are 

uninterpretable (i.e. contains no information) with regard to a parameter of interest due 

to the fact that different processes may result in similar patterns (Vitti et al. 2013). 

Hence, having a priori knowledge on the processes, and the mechanisms that promote 
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those processes, reduces the dimensionality of the inference problem, and helps ruling 

out alternative hypotheses (Figure 2).  

 Animals use multi-modal communication to make mate choice decisions (Partan 

and Marler 2005). Among these, visual and acoustic cues are probably the most well-

studied ones. Many lab experiments have demonstrated that learning alters preference 

for these cues (Verzijden and ten Cate 2007; Verzijden and Rosenthal 2011), and 

mechanistically the change in the nervous system either occurs at the sensory periphery 

(e.g. differential expression of opsins) (Parry et al. 2005) or involves memory at a higher 

processing level (e.g. memory of bird songs) (Bolhuis et al. 2012). Less study has 

focused on the mechanism of plasticity in the olfactory modality in the context of mate 

choice (but see Niehuis et al. 2013), which is the most commonly used and the most 

ancient method of animal communication (Wyatt 2003).  More and more recent studies 

suggest that olfactory cues are important in conveying social information and serve as 

effective identifiers for sex, individual, population and species (Lassance and Löfstedt 

2013). In vertebrates, olfactory sensitivity (Nevitt et al. 1994) and preference (Crapon de 

Caprona and Ryan 1990) are both affected by previous experience. In Chapter II, I use 

high-throughput RNA-seq technique to study the molecular mechanisms underlying 

learned olfactory preference behavior by examining gene expression patterns in X. 

malinche females with different social exposure experiences.  

Given the findings in Chapters I & II on learned female mate preference in X. 

birchmanni and X. malinche, I expect that the reproductive barriers between closely 

related Xiphophorus species should be porous, and particular parts of the genome may 
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be susceptible to introgression. In Chapter IV, I examined this prediction in the genus 

Xiphophorus by using high-throughput phylogenomics to test whether mate choice 

behavior observed in lab experiments leaves signatures of extensive hybridization 

among lineages. 
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CHAPTER II  

EVOLUTION OF REVERSED HEDONIC VALUE IN LEARNED MATING 

PREFERENCES 

 

Introduction 

Social learning plays a ubiquitous role in shaping how individuals make 

decisions, including choosing a mate. Many animals base their mating preferences on the 

phenotype of other individuals they experience during development, a phenomenon 

known as sexual imprinting (Cate and Vos 1999; Owens et al. 1999; Griffiths 2003; 

Verzijden and ten Cate 2007; Kozak and Boughman 2009). Most models of sexual 

selection (Laland 1994a, b; Aoki et al. 2001; Ihara et al. 2003; Tramm and Servedio 

2008) and speciation (Kirkpatrick and Dugatkin 1994; Agrawal 2001; Verzijden et al. 

2005) assume that learning causes a positive association between an imprinted trait and 

later mate preference, such that choosers prefer to mate with individuals bearing familiar 

phenotypes. Yet the association between learned stimuli and subsequent behavior 

depends on a genetically-specified substrate – the so-called “instinct to learn” (Marler 

1991). In some circumstances, notably in populations with a high degree of inbreeding 

depression, selection should favor avoidance rather than acceptance of familiar 

individuals, since unfamiliar males are less likely to be close relatives (Pusey 1980; 

Grob et al. 1998; Penn and Potts 1998; Weisfeld et al. 2003). Females often avoid the 

phenotypes of close kin (Fadao et al. 2000; Lehmann and Perrin 2003; Weisfeld et al. 

2003; Gerlach and Lysiak 2006) or prefer novel, unfamiliar phenotypes (Burley et al. 



 

8 

 

1982; Qvarnström et al. 2004). By contrast, selection should favor imprinting on familiar 

individuals if it reduces the likelihood of mating with heterospecifics (Butlin 1987).  

The effect of social stimuli on mating preferences can be parameterized as Ψ 

(Bailey and Moore 2012). When Ψ is positive, females have a higher probability of 

mating with males bearing phenotypes they have previously experienced. When Ψ is 

negative, females avoid mating with males bearing familiar phenotypes. A recent model 

(Bailey and Moore 2012) showed that positive Ψ can accelerate Fisherian runaway 

coevolution of female preference and male trait, while negative Ψ prevents runaway 

coevolution. 

Here, I first use individual-based simulations to show that  Ψ can evolve to be 

strongly positive or negative depending on the relative fitness costs of mating with close 

kin or heterospecifics. I further show that secondary contact of lineages with opposing 

Ψ’s may either prevent or promote gene flow depending on genetic architecture and 

admixture proportions. I then report an empirical example of rapid evolution of  Ψ in a 

young sister species pair by comparing the mating preferences of Xiphophorus malinche 

to those previously reported for its sister species, X. birchmanni, raised under identical 

social conditions (Verzijden and Rosenthal 2011). Given the divergent responses to 

social experience in these two species, my simulation model is consistent with dramatic 

differences in observed population-genetic patterns between two natural hybrid zones. 
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Materials and methods 

First, I take an individual-based simulation approach (Appendix A) to address 

two problems: 1) how varying heterozygote viability affects the evolution of Ψ; 2) what 

types of admixture dynamics arise if two populations opposing Ψ’s come into secondary 

contact. I first outline simulation settings that are common for both simulations 1 and 2, 

and then I detail the specifics for the two simulations.  I follow my simulations with 

empirical studies to test model predictions.  

Genetic architecture  

I simulated diploid organisms with eight unlinked biallelic loci, with discrete 

allelic values of 1 or 0. These eight loci additively code a male-limited signaling trait 

(signal) in the range of [0,16] (Figure B-1). The value of Ψ is coded by a ninth, unlinked 

locus. The sex-determining locus is unlinked to the other nine loci, which results in a 1:1 

sex ratio. 

Sexual selection model 

After natural selection (only applied in simulation 1), surviving individuals breed 

following these stages: 1) each female randomly samples 1000 males (expected number 

of males in the population) without incurring any cost; 2) during each sampling, she 

accepts the male with a probability defined below; 3) If she accepts a male, she goes on 

sampling other males; 4) when sampling ends she uses gametes randomly drawn from 

the pool of accepted males to produce offspring. 5) each female produces on average the 

same number of offspring such that the total number of offspring adds up to the carrying 

capacity. 
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Ψ – Ψ value encoded by the Ψ locus. | Ψ | is choosiness against suboptimal mates. 

s – the signaling trait value of the courting male under assessment by the female. 

mids  – 16/2, the mid-point of the male trait range 

s   – the average trait value for model males in the previous generation (oblique 

imprinting; main text), the current generation (peer imprinting; Appendix B i) or the 

paternal trait (paternal imprinting; Appendix B i).  

s   – the preferred male signal, defined as when Ψ  is positive and as  + (  – ) 

when Ψ is negative (Figure B-2). Flipping the sign of Ψ therefore results in a mirrored 

preference function around the male trait mid-point mids .   

Essentially, I assume that females divide male traits into two categories (the 

cutoff being the population-average male trait value) and learn to prefer ( >0) / avoid (

s
mids mids s
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< 0) one category depending on which category contains more males in the previous 

generation (Figure B-2A). I also explored a less realistic unimodal function (Appendix B 

iv). In my formulation, the absolute value of models the choosiness against 

suboptimal male traits, with higher values being choosier (Figure B-3A).  

Simulation 1: Evolution of the sign of Ψ 

Population setup 

In simulation 1 I used 3 populations, where populations A and B merely provide 

polymorphism of male traits to the focal population F, in which I explore the evolution 

of Ψ. I first seeded two source populations A and B with fixed alleles in loci 1-9, such 

that population A has a fixed male signaling trait of 16 and population B is fixed for 0. 

Allelic values (and thus the phenotype value) at the Ψ locus were forced to 0 and not 

allowed to evolve in populations A and B. In population F, the allelic values of the Ψ 

locus are free to mutate in the range [-2,2] with mutation probability of 0.001 per 

meiosis. This high mutational rate was chosen to accelerate the simulation. I then 

populate my focal population F with 10 individuals from population B in generation 1. 

From generation 2 and on, 1 immigrant from A and 10 from B enter F every generation. 

The carrying capacity of populations A and B is 200, that of F is 2000. In recently 

bottlenecked populations, rare alleles (frequency <10%) are most prone to loss due to 

drift (Luikart et al. 1998); because the effect of negative Ψ is to maintain the rare allele 

(i.e., if the “rare allele” is already abundant, there’s no need for another mechanism to 

maintain it), I set the rare allele frequency to 1/11 (9.1%) to mimic this realistic 

condition (see Appendix B ii for simulations with other rare allele frequencies).  Here I 




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use continuous gene flow to maintain polymorphism of the male signaling loci in the 

focal population F. In reality polymorphisms can also be maintained by other 

mechanisms such as negative frequency-dependent selection. 

Natural selection conditioned on heterozygosity 

For convenience, I use “viability” to refer to the survival probability during 

natural selection. In each non-overlapping generation, adults in the population F were 

subjected to natural selection. I varied natural selection across runs to mimic the viability 

effects of varying degrees of heterozygote viability. I assume that heterozygosity 

increases viability in an inbred population, and decreases viability in an outbred 

population where there is a high risk of introgressing heterospecific alleles. I define Hhe 

as the number of male signaling loci that confer higher viability when heterozygous, and 

Hho to be those that confer higher viability when homozygous. I consider different 

proportions (Hhe:Hho) of the signaling loci. When Hhe:Hho = 8:0, it mimics an inbred 

population where all 8 loci are more fit in the heterozygous state while Hhe:Hho = 0:8 

mimics an outbred population where complete homozygosity is more fit in terms of 

natural selection. Note that here I assume that the loci underlying the male trait are 

closely linked to or pleiotropic with loci underlying traits contributing to viability. 

Survival probability is defined by the Gaussian function 






 


2

2

max

2

)(
exp

w

ff
p , where 

f is the number of signaling loci in a “more viable” state,  fmax=8 (all loci in “more fit” 

state), with w (the strength of selection) set to 6 such that p=0.4 when f=0.  
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The runs 

I repeated simulations of each Hhe:Hho proportion 10 times to calculate the mean 

and standard deviation of population means of . I ran the simulations for 5000 

generations, sampling population statistics every 10 generations. 

Simulation 2: Admixture of lineages with opposing Ψ’s 

I performed another set of simulations to explore if admixing populations with 

opposing Ψ’s maintain reproductive isolation. Because I were now interested in short-

term dynamics, I assumed that Ψ’s have previously evolved to fixation parental species 

and mutation can be ignored. I fixed the allelic values at the Ψ locus to 0.25 and -0.25. In 

addition to the basic genomic setup, I placed 10 evenly-spaced (8.73cM between 

neighbors) neutral SNP markers on each of the 10 chromosomes from which I calculated 

genome-wide FIS values (Figure B-1). Preference functions are as defined before. Unlike 

simulation 1, I did not impose natural selection in these simulations because I’re now not 

interested in the evolution of Ψ. I model admixture of two parental populations (PopΨ<0 

and PopΨ>0 ) fixed for their 8 signaling loci and their Ψ locus such that both traits take 

reciprocal extreme values (16 and -0.5, 0 and 0.5 respectively). I define N as the number 

of migrants per generation. A specified proportion of migrants from the two parental 

populations (NΨ<0 : NΨ>0) moves into a focal hybrid population with a carrying capacity 

of 2000 (migration rate = 5%, or 100 migrants total) per generation. Admixture was 

conducted for 1000 generations, with FIS and male trait distributions summarized every 

10 generations. If a change in admixture proportions led to drastic change in admixture 

dynamics, I finely tuned the proportions to identify the parameter break point. 


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Preliminary analyses showed that results were highly repeatable across runs, so I only 

show data for a single run for simulation 2.  

Simulations were performed using the software admixsimul 

(https://github.com/melop/admixsimul) (Cui & Rosenthal, in prep.). A copy of the 

current version of application code, configuration files and raw outputs are to be 

deposited at Dryad. 

Fish collection and rearing  

Two X. malinche populations and one X. birchmanni population were used in the 

study. Wild-caught female preference was tested in adult X. malinche collected using 

baited minnow traps from the type locality at the Río Claro at Tlatzintla, Hidalgo, 

Mexico (20º 52' 51" N, 98º 47' 56" W). Since X. malinche appears to have been driven 

extinct at the type locality due to strip-mining for manganese prior to my exposure 

experiment, X. malinche for lab-rearing experiments came from the Arroyo Xontla near 

Chicayotla (2055’ 30’ N, 9834’36’ W), Mexico.  Whenever X. malinche females were 

tested, adult X. malinche for olfactory cue production or imprinting models always came 

from the same populations as the subject females. All X. birchmanni in this study came 

from Río Garces (2056’24’ N, 9816’54’ W). The X. malinche for lab-rearing 

experiments and X. birchmanni both came from the same populations used in a previous 

sexual imprinting study (Verzijden and Rosenthal 2011). I stress that phenotypic 

(Rauchenberger et al. 1990) and genomic divergence (Schumer et al. In review) between 

species is much higher than intraspecific polymorphisms. 

https://github.com/melop/admixsimul


 

15 

 

For the lab-rearing experiments, I collected 16 gravid X. malinche females. 

Females were housed in groups of 4 in 38L tanks installed with vertical perforated 

plastic fry dividers. Subject fry were collected within 24 hours after birth and were kept 

with visual and olfactory isolation from adults before exposure treatments. Due to the 

small brood size (on average 7-8 fry per brood) in X. malinche and because no family or 

tank effects were detected in a previous imprinting experiment with the sister species X. 

birchmanni (Verzijden and Rosenthal 2011), I decided to pool  the families into two 

batches, based on date of birth. Fry were originally kept separated by brood until the 

pooling stage to ensure even distribution of families in each experimental group. Batch 

one of 55 fry was collected from 8 females in early May to early July in 2010 with an 

average date of birth in early June, 2010 (±30 days); batch two of 67 fry was collected 

from another set of 8 females in June to July in 2010 with an average date of birth in 

early July, 2010 (±20 days].  

Batch one was used as a control group, which was housed in two 200L aquaria 

(28 per tank) in isolation from adults. Batch two was divided into two exposure groups, 

each (33 per group) with an approximately equal number of fry from each family. 

Exposure treatments started on 31 August 2010, when the average age of batch two was 

6020 days. Each of the exposure tanks (200L) was divided by a perforated Plexiglas 

board at 1/4 along the length to allow transmission of both visual and olfactory signals 

from model adults housed in the smaller compartment. Exposure group one (B-Exp) was 

exposed to two male and two female adult X. birchmanni. Exposure group two (M-Exp) 

was exposed to two male and two female adult X. malinche from the same population. 
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None of the mothers of the subject fry were used as models. A 30% water change was 

performed weekly. A previous study in X. birchmanni showed that a similar setup 

allowed sufficient visual and olfactory stimuli for sexual imprinting (Verzijden and 

Rosenthal 2011). Although I did not randomize batch one and batch two between the 

control and exposure groups due to the large age difference between the two batches, 

both the control group and the exposure groups were tested in visual and olfactory trials 

at an average age of 11 months thus the difference in behavior is unlikely an age effect.  

To minimize the effects of peer learning and to prevent focal females from 

mating, maturing males in all three groups were removed as soon as signs of sexual 

differentiation (thickening of the anal fin into the gonopodium) were seen. Peer 

imprinting on fellow females in the cohort could not be eliminated, but such effect, if 

any, is expected to be equal in the control, M-EXP and B-EXP groups. There is also 

evidence that male-specific courtship behavior is correlated with olfactory cue 

production (Rosenthal et al. 2011), thus olfactory imprinting of courtship-related 

pheromones from fellow females is unlikely. Exposure lasted for 272 days before the 

first behavioral trial. After each trial, subjects were temporarily housed in a 5L aquarium 

containing fresh conditioned water for about 5 hours, then back to their home tanks 

before subsequent trials to avoid carrying over olfactory cues. The fish room was 

maintained a 12:12 h light:dark cycle at 22-23 °C. Fry were fed twice a day with 

Spirulina flake food (Angelsplus, USA) and decapsulated brine shrimp. Older fry and 

adults were fed frozen bloodworms in place of brine shrimp. The artificially controlled 
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rearing and testing conditions preclude the possibility of behavioral difference in control 

and exposure groups caused by seasonal effects. 

Visual preference trials  

I used previously described computer animation playback techniques (Wong and 

Rosenthal 2006; Fisher et al. 2009; Verzijden and Rosenthal 2011) to test focal females’ 

preferences for X. birchmanni versus X. malinche visual cues. I used  previously 

described X. birchmanni and X. malinche computer animations representing mean 

morphological traits of each species.  (Verzijden and Rosenthal 2011) were used. As 

previously described (Verzijden and Rosenthal 2011), CRT monitors displayed male 

courtship animations with mean X. birchmanni and X. malinche phenotypes controlled 

by a video server synchronized with the Viewer (Biobserve GmbH, Bonn, Germany) 

recording software. For wild-caught females, videos were started manually and 

association times (see below) were scored by direct visual observation. 

The trial tanks (51 x 28 cm filled to a depth of 20 cm) were opaque on all sides 

except at the short ends, which are placed against the CRT screens.  Female position 

during the trial was recorded at 8 frames per second using an overhead camera. The tank 

was equally divided along its length into three virtual zones with the middle one defined 

as the neutral zone. 

CRT monitors displayed a blank screen with a uniform color identical to the 

background in the animation stimulus during the 10-min acclimatization period. At the 

end of acclimatization, standard-length matched X. birchmanni and X. malinche visual 

stimuli started playing on each side for 5 min followed by 5 min blank screen and then 
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another 5 min of stimuli with the sides switched. Association time for each stimulus was 

summed from the two 5-min stimulation periods. Association time is a repeatable 

measure of preference and predicts mate choice in poeciliids (Cummings and Mollaghan 

2006; Walling et al. 2010). 

If the female stayed in one zone for  >290s (out of 300s) in both trial periods, she 

was operationally defined as non-responsive and excluded from data analysis.  Side of 

first presentation was systematically altered across trials. I tested 26 (19 responsive) 

control, 18 (18 responsive) B-Exp and 17 (13 responsive) M-Exp females. 

Olfactory preference trials 

Two days after the visual trials, I tested female preference for conspecific versus 

heterospecific male odors following the protocol described in previous studies 

(McLennan and Ryan 1999; Fisher et al. 2006; Verzijden and Rosenthal 2011). To 

produce the olfactory cues, 20L aquaria were thoroughly cleaned with 1:1 mixture of 

hydrogen peroxide and soap and rinsed with carbon-filtered water at least 6 times. 

Groups of four male X. birchmanni and four male X. malinche were separately placed in 

16 liters of carbon-filtered water and visually exposed to 6 females from their own 

population in adjacent identical tanks for 4 hours to interact.  In total, 6 male X. 

birchmanni and 6 male X. malinche were used to make the stimulus water. Model males 

in the exposure treatments were never used to produce stimulus water.  

During the preference tests, trial tank configurations were as reported above 

except that the two transparent ends were blocked with opaque white paper. Ten minutes 

before each trial, the focal female was introduced to the testing tank for acclimation. 
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After the 10-minute period, stimulus water started dripping on both far ends of the tank 

driven by a custom circuit board-controlled peristaltic pump (VWR) until the end of 

trial, at a flow rate of approximately 5 ml/min. When the cues started dripping, I allowed 

5 min for the focal female to visit both preference zones. If the subject failed to do so she 

was operationally defined as unresponsive and excluded from data analysis. Starting at 

the moment the subject entered the third zone, the time in each zone was recorded for a 

total of 5 min. Each female was tested twice back-to-back with the first presentation of 

cues randomized by sides. Then the cue sides were switched in the second trial. I 

averaged the association time in the two trials for data analysis. If the female was 

unresponsive in one trial, I only included association time from the other trial in 

analysis. The definition of operational unresponsiveness differs between visual and 

olfactory trials, because I assume females can only sense the olfactory cue by physically 

approaching the zone, while visual cues become immediately available as the monitors 

turned on regardless of the physical position of the female. I tested 26 (18 responsive) 

control, 18 (17 responsive) B-Exp and 17 (17 responsive) M-Exp females. 

 

Results and discussion 

Increased heterozygote viability promotes negative Ψ 

I simulated a population of sexual, diploid organisms with 8 male signaling loci 

(SLs) and a single locus coding for the value of Ψ. Baseline polymorphism of the 8 SLs 

was maintained by gene flow from two populations that are reciprocally fixed at all  
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Figure 3. Evolution of under different proportions of loci that are fit in heterozygous 

state (Hhe) vs. homozygous state (Hho), assuming oblique imprinting (see Fig S4 for peer 

imprinting). A) Mean and S.E.M. of population average of across 10 independent 

runs plotted against generations for each proportion setting, except for Hhe : Hho = 5:3, 

where 4 runs were excluded because they did not reach equilibrium by the end of 5000 

generations. B) Mean and S.E.M of summarized from generations 3000-5000 of 

different Hhe : Hho proportions. C) Mean and S.E.M of summarized from generations 

3000-5000 simulated with 8, 4, 2 Hhe and 0 Hho loci. 
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alleles, at a proportion of 1:10 (baseline rare allele frequency 9.1%, see Appendix B ii 

for other proportions). The starting value of Ψ was 0 and allowed to mutate with a 

probability of 0.001 per meiosis. I modeled the viability of individuals as a function of 

the heterozygote states of SLs. I define Hhe as the number of SLs that confer higher 

viability when heterozygous, and Hho to be those that do so when homozygous. I 

consider different proportions (Hhe:Hho) of the SLs. Note that here I assume that the SLs 

are closely linked to or pleiotropic with loci underlying traits contributing to viability. 

When Hhe:Hho = 8:0, analogous to a highly inbred population where heterozygotes are 

more fit, the estimates of population means of Ψ rapidly evolved to and generally stayed 

at negative values across 10 independent simulations, although occasionally Ψ can 

become positive (Figure 3A). The absolute value of Ψ , which corresponds to female 

choosiness, fluctuated over time. There were periodic fluctuations of the absolute value 

of Ψ, which in my model represented the choosiness of the females.. When I modeled 

heterozygotes at all 8 loci as unfit, analogous to an outbred population with a high 

fitness cost to hybridization, Ψ evolved stably to positive values (Figure 3). Similar 

results were also found assuming peer (Figure B-4A) and paternal imprinting (Figure 

B-4B). Ψ evolved to positive values when Hhe <= Hho and negative values when Hhe > 

Hho, with more negative  Ψ (-0.5511±0.0752) observed when Hhe :Hho is closer to 1:1. 

There is an abrupt switch from negative to positive Ψ as the  Hhe :Hho ratio approaches 

1:1 (Figure B-5, Figure B-6). Reducing the number of QTLs of the male signaling trait to 

4 and 2, or assuming oblique (Figure 3), peer (Figure B-4A) or parental imprinting (Figure 

B-4B) do not change the conclusions qualitatively.  
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Figure 4. Contrasting effects of early social experience in the sister species X. 

birchmanni and X. malinche. Results for X. birchmanni were published in a previous 

study (Verzijden and Rosenthal 2011). 

 

Thus, negative Ψ’s are expected to evolve when heterozygosity confers higher 

viability than homozygous genotypes. The evolutionary dynamics of Ψ differed 

depending on its sign. When Ψ  is positive, stable equilibrium can be reached by driving 

allele frequencies to extreme values (assuming, though, polymorphism is maintained by 

other mechanisms such as gene flow, negative frequency-dependent selection or 
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mutation). However when Ψ is negative, the absolute values of  Ψ  fluctuate periodically 

as a function of the population heterozygosity (Figure B-7). 

As an empirical example, I compare learned preference in a recently diverged 

sister species of swordtail fishes Xiphophorus malinche and X. birchmanni. I raised 

female X. malinche with exposure to adult conspecifics, heterospecifics and no adult 

models and then tested their preference for conspecific versus heterospecific cues. 

Female X. malinche showed experience-independent preferences for visual cues for 

heterospecific male cues and negatively experience-dependent preferences for olfactory 

cues (Figure 4; Table B-1), in striking contrast to females of the sister species X. 

birchmanni, which showed positively experience-dependent preferences in both 

modalities (Verzijden and Rosenthal 2011). These patterns mirror the effects of short-

term social experience on olfactory preferences in adult X. malinche and X. birchmanni 

females, where X. malinche females avoided heterospecific males after a one-week 

exposure to heterospecifics, while X. birchmanni females did not (Verzijden et al. 

2012a). X. malinche from a different population also avoided familiar barring symmetry 

they first experienced (Tudor and Morris 2009). This learned disdain likely has a genetic 

component in this species and affects learned mate preference across different 

ontogenetic periods. X. malinche differs from its congener X. birchmanni in that they 

have lower standing genome-wide polymorphism (Cui et al. 2013) due to its smaller 

effective population size resulted from the limited distribution in high-land habitats. 

Morphologically X. malinche are exceptionally homogeneous compared to other  
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Figure 5. Reproductive isolation by mixing lineages with divergent ’s can be 

achieved when gene flow from the lineage with < 0 :  > 0 is less than 28:72 

individuals per generation, in a hybrid population with carrying capacity of 2000 and 

assuming oblique imprinting. This limit is alleviated by physically linking loci 

underlying  with the male signaling loci (Figure 7). Also see Figure B-8 for peer 

imprinting. 
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Xiphophorus species, for example, they lack many macromelanophore (Culumber 2013) 

and male-size category (Ryan et al. 1990) polymorphisms commonly found in lowland 

species with large population size. These conditions are predicted by my modeling to 

result in negative Ψ’s.   

Reproductive isolation between lineages with opposing Ψ’s 

I next asked if opposite directions of per se can maintain reproductive isolation 

between divergent taxa. I assumed that Ψ’s have previously evolved to fixation in  

 

 

Figure 6. FIS plotted for 100 neutral SNP markers on 10 chromosomes, summarized 

across generations 200-1000 for simulation 2. Admixture proportions A) Ψ < 0 :   Ψ > 0 

= 28:72; B) Ψ < 0 :   Ψ > 0 = 40:60  (also See Figure 5). Both of these admixture 

proportions lack complete genome-wide isolation, but still result in elevated 

reproductive isolation compared to the null (FIS=0). Notice that SNP markers closely 

linked to the 8 signaling loci on chromosomes 1-8 and the locus of Ψ on chromosome 9 

show elevated FIS values compared to the genomic background. Chromosome 

boundaries are marked with dotted vertical lines. When gene flow proportions exceeded 

this threshold, there was an abrupt shift towards extensive admixture, although genome-

average FIS was still slightly, but significantly different from 0 when the proportion < 

50:50 (Figure 6), especially around the 8 signaling loci and the Ψ locus (Figure 6). 
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Figure 7. Physical linkage between loci underlying  and the male signaling loci 

(Figure B-1) extends admixture proportions of lineages with < 0 :  > 0 until they 

start admixing. Note that partial reproductive isolation is still visible when proportions 

are close to 50:50. 

 

parental species and mutation can be ignored. For every generation, I allowed 5% gene 

flow into the hybrid zone with varying ratios of two parental populations with  Ψ1=0.25 

and Ψ2=-0.25. The two parental forms were re-established genome-wide (FIS fixed at 1) 

with sustained gene flow into the hybrid zone when NΨ>0 : NΨ<0 <= 27:73 (or 1.35% : 

3.65%, population size = 2000, Figure 5). Past the 50:50 threshold, admixture was 


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enhanced compared to the null, evidenced by the genome-wide excess of heterozygotes, 

resulting in negative FIS  values (Figure B-13A). The critical threshold of NΨ>0 : NΨ<0 is 

caused by breakdown of linkage disequilibrium between the Ψ locus and the signaling 

loci. Indeed, when Ψ is encoded by additive QTLs tightly linked to signaling loci, 

complete reproductive isolation can be at least periodically achieved (FIS = 1) up to 

40:60 admixture proportions (Figure 7). Similar patterns also hold for peer imprinting 

(Appendix B iii; Figure B-8) and unimodal preference functions (Appendix B iv; Figure 

B-9). The critical threshold is slightly higher (32:68) assuming peer imprinting.  

These results show that in certain scenarios, learned preference by itself can 

maintain reproductive isolation of interfertile species during secondary contact. One 

prediction from my admixture model is that there is more assortative mating when the 

hybrid index distribution is more biased towards the parental species with Ψ>0, while 

excess of heterozygosity should occur when it is biased towards the species with Ψ<0. 

My simulation predicts that few X. malinche in sympatry with more X. birchmanni 

would be unlikely to hybridize. On the other hand, if X. birchmanni were rare and X. 

malinche were common, hybridization should occur in both directions (Figure 5) and 

there should be a genome-wide excess of heterozygotes due to disassortative mating 

(Figure B-13).  

 Consistent with my model predictions, genotyping results using MSG 

(Andolfatto et al. 2011) show that a X. birchmanni-biased hybrid population (Rio 

Calnali-Mid, ~48% X. malinche) is highly structured with a bimodal distribution of 

hybrid indices, and a X. malinche-biased (Tlatemaco, ~80% X. malinche) population is 
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evenly admixed evidenced by a unimodal distribution of hybrid indices, inferred from 

high-throughput genotyping of ~150 individuals from each population (Schumer et al. In 

review; Figure S12). In Tlatemaco, about  4% of sites show significant excess of 

heterozygosity after accounting for potential bias in genotyping methods. This excess is 

absent from Calnali-Mid (Appendix B v; Figure B-13B). Furthermore, effectively 

unlinked loci showing significant linkage disequilibrium in Tlatemaco have much higher 

instances of heterospecific associations compared to Calnali samples, also suggestive of 

heightened outbreeding (Schumer et al. in review). The overall pair-wise REAP 

(Thornton et al. 2012) kinship coefficient of Calnali-Mid samples (0.09860) is higher 

(t=4.385, d.f.=6411, p=0.00001) than Tlatemaco (0.09305), consistent with higher level 

of disassortative mating in the latter (Appendix B v). Both of these populations were 

inferred to have admixed for > 150 generations based on ancestry block size and thus 

unlikely to reflect a non-equilibrium state (Appendix B v). Thus, I conclude that the 

puzzling population structures previously observed in different X. birchmanni-X. 

malinche hybrid zones can be partly explained by the learned preference behavior both 

observed in the lab and predicted by modeling. 

 

Conclusions 

In this study, I used simulations and empirical data to demonstrate that 

heterozygote viability has a dispositive impact on the evolution of Ψ, the hedonic value 

of learned social stimuli. I also demonstrated that divergent Ψ’s can maintain 

reproductive isolation between sympatric species even in the absence of other isolating 
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barriers.  My model may explain the evolution of sexual imprinting in a broad range of 

taxa, because it does not require females to possess any “preference loci” directly 

targeting specific male signals, and does not require parental care. The empirical 

example in a young sister species pair shows that opposing Ψ’s have rapidly evolved in 

the directions predicted by my model. My study also highlights the potentially important 

effects of learned mate choice in explaining population-genetic patterns in the wild. 
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CHAPTER III  

EARLY LEARNING TRIGGERS EXPRESSION CHANGES IN NEURAL 

PLASTICITY GENES AND ODORANT RECEPTORS 

 IN XIPHOPHORUS MALINCHE 

 

Introduction 

Learned mate preference is the process through which early social experience 

affects mate choice decisions later in life (Grant and Grant 1997). Experienced with 

phenotypes can either positively influence mate preference, promoting assortative 

mating (Verzijden et al. 2005; Servedio et al. 2009); or negatively influence preference 

so as to increase outbreeding.  Females can be genetically predisposed to prioritize 

imprinting on conspecific signals (Marler 1991), or may imprint on novel signals (Witte 

and Sawka 2003; Westerman et al. 2012). Sexual imprinting can strengthen reproductive 

isolation between species (Verzijden and ten Cate 2007; Verzijden et al. 2008; Kozak 

and Boughman 2009; Kozak et al. 2011) and can be an important mechanism in 

preventing hybridization between closely related species. In sticklebacks, where benthic 

and limnetic forms live in sympatry but are ecologically specialized to different 

microenvironments, sexual imprinting on odor and color is a major mechanism 

preventing hybridization between the two species (Kozak et al. 2011).  In theory, learned 

preference can also retard signal-receiver divergence (Bailey and Moore 2012). In 

Darwin’s finches, imprinting on male songs determines later song preference, and mis-

imprinting on heterospecific songs promotes hybridization (Grant and Grant 2008); 
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similar patterns have been observed in a large number of species (reviewed in Irwin and 

Price 1999). 

Mate choice often involves multiple sensory modalities (Rowe 1999), many of 

which are affected by learning (Vos 1995; Verzijden and Rosenthal 2011; Westerman et 

al. 2012). Previous studies have mainly focused on the signal-receiver co-evolution in 

the visual modality, which is likely under strong selective constraint due to the low 

number of photoreceptors involved in a wide range of tasks (Rosenthal and Ryan 2000). 

Not surprisingly, sensory drive, or the exploitation by male signals of female preferences 

that evolved in other contexts (Ryan 1990; Endler and Basolo 1998), has been most 

often associated with visual cues (Seehausen et al. 2008). On the other hand, the 

olfactory modality is thought to be more flexible during evolution as a result of the rich 

repertoire of odorant receptor genes found in vertebrate genomes (Amadou et al. 2003). 

Olfactory signals are used by a wide range vertebrate species in mate selection (Wyatt 

2003), and can convey information including reproductive state, species, population and 

individual identities (Sorensen et al. 1990; Sorensen et al. 2005; Sorensen et al. 2011). 

Very often, olfactory preferences in vertebrates are also affected by learning 

(Plenderleith et al. 2005; Verzijden et al. 2008; Verzijden and Rosenthal 2011), 

providing further plasticity.  

The mechanisms of olfactory learning likely involve both the sensory periphery 

(e.g. the olfactory epithelium) and higher processes in the central nervous system (CNS) 

(Wilson and Stevenson 2003; Lazarini and Lledo 2011). Vertebrate odorant receptor 

neurons (ORNs) express at least four families of olfactory receptors: ORs, V2Rs, V1Rs 
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and TAARs (Bazáes et al. 2013). Each ORN expresses a single olfactory receptor allele 

(Lewcock and Reed 2004). Axon projections of ORNs expressing the same olfactory 

receptor allele coalesce to the same glomerulus in the olfactory bulb (OB), forming a 

chemotopic map (topographical arrangements) of odorant features (Kermen et al. 2013).  

Some evidence suggests that exposure to olfactory cues can result in “tuning” of 

the sensory periphery, or increased sensitivity of olfactory epithelum to different odors. 

Electrophysiological studies in salmon (Nevitt et al. 1994) and zebrafish (Whitlock et al. 

2006) found that imprinting on artificially supplied chemicals during development 

altered sensitivity to these odorants later in life. In zebrafish, learned sensitivity to new 

odors was accompanied by increased expression of a gene involved in odorant receptor 

cell neurogenesis (otx2) (Whitlock et al. 2006).   

Recent studies have shed some light on the mechanisms underlying sensitivity 

tuning of the olfactory epithelium. A study found that cells expressing an artificially 

disrupted OR are supplemented by another stochastically selected  OR (Lewcock and 

Reed 2004).  This suggests that maintenance of the allele-specific expression of odorant 

receptors involves a feedback loop that depends on functional activation by odor stimuli 

(reviewed in Shykind 2005). This model provides a natural mechanism for olfactory 

learning through tuning peripheral sensitivity to encountered odor cues. It is therefore 

likely that exposure to different odorants will elicit changes in expression of odorant 

receptors. In addition to sensitivity tuning at the olfactory epithelium, olfactory learning 

is also associated with adult neurogenesis in the OB (Lazarini and Lledo 2011). 

Plasticity on higher-order processes is also likely important. In fact, olfactory 
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discrimination is critically dependent on long-term memory in the piriform cortex 

(Wilson and Stevenson 2003), a homolog of the dorsal posterior part of fish 

telencephalon (Kermen et al. 2013). Behavioral outcome in response to social olfactory 

cues is partly mediated by neural plasticity in the nucleus accumbens (Kelz et al. 1999).  

Given that neural plasticity is involved in all levels of olfactory processing and learning 

(Wilson and Stevenson 2003),  I expect that many genes related to these processes will 

be differentially expressed to facilitate olfactory learning. 

In the swordtail fish species Xiphophorus malinche and X. birchmanni, learned 

mate choice is particularly important to understand because these two species naturally 

hybridize, and learned mate preferences may have significant impacts on the dynamics 

of hybridization. While X. birchmanni females learn to prefer both visual and olfactory 

cues of familiar males, X. malinche show the opposite pattern--X. malinche females 

select against familiar olfactory cues. This aversion has been attributed to the small 

population sizes of X. malinche which could favor outbreeding. Interestingly, female X. 

malinche show this pattern in response to olfactory cues whether they are exposed to 

conspecifics or heterospecifics. Regardless of the cause, this asymmetric learning is 

likely to have a major impact on reproductive barriers between X. malinche and X. 

birchmanni; preference for novel stimuli could drive X. malinche females to hybridize.  

In the present study, I use an RNAseq based approach to investigate the 

mechanisms of sexual imprinting in the swordtail fish X. malinche. I chronically expose 

groups of juvenile X. malinche females to olfactory cues generated by conspecific and 

heterospecific adults, and compare gene expression between these groups and a control 
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group with no adult olfactory experience, and analyze gene expression in tissues that 

include the olfactory epithelium, the olfactory bulb and the telencephalon. My results 

indicate that major gene expression changes occur during olfactory learning in X. 

malinche when I compared between control and exposure, as well as females exposed to 

different species. Many of these genes are related to neural plasticity and provide clues 

into the mechanisms of learning to discriminate between species-specific stimuli. 

 

Methods 

Fish collection and exposure treatments 

16 wild-caught female X. malinche from Chicayotla (Culumber et al. 2011) were 

allowed to drop fry in the lab. When fry reached approximately 2 months of age, 

families were evenly pooled and separated into 3 treatment groups: 1) M-EXP exposed 

to 2 pairs of adult X. malinche from the same population; 2) B-EXP exposed to 2 pairs of 

adult X. birchmanni from Garces (Culumber et al. 2011) and 3) Control did not receive 

adult stimulus. Exposure treatments were performed in adjacent 208L aquaria where 

adult stimuli and subject fry were divided by a perforated Plexiglas board. Maturing 

males from the cohort were isolated from the subject females as soon as I identified 

signs of formation of the gonopodium.  At an average age of 11 months I tested their 

preference behavior to visual and olfactory cues of X. birchmanni and X. malinche (Cui 

et al. in prep). After each behavioral trial, females were rinsed and placed back to their 

original exposure tanks. After all behavioral trials were concluded, females were 
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restored to their respective exposure tanks for an additional 2 months before sample 

collection to minimize possible short-term effects from behavioral trials.  

Sample collection 

I randomly selected 4 females from each of the treatment groups (3 groups, 12 

samples). Females were euthanized with an overdose of MS-222 and whole heads were 

preserved in Trizol solution and stored in -80 until use. Female bodies were dissected to 

ensure that females were virgins and showed no sign of parasites. Sensory tissue was 

dissected from the head by making a single 45-degree cut with dissection scissors in 

front of the anterior edge of the orbits. This tissue sample includes lower lip, tongue, 

upper lip, olfactory epithelium, the olfactory bulb and the telencephalon (Figure C-1).   

RNA extraction and library preparation 

RNA was extracted from the above tissue using a standard Trizol reagent 

protocol following manufacturer’s instructions and quantified and assessed for quality 

on a BioAnalyzer. One micrograms of total RNA were used to prepare libraries 

following Illumina’s TruSeq mRNA Sample Prep Kit with minor modifications. All 

libraries were prepared simultaneously. Briefly, mRNA was purified from total RNA 

using manufacturer provided beads. Following cDNA synthesis, mRNA was chemically 

fragmented and following end repair and A-tailing, samples were uniquely indexed by 

ligation. Libraries were PCR-amplified for 18 cycles and library size distribution and 

quality was verified on a Bioanalyzer 2100. Libraries were quantified on a Qubit 

fluorimeter, pooled in equal quantities, and sequenced on two Illumina HiSeq 2500 lanes 

(with 101 bp reads).  
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Adaptor and PCR primer sequences, and low quality bases in the raw reads were 

removed and trimmed by Trimnomatic with the following parameters: 

ILLUMINACLIP:princeton_adaptors2.fa:3:7:7 LEADING:20 TRAILING:20 

SLIDINGWINDOW:4:20 MINLEN:80. Only reads >80 bp after filtering were kept for 

the downstream analyses. 

Read mapping and de novo assembly 

I use the previously described pseudogenome assembly for X. malinche at ~35X 

(Cui et al. 2013) coverage as the reference sequence for read mapping. First, I mapped 

pooled reads from all individuals using tophat to obtain a comprehensive alternative 

junction list. I then mapped reads for each individual sample separately guided by this 

junction list. I allowed three mismatches to the reference per read (3/101 bp) and used 

default settings for the other parameters. I also repeated the differential expression 

analyses with mapped reads using two mismatches with tophat, as well as Stampy with 

an expected divergence of 2% (Appendix C). 

Because divergent paralogs of odorant receptors may not be mappable to the 

reference genome (scaffolds based on X. maculatus; approximately 2 million years 

diverged), unmapped reads were assembled with Velvet-Oases using a kmer size of 31 

to discover possible odorant receptors. I filtered the final transcript isotigs such that only 

the longest isotig for each locus was kept. I used this filtered list to look for extra 

odorant receptors.  
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Odorant receptor identification and molecular evolution 

I followed a workflow described in a previous study (Hashiguchi et al. 2008). A 

total of 25 V2R, 55 OR, 17 TAAR and 84 V1R sequences from teleost species were 

downloaded from genbank as the probe sequences. They were translated into amino acid 

sequences, aligned by Muscle invoked from MEGA 5, and translated back to in-frame 

nucleotide sequences. An HMM model was built with this initial amino acid alignment 

with hmmer 2.3.2. Genewise 2.2.0 is able to identify full coding sequences in correct 

open-reading frames (ORFs) given the HMM model and a genomic or transcriptome 

sequence. Because the algorithm is intractable on full genomes or transcriptomes, I first 

performed discontiguous megablast (megablast-dc) using the initial probe sequences, 

collapsed overlapping hits, and extracted the hit region plus 5kb 5’- and 3’- flanking 

regions. These extracted sequence fragments were used as inputs for Genewise. Inferred 

coding sequences were then added back to the alignment, realigned to the correct 

reading frames, and used as probes and HMM inputs for the next iteration, repeating the 

above procedure. I iterated until no more new V2R, OR, TAAR or V1R sequences were 

identified by Genewise. In the de novo assemblies, only the longest isotig was retained 

in the final dataset.  

I extracted orthologous odorant receptor sequences from pseudogenomes of 5 

Xiphophorus species using the exon structure identified by Genewise. The 

pseudogenomes of these species have the same coordinate system as the reference X. 

maculatus genome, so realignment is unnecessary. Each gene alignment was then 

checked for premature stop codons, in which case they were discarded from further 
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analysis. I then inferred gene trees for each odorant receptor gene for the 5 species using 

GTR+Gamma model with RAxML. The ML tree was used in Codeml to test for positive 

selection, using a likelihood ratio test between the M8 and the M8a models (d.f. = 1) or 

M8-M7 (d.f.=2). I also reconstructed phylogenies for each of the odorant receptor 

families using RAxML. I were not able to perform these analyses in receptors resulted 

from de novo assembly because transcriptome data are not available for other species. 

Differential expression analyses 

The gene models for X. maculatus were downloaded from Ensembl and the 

coordinates were translated into the current genome assembly version using a custom 

script. Because the current version of the gene models are incomplete for odorant 

receptors in X. malinche, I added entries into the GTF file for the V2R, OR, TAAR and 

V1R receptors identified above. With this updated GTF file, I counted the number of 

reads to each gene using a python package htseq-count, requiring a mapping quality 

(MAPQ) of 30 and allowed any reads partially overlapped with the feature to be 

counted. These raw counts were imported into the edgeR package for differential 

expression (DE) analyses. After raw read counts were imported into edgeR, genes were 

only kept for further analyses if the read counts per million reads (cpm) exceed 0.5 in ≥4 

samples. I treat the genes that do not pass this initial filter effectively unexpressed.  First, 

edgeR calculates normalization factors for each sample using the TMM method 

(Robinson and Oshlack 2010) to account for library size variations. Second, maximum 

conditional likelihood is used to estimate the common dispersion parameter for all genes 

(Robinson and Smyth 2008). Third, the gene-wise dispersion parameters are estimated 
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by an empirical Bayes method (Robinson and Smyth 2007). Finally, an exact test on the 

means between two groups of normalized count values (negative binomially distributed) 

was used to assess differential expression (Robinson and Smyth 2008). 

I performed two sets of analyses for differential expression by treatment 1) 

restricting my analysis to known candidate genes and 2) a transcriptome-wide analysis. 

For my candidate gene analysis, I extracted raw p values of transcripts annotated as 

members of the V2R, OR, TAAR or V1R gene families from edgeR’s global exact test. I 

then calculated q-values using the R package qvalues for all the raw p values for these 

genes. Three comparisons were made: B-EXP to M-EXP, B-EXP to Control and M-EXP 

to Control. 

GO enrichment analysis 

To determine whether particular functional categories were enriched in genes 

differentially expressed between the treated and control groups and the birchmanni-

treated and malinche treated females, I performed Gene Ontology (GO) analysis. I used 

the annotated X. maculatus genome to assign HUGO gene symbols. HUGO genes 

symbols were matched to GO categories using the Bioconductor human gene ontology 

database (http://www.bioconductor.org/packages/2.13/data/annotation/html/ 

org.Hs.eg.db.html). A custom GO database was built using the GOstats package in R. 

All genes that passed coverage filtering in edgeR (see above) were included as part of 

the gene universe and I tested for significant enrichment of different functional 

categories (biological processes, cellular component, molecular function) by comparing 

the gene universe to the significant genes lists using the GOstats and GSEAbase 

http://www.bioconductor.org/packages/2.13/data/annotation/html/org.Hs.eg.db.html
http://www.bioconductor.org/packages/2.13/data/annotation/html/org.Hs.eg.db.html
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packages in R with a hypergeometric test (Falcon and Gentleman 2007). I use Revigo 

(http://revigo.irb.hr/) to visualize GO categories, clustered by semantic similarities. 

 

Results 

Read mapping and de novo assembly 

Following quality trimming, an average of 24 million reads were retained per 

individual, and 81.3% of these were mapped by TopHat (Table C-1). In addition to the 

115 OR, 71 V2R, 58 TAAR and 2 V1R sequences present in the X. maculatus genome 

assembly, I identified 8 OR, 8 V2R and 2 TAAR sequences by de novo assembly of 

unmapped reads. Among the receptors identified from the genome, 9 OR (7.8%), 48 

V2R (67.6%), 8 TAAR (13.8%) and 0 V1R (0%) pass initial coverage filtering. All de 

novo assembled receptors passed initial filtering, leaving a total of 17 ORs, 56 V2Rs and 

10 TAARs. 

 



 

41 

 

 

Figure 8. MDS plot of gene expression. Dimensions 1 & 2 for the 1000 most 

informative genes generated by edgeR. Dimension 2 shows clear separation in gene 

expression patterns between treated and control individuals. 
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Figure 9.  Venn diagram showing overlaps of differentially expressed genes between 

three comparisons. 1) C vs M: Control vs. malinche-exposed  2) C vs B: Control vs. 

birchmanni exposed and 3) M vs B: birchmanni vs. malinche-exposed. 

 

Differential expression 

Social environment had a dramatic effect on gene regulation (Figure 8). After 

coverage filtered with edgeR 17,765 genes were retained. Control group clusters 

separately compared to the two exposure groups (Figure 1). After false discovery 

correction at FDR=0.05, 2248 and 1939 of these were significantly differentially 

expressed between the control group and birchmanni and malinche stimulus treated 

groups respectively (Table C-2). Most genes differentially expressed between the treated 

and control groups were consistent; 58% of genes differentially expressed in the 
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birchmanni treated group were shared with the malinche treated group and 67% of genes 

differentially expressed in the malinche treated group were shared with the birchmanni 

treated group (Figure 9; Figure 10). Of the 1279 genes with shared significance between 

both treated groups, 99% had the same direction of expression relative to the contol (e.g. 

up or downregulated). Three hundred and thirty genes were significantly differentially 

expressed between the malinche and birchmanni treated stimulus groups (Figure 2; 

Table C-2).  

 

Figure 10. Boxplot showing expression levels of fosb (in counts per million reads) by 

group. fosb is strongly differentially expressed by treatment and by group. P-values 

indicated are corrected for multiple testing. 

 

 

Differential expression of candidate genes 

 I specifically assessed expression of olfactory learning candidate genes. Fifteen 

V2R receptors were significantly differentially expressed between malinche and 
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birchmanni treated females, though none of these were still significant following 

multiple testing corrections. Six V2R receptors were significantly differentially 

expressed between the control and malinche treated individuals, and 5 ORs were 

differentially expressed, two of which survived FDR correction. In the control vs 

birchmanni treated comparison 2 ORs, 1 TAAR, and 2 V2Rs were differentially 

expressed; 1 V2R survived FDR correction. 

 

 

Figure 11. Gene ontology terms of differentially expressed genes for the birchmanni-, 

malinche-exposed comparison. Visualized with Revigo (http://revigo.irb.hr/) using the 

SimRel (Schlicker et al. 2006) term similarity index. Size of circle represents –log(p 

value), log(size) refers to sub-categories contained within the category. 

 

 

http://revigo.irb.hr/
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Gene ontology analysis 

 To investigate whether particular functional categories were enriched in the 

differentially expressed genes, I performed Gene Ontology analysis. In genes 

differentially regulated between X. birchmanni- treated and X. malinche-treated females, 

response to chemical stimulus (GO:0042221) was the most significantly enriched 

biological process category (p=6.4e-06; Figure 11). In total, 60 GO categories were 

significantly enriched at p<0.01 between the two olfactory treatments (Table C-3). 

Between treated and control individuals, 4 and 26 GO categories were significantly 

enriched for malinche and birchmanni treated groups respectively (Table C-4 & Table 

C-5).   

Functional divergence in differentially expressed odorant receptors 

 One hypothesis for the difference in olfactory responses between X. birchmanni 

and X. malinche females is that the genes involved in the olfactory periphery have 

functional divergence between species. The V2R family is best represented in the 

transcriptome within the four OR families (Figure 12; Figure 13). Using orthologous 

sequences from 5 Xiphophorus species, representing all 3 major clades, I found signature 

of positive selection or relaxed selection on 4 V2R receptors (Table C-7; M8-M7 p < 

0.05, M8-M8a p < 0.02), 1 OR receptor (M8-M7 p < 0.05, M8-M8a p < 0.01) and 5 

TAAR receptors (M8-M7 p < 0.05, M8-M8a p < 0.02). Both V1R receptors are 

conserved in the phylogeny (M8-M7 p > 0.4, M8-M8a p > 0.1).  
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Figure 12. Odorant receptor families have different expression levels on the olfactory 

epithelium in Xiphophorus malinche. Variations in 12 female samples are represented as 

violin plots normalized to reads per million reads divided by the summed gene length of 

all included genes in that gene family.  A) all identified odorant receptor genes are 

included regardless of their coverage level. (82 V2Rs, 126 ORs and 61 TAARs) B) only 

odorant receptor genes that passed the initial coverage cutoff were included. (56 V2Rs, 

17 ORs and 10 TAARs). Note that two V1R receptors have no reads in any samples.   
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Figure 13. Differential expression and signature of positive selection plotted on a V2R 

phylogeny of 5 Xiphophorus spp. Because all orthologs are monophyletic for the 5 

species, the tips are pruned to leave a single representative gene. Dark colors indicate 

significant tests at α=0.01, light colors indicate that the gene passed initial filtering 

criteria but the test statistic >0.01. Blank slots mean that the gene did not pass initial 

filtering (for dN/dS it’s due to premature stop codon in at least 1 of the 5 species, for 

Differential expression (DE) it’s due to low coverage in the transcriptome). Blue (1st 

ring) – DE between control and birchmanni-exposed; Green (2nd ring) – DE between 

control and malinche-exposed; Red (3rd ring) – DE between birchmanni and malinche 

exposed; Orange (outer-most) – signature for elevated dN/dS ratio tested by likelihood 

ratio test with 5 species for that gene using M8-M8a models in Codeml. 
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Discussion 

Social exposure alters gene expression related to synaptic plasticity 

Gene Ontology analysis clearly demonstrated an enrichment of genes involved in 

response to chemical stimulus in all three comparisons, confirming that olfactory 

learning from adult cues leaves a signature on the cellular level (Figure 11). The gene 

expression response to adult olfactory stimulus is dramatic (Figure 1), while many fewer 

genes were differentially expressed between the two exposure treatments. Though male 

pheromone components are uncharacterized in Xiphophorus, in other fish species 

pheromones contain metabolites which indicate species identity, reproductive state, 

relatedness, and male condition, among other information (Dulka et al. 1987; Sorensen 

et al. 1990; Sorensen et al. 2005; Sorensen et al. 2011). Thus, a strong gene expression 

response to male pheromone exposure likely reflects olfactory response to these stimuli. 

Interestingly, much of the gene expression response I document is likely to be a general 

response to olfactory learning since groups treated with conspecific and heterospecific 

stimuli shared a striking proportion of differentially regulated genes, and >99% of these 

showed the same direction of expression relative to the control. 

 Interestingly, I found enrichment of GO terms related to neurogenesis and 

synaptic transmission between the conspecific and heterospecific olfactory treatments. 

Studies of auditory learning in white crown sparrows have demonstrated that learning is 

sometimes biased towards conspecifics, or the so-called “instinct to learn” (Marler 

1991). Mechanistically, olfactory learning requires reorganization of neuron circuitry in 

both the olfactory bulb and the piriform cortex (Fletcher and Wilson 2003; Wilson and 
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Stevenson 2003). Therefore, enrichment of genes suggests that early olfactory learning 

in Xiphophorus triggers a different level of neural plasticity depending on whether the 

cue is conspecific or heterospecific. Though behavioral research demonstrates that 

females can distinguish between con- and heterospecific cues (Crapon de Caprona and 

Ryan 1990; McLennan and Ryan 1999), it is unknown how this information is encoded 

in the pheromone cue (e.g. distinct ligands or distinct ratios). While my results support 

that the different cues produced by the two species of Xiphophorus elicit different gene 

expression responses in X. malinche females, particularly in relation to genes involved in 

neural repatterning, I do not know yet if the difference is due to ratio/concentration or 

structurally different ligands. Though pooled tissues were used in this library including 

the olfactory epithelium, the OB and the telencephalon, future experiments will focus on 

localizing these enriched genes in the brain to verify whether candidate brain regions 

involved in olfactory learning show distinct responses to conspecific versus 

heterospecific olfactory cues.  

 Although less GO enrichment was found between the control group and the two 

exposure groups, this is likely due to a much longer list of differentially expressed genes 

(~2000 out of 17,765 genes vs. 330). When limiting to fewer genes using a more 

stringent FDR cutoff at 0.01, more GO terms were found to be enriched (Table C-4 & 

Table C-5). Interestingly, GO analysis did suggest that there is significant enrichment of 

immune response genes in the two experimental groups compared to the control groups. 

It is possible that the cues of adult males trigger female defense responses as has been 

documented in other species (Lawniczak and Begun 2004). This may be a result of high 
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levels of sexual conflict in poeciliids due to internal fertilization and sperm competition 

(Pilastro et al. 2003).  

Highly significant DE in fosb  

 Among the three pair-wise comparisons, fosb was strongly differentially 

expressed. The control group had the highest level of fosb, followed by the 

heterospecific-exposed group and then the conspecific-exposed group (Figure 10). A 

previous study demonstrated that fosb had decreased expression in the accessory 

olfactory bulb in Rattus mothers exposed to pups (Canavan et al. 2011). In mammals the 

accessory olfactory bulb receives signals from the pheromone-detecting cells that 

express V1R and V2Rs, suggesting that fosb is involved in plastic responses to social 

cues. In the CNS, increased fosb expression mediates long-term plasticity.  ΔFosB, a 

stable isoform of fosb (Ulery et al. 2006), is thought to reinforce addictive behavior 

(Nestler et al. 2001) byincreasing sensitivity to the rewarding effects of drugs after 

chronic exposure in the nucleus accumbens (Kelz et al. 1999) and promotes drug seeking 

behavior (Nestler et al. 2001). In other rodents, ΔFosB overexpression in the same brain 

region is also associated with sexual reward (Hedges et al. 2009; Pitchers et al. 2010). 

ΔFosB expression is also associated with plasticity and learning in other brain regions, 

for example, it is activated by olfactory cues associated with social defeat in mice in the 

prefrontal cortex (Bourne et al. 2013). 

 Long term memory storage is regulated by the CREB pathway (Silva et al. 1998). 

The CREB protein regulates genes that contain CREB-binding sites (cAMP response-

element), which includes fosb among other genes such as dusp1, egr1 and crem (Wood 
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et al. 2006). Intriguingly, dusp1 and egr1 are also differentially expressed in all three 

comparisons, while crem is differentially expressed in B-M and C-M comparisons. All 

three genes show the same expression patterns as fosb, where C>B>M (Figure C-3).  This 

suggest that downstream genes of the CREB pathway (Silva et al. 1998) are co-regulated 

in different social exposure treatments. 

 Two mutually non-exclusive hypotheses could explain the observed expression 

pattern in fosb. First, fosb down-regulation may be associated with exposure to social 

cues in the olfactory bulb (Canavan et al. 2011), and the conspecific cue may have 

resulted in the strongest down regulation.  Second, if the down-regulation happens in the 

CNS, it may be explained by the fact that X. malinche differs behaviorally from X. 

birchmanni in that females learn to disdain familiar olfactory cues (Verzijden et al. 

2012a). An intriguing possibility is that this species-specific learned avoidance is 

associated with the depression of fosb level after social exposure. Future experiments in 

the sister species X. birchmanni, in which females prefer familiar phenotypes, will allow 

me to test these hypotheses.    

V2Rs as candidates for species-specific cue detectors 

Traditionally vomeronasal receptor families – V1R and V2R—have been 

associated with the pheromone detection (Rodriguez et al. 2000). Recently, studies have 

suggested that the main olfactory pathways (expressing canonical ORs) may also detect 

certain components of sex pheromones. Despite V1R being suggested in pheromone 

detection in fish (Pfister and Rodriguez 2005), I did not detect expression of this gene 

family. To the contrary, I detected expression of a large number of V2R receptors mined 
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from the Xiphophorus genome and de novo transcriptome. Per-base expression level of 

V2R and OR are only marginally different (OR>V2R, Wilcox sign rank p = 0.045; 

Figure 12B). This suggest that the olfactory epithelium of X. malinche is contains a larger 

variety of V2Rs and expresses  fewer paralogs of ORs, each at approximately the same 

level. V2R receptors are of particular interest because they have been implicated in 

pheromone detection in both mammals and fish. V2Rs are co-expressed with MHC 

(Dulac et al. 2006) and detect MHC-1 ligands (Leinders-Zufall et al. 2004), and in 

general they respond to proteinaceous pheromone components in mice (Chamero et al. 

2007) or amino acids in fish (Speca et al. 1999). Interestingly, all 7 differentially 

expressed odorant receptors between conspecific vs. heterospecific treatments are V2Rs 

(raw p<0.02, q=0.09, expected number of false positives: 0.63). The most differentially 

expressed V2R, V2R_6 (raw p=0.0056) also has the highest rate of molecular evolution 

(M8-M8a, p=0.0013) among 5 Xiphophorus species. This paralog has the highest 

expression level in conspecific exposure treatment, lowest in heterospecific treatment 

and intermediate in controls. There are 13 (at least 2 unique between X. birchmanni and 

X. malinche) amino acid substitutions between X. birchmanni and X. malinche sequences 

at this gene, 9 (2 unique) of which are located on the N-terminus (Figure C-4), where the 

putative ligand-binding domain is located in V2Rs (Yang et al. 2005) Together, these 

results suggest that the V2R paralog may detect a species-specific component, and 

conspecific cues, presumably co-evolving with the receptor, may most effectively 

increase receptor expression level due to high affinity. Other differentially expressed 

V2Rs in this comparison do not show signature of positive selection, which could 
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suggest that ratio differences in certain chemical components also convey species-

specific information (Sorensen et al. 2011).   

Differentially expressed odorant receptors in control vs. exposure comparisons 

are all structurally conserved in Xiphophorus. This observation is consistent with the 

idea that certain components in the sex pheromone blend are chemically conserved, and 

information is conveyed through ratio or concentration variations. For example, 

chemical components signaling for sex, reproductive and nutritional state are likely 

derivatives of intrinsic hormones or metabolites (Sorensen et al. 1990), and are thus 

likely to be structurally conserved.  

 

Conclusions 

My study showed that olfactory learning in X. malinche evokes strong gene 

expression responses in the sensory periphery and possibly even the brain regions 

involved in higher-order processes. Specifically, in addition to presence or absence of 

adult cues, species-specific cues can also alter neural plasticity. Genes related to long-

term memory, such as fosb, egr1 and dusp1, show depression after conspecific exposure. 

Finally I suggest that olfactory learning can alter sensitivity at the periphery and I 

identified a candidate V2R paralog that potentially detects species-specific odorant.  
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CHAPTER IV  

PHYLOGENOMICS REVEALS EXTENSIVE RETICULATE EVOLUTION IN 

XIPHOPHORUS FISHES* 

 

Introduction 

A growing body of work has begun to recognize the importance of hybridization 

in the evolutionary process (Mallet 2007, 2008; Abbott et al. 2010; Arnold and Martin 

2010). There is increasing awareness that many species diversify in the presence of 

ongoing gene flow, or experience post-speciation gene flow without the collapse of 

reproductive isolation. Some of the most rapidly diversifying groups, such as African 

cichlids (e.g. Seehausen 2004; Schwarzer et al. 2012) and Heliconius butterflies (Mallet 

2005), have weak post-zygotic isolation and frequently hybridize. In certain species 

groups, the spread of adaptive alleles through hybridization is thought to underlie 

phenotypic diversification (Rieseberg et al. 2003; Heliconius Genome Consortium 

2012). It has also been suggested that hybridization can lead to speciation in some cases 

(Mallet 2007, 2008; Abbott et al. 2010; Arnold and Martin 2010). Understanding the 

extent of hybridization, and the role of hybridization in evolution, is an important focus 

of current evolutionary research. 

                                                 

* Reprinted from Cui, R., M. Schumer, K. Kruesi, R. Walter, P. Andolfatto, and G. G. Rosenthal. 2013. 

Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution 67:2166-2179 with 

permission from the publisher.  Copyright (2013) John Wiley and Sons. 
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Large, genome-wide datasets can be used both to address phylogenetic 

relationships between species and examine patterns of incomplete lineage sorting and 

hybridization. Historically, it has been difficult to determine phylogenetic relationships 

in groups with hybridization or high levels of incomplete lineage sorting (reviewed in 

Degnan and Rosenberg 2009), but the availability of genome-wide data and new 

computational techniques (Ané et al. 2007; Kubatko 2009; Pickrell and Pritchard 2012)  

allows researchers to explicitly account for incomplete lineage sorting and hybridization 

when constructing species trees (Pollard et al. 2006; Cranston et al. 2009). Previous 

studies have shown that next-generation sequencing data has the potential to generate 

well resolved gene trees for testing hypotheses of hybridization (Hittinger et al. 2010). 

Despite this, very few phylogenetic studies to date have examined hybridization, 

particularly in a large group of species. Many phylogenetic studies that have examined 

hybridization have not explicitly accounted for incomplete lineage sorting (Decker et al. 

2009; Schwarzer et al. 2012), used candidate genes (Heliconius Genome Consortium 

2012), small numbers of genes (Hailer et al. 2012), cyto-nuclear discordance (Meyer et 

al. 2006; Aboim et al. 2010; Kang et al. 2013), or been unable to investigate 

hybridization due to the use of concatenated datasets (Nabholz et al. 2011; dos Reis et al. 

2012). 

Swordtails and platyfishes (Poeciliidae, genus Xiphophorus) are longstanding 

models of sexual selection (Darwin 1859; Ryan 1990), evolutionary genetics (Schartl 

1995; Basolo 2006), and oncology (reviewed in Meierjohann and Schartl 2006).  

Numerous phylogenetic studies have failed to reach consensus on many aspects of their 
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evolutionary relationships (Rosen 1960; Rosen 1979; Rauchenberger et al. 1990; Haas 

1992; Marcus and McCune 1999; Morris et al. 2001; Meyer et al. 2006; Kang et al. 

2013). Early studies placed the swordtails as a monophyletic group derived from the 

more basal platyfishes (Figure 14 A). More recent studies have proposed conflicting 

topologies for three clades: northern swordtails, southern swordtails and platyfishes 

(northern and southern;(Figure 1B & 1C, Meyer et al. 1994). 

 

 

Figure 14. Previous phylogenetic hypotheses for interclade relationships in 

Xiphophorus. Abbreviations: NP—northern platyfishes, SP—southern platyfishes, 

NS—northern swordtails, SS—southern swordtails. A) Platyfishes are paraphyletic and 

basal to genus (Rosen, 1979; Rauchenberger, 1990; Basolo, 1990b). B) Swordtails are 

paraphyletic and northern swordtails are grouped with platyfishes (Meyer et al., 2006). 

C) Swordtails are paraphyletic and southern swordtails are grouped with platyfishes 

(Meyer et al., 1994). 

 

While the inconsistency among phylogenetic studies may be the result of 

insufficient data or errors in inference, another likely cause is interspecific hybridization. 

Xiphophorus species have weak postzygotic isolation (Morizot et al. 1991; Walter et al. 

2004b) and there are contemporary natural hybrid zones between multiple pairs of 
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species (Rosenthal et al. 2003; Schartl 2008). Premating barriers play a primary role in 

reproductive isolation between species (Schartl 2008). As a rule, females prefer to mate 

with conspecifics over heterospecifics (McLennan and Ryan 1999; Hankison and Morris 

2003), but these preferences are susceptible to ecological disturbances and plasticity in 

preferences (Fisher et al. 2006; Verzijden and Rosenthal 2011; Willis et al. 2011; Willis 

et al. 2012). It is therefore likely that episodes of hybridization have played an important 

role in Xiphophorus evolution and may account for conflicting phylogenies.  

Uncertainties about the Xiphophorus phylogeny have also contributed to 

controversies about trait evolution in the genus. Xiphophorus has been intensively 

studied in the context of the preexisting bias hypothesis of sexual selection (Basolo 

1990; Rosenthal and Evans 1998).  The sexually-dimorphic “sword” extension of the 

caudal fin in males of some Xiphophorus species was proposed to have evolved in 

response to a latent bias in females, but this hypothesis hinged on the basal placement of 

platyfishes and monophyly of the swordtails (Basolo 1990). This view was challenged 

by subsequent phylogenies that did not support the monophyly of northern and southern 

swordtails (Meyer et al. 1994); but see (Basolo 1995b). Without a robust phylogenetic 

framework, it is difficult to draw inferences about whether or not preexisting preferences 

drove the evolution of the sword ornament in Xiphophorus.   

Hybridization could also account for the discontinuous distribution of traits in the 

genus. For example, the geographically separated X. andersi and X. xiphidium are the 

only two platyfishes naturally expressing swords (albeit short and unpigmented). Also, 

the sympatric swordtail X. birchmanni and platyfish X. variatus (Fisher et al. 2009)  
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share several male sexually-dimorphic traits, despite no evidence of current 

hybridization (Rauchenberger et al. 1990; GGR, personal observation). Though these 

shared male sexually dimorphic traits could be the result of convergent evolution, 

interfertility between species raises the possibility that gene flow may be responsible for 

some shared traits.  

To evaluate the role of hybridization in shaping the interrelationships among 

Xiphophorus species, I use an RNA-seq-based approach to collect transcriptome 

sequence data for 24 of the 26 described Xiphophorus species and two outgroups.  

Despite their increasing use in population genetics and gene mapping studies, next-

generation sequencing techniques have had limited applications in phylogenetics thus 

far. Though a variety of next-generation sequencing methods can be used generate 

phylogenetic datasets, for recently diverged species such as Xiphophorus (~4-6 mya; 

Mateos et al. 2002; Kallman and Kazianis 2006), techniques such as RNAseq that 

generate long alignments are promising (e.g. Kocot et al. 2011; Smith et al. 2011). 

Though RNA-seq datasets have been concatenated to produce highly supported 

phylogenies (Hittinger et al. 2010; Nabholz et al. 2011), concatenated datasets cannot be 

used to investigate gene flow. I use RNA-seq data to resolve the Xiphophorus species 

tree with high confidence and apply phylogenetic approaches to identify cases of 

interspecific hybridization. I find evidence for widespread hybridization in Xiphophorus 

and discuss my findings in the context of sexual selection and trait evolution.   
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Methods 

RNA extraction and library preparation 

I obtained a single live male of each of 24 Xiphophorus species and two 

outgroups from a variety of sources (Cui et al. 2013, Table S1). Fresh specimens were 

photographed and killed with an overdose of tricaine methanesulfate (MS-222) in 

compliance with Texas A&M University IACUC protocol # 2012-164. Whole brains 

were dissected immediately and preserved in RNAlater (Ambion, Austin, TX) at -20˚C 

until use.  

RNA was extracted using a standard TRI Reagent protocol (Ambion, Austin, 

TX)  following manufacturer’s instructions and quantified with a Nanodrop 1000 

(Thermo Scientific, Wilmington, DE). 1-4 μg of total RNA was used to prepare libraries 

following Illumina’s TruSeq mRNA Sample Prep Kit with minor modifications. Briefly, 

mRNA was purified using a bead-based protocol and chemically fragmented; first and 

second strand cDNA was synthesized from these fragments and end repaired.  Following 

end repair, 3’ ends were adenylated and a custom adapter was ligated. This allowed for 

one of 23 unique indices (Cui et al. 2013, Table S2) to be added to each library during 

PCR amplification (16-18 cycles). Following agarose gel purification of the desired size 

distribution (350-500 bp) and quality verification on the Bioanalyzer 2100 (Agilent, 

Santa Clara, CA), this 23-plex library was sequenced on one paired-end Illumina HiSeq 

2000 lane at the Lewis-Sigler Institute Microarray Facility (Princeton, New Jersey). 

Samples from three additional species that could not be uniquely indexed were 

sequenced on partial lanes (X. birchmanni, X. malinche, and X. nigrensis). Raw 101 base 
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pair (bp) reads were trimmed to remove low quality bases (Phred quality score<20) and 

reads with fewer than 30 bp of contiguous high quality bases were removed using the 

script TQSfastq.py (http://code.google.com/p/ngopt/source/browse/trunk/SSPACE/tools/ 

TQSfastq.py).  

All raw data have been deposited in NCBI’s Sequence Read Archive (Accession 

#: SRA061485). 

Transcriptome assembly  

 For phylogenetic analysis (see below), I analyzed alignments to the X. maculatus 

genome and two transcriptomes, to demonstrate that my results are robust to the effects 

of reference species and reference sequence type (transcriptome or genome). The two 

transcriptomes were generated using paired-end data for the two species with the highest 

coverage, X. birchmanni and X. mayae. 29,535,466 (X. birchmanni) and 31,993,860 (X. 

mayae) paired-end reads were assembled using velvet (Zerbino and Birney 2008) with a 

range of kmers (21, 31, and 41). I initially used the merge assemblies option with Oases 

(Schulz et al. 2012), but found that this increased the incidence of highly divergent 

alignments in my later analysis, likely as a result of the formation of chimeric 

transcripts. I therefore used Oases to construct transcript isoforms without merging and 

used a custom perl script to select the longest isoform for my transcriptome reference. I 

compared the quality of different assemblies based on the assembly N50 and total 

number of bases assembled. In both cases, using a kmer of 31 produced the highest 

quality transcriptome: X. birchmanni –N50 of 2,441 bp, total size 108 Mbp; X. mayae –

N50 of 3,545 bp, total size 147 Mbp.  
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Using this preliminary transcriptome assembly for each species, I then identified 

regions that were not unique in the X. maculatus genome by BLASTing all transcripts to 

the X. maculatus genome using the blastn algorithm (Camacho et al. 2009). To be 

conservative, I masked regions of transcripts that had multiple hits to the genome at an 

e-value < 1e-5, by converting the bases in that region to Ns. Many transcripts had short 

regions that BLASTed with high confidence to multiple sites in the genome. In order to 

avoid excluding regions that would not result in incorrect mapping I performed 

simulations to determine whether reads originating from another transcript would 

incorrectly map to small homologous regions (<100 bp) in the transcriptome. I found 

that regions with multiple blast hits shorter than 70 bp could be included in the analysis 

(Cui et al. 2013, Supporting information i). I completed all subsequent steps in the 

analysis using the X. birchmanni transcriptome, but repeated the analyses using both the 

X. mayae transcriptome assembly and X. maculatus genome to examine the effect of 

choice of reference sequence, and effects of using the transcriptome vs the genome 

assembly (Cui et al. 2013, Supporting Information ii, Figure S1). I chose the X. 

birchmanni transcriptome assembly for my main analysis because it resulted in more 

alignments that passed my criteria than the X. mayae assembly (see below), and is less 

likely to combine heterogeneous sequences in gene tree analysis than alignments to the 

X. maculatus genome (see Supporting Information ii).  

Alignment generation and total evidence phylogeny  

Trimmed reads were aligned to the X. birchmanni transcriptome sequence and 

the X. maculatus mitochondrial genome (GenBank Accession: AP005982.1) using 
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STAMPY v1.0.17 (Lunter and Goodson 2011). The number of reads per species and 

alignment statistics are summarized in Table S2 (Cui et al. 2013). Mapped reads were 

analyzed for variant sites and sequence depth in each species using the samtools/bcftools 

pipeline (Li et al. 2009) with a mapping quality cutoff of 20. Because the mapping 

process generates aligned sequences to the reference, traditional gene by gene global 

alignment is unnecessary. 

A custom PHP script was used to generate sequence alignments for all 26 species 

based on the bcf file that is the output of the samtools/bcftools pipelines.  Before 

analyzing phylogenetic relationships based on these sequence alignments, I performed a 

number of quality control steps to exclude low-quality and low-information sites from 

my dataset. For each species, transcripts with average per-site coverage <5X were 

excluded. Individual sites within a transcript were masked as N if coverage at that site 

was <5X or the variant quality score was <20. Sites containing polymorphism or indels 

were also masked. After this initial masking, I compared the remaining sites between 

species. If a site had been masked in 90% or more of the Xiphophorus species, or the 

transcript had been excluded in both outgroup species, I excluded that site from out 

analysis. I also excluded regions of high divergence (more than 7 character differences 

from the X. birchmanni sequence in 21 bp) using a sliding window. All remaining sites 

were included in the analysis.  This resulted in 10,999 alignments ≥500 bp with a total 

alignment length of 16.85 Mbp (22.91% missing data).  

 To produce a total evidence phylogeny as a first approximation of the likely 

species tree, all alignments were concatenated for analysis. Due to the large a priori 
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partition numbers I did not allow free model parameters for each partition. Instead, I 

analyzed the dataset as a single partition with 100 rapid bootstraps (Stamatakis et al. 

2008) followed by maximum likelihood tree estimation using the General Reversible 

Time substitution model (GTR+T)  in RAxML 7.2.8 (Stamatakis 2006). Similar methods 

were used to produce total evidence phylogenies based on alignments to the X. mayae 

transcriptome and X. maculatus genome (Supporting Information ii).  

Gene tree analysis with BUCKy  

Gene trees can sometimes produce topologies that are different from the species 

tree because of incomplete lineage sorting or hybridization (Degnan and Rosenberg 

2009). To explicitly account for these factors, I performed gene tree analysis using 

BUCKy (Ané et al. 2007). I initially attempted gene tree analysis using both the 

programs BEST (Liu 2008) and BUCKy (Ané et al. 2007) but were unable to use BEST 

due to computational limitations. The BUCKy program uses Bayesian concordance 

analysis to estimate the likely species tree topology, and what proportion of loci support 

the dominant topology. It has the advantage of making no assumptions about the source 

of the discordance. Therefore, in addition to incomplete lineage sorting, BUCKy 

accommodates hybridization (Larget et al. 2010). I treat instances of major discordance 

identified by BUCKy as potential cases of hybridization for further investigation (see 

below). 

Due to limitations in computational speed I used a smaller dataset for BUCKy 

analysis (transcripts > 1.5 kb in length, 7.6 Mb) and excluded both outgroups from 

analysis due to extensive missing data in Priapella (Cui et al. 2013, Table S3). As a 
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result of computational constraints, I divided this 2,366 transcript dataset into two 1,183 

transcript datasets for analysis with MrBayes 3.2.1 to obtain a posterior distribution of 

gene trees for each partition. Stationary stage was determined by inspecting parameter 

traces using Tracer. The following chain length (and burn-ins) were used: run 1, 31.2 

million (10 million); run 2, 28.6 million (10 million). BUCKy was run with a range of α 

priors, which describes the expected number of unique gene trees given the number of 

taxa and the total number of genes in the genome. I did not find differences in the 

topology or concordance factor values between α values of 1, 2 and 5, and report results 

obtained with α=1. The concordance factor (CF) describes the estimated proportion of 

the genome significantly supporting a topology and BUCKy systematically 

underestimates the CF for the major topology, especially with short branch lengths and 

in the presence of ILS or hybridization (Chung and Ané 2011). Alternative bipartitions 

with concordance factors higher than 10% were further investigated for evidence of 

hybridization (see below). This large concordance factor cutoff was used to identify 

species with strong evidence for gene tree-species tree discordance. I also repeated the 

BUCKy analysis using alignments to the X. maculatus genome (Supporting Information 

iii, iv).  

Mitochondrial phylogeny  

Using the same methods outlined above, but with a 20x coverage cutoff, I 

obtained concatenated mitochondrial alignments of all coding regions for 26 species 

(15,787 bp, 42.63% missing). I repeated the analysis excluding both outgroups to 
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prevent long-branch attraction. Both datasets were analyzed with RAxML 7.8.2 using 

GTR+Γ. Nodal support was determined with 100 rapid bootstraps in RAxML.  

Investigating potential hybridization  

Strong discordance between gene trees and the species tree can be caused by 

incomplete lineage sorting or hybridization. To investigate whether incomplete lineage 

sorting can be rejected as the cause of discordance, I used the approximately unbiased 

(AU) test (Shimodaira 2002) and Patterson’s D-statistic (Green et al. 2010; Schumer et 

al. 2013) to further investigate all groups in which I found strong evidence of 

discordance using BUCKy (CF ≥ 10%). Both tests were used to measure whether there 

was significant asymmetry in support for the two minor topologies in a four species tree; 

significant asymmetry in support for one of the two minor topologies can be a sign of 

hybridization (Meng and Kubatko 2009; Durand et al. 2011). I only investigated 

potential hybridization that occurred between extant species and I did not investigate 

potential hybridization between X. andersi and X. milleri because it was not detected in 

BUCKy analysis of alignments to the X. maculatus genome (Supporting Information iv, 

Cui et al. 2013). Two potential hybridization events could not be examined using my 

approach because of species interrelationships; these were the potential hybridization 

events between X. hellerii and X. mayae, and X. couchianus and X. meyeri, since higher 

discordance occurred between X. hellerii and X. alvarezi, and X. couchianus and X. 

meyeri, respectively (see Results). 

I exported 4 (D-statistic) or 5 (AU test) taxon alignments for the 8 pairs of 

species for which I found strong evidence of gene tree discordance from BUCKy 
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(excluding X. hellerii –X. mayae and X. couchianus—X.gordoni, see above), a closely 

related species, and two outgroups (detailed in Cui et al. 2013, Table S2).  To investigate 

a case of mito-nuclear discordance, I also tested for gene flow between X. birchmanni 

and X. pygmaeus despite the fact that I failed to detect nuclear discordance between 

these two species (see Results). Quality criteria for alignments were as described above, 

except missing data at a site in any species resulted in that site being excluded from the 

analysis.  

 For the AU test, I enforced monophyly of the two outgroups and tested support 

for the three possible topologies of an unrooted 4-taxa tree. Site likelihoods were 

calculated using RAxML 7.8.2 with the General Time Reversible model and a gamma 

distribution of substitution rates (GTR+GAMMA). These likelihoods were used as input 

for AU tests implemented in Consel 0.2 (Shimodaira and Hasegawa 2001). The AU p-

value is the probability that a tree is as likely as the Maximum Likelihood tree. If a 

particular topology had an AU p-value greater than 0.95 for an alignment, I concluded 

that the alignment supported that topology. I excluded partitions that had an observed 

likelihood difference of 0 because these are likely caused by low numbers of informative 

characters in the alignment (Schmidt 2009). I determined whether there was significant 

asymmetry in support for the two minor topologies by calculating 95% confidence 

intervals using 1000 replicates of non-parametric bootstrapping. 

 As a secondary method, I calculated Patterson’s D-statistic (Green et al. 2010) 

for the same alignments using only one outgroup (Cui et al. 2013, Table S2). Sites with 

ABBA (shared sites between species 2 and 3) and BABA (shared sites between species 1 
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and 3) patterns were counted in the four species alignments. With the null hypothesis of 

incomplete lineage sorting, the number of ABBA and BABA sites is expected to be 

equal. Significant deviation of D from 0 suggests that incomplete lineage sorting can be 

rejected as a null hypothesis. Significance of D was determined using a two sample z-

test. Standard error was determined by jack-knife bootstrapping of D for each transcript 

using the bootstrap package in R (R Development Core Team 2010), I then compared 

the D-statistic results with the AU results (Table 1); in cases in which all three methods 

(BUCKy, AU test, and Patterson’s D-statistic) support hybridization, I conclude that 

hybridization likely occurred between the taxa in question.  

Character mapping and independent contrasts  

To examine patterns of sword evolution and sword preference evolution in the 

context of my species tree topology, I compiled a dataset of sword index (sword 

length/standard length, (Basolo 1995a), machinery for sword production (MSP, the 

ability to generate sword after androgen treatment, (Gordon et al. 1943; Dzwillo 1963, 

1964; Zander and Dzwillo 1969), and sword preference in Xiphophorus females based 

on previously published studies (Cui et al. 2013, Supporting Information v, Table S4, 

Table S5). Though previous researchers have distinguished between the long and 

pigmented sword found in southern and some northern swordtails, and the short 

unpigmented sword found in two platyfishes, I do not make that distinction here. 

However, I recognize that the sword is a complex trait and has many morphological 

differences between clades. 
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Sword index and female preference index were coded as continuous variables 

while MSP was coded as a binary character. I traced the characters on the total evidence 

tree produced by alignment to the X. birchmanni transcriptome by maximum parsimony 

in Mesquite 2.75 (Maddison and Maddison 2011), because maximum likelihood 

methods cannot be implemented for continuous variables in this program. I used the 

PDAP-PDTREE package (Midford et al. 2011) in Mesquite to perform independent 

contrast analysis (Felsenstein 1985) between sword index and preference for swords and 

linear regressions between sword and preference characteristics and node height. 
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Table 1. Proportion of the gene trees supporting alternative topologies estimated by an approximately unbiased test (AU test) 

and  D-statistic calculated for all species with discordance >10% identified by BUCKy. Confidence intervals are calculated by 

1000 replications of non-parametric bootstraps for AU tests and jack-knife bootstrapping for the D-statistic. Positive values 

support gene flow between the two species in question. Divergence refers to the average sequence divergence between the two 

sister species in the genomic regions significantly (AU p > 0.95) supporting the indicated sister relationships.  

 

Species pair CF 

D-statistic (jack-

knife SE, p-value) 

Percent of AU test support for the two minor topologies (95% 

confident intervals) 

Divergence 

X. nezahualcoyotl — 

X. montezumae 

0.25 

0.38 

(0.07, p <3.1e-14) 

((X. nezahualcoyotl, X. montezumae), X. cortezi): 32% (30-33%) 

((X. montezumae, X. cortezi), X. nezahualcoyotl):  3% (2-3%) 

0.36% 

0.36% 

X. signum — 

X. mayae 

0.21 

0.56 

(0.03, p < 4.4e-65) 

((X. signum, X. mayae), X. hellerii):  51% (49-53%) 

((X. signum, X. hellerii), X. mayae): 7.6% (7-8.5%) 

0.40% 

0.40% 

X. hellerii — 

X. alvarezi 

0.21 

-0.41 

(0.01, p < 6.4e-100) 

((X. hellerii, X. alvarezi), X. mayae): 16% (15-17%) 

((X. hellerii, X. mayae), X. alvarezi): 13% (12-14%) 

0.32% 

0.36% 

X. variatus— 

X. xiphidium 

0.11 

0.31 

(0.014, p < 1.5e-86) 

((X. xiphidium, X. variatus), X. evelynae): 30% (29-32%) 

((X. xiphidium, X. variatus), X. evelynae): 10% (9-11%) 

0.37% 

0.44% 

X. milleri— 

X.evelynae 

0.11 

0.09 

(0.013, p<0.00043) 

((X. evelynae, X. milleri), X. couchianus): 16% (15-18%) 

((X. milleri, X. couchianus), X. evelynae): 14% (13-15%) 

0.43% 

0.43% 

X. couchianus— 

X. meyeri 

0.29 

0.11 

(0.04, p <0.0030) 

((X. meyeri, X. couchianus), X. gordoni): 26% (24-29%) 

((X. couchianus, X. gordoni), X. meyeri): 17% (15-19%) 

0.06% 

0.08% 
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Species pair CF 

D-statistic (jack-

knife SE, p-value) 

Percent of AU test support for the two minor topologies (95% 

confident intervals) 

Divergence 

X. xiphidium— 

X. andersi 

0.13 

0.03 

(0.014, p <0.041) 

((X. andersi, X. xiphidium), X. meyeri): 19% (18-21%) 

((X. meyeri, X. andersi), X. xiphidium): 11% (9-12%) 

0.54% 

0.55% 

X. evelynae— 

X. variatus 

0.14 

0.18 

(0.013, p<5.3e-28) 

((X. variatus, X. evelynae), X. couchianus): 19% (18-20%) 

((X. evelynae, X. couchianus), X. variatus): 10% (10-11%) 

0.34% 

0.36% 

X. birchmanni— 

X. pygmaeus 

<0.10 

-0.03 

(0.017 , p=0.19) 

((X. pygmaeus, X. malinche)), X. birchmanni): 3% (3-4%) 

((X. birchmanni, X. pygmaeus)), X. malinche): 3% (3-3%) 

0.57% 

0.61% 

 

Table 1 Continued. 
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 Results 

A high confidence species tree based on nuclear data  

I used multiple methods to construct a high confidence species tree for 

Xiphophorus. As an initial approach to determine the likely species tree, I constructed a 

total evidence phylogeny using RAxML based on alignments to the X. birchmanni 

transcriptome; this concatenated nuclear dataset produced a fully resolved phylogeny 

with 100% bootstrap support for all nodes (Figure 15 A). 

To confirm that my total evidence topology was not dependent on the reference 

sequence used for assembly, I repeated the same analysis using the X. maculatus genome 

and the X. mayae transcriptome as reference sequences (Supporting information ii). The 

total evidence topology produced from alignment to the X. maculatus genome was 

nearly identical to the topology produced from alignment to the X. birchmanni 

transcriptome; this topology placed X. nezahualcoyotl as sister to X. cortezi rather than 

X. montezumae (Cui et al. 2013, Supporting Information ii, Figure S1A). The total 

evidence topology produced from alignment to the X. mayae transcriptome also resulted 

in a highly similar topology, albeit with lower bootstrap support; for details see 

Supporting Information ii, Figure S1B in Cui et al. (2013).  

I also investigated the likely species tree with gene tree analysis using BUCKy. 

With this method I infer a nearly identical species tree topology to the topology 

produced by the analysis of the concatenated X. birchmanni aligned dataset with 

RAxML (Figure 16; see Table S6 in Cui et al. 2013 for CFs). As with the topology 
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produced by aligning to the X. maculatus genome, the only difference between the 

species tree inferred by BUCKy and the concatenated topology was the placement of X. 

nezahualcoyotl sister to X. cortezi rather than X. montezumae. Given that the species 

trees produced by the different analyses are nearly identical, I focus subsequent 

discussion on the species tree determined by BUCKy.  

 

 

Figure 15. Total evidence trees. A) Total evidence nuclear phylogeny produced by 

concatenating 10,999 transcripts totaling 16,855,549 (22.91% missing) sites using 

RAxML 7.2.8 with GTR+ Γ model. Nodal support generated by 100 rapid bootstraps 

with GTR+CAT. Log likelihood = -33380190.53. B) Unrooted mitochondrial tree 

(coding regions only, 15,787 bp, 42.63% missing) of 24 Xiphophorus species excluding 

two outgroup species. Log likelihood= -40371.19.  

 

My results resolve many of the uncertainties of the Xiphophorus phylogeny 

(Figure 15 & Figure 16). The monophyly of the three major Xiphophorus clades (northern 
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swordtails, platyfish, and southern swordtails) is strongly supported. My results also 

strongly support the placement of platyfish and northern swordtails as sister clades, with 

southern swordtails at the base of the genus (corresponding to Figure 14 B). In within 

clade relationships, I also find a number of major differences from previous studies. X. 

xiphidium, which is a northern sworded platyfish, is resolved at a more basal position 

that is more closely related to the southern platyfish X. andersi than in previous studies 

(Meyer et al. 2006). Excluding X. xiphidium, southern platyfishes are paraphyletic while 

northern platyfishes are monophyletic. Out of three hypothesized clades within the 

northern swordtails (Rauchenberger et al. 1990), two (the cortezi and pygmaeus clades) 

were found to be paraphyletic, while the montezumae clade is polyphyletic. X. 

montezumae was resolved as the sister to the cortezi clade, which here included X. 

nezahualcoyotl, while X. continens was supported as sister of X. pygmaeus (but see Cui 

et al. 2013, Table S1). 

Extensive cytonuclear conflict  

Previous phylogenetic studies in many taxa have historically relied heavily on 

mitochondrial DNA (mtDNA) as a marker.  I constructed mtDNA relationships based on 

concatenated expressed mitochondrial sequences using RAxML. I find low concordance 

between mitochondrial and nuclear relationships in Xiphophorus (Figure 15). The 

placement of X. maculatus was not well resolved in the mtDNA tree. When outgroups 

are included, X. maculatus resides at the base of a clade including all southern swordtails 

and other platyfishes, with low bootstrap support (Cui et al. 2013, Figure S2).  Excluding 

both outgroups places X. maculatus sister to other platyfishes, but again with low 
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bootstrap support (Figure 15 B). In the rooted trees, mtDNA sequences support 

monophyly of southern swordtails and platyfishes, in direct conflict with results from 

nuclear data. As reported previously (Meyer et al. 2006; Kang et al. 2013), X. 

clemenciae and X. monticolus are nested within the platyfishes, also in contradiction to 

the species tree inferred from nuclear genome sequences. 

Hybridization inferred by BUCKy, AU tests, and the D-statistic  

Gene tree discordance can result from incomplete lineage sorting (Pollard et al. 

2006), reconstruction errors, or from hybridization (Degnan and Rosenberg 2009). I used 

BUCKy to identify instances of major discordance between individual nuclear gene trees 

and the consensus species tree (Figure 16 & Figure 17). A large number of Xiphophorus 

species had high levels of nuclear gene tree discordance based on the results of my 

BUCKy analysis. I found greater than 10% discordance in all three major groups: 

northern swordtails (X. nezahualcoyotl, X. montuzumae), platyfishes (X. xiphidium, X. 

andersi, X. evelynae, X. variatus, X. couchianus, X. milleri, X. meyeri, X. gordoni), and 

southern swordtails (X. hellerii, X. signum, X. alvarezi, and X. mayae). I find nearly 

identical patterns of discordance in both the alignments to the X. birchmanni 

transcriptome assembly and the alignments to the X. maculatus genome. (Cui et al. 2013, 

Supporting Information iii, iv; Figure S3). 



 

 75 

 

Figure 16. A primary concordance tree produced by BUCKy (α=1) from 2,366 gene 

trees inferred by MrBayes 3.2.1. Nodal values are Bayesian concordance factors. 

Discordance which is detected using both the X. birchmanni transcriptome and the X. 

maculatus genomic reference (see Cui et al. 2013, Figure S3) with concordance factors 

> 10% is indicated with solid lines using a color gradient. See Table S6 (Cui et al. 2013) 

for concordance factors and confidence intervals. 

 

For all species that showed high levels of discordance (i.e. ≥ 10%; Figure 16), I 

performed two additional analyses to differentiate between incomplete lineage sorting 

and hybridization. To evaluate the evidence for hybridization, I applied the 
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approximately unbiased (AU) test (Shimodaira 2002) and Patterson’s D-statistic (Green 

et al. 2010) to these species (Cui et al. 2013, Table S2). Both tests allow me to determine 

whether incomplete lineage sorting can be rejected as the cause of discordance by testing 

for asymmetry of the two less frequent topologies. Given agreement between all three 

analyses (BUCKy, the AU test, and Patterson’s D-statistic), I conclude that hybridization 

is a likely contributor to gene tree discordance among the species in question. 

Specifically, I find that 7 out of 8 tested cases of discordance are likely the result of 

hybridization (Table 2). Some species had levels of hybridization consistent with 

extensive admixture or hybrid speciation. For example, the majority of the X. xiphidium 

alignments (70%) cluster with X. meyeri in AU tests, but a significant proportion (19%) 

are grouped with the southern platyfish X. andersi. In X. nezahualcoyotl, 66% of 

alignments were most closely related to X. cortezi but 32% are more closely related to X. 

montezumae. This hybridization is unlikely to be recent however, because divergence 

between species was still high in regions supporting minor topologies (Table 1, 

compared to Table S7 in Cui et al. 2013).  
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Figure 17. DensiTree of Xiphophorus. Localities and photographs of the specimens used in this study mapped on a DensiTree 

produced by overlaying 160 gene trees inferred by MrBayes 3.2.1. Black vertical lines indicate the location of a major 

geographical barrier, the Trans-Mexican Volcanic Belt (TMVB). Blue lines: southern platyfishes; green lines: northern 

platyfishes; yellow lines: northern swordtails; pink lines: southern swordtails.  
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Character mapping and independent contrasts  

 I used the total evidence tree to investigate evolutionary trends for sword length, 

sword preference, and whether female preference for the sword is correlated with sword 

length (Supporting Information v). Independent contrasts reveal a marginally non-

significant positive correlation between male sword length and female preference 

(r=0.55, d.f.=9, p=0.083). Female preference significantly decreased with node height 

(r= -0.71, d.f.=8, p=0.022), suggesting an evolutionary trend for decreased sword 

preference. Sword length, however, was not correlated with node height in the species 

tree (r= -0.27, d.f.=23, p=0.185). 

 

Discussion 

 Using sequence information generated from one paired-end Illumina lane, I 

resolve phylogenetic relationships in a group of species with a highly contested 

evolutionary history. I show that there are high levels of hybridization between many 

species, potentially due to weak postzygotic isolation in Xiphophorus (Schartl 2008; 

Rosenthal and Ryan 2011). Extensive admixture has occurred in lineages within the 

platyfish, northern, and southern swordtail clades, while cases of introgression have 

occurred within all major clades. A high-confidence molecular phylogeny of 

Xiphophorus allows me to address questions about the role of sexual selection and 

hybridization in trait evolution.  
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Phylogenetic relationships in Xiphophorus  

I find strong support for monophyly of the three previously identified 

Xiphophorus clades: the southern swordtails, the northern swordtails, and the platyfishes. 

The rooting of my phylogeny (most closely corresponding to Figure 14 B) confirms 

results from previous nuclear datasets that northern swordtails and southern swordtails 

are not monophyletic (e.g. Meyer et al. 2006). This rooting conflicts with early studies 

using morphology (Rosen 1979) and mitochondrial DNA (Meyer et al. 1994). I also find 

major differences in intraclade relationships compared with previous studies, particularly 

in the northern swordtails (Rauchenberger et al. 1990; Morris et al. 2001; Kang et al. 

2013).  

Reticulate evolution in Xiphophorus  

Based on my analysis of nuclear sequences, I find evidence of gene flow between 

multiple species within platyfishes, northern swordtails, and southern swordtails (Table 

1, Figure 16 & Figure 17). Only 8 of the species surveyed show no evidence for 

discordance of nuclear gene trees. My results demonstrate that hybridization has been 

extensive within clades, even between non-sister species, but there is little evidence of 

hybridization between the major clades. The extent of historical hybridization in 

Xiphophorus is especially interesting given that contemporary natural hybrids are 

relatively rare. Premating isolation via sexual selection is the major barrier to 

hybridization in this genus (Schartl 2008; Rosenthal and Ryan 2011) but reproductive 

isolation via mating preferences may be particularly vulnerable to perturbation due to 

demographic fluctuations (Willis et al. 2011) or environmental disruption of sexual 
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communication (Fisher et al. 2006).  The vulnerability of female preference as the major 

barrier to reproductive isolation is apparent in my results, which indicate rampant 

genetic exchange throughout the Xiphophorus phylogeny. Hybridization is likely to be 

even more widespread than I report, since my method will only detect gene flow when it 

is extensive enough to cause discordance >10%. For example, historical hybridization 

between the widely sympatric X. maculatus and X. hellerii has been recently reported 

(Schumer et al. 2013) but the level of shared ancestry (~6%) is lower than the detection 

threshold used here.   

Mitochondrial DNA relationships have historically been used for phylogenetic 

studies and as a method of detecting past hybridization, but accumulating evidence casts 

doubt on the utility of mitochondrial genes in studying evolutionary relationships 

(Ballard and Rand 2005). My mtDNA results differ strikingly from relationships 

suggested by nuclear sequences. In the mtDNA phylogeny, the southern swordtails are 

grouped as sister to the platyfishes, while nuclear sequences group platyfishes and 

northern swordtails (Figure 15). Past research in Xiphophorus has inferred potential cases 

of hybridization based on mitonuclear incongruence (Meyer et al. 1994; Meyer et al. 

2006; Kang et al. 2013).  However, the mtDNA topology does not support the same 

hybridization patterns detected in my nuclear gene tree analysis. Instead, I find mtDNA 

incongruence can occur even when the nuclear genome shows no evidence of 

hybridization. For example, I did not find evidence of gene flow between platyfish and 

X. monticolus as recently suggested (Kang et al. 2013). Similarly, a previous study 

(Schumer et al. 2013) using whole genome sequencing of X. clemenciae did not support 
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extensive gene flow with X. maculatus. In northern swordtails, even though the sister 

relationship between the X. pygmaeus clade and X. birchmanni is highly supported by 

mtDNA, there is no evidence for gene flow between these species based on nuclear gene 

trees. Other factors such as incomplete lineage sorting or selection could be an alternate 

explanation of the observed mtDNA patterns (e.g. Schumer et al. 2013). 

Evidence for extensive admixture in all major groups 

I find evidence based on genome-wide data that X. nezahualcoyotl, X. xiphidium, 

and multiple species in the X. hellerii clade, have significant proportions of their 

genomes derived from hybridization. These species have levels of discordance ranging 

from 19-42% based on AU tests (Table 1), suggestive of extensive historical admixture 

or even hybrid speciation. Given current species distributions, hybridization between X. 

xiphidium—X. andersi and X. nezahualcoyotl—X. montezumae has not been previously 

suspected, suggesting that historical species distributions or migration allowed 

hybridization between these species.  

Though all three of these groups show high levels of hybridization, extensive 

admixture in X. nezahualcoyotl is also consistent with morphological data and previous 

research. Based on such high levels of nuclear gene tree discordance (~30%) it is 

possible that X. nezahualcoyotl is the product of admixture between its sister species X. 

cortezi and X. montezumae. The sword of X. nezahualcoyotl is of intermediate length of 

X. montezumae and X. cortezi (sword index: 0.48, X. montezumae 1.0,  X. cortezi 0.37; 

see Cui et al. 2013, Table S4 & Supporting Information v), and X. nezahualcoyotl shares 

morphological characteristics with both species (pigment patterns shared with X. cortezi 
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and lateral stripes shared with X. montezumae). Previous phylogenetic analyses could not 

resolve relationships between X. nezahualcoyotl, X. montezumae, and X. cortezi 

(Rauchenberger et al. 1990; Morris et al. 2001). I suggest that these difficulties stem 

from the extensive hybridization in the evolutionary history of these species. A more 

complete survey throughout the range of X. nezahualcoyotl, and whole genome 

sequencing of both species and X. cortezi is required to further evaluate this prediction.  

Implications for the evolution of sexually selected traits 

 Early research proposed that platyfishes were basal to the genus and the 

evolution of the sword was driven by latent female preferences (Basolo 1995b, a). Based 

on the rooting of the genus in my phylogeny, I find that the ability to produce a sword 

was likely present in the common ancestor of Xiphophorus and secondarily lost in some 

platyfishes (as observed in Meyer et al. 1994; Fig. 5; Meyer et al. 2006). However, 

preferences for swords in outgroup taxa suggest that the sword could have evolved in 

response to a preexisting bias prior to the diversification of Xiphophorus (as suggested 

by Basolo 1995b).  

My phylogeny changes the placement of X. xiphidium, a sworded platyfish, in 

comparison to previous studies. Because X. maculatus and X. milleri both have the 

capacity to produce a short sword if induced by androgens (Gordon et al. 1943; Dzwillo 

1963, 1964; Zander and Dzwillo 1969; Offen 2008), and X. andersi and X. xiphidium are 

both sworded, my phylogeny demonstrates that the ability to produce a short sword was 

present in the common ancestor of platyfishes, and thus a synapomorphy of the genus. 

Based on my results, the genetic pathway for sword production was not completely lost 
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in platyfishes until after the diversification of X. milleri (Figure 18). This finding has 

important implications for research into the genetic basis of the sword; since this trait 

arose only once it is likely that the production of the sword is regulated by the same 

mechanisms in all Xiphophorus species. Despite the likely presence of the sword in the 

common ancestor of Xiphophorus, sword preference is negatively correlated with node 

height, suggesting an evolutionary trend for a reduction in sword preference in 

Xiphophorus.   

Gene flow and sexually selected traits 

Only two platyfish species have a short sword, X. xiphidium and X. andersi. The 

platyfish sword is significantly reduced compared to sword ornaments in northern and 

southern swordtails, and lacks pigmentation. An alternate explanation for the presence of 

short swords in X. andersi and X. xiphidium is a single loss of the trait in platyfishes 

followed by introgression. I consider this unlikely because I do not find evidence of 

swordtail ancestry in X. xiphidium or X. andersi, although I caution that lower levels of 

hybridization (less than my 10% detection threshold) could have occurred between 

swordtails and these two platyfishes. On the other hand, I find evidence of hybridization 

between X. andersi and X. xiphidium, raising the possibility that loci underlying the short 

sword could be shared in these two species. Identifying the genetic basis of the sword is 

a crucial next step in determining whether hybridization has played a role in the 

phylogenetic distribution of this trait (e.g. Heliconius Genome Consortium 2012). 
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Figure 18. Sword mapped on tree. Sword traits (presence of a sword and ability to 

produce a sword following androgen induction) mapped onto the total evidence 

phylogeny with southern and northern swordtails collapsed. This topology shows a 

single loss of the ability to produce a sword in the northern platyfishes and multiple 

losses of the natural expression of sword.  

 

 

Conclusions  

Previous investigations of the relationships among Xiphophorus species have 

been fraught with inconsistencies, likely as a result of gene flow among taxa. My 

approach highlights the utility of genome-scale data in resolving patterns of gene flow in 

addition to determining species trees with high confidence. My results demonstrate that 

evolution of the sword predated the diversification of Xiphophorus and that the ability to 

produce the sword was not completely lost until after the diversification of northern 

platyfishes. In addition, I find that hybridization in Xiphophorus has been historically 
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common, and I document evidence of extensive admixture, potentially indicative of 

hybrid speciation, in the northern swordtail X. nezahualcoyotl, southern swordtails in the 

X. hellerii clade, and the platyfish X. xiphidium. My results suggest that species 

boundaries primarily maintained by behavioral pre-mating isolation may be particularly 

porous and that gene flow can be widespread without resulting in species collapse. 

Hybridization is likely to play a major role in the evolutionary history of many species 

without strong post-mating isolation. 
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CHAPTER V  

CONCLUSIONS 

Micro-evolutionary processes generates macro-evolutionary patterns I observe 

today (Hansen and Martins 1996), be it biogeographical, morphological, genetic or 

biochemical. However, despite the increasing ease of obtaining genome-wide data at an 

affordable budget, retrospective inference of evolutionary processes from genomic data 

alone has been difficult and error-prone due to confounding effects of distinct processes 

(Sunnåker et al. 2013). For example, whether human genomic patterns suggest ancestral 

population structure or intraspecific hybridization has been repeatedly debated (Lohse 

and Frantz 2014). Therefore, it is extremely valuable to understand mechanisms that 

drive evolutionary processes, such that a priori information can be provided to aid ruling 

out competing hypotheses.  

 Understanding the dynamics during early stage of divergence is the key to 

understanding the origin of biodiversity. Quite often, pre-zygotic, pre-mating 

mechanisms are the first to evolve to limit gene flow between diverging clades, 

especially in sympatric species (Coyne and Orr 1989; Coyne and Orr 1997) and also in 

allopatric species (Mendelson 2003). The underlying genetic loci contributing to these 

barriers are often under local adaptation in allopatry, or disruptive selection when in 

sympatry. Incompatibility between these loci in hybrids is likely acting on an ecological 

level, and the fitness cost is often small and is only expressed as relative fitness when in 

competition with parental forms. Therefore, one would expect that these initial barriers 

to be porous, despite the canalizing effects they may have on lineage divergence. 
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Behavioral mechanisms are one such isolating mechanisms. Very often the mechanistic 

details of how interacting signals and receiver coevolve into barriers are not made 

explicit in modeling work. Many assume that females have genetic loci that intrinsically 

target a certain male trait value (Boake 1991). The degree of isolating effects is then 

simply a function of divergence because the genetic values of the signal-receiver loci co-

evolve, possibly in a run-away process (Fisher 1915). However, recent findings show 

that indirect genetic effects, in particular learned mate choice, can drastically affect the 

outcome of mate choice depending on the social environment (Verzijden et al. 2005; 

Bailey and Moore 2012). Because females now don’t necessarily innately favor a 

particular trait value, the evolutionary dynamics and the strength of the reproductive 

barrier will be different from the more simplistic assumptions.  

In chapters 1 & 2, I showed that theoretically, disdain for familiar male 

phenotypes can evolve under overdominance of loci linked to the male signaling loci 

under different modes of imprinting (peer, parental, oblique), and that opposing effects 

of learning in mate choice can sometimes create population structure (i.e. serve as barrier 

to gene flow) or promote gene flow (i.e. create pores in the barrier). A previous puzzling 

genetic pattern was found in several Xiphophorus birchmanni x X. malinche hybrid 

zones (Culumber et al. 2011). Certain zones have uniform distribution of hybrid index 

while some have bimodal distribution, suggesting a difference in population structure. 

Two competing hypotheses may explain such pattern: 1) non-random mating; 2) 

migration. By examining learned mate choice in X. malinche, and combined with 

previous behavioral result from X. birchmanni, I suggest that hypothesis 1) may explain 
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population genetic patterns in the wild. Future experiments on more hybrid zones will 

allow me to determine whether the prediction of positive correlation between overall X. 

birchmanni ancestry and population structure is valid. 

In the Chapter 3, I further looked into molecular mechanisms of olfactory 

learning in X. malinche. Interestingly, olfactory learning in this species alters genes 

related to neural plasticity, which not only differ between presence or absence of adult 

males, but also between the model species. I identified a potential marker fosb that I can 

apply in future studies to quantify differentially activated brain regions using in situ 

hybridization. Finally, I provided preliminary evidence of differential expression of 

odorant receptors at the periphery in response to early learning.  

Given that reproductive barrier in Xiphophorus is likely affected by learning and 

post-zygotic isolation is weak, I expect that patterns of permissive gene flow should 

occur throughout the phylogeny. Indeed, in Chapter 4, I use RNA-seq technique to 

reconstruct a reticulate phylogeny for 24 of the 26 Xiphophorus species and found that 

species boundary in this group is indeed porous. Gene flow is also more extensive 

between closer related lineages than between distantly related lineages. For example, 

although previous studies suggested possible introgression between X. clemenciae and 

platyfishes, a previous whole genome analysis (Schumer et al. 2013) as well as Chapter 

3 reject this hypothesis. Instead, extensive gene flow usually occurs between more 

closely related groups, such as X. cortezi and X. montezumae. This pattern is consistent 

with two mutually non-exclusive hypotheses: 1) innate preference becomes dominant 
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compared to learned mate choice after long divergence; 2) there’s innate bias towards 

learning, a phenomenon called the “instinct to learn” (Marler 1991).    

In conclusion, understanding mechanisms of individual behavior will inform our 

understanding of long-term evolutionary patterns and aid interpretation of the vast 

amount of genomic data to be collected in the up-coming era.       
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A APPENDIX A 

 

ADMIXSIMUL: A FLEXIBLE FRAMEWORK FOR FORWARD-TIME 

INDIVIDUAL-BASED POPULATION SIMULATION WITH REALISTIC MATE 

CHOICE 

 

i. Introduction 

Population genetic simulations are invaluable to empiricists analyzing 

population-genetic data, since they can be used to test alternative hypotheses, novel 

algorithms, and recently, in approximated Bayesian computations (Beaumont et al. 

2002). A recent review showed that no simulators currently allow for complex selection 

regimes that simultaneously incorporate linkage, epistasis and multi-phenotype selection 

for an unlimited number of loci (Hoban et al. 2012). For instance, a commonly adopted 

simulation package, msHOT (Hellenthal and Stephens 2007), does not allow for 

selection; while another version, msms (Ewing and Hermisson 2010), only allows 

selection on a single locus. Some simulators, while allowing for complex demographic 

history, life cycle and natural selection (Guillaume and Rougemont 2006), either do not 

allow for sexual selection or indirect genetic effects (genotype of other individuals affect 

phenotype of the focal individual; Verzijden et al. 2012b) or require further 

programming by the user (Peng and Amos 2008).  

The aim of Admixsimul is to provide a general, configuration-based application 

that allows simulations to be conducted using biologically realistic parameters. 

Admixsimul differs from similar programs in that it takes an individual-centric view, 

such that experimental parameters obtained on individual levels, such as mate preference 

(Kirkpatrick and Ryan 1991), can be incorporated in the model. Admixsimul deals with 

complex epistatic interactions as well as highly complex selection regimes. In addition to 

biallelic functional loci, neutral biallelic SNP markers can also be generated throughout 

the genome, connected by user-defined, sex-specific linkage maps. Individual genotypes 

can then be exported to mapping or cline analysis software. The program is implemented 

in C++ with an object-oriented structure, facilitating extension of functionalities. 

Compilation was tested on win32, win64, Linux x64 platforms with OpenMP. 

Under the current implementation, admixsimul makes the following assumptions: 1) 

non-overlapping generations; 2) diploid sexual individuals; 3) only one sex (assumed to 

be female) exercises mate choice.    
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ii. Algorithms 

 

Recombination 

Admixsimul tracks ancestry and allelic states of all markers and genes for each 

living individual. Instead of simulating full nucleotide sequences, admixsimul places 

candidate breakpoints (CB) on the genome, such that at least one CB is present between 

user-defined markers or genes. The accumulative recombination probability can then be 

used to determine the stochastic selection of CBs during recombination.  When the 

number of pre-defined CB is fixed, the algorithm scales at a linear time O(M) with 

respect to the number of markers M and recombination fractions R (Suppl. i). 

Admixsimul is able to simulate recombination with biologically realistic genome sizes 

(~2000cM), marker numbers (~10,000) and population sizes (1,000~10,000) within a 

tractable time period. 

Mutation 

Currently Admixsimul supports perturbation of allelic values of functional loci 

with locus-wise mutation probabilities. Users can set the new allelic value using a 

mathematical formula and limit the values within lower and upper bounds. This 

capability allows full control over mutational bias and mutational rate.   

Phenotypes 

The program supports an unlimited number of phenotypes as arbitrary functions 

of allelic states with optional random noise. This flexibility makes possible any complex 

additive, dominance or epistatic effects, including sex-limited traits. Sex is modeled as 

simply another quantitative trait, which allows the program to  model a range of sex-

determination mechanisms (Volff and Schartl 2001). 

Natural and sexual selection 

Admixsimul allows for complex selection regimes dependent not only on the 

individual’s phenotypes, but also on interactions with other conspecifics. For each 

population, users can specify arbitrary fitness or mating probability functions that 

evaluate to the range [0 , 1]. For example, stabilizing selection can be expressed with a 

Gaussian function 𝑒−(𝑇−𝑇𝑜𝑝𝑡)
2 2𝜎2⁄ , where T is the phenotype of the focal individual, Topt 

is the optimum phenotype and σ is the phenotypic standard deviation. Available gamete 

numbers (with variation) of females can be defined such that females are able to produce 

more offspring than the carrying capacity.  

Variables summarized from population statistics and individual phenotypes are 

dynamically supplied during run-time. This flexibility facilitates implementation of 

important models including indirect genetic effects (Wolf et al. 1998) such as learned 

mating preferences (paternal, maternal and peer imprinting, Verzijden et al. 2012b) as 

well as frequency-dependent natural and sexual selection (Fitzpatrick et al. 2007). For 

example, the mate preference function under paternal imprinting can be modeled as 

𝑒−(𝑆−𝑆𝑓𝑎𝑡ℎ𝑒𝑟)
2 2𝜎2⁄ , where S is the signaling trait of a courting male and Sfather the trait of 

the female’s father. Currently, mate searching is conducted randomly with a user-defined 
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number of mates to assess. When the allowed number of assessed mates is equal to the 

male population size, females are guaranteed to mate with their most-preferred male. 

Population 

Currently Admixsimul accommodates two parental populations and an unlimited 

number of admixing populations. Pair-wise migration rates between parental and 

admixed populations can be supplied by the user. When certain rates are set to 0, the 

model can be reduced to the stepping stone, or island model. Migration rates can be set 

differently for any specific generation for any pair-wise populations. Carrying capacity 

can differ between populations. While this value cannot vary by generation in the current 

version, a bottleneck effect can be simulated simply by setting a reduced generation-

specific fitness probability in the natural selection file. 

 

iii. Outputs 

Admixsimul outputs states of functional and neutral loci, as well as phenotypic 

values for all individuals for user-defined ranges of generations. These outputs can then 

be converted to other file formats for analyses. Since the program tracks parent-offspring 

relationships, it is straightforward to reconstruct full pedigrees from the simulated data.  

Currently scripts are supplied to convert SNP data to Admixmap for mapping analysis, 

and to calculate and visualize FIS statistics, ancestry distribution and phenotype 

distributions. When neutral markers are turned off, Admixsimul can be used as a 

general-purpose simulator for evolutionary models that involve quantitative trait loci. 

 

iv. Parallelization 

Admixsimul is parallelized with OpenMP on a multi-core, shared-memory 

computer and performance scales linearly with number of CPUs. Under this 

implementation, simulations are not repeatable due to randomness in the execution 

order. Extension to OpenMPI is planned in future versions. 

 

v. Performance evaluation of recombination algorithm 

We simulated random mating of individuals with recombination in a single population 

for 10 generations to evaluate the speed and scaling of the recombination algorithm. 

Because population size fluctuates around the carrying capacity of 1000, we normalize 

the CPU time to 1000 individuals by dividing observed CPU time by the observed 

population size multiplied by 1000.  

First, we evaluated how an increase in recombination rate (number of break 

points per meiosis) affects speed. We put 10,000 predefined breakpoints (CBs) and 

markers on 10 chromosomes, totaled 100,000 CBs and markers. Note that in real 

applications, the number of CBs and markers are likely much lower. We started from a 

1x rate, which assumes that on average two breakpoints occur per chromosome per 

meiosis. This assumption is very close or higher than most realistic scenarios. We then 

scale up the recombination rate to 10x, 50x and 100x to obtain a linear regression.  The 
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result shows that processing time increases linearly, but slowly, with recombination rate, 

(Time = 0.2691*Recombination_Rate + 13.596). It shows that time increases slowly 

compared to the baseline time required for recombination. For example, increasing 

recombination rate to 2x adds 0.5s to the baseline 13.6s. Because biologically realistic 

recombination rates seldom exceeds our 1x condition, the effects of increase in 

recombination rate are largely negligible.  

Second we evaluated the effect of marker number on speed. We started from the 

same setup as above, and thinned the number of markers (while keeping the CB numbers 

as before) to 10,000, 5,000 and 3,333. In real applications, the number of CB can reduce 

with the markers without any adverse effects. Results show that computation time scales 

linearly with number of simulated markers. On average, adding 10,000 markers results 

in 1 added second in computation time per 1000 individuals.  

All simulations were performed on a computer node with 8-core Intel Xeon 

E5420 CPU at 2.5 GHz, 32GB RAM running CentOS 5.7 x86_64.  

 

vi. Application example 

Here we present a case study using admixsimul to simulate both natural and sexual 

selection acting in concert on a genomic cline. 

Genomic architecture 

We simulated 10 chromosomes each 87cM long, with and 10 neutral markers evenly 

placed on each (we set the number of CB to 100,000, a number that well exceeds marker 

numbers). Chromosomes 1-8 each contain an additive locus coding for the male trait, 

which the females based their preference on. We then modeled the female preference as 

a learned preference. A locus on Chromosome 9 determines whether the females prefer 

or avoid the phenotypes they learned during sexual imprinting (Bailey and Moore 2012).  

For traits under thermal selection, on chromosome 1 we place a locus for cold tolerance, 

and on chromosome 6 we place a locus for heat tolerance. Both loci are 5.5Mb (14.5cM) 

away from the male trait locus. Chromosome 10 harbors a single hemizygous locus for 

sex determination, which results in a 1:1 sex ratio. 

Natural selection 

We use a threshold gamma function to simulate the effects of heat and cold tolerance 

effects conferred by a combination of these two loci given the highest and lowest 

temperatures of the habitat on the cline using the following algorithm:  

min(  

if (ColdTol>0,   

 1 - 1/(1+exp((lowtmp-0)*0.5)) ,  

 1 - 1/(1+exp((lowtmp-8)*0.5)) 

) , 

if (HeatTol>0,  

1/(1+exp((hightmp-38)*0.5)), 

1/(1+exp((temp-25)*0.5)) 

) 

)   
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Values of ColdTol and HeatTol indicate whether the individual harbors the cold and heat 

tolerant alleles. When ColdTol locus is >0, the individual can tolerate a temperature as 

low as 0, otherwise  8. When HeatTol locus is >0, the individual can tolerate up to 38 

degrees, but only 25 degrees otherwise.  

We vary the temperatures linearly based on a cline of the 10 populations by a 0.5 or 1 

degree increment (lowtemp starting from 2, hightemp starting from 10). We also 

seasonally varied the average temperature. In addition, we simulated global warming by 

adding 0.1 degrees per year to the average temperature.  

Sexual selection 

We simulate mate preference based on sexual imprinting. 

if (Psi==0 ,  

1, 

 if(Psi>0, 

 exp( -pow( PrevGenCurrPopCourter_Avg_Signal  - Courter_Signal , 2) 

/(2*pow(2 , 2))) ,  

1 - exp( -pow( PrevGenCurrPopCourter_Avg_Signal - Courter_Signal , 

2) 

/(2*pow(6, 2))) 

)  

) 

 

The mate preference depends on the phenotype Psi, which promotes preference for the 

population average male trait from the previous generation and avoids such preference 

when smaller than 0.  

The cline 

We simulated a cline by placing 8 intermediate hybrid populations between two extreme, 

parental populations and setting appropriate per-generation migration rules, such that 

gene flow is symmetrical from both directions. Parental population 1 has highest 

signaling trait values and negative Psi, while parental population 2 has the opposite. We 

let the cline reach equilibrium with only sexual selection for 100 generations, and then 

we start applying natural selection rules at generation 101 for 20 generations. We then 

visually examine the simulation results by plotting trait values (cold tolerance and male 

trait) against generations and elevation in a 3D surface plot.  

Results 

Admixsimul is able to simultaneously simulate sexual and natural selection with 

phenotypes determined by both complex genetic architectures and indirect genetic 

effects. Before natural selection is in place, sexual selection due to difference in learning 

behavior generates a concave cline compared to random mating expectations on both 

thermal tolerance (Figure A-3) and signaling traits (Figure A-4). After natural selection 

occurs, the cline for thermal tolerance quickly becomes convex but due to weak physical 

linkage, signaling trait cline remains concave.   
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Figures 

 

 
Figure A-1. Linear regression of computational time (seconds per 1000 individuals) on 

recombination rate, where 1 unit = 2 break points/chromosome/generation. Computation 

performed on a computer node with 8-core Intel Xeon E5420 CPU at 2.5 GHz, 32GB 

RAM.  
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Figure A-2. Linear regression of computational time (seconds per 1000 individuals) on 

number of SNP markers simulated (number of predefined breakpoints fixed at 100,000). 

Computation performed on a computer node with 8-core Intel Xeon E5420 CPU at 2.5 

GHz, 32GB RAM.  

 

  
Figure A-3. Heat map of population average cold tolerance trait on a genomic cline. 

Population was initially equilibrated under only sexual selection for 100 generations. 

Starting from generation 101, linear temperature cline was applied with seasonal 

fluctuations. The average temperature also increases by 0.1 degree per year.  
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Figure A-4. Heat map of population average male signal trait on a genomic cline. 

Population was initially equilibrated under only sexual selection for 100 generations. 

Starting from generation 101, linear temperature cline was applied with seasonal 

fluctuations. Note that the male trait loci are in weak physical linkage to the temperature 

adaptation loci.   
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B APPENDIX B 

 

SUPPORTING INFORMATION FOR 

EVOLUTION OF REVERSED HEDONIC VALUE IN LEARNED MATING 

PREFERENCES 

 

i. Evolution of Ψ assuming peer imprinting and paternal imprinting 

 We repeated simulation 1 with peer imprinting and paternal imprinting by 

substituting the average of male trait values of the current generation or paternal trait 

values in s , for the Hhe:Hho proportions 8:0 and 0:8. Results were qualitatively similar 

with oblique imprinting: assuming peer imprinting, Ψ evolved to negative values (-

0.1295 ± 0.0421) when Hhe:Hho =8:0 and positive (0.2057 ± 0.0492) when Hhe:Hho =0:8 

(Figure B-4A); assuming paternal imprinting, Ψ evolved to less extreme negative values 

(-0.0577 ± 0.0227) when Hhe:Hho =8:0 and positive (0.2100 ± 0.0227) when Hhe:Hho =0:8 

(Figure B-4B). 

 

ii. Evolution of Ψ with different baseline frequencies of the rare alleles 

In simulation 1 we used a 1:10 gene flow to maintain a baseline polymorphism of 

the 8 male trait loci (baseline frequency of the rare allele: 9.1%). To explore the effect of 

the baseline frequency of the rare allele on the evolution of Ψ, we ran simulation 1 using 

1:20 and 5:6 gene flow proportions (baseline rare allele frequencies 4.7% and 45.5%), 

with  Hhe:Hho = 0:8 (Figure B-5). When the baseline rare allele frequency was lowered to 

4.7%, Ψ evolves to more negative values and the averages across runs no longer 

overlaps with zero (-0.2050 ± 0.0401). When baseline rare allele frequency is increased 

to 45.5%, Ψ becomes more positive and frequently exceeds zero (-0.0378 ± 0.0509). 

This is an intuitive result because the effect of negative Ψ is to hold the rare allele at a 

high frequency. If this effect is provided by other means (in our case, gene flow), then a 

more negative Ψ need not evolve.  

 

iii. Admixing lineages with divergent Ψ’s assuming peer imprinting 

We repeated simulation 2 with peer imprinting by substituting the average of 

male trait values of the current generation in s , without linkage of  Ψ and male signal. 

As with oblique imprinting, there exists a critical threshold where gene flow no longer 

counteracts the effect of hybridization in breaking up their LD. Compared to oblique 

imprinting, peer imprinting does not result in F1 hybrids during early generations, 

allowing reproductive isolation to be maintained at a higher admixture proportion, up to 

32:68 per generation (pop size=2000) ,before extensive admixture occurs. Past this 

threshold and below 50:50, complete reproductive isolation was briefly maintained for 

50-200 generations prior to extensive admixture, where similar fluctuations in   male 

trait values were observed. 

APPENDIX B 
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iv. Admixing lineages with divergent Ψ’s assuming unimodal preference functions 

Simulation 2 was repeated assuming oblique imprinting with a modified 

unimodal preference function, replacing the directional function we used in the main 

analyses. This unimodal function is more simplistic (Figure B-2B, Figure B-3B):  
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It is only conditioned on the mean male trait value in the imprinted population, 

and females use this mean value as the preference optimum when Ψ>0. When  Ψ<0, 

females flip their preference function by subtracting the probability from 1. This 

approximation is only valid when male trait distribution is close to unimodal. When 

male traits are bimodally distributed, the mean trait value may fall in an interval where 

no male traits are observed. If we assume Ψ>0 in this case, then females would prefer a 

trait that they have never experienced, and vice versa for Ψ<0.  

The admixture result is qualitatively similar to results obtained with directional 

functions (Figure B-9). Elevated FIS is observable up to 30:70 admixture proportion 

between Ψ<0 and Ψ>0 lineages. The isolation, however, is incomplete on a genome-

wide level compared to directional functions. When the proportion exceeds 50:50, 

negative FIS is also less pronounced than the directional function, but nevertheless FIS 

never on average significantly exceeds 0. Twelve out of 100 loci show significant 

negative FIS at an admixture proportion of 90:10 and 8 out of 100 show negative FIS at 

80:20.  

 

v. Hybrid zone genetic patterns 

Genomic resources for X. malinche, X. birchmanni and two independent hybrid 

zones were reported elsewhere (Cui et al. 2013; Schumer et al. 2013; Schumer et al. In 

review) and further analyzed herein to test predictions from simulation 2.  

Detail methods and method validations are described in (Schumer et al. In 

review). Briefly, reference genomes at 35X coverage of X. birchmanni and X. malinche 

were assembled by mapping paired-end reads to the X. maculatus reference genome 

(Schartl et al. 2013). Loci that are polymorphic within species (determined by re-

sequencing 60 individuals from each parental species using multiplexed shotgun 

sequencing (MSG; Andolfatto et al. (2011)) were masked for subsequent analyses. 

Random samples (all males) from two hybrid zones were collected and the ancestry of 

20,609 loci on all 24 chromosomes were imputed by MSG, with an estimated accuracy 

of 98.1%. Because these loci are reciprocally fixed in parental species, the ancestry 
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states were treated as their allelic states. These two hybrid zones were known to differ in 

their ancestry bias and their population structures. Low resolution markers previously 

suggested that Calnali-Mid (CALM) , a X. birchmanni-biased population have a higher 

population structure than Tlatemaco (TLMC), which is a X. malinche-biased population 

(Culumber et al. 2011).  

Hybrid index was calculated as the percentage of loci of X. malinche ancestry. As 

reported previously, TLMC shows a unimodal distribution of hybrid indices while 

CALM shows a bimodal distribution (Figure B-12). 

 FIS was calculated for each locus respectively for TLMC and for the X. 

birchmanni-like subpopulation of CALM, excluding missing data.  Because CALM as a 

whole have bimodal distribution of hybrid index, the lumped FIS is significantly >0 as 

expected by simulation (not shown). Within each sub-population in CALM, however, 

random mating is expected according to our assumption of directional mate preference 

function (see Figure B-2A), thus we use it to obtain a null distribution of   FIS values. We 

tested the two distributions’ deviation from 0 with a Student’s t-test. As predicted from 

simulation 2, the FIS of the X. birchmanni-like subpopulation from CALM does not 

significantly deviate from 0, while TLMC has a mean FIS significantly more negative 

than CALM (Figure 10S). 

Kinship coefficient between individuals in the sample correlates with level of 

assortative mating in the population, because mating with similar individuals increases 

the probability of mating with kin. Simulation 2 predicts that TLMC should have on 

average lower relatedness than CALM due to disassortative mating. We thinned the 

markers so that they are spaced by at least 100kb, we then inferred kinship coefficient 

using REAP (Thornton et al. 2012), a software designed for admixed populations. The 

samples from CALM (both subpopulations included, 0.09860) are more related than the 

samples (t=4.385, d.f.=6411, p=0.00001) from TLMC (0.09305). Further thinning did 

not alter our conclusions.  

One possibility causing the distinct population structure is non-equilibrium state 

in CALM. To rule out the hypothesis that structure in CALM is due to recent 

hybridization, we estimated numbers of generations since initial hybridization through 

ancestry block size. The number of generations after initial admixture in these two 

hybrid zones were inferred by the median ancestry block size of the minor parent using: 

LP
Tadmix

1
   

admixT  -  number of generations past 

L - block size of the minor parent in morgans, assuming a Xiphophorus–specific   

recombination rate at 1 cM/378 kb (Walter et al. 2004a). 

P - proportion ancestry of the major parent.   

We bootstrapped the block sizes to obtain a confidence interval of the estimate. 

TLMC was inferred to have admixed for 378 (95% CI 362-394) generations, CALM for 

276 (95% CI 260-296) generations. These estimates suggest that the genetic patterns in 

these hybrid zones are unlikely a result of non-equilibrium states due to recent admixture 

dynamics.  
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Tables 

Table B-1. General linear model of factors influencing olfactory and visual preference 

indices (net preference for X. birchmanni male stimulus plus 300) in X. birchmanni and 

X. malinche females (Focal female species) reared with exposure to X. birchmanni or  X. 

malinche adults (Exposure models). *  P < 0.05.  Dispersion parameters for quasi-

poisson distribution: olfactory =135.72, visual=61.12. 

 

 Factor d.f. t P 

Olfactory Intercept 67 41.5 <2e-16 

Focal female species 67 -3.709 0.0004* 

Exposure model 67 -2.875 0.0055* 

Focal female species * Exposure model 67 3.980 0.0002* 

Visual Intercept 57 49.2 <2e-16 

Focal female species 57 0.581 0.564 

Exposure model 57 -2.523 0.0146* 

Focal female species * Exposure model 57 1.613 0.113 
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Figures 

 

 
 

Figure B-1. Diploid genome used in simulations.  

All 10 chromosomes are 3.3 × 107 bp long (87.30cM assuming Xiphophorus 

recombination rate of 378kb/cM). The unlinked mode was used in simulation 1 

(evolution of Ψ), while the linked mode was also explored in simulations 2 (admixture) 

in addition to the unlinked mode. Note that “Viability” is only relevant in simulation 1, 

and neutral markers are only relevant in simulation 2. The proportions of red vs. light 

blue loci (Hhe: Hho) were varied in simulation 1.  
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B 

 
Figure B-2 Preference functions in response to different mean male traits.  

A) Directional preference functions used in main analyses with varying mean 

population male signals (dotted lines) and Ψ=0.25 (curves on left) or Ψ=-0.25 (curves 

right). B) Unimodal preference functions used in Appendix B iv with varying means of 

male signals (colors and Ψ’s same as A). Note that under this preference function, when 

male trait distribution is bimodal,  Ψ>0 results in an unrealistic scenario where females 

prefer male traits that are infrequent or even unobserved in the population, and vice 

versa for Ψ<0.  
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Figure B-3. Preference functions with different values of Ψ.  

A) Directional preference functions with varying Ψ’s. Mean male signal = 1 (red dotted 

line). Curves on left have Ψ>0, curves on right have Ψ < 0. B) Unimodal preference 

functions with varying Ψ’s. Mean male signal = 1 (red dotted line).  
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Figure B-4. Evolution of Ψ under different modes of imprinting. 

Mean and S.E.M. of population average Ψ across 10 independent runs plotted against 

generations for each proportion of loci. A) Peer imprinting: females imprint on peer 

males in their cohort; B) Paternal imprinting: females imprint on fathers.  
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Figure B-5. Evolution of Ψ under different frequencies of the rare male trait alleles. 

Hhe : Hho = 8:0, A) baseline rare allele frequency provided by gene flow at 4.7% and B) 

baseline rare allele frequency provided by gene flow at 45.5%. Note that the negative Ψ 

will eventually drive the rare allele frequency close to 50%.  

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 1000 2000 3000 4000 5000

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 1000 2000 3000 4000 5000



 

 126 

 

 
 
Figure B-6. Scatter plots of male trait against fitness showing mean preference function 

(blue line) under different Hhe : Hho proportions in simulation 1 (Figure 1).  

Data are pooled from 10 runs in simulation 1 for generations 4000-5000. Darkness of 

dot represents number of individuals in the sample. Red vertical line is the mean male 

trait in the population for those pooled 1000 generations; blue line is the average mate 

preference function using the Ψ estimates for the corresponding simulations in 

generations 4000-5000. The slope of preference function increases when the proportions 

decreased from 8:0 to 5:3. Switching of the optimal mating strategy occurs between 5:3 

and 4:4, where Ψ changed from negative to positive.  
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Figure B-6. Continued. 
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Figure B-7. Negative correlation between Ψ and male signal (s). 

Hhe : Hho = 8:0. Male signaling trait takes values in the range [0,16], s = 8 in this case 

suggest maximal heterozygosity (more likely to be fit during natural selection, also see  
Figure B-6A). 
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Figure B-8. Reproductive isolation by mixing lineages with divergent Ψ’s can be 

achieved assuming peer imprinting. The ratio of migrants from the lineage with  Ψ < 0  

relative to the lineage with  Ψ > 0 is less than 32:68 individuals per generation, in a 

hybrid population with carrying capacity of 2000. 
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Figure B-8 Continued.  
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Figure B-9. Elevated reproductive isolation by mixing lineages with divergent Ψ’s can 

be achieved assuming oblique imprinting and unimodal preference functions. The gene 

flow from the lineage with  Ψ < 0 :   Ψ > 0 is less than 27:73 individuals per generation, 

in a hybrid population with carrying capacity of 2000. 
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Figure B-9 Continued. 
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Figure B-10. Plots of independent runs of the evolution of Ψ in simulation 1 (Figure 1). 
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Figure B-10 Continued. 
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Figure B-11. Preferences of female Xiphophorus malinche varying in early social 

experience for different stimulus pairs.   

a) Visual cues: computer animations representing mean male X. birchmanni and X. 

malinche phenotypes; b) olfactory cues: water containing male pheromones of each 

species. Bar height represents net association time with the heterospecific X. birchmanni 

± SEM. * p < 0.05, ** p < 0.01, ***  p < 0.001. 
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Figure B-12. Distribution of hybrid indices sampled from two natural hybrid 

populations between X. birchmanni and X. malinche.  

A) Tlatemaco consists of mostly X. malinche-biased individuals showing even 

admixture, while B) Calnali-Mid contains mainly X. birchmanni-biased individuals 

showing highly bimodal distribution of hybrid indices. In both populations hybridization 

is inferred to have occurred for > 100 generations from high-throughput genotyping data 

(Schumer et al. In review).  
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A B  
Figure B-13. Populations with ancestry biased towards the parental species and Ψ < 0 

show an excess of heterozygosity (FIS < 0).  

A) Simulated FIS summarized for each neutral locus across generations 100-1000 with 

admixture proportion Ψ < 0 :   Ψ > 0 = 80 : 20, assuming random mating (green) and 

mate preference affected by oblique imprinting (red). Boxes are the lower and upper 

quartiles. Genome-wide average FIS  significantly more negative than random mating 

across generations (paired t-test, t=9.246, p<<0.001, d.f.=99), especially when markers 

are physically closely linked to the signaling or Ψ loci. B) Observed excess of 

heterozygosity in Tlatemaco (X. malinche ancestry ~72%, FIS  in red bars, mean as red 

line) significantly more evident (t-test, t = -59.41, df = 20608, p-value << 0.001) 

compared to the balanced distribution of FIS around 0 in the X. birchmanni-like 

subpopulation of Calnali-mid (green bars, mean as green line). Note that FIS will be 

significantly larger than 0 if all individuals are included in the analysis of Calnali-mid, 

due to the apparent population structure ( 

Figure B-12B). Within subpopulations, however, random mating is expected based on 

our model assumption of directional preference functions, because the preference 

functions evaluate to uniform in these trait ranges (see Figure B-2A). 
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 C APPENDIX C 

 

SUPPORTING INFORMATION FOR 

EARLY LEARNING TRIGGERS EXPRESSION CHANGES IN NEURAL 

PLASTICITY GENES AND ODORANT RECEPTORS 

 IN XIPHOPHORUS MALINCHE 

 

i. Comparisons of different alignment methods 

Methods of aligning reads to the genome and stringency of alignment parameters can 

potentially have major effects on genes detected as differentially expressed. To 

investigate the possible impact of different aligners and different alignment parameters 

on the genes detected in our analyses, we repeated alignment and all downstream 

analysis steps with STAMPY (Lunter and Goodson 2011) with an expected divergence 

of 0.02. STAMPY does not use an explicit intron-exon model in mapping and also maps 

more divergent reads than other aligners. In addition, we repeated TopHat analysis using 

a more stringent mismatch parameter (2 allowed mismatches instead of 3). The results of 

these three analyses were strikingly similar (Figure C-2), suggesting that our major 

results are not very sensitive to the aligner or alignment parameters used.  
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Figures 

 
Figure C-1. Sampling method of pooled sensory and brain tissue. Brain structure 

drawing modified from (Kermen et al. 2013). A single 45 degree cut was made in front 

of the orbits, taking tissues including lips, olfactory epithelium, olfactory bulb and 

dorsal part of telencephalon. Abbreviations: AN – anterior nostril, PN – posterior 

nostril, OE – olfactory epithelium, OB -  olfactory bulb, TE – telencephalon, ON – optic 

nerve, OT – optic tectum, CB- cerebellum, SC – spinal cord.  
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Figure C-2. Repeatability of differential expression analysis with different read 

mappers. Tophat_2: allowing for two mismatches; Tophat_3: allowing for three 

mismatches; Stampy: expected divergence 0.02. B-M: Differentially expressed (DE) 

genes between birchmanni-malinche exposure treatments; C-M: between control group 

and malinche exposed group; C-B: between control and birchmanni-exposed group. 

Comparisons are performed using an FDR cutoff of 0.05. 
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A B  

B D  

 
 

Figure C-3. Expression levels of genes regulated by CREB. Y-axis: reads per million. 

These genes have the expression pattern Control > birchmanni-exposed > malinche-

exposed. 
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Figure C-4. Transmembrane regions of V2R 6 from X. malinche inferred by TMHMM-

2.0. Blue line- extracellular domain, red line – transmembrane domain, green line – 

intracellular domain. Amino acid differences between X. birchmanni and X. malinche 

are shown:  red asterisk – mutation unique to this species pair; blue triangles – mutation 

also found in one or more of X. clemenciae, X. hellerii and X. maculatus; grey rounded 

dots – ambiguous due to missing data in another species. Putative ligand binding region 

in V2R locates on the extracellular N-terminus (closer to position 0). 
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Tables 

 

Table C-1. Alignment statistics for the samples used in this study with tophat, allowing 

for 3 mismatches. 

 

Sample Number of 
reads 

Percent 
Mapped 

Percent 
multiple 
alignments 

Control female 1 21828760 83.1 1.3 
Control female 2 26403288 81.0 2.1 
Control female 3 25922662 82.0 1.9 
Control female 4 24819697 81.8 2.2 
malinche treated 1 23865638 81.9 1.9 
malinche treated 2 25122442 82.0 1.9 
malinche treated 3 22644001 81.8 1.9 
malinche treated 4 25581923 82.1 1.8 
birchmanni treated 1 24367400 82.1 1.8 
birchmanni treated 2 25207335 80.8 1.9 
birchmanni treated 3 23926948 74.7 2.4 
birchmanni treated 4 21840338 81.5 1.7 
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Table C-2. Differentially expressed genes shared between at least two comparisons. FDR 

p values for BM: birchmanni-exposed vs. malinche-exposed; CM: control vs. malinche-

exposed; CB: control vs. birchmanni-exposed. Only genes annotated with gene symbols 

are shown, for full table, refer to file diff_exp_supptable.xlsx. 

Table C-2. Continued 

GeneName GeneID BM CM CB 

FOSB ENSXMAG00000018663 0.000 0.000 0.000 

DUSP5 ENSXMAG00000007046 0.000 0.000 0.000 

SERPINE1 ENSXMAG00000011952 0.000 0.000 0.037 

HSD3B7 ENSXMAG00000008008 0.000 0.000 0.000 

PTGS2 ENSXMAG00000002418 0.000 0.000 0.000 

LAMC2 ENSXMAG00000011284 0.000 0.000 0.000 

ZBTB7C ENSXMAG00000004232 0.000 0.000 0.001 

EGR1 ENSXMAG00000008996 0.001 0.000 0.000 

HGFAC ENSXMAG00000015841 0.001 0.046 0.000 

KLF4 ENSXMAG00000014131 0.002 0.000 0.000 

GLDC ENSXMAG00000003032 0.003 0.000 0.000 

EEF2K ENSXMAG00000015752 0.004 0.000 0.000 

HMGA1 ENSXMAG00000016571 0.005 0.000 0.000 

DUSP1 ENSXMAG00000009651 0.006 0.000 0.021 

LAMB3 ENSXMAG00000018790 0.006 0.000 0.000 

ATF3 ENSXMAG00000004443 0.006 0.000 0.000 

LAMA3 ENSXMAG00000016504 0.006 0.001 0.000 

DUSP8 ENSXMAG00000019232 0.012 0.000 0.000 

HAS1 ENSXMAG00000010604 0.017 0.000 0.001 

FOS ENSXMAG00000004017 0.018 0.000 0.000 

BNC1 ENSXMAG00000000835 0.019 0.000 0.000 

KLF2 ENSXMAG00000000640 0.023 0.000 0.000 

FOSL1 ENSXMAG00000013157 0.000 > 0.05 0.000 

MMP1 ENSXMAG00000013976 0.000 > 0.05 0.000 

SLC16A12 ENSXMAG00000017203 0.000 > 0.05 0.000 

RFX2 ENSXMAG00000002530 0.000 > 0.05 0.000 

EGR3 ENSXMAG00000001144 0.000 0.000 > 0.05 

MT1F ENSXMAG00000020384 0.000 0.000 > 0.05 

CCKAR ENSXMAG00000009902 0.000 0.000 > 0.05 

USP30 ENSXMAG00000018244 0.001 0.000 > 0.05 

CPNE2 ENSXMAG00000005853 0.001 > 0.05 0.024 

SP140L ENSXMAG00000001258 0.001 0.018 > 0.05 

PRDM8 ENSXMAG00000009993 0.001 0.010 > 0.05 

GRIN1 ENSXMAG00000003092 0.001 0.008 > 0.05 

NPAS4 ENSXMAG00000013170 0.001 > 0.05 0.045 

NRN1 ENSXMAG00000012826 0.001 > 0.05 0.029 

CD44 ENSXMAG00000000801 0.001 > 0.05 0.000 

PHLDA2 ENSXMAG00000019767 0.001 0.015 > 0.05 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

ZNFX1 ENSXMAG00000005859 0.001 > 0.05 0.000 

NPY ENSXMAG00000000838 0.001 > 0.05 0.001 

NEDD9 ENSXMAG00000016120 0.002 0.002 > 0.05 

NRSN2 ENSXMAG00000013627 0.002 > 0.05 0.001 

SOX11 ENSXMAG00000020179 0.002 > 0.05 0.000 

NECAB2 ENSXMAG00000013000 0.002 > 0.05 0.007 

CEBPB ENSXMAG00000019665 0.002 0.000 > 0.05 

TMEM240 ENSXMAG00000012610 0.002 > 0.05 0.027 

CREM ENSXMAG00000006361 0.002 0.000 > 0.05 

RAMP3 ENSXMAG00000006290 0.003 0.017 > 0.05 

SLC6A15 ENSXMAG00000002814 0.003 > 0.05 0.003 

DLK1 ENSXMAG00000007730 0.004 > 0.05 0.006 

NAB2 ENSXMAG00000003591 0.005 0.020 > 0.05 

SEZ6L2 ENSXMAG00000011571 0.005 > 0.05 0.024 

RSAD1 ENSXMAG00000012923 0.005 0.000 > 0.05 

SYBU ENSXMAG00000007087 0.006 > 0.05 0.027 

SLC6A11 ENSXMAG00000017478 0.006 > 0.05 0.029 

GABRD ENSXMAG00000019394 0.006 > 0.05 0.028 

PADI3 ENSXMAG00000017865 0.006 0.016 > 0.05 

MAFK ENSXMAG00000009331 0.006 0.000 > 0.05 

PRRT1 ENSXMAG00000014134 0.012 > 0.05 0.011 

KIFC2 ENSXMAG00000014088 0.013 > 0.05 0.019 

SKIL ENSXMAG00000000477 0.016 > 0.05 0.000 

FZD10 ENSXMAG00000020088 0.017 > 0.05 0.001 

AHNAK ENSXMAG00000010087 0.019 > 0.05 0.000 

AK5 ENSXMAG00000016357 0.020 > 0.05 0.015 

ELAVL2 ENSXMAG00000004750 0.022 > 0.05 0.043 

SNCA ENSXMAG00000014135 0.022 > 0.05 0.031 

RASA3 ENSXMAG00000019239 0.022 > 0.05 0.000 

TIMP3 ENSXMAG00000010147 0.023 > 0.05 0.007 

INPP1 ENSXMAG00000003597 0.024 0.000 > 0.05 

TPPP ENSXMAG00000014084 0.024 0.006 > 0.05 

STAT2 ENSXMAG00000002056 0.024 > 0.05 0.000 

DNER ENSXMAG00000010820 0.027 > 0.05 0.018 

NAV2 ENSXMAG00000010189 0.031 > 0.05 0.000 

RABGAP1 ENSXMAG00000010078 0.031 0.009 > 0.05 

MAP3K5 ENSXMAG00000016278 0.037 0.000 > 0.05 

GPR152 ENSXMAG00000019184 0.038 0.000 > 0.05 

ESRP1 ENSXMAG00000013126 0.039 0.029 > 0.05 

RASSF6 ENSXMAG00000004159 0.039 > 0.05 0.004 

HBEGF ENSXMAG00000010006 0.041 0.001 > 0.05 

ZFPM2 ENSXMAG00000003403 0.041 > 0.05 0.041 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

NDRG4 ENSXMAG00000015838 0.041 > 0.05 0.010 

TNMD ENSXMAG00000013726 0.045 > 0.05 0.000 

ACTG1 ENSXMAG00000015551 0.045 > 0.05 0.002 

AMER2 ENSXMAG00000000702 0.046 > 0.05 0.008 

ABCA12 ENSXMAG00000015970 > 0.05 0.000 0.043 

ABCB7 ENSXMAG00000009070 > 0.05 0.007 0.028 

ABCE1 ENSXMAG00000001778 > 0.05 0.004 0.024 

ABCF2 ENSXMAG00000001927 > 0.05 0.000 0.000 

ABCF3 ENSXMAG00000014038 > 0.05 0.004 0.001 

ABHD14B ENSXMAG00000016772 > 0.05 0.047 0.044 

ABHD15 ENSXMAG00000008472 > 0.05 0.000 0.000 

ABHD17B ENSXMAG00000001288 > 0.05 0.000 0.000 

ABTB1 ENSXMAG00000015862 > 0.05 0.006 0.005 

ACBD3 ENSXMAG00000007475 > 0.05 0.000 0.000 

ACER2 ENSXMAG00000005820 > 0.05 0.038 0.004 

ACOT7 ENSXMAG00000018646 > 0.05 0.000 0.000 

ACOX1 ENSXMAG00000006043 > 0.05 0.027 0.006 

ADA ENSXMAG00000001249 > 0.05 0.000 0.000 

ADAM19 ENSXMAG00000010315 > 0.05 0.000 0.000 

ADAMTS18 ENSXMAG00000014796 > 0.05 0.032 0.034 

AFTPH ENSXMAG00000015767 > 0.05 0.037 0.007 

AGO3 ENSXMAG00000007141 > 0.05 0.000 0.000 

AGTR1 ENSXMAG00000020155 > 0.05 0.000 0.000 

AGXT2L1 ENSXMAG00000014966 > 0.05 0.000 0.000 

AGXT2L2 ENSXMAG00000008961 > 0.05 0.018 0.003 

ALPK1 ENSXMAG00000011532 > 0.05 0.005 0.035 

AMMECR1 ENSXMAG00000005004 > 0.05 0.001 0.003 

AMT ENSXMAG00000019322 > 0.05 0.013 0.013 

ANGPTL5 ENSXMAG00000010840 > 0.05 0.002 0.000 

ANKFN1 ENSXMAG00000016934 > 0.05 0.007 0.041 

ANKRD13B ENSXMAG00000012073 > 0.05 0.004 0.029 

ANKRD32 ENSXMAG00000019402 > 0.05 0.002 0.037 

ANKRD50 ENSXMAG00000018353 > 0.05 0.009 0.000 

ANO6 ENSXMAG00000004021 > 0.05 0.008 0.008 

AP1G1 ENSXMAG00000005983 > 0.05 0.006 0.005 

APLP1 ENSXMAG00000010499 > 0.05 0.006 0.000 

APPL2 ENSXMAG00000017453 > 0.05 0.002 0.008 

AQP3 ENSXMAG00000019407 > 0.05 0.000 0.000 

ARFGAP2 ENSXMAG00000014012 > 0.05 0.025 0.031 

ARG2 ENSXMAG00000014792 > 0.05 0.000 0.000 

ARHGEF26 ENSXMAG00000001477 > 0.05 0.000 0.000 

ARHGEF33 ENSXMAG00000017168 > 0.05 0.001 0.004 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

ARID5B ENSXMAG00000018209 > 0.05 0.000 0.000 

ARL14EP ENSXMAG00000000016 > 0.05 0.013 0.003 

ARNTL ENSXMAG00000015619 > 0.05 0.000 0.001 

ARTN ENSXMAG00000003941 > 0.05 0.031 0.006 

ASTE1 ENSXMAG00000004808 > 0.05 0.043 0.016 

ATAD3A ENSXMAG00000016601 > 0.05 0.000 0.000 

ATL2 ENSXMAG00000018291 > 0.05 0.004 0.015 

ATP10B ENSXMAG00000009322 > 0.05 0.000 0.039 

ATP11C ENSXMAG00000013304 > 0.05 0.000 0.002 

ATP13A1 ENSXMAG00000013346 > 0.05 0.002 0.002 

ATP8B1 ENSXMAG00000002723 > 0.05 0.000 0.004 

ATXN1L ENSXMAG00000005978 > 0.05 0.009 0.023 

ATXN2L ENSXMAG00000010133 > 0.05 0.003 0.000 

AVPI1 ENSXMAG00000020097 > 0.05 0.000 0.004 

BANK1 ENSXMAG00000008559 > 0.05 0.000 0.024 

BARD1 ENSXMAG00000015997 > 0.05 0.012 0.032 

BARX1 ENSXMAG00000007527 > 0.05 0.003 0.044 

BARX2 ENSXMAG00000000962 > 0.05 0.000 0.000 

BAZ1A ENSXMAG00000004820 > 0.05 0.005 0.004 

BCKDK ENSXMAG00000008794 > 0.05 0.000 0.000 

BMP4 ENSXMAG00000000766 > 0.05 0.034 0.024 

BSPRY ENSXMAG00000005501 > 0.05 0.000 0.000 

BTBD1 ENSXMAG00000015211 > 0.05 0.028 0.047 

C10ORF118 ENSXMAG00000008110 > 0.05 0.001 0.000 

C10ORF54 ENSXMAG00000004819 > 0.05 0.010 0.010 

C12ORF23 ENSXMAG00000001688 > 0.05 0.003 0.001 

C2CD4A ENSXMAG00000020324 > 0.05 0.000 0.000 

CABLES1 ENSXMAG00000016420 > 0.05 0.003 0.002 

CAD ENSXMAG00000005369 > 0.05 0.007 0.006 

CAPN8 ENSXMAG00000006017 > 0.05 0.000 0.005 

CAPN9 ENSXMAG00000016015 > 0.05 0.000 0.005 

CARD11 ENSXMAG00000001085 > 0.05 0.011 0.001 

CARM1 ENSXMAG00000002542 > 0.05 0.000 0.000 

CASC3 ENSXMAG00000013937 > 0.05 0.000 0.000 

CASZ1 ENSXMAG00000011322 > 0.05 0.000 0.000 

CAT ENSXMAG00000019152 > 0.05 0.004 0.022 

CCBE1 ENSXMAG00000004414 > 0.05 0.004 0.001 

CCDC85B ENSXMAG00000019513 > 0.05 0.005 0.000 

CCDC89 ENSXMAG00000004854 > 0.05 0.005 0.022 

CCNT2 ENSXMAG00000002028 > 0.05 0.000 0.000 

CCPG1 ENSXMAG00000014277 > 0.05 0.004 0.040 

CDC42BPB ENSXMAG00000013537 > 0.05 0.000 0.000 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

CDCA7 ENSXMAG00000005311 > 0.05 0.002 0.012 

CDK12 ENSXMAG00000008716 > 0.05 0.000 0.000 

CDS1 ENSXMAG00000010049 > 0.05 0.000 0.010 

CDV3 ENSXMAG00000001835 > 0.05 0.006 0.008 

CHMP2B ENSXMAG00000008780 > 0.05 0.000 0.001 

CHPF2 ENSXMAG00000001943 > 0.05 0.011 0.000 

CKAP4 ENSXMAG00000001319 > 0.05 0.030 0.001 

CLDN23 ENSXMAG00000020077 > 0.05 0.000 0.000 

CLIC3 ENSXMAG00000001265 > 0.05 0.000 0.000 

CLPTM1 ENSXMAG00000004298 > 0.05 0.001 0.000 

CLTC ENSXMAG00000000159 > 0.05 0.002 0.035 

CMIP ENSXMAG00000006193 > 0.05 0.001 0.000 

CNKSR1 ENSXMAG00000013641 > 0.05 0.030 0.002 

CNPPD1 ENSXMAG00000003024 > 0.05 0.000 0.014 

COASY ENSXMAG00000015601 > 0.05 0.041 0.013 

COQ10A ENSXMAG00000011840 > 0.05 0.000 0.000 

CPEB2 ENSXMAG00000002128 > 0.05 0.009 0.012 

CPEB3 ENSXMAG00000007652 > 0.05 0.011 0.044 

CRY1 ENSXMAG00000009278 > 0.05 0.002 0.008 

CSNK1D ENSXMAG00000003430 > 0.05 0.002 0.000 

CXADR ENSXMAG00000001502 > 0.05 0.008 0.022 

CYB5B ENSXMAG00000003284 > 0.05 0.005 0.000 

CYP1A2 ENSXMAG00000016761 > 0.05 0.002 0.005 

CYP24A1 ENSXMAG00000010218 > 0.05 0.000 0.000 

CYP26C1 ENSXMAG00000004889 > 0.05 0.000 0.022 

CYP27B1 ENSXMAG00000005176 > 0.05 0.000 0.022 

CYSLTR1 ENSXMAG00000017569 > 0.05 0.000 0.000 

DAO ENSXMAG00000018217 > 0.05 0.035 0.039 

DAPL1 ENSXMAG00000011382 > 0.05 0.007 0.037 

DCUN1D5 ENSXMAG00000004471 > 0.05 0.020 0.000 

DDB2 ENSXMAG00000003694 > 0.05 0.001 0.003 

DDC ENSXMAG00000000755 > 0.05 0.047 0.002 

DDHD1 ENSXMAG00000009680 > 0.05 0.002 0.017 

DDIT3 ENSXMAG00000017918 > 0.05 0.014 0.025 

DDX47 ENSXMAG00000008268 > 0.05 0.027 0.034 

DGKG ENSXMAG00000005254 > 0.05 0.007 0.036 

DGKQ ENSXMAG00000015446 > 0.05 0.017 0.015 

DHDDS ENSXMAG00000013272 > 0.05 0.001 0.000 

DHDH ENSXMAG00000000038 > 0.05 0.034 0.014 

DHRS1 ENSXMAG00000009929 > 0.05 0.001 0.025 

DHX30 ENSXMAG00000016336 > 0.05 0.001 0.003 

DNAJC4 ENSXMAG00000003217 > 0.05 0.000 0.003 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

DNAJC9 ENSXMAG00000018555 > 0.05 0.025 0.022 

DNMT3B ENSXMAG00000009115 > 0.05 0.000 0.025 

DNTTIP2 ENSXMAG00000003347 > 0.05 0.001 0.000 

DOM3Z ENSXMAG00000001092 > 0.05 0.033 0.036 

DOT1L ENSXMAG00000012854 > 0.05 0.000 0.000 

DPAGT1 ENSXMAG00000005959 > 0.05 0.007 0.030 

DSC1 ENSXMAG00000016712 > 0.05 0.000 0.000 

DTWD2 ENSXMAG00000018696 > 0.05 0.023 0.016 

DTX1 ENSXMAG00000015100 > 0.05 0.003 0.016 

DUSP2 ENSXMAG00000014933 > 0.05 0.000 0.000 

ECE1 ENSXMAG00000017683 > 0.05 0.000 0.000 

EDA ENSXMAG00000009620 > 0.05 0.002 0.049 

EDAR ENSXMAG00000016298 > 0.05 0.000 0.000 

EGFL6 ENSXMAG00000004416 > 0.05 0.047 0.017 

EGFL8 ENSXMAG00000005711 > 0.05 0.032 0.008 

EGLN3 ENSXMAG00000000068 > 0.05 0.000 0.000 

EHHADH ENSXMAG00000015547 > 0.05 0.017 0.012 

ELANE ENSXMAG00000012492 > 0.05 0.017 0.008 

ELF2 ENSXMAG00000017764 > 0.05 0.000 0.011 

ELF4 ENSXMAG00000013721 > 0.05 0.001 0.003 

ELOVL5 ENSXMAG00000010261 > 0.05 0.000 0.000 

ELOVL7 ENSXMAG00000015573 > 0.05 0.000 0.000 

ELTD1 ENSXMAG00000017894 > 0.05 0.049 0.001 

EMC4 ENSXMAG00000001312 > 0.05 0.006 0.015 

ENTPD3 ENSXMAG00000000746 > 0.05 0.000 0.000 

ENTPD7 ENSXMAG00000005683 > 0.05 0.000 0.000 

EPGN ENSXMAG00000010272 > 0.05 0.000 0.013 

EPS15L1 ENSXMAG00000000632 > 0.05 0.019 0.020 

EPT1 ENSXMAG00000010844 > 0.05 0.000 0.000 

ERBB2 ENSXMAG00000018390 > 0.05 0.000 0.000 

ERGIC1 ENSXMAG00000009666 > 0.05 0.028 0.002 

ETF1 ENSXMAG00000004958 > 0.05 0.001 0.000 

ETNK2 ENSXMAG00000008864 > 0.05 0.000 0.000 

ETV7 ENSXMAG00000008241 > 0.05 0.036 0.027 

EYA2 ENSXMAG00000019373 > 0.05 0.014 0.000 

EZH1 ENSXMAG00000009130 > 0.05 0.002 0.015 

EZH2 ENSXMAG00000012115 > 0.05 0.015 0.006 

FAHD2B ENSXMAG00000014921 > 0.05 0.003 0.022 

FAM101A ENSXMAG00000011724 > 0.05 0.000 0.000 

FAM110C ENSXMAG00000007737 > 0.05 0.002 0.001 

FAM120C ENSXMAG00000009559 > 0.05 0.000 0.000 

FAM13A ENSXMAG00000009862 > 0.05 0.001 0.011 
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FAM175B ENSXMAG00000012550 > 0.05 0.024 0.037 

FAM208B ENSXMAG00000016889 > 0.05 0.001 0.020 

FAM214A ENSXMAG00000018302 > 0.05 0.005 0.004 

FAM60A ENSXMAG00000009068 > 0.05 0.000 0.011 

FAM65C ENSXMAG00000012157 > 0.05 0.005 0.023 

FAM83C ENSXMAG00000017094 > 0.05 0.039 0.001 

FBXO10 ENSXMAG00000012473 > 0.05 0.045 0.001 

FBXO30 ENSXMAG00000015378 > 0.05 0.000 0.002 

FBXW7 ENSXMAG00000008053 > 0.05 0.000 0.000 

FCGBP ENSXMAG00000010439 > 0.05 0.000 0.001 

FDFT1 ENSXMAG00000003786 > 0.05 0.031 0.045 

FECH ENSXMAG00000001624 > 0.05 0.000 0.000 

FERMT2 ENSXMAG00000009635 > 0.05 0.003 0.001 

FGF16 ENSXMAG00000009107 > 0.05 0.000 0.001 

FGF18 ENSXMAG00000008345 > 0.05 0.000 0.000 

FGF2 ENSXMAG00000018373 > 0.05 0.034 0.000 

FGFR2 ENSXMAG00000009512 > 0.05 0.004 0.025 

FILIP1L ENSXMAG00000009955 > 0.05 0.000 0.000 

FKBP5 ENSXMAG00000015416 > 0.05 0.000 0.000 

FKBP8 ENSXMAG00000012879 > 0.05 0.049 0.050 

FOXN1 ENSXMAG00000011786 > 0.05 0.000 0.000 

FOXN3 ENSXMAG00000001667 > 0.05 0.037 0.031 

FOXO4 ENSXMAG00000013124 > 0.05 0.000 0.000 

FOXO5 ENSXMAG00000003269 > 0.05 0.000 0.000 

FOXRED1 ENSXMAG00000011302 > 0.05 0.001 0.033 

G3BP1 ENSXMAG00000019255 > 0.05 0.000 0.000 

G3BP2 ENSXMAG00000010011 > 0.05 0.000 0.000 

GALNT3 ENSXMAG00000011705 > 0.05 0.000 0.002 

GAN ENSXMAG00000006216 > 0.05 0.050 0.015 

GAS2L1 ENSXMAG00000017929 > 0.05 0.002 0.000 

GCLC ENSXMAG00000010230 > 0.05 0.006 0.012 

GDPD2 ENSXMAG00000013255 > 0.05 0.005 0.002 

GDPD3 ENSXMAG00000011975 > 0.05 0.000 0.000 

GFM1 ENSXMAG00000000261 > 0.05 0.000 0.000 

GFOD1 ENSXMAG00000005406 > 0.05 0.026 0.017 

GFOD2 ENSXMAG00000014083 > 0.05 0.009 0.032 

GFPT2 ENSXMAG00000008775 > 0.05 0.041 0.044 

GLCE ENSXMAG00000000463 > 0.05 0.020 0.002 

GMPPB ENSXMAG00000013349 > 0.05 0.000 0.001 

GNA15 ENSXMAG00000013441 > 0.05 0.000 0.000 

GNE ENSXMAG00000006581 > 0.05 0.000 0.000 

GOPC ENSXMAG00000005257 > 0.05 0.014 0.037 
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GPR124 ENSXMAG00000001857 > 0.05 0.020 0.009 

GPR132 ENSXMAG00000019758 > 0.05 0.004 0.001 

GRAP2 ENSXMAG00000000013 > 0.05 0.003 0.011 

GRASP ENSXMAG00000011711 > 0.05 0.000 0.003 

GRB7 ENSXMAG00000016919 > 0.05 0.029 0.001 

GRHL3 ENSXMAG00000013634 > 0.05 0.002 0.001 

H1F0 ENSXMAG00000020306 > 0.05 0.000 0.000 

HACL1 ENSXMAG00000013857 > 0.05 0.001 0.013 

HEATR6 ENSXMAG00000010799 > 0.05 0.000 0.000 

HERPUD1 ENSXMAG00000015722 > 0.05 0.032 0.028 

HEYL ENSXMAG00000006950 > 0.05 0.014 0.008 

HIF3A ENSXMAG00000003186 > 0.05 0.000 0.000 

HIGD1C ENSXMAG00000005817 > 0.05 0.000 0.000 

HMGXB3 ENSXMAG00000008628 > 0.05 0.009 0.014 

HNRNPU ENSXMAG00000010356 > 0.05 0.030 0.042 

HOMER2 ENSXMAG00000002059 > 0.05 0.000 0.000 

HOMEZ ENSXMAG00000020098 > 0.05 0.005 0.001 

HOOK2 ENSXMAG00000009113 > 0.05 0.000 0.012 

HPRT1 ENSXMAG00000017356 > 0.05 0.002 0.006 

HPS1 ENSXMAG00000002534 > 0.05 0.009 0.021 

HSD17B3 ENSXMAG00000015794 > 0.05 0.000 0.002 

HSPA12B ENSXMAG00000008789 > 0.05 0.008 0.038 

HSPA13 ENSXMAG00000010122 > 0.05 0.003 0.000 

HYAL4 ENSXMAG00000014418 > 0.05 0.004 0.005 

HYOU1 ENSXMAG00000001626 > 0.05 0.000 0.004 

ICMT ENSXMAG00000004596 > 0.05 0.004 0.005 

ID2 ENSXMAG00000008031 > 0.05 0.000 0.003 

IDE ENSXMAG00000007681 > 0.05 0.000 0.013 

IER5L ENSXMAG00000000145 > 0.05 0.000 0.000 

IFFO2 ENSXMAG00000017316 > 0.05 0.000 0.000 

IFRD1 ENSXMAG00000009043 > 0.05 0.000 0.000 

IGSF8 ENSXMAG00000017842 > 0.05 0.018 0.000 

IKBIP ENSXMAG00000001321 > 0.05 0.034 0.033 

IL17C ENSXMAG00000006238 > 0.05 0.000 0.003 

IL17RE ENSXMAG00000015725 > 0.05 0.008 0.000 

IL1RAP ENSXMAG00000014781 > 0.05 0.041 0.000 

IL20RA ENSXMAG00000007111 > 0.05 0.000 0.011 

ILVBL ENSXMAG00000001360 > 0.05 0.008 0.013 

IMP4 ENSXMAG00000004915 > 0.05 0.007 0.010 

INPP5F ENSXMAG00000007830 > 0.05 0.022 0.011 

IPMK ENSXMAG00000014549 > 0.05 0.000 0.000 

IPO4 ENSXMAG00000006041 > 0.05 0.007 0.005 
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IPO5 ENSXMAG00000004307 > 0.05 0.000 0.000 

IPO7 ENSXMAG00000009410 > 0.05 0.005 0.012 

IPPK ENSXMAG00000004787 > 0.05 0.000 0.001 

IRF7 ENSXMAG00000015063 > 0.05 0.000 0.047 

IRS4 ENSXMAG00000014720 > 0.05 0.021 0.015 

IRX3 ENSXMAG00000016177 > 0.05 0.000 0.011 

ISCA1 ENSXMAG00000002782 > 0.05 0.000 0.000 

ITGA4 ENSXMAG00000001540 > 0.05 0.000 0.000 

ITGB4 ENSXMAG00000012430 > 0.05 0.000 0.000 

ITSN1 ENSXMAG00000013547 > 0.05 0.000 0.000 

JAG1 ENSXMAG00000006308 > 0.05 0.011 0.000 

JHDM1D ENSXMAG00000004648 > 0.05 0.000 0.000 

JMJD1C ENSXMAG00000014154 > 0.05 0.000 0.002 

JUP ENSXMAG00000000209 > 0.05 0.000 0.005 

KAT2B ENSXMAG00000003253 > 0.05 0.035 0.004 

KCNQ5 ENSXMAG00000012035 > 0.05 0.001 0.006 

KCTD3 ENSXMAG00000017642 > 0.05 0.000 0.010 

KDELC1 ENSXMAG00000011560 > 0.05 0.000 0.004 

KEAP1 ENSXMAG00000007183 > 0.05 0.000 0.000 

KIAA0196 ENSXMAG00000008620 > 0.05 0.017 0.047 

KIAA1324 ENSXMAG00000010362 > 0.05 0.004 0.013 

KIF7 ENSXMAG00000013974 > 0.05 0.004 0.000 

KLC1 ENSXMAG00000018455 > 0.05 0.005 0.004 

KLF12 ENSXMAG00000011014 > 0.05 0.030 0.001 

KLF13 ENSXMAG00000003301 > 0.05 0.000 0.000 

KLF8 ENSXMAG00000005126 > 0.05 0.018 0.041 

KLF9 ENSXMAG00000001428 > 0.05 0.000 0.000 

KLHL12 ENSXMAG00000011484 > 0.05 0.001 0.000 

KLHL9 ENSXMAG00000012602 > 0.05 0.037 0.000 

KPNA3 ENSXMAG00000011285 > 0.05 0.000 0.000 

KPNA6 ENSXMAG00000000350 > 0.05 0.003 0.040 

KREMEN1 ENSXMAG00000002678 > 0.05 0.000 0.000 

LACTB2 ENSXMAG00000006526 > 0.05 0.042 0.043 

LEPR ENSXMAG00000002246 > 0.05 0.000 0.000 

LEPREL2 ENSXMAG00000011089 > 0.05 0.023 0.035 

LETM1 ENSXMAG00000008107 > 0.05 0.013 0.009 

LGR6 ENSXMAG00000008206 > 0.05 0.005 0.000 

LHPP ENSXMAG00000016538 > 0.05 0.043 0.016 

LIMK2 ENSXMAG00000018076 > 0.05 0.000 0.000 

LMTK2 ENSXMAG00000014669 > 0.05 0.018 0.034 

LPL ENSXMAG00000003404 > 0.05 0.005 0.001 

LRCH3 ENSXMAG00000014055 > 0.05 0.008 0.015 
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LRIG3 ENSXMAG00000010178 > 0.05 0.004 0.000 

LRR1 ENSXMAG00000010950 > 0.05 0.000 0.000 

LRRC1 ENSXMAG00000010214 > 0.05 0.000 0.000 

LRRC45 ENSXMAG00000014712 > 0.05 0.032 0.015 

LRRC58 ENSXMAG00000004050 > 0.05 0.024 0.005 

LRRCC1 ENSXMAG00000007622 > 0.05 0.001 0.033 

LSM12 ENSXMAG00000017589 > 0.05 0.047 0.027 

LSR ENSXMAG00000006612 > 0.05 0.008 0.002 

MACC1 ENSXMAG00000010861 > 0.05 0.003 0.000 

MAP3K19 ENSXMAG00000002035 > 0.05 0.000 0.006 

MAP3K4 ENSXMAG00000009609 > 0.05 0.019 0.000 

MAPK7 ENSXMAG00000013778 > 0.05 0.003 0.031 

MAPRE1 ENSXMAG00000009094 > 0.05 0.017 0.011 

MARK2 ENSXMAG00000008732 > 0.05 0.003 0.030 

MARS ENSXMAG00000017920 > 0.05 0.020 0.005 

MBD3L2 ENSXMAG00000003932 > 0.05 0.013 0.000 

MBD4 ENSXMAG00000017444 > 0.05 0.022 0.036 

MBOAT1 ENSXMAG00000009682 > 0.05 0.000 0.000 

MDC1 ENSXMAG00000010974 > 0.05 0.018 0.011 

MEIS2 ENSXMAG00000009557 > 0.05 0.000 0.001 

MEX3D ENSXMAG00000019311 > 0.05 0.001 0.001 

MFSD12 ENSXMAG00000018868 > 0.05 0.030 0.009 

MFSD6 ENSXMAG00000010414 > 0.05 0.000 0.000 

MFSD6L ENSXMAG00000020358 > 0.05 0.001 0.002 

MFSD9 ENSXMAG00000011576 > 0.05 0.001 0.000 

MGLL ENSXMAG00000009052 > 0.05 0.050 0.007 

MGST1 ENSXMAG00000015719 > 0.05 0.006 0.000 

MIDN ENSXMAG00000012420 > 0.05 0.000 0.000 

MKNK2 ENSXMAG00000002666 > 0.05 0.002 0.000 

MLEC ENSXMAG00000002971 > 0.05 0.000 0.000 

MORC3 ENSXMAG00000004110 > 0.05 0.013 0.004 

MPV17L2 ENSXMAG00000002525 > 0.05 0.002 0.000 

MSX1 ENSXMAG00000018444 > 0.05 0.012 0.006 

MTHFR ENSXMAG00000012737 > 0.05 0.023 0.025 

MXD1 ENSXMAG00000004566 > 0.05 0.000 0.003 

MYCN ENSXMAG00000003386 > 0.05 0.001 0.010 

MYH14 ENSXMAG00000012405 > 0.05 0.000 0.000 

MYO1E ENSXMAG00000006657 > 0.05 0.000 0.002 

MYO5B ENSXMAG00000013502 > 0.05 0.000 0.003 

MYSM1 ENSXMAG00000011201 > 0.05 0.046 0.039 

MYZAP ENSXMAG00000014372 > 0.05 0.000 0.003 

NAA25 ENSXMAG00000005930 > 0.05 0.039 0.038 
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NAA30 ENSXMAG00000008386 > 0.05 0.004 0.032 

NCLN ENSXMAG00000018708 > 0.05 0.000 0.000 

NEDD4 ENSXMAG00000011211 > 0.05 0.000 0.000 

NEIL1 ENSXMAG00000015912 > 0.05 0.000 0.000 

NEK1 ENSXMAG00000011778 > 0.05 0.039 0.044 

NFE2L3 ENSXMAG00000001015 > 0.05 0.000 0.000 

NIPA2 ENSXMAG00000016124 > 0.05 0.000 0.000 

NIPAL3 ENSXMAG00000007686 > 0.05 0.001 0.000 

NKRF ENSXMAG00000013716 > 0.05 0.020 0.009 

NOD1 ENSXMAG00000001359 > 0.05 0.004 0.029 

NOS1 ENSXMAG00000002504 > 0.05 0.000 0.000 

NOXO1 ENSXMAG00000007295 > 0.05 0.021 0.021 

NPC1 ENSXMAG00000016426 > 0.05 0.000 0.000 

NR1I2 ENSXMAG00000003990 > 0.05 0.038 0.005 

NT5C ENSXMAG00000002512 > 0.05 0.013 0.044 

NT5DC2 ENSXMAG00000016109 > 0.05 0.000 0.000 

NTHL1 ENSXMAG00000012778 > 0.05 0.006 0.026 

NUFIP2 ENSXMAG00000012404 > 0.05 0.004 0.008 

NUMB ENSXMAG00000003561 > 0.05 0.000 0.000 

NUP153 ENSXMAG00000003437 > 0.05 0.001 0.002 

OAF ENSXMAG00000008884 > 0.05 0.002 0.000 

ODC1 ENSXMAG00000018490 > 0.05 0.000 0.000 

OFD1 ENSXMAG00000004394 > 0.05 0.037 0.002 

OSR1 ENSXMAG00000015661 > 0.05 0.000 0.000 

OSTC ENSXMAG00000015007 > 0.05 0.001 0.000 

P2RY6 ENSXMAG00000018087 > 0.05 0.007 0.042 

PACS1 ENSXMAG00000008449 > 0.05 0.030 0.039 

PAQR5 ENSXMAG00000000461 > 0.05 0.000 0.000 

PARD6A ENSXMAG00000016111 > 0.05 0.000 0.003 

PCGF2 ENSXMAG00000018149 > 0.05 0.011 0.001 

PCK1 ENSXMAG00000010445 > 0.05 0.000 0.001 

PDCD4 ENSXMAG00000006928 > 0.05 0.002 0.021 

PDE4D ENSXMAG00000015552 > 0.05 0.047 0.007 

PDE8A ENSXMAG00000002082 > 0.05 0.020 0.040 

PDGFC ENSXMAG00000002233 > 0.05 0.007 0.006 

PDK2 ENSXMAG00000014954 > 0.05 0.000 0.000 

PDK3 ENSXMAG00000019098 > 0.05 0.008 0.026 

PDP1 ENSXMAG00000013155 > 0.05 0.000 0.000 

PDPK1 ENSXMAG00000018875 > 0.05 0.002 0.003 

PDS5B ENSXMAG00000008480 > 0.05 0.003 0.000 

PDZD11 ENSXMAG00000013263 > 0.05 0.000 0.000 

PEX1 ENSXMAG00000002844 > 0.05 0.011 0.004 
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PEX5 ENSXMAG00000011133 > 0.05 0.018 0.006 

PFAS ENSXMAG00000011539 > 0.05 0.030 0.038 

PGBD4 ENSXMAG00000020313 > 0.05 0.041 0.003 

PGP ENSXMAG00000011747 > 0.05 0.024 0.000 

PHKG2 ENSXMAG00000018776 > 0.05 0.000 0.000 

PHYHD1 ENSXMAG00000005677 > 0.05 0.007 0.002 

PIAS4 ENSXMAG00000012759 > 0.05 0.022 0.020 

PIGO ENSXMAG00000004993 > 0.05 0.024 0.012 

PIM1 ENSXMAG00000016388 > 0.05 0.002 0.000 

PITPNB ENSXMAG00000001916 > 0.05 0.000 0.000 

PITX1 ENSXMAG00000008331 > 0.05 0.000 0.043 

PLCB4 ENSXMAG00000008481 > 0.05 0.011 0.015 

PLCG1 ENSXMAG00000015379 > 0.05 0.000 0.003 

PLEKHG7 ENSXMAG00000001345 > 0.05 0.000 0.000 

PLIN4 ENSXMAG00000013240 > 0.05 0.000 0.031 

PLSCR3 ENSXMAG00000015802 > 0.05 0.032 0.033 

PMM1 ENSXMAG00000006944 > 0.05 0.000 0.003 

PNKP ENSXMAG00000002791 > 0.05 0.008 0.008 

PNPLA2 ENSXMAG00000003849 > 0.05 0.008 0.000 

POLG ENSXMAG00000000917 > 0.05 0.002 0.002 

POLR2A ENSXMAG00000015687 > 0.05 0.002 0.027 

POLR3B ENSXMAG00000001568 > 0.05 0.006 0.015 

POLR3C ENSXMAG00000016215 > 0.05 0.010 0.030 

POLRMT ENSXMAG00000012464 > 0.05 0.030 0.003 

PPARGC1B ENSXMAG00000019179 > 0.05 0.014 0.000 

PPL ENSXMAG00000014943 > 0.05 0.000 0.000 

PPP2R2D ENSXMAG00000012743 > 0.05 0.002 0.019 

PPP4C ENSXMAG00000002510 > 0.05 0.002 0.000 

PRDM15 ENSXMAG00000013849 > 0.05 0.012 0.002 

PRKAA1 ENSXMAG00000016837 > 0.05 0.008 0.007 

PRMT5 ENSXMAG00000000469 > 0.05 0.000 0.000 

PRPF4B ENSXMAG00000001762 > 0.05 0.029 0.011 

PRRG4 ENSXMAG00000014189 > 0.05 0.026 0.000 

PRSS12 ENSXMAG00000017835 > 0.05 0.013 0.018 

PTDSS2 ENSXMAG00000000545 > 0.05 0.000 0.000 

PTGES ENSXMAG00000005893 > 0.05 0.046 0.018 

PTGFRN ENSXMAG00000004148 > 0.05 0.000 0.000 

PTK6 ENSXMAG00000009161 > 0.05 0.001 0.035 

PTPN21 ENSXMAG00000010368 > 0.05 0.000 0.000 

PTPRJ ENSXMAG00000018596 > 0.05 0.002 0.026 

PTPRQ ENSXMAG00000003867 > 0.05 0.029 0.047 

QTRT1 ENSXMAG00000013159 > 0.05 0.024 0.004 
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R3HDM2 ENSXMAG00000017978 > 0.05 0.039 0.006 

RANBP2 ENSXMAG00000003519 > 0.05 0.000 0.000 

RAPGEFL1 ENSXMAG00000012565 > 0.05 0.000 0.000 

RASSF9 ENSXMAG00000002858 > 0.05 0.004 0.000 

REEP3 ENSXMAG00000014205 > 0.05 0.001 0.000 

REG1A ENSXMAG00000008221 > 0.05 0.001 0.008 

RELA ENSXMAG00000011436 > 0.05 0.000 0.000 

RER1 ENSXMAG00000017376 > 0.05 0.021 0.023 

REXO1L10P ENSXMAG00000002681 > 0.05 0.013 0.004 

RFC1 ENSXMAG00000009566 > 0.05 0.001 0.003 

RGS3 ENSXMAG00000005690 > 0.05 0.029 0.035 

RHBDF2 ENSXMAG00000006018 > 0.05 0.000 0.000 

RILP ENSXMAG00000008504 > 0.05 0.004 0.003 

RIPK2 ENSXMAG00000004540 > 0.05 0.022 0.035 

RNF111 ENSXMAG00000014476 > 0.05 0.006 0.033 

RNF13 ENSXMAG00000005738 > 0.05 0.003 0.001 

RNPEPL1 ENSXMAG00000014126 > 0.05 0.000 0.000 

RPRD1A ENSXMAG00000003172 > 0.05 0.017 0.001 

RPS6KB2 ENSXMAG00000004706 > 0.05 0.009 0.011 

RPS6KC1 ENSXMAG00000003715 > 0.05 0.001 0.015 

RRAD ENSXMAG00000019054 > 0.05 0.000 0.034 

RRP12 ENSXMAG00000013498 > 0.05 0.022 0.025 

RSL1D1 ENSXMAG00000012616 > 0.05 0.008 0.004 

SAR1B ENSXMAG00000008294 > 0.05 0.027 0.021 

SART3 ENSXMAG00000018160 > 0.05 0.034 0.031 

SBNO2 ENSXMAG00000012091 > 0.05 0.001 0.000 

SCAP ENSXMAG00000019115 > 0.05 0.000 0.034 

SCEL ENSXMAG00000011150 > 0.05 0.000 0.000 

SCXA ENSXMAG00000008863 > 0.05 0.043 0.017 

SCYL2 ENSXMAG00000018567 > 0.05 0.010 0.047 

SDR42E2 ENSXMAG00000000979 > 0.05 0.046 0.037 

SEC23B ENSXMAG00000004757 > 0.05 0.000 0.023 

SEC24A ENSXMAG00000008298 > 0.05 0.008 0.015 

SEC24C ENSXMAG00000015879 > 0.05 0.002 0.015 

SESN1 ENSXMAG00000003264 > 0.05 0.017 0.000 

SETDB1 ENSXMAG00000016600 > 0.05 0.003 0.004 

SFXN3 ENSXMAG00000002825 > 0.05 0.005 0.005 

SH3RF1 ENSXMAG00000014129 > 0.05 0.029 0.000 

SH3YL1 ENSXMAG00000001042 > 0.05 0.004 0.048 

SHC1 ENSXMAG00000007234 > 0.05 0.002 0.000 

SIK1 ENSXMAG00000012114 > 0.05 0.000 0.000 

SIK2 ENSXMAG00000003840 > 0.05 0.000 0.000 
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SIK3 ENSXMAG00000002893 > 0.05 0.002 0.000 

SIX2 ENSXMAG00000016855 > 0.05 0.046 0.002 

SLC12A6 ENSXMAG00000001221 > 0.05 0.000 0.000 

SLC16A4 ENSXMAG00000010114 > 0.05 0.001 0.000 

SLC16A7 ENSXMAG00000010168 > 0.05 0.000 0.003 

SLC17A3 ENSXMAG00000016257 > 0.05 0.039 0.006 

SLC23A2 ENSXMAG00000014856 > 0.05 0.007 0.016 

SLC25A22 ENSXMAG00000003828 > 0.05 0.011 0.000 

SLC25A30 ENSXMAG00000011434 > 0.05 0.000 0.000 

SLC25A35 ENSXMAG00000012090 > 0.05 0.018 0.024 

SLC25A37 ENSXMAG00000001218 > 0.05 0.013 0.004 

SLC25A42 ENSXMAG00000019341 > 0.05 0.000 0.002 

SLC27A4 ENSXMAG00000001495 > 0.05 0.000 0.001 

SLC30A1 ENSXMAG00000017578 > 0.05 0.000 0.000 

SLC35E1 ENSXMAG00000002620 > 0.05 0.000 0.000 

SLC38A9 ENSXMAG00000007655 > 0.05 0.002 0.002 

SLC44A4 ENSXMAG00000014065 > 0.05 0.000 0.024 

SLC45A3 ENSXMAG00000016517 > 0.05 0.000 0.000 

SLC6A8 ENSXMAG00000013815 > 0.05 0.000 0.000 

SLC7A11 ENSXMAG00000010874 > 0.05 0.011 0.000 

SLC7A3 ENSXMAG00000000319 > 0.05 0.000 0.000 

SLC7A5 ENSXMAG00000016047 > 0.05 0.000 0.000 

SLC7A8 ENSXMAG00000001695 > 0.05 0.000 0.001 

SMAD7 ENSXMAG00000004239 > 0.05 0.001 0.015 

SMARCA5 ENSXMAG00000009678 > 0.05 0.021 0.005 

SMC4 ENSXMAG00000018289 > 0.05 0.014 0.043 

SMC6 ENSXMAG00000015209 > 0.05 0.011 0.010 

SMOX ENSXMAG00000005505 > 0.05 0.000 0.000 

SMURF1 ENSXMAG00000001013 > 0.05 0.000 0.000 

SNRK ENSXMAG00000002760 > 0.05 0.039 0.000 

SOCS5 ENSXMAG00000019827 > 0.05 0.021 0.016 

SOLH ENSXMAG00000019044 > 0.05 0.000 0.000 

SORBS3 ENSXMAG00000001865 > 0.05 0.004 0.000 

SOX2 ENSXMAG00000020128 > 0.05 0.000 0.000 

SOX3 ENSXMAG00000019515 > 0.05 0.000 0.001 

SPATA2 ENSXMAG00000015528 > 0.05 0.000 0.000 

SPDEF ENSXMAG00000017942 > 0.05 0.005 0.012 

SPECC1 ENSXMAG00000005351 > 0.05 0.030 0.044 

SPRY4 ENSXMAG00000001556 > 0.05 0.002 0.000 

SRMS ENSXMAG00000009154 > 0.05 0.000 0.007 

SRP68 ENSXMAG00000006101 > 0.05 0.005 0.002 

SRPK2 ENSXMAG00000012620 > 0.05 0.009 0.002 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

SRPR ENSXMAG00000001315 > 0.05 0.004 0.001 

SRPX2 ENSXMAG00000013538 > 0.05 0.040 0.005 

ST6GAL2 ENSXMAG00000011642 > 0.05 0.005 0.001 

STK35 ENSXMAG00000012847 > 0.05 0.000 0.000 

STK39 ENSXMAG00000011767 > 0.05 0.002 0.005 

STK40 ENSXMAG00000014777 > 0.05 0.000 0.000 

SWI5 ENSXMAG00000001550 > 0.05 0.026 0.034 

SYTL3 ENSXMAG00000017431 > 0.05 0.001 0.034 

TAS1R3 ENSXMAG00000018681 > 0.05 0.000 0.000 

TAT ENSXMAG00000009040 > 0.05 0.006 0.009 

TBC1D14 ENSXMAG00000011398 > 0.05 0.000 0.029 

TBC1D17 ENSXMAG00000010584 > 0.05 0.030 0.002 

TCEA3 ENSXMAG00000010685 > 0.05 0.000 0.000 

TCF7L2 ENSXMAG00000014710 > 0.05 0.000 0.004 

TCOF1 ENSXMAG00000005588 > 0.05 0.001 0.006 

TDP1 ENSXMAG00000011680 > 0.05 0.018 0.011 

TET2 ENSXMAG00000005438 > 0.05 0.002 0.002 

TFAP2A ENSXMAG00000012878 > 0.05 0.003 0.000 

TFB2M ENSXMAG00000017710 > 0.05 0.009 0.003 

TGIF2-

C20ORF24 ENSXMAG00000010500 > 0.05 0.000 0.000 

TICAM1 ENSXMAG00000008608 > 0.05 0.001 0.027 

TIMM17A ENSXMAG00000005996 > 0.05 0.000 0.000 

TINAGL1 ENSXMAG00000003194 > 0.05 0.000 0.000 

TJP2 ENSXMAG00000005032 > 0.05 0.006 0.016 

TLCD1 ENSXMAG00000011894 > 0.05 0.000 0.000 

TLCD2 ENSXMAG00000008589 > 0.05 0.001 0.000 

TLE1 ENSXMAG00000015157 > 0.05 0.005 0.000 

TMED10 ENSXMAG00000004020 > 0.05 0.009 0.017 

TMEM159 ENSXMAG00000000939 > 0.05 0.009 0.025 

TMEM38B ENSXMAG00000011387 > 0.05 0.019 0.010 

TMEM41B ENSXMAG00000009444 > 0.05 0.000 0.000 

TMOD1 ENSXMAG00000006094 > 0.05 0.000 0.004 

TMTC4 ENSXMAG00000013374 > 0.05 0.000 0.000 

TNFAIP3 ENSXMAG00000018214 > 0.05 0.046 0.044 

TNFRSF19 ENSXMAG00000001169 > 0.05 0.000 0.000 

TNFSF11 ENSXMAG00000000329 > 0.05 0.001 0.034 

TOPBP1 ENSXMAG00000001818 > 0.05 0.009 0.003 

TP53INP1 ENSXMAG00000013571 > 0.05 0.001 0.000 

TP73 ENSXMAG00000017360 > 0.05 0.004 0.000 

TPP2 ENSXMAG00000019214 > 0.05 0.000 0.001 

TRABD ENSXMAG00000019199 > 0.05 0.006 0.022 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

TRAM1L1 ENSXMAG00000002721 > 0.05 0.006 0.007 

TRPM5 ENSXMAG00000011779 > 0.05 0.000 0.035 

TSEN54 ENSXMAG00000018818 > 0.05 0.022 0.031 

TSPAN19 ENSXMAG00000006666 > 0.05 0.042 0.014 

TSPAN33 ENSXMAG00000011021 > 0.05 0.010 0.023 

TSPAN8 ENSXMAG00000006565 > 0.05 0.031 0.021 

TTC22 ENSXMAG00000002256 > 0.05 0.000 0.001 

TTC39A ENSXMAG00000003295 > 0.05 0.001 0.006 

TUBGCP2 ENSXMAG00000014666 > 0.05 0.050 0.037 

TXNRD3 ENSXMAG00000009544 > 0.05 0.000 0.000 

UBA6 ENSXMAG00000012548 > 0.05 0.000 0.000 

UBL3 ENSXMAG00000008399 > 0.05 0.000 0.000 

UBQLN4 ENSXMAG00000003208 > 0.05 0.024 0.023 

UEVLD ENSXMAG00000015346 > 0.05 0.001 0.006 

UPP1 ENSXMAG00000014219 > 0.05 0.000 0.000 

UROS ENSXMAG00000016520 > 0.05 0.044 0.033 

USP4 ENSXMAG00000011719 > 0.05 0.000 0.000 

USP44 ENSXMAG00000015410 > 0.05 0.003 0.007 

UST ENSXMAG00000007576 > 0.05 0.047 0.029 

UTP15 ENSXMAG00000014206 > 0.05 0.001 0.001 

VSIG10 ENSXMAG00000002588 > 0.05 0.000 0.002 

WARS ENSXMAG00000007718 > 0.05 0.009 0.000 

WDR11 ENSXMAG00000007153 > 0.05 0.018 0.021 

WNK3 ENSXMAG00000010810 > 0.05 0.000 0.003 

WNT10A ENSXMAG00000001801 > 0.05 0.000 0.000 

WNT5A ENSXMAG00000002614 > 0.05 0.000 0.000 

WNT9A ENSXMAG00000005793 > 0.05 0.011 0.008 

WNT9B ENSXMAG00000009198 > 0.05 0.000 0.000 

XYLT2 ENSXMAG00000012122 > 0.05 0.008 0.012 

YBX3 ENSXMAG00000015755 > 0.05 0.000 0.000 

YEATS2 ENSXMAG00000015052 > 0.05 0.043 0.011 

YPEL2 ENSXMAG00000010954 > 0.05 0.028 0.006 

YRDC ENSXMAG00000014606 > 0.05 0.001 0.000 

YTHDF2 ENSXMAG00000018758 > 0.05 0.034 0.006 

ZBED4 ENSXMAG00000019580 > 0.05 0.000 0.001 

ZBTB1 ENSXMAG00000020178 > 0.05 0.004 0.010 

ZBTB34 ENSXMAG00000000202 > 0.05 0.007 0.018 

ZBTB48 ENSXMAG00000012617 > 0.05 0.019 0.015 

ZBTB7A ENSXMAG00000012740 > 0.05 0.000 0.005 

ZBTB7B ENSXMAG00000012652 > 0.05 0.000 0.000 

ZC3H12D ENSXMAG00000005023 > 0.05 0.008 0.003 

ZCRB1 ENSXMAG00000009359 > 0.05 0.047 0.037 
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Table C-2. Continued 

GeneName GeneID BM CM CB 

ZDHHC24 ENSXMAG00000009789 > 0.05 0.028 0.021 

ZFP36 ENSXMAG00000018206 > 0.05 0.000 0.002 

ZFYVE28 ENSXMAG00000013540 > 0.05 0.001 0.001 

ZMYND19 ENSXMAG00000005494 > 0.05 0.049 0.000 

ZNF259 ENSXMAG00000019854 > 0.05 0.001 0.000 

ZNF598 ENSXMAG00000001469 > 0.05 0.000 0.000 

ZNF740 ENSXMAG00000008098 > 0.05 0.001 0.001 

ZNF862 ENSXMAG00000006891 > 0.05 0.038 0.000 

ZZEF1 ENSXMAG00000005834 > 0.05 0.000 0.008 

ATF6 ENSXMAG00000013231 > 0.05 0.000 0.000 

BOC ENSXMAG00000010032 > 0.05 0.007 0.000 

CCNT1 ENSXMAG00000009357 > 0.05 0.003 0.000 

CECR2 ENSXMAG00000005401 > 0.05 0.000 0.000 
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Table C-3. Biological process gene ontology results (p<0.01) for M-B. X. malinche 

treated versus X. birchmanni treated differentially expressed genes at FDR <0.05.  

Table C-3. Continued. 

Process ID Pvalue ExpCount Count Process name 

GO:0042221 6.44E-06 2.69052 19.164 response to chemical 

stimulus  

GO:0050896 6.46E-06 2.59944 42.634 response to stimulus  

GO:0065007 1.47E-05 2.76842 55.49 biological regulation  

GO:0051716 2.93E-05 2.36117 34.434 cellular response to 

stimulus  

GO:0032501 4.52E-05 2.31008 33.961 multicellular organismal 

process  

GO:0007275 5.80E-05 2.31757 26.09 multicellular organismal 

development  

GO:0080090 6.28E-05 2.28245 29.716 regulation of  primary 

metabolic process 

GO:0070887 7.38E-05 2.6307 12.663 cellular response to 

chemical stimulus 

GO:0048731 7.57E-05 2.32472 22.924 system development   

GO:0009888 7.80E-05 2.75622 10.564 tissue development     

GO:0050794 0.00016 2.26837 50.554 regulation of cellular 

process  

GO:0050789 0.00017 2.2994 52.773 regulation of biological    

process  

GO:0032502 0.00021 2.14662 29.219 developmental process              

GO:0048856 0.0003 2.12436 26.09 anatomical structure 

development   

GO:0031323 0.00032 2.08959 30.626 regulation of cellular 

metabolic process 

GO:0060255 0.00035 2.08763 28.916 regulation of 

macromolecule   metabolic 

process 

GO:0007154 0.00036 2.07109 31.693 cell communication               

GO:0007610 0.00036 2.98039 6.1737 behavior           

GO:0023052 0.00038 2.06854 30.832 signaling              

GO:0010033 0.00051 2.29392 14.203 response to organic 

substance  

GO:0006950 0.00057 2.10252 21.602 response to stress          

GO:0019222 0.00061 2.00444 33.282 regulation of metabolic 

process  

GO:0048513 0.00095 2.12054 17.175 organ development                

GO:0040011 0.00115 2.34995 10.382 locomotion                

GO:0009611 0.00164 2.31945 9.9337 response to wounding   
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Table C-3. Continued. 

Process ID Pvalue ExpCount Count Process name 

GO:0009719 0.00171 2.35706 9.2423 response to endogenous 

stimulus  

GO:0009653 0.00172 2.08713 15.355 anatomical structure 

morphogenesis   

GO:0007165 0.0018 1.89615 28.249 signal transduction           

GO:0048583 0.00223 2.00417 17.26 regulation of response to 

stimulus 

GO:0051239 0.00235 2.10576 13.293 regulation of multicellular 

organismal process 

GO:0006952 0.00246 2.32426 8.8057 defense response                

GO:0006979 0.00252 2.69704 5.3732 response to oxidative stress   

GO:0009605 0.00252 2.18695 11.05 response to external 

stimulus   

GO:0010035 0.00254 2.59318 6.0403 response to inorganic 

substance   

GO:0009607 0.0026 2.50211 6.7316 response to biotic stimulus     

GO:0050877 0.00275 2.24927 9.6305 neurological system 

process            

GO:0003008 0.00303 2.11611 11.983 system process            

GO:0071310 0.00364 2.14701 10.625 cellular response to organic 

substance  

GO:0007399 0.00392 2.01133 13.815 nervous system 

development          

GO:0006928 0.00401 2.16502 9.9579 cellular component 

movement    

GO:0051171 0.00415 1.82501 24.003 regulation of nitrogen 

compound metabolic 

process 

GO:0051246 0.00453 2.00918 13.172 regulation of protein 

metabolic process  

GO:0010468 0.00469 1.81617 23.288 regulation of gene 

expression             

GO:0019219 0.00494 1.80852 23.361 regulation of nucleobase-

containing compound 

metabolic process 

GO:0080134 0.00507 2.25256 7.9445 regulation of response to 

stress     

GO:0051707 0.00527 2.37215 6.5497 response to other organism               

GO:0007166 0.00583 1.8807 16.714 cell surface receptor 

signaling pathway  

GO:0019226 0.00584 2.27398 7.3381 transmission of nerve 

impulse                 
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Table C-3. Continued. 

Process ID Pvalue ExpCount Count Process name 

GO:0035637 0.00602 2.26565 7.3623 multicellular organismal 

signaling             

GO:0050890 0.00652 2.58771 4.6575 cognition              

GO:0030154 0.00676 1.82647 18.582 cell differentiation     

GO:0016477 0.00695 2.17076 8.2114 cell migration          

GO:0008283 0.0071 1.94814 12.857 cell proliferation     

GO:0008284 0.00751 2.20497 7.5443 positive regulation of cell 

proliferation  

GO:0042127 0.00777 2.01777 10.589 regulation of cell 

proliferation   

GO:0007267 0.00789 2.09151 9.0725 cell-cell signaling             

GO:0007268 0.00816 2.24341 6.8893 synaptic transmission        

GO:0009889 0.00862 1.73609 23.263 regulation of biosynthetic 

process   

GO:0048518 0.00955 1.70644 25.204 positive regulation of 

biological process  

GO:0010605 0.00964 1.91254 12.396 negative regulation of 

macromolecule metabolic 

process 
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Table C-4. Biological process gene ontology results (p<0.01) for M-C. X. malinche 

treated versus control differentially expressed genes at FDR <0.01 

Table C-4. Continued. 

Process ID Pvalue ExpCount Count Process name 

GO:0065007 4.80E-05 305.7871 348 biological regulation     
GO:0050896 0.000156 234.9381 275 response to stimulus    
GO:0050789 0.000356 290.8152 328 regulation of biological process   
GO:0032502 0.000419 161.0145 196 developmental process     
GO:0051716 0.000577 189.7551 225 cellular response to stimulus   
GO:0050794 0.00069 278.5837 314 regulation of cellular process   
GO:0070887 0.000751 69.77961 95 cellular response to chemical 

stimulus  
GO:0060255 0.000887 159.3435 192 regulation of macromolecule 

metabolic process  
GO:0010468 0.000914 128.3303 159 regulation of gene expression   
GO:0007275 0.001067 143.7701 175 multicellular organismal 

development    
GO:2000112 0.001151 121.5128 151 regulation of cellular macromolecule 

biosynthetic process 
GO:0009889 0.001222 128.1966 158 regulation of biosynthetic process   
GO:0031326 0.001281 127.3946 157 regulation of cellular biosynthetic 

process  
GO:0010556 0.001435 123.0501 152 regulation of macromolecule 

biosynthetic process  
GO:0045595 0.001518 52.06735 73 regulation of cell differentiation   
GO:0031323 0.001596 168.7677 200 regulation of cellular metabolic 

process  
GO:0019222 0.001693 183.4054 215 regulation of metabolic process   
GO:0006355 0.001813 112.5564 140 regulation of transcription, DNA-

dependent   
GO:0050793 0.001937 65.63561 88 regulation of developmental process   
GO:0048513 0.002162 94.64361 120 organ development     
GO:2001141 0.002306 113.2248 140 regulation of RNA biosynthetic 

process  
GO:0007165 0.002373 155.6674 185 signal transduction     
GO:0051252 0.002429 115.2299 142 regulation of RNA metabolic process  
GO:0051239 0.002433 73.25523 96 regulation of multicellular 

organismal process  
GO:0030154 0.003528 102.3969 127 cell differentiation     
GO:0080090 0.003631 163.7548 192 regulation of primary metabolic 

process  
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Table C-4. Continued. 

Process ID Pvalue ExpCount Count Process name 
GO:0009888 0.003646 58.21652 78 tissue development     
GO:2000026 0.004064 54.94142 74 regulation of multicellular 

organismal development  
GO:0042221 0.004104 105.6052 130 response to chemical stimulus   
GO:0048583 0.005036 95.11148 118 regulation of response to stimulus  
GO:0032501 0.006615 187.1484 214 multicellular organismal process    
GO:0048731 0.007782 126.3252 150 system development     
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Table C-5. Biological process gene ontology results (p<0.01) for B-C. X. birchmanni 

treated versus control differentially expressed genes at FDR <0.01.  

Table C-5. Continued. 

Process ID Pvalue ExpCount Count Process name 

GO:0007275 2.06E-05 151.2639 194 multicellular organismal 
development       

GO:0032502 0.000226 169.4071 207 developmental process        
GO:0048513 0.000417 99.57677 130 organ development        
GO:0048731 0.00068 132.9097 165 system development        
GO:0031327 0.000885 57.03161 80 negative regulation of cellular 

biosynthetic process    
GO:0050896 0.001122 247.1839 282 response to stimulus       
GO:0009890 0.001183 57.59419 80 negative regulation of biosynthetic 

process     
GO:0009888 0.001299 61.25097 84 tissue development        
GO:2000113 0.00176 54.92194 76 negative regulation of cellular 

macromolecule biosynthetic 
process   

GO:0032501 0.001878 196.9032 229 multicellular organismal process       
GO:0010558 0.002001 56.0471 77 negative regulation of 

macromolecule biosynthetic 
process    

GO:2000026 0.00202 57.80516 79 regulation of multicellular 
organismal development     

GO:0009892 0.002072 74.61226 98 negative regulation of metabolic 
process     

GO:0031324 0.002111 71.09613 94 negative regulation of cellular 
metabolic process    

GO:0048856 0.002128 151.2639 181 anatomical structure development       
GO:0045892 0.002207 51.05419 71 negative regulation of 

transcription, DNA-dependent     
GO:0051716 0.002377 199.6458 231 cellular response to stimulus      
GO:0006357 0.002563 63.57161 85 regulation of transcription from 

RNA polymerase II promoter  
GO:0010629 0.002638 54.00774 74 negative regulation of gene 

expression     
GO:0051239 0.002746 77.07355 100 regulation of multicellular 

organismal process     
GO:0051253 0.003589 52.03871 71 negative regulation of RNA 

metabolic process    
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Table C-5. Continued. 

Process ID Pvalue ExpCount Count Process name 
GO:0045934 0.003935 54.85161 74 negative regulation of nucleobase-

containing compound metabolic 
process   

GO:0051172 0.004477 55.1329 74 negative regulation of nitrogen 
compound metabolic process   

GO:0042221 0.005677 111.1097 135 response to chemical stimulus      
GO:0050793 0.005795 69.05677 89 regulation of developmental 

process      
GO:0008283 0.005986 74.54194 95 cell proliferation        
GO:0010605 0.006064 71.86968 92 negative regulation of 

macromolecule metabolic process    
GO:0007165 0.006832 163.7813 190 signal transduction        
GO:0007166 0.006983 96.90452 119 cell surface receptor signaling 

pathway     
GO:0065007 0.00751 321.7258 349 biological regulation        

  



 

 168 

Table C-6. Biological process gene ontology results (p<0.01) for 22 genes that are 

differentially expressed in all three pairwise comparisons. See Table C-2 for gene 

names.  

Table C-6. Continued. 

Process ID Pvalue ExpCount Count Process name 

GO:0070887 5.90E-06 2.963613 12 cellular response to chemical 
stimulus     

GO:0009888 7.42E-06 2.472516 11 tissue development        
GO:0051246 0.000364 3.082839 10 regulation of protein metabolic 

process     
GO:0032502 0.000372 6.838452 15 developmental process        
GO:0042221 0.000412 4.485161 12 response to chemical stimulus      
GO:0080090 0.000457 6.954839 15 regulation of primary metabolic 

process     
GO:0007275 0.000467 6.106065 14 multicellular organismal 

development       
GO:0010033 0.000677 3.324129 10 response to organic substance      
GO:0010605 0.001157 2.901161 9 negative regulation of 

macromolecule metabolic process    
GO:0060255 0.00146 6.767484 14 regulation of macromolecule 

metabolic process     
GO:0009892 0.00152 3.011871 9 negative regulation of metabolic 

process     
GO:0019222 0.001759 7.789419 15 regulation of metabolic process      
GO:0071310 0.001931 2.48671 8 cellular response to organic 

substance     
GO:0048856 0.001993 6.106065 13 anatomical structure development       
GO:0010035 0.002101 1.413677 6 response to inorganic substance      
GO:0048519 0.002546 5.436129 12 negative regulation of biological 

process     
GO:0051716 0.002606 8.059097 15 cellular response to stimulus      
GO:0031323 0.002707 7.167742 14 regulation of cellular metabolic 

process     
GO:0034097 0.003289 1.544258 6 response to cytokine stimulus      
GO:0009719 0.003935 2.163097 7 response to endogenous stimulus      
GO:0031324 0.004815 2.869935 8 negative regulation of cellular 

metabolic process    
GO:0008544 0.00547 1.186581 5 epidermis development        
GO:0048523 0.005607 5.123871 11 negative regulation of cellular 

process     
GO:0050794 0.006055 11.83174 18 regulation of cellular process      
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Table C-6. Continued. 

Process ID Pvalue ExpCount Count Process name 
GO:0006979 0.006988 1.257548 5 response to oxidative stress      
GO:0032501 0.007893 7.948387 14 multicellular organismal process       
GO:0048731 0.008118 5.365161 11 system development        
GO:0042127 0.008362 2.478194 7 regulation of cell proliferation      
GO:0031399 0.008519 2.48671 7 regulation of protein modification 

process     
GO:0009725 0.008568 1.876387 6 response to hormone stimulus      
GO:0050896 0.008672 9.978065 16 response to stimulus       
GO:0030334 0.009923 1.368258 5 regulation of cell migration      
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Table C-7. Detection of positive selection by model selection in Codeml, using 5 

Xiphophorus species. Bolded font have p values <0.05.  

Table C-7. Continued. 

OR ID Codon Length M8-M7 M8-M8a 

V2R_6 641 0.003155217 0.001308771 
V2R_2 116 0.023974728 0.00665671 
V2R_40 895 0.045077953 0.013569711 
V2R_29 864 0.042785758 0.01379486 
V2R_52 859 0.081065809 0.02539546 
V2R_20 377 0.103994424 0.034717288 
V2R_28 806 0.101489493 0.042614738 
V2R_17 341 0.175296755 0.073646196 

V2R_61 845 0.174958583 0.077687327 
V2R_50 634 0.292533526 0.144509567 
V2R_3 221 0.358268706 0.151922371 
V2R_30 533 0.376318658 0.170932275 
V2R_4 399 0.391230648 0.19772083 
V2R_53 928 0.446396816 0.204232225 
V2R_59 856 0.358608505 0.205921068 
V2R_13 479 0.426898927 0.205997618 
V2R_1 186 0.559323646 0.311659508 
V2R_45 732 0.608687061 0.329673993 

V2R_14 217 0.635317757 0.340844597 
V2R_55 325 0.657693014 0.370300454 
V2R_71 644 0.62608571 0.37147874 
V2R_69 271 0.708698564 0.410009902 
V2R_65 855 0.706785538 0.416480874 
V2R_46 722 0.715466143 0.44868011 
V2R_15 887 0.739516267 0.457039964 
V2R_54 528 0.861601855 0.58664647 
V2R_7 553 0.87687748 0.655713883 
V2R_58 854 1 0.660189075 
V2R_44 811 0.926242685 0.695694227 
V2R_70 609 0.926645688 0.699243534 
V2R_57 856 0.938324914 0.725715557 
V2R_18 448 0.930969279 0.747452695 
V2R_48 877 0.891577423 0.750084562 
V2R_64 813 0.98245376 0.905839636 
V2R_22 214 0.994285391 0.916644525 
V2R_51 854 0.978754925 0.92164922 
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Table C-7. Continued. 

OR ID Codon Length M8-M7 M8-M8a 
V2R_11 616 0.999230296 0.96143502 

V2R_41 874 1 0.975489186 
V2R_16 861 1 0.9864601 
V2R_5 179 0.999982 0.992515289 
V2R_19 31 1 0.992953366 
V2R_8 194 1 1 
V2R_21 518 1 1 
V2R_23 872 1 1 
V2R_26 302 1 1 
V2R_38 711 1 1 
V2R_39 913 1 1 
V2R_42 9 1 1 
V2R_43 191 0.999487132 1 
V2R_47 550 1 1 
V2R_49 642 1 1 
V2R_56 856 1 1 
V2R_62 552 1 1 
V2R_63 301 1 1 
V2R_66 860 1 1 
V2R_67 847 1 1 

V2R_68 504 1 1 
OR_49 198 0.000620485 0.00012505 
OR_114 203 0.050569179 0.016014694 
OR_12 202 0.095620983 0.032648215 
OR_30 151 0.11972953 0.039649419 
OR_46 198 0.156902137 0.05557845 

OR_17 201 0.160213977 0.065581733 
OR_87 196 0.197885242 0.07202919 
OR_85 202 0.245964515 0.095539758 
OR_73 203 0.227990344 0.096694406 
OR_80 202 0.25178317 0.098371812 
OR_83 203 0.259074141 0.102189744 
OR_42 202 0.352490009 0.148706841 
OR_88 196 0.355090355 0.1510737 
OR_5 198 0.344151951 0.155828464 
OR_82 202 0.361755033 0.18013572 
OR_100 200 0.428116896 0.192717751 
OR_98 174 0.451397027 0.209835049 
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Table C-7. Continued. 

OR ID Codon Length M8-M7 M8-M8a 
OR_1 134 0.475935947 0.223002899 

OR_24 201 0.530045726 0.259947604 
OR_57 206 0.51169732 0.26826952 
OR_25 202 0.595882368 0.337768168 
OR_112 203 0.665447189 0.366825521 
OR_101 201 0.656770261 0.370221173 
OR_109 181 0.665974432 0.370670346 
OR_9 196 0.744640297 0.442726318 
OR_26 202 0.7795675 0.483703459 
OR_15 178 0.831842632 0.543973935 
OR_21 15 0.85537612 0.576194075 
OR_35 195 0.911570813 0.676817893 
OR_14 117 0.921332765 0.724472093 
OR_93 196 0.943628244 0.73335871 
OR_95 196 1 0.772201753 
OR_81 202 1 0.888620492 
OR_53 23 0.994325163 0.918329813 
OR_2 198 0.999985 0.934656412 
OR_11 202 1 0.975359745 
OR_18 201 1 0.977350989 

OR_36 199 0.999803019 0.984611914 
OR_51 198 0.999985 0.988058803 
OR_106 12 0.999992 0.994472138 
OR_23 203 1 0.995486507 
OR_50 198 0.999965001 0.996257603 
OR_90 28 0.999975 0.996431764 

OR_78 202 1 0.998871621 
OR_104 201 1 0.998871621 
OR_48 198 1 0.998871621 
OR_41 204 1 1 
OR_43 204 1 1 
OR_58 204 1 1 
OR_59 204 1 1 
OR_60 204 1 1 
OR_64 204 1 1 
OR_74 204 0.999999 1 
OR_76 204 1 1 
OR_27 203 1 1 
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Table C-7. Continued. 

OR ID Codon Length M8-M7 M8-M8a 
OR_33 203 1 1 

OR_34 203 1 1 
OR_75 203 1 1 
OR_103 203 1 1 
OR_111 203 1 1 
OR_113 203 1 1 
OR_68 202 1 1 
OR_69 202 1 1 
OR_70 202 1 1 
OR_71 202 1 1 
OR_72 202 1 1 
OR_77 202 1 1 
OR_79 202 1 1 
OR_84 202 0.999974 1 
OR_86 202 1 1 
OR_16 201 0.999992 1 
OR_22 201 1 1 
OR_107 201 1 1 
OR_108 200 1 1 
OR_110 200 1 1 

OR_44 198 1 1 
OR_45 198 1 1 
OR_47 198 0.999736035 1 
OR_52 198 0.999973 1 
OR_96 197 1 1 
OR_97 197 1 1 

OR_10 196 1 1 
OR_65 196 0.999735035 1 
OR_66 196 1 1 
OR_67 196 1 1 
OR_91 196 1 1 
OR_92 196 1 1 
OR_94 196 0.999999 1 
OR_105 188 1 1 
OR_4 178 1 1 
OR_3 165 1 1 
OR_61 160 1 1 
OR_19 151 0.999995 1 
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Table C-7. Continued. 

OR ID Codon Length M8-M7 M8-M8a 
OR_99 138 1 1 

OR_56 118 1 1 
OR_31 51 1 1 
OR_28 38 1 1 
OR_20 23 1 1 
OR_7 22 1 1 
OR_55 13 1 1 
OR_37 8 1 1 
OR_39 8 1 1 
TAAR_40 329 0.000341085 0.00006494 
TAAR_30 277 0.008989321 0.00214229 
TAAR_46 316 0.016470572 0.005374057 
TAAR_6 279 0.026458363 0.007074759 
TAAR_45 329 0.039232963 0.010932134 
TAAR_4 296 0.085847484 0.026766527 
TAAR_49 322 0.279240461 0.110460821 
TAAR_32 350 0.281022933 0.11233491 
TAAR_52 325 0.323683854 0.139131373 
TAAR_47 317 0.345148334 0.158431038 
TAAR_51 322 0.500892887 0.240696517 

TAAR_41 321 0.47516603 0.248999935 
TAAR_38 249 0.62997509 0.336385058 
TAAR_17 192 0.714768189 0.413422114 
TAAR_36 277 0.96262245 0.782528587 
TAAR_31 349 0.979682245 0.855177993 
TAAR_11 221 1 0.949684414 

TAAR_2 236 1 0.977833719 
TAAR_20 318 0.99999 0.99680847 
TAAR_42 326 0.999133376 0.998045592 
TAAR_10 319 1 0.998871621 
TAAR_15 5 1 0.998871621 
TAAR_1 197 1 1 
TAAR_7 279 1 1 
TAAR_8 313 1 1 
TAAR_9 244 1 1 
TAAR_12 316 0.999999 1 
TAAR_13 314 1 1 
TAAR_18 326 1 1 
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Table C-7. Continued. 

OR ID Codon Length M8-M7 M8-M8a 
TAAR_19 318 1 1 

TAAR_22 314 1 1 
TAAR_23 305 1 1 
TAAR_24 29 1 1 
TAAR_25 311 1 1 
TAAR_26 327 1 1 
TAAR_33 333 1 1 
TAAR_34 322 1 1 
TAAR_39 309 1 1 
TAAR_43 281 1 1 
TAAR_44 326 1 1 
TAAR_48 322 1 1 
TAAR_50 323 1 1 
TAAR_53 322 1 1 
TAAR_54 323 1 1 
TAAR_55 325 1 1 
TAAR_57 219 1 1 
TAAR_58 142 1 1 
V1R_1 321 0.436005248 0.198456089 
V1R_2 313 1 1 

 

 




