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ABSTRACT 

 Low energy planar defects such as twin boundaries have been employed to 

strengthen materials effectively with insignificant loss of the conductivity and ductility. 

High density growth twins can be formed in low stacking fault energy (SFE) metals, such 

as copper (Cu) and silver (Ag). However, low SFE metal cobalt (Co) received little 

attention due to the complex coexistence of hexagonal close-packed (HCP) and face-

centered cubic (FCC) structure. The focus of this research is to identify the strengthening 

mechanisms of planar defects such as twin boundaries, stacking faults, and layer 

interfaces in epitaxial FCC/HCP Co, and Cu/Co multilayers. Our studies show that 

epitaxial Cu/Co multilayers with different texture have drastic different mechanical 

properties, dictated by the transmission of partial vs. full dislocations across layer 

interfaces. Furthermore the mechanical properties of epitaxial Co are dominated by high 

density stacking faults. Moreover, by applying advanced nanoindentation techniques, 

such as thermal-drift corrected strain-rate sensitivity measurement, the mechanical 

properties including strain-rate sensitivity is accurately determined. By using in situ 

nanoindentation under transmission electron microscope (TEM), we determined 

deformation physics of nanotwinned Cu, including detwinning, dislocation-twin 

interactions and work hardening. This project provides an important new perspective to 

investigate mechanical behavior of nanostructured metals with high density stacking 

faults. 
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CHAPTER I 

INTRODUCTION 

I.1 Strengthening Mechanisms of Various Interfaces 

 Interfaces are defined as three dimensional (3D) boundaries that isolate two 

distinct structures. These distinct structures can be different phases of dissimilar metallic 

materials, or different texture/orientation in a monolithic metallic material. Interfaces are 

one of the most critical factors for discovering strengthening mechanisms in materials. In 

this section, the strengthening mechanisms of various interfaces in materials are 

overviewed. 

 

I.1.1 Grain Boundary Strengthening I – Hall-Petch Relation 

 As the most common type of interfaces, a grain boundary is an interface between 

two grains, or crystallites, in a polycrystalline material. This type of boundary tends to 

decrease the electrical and thermal conductivity of the material. Also, most grain 

boundaries are preferred sites for the onset of corrosion and for the precipitation of new 

phases from the solid. For mechanical properties, creep and strain rate sensitivity are 

affected by grain boundaries. Most importantly, because grain boundaries can block the 

motion of dislocation, reducing crystalline size is a common way to improve strength. 

The well-known Hall-Petch strengthening model is the first to quantify the relation 

between the mechanical strength and grain sizes. The Hall-Petch model  

Equation 1             

was first empirically derived for steels. Here    is the yield strength,    is the friction 

stress,   is the Hall-Petch slope, d is the grain size, and n is a constant, typically ~ 0.5 [1, 
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2]. In this equation,    represents the contribution from the flow stress. The most famous 

aspect of this relationship is the        relation. k represents the resistance of the grain 

boundaries to dislocation transmission, while the       quantifies the grain size 

dependence or the contribution from the grain boundary density. 

 When grain boundaries act as the dislocation obstacles, the dislocations are 

emitted from a source, and then piled up against these boundaries. The number of pile-up 

dislocation at an applied shear stress with a distance between source and obstacle can be 

described [3]  

Equation 2    
             

  
 

where ν is the Poisson ratio, μ is the shear modulus, b is the length of the Burgers vector, 

   is the lattice friction, and L is the distance from a dislocation source to the grain 

boundary. When a leading dislocation in the pile-up is just able to cross the interface and 

is emitted to the other side of the boundaries, the stress reaches the barrier strength,  *. 

Therefore, the Hall-Petch relationship can be expressed as 

Equation 3       (
    

       
)
 

 

where τ* is the barrier stress, or critical stress required for cross slip across a grain 

boundary, n is a constant, typically ~ 0.5. Here L, the distance from a dislocation source 

to the grain boundary, represents the grain size (d) in general understanding. The most 

useful part of this form is that the strength contribution from k is expressed in terms of 

material parameters, including shear modulus, Poisson ratio, Burgers vector, and 

interface or barrier strength. 
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I.1.2 Grain Boundary Strengthening II – Nanocrystalline  

 As indicated in previous section, increasing the density of grain boundaries by 

refining the grain sizes as small as possible has been of great importance to the 

development of higher strength metals. When the grain size is less than 100 nanometers 

(nm), the material enters the so-called nanocrystalline regime. (As a side note, metals 

with 100-1000 nm grains are often termed “ultra-fine grained”, however, there is some 

overlap in terminology among various authors, and sometimes the terms are used 

interchangeably.)[4]. 

 In comparison with the polycrystalline materials, nanocrystalline materials 

possess incredible densities of grain boundaries, and the interfaces properties become 

dominate factors to provide strengthening. Several important reviewer articles have 

demonstrated that nanocrystalline can provide great strengthening because of the 

resistance of high density grain boundaries. Furthermore, although greater strength can be 

achieved in nanocrystalline materials, a large deviation of the Hall-Petch relation 

indicates more complicated strengthening mechanisms rather than simply dislocation 

piling-up [4-6]. 
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Figure 1 Compiled yield stress versus grain size plot for Cu from various sources 
ranging from coarse to nanograin size. The plot shows different trends as the grain size 
falls below a critical size.[6] 

 

 For example, Fig. 1 shows the Hall-Petch plot of nanocrystalline Cu from 

different sources. The saturation in strengthening may occur when grain size is below ~ 

25 nm (d-1/2=0.2). Some studies showed a trend of strength reduction, so-called reverse 

Hall-Petch relation [7]. The main reason of this large deviation to the Hall-Petch relation 

is the limited dislocation movement including dislocation piling-up in such small grain 

sizes. In other words, it is difficult to maintain the same type of dislocation activities in 

nanocrystalline materials. The possible mechanisms are proposed including break-up of 

dislocation pile-ups, grain boundary sliding, grain rotation, grain coalescence, or grain-

boundary dislocation emission and annihilation [6]. 
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 Grain boundaries normally possess higher interfacial energies because of the large 

magnitude of incoherency between two distinct structures. This leads to the decrease of 

corrosion resistance, electrical and thermal conductivity. More importantly, ductility of 

nanocrystalline metals is often low, as a result of several factors: (1) artifacts from 

processing (porosity), (2) tensile instability, or (3) crack nucleation or shear instability. 

Dislocation-mediated plasticity can be suppressed at small length scales. Strain 

localization and reducing elongation to failure may occur in macroscopic specimens, 

especially at room temperature or below. Therefore, new strengthening methods are of 

great interest despite the introduction of low energy interfaces. 

 

I.1.3 Interphase Boundary Strengthening – Multilayer Composites 

 Multilayer composites with interphase boundaries fabricated by thin film 

deposition techniques have received attention for various reasons. One feature that is 

particularly interesting is the ability to precisely tailor the alternating individual layer 

thickness as small as 1 nm, compared to several tens nm of grain size in nanocrystalline 

metals as described in the previous section. At this small length scale, multilayer 

composites have advanced properties, including giant-magnetron resistance [8, 9]; high 

mechanical strength and deformability [10-14]; and superior radiation tolerance [15-17], 

and hence may have various engineering applications. 

 Multilayer composites often exhibit layer-thickness-dependent strengthening and 

near-theoretical strength at ultra-small individual layer thicknesses. Fig. 2 presents the 

Hall-Petch plot of several Cu-based multilayer composites. Compared to Fig.1, this plot 

explores the mechanical properties when layer thickness (grain size) is below 5 nm. The 
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strengths are maintained at high strength (Cu/Nb, or Cu/Cr) or encountered a load-drop 

(Cu/Ni) when further reducing the layer thickness. 

 

Figure 2 The dependence of hardness on layer thickness (h) for Cu-Ni, Cu-Cr and 
Cu-Nb multilayers. The rule of mixtures (ROM) are indicated by dotted lines for each of 
the three systems respectively [10]. 

 

 The schematic in Fig. 3 explicitly explains the strengthening mechanisms of 

multilayer strength at different length scale (individual layer thickness). When individual 

layer thickness, h, is greater than 50 nm, dislocations that pile-up on layer interfaces are 

dominated mechanisms. Thus the strengthening behavior typically follows Hall-Petch (H-

P) relation [1, 2, 18-20]. When 50 nm > h > 10 nm, the pile-up of dislocations are limited 

in such small length scale. The dislocation movement is confined within layers. Thus the 

corresponding strengthening mechanism can be described by the confined layer slip 

(CLS) model that considers bowing of dislocations [3, 21-23]. When h reduces to several 

nanometers, multilayers frequently achieve their maximum strength, which is determined 
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by numerous factors including Koehler stress that comes from modulus mismatch [24, 

25], misfit dislocations, coherency stress [26-30], texture [31], twinning [32-35], and 

interface shear strength [36, 37]. At this length scale, the interface properties are primary 

factors on strengthening. 

 

Figure 3 Schematic illustration of the dislocation mechanisms of multilayer 
strength operative at different length scale [3]. 

 

 Misfit dislocation and coherency stress originate from lattice mismatch between 

two materials [38, 39]. In coherent systems (two materials have similar lattice 

parameters, such as Cu/Ni), the elastic strain energy builds up at greater layer thickness, 

h. When h exceeds critical thickness, misfit dislocations form to release elastic strain 

energy [40-42]. Koehler stress arises from the elastic modulus mismatch between 

neighboring layers and becomes significant when a large modulus difference exists [25]. 

In incoherent systems (two materials have large lattice parameters, such as Cu/Nb and 

Cu/Cr), a hardness plateau is typically observed at smaller value of h [3, 12, 43, 44], 
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wherein certain coherent systems, such as Cu/Ni, softening (the reduction of hardness at 

smaller h) occurs due to the formation of fully coherent interfaces [18, 31]. This is due to 

these coherent interfaces are less effective barriers to the transmission of dislocations 

compared with incoherent interfaces [45]. In incoherent systems, interfaces retain slip 

discontinuity and remain strong barriers to the penetration of dislocations [46]. When 

multilayer composites using interphase interfaces to strengthen materials, the interface 

energy is either comparable or slightly lower than grain boundaries. As a type of low 

energy interfaces, twin boundaries have drawn great interesting in past several decades. 

 

I.1.4 Twin Boundary Strengthening 

 Twin boundary is a special class of grain boundaries in which the lattices on 

either side are related by mirror symmetry across the so-called twinning plane. Common 

twinning planes vary from one crystal structure to the next. For Faced Centered Cubic 

(FCC) metals, two of the most important twin boundaries are: the Σ3 (111) coherent twin 

boundary (CTB) and Σ3 (112) incoherent twin boundary (ITB). Compared to a grain 

boundary, twin boundary has a more coherent structure with less free volume as shown in 

Fig. 4. 

 

Figure 4 Schematics comparison of (a) a grain boundary and (b) a Σ3 (111) 
coherent twin boundary (CTB), the CTB shows more coherent structure with less from 
volume. 
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 Due to interface structure configurations, the interfacial energies of CTBs, ITBs, 

conventional high and low angle grain boundaries differ dramatically. For example, in Cu, 

the CTB, ITB, and high angle grain boundary energies are 24-39, 590-714, and 625-710 

mJ/m2, respectively [47-49]. Among these interfaces, the CTBs often possess the lowest 

energy which makes CTBs much more stable than many other grain boundaries. 

 High density nanotwinned metals (average twin spacing is less than 100 nm) often 

show very high mechanical strength. This is because twin boundary blocks dislocation 

transmission with a strength comparable to that of conventional grain boundaries. 

Increasing densities of twin boundaries result in enhanced mechanical strength, similar to 

increasing grain boundary density, as previously mentioned. However, twin boundaries 

are highly coherent, and thus lack free volume. Some combinations of properties in 

nanotwinned metals are not commonly associated with each other, and at times are 

seemingly paradoxical. For example, nanocrystalline Cu shows increased strength with 

decreasing ductility compared with polycrystalline Cu. This phenomenon is a result of 

small grain size inhibiting dislocation-mediated plasticity. However, it has been shown 

that nanotwinned Cu may exhibit both high strength and good ductility as shown in Fig. 

5[50]. Furthermore, unlike the nanocrystalline Cu, the electrical resistivity of 

nanotwinned Cu does not increase with increased of twin boundary density. 
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Figure 5 (a) Tensile stress-strain curve for the electro-deposited nanotwinned Cu in 
comparison with that for a coarse-grained polycrystalline Cu (~100 μm grain size) and a 
nanocrystalline Cu (~30 nm grain size); (b) electrical resistivity of nanotwinned Cu 
sample at various temperature in comparison with that of polycrystalline and 
nanocrystlaline Cu[50] 

 

 Twin boundaries play a significant role in dislocation blocking and generation, 

and thus are important to strengthening. As a coherent interface, twin boundary may also 

encounter a softening if the average twin spacing is further reduced. This is the similar to 

the phenomenon in coherent multilayer composites as previous mentioned. Fig. 6 shows 

how strength and ductility vary with twin thickness in nanotwinned Cu. The strength 

reaches a maximum when average twin thickness is 15 nm, but falls for thinner twin 

thickness [51]. It is worth noting that when the average twin thickness is further reduced 

from 15 nm to 4 nm, the ductility increases dramatically. One possible explanation is the 

less stability but large plastic strain accommodation of fine twins. A recent study on 

nanotwinned Cu revealed that most of fine twins are removed after plastic rolling [52]. 

As shown in Fig. 7, the twin boundaries sustain large amount of dislocations after ~ 50% 

plastic deformation. Twin boundaries appear to act as sinks for dislocations during high-

strain deformation induced via rolling. 
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Figure 6 Tensile test stress-strain curves from Cu with ufg and coarse-grained 
microstructures, as well as nanotwinned (nt) Cu with average twin thickness varying 
from 4 to 96 nm. The box on the left shows both increasing strength and ductility with 
decreasing twin thickness, with a maximum strength achieved at 15 nm. On the right, 
twin thickness is decreased from 15 to 4 nm. Strength falls, but ductility increases at this 
length scale [51] 
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Figure 7 Plastic rolling on nanotwinned Cu showing that twin boundary sustains 
large amount of dislocations; ultrafine twins is less stable than thicker twins [52] 

 

 Under deformation, twin may change in average thickness or ITBs (incoherent 

twin boundaries) may migrate on (111) planes. Recent in situ nanoindentation studies 

inside of a TEM observed the interactions between dislocations and CTBs that resulted in 
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the generation of new dislocations, so-called dislocation multiplication. [53]. Since 

thinner twins are easier to move, ITB migration often results in the elimination of thinner 

twins, leading to decreased twin density. It was mentioned that ITBs may migrate as a 

result of stress as shown in Fig. 8. These studies shed some light on the mechanisms by 

which twin boundaries may move and interact with dislocations during deformation, and 

may help to explain the improved elongation to failure observed in nanotwinned Cu.[54] 

 

 

Figure 8 in situ nanoindentation on nanotwinned Cu shows the migration of ITBs, 
and thickness reduction of the fine twins[54] 

 

 In this section, the strengthening mechanisms of various interfaces are 

overviewed. In comparison with the Hall-Petch relation in conventional polycrystalline 

materials, nanocrystalline materials deviated from that relation when strength either 

become saturated or decreased if further reducing the grain sizes. Compared to 

nanocrystalline metals, multilayer composites explore the interface properties dominated 

strengthening mechanisms when layer thickness/grain sizes are less than 5 nm. 
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Furthermore, the strengthening mechanisms of the low energetic twin boundaries are 

introduced as a possible solution to overcome the strength-ductility paradox. Twin 

boundaries can sustain dislocation, but fine twins may migrate under stress. 

 

I.2 Formation Mechanisms of Twin Boundaries 

 As previously mentioned, nanotwinned metals exhibit high strength due to (111) 

coherent twin boundaries (CTB) and can provide great strengthening by resisting 

dislocation slip transfers [55-60]. Furthermore, nanotwinned materials show better 

ductility [51, 61, 62], thermal stability [63-65], creep and fatigue resistance [66-68], and 

electrical conductivity [50, 69, 70] compared to nanocrystalline metals. In this section, 

the formation mechanisms of the twin boundaries are discussed. 

 There are several ways to introduce twin boundaries. The most common is post-

processed methods including severe plastic deformation, annealing, phase transformation, 

and surface mechanical attrition treatment (SMAT) where large stress can be introduced 

[71-74]. In particular, deformation twins form by a homogeneous simple shear of the 

parent lattice under stress, at temperatures below those at which individual atoms move 

by diffusion. These post-processed twins are less favored because of low density twin 

formation, large twin spacing, and high dislocation density.  

 Recently, high density nanotwins can be introduced by simple growth process, for 

example electro-deposition or physical vapor deposition. In the following section, the 

formation mechanisms of high density growth twin boundaries are discussed particularly. 
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I.2.1 Growth Twins in Low Stacking Fault Energy Metals 

 Most studied growth nanotwinned metals have low stacking fault energy (γsf). 

This is because low γsf metals tend to form twin boundaries more easily than those with 

higher γsf. For example, Cu and Ag form abundant growth twin boundaries during 

magnetron sputtering, one type of physical vapor deposition technique. A thermodynamic 

model derived from nucleation theory predicts that the probability of forming a twinned 

nucleus and a perfect nucleus[33] can be expressed as 

Equation 4          
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Equation 5       
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where k is the Boltzmann constant, T is the substrate temperature during deposition, Ω is 

the atomic volume, J is the deposition flux, Ps is the vapor-pressure above solid, m is the 

atomic mass of depositing species,     is the stacking fault energy. Comparing these two 

equations, if the     is small and the volume free energy difference (  
 

  [
 √     

  
]) is 

large, the difference between         
  and      

  will be negligibly small, and the 

possibility of twinned nuclei formation is similar to that of perfect nuclei formation. 

Therefore, either low     or high deposition flux contributes the most to the formation of 

nanoscale twins. Fig. 9 (a) shows the calculation of radius differences between perfect 

and twin nuclei at different deposition rates, and (b) the evidence of high density growth 

twins in sputtered Ag [75]. 
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Figure 9 (a) The calculation of radius differences between perfect and twin nuclei 
at different deposition rates; and (b) the evidence of high density growth twins in 
sputtered Ag. High density growth twins are more favored in lower stacking fault energy 
metals at higher deposition rates [75] 
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 At low deposition rates, incoming atoms have ample time to diffuse to their ideal 

lattice sites. Increasing deposition rate results in the formation of more growth defects, as 

incoming atoms have less time to reach equilibrium lattice sites before more atoms pile 

up. Hence, the high deposition rate is preferable for twin formation. As shown in Fig. 10, 

higher deposition rates result in enhanced twin formation in sputtered Cu films [76]. 

 

Figure 10 Cross-section TEM images of Cu films deposited at (a) 9A/s, (b) 30A/s, 
and (c) 40A/s, examined from <110> direction. (d-f) Statistical distribution of twin 
thicknesses deposited at 9, 30 and 40 A/s, respectively. Average twin thickness decreases 
with increasing deposition rate [76]. 

 

Table 1 The stacking fault energy (SFE) of various metals 

Metal Ag Co Au Cu Ni Pd Al 
SFE 

(mJ/m2) 
16 12~24 32 41 125 160 166 

 

 As shown in Table 1, growth twins can be achieved in low stacking fault energy 

including Cu, Ag, Co etc. For metals with high value of γsf, simply increasing the 

deposition rate is not sufficient to induce growth twin formation. 
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 The tendency of a metal to form twins, T, is used to better understand the stacking 

fault energy effect on twin formation [77]. This property is related to the stacking fault 

energy (γsf), twin boundary energy (γt), and more importantly the ratio of unstable 

stacking (γus) to twinning energy (γut). Generally these energies correlate to each other, 

hence fcc metals with low γt form twins most readily during nucleation or deformation. 

Tendency, T, is defined as 

Equation 6         √
   

   
 

where λcrit is a normalized nucleation load dependent on γsf, γut, ν, and several parameters 

defining the geometry of the crack. It is noteworthy that T is a competition between 

twinning and full dislocation emission. The incidence of twinning increases as cross slip 

is inhibited in low γsf metals. T explains some seemingly paradoxical behavior, such as 

why Al rarely twins, while Pd, a metal with similar γsf, will show deformation twinning. 

This is because Al and Pd have dissimilar γus /γut ratios, which causes Pd to twin more 

easily than Al. 

 It should be noted that lowering γsf by alloying is a well-known method for 

increasing the tendency of a metal to twin. However, sometimes the properties of the pure 

metal might be adversely affected by alloying (e.g., in the case of electrical conductors). 

As we will see later in this section, other methods exist for inducing twins without 

varying the γsf. 

 

I.2.2 Growth Twins in High Stacking Fault Energy Metals 

 Recent studies on metallic multilayer composites have proposed another approach 

to introduce nanotwins into high SFE metals, such as Al, Ni, by forming coherent or 
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semi-coherent interfaces with low SFE Cu and Ag [32, 78-83]. Due to the extra elastic 

stress rising from lattice mismatch, high density twins can form in Cu or Ag seed layers 

and penetrate into Ni or Al over layers as shown in Fig. 11. This method sheds light on 

how to grow twins directly in high SFE metals by providing interfaces from low SFE 

metals.  

 

Figure 11 Possibility to form twins in high stacking fault energy Al and Ni, evident 
by fabricating (a) Ag/Al and (b) Cu/Ni multilayer composites[79, 80] 

 

 Here shows one example of the nucleation of twins in Cu/Ni multilayers via shear 

stress induced Shockley partials. During the island growth process, adatoms are typically 

attached to the peripherals of terraces, as shown schematically in Fig. 12. At the surface 

of the free edge, there is no stress. However inside the island, biaxial stress quickly arises 

to a steady state value, i.e. coherency stress (coming from mismatch strain) in this case. 

The coherency stress in films is known to be transferred by a shear stress between film 

(Cu) and substrate (Ni) at the corner of the islands. Such a shear stress may promote the 
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formation of partials, and hence generate twins. The magnitude of shear stress,  ,  can be 

roughly estimated as follows [84] 

Equation 7       √
   

   
 

where m is the biaxial mismatch stress in films, hf is the film thickness, and x is the 

distance from film edge. k is the biaxial modulus ratio between substrate and films, and 

can be calculated by[84] 

Equation 8    

  
    
  

    

 

where E and  are respective modulus and Poisson’s ratio of substrate and film. The 

magnitude of shear stress typically decreases rapidly when atoms are away from film 

edges. In the case of epitaxial growth of Cu (film) on Ni (substrate), k is estimated to be ~ 

2. m can be calculated by maxECu/(1-Cu), where max is the mismatch strain, ~ 2.3% 

between Cu and Ni. Then   is estimated to be 1.3 – 2.2 GPa when x is 1-3 times greater 

than the film thickness. It has been shown that a shear stress of ~ 540 MPa is necessary to 

create Shockley partials in Cu. 

 

Figure 12 Schematics for shear stress in Cu/Ni nuclei. Shear stresses in Cu and Ni at 
interfaces quickly decay at increasing distance from the stress-free surface. The 
magnitude of shear stress is sufficient to generate sequential partials which in turn lead to 
the formation of nanotwins.[80] 
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 In this section, the formation mechanisms of growth twins are overviewed. Higher 

deposition rates can increase the growth twin density in low stacking fault energy metals, 

such as Ag and Cu. In order to form high density twins in high stacking fault energy 

metals including Ni and Al, fabricating multilayer composites is a validated approach by 

forming coherent or semi-coherent interfaces with low SFE Cu and Ag. 

 

I.3 Stacking Faults 

 As previously mentioned, twin boundary is an intrinsic low-energy coherent 

interface that follows mirror symmetry. Common twinning planes in FCC crystals are 

(111) closed packed planes. Twin boundaries have great advantages on strengthening but 

not losing much ductility. Thus, as the other (111) low energy coherent interfaces, 

stacking faults has drawn great attention recently on their formation and strengthening 

mechanisms. 

 
Figure 13 (a) The stacking sequence of a twin, and intrinsic and extrinsic stacking 
fault. (b) High resolution bright field TEM of a twin boundary and a set of stacking faults 
in deformed nanocrystalline Cu. The upper part of the image shows only symmetric twin 
domains (I and II), while the lower part have a lot of microtwins and stacking faults 
marked by the virtual guide [85]. 
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 To better understand the formation and strengthening mechanisms of the stacking 

faults, it is necessary to first differentiate the stacking sequence of twin boundaries and 

stacking faults, for example, in FCC crystals. Fig. 13(a) shows the stacking sequence for 

a twin, an intrinsic and extrinsic stacking fault (SF) on closed packed (111) planes. “ABC” 

represent three types of (111) periodic planes with the differences of a Burgers vector 

 

 
     . The twinning plane is formed by in-plane shearing, while the stacking faults 

refer to insert or remove a (111) plane. Fig. 13(b) gives an example of a twin and a set of 

stacking faults in deformed nanocrystalline Cu by a high resolution TEM image. The 

upper part of the image shows only symmetric twin domains (I and II), while the lower 

part have a lot of microtwins and stacking faults marked by the virtual guide. 

 Although the twin boundary energy is estimated as half of stacking fault energy 

[49], the stacking fault energy is still much lower if compared to conventional grain 

boundary energies. Therefore, stacking fault energy, which is an intrinsic material 

property, can be used to characterize the coherent interfaces including both twins and 

stacking faults. Rest of this section will discussed the formation of the stacking faults, 

and their strengthening mechanisms. 
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I.3.1 Stacking Faults Formation 

 
Figure 14 (a) Low magnification cross-section TEM of Cu/330 SS multilayer with a 
200 nm thickness for each layer, showing high density twins in Cu layer and high density 
of stacking faults in SS 330. (b)Enlarged TEM image of one Cu/SS330 bilayer, Cu layer 
show twinning, while the SS330 has high density of stacking faults. (c) SAD of Cu 
showing a typical twinning structure, and (d) SAD of SS330 showing the evidence of 
stacking faults (striking lines)[33] 

 

 Stacking faults are commonly observed especially in heavily deformed metals 

with sufficiently low stacking fault energies. The processing methods include cryo or 

room temperature ball milling [86]; surface mechanical attrition treatment [87, 88]; 

tensile deformation [89, 90]; and high pressure torsion [85]. The large stress that 
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introduced by these deformation methods is sufficient to provide shear stress on forming 

stacking faults. 

 Some stacking faults can be achieved by thin film deposition technique. For 

example, Fig. 14 shows high density stacking fault ribbons have been seen in sputtered 

stainless steel (SS) 330 that has ultra-low stacking fault energy [33, 91]. Furthermore, 

high resolution TEM images in same studies reveal the differences of twin (in Cu) and 

stacking faults (in SS330) as shown in Fig. 15. SAD is another powerful tool to identify 

the difference between stacking faults (striking lines) and twinning (mirror symmetry). 

 
Figure 15 (a) HRTEM image of twinning in Cu (b) Enlarged view of the square in (a) 
showing regular nanoscale twinning in Cu. (c) HRTEM image of stacking faults in SS 
330. (d) Enlarged view of the square in (c) showing extremely fine stacking faults [33]. 
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 Besides of deformation induced stacking faults, and growth stacking faults in 

ultra-low stacking fault energy metals. Recent studies on defect-twin boundaries 

interaction in nanotwinned Ag exhibit the twin boundaries to stacking faults transition 

during heavy-ion irradiation [92]. As shown in Fig.16, since twin boundaries act as defect 

sinks, the new stacking faults will form when the twin boundaries interact with radiation 

induced defect such as stacking fault tetrahedral (SFT). This might due to the higher 

boundary energy of stacking faults, compared to that of coherent twin boundaries. 

 
Figure 16 | High-resolution TEM of SFTs and their interaction mechanism with twin 
boundaries. (a) HRTEM image of two truncated SFTs during their interactions with 
CTBs. SFT-a was truncated from its apex, whereas SFT-b was destructed from its base. 
Scale bar, 4 nm. (b) Schematics of two types of interactions between SFTs and twin 
boundaries corresponding to the two cases in (a). (c) Stacking faults along twin 
boundaries in irradiated nt Ag (tave¼8 nm) were induced by SFT–twin boundary 
interactions as shown by XTEM micrograph. Scale bar, 40 nm. (d) HRTEM micrograph 
showing the formation of groups of stacking faults in irradiated thin nt Ag (up to 1 dpa). 
Scale bar, 4 nm.[92] 
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I.3.2 Stacking Faults Strengthening 

 As previously mentioned, grain boundaries, multilayer composites and twin 

boundaries are follows classical Hall-Petch relationship when grain size/layer 

thickness/twin spacing is larger than 50 nm. For stacking fault strengthening, recent 

studies proposed that yield strength may follow a linear relation as a function of stacking 

fault spacing [90, 93]. 

 

Figure 17 Schematic illustration of (a) pyramidal dislocation (b) pyramidal 
dislocation motion and interaction with a basal stacking fault, and (c) pyramidal 
dislocation cutting through the stacking fault [90]. 

 

 Fig. 17 shows a schematic of pyramidal dislocation interaction with stacking 

faults on the Basel plane in a HCP metal. During the dislocation cutting process, the extra 

energy that is applied on dislocation movement is equal to the extra energy consumed by 

cutting the stacking faults. This can be expressed as 

Equation 9      
   

      
 

where τ is the applied shear stress, x is the dislocation of dislocation movement, Es is the 

energy consumed to cutting through the stacking faults. The shear stress can be then 
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expressed as a function of grain size (1/d). Thus, the yield strength as a function of grain 

sizes is shown as 

Equation 10          

where k=Es      is the constant. Compared to Hall-Petch relation, the yield strength in 

this equation is dependent on d-1 instead of d-1/2. 

 

Figure 18 (a) Yield strength vs the reciprocal of the mean spacing between SFs of 
rolled Mg with different thickness reduction. (b-c) Bright field TEM images show the 
example of stacking fault spacing when thickness reduction at 70% and 88%, 
respectively. (d) SAD of the Mg sample shows the basel (0002) type stacking faults [93]. 

 

 Fig. 18 presents the experimental observation of the yield strength as a function of 

d
-1 instead of d

-1/2 in Hall-Petch relation. However, it is worth noting that the material 

system in these studies is single-crystal HCP Mg. The deformation mechanisms of the 

HCP metal, such as pyramidal slip, prismatic slip, or basel slip may play important roles 

during dislocation interactions. Therefore, further evidence is needed to study on stacking 

fault strengthening with different stacking fault spacing in various crystals. 
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 In this section, a stacking fault is proposed as another low energy internal 

boundary. It can be formed by thin film growth, severe deformation or ion-irradiation. 

The yield strength may be dependent on d-1 instead of d-1/2 (Hall-Petch relation). 

 

I.4 Epitaxial Thin Films 

 Epitaxy refers to the deposition of a crystalline layer on a crystalline substrate, 

where the deposited layer follows or mimics the lattice arrangement of the substrate. This 

deposited thin film is so-called epitaxial thin film, which may be grown from majority 

gaseous precursors by various physical vapor deposition or chemical vapor deposition 

techniques. If an epitaxial thin film is deposited on a substrate of the same composition, 

the process is called homoepitaxy. In the semiconductor industry, the homoepitaxial 

growth of Si film on Si substrate is almost one of the first steps in transistor fabrication, 

in order to ensure the desired Si properties. Heteroepitaxy otherwise, refers to the 

deposited epitaxial films are different materials with substrates. Fig. 19 gives an example 

of a heteroepitaxial growth of TaN/TiN thin film on Si (100) substrate [94]. In this case, 

TiN is grown epitaxially on Si substrate. Then TaN is grown on top of the TiN seed layer 

as the next heteroepitaxial layers. Misfit dislocations that marked in Fig. 19(c) typically 

exist in heteroepitaxial films due to the lattice parameter differences between the film and 

the substrate.  
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Figure 19 High-resolution cross-section bright field images at the interface of (a) 
epitaxial TaN/TiN; and (b) epitaxial TiN/Si substrate. The magnified (c) marked the 
misfit dislocation at the TiN/Si interfaces [94] 

 

 Heteroepitaxial films have various advantages on electrical and optoelectronic 

performance, because large amount of detrimental grain boundaries can be successfully 

prevented. For mechanical properties, epitaxial film is clearly needed when exploring the 

strengthening mechanisms of certain types of interfaces, including twin boundaries and 
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stacking faults. A first important concept that characterizes heteroepitaxial is mismatch 

strain (or misfit strain) at substrate-film interface, f, which is defined as 

Equation 11   
     

 

 
       

 

where    and    are lattice parameter of substrate and film, respectively. This mismatch 

strain that is generated between a substrate and film exists in nearly all of the 

heteroepitaxial film, because of the lattice parameter differences. During the epitaxial 

film deposition, mismatch strain is first accommodated by forming fully coherent 

interface, so-called coherency strain. At certain critical film thickness, misfit dislocations 

start to form in order to partially or fully relax (or reduce) the elastic strain [41, 42]. The 

total elastic energy (Etot), can be calculated by combining the coherency strain energy and 

misfit dislocation energy by using [42] 

Equation 12        
    

   

       
      [  (

 

 
)   ] 

where    is the coherency strain, b is Burgers vector. B is biaxial modulus, which equals 

to        

   
. The critical layer thickness, hc, can be calculated after     

   
  , and it is given 

by 

Equation 13    
 

        
[  (

  

 
)   ] 

where hc is determined when misfit dislocation can fully relax the coherent strain. 

 It is worth noting that beside misfit dislocations, misfit twins may form to relax 

elastic strain in epitaxial films systems such as Si/Ge, Ga/As, Au/Ni, and Pd/Ni [95-99]. 

In this case the misfit strain is relaxed by twinning partial dislocations instead of perfect 

dislocations. In order to reduce the mismatch strain, these misfit twin boundaries 

typically form inclined to the interface in the epitaxial film only. As shown in Fig. 20, 
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misfit twins can be successfully introduced in one of the high stacking fault energy 

metals, Pd, on Ni substrate. 

 

Figure 20 Cross-section bright field high resolution TEM images of a Pd epitaxial 
film electrodeposited on a Ni substrate. High density of misfit twins is observed [99]. 

 

 In this section, the parameters on determining epitaxial thin film growth are 

overviewed. During heteroepitaxial growth, mismatch strain can be relaxed at certain 

critical film thickness by forming misfit dislocations or misfit twins. 

 

I.5 Strain-Rate Sensitivity 

 As discussed previously, nanocrystalline generally exhibit substantially higher 

strength and much lower tensile ductility than their polycrystalline counterparts. Since the 

strength, hardness, and ductility of metal and alloys are strongly dependent upon their 

micro-nano scale structure characteristics under plastic deformation, the valuation of 

strain-rate sensitivity in nanocrystalline, nanotwin, or multilayer composites become a 

significant factor to understand the deformation mechanisms. This section will introduce 
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the definition of strain-rate sensitivity index, and the deformation physics behind this 

index. 

 Strain-rate sensitivity index and activation volume refer to the thermally activated 

mechanisms contributing to plastic deformation processes in metals and alloys. The 

activation volume is broadly defined as the rate of decrease of activation enthalpy with 

respect to flow stress at fixed temperature. The origin of strain-rate sensitivity index is a 

special case of inverse of stress exponent for creep. 

 Creep in metals is a thermally activated process which is governed by diffusion: 

vacancies diffuse into the material and enable dislocations to move more freely and 

overcome obstacles to motion. Thus, modeling the relationship between the plastic 

stresses sustained in creep (σ) and the steady-state strain rate (  ̇  requires an Arrhenius 

form. One equation for modeling creep in metals is 

Equation 14  ̇      ( 
  

  
)   

where B is the base strain rate (a constant governed primarily by the microstructure), Qc 

is the activation energy for creep, k is the Boltzmann constant, T is the absolute 

temperature, and n is the stress exponent for creep. In creep literature, Equation 14 is 

called the “Dorn” model, after John E. Dorn who proposed and developed the form in his 

foundational work on creep throughout the 1960’s [100, 101]. 

 In order to fully describe the creep behavior of a particular material with the Dorn 

model, the values of three constitutive constants must be determined: B, Qc, and n. 

Taking the natural logarithm of both sides of Equation 14 yields  

Equation 15     ̇         
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which makes it clear that if temperature is held constant and strain rate is varied, then the 

stress exponent, n, can be determined as the slope of ln (  ̇ ) with respect to ln (σ). 

Likewise, if stress is invariant, then the slope of ln (  ̇) vs. (1/T) is equal to –Q/k which 

leads directly to a value for Q.  Finally, if both Q and n are known for a particular 

material, then the experimental determination of B is straightforward. Of these three 

constants, the stress exponent n is the simplest to determine experimentally, because the 

required testing is conducted at a constant temperature - often room temperature. 

Determination of the activation energy Q requires testing at multiple temperatures, and 

the determination of B can be determined by n and Q. 

 Thus, the stress exponent, n, is the starting point for creep characterization, not 

only because it is the simplest constitutive parameter to determine, but also because it 

conveys much information about the creep capacity of the material. At a constant 

temperature, Equation 14 simplifies to 

Equation 16  ̇      

where C is a constant that incorporates both the base strain rate and the Arrhenius form. 

The theoretical lower bound for n is 1, which expresses Newtonian viscous flow (stress 

proportional to strain rate). There is no theoretical upper bound for n; larger values of n 

manifest better resistance to creep. 

 The inverse of the stress exponent is called the strain-rate sensitivity (SRS).  

Expression of the strain-rate sensitivity is often preferred to expression of the stress 

exponent, because strain-rate sensitivity is theoretically bounded and lends itself more 

easily to a conceptual understanding of creep. Raising both sides of Equation 16 to the 

power of (1/n) and rearranging to solve for stress yields 

Equation 17     ̇ 
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where D is a constant and m is the strain-rate sensitivity (m = 1/n).  Theoretically, the 

strain-rate sensitivity must have a value between 0 and 1, with larger values manifesting 

greater creep capacity. At the lower limit (m = 0), the right-hand side of Equation 17 is 

simply the constant D which means that the stress sustained does not depend at all on the 

rate at which the material is deformed—the material is just as strong at very low strain 

rates as it is at very high strain rates.  For example, the strain-rate sensitivity for sapphire 

is nearly zero, indicating that it has almost no capacity for creep. At the upper limit (m = 

1), the right-hand side of Equation 17 expresses Newtonian viscous flow, wherein stress 

is proportional to strain rate. At a constant temperature, m is simply the slope of ln (σ) 

with respect to ln (  ̇) (Equation 15). 

 If modified Equation 15, the strain-rate sensitivity, m, can be expressed as  

Equation 18   
√   

    

where    is activation volume. Thus, larger strain-rate sensitivity leads to smaller 

activation volume, which decreases the rate of decrease of activation enthalpy with 

respect to flow stress at fixed temperature. 
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Figure 21 Strain-rate sensitivity, m, of (a) Cu, (b) Ni and (c) Al as a function of grain 
size [102] 
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 The dependence of m values on grain size in nanocrytalline draws great attention. 

As shown in Fig. 21. For monolithic metals with FCC structure, such as Cu, Ni, Al, the m 

value is typically found to increase with decreasing grain sizes, whereas the opposite 

holds true for metals with bcc structure as shown in Fig. 22. The differences of the 

deformation mechanisms between FCC and BCC nanocrystalline may be the major 

reasons.  

 

Figure 22 Strain-rate sensitivity, m, of various BCC metals as a function of grain 
size[102] 

 

 In FCC nanocrystalline, the activation volume v* can be described by 

Equation 19           

where l* is  the length of dislocation segment involved in thermal activation.   is the 

distance swept out by the glide dislocation during one activation event. If Equation 19 is 

substituted into Equation 18, m is shown as 
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Equation 20   
  

        
 

where flow stress   is (σ/√ ). If we consider this flow stress follows Hall-Pech relation, 

and l* is proportional to grain size d, m can be rewritten as  

Equation 21   
  

  
 

 

 (   √  )  √ 
 

where  ,  ,   are constants. Equation 21 suggests that when the grain size is refined into 

the nanocrystalline regime, SRS should increase with reduced grain size. It can serve as 

at least a qualitative explanation for the grain size dependence of SRS of FCC metals.  

 For BCC metals, the activation volume maintain constant when the stress is 

increased to a moderate level. This phenomenon can be readily understood by appealing 

to the double-kink nucleation process as the rate-controlling mechanism for BCC metals 

at low homologous temperatures [103, 104]. Reduction in grain size is equivalent to 

increasing the flow stress or yield strength according to the Hall–Petch relation. The 

critical length of the double kink, or the spread width between the two kinks would be ~ 

1.0 μm. Below this, the activation volume decreases with stress slowly. However, the 

stress is still following the Hall–Petch relation. Therefore, m can be described as  

Equation 22   
  

(         )   

when considering Hall-Petch relation on the stress. Therefore, if activation volume keeps 

the same, SRS should decrease with reducing grain size for BCC metals. It is worth 

noting that no clear trend are seen in HCP metal as a function of grain sizes. 

 In this section, the strain-rate sensitivity is overviewed on its role in plastic 

deformation, and grain size dependence. This index is closed related to the activation 

volume, which has direct connection with structure characteristics under plastic 
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deformation. This may help better understanding the deformation mechanisms of various 

interfaces with nanoscale spacing. 

 

I.6 In Situ Nanoindentation 

 In situ nanoindentation refers to the observation in microstructural evolution 

during the mechanical test with nanoindentation under TEM column. The real time 

observation allows more reliable study with great correlation between variation of the 

mechanical properties and structural response. Since the last decade, several in situ TEM 

characterization methods have been introduced [105-110]. For example, in situ TEM 

heating that characterizes the microstructural evolution during heating process; in situ 

TEM straining that observes the structural response during straining process; in situ 

scanning tunneling microscopy that explores the microstructural evolution when applying 

electrical potential in TEM. Among them, in situ nanoindentation is a great technique that 

balances both microstructure characterization and mechanical properties [111].  

 Conventional nanoindentation technique has been developed in the mid of 1970s, 

this method is mainly used to measure the mechanical properties of small volume of 

materials such as hardness, stiffness and young’s modulus. The details of working 

principle will discuss in detail in experimental section. The limitation of this technique is 

small correlation between microstructure and mechanical properties. However, in spite of 

such enormous efforts, direct observation of the deformation events during the 

microstructural evolution under indentation has still been desirable. Therefore, in situ 

TEM nanoindentation has become one of widely used system to explore microstructural 

evolution during the deformation under real time observation. 
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 For in situ TEM nanoindentation, diamond nanoindenter tip, indenter sensor and 

piezoelectric motion controller are equipped in conventional TEM holder. Under the 

TEM column, indentation can be conducted with fine motion of TEM specimen, 

approaching to the nanoindenter tip. More potentially, during the indentation, the indenter 

sensor can detect the pressure sensed by tip and generate the force-displacement plot just 

like the conventional ex situ nanoindentation system. Therefore, it can provide chance of 

more quantitative study.  

Table 2 Recent research progress with in situ TEM nanoindentation on metals 

Materials  Reference 

Nanocrystalline 
Al thin film 

Grain rotation and coarsening, grain 
boundary migration and grain growth [112] 

Polycrystalline 
Al Theoretical strength of defect-free lattice [113] 

Nanocrystalline 
Ni pillar Dislocation annihilation under stress [114] 

Bulk Ni with a 
twin boundary 

Direct observation of the dislocation 
Lomer-Cottrell lock on the twin boundary [115] 

Nanotwined Cu 
thin film 

Dislocation multiplication at Twin 
boundary (TB); incoherent TB migration [53, 54] 

Fe-0.4wt%C 
Martensitic steel 

Grain boundary deformations at low and 
high angle grain boundaries [116] 

Irradiated Cu 
pillar Size independent strengths in irradiated Cu [117] 

Al-Mg alloy Minor Mg strengthening grain boundary  [118] 

Al/Nb multilayer Dislocation glide at layer interfaces [119] 
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nanoindentation. Table 2 summarizes the results from recent researches on various nano-

poly crystalline metals characterized with in situ nanoindentation. For a metal, most of 

the microstructural evolution involving dislocation-boundary interaction, such as 

dislocation pil-up, cross-slip, twinning or detwinning etc. 

 Since E. Stach reported the development of an in situ nanoindentation in TEM on 

2001, tremendous studies have been conducted. Jin et al. has demonstrated that the 

different deformation behaviors of Al thin film depending on the size of grains during the 

in situ TEM nanoindentation [112]. As shown in Fig. 23, when the grain size is on 

submicrometer range, grain boundary migration and grain coalescence have been 

observed, which is mainly driven by dislocation interaction at the grain boundary. 

Meanwhile, nanocrystalline Al thin film shows rapid change of deformation behavior 

with grain growth and grain rotation. Similarly, Ohmura et al. also observed grain 

boundary and dislocation interactions during in situ TEM nanoindentation on martensitic 

steel [116]. Furthermore, Soer et al studied the effects of solute Mg on grain boundary 

and dislocation dynamics during nanoindentation on Al[118].  

 

 With such novel technique, lately several research studies have demonstrated 

impressive property-structure correlations of nanomaterials with in situ TEM 
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Figure 23 (a) Bright-field image before the indentation; (b) dark-field image of the 
larger grain before the indentation; (c) dark-field images of the smaller grain before the 
indentation; (d) bright-field image after the indentation; (e) dark-field image of the larger 
grain after the indentation, showing the larger grain grew by eliminating the smaller grain; 
(f) diffraction pattern before the indentation, showing the high angle grain boundary 
between the two grains [112]. 

 

 Besides the in situ mechanical tests on thin film and bulk materials, Shan et al. 

demonstrated the strain hardening based on annihilation of dislocation in one dimensional 

single crystal nickel (Ni) pillar [114]. Minor et al., explored the theoretical strength of an 

ideal defect-free lattice by performing indentation on single crystalline Al pillar [113]. 

Kiener and his coworkers also compared the non-irradiated and irradiated single crystal 

Cu at various pillar size, where irradiated Cu shows size independent strengths [117]. Fig. 

24 presents their studies on dislocation emission along with load drop during indentation 

on irradiated Cu. 
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Figure 24 In situTEM compression test of a (100)-oriented 118 nm diameter copper 
pillar irradiated to 0.8 dpa. Dark-field still images extracted from the video are shown in 
a–e with the measured load–displacement data in f. a, Before contact to the diamond 
punch, the pillar contains a high density of defects. b, After yield, deformation and 
hardening are governed by the bowing and exit of short dislocations, evidenced by gentle 
load drops in f. In c and d dislocations emitted from a spiral dislocation source extend 
across a slip plane and lead to significant load drops evident in f. e, The slip produced by 
this dislocation source operation leads to the formation of a large slip step, to which 
further deformation is confined [117]. 

 

 There are several great studies on exploring dislocation-boundary interactions, 

such as dislocation-twin interaction, dislocation-interface interaction. Lee et al., have 

found the formation of Lomer-Cottrell lock when partial dislocations interacted with twin 

boundaries in polycrystalline Ni [115]. Fig. 25 shows the formation of the Lomer-Cottrell 
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at on-site of yielding and L-C lock-twin interaction after yielding. Additionally, Li et al. 

shows deformation behavior of thin film during the in situ nanoindentation with atomic 

resolution [53, 54, 119]. One of the novelties of these series work is observation of the 

dislocation under high resolution TEM. The interactions of dislocation-twin boundaries 

or dislocation-layer interfaces are studied in detail. For example, dislocation glide has 

been seen during dislocation-layer interface interaction in Al/Nb multilayer composites, 

as shown in Fig. 26. Moreover, dislocation multiplications are found when they interact 

with coherent twin boundary as shown in Fig. 27. The multiplication steps involves: 1) A 

lattice dislocation glides toward the twin boundary under stress applied during the 

indentation. 2) As the lattice dislocation going through the boundary, it can be dissociated 

into a sessile partial dislocation and mobile twin dislocation. 3) As the twin dislocation 

gliding along the twin boundary, lattices can be rearranged and finally, twin boundary 

could be migrated. 4) Then as the sessile dislocation dissociated into another full 

dislocation and twin dislocation, the deformation procedure could be repeated.  
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Figure 25 During the first indentation cycle, evident activity of dislocations (mainly 
screw or mixed dislocations) at the twin boundary was observed with formation of L-C 
lock (a) A snapshot shows the area of interest marked by a white box near TB1. And the 
enlarged series of movie frames show the interaction between dislocations and twin 
boundary at (b) yield point and (c-h) after yield point, with the corresponding (i) force 
displacement plot [115]. 

 



45 
 

 

Figure 26 (a) X-TEM micrograph of the Al/Nb 5 nm film under the nanoindentor tip 
during the indentation experiment. (b) HR-TEM micrograph of the square box in (a) 
showing dislocations. Interfaces are delineated with dashed lines. (c) The evolution of 
dislocation densities both inside the layers and at the interfaces with time during 
indentation. (d) HR-TEM image of a stacking fault inside the Al layer and (d’) the 
corresponding processed HR-TEM image at higher magnification. The stacking fault is 
bounded by a leading and trailing partial, labeled bL and bT. The trailing partial resides at 
the interface [119]. 
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Figure 27 Interaction of lattice glide dislocation with a CTB. (a and b) HRTEM 
snapshots from in situ indentation showing the interaction of a lattice glide dislocation 
with the CTB. Dislocations 1 and 2 experienced no apparent displacement during the 
interaction process. Under applied stress the lattice dislocation 3 glided towards CTB-2 
(a). After 1s dislocation 3 entered into CTB-2 (b). (a’ and b’) Schematic illustration of the 
steps on the CTB before and after the reaction. (c) A magnified inverse fast Fourier 
transform (IFFT) HRTEM image with Burgers circuit identifies dislocation 3 near the 
CTB. (d) An IFFT HRTEM snapshot taken during the multiplication process to show a 
sharp step with the height of three (111) interplanar distances [53]. 

 

 This section reviewed recent studies on in situ nanoindentation, which is 

convinced as a powerful tool on exploring microstructural/property relation by applying 

mechanical test in TEM column.  

  



47 
 

I.7 Scope and Goals 

 The motivation of this research can divided into two major components. First is to 

study strengthening mechanisms of the interfaces such as twin boundaries, layer 

interfaces, as well as stacking faults in low stacking fault energy (SFE) metal Cobalt (Co) 

and Cu/Co multilayers. Second is to explore the mechanical properties including strain-

rate sensitivity, and structure/property relation in nanotwinned Cu by applying advanced 

nanoindentation techniques, such as thermal drift controlled strain-rate sensitivity 

measurement and in situ nanoindentation under transmission electron microscope (TEM).  

 As mentioned previously, high density growth twins, stacking faults can be 

formed in low SFE metals. As one of the low SFE metals, Co has drawn little attention 

due to the complex coexistence of hexagonal close-packed (HCP) and face-centered 

cubic (FCC) structure. The scope of this study is to growth epitaxial HCP and FCC Co, 

respectively. Therefore, the strengthening mechanisms of these interfaces can be 

identified.  

 Cu/Co mulitilayers composites have broad applications based on their giant 

magnetron. This study provides two epitaxial Cu/Co multilayers systems: (100) and (111), 

respectively. The strengthening mechanisms at various different layer thicknesses are 

studied. The role of twin boundaries and stacking faults on strengthening are identified as 

well. 

 Traditional nanoindentation technique has large scattering because of thermal 

effect when determining the strain rate sensitivity (SRS) of materials. This study provides 

a new method that renders hardness insensitive to thermal drift. The new technique is 
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validated on nanocrystalline Ni and nanotwinned Cu films and returns expected values of 

SRS.  

 This study applied in situ nanoindentation to identify corresponding stress level of 

incoherent twin boundary (ITB) migration; dislocation nucleation; and dislocation 

penetration through coherent twin boundary (CTB) in one loading event on epitaxial 

nanotwinned Cu. We have observed the detwinning process triggered at ultra-low 

indentation stress level associate with stress plateau and drops before plastic yielding. 

The ITB migration of the thinner twin (~ 5 nm) occurs at very low stress at 0.1 GPa with 

about 15 nm/s velocity, whereas the thicker twin (~14 nm) can stand until 0.6 GPa. 

Furthermore, the dislocation nucleation and propagation before macroscopic yielding that 

corresponds to dislocation penetration through twin boundaries are captured 
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CHAPTER II 

EXPERIMENTAL 

II.1 Thin Films Fabrication by Magnetron Sputtering 

 Various thin film deposition techniques are applied in thin film research and 

development. Chemical vapor deposition (CVD) and physical vapor deposition (PVD) 

are two major categories that include most of the deposition techniques. 

 In a typical CVD process, reactants are transported to the deposition region. They 

are then absorbed on the substrate surface, where chemical reaction occurs. The 

deposition of byproducts is completed after the reaction. The useless byproducts are then 

removed from the surface by diffusion or transportation. As a basic CVD technique, 

Atmospheric CVD (APCVD) operates at normal atmospheric pressure and a high 

temperature in order to increase the deposition rate. Low pressure CVD (LPCVD) is a 

technique that processes at a low pressure and temperature. Reduced pressures tend to 

reduce unwanted gas-phase reactions and improve film uniformity. Plasma enhanced 

CVD (PECVD) is a CVD technique that utilizes plasma to enhance the chemical reaction 

rate of the precursors. It allows deposition at lower temperatures, which is significant in 

the manufacture of the semiconductor. These CVD techniques are popular in 

semiconductor industry due to their capability of a large yield of product (cheaper and 

higher deposition rate). One of the major drawbacks for these techniques is the thin film 

quality because of the difficulty of controlling chemical reactions. Some advanced CVD 

techniques overcome this issue, for example, atomic Layer CVD (ALCVD), also called 

atomic layer deposition (ALD) or Atomic layer epitaxy (ALE), is a specialized form of 

epitaxy growth that typically deposit alternating monolayers of two elements onto a 
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substrate. Metal organic CVD (MOCVD), a CVD process based on metal organic 

precursors, is operated under an ultra-high vacuum condition. These two techniques are 

widely used in semiconductor industry for device fabrication because of the high quality 

growth of thin films by maintaining high vacuum during deposition, which decrease 

deposition rate dramatically. 

 The PVD techniques are the other approaches that avoid any chemical reaction 

during deposition process. The typical PVD technique induces vapors from a source by 

physical excitation methods such as heating (evaporation) or ion bombardment 

(sputtering). Thermal and e-beam evaporation are typical evaporation methods where the 

target is heated by either thermos or electron beam. The atoms in the target are then 

stimulated and deposited on the substrate surface. The deposition rate and composition is 

dominated by evaporation flux. This is an equilibrium process from the heated target to 

the substrate but with low deposition kinetics, that is not sufficient to provide enough 

kinetic energy for deposition atoms to move to the perfect location, in order to form a 

better quality structure. Two decades ago, molecular beam epitaxy (MBE) was developed 

to deposit well-defined layer structure with precision at the atomic level by using an 

ultra-low deposition rate. However, due to ultra-low deposition rates and high cost on 

maintenance, MBE is less interested in current research and development. In comparison, 

non-equilibrium processes such as pulsed laser deposition (PLD), and magnetron 

sputtering have become more popular for providing high quality thin films at reasonable 

cost level. PLD is a PVD technique where a high power pulsed-laser beam strikes a target 

material inside a high vacuum chamber. The material is vaporized from the target and 
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then deposited on a substrate. Magnetron sputtering is a widely used method to produce 

high quality metal thin film with relative less cost. 

 In the magnetron sputtering process, the target atoms are scattered backward 

when the energetic particles such as accelerated ions bombard the solid target surface. 

This phenomenon is so-called sputtering. Surface or near-surface atoms are kinetically 

dislodged by the impact of the energetic particle to the target. These dislodged atoms 

have considerable kinetic energy by transferring from the initial particles. They move 

deeper into the target material and dislodge extra atoms. This knock-on process only 

stops when the energy in the projectile or displaced atoms is smaller than the 

displacement energy. The residual energy is absorbed to generate phonons and this raises 

the local temperature. These atoms on or near the surface may be dislodged by 

overcoming the surface binding energy due to enough energy transferred from the ions or 

other knock-on atoms, and are deposited on the substrate surface. These atoms are known 

as sputtered atoms and the process is called sputtering deposition.  

 The number of atoms (molecules) ejected from a target surface per incident ion is 

defined as sputtering yield, Y. The magnitude of sputtering yield depends on factors 

including the details of energy transfer between incident and target atoms, mass and 

energy of incident ion, type of discharge gas, mass and binding energy of target atom, 

and incident angle of the projectile. The sputter yield can be obtained either from the 

simulation such as SRIM in which collisions between the energetic ions and the paths are 

calculated by using collision potential. Normally, materials having higher melting 

temperature possess lower sputtering yield due to higher binding energy. 



52 
 

 The sputter deposition is often practiced in plasma that is generated when a 

voltage applied across a cathode or an anode in the vacuum chamber. In most cases, the 

grounded chamber wall is treated as the anode, and the cathode is then biased negatively. 

The types of sources for sputtering deposition include direct current (DC) diodes and 

radio-frequency (RF) diodes. Sputter-deposition of thin films has a wide range of 

applications, including architectural glass, semiconductors, automobiles coatings and 

corrosion resistant coatings. The transverse magnetic field normal to the electric field is 

applied to increase the ionization efficiency of electrons by increasing their path length in 

the sputtering, which is so-called magnetron sputtering. During the magnetron sputtering 

process, secondary electrons close to the target will be trapped by a magnetic field, in 

order to enhance the deposition rate. The sputtered atoms are neutrally charged and so are 

unaffected by the magnetic trap. The working principle of the magnetron sputtering 

system is shown in Fig. 28.  
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Figure 28 The working principle of the magnetron sputtering system 

 

 The advantages of magnetron sputtering are as follows: (1) There is almost no 

restriction on target material, including metals, semiconductors or insulators; (2) The 

sputtered films typically exhibit a better adhesion on the substrate than evaporated films 

because of the higher kinetic energy; and (3) Magnets in the magnetron enable lower 

pressures to be used. (4) When sputtering metals by using the DC magnetron sputtering 

technique, the high conductivity of metals guarantees a discharge-free sputtering of the 

targets. 

 Our research group (Zhang Nanometal Group at Texas A&M University) operates 

a custom-built magnetron sputtering system featured with four separate sputtering guns 

operating with either DC or RF power supplies. This system can reach a low base 
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chamber pressure 5 x 10-8 torr, which is sufficient to grow high-quality epitaxial films. 

Single crystal silicon wafers with various orientations are used as substrates throughout 

this work. Substrates are etched using HF acid prior to deposition to remove the oxide 

layer and allow epitaxial growth. 

 

II.2 X-Ray Diffraction (XRD) 

 X-ray diffraction (XRD) is a non-destructive tool for the microstructure 

characterization. Since the magnetron sputtered thin films have a smooth surface, no 

sample preparation is required to apply this XRD technique. In this study, XRD was 

extensively utilized for the epitaxial growth characterization of as-deposited single layer 

or multilayer films. 

 In the XRD experiment, the thin films are exposed to a monochromatic beam of 

x-rays from a Cu-Kα source. The wavelength of these x-rays is of the same magnitude as 

interatomic spacing. Bragg’s law [120] is usually applied to analyze the XRD results, the 

expression is showing as 

Equation 23           

where   is the order of diffraction,   is the wavelength for the incident x-ray beam (Cu-

Kα),   is the spacing between planes that contribute to diffraction, and   is the angle 

between incident beam and the crystallographic plane. The schematic of the typical X-ray 

diffraction is shown in Fig. 29. An x-ray detector such as a Geiger counter or a 

scintillation counter, mounted on a movable arm, detects the diffracted beam. From the 

intensity and position of the diffracted beam, various interatomic spacing, crystal 

structure, and orientation of the thin film are determined. This is due to the periodic 

arrangement of atoms on specific crystallographic planes in the crystalline solid thin film. 
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The scattered x-rays mutually reinforce each other in certain interatomic spacing (d), 

where the diffracted intensity is stronger at certain corresponding angle ( ) following 

Bragg’s law as above. 

 

Figure 29 Schematic of the typical X-ray diffraction following to Bragg’s Law 

 

 In this study, XRD was performed at the Texas A&M Department of Chemistry 

X-ray Diffraction Laboratory. A Bruker-AXS D8 Bragg-Brentano X-ray Diffractometer, 

using Cu-Kα source, can be used to collect θ-2θ scans from deposited films. Additional 

XRD may be performed by collaborators at the Center for Integrated Nanotechnologies, a 

U.S. Department of Energy and Office of Basic Energy Sciences user facility at Los 

Alamos National Laboratory; Texas A&M Department of Electrical Engineering Wang 

Thin Film Laboratory. The instruments used are PANalytical X’Pert PRO Materials 

Research Diffractometer, also operated using Cu-Kα radiation. This diffractometer can 

conduct both out-of-plane θ-2θ and in-plane phi scans. 
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II.3 Transmission Electron Microscopy (TEM) 

 Transmission electron microscopy (TEM) is critical in evaluation of 

microstructure, such as morphologies, textures and kinetics in sputtered single layer and 

multilayer films. TEM is a microscopy technique inwhich an electron beam is transmitted 

through an ultra-thin specimen (normally less than 100 nm). The electron beam passes 

through the specimen after the interaction. It magnifies and focuses on an imaging screen 

in order to discover the detailed structure information in the specimen. Decades ago, the 

images were captured by photographic films that have the best quality and most 

information. Nowadays, the advanced charge-coupled device (CCD) becomes more 

popular to capture both images and diffractions, due to the convenience and compatibility 

of imaging processing by using computers. 

 A classical TEM is composed of four major components: illumination, 

electromagnetic lens, sample stage, and imaging system. The illumination system 

provides the electron beam, which is generated by the electron source composed of a 

cathode and an anode. Usually a heated tungsten or LaB6 filament emits electrons, which 

are then confined into a loosely focused beam by a negative cap. The positive anode 

accelerates the focused beam that passes through the tiny hole in the center of the anode 

to form a stream of monochromatic electrons. A series of condenser lenses and metal 

apertures are used to form one coherent electron beam. The first condenser lens 

determines the general spot size range that strikes the sample. The second condenser lens 

can adjust the size of the spot on the sample. The metal aperture, a thin disk with a small 

circular hole, is applied to restrict the electron beam and knock out high angle electrons 
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before they strike the specimen. Then the coherent beam strikes the specimen that is in 

the sample holder, and parts of the beam are transmitted.  

 The sample holder is a platform equipped with a mechanical arm for holding the 

specimen and controlling its position. After interaction between the electron beam and 

specimen, three types of transmitted electrons are collected to provide the sample 

information. The unscattered electrons are the incident electrons, which are transmitted 

through the thin specimen without any interaction with the specimen. The contrast 

generated by the unscattered electrons varies in terms of specimen thickness. Elastic 

scattered electrons are the incident electrons that are scattered in an elastic fashion 

without losing energy. The pattern generated by elastic scattered electrons can provide 

information regarding the orientation, atomic arrangements and phases because all 

electrons scattered by the same atomic spacing will be scattered by the same angle, which 

follows Bragg's Law as previously mentioned. Inelastic scattered electrons, which lose 

energy during the interaction, are incident electrons that interact with specimen atoms in 

an inelastic fashion. They can be used to acquire either electron energy loss spectroscopy 

(EELS) or Kirkuchi bands.  

 After transmitting the specimen, the electron beam is focused by the objective 

lens that consists of another electromagnetic lens system and a screen. In this 

electromagnetic lens system, the objective lens is used to re-focus the electrons after they 

pass through the specimen. The projective lens can enlarge the image and project it onto 

the screen with a phosphorescent plate. The objective aperture can enhance the contrast 

of the image by blocking out high-angle electrons, and the projective aperture offers 

several functions to examine the periodic diffraction of electrons. 
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 Selected area diffraction (SAD) is determined by intermediate lens aperture size 

when parallel electrons are transmitted through a small area of the thin foil specimen. 

These electrons are diffracted according to Bragg's law. The SAD patterns of 

polycrystalline or nanocrystalline materials are composed of a transmitted beam and a 

number of rings. These patterns can explore the information on the periodicities in the 

lattice, and hence the atomic positions, such as amorphous or crystalline, crystallographic 

features, orientation relationship of the interface, etc. 

 Another type of TEM is a scanning transmission electron microscope (STEM). 

The electron beam is focused into a narrow spot which is scanned over the sample when 

the electrons pass through the specimen. The contrast of different materials in STEM is 

directly related to their atomic numbers. STEM is typically accompanied by chemical 

analysis techniques, such as mapping by energy dispersive X-ray (EDX) spectroscopy, 

electron energy loss spectroscopy (EELS), and annular dark field imaging (ADF). Images 

with atomic resolution can be obtained when applying a high-angle ADF detector into 

STEM, i 

 TEM and STEM were performed at the Texas A&M Microscopy and Imaging 

Center using several microscopes. The JEOL 2010 microscope has a LaB6 filament and is 

operated at 200kV to achieve a point resolution of up to 0.23nm. Additional imaging may 

be performed using the FEI Tecnai G2 F20 ST. This microscope is a field emission 

instrument operated at 200kV. It is capable of conventional imaging, as well as high-

angle annular dark field scanning transmission electron microscopy (HAADF-STEM), a 

technique which provides chemical composition information based on the atomic number 

of the investigated species.  
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II.4 Nanoindentation 

 The material’s hardness indicates the resistance of a material to localized plastic 

deformation. The indentation hardness is normally 3 times greater than flow stress. The 

major advantage of using nanoindentation is to measure the mechanical properties of the 

thin film materials with small volume. Measuring hardness using nanoindentation 

involves two steps. At first, a hard indenter is pressed into the material with a certain load 

and the displacement is composed of elastic and plastic deformation. Secondly, during 

the retraction of the indenter, the elastic deformation is recovered and only the residual 

area, which is due to plastic deformation, can be measured. The indentation hardness (HIT) 

is determined by equation 13 where Pmax is the maximum applied force and Ac is the 

projected contact area between the indenter and the material surface. The hardness is 

defined by 

Equation 24             

 Ac could not be measured directly. An area function, which describes the shape of 

the indenter tip, has to be expressed as a mathematic function relating to the contact depth 

of the indenter with hc. The indentation hardness measurement is obtained from the load-

displacement curve. However, they are sensitive to various analysis methods including 

elastic contact model [121], continuous stiffness method [122], and contact solution for 

spherical indenters. Among these, the analysis based on elastic contact model is the most 

commonly used method. It assumes: (1) deformation upon unloading is purely elastic; (2) 

the compliances of the samples and of the indenter tip can be combined as springs in 

series and (3) the contact can be modeled for contact between a rigid indenter of defined 

shape with a homogeneous isotropic elastic half space using the equation as shown below: 



60 
 

Equation 25   
   √  

√ 
 

where S is the contact stiffness, and Er is the reduced modulus. 

 Based on these assumptions, contact depth hc can be expressed by 

Equation 26                    

where hmax is the maximum depth of indentation, and hi is the intercept depth of the 

maximum unloading indentation. The correction factor ε is a function of the shape of the 

indenter tip, for example, flat tip is 1, conical tip is 0.73, Berkovich tip, Vickers and 

spherical indenter are 0.75. Fig. 30 shows a cross-section view of an indented area with 

marked hmax, and hi. 

 

Figure 30 A cross-section view of an indented area 

 The procedure for data analysis to obtain indentation hardness is as follows: The 

slope of the tangent at Pmax is used to obtain hi, and hmax at Pmax is acquired in the load-

displacement curve. Correction factor ε is determined by the shape of the indenter tip. 

The contact depth hc can be obtained by inputting hi, hmax and ε. The project area Ac is a 

function of the indenter shape. 
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 The elastic contact model assumes that the compliance of the samples and of the 

indenter tip can be combined as springs in series. Therefore, 

Equation 27  

  
 (

    
 

  
)  (

    

 
) 

where Er is called reduced modulus, Ei is the modulus of indenter and E is modulus of the 

tested specimen,  i and   are the Poisson’s ratio of the indenter and the tested specimen, 

respectively. The reduced modulus is obtained by contact stiffness and projected area. 

 Hardness can be measured via an instrumented nanoindentation method 

performed using a Fischerscope HM2000XYp micro-/nano-indenter with a Vickers 

indenter tip. This instrument is operated by the Zhang Film and Nanolayer group. It is 

capable of providing force- or depth-controlled indentation. Additional nanoindentation 

may be performed by collaborators in Agilent Company. An Agilent G20 NanoIndenter 

with a berkvich indenter was used for all testing. The continuous stiffness measurement 

(CSM) option was also used in order to achieve hardness and elastic modulus as a 

continuous function of penetration depth. A comparison between hardness and depth 

analysis is typically performed, and a hardness plateau (i.e. proper depth to avoid 

erroneous hardening influences of both small indentation size and substrate effects) is 

typically observed. A minimum of 9-12 correct indentations are typically performed at 

each indentation depth to ensure enough data for reliable statistics. 

 

II.5 In Situ Nanoindentation in TEM 

 Since Wall and Dahmen developed the in situ TEM nanoindnetation system in 

1997, it has been widely used as a property/structure characterization technique. 

Especially for mechanical property of materials, in situ nanoindentation allows direct 
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observation of the deformation behavior during the indentation process in TEM column. 

Such a dynamic experiment can be achieved when a sharp diamond tip is mounted in the 

specimen holder and three dimensional motions of either tip or specimen are controlled 

by piezoelectric drivers. A pressure sensor that is equipped along the tip measures the 

load-displacement curve as same as the conventional nanoindentation system. Therefore, 

various valuable researches have been conducted on exploring materials property and 

microstructure relation. Among them, direct observation of dislocation activity and its 

correlation with grain and twin activities in the metallic system could provide clear 

evidence to either support or suspect the conventional theories. Additionally, discovery of 

new phenomenon via the in situ test could provide possibility for development of the 

advanced materials. 

 

 

Figure 31 Two major components of in situ TEM nanoindentation: (a) in situ 
specimen holder, (b) The enlarged view of the front-piece of the specimen holder, and (c) 
control system 
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 Our In situ TEM nanoindentation system is composed of two major components, 

in situ specimen holder and control system (as shown in Fig. 31). The In situ holder that 

includes TEM specimen and indenter sensor is mainly composed of three parts: a front-

piece that is mainly in the TEM column, a rod and an end-piece. Unlike the conventional 

TEM specimen holder, the front and end pieces from the in situ holder require special 

design when considering the piezoelectric motion of the sample and indentation 

procedure. The TEM specimen on half grid should be mounted on the sapphire ball 

which is connected to piezoelectric tube for smoother motion of the specimen. The 

indenter sensor and tip are installed in the front area of the holder, which allows the direct 

contact with the specimen under the electron beam transmission in TEM. Finally, the 

end-piece of the holder transfers the indentation signal and piezoelectric signal to the 

control system. 

 Once the indentation process is initiated, the indenter tip is fixed while the sample 

moves toward the tip by a piezoelectric stage. For the movement of the sample, several 

parameters can be changed such as motion speed, maximum indentation depth and force, 

and holding time at the maximum depth. During the indentation, the loading process 

between the tip and specimen can be captured by a built-in CCD camera in the 

microscope. After the indentation, based on the data detected by the control system, 

force-displacement plot can be displayed on the computer. 
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Table 3 Calibrated in situ indenter parameters 

Tip type K [N/m] P0 [μm] P1 [μm] 

Berkovich 450 1500±300 -5200±1500 

Spherical 450 1400±300 -5500±1500 

Vickers 900 3950±300 -15550±1500 

Wedge 1400 2840 -5735 

Punch 3400 5825 -13245 

 

 Similar to the conventional nanoindentation system, the in situ system also 

requires various kinds of indentation tips such as Berkovich, Conical and Vickers. Table 

3 shows the corresponding sensor data for various tip after calibration by nanofactory 

instrument Inc. Unlike the conventional nanoindentation which is conducted on large 

dimension of surface, the in situ nanoindetation is conducted on very small surface area 

of the thin foil, which may lead to a slip between the tip and specimen. A wedge and 

punch shaped tips are currently widely used to ensure the better contact with the 

specimen. Because of the geometries differences of the tips, different parameters are 

required for tips’ calibration. 

 Once the specimen and sensor of indenter tip is installed in the holder, the next 

step is to align between the tip and thin specimen before actually conducting the 

indentation. Since the in situ nanoindentation is conducted on the thin foil, the alignment 

of the specimen along the same height to the tip position is very critical. Typically, the 

alignment of the tip and specimen can be carried out based on adjusting their eucentric 

heights (z-height). The eucentric height of the tip is set by control panel in TEM, the z-
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height of the specimen can be adjustable by the piezoelectric motion control from the 

motion control program. 

 Once the load-displacement curves are collected, the indentation stress can be 

calculated by two types of calculation methods. They are chosen when considering the 

real contact geometry of the indenter tips (either wedge or spherical tips as used in our in 

situ nanoindentation studies). If we estimate contact area based on wedge tip, the contact 

area A can be expressed as: 

Equation 28     [
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Equation 29       

where D is the indentation depth, t is the foil thickness, and R and α are the tip radius and 

angle, respectively. The indentation stress, σ, can be estimated by the load, F, divided by 

contact area A. 

If we estimate projected area based on spherical tip geometry (Hertzian contact [123]), 

the contact radius is 

Equation 30   √       

The indentation stress can be calculated as 

Equation 31   
 

 
 

 

   
 

In this study, we are using Hertzian estimation of spherical tip to calculate the indentation 

stress. 

 For instance, if the recorded load during nanoindentation is F = 1 µN, t = 30 nm, 

D = 30 nm,   = 70 nm; R = 100 nm, then the two methods yields   

          (method 1) and             (method 2). Thus, indentation stress, which 
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depends on the geometry of specimens and indentation depth, can be accurately 

determined by using both methods. 

 In this study, the In situ TEM analysis was performed on a JEOL2010 and Tecnai 

F20 ST analytical transmission electron microscope. Images and movies during 

indentation events were captured using a built-in CCD camera in the microscope. A 

standard in situ nanoindentation holder, manufactured by Nanofactory Inc., can reach a 

maximum load of 1000 μN and a maximum loading depth of 700 nm. For most of the 

experiments in the study, a maximum depth of 250 nm and a maximum load of 200 μN 

were set to avoid tip damage. The sharp conical-shape tip was used for performing 

nanoindentation on specific grains or positions in the sample. The in situ movies and 

TEM images were taken during the nanoindentation experiment. During the indentation 

experiment, the nanoindentation tip was stationary while the sample was driven closer to 

the tip by a piezoelectric stage in a precision movement as fine as 0.1 nm per step. During 

the loading process, a constant loading rate of 10 nm/s and a holding time of 15 ms were 

used for all the indentation experiments. 
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CHAPTER III 

CONTROLLING MECHANICAL STRENGTH BY TAILORING 

VOLUME FRACTION OF STACKING FAULTS RIBBONS IN 

EPITAXIAL FCC (100) COBALT 

III.1 Overview 

 We investigate the mechanical properties of sputtered, epitaxial Cobalt (Co) films 

with 1.2 μm thickness. By applying epitaxial Cu seed layer on Si substrates, epitaxial 

FCC (100) and HCP (0002) Co films can be achieved, respectively. High density 

stacking faults with an average spacing of a few nanometers are observed on (0002) 

Basel planes in HCP Co films. Compared to HCP Co, high density stacking faults 

intersecting ribbons are observed on different (111) planes. Furthermore, the volume 

fraction of these stacking faults intersecting ribbons in FCC Co can be controlled by 

deposition parameters of magnetron sputtering. The indentation hardness of the FCC Co 

rises from 4 to 5 GPa with increasing the volume fraction of the stacking faults. The 

formation and strengthening mechanisms of these stacking faults are discussed. 
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III.2 Introduction 

 As a low energy internal interfaces, twin boundaries have shown the effectiveness 

on blocking dislocation motion, and then contributed to the strengthening [32, 50, 69, 75]. 

Compared to the nanocrystalline metals, nanotwin metals show the combination of great 

strengthening and ductility [51, 56, 124]. There are several ways to introduce twin 

boundaries at room temperature. The most common is post-processed methods including 

severe plastic deformation, tensile deformation, and surface mechanical attrition 

treatment (SMAT) where large stress can be introduced [71, 85, 87-89]. Recently, high 

density nanotwins can be introduced by simple growth process, for example electro-

deposition or physical vapor deposition [50, 78, 80]. Stacking fault energy, an intrinsic 

materials property, is often used to estimate the tendency to form high density growth 

twins in low stacking fault energy metals, such as Ag, Cu. Recently, another low energy 

internal interfaces, stacking faults, has shown the great strengthening as well [90, 93, 

125]. The strengthening mechanisms of growth stacking faults have become an 

interesting topic. 

 Cobalt (Co) and Co-based alloys have various engineering applications based on 

their great wear and corrosion resistance, high mechanical strength and deformability, 

advanced magnetic properties, and great biomedical compatibility [126-129]. For 

mechanical properties, recent experimental studies showed high strength and tensile 

ductility in nanostructured Co, compared to polycrystalline Co [130, 131]. This might 

due to the effect of high density twins or stacking faults since the stacking fault energy of 

Co is less than 20 mJ/m2 [132]. Molecular dynamics simulation predicted that 

deformation mechanisms of nanocrystalline Co are dominated by slip of partial 
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dislocations and stacking faults [133-135]. Thus, the strengthening mechanisms of 

stacking faults or twins in Co are highly interesting. 

 However, pure polycrystalline Co usually occurs as two phase mixture: hexagonal 

closed packed (HCP), and metastable face centered cubic (FCC). The coexistence of 

these two phases increases the complexity on identifying the role of twinning or stacking 

faults in strengthening mechanisms of Co [87, 88, 136]. For example, Wu et. al, have 

seen the both FCC (100) and HCP (0002) grains after SMAT on polycrystalline Co. 

Among these two types of grains, (111) stacking faults intersecting ribbons has been 

found in FCC grains, where parallel (0002) stacking faults are found in HCP Co. 

However, the mechanical properties of each type of stacking faults lacking due to the 

coexistence of the two phases [87, 88]. Therefore, the fabrication of single crystal FCC or 

HCP Co is clearly needed. 

 The epitaxial film growth by deposition sheds light on solving this problem. It has 

been found that the deposited Co film on single crystal Cu or Ni substrate is epitaxial 

FCC structure [40, 137]. However, these studies were focused on FCC-to-HCP phase 

transformation and magnetic properties in FCC Co with the film thickness less than 100 

nm [138, 139]. To date, there is no report on mechanical properties of epitaxial FCC Co 

film at room temperature. 

 In this study, we investigate the mechanical properties of sputtered, epitaxial Co 

films with 1.2 μm thickness by using nanoindentation technique. By applying epitaxial 

Cu seed layer on Si substrates, epitaxial FCC (100) and HCP (0002) Co films can be 

successfully achieved, respectively. High density stacking faults with an average spacing 

of a few nanometers are observed on (0002) Basel planes in HCP Co films. Compared to 
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HCP Co, high density stacking faults intersecting ribbons are observed on different (111) 

planes.  

 By tailoring the deposition parameters, we can control the volume fraction of the 

stacking faults intersecting ribbons in FCC Co from 50% to 10%. The indentation 

hardnesses of the FCC Co are in the range of 4-5 GPa with different volume fraction of 

the stacking faults. Moreover, at the same volume fraction, the stacking fault intersecting 

ribbons in FCC Co is more effective on blocking dislocation compared to the parallel 

conventional stacking faults in HCP Co. 

 

III.3 Experimental 

 Cu (99.995%) and Co (99.95%) targets were used to deposit 1.2 μm Co with 0.1 

μm Cu seed layer on HF etched Si (100) and (110) substrates by dc magnetron sputtering. 

The base pressure of the sputter chamber was 6.7 × 10-6 Pa and Ar pressure was ~ 2 × 10-

1 Pa during deposition. There was no heating or cooling on substrates during deposition. 

The deposition rate was ~0.5 nm/s for Cu. The deposition rate was varying from 0.1 nm/s 

to 0.55 nm/s for Co. X-ray diffraction (XRD) experiments were performed by using a 

Bruker D8 Discover X-ray powder diffractometer at room temperature. Transmission 

electron microscopy (TEM) was conducted on a JEOL 2010 microscope operated at 200 

kV. High resolution TEM (HRTEM), scanning transmission electron microscopy (STEM) 

and energy dispersive X-ray (EDX) analysis were performed on an FEI Tecnai ST F20 

microscope operated at 200 kV, equipped with a Fischione ultra-high resolution high-

angle annular dark field (HAADF) detector and Oxford instruments’ EDX detector with a 

spatial resolution of ~ 1 nm for chemical analysis. Hardnesses and elastic moduli of the 
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films were measured by a Fischerscope HM 2000XYp micro/nanoindentor with a 

Vickers diamond indenter tip. The maximum indentation depth was kept at 10~15% of 

total film thickness. 

 

III.4 Results 

 XRD patterns of as-deposited 1.2 μm Co layer on the Si (100) and (110) 

substrates with 0.1 μm Cu seed layer in Fig. 32 reveal the epitaxial growth of FCC (200) 

and HCP (0002) Co, respectively. Consider FCC is metastalble phase in Co, a (110) phi 

scan on FCC (100) Co confirms the four-fold FCC symmetry with 45° in-plane rotation 

with Si (100) substrate. Furthermore, various deposition rates are applying during 

epitaxial growth of Co. The deposition rates can be tailored by several parameters such as 

deposition flux or deposition power. In this study, deposition rates are controlled by 

deposition power, which varies the atom kinetics during deposition. Table 4 shows the 

relation between deposition power and actually deposition rates. Fig. 33 shows XRD 

profile of FCC and HCP Co at various deposition rates. Higher deposition rate (0.55nm/s) 

leads to the strongest peak intensity in both systems, showing the better texture of the 

film. However, with decrease the deposition rates to 0.15 nm/s, the HCP peak intensity is 

about ~1/3, while FCC peak intensity is about ~ 1/50 if compared to their peaks at high 

deposition rates (0.55nm/s). Deposition kinetics may affect the structure in both textured 

epitaxial Co films. 
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Figure 32  (a) XRD profiles shows the epitaxial growth of FCC (100) Co on Si (100) 
and HCP (0002) Co on Si (110) substrates. In both cases a Cu seed layer (~ 100 nm) was 
used. (b) (110) phi scan on FCC Co (100) confirms the epitaxial growth of FCC (100) Co 
with 45° in-plane rotation with Si (100) substrate. 
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Table 4 The relation between various deposition parameters during epitaxial 
growth of Co 

Substrate/seed layer Deposition power 
of Co (W) 

Deposition flux 
of Co (sccm) 

Deposition rates 
of Co (nm/s) 

Si (100), Si (110)/Cu 100 40 0.15 

Si (100), Si (110)/Cu 200 40 0.3 

Si (100), Si (110)/Cu 400 40 0.55 

 

 

 

Figure 33 XRD profiles of FCC (100) and HCP (0002) Co deposited at three 
different deposition rates. Higher deposition rate (as indicated by deposition power) leads 
to stronger peak intensity in both systems, but clearly more in FCC Co.  
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 Fig. 34 shows the low magnification bright field TEM micrographs in (a) HCP 

(0002) and (b) FCC (100) Co at the deposition rate 0.55nm/s. Inserted selected diffraction 

patterns reveal the in-plane epitaxial growth. High density parallel stacking faults (SFs) 

are formed in HCP Co, while (111) stacking faults intersecting ribbons are formed at 

different (111) planes in FCC Co. It is worth noting that, the stacking faults in HCP Co 

are parallel to the substrate (perpendicular to the growth direction). In comparison, the 

stacking faults are inclined to the substrate surface and growth direction in FCC Co. The 

details of these inclined stacking faults are examined by both high resolution (HR) TEM 

and Fast Fourier Transforms (FFT) in Fig.35 at (a) Cu/Co interface and (b) crossover area 

in Co layer. The inclined stacking faults are initiated right at the Cu/Co interface with a 

few nanometers spacing. They are then penetrated into Co layer during the film growth 

and crossover on different (111) planes.  
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Figure 34 Low magnification bright field (BF) TEM micrographs show that (a) HCP 
(0002) Co grew epitaxially on Si (110) and contained a high density of parallel stacking 
faults (SFs) on (0002) Basel plane. (b) FCC (100) Co grew epitaxially on Si (100) and 
contained two (111) stacking faults intersecting ribbons with 70° angle with examining 
along [110] zone axis 
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Figure 35 High resolution (HR) TEM micrographs of FCC (100) Co: (a) at Cu/Co 
interfaces and (b) in Co layer. Stacking faults (marked as SF or SFs) are initiated at 
Cu/Co interface due to mismatch strain. In Co layer, the intersecting SFs are formed on 
two (111) planes. FFTs at both locations (a’ and b’) show the SFs on one plane in (a’) 
and two crossing planes in (b’). 
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Figure 36 Thickness of SFs ribbon with deposition rates varying from 0.1 nm/s to 
0.55 nm/s. (a-c) BF-TEM micrographs and statistical distribution reveal the variation of 
thickness of SFs and matrix with deposition rates in (a-c) FCC Co and (d) HCP Co. The 
SF density reduce with increasing deposition rates in FCC Co, and SF density are almost 
the same at various deposition rates in HCP Co.  
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Figure 36 (continued) 

 

 Fig. 36 identifie dthe morphology of SFs at various deposition rates in FCC Co at 
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reveal the variation of thickness of SFs and matrix with deposition rates. However, in (d) 

HCP Co, SF density are almost similar at various deposition rates.  

 Fig. 37 shows the influence of the deposition rates on volume fraction on density 

and size of the SFs. (a) The thickness of SFs in HCP Co has literally no dependence on 

deposition rates over the range explored in this study. In comparison, in FCC Co, SFs 

spacing (matrix) increase with increase the deposition rates, while the SFs thickness first 

increase then decrease and reach the maximum at 0.3 nm/s. (b) The volume fraction of 

SFs decreased sharply with increasing deposition rates in FCC Co, whereas it remains 50% 

in HCP Co.  

 

 

Figure 37 The influence of deposition rates on density and size of SFs. (a) The 
thickness of SFs in HCP Co has literally no dependence on deposition power over the 
range explored in this study. Conversely in FCC Co, the tSF shows a maximum at 200 W, 
and tM increased gradually with deposition power. (b) The volume fraction of SFs 
decreased sharply with increasing deposition power in FCC Co, whereas it remains 50% 
in HCP Co.  
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Figure 38 (a) Hardness vs. volume fraction of SFs; (b) hardness vs. average 
defect/grain size in the literature results 

 

 Indentation hardness of HCP and FCC Co film are ploted as a function of volume 

fraction of SFs as shown in Fig. 38(a). In order to better understand the strengthening 

mechanisms of these stacking faults, we estimate the effective SFs spacing,      as 

Equation 32                    

where    /   are thickness of SFs and matrix, and    /   are volume fraction of SFs and 

matrix, respectively. Fig. 38 (b) shows flow stress (1/3 of indentation hardness) vs. SFs 

effective spacing. The major observation are shown as below: 

 In FCC Co, when volume fraction of SFs increases from ~ 10% to 50%, the 

indentation hardness increases from 4.2 GPa to 5 GPa. 

 With similar volume fraction of SFs (50%), FCC Co is stronger than HCP Co 

 Compared to tensile results of nanocrystalline Co with mixture of HCP and FCC 

Co [130, 131], both FCC and HCP Co in this study stay in the range between σy 

and σUTS with similar grain sizes. 

 



81 
 

III.5 Discussion 

III.5.1 Epitaxial Growth via Small Lattice Mismatch 

 Since Cu can growth epitaxially on Si substrate, heteroepitaxial growth of Co on 

Si with 0.1 μm Cu seed layer can be successfully fabricated due to the small lattice 

mismatch. In FCC (100) Co, XRD results show that the lattice mismatch between Cu and 

Co is 2.6% (lattice spacing dCu(100)   1. 0 A  , dCo(100)   1.75  A  ). Thus the critical 

thickness hc to form perfect misfit dislocations can be calculated by 

Equation 33    
 

   
 

 

     
 (  (

  

 
)   ) 

where the magnitude of Burgers vector  b is 0.255 nm, the mismatch strain f is 2.6%, the 

average Poisson’s ratio υ is 0.3. The calculated hc is ~ 1.8 nm when considering 

multilayer structure. However, as shown in Fig. 35, inclined SFs on (111) planes 

(bounded by groups of partial dislocations) can relieve a majority of mismatch induced 

elastic strain energy. Therefore, we assume that there exists a critical thickness to form 

partial dislocations (hp); which can be calculated when elastic strain energy created by 

mismatch strain equals to the line tension of the partials: 

Equation 34  

 
  

            
      

     
 

where the magnitude of Burgers vector of a partial dislocation bp is 0.144 nm, f is 2.6%, υ 

is 0.3, λ is the angle between the slip plane and the film surface (λ 5 .7°) . The calculated 

hp is ~ 2.6 nm when considering multilayer structure. These two assumptions estimates 

an upper and lower bound on critical thickness for form partials, which is about 2 nm as 

shown in Fig. 35(a). 
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 In comparison, XRD results show that the lattice mismatch between (111) Cu and 

HCP (0002) Co is 1.8% (lattice spacing dCu(111)   2.0   A  , dCo(111)   2.0   A  ). This is 

small enough to have heteroepitaxial growth (<7%) of HCP Co. 

III.5.2 Volume Fraction of Stacking Faults vs. Deposition Rates 

 Previous studies on growth nanotwinned Cu that have low stacking fault energy 

(γsf) has shown that the twin density increase with increase the deposition rates [76]. This 

can be explained as the competition between forming twin nuclei and perfect nuclei 

during growth process: 

Equation 35         
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Equation 36      
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where k is the Boltzmann constant, T is the substrate temperature during deposition, Ω is 

the atomic volume, J is the deposition flux, Ps is the vapor-pressure above solid, m is the 

atomic mass of depositing species, γsf is the stacking fault energy,         
  and      

 . are 

the critical radius of perfect and twin nuclei, respectively. If the possibility of twinned 

nuclei formation is similar to that of perfect nuclei formation, twin boundary can be 

formed. It is worth noting that high deposition flux (J) contributes to the formation of 

nanoscale twins. Increase of deposition flux will decrease the critical twin nuclei size, 

and then increase the possibility to form twins. However, this is not universal relation for 

all the low stacking fault energy metals. If the metal with ultra-low SFE, such as Ag, γsf in 

Equation (36) become dominate factor. Thus      
  is invariable with changing deposition 

flux. This phenomenon has been seen in nanotwinned (111) Ag [75]. 

 Thus, we can understand the unchanged volume fraction of parallel stacking faults 

in HCP Co at different deposition rates. Fig. 39 shows the critical radius between twin 
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and perfect nuclei in various low SFE metals at different deposition rate. The SFE energy 

of Co is as low as Ag, which is insulated to the deposition flux changes. Thus, it is 

natural to understand that HCP Co with parallel stacking faults is less effective to the 

deposition flux.  

 

Figure 39 SFE effects on critical radius differences between twin and perfect nuclei 
at different deposition rate 
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Figure 40 Schematic of (111) stacking fault intersecting ribbons in (100) Co 

 

  However, what is the formation mechanism of inclined stacking fault intersecting 

ribbons in FCC Co? Why deposition rates can largely affect the volume fraction of these 

SFs in FCC Co? Furthermore, the SFs volume fraction is inverse proportional with 

deposition rates, which is opposite than previous argument. 

 The formation of stacking faults that are inclined to the interfaces can relax misfit 

strain between Cu and Co as shown in schematic Fig. 40. Misfit inclined twins have been 

seen in Pd to relax the misfit strain between Pd and Ni [99]. Similar phenomenon has 

been seen in Cu/Co multilayer at large layer thicknesses. The average SFs thickness can 

be calculated by  

Equation 37   
 

   
 

where f is 2.6%, b is 0.25 nm. The stacking fault spacing is roughly estimated as 10 nm, 

which is similar to the tSF at lowest deposition rates 0.15 nm/s as shown in Fig. 36(a). 
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 As increasing deposition rates, the volume fraction of SFs decreases with increase 

the SFs spacing dramatically. Therefore, the first explanation is that higher deposition 

rate may somehow release the misfit strain. At high deposition rates, incoming atoms will 

squeeze with each other. The internal compressive stress increases. Meanwhile, the lattice 

parameter of Co is slightly smaller than Cu. Co will encounter the tensile stress when 

coherent interface forms between Cu and Co. This tensile stress can be partially relax by 

internal compressive stress that created by higher deposition flux. Thus higher deposition 

rates may help to release the misfit strains. 

 Another explanation is focused on atoms kinetics at different deposition power. 

At higher deposition power, the atoms have more kinetic energy to diffuse to their ideal 

lattice site. Therefore, inclined planar defect such as stacking faults are less likely to form 

in this sense. Base on the inclined SFs morphology, when atoms deposited on the 

substrate, they will tend to form layer by layer, instead of inclined manner which 

involved at least 3 atomic layers as shown in Fig. 40. Another evidence to support this 

argument is that inclined twins formed in (110) Ag have much less density compare to 

parallel (111) Ag at same deposition rate [75]. 

III.5.3 Strengthening Mechanisms of Stacking Faults 

 We now discuss the strengthening mechanisms of two different type of stacking 

faults. The SFs strengthening with various spacing have been reported in deformed Mg 

[90, 93]. In epitaxial Co, we have seen similar phenomenon that Co strength increase 

with increasing SFs density. Compared to nanocrystalline Co, both flow stresses of 

epitaxial HCP and FCC Co are 50% higher than yield strength of the nanocrystalline Co, 

and slightly lower than ultimate tensile strength.  
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 It is worth noting that, at similar volume fraction of SFs, FCC Co is stronger than 

HCP Co. We think this is due to stacking fault intersecting ribbons are more effective 

barriers to block dislocation motions. As shown in Fig. 41, dislocations are largely 

confined in stacking faults intersecting ribbons, while dislocation could easily move 

along parallel stacking faults. Dislocations in some sense are much easier to be blocked 

by both directions in stacking faults intersecting ribbons. Thus FCC Co with stacking 

fault intersecting ribbons is stronger than HCP Co with parallel stacking faults. 

 

Figure 41 Dislocations interaction with (a) parallel stacking faults, and (b) stacking 
faults intersecting ribbons. In (a), dislocation hair pins could move along stacking faults 
under deformation, while dislocations hair pins are blocked by both directions in stacking 
faults intersecting ribbons in (b) 
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III.6 Conclusion 

 In sum, the mechanical properties of sputtered, epitaxial Cobalt (Co) films with 

1.2 μm thickness are characterized. High density stacking faults with an average spacing 

of a few nanometers are observed on (0002) Basel planes in HCP Co films. In 

comparison, high density stacking faults intersecting ribbons are observed on different 

(111) planes. Furthermore, the volume fraction of these stacking faults intersecting 

ribbons in FCC Co can be controlled by deposition parameters of magnetron sputtering. 

The stacking faults intersecting ribbons are more effective on blocking dislocations 

compared to parallel stacking faults in HCP Co. 
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CHAPTER IV 

STACKING FAULT AND PARTIAL DISLOCATION DOMINATED 

STRENGTHENING MECHANISMS IN HIGHLY TEXTURED CU/CO 

MULTILAYERS* 

IV.1 Overview 

 We investigate the interfaces and mechanical properties of sputtered, highly (100) 

and (111) textured Cu/Co multilayers. In (100) Cu/Co multilayers, Co has primarily face-

centered-cubic (FCC) structure and high density of inclined stacking faults (SFs). In 

contrast in (111) textured Cu/Co, dependent on layer thickness, high density SFs and 

twins parallel to layer interface are observed. When individual layer thickness, h, is a few 

nanometers, both systems have fully coherent FCC interface. (111) Cu/Co has similar 

size dependent strengthening and peak hardness compared to (111) Cu/Ni multilayers. 

The peak strength of (100) Cu/Co may be dominated by the transmission of partial 

dislocations across interface, and hence it is lower than the peak strength of (100) Cu/Ni, 

which is dictated by transmission of full dislocations across interfaces.  

 

 

 

 

 

___________________________ 
*This chapter reprinted with permission from “Stacking fault and partial dislocation 
dominated strengthening mechanisms in highly textured Cu/Co multilayers” by Y. Liu, Y. 
Chen, K.Y. Yu, H. Wang, J. Chen, X. Zhang; International Journal of Plasticity, Volume 
49, pages 152-163, Copyright 2013 by Elsevier. [125] 
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IV.2 Introduction 

 Nanostructured metallic multilayers (NMM) have advanced properties, including 

giant-magnetron resistance [8, 9]; high mechanical strength and deformability [10-14]; 

and superior radiation tolerance [15-17], and hence may have various engineering 

applications. NMM often exhibit layer thickness dependent strengthening and near-

theoretical strength at small layer thicknesses. The stiffness of layer interface has been 

shown to control the yield strength and strain hardening rate of NMM. [140-142]. When 

individual layer thickness h is greater than 50 nm, dislocations pile up against layer 

interfaces and size dependent strengthening behavior typically follows Hall-Petch (H-P) 

relation, that is hardness scales lineally with h-1/2 [1, 2, 18-20]. When 50 nm > h > 10 nm, 

pile-up of dislocations becomes difficult and dislocation movement is confined within 

layers. Thus the corresponding strengthening mechanism can be described by the 

confined layer slip (CLS) model that considering bowing of dislocations [3, 21-23]. 

When h reduces to several nanometers, multilayers frequently achieve their maximum 

strength, which is determined by numerous factors including Koehler stress [24, 25], 

misfit dislocations, coherency stress [26-30], texture [31], twinning [32-35], and interface 

shear strength [36, 37]  

 Misfit dislocation and coherency stress originate from lattice mismatch between 

two materials [38, 39]. In coherent systems, the elastic strain energy builds up at greater 

h. When h exceeds critical thickness misfit dislocations form to release elastic strain 

energy [40-42, 80]. Koehler stress arises from the elastic modulus mismatch between 

neighboring layers and becomes significant when a large modulus difference exists [25]. 

In incoherent systems, a hardness plateau is typically observed at smaller h [3, 12, 18, 43, 
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44, 46, 141-143], wherein certain coherent systems, such as Cu/Ni, softening (the 

reduction of hardness at smaller h) occurs due to the formation of fully coherent 

interfaces [18, 21, 31, 32] or sometimes referred to as transparent interfaces, which are 

less effective barriers to the transmission of dislocations compared with incoherent 

(opaque) interfaces [45]. In incoherent systems, opaque interfaces retain slip 

discontinuity and remain strong barriers to the penetration of dislocations [46, 142]. 

Recently Zbib et al investigated the influence of both coherent and incoherent interface 

on the yield strength of Cu/Ni/Nb trilayers [144]. Using dislocation dynamics 

simulations, they show that size dependent strengthening in trilayers is controlled 

primarily by the weak Cu/Nb interfaces, which are dislocation sinks and the internal 

shear stress field activates cross-slip in adjacent Cu/Ni interfaces. 

A majority of multilayer studies has focused on cubic systems, whereas 

multilayers consisted of at least one hexagonal closely packed (HCP) constituent received 

less attention. In Al/Ti multilayers, Ti showed HCP-to-FCC phase transition when h is a 

few tens nanometers, and the interface became fully coherent at a few nanometer layer 

thickness [145, 146]. In the same system, hardness rose with decreasing h but no 

softening was observed due to the formation of metastable phases at smaller h [147]. In 

Cu/Zr system with incoherent interface, however, softening has been observed due to 

intermixing between Cu and Zr [148]. Therefore, an immiscible system is necessary to 

elucidate phase stability and strengthening mechanisms in FCC/HCP multilayers. Cu/Co 

is one such immiscible system [149-151]. Furthermore the Cu/Co multilayers may have 

potential magnetic applications [152]. 
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Meanwhile in Co, some issues remain unsolved. Polycrystalline Co usually has 

the combination of HCP and metastable FCC phase at room temperature, where the FCC-

to-HCP phase transition occurs when strain is introduced [88, 136]. Experimental studies 

showed high strength and tensile ductility in nanostructured Co, wherein negative strain 

rate sensitivity was observed [131]. Molecular dynamics (MD) simulation and first-

principle calculations predicted that deformation mechanisms of nanocrystalline Co are 

dominated by slip of partial dislocations and stacking faults followed by HCP-to-FCC 

phase transition, rather than by deformation twinning [134, 135]. The motivations of this 

study on Cu/Co multilayers include in the following aspects:  

(1) Examine whether HCP-to-FCC phase transformation will occur in Co in 

Cu/Co multilayers. 

(2) Compare strengthening mechanisms between Cu/Co and Cu/Ni. The facts 

that Koehler stress (due to modulus mismatch) and coherency stress (due 

to lattice mismatch) are comparable in both systems indicate that the size 

dependent strengthening and peak strength should be comparable in both 

systems. 

(3) Examine if twins or high density SFs can be formed in Cu/Co system and 

the impact of these defects on strengthening mechanisms. Recently, our 

studies on (111) Cu/Ni multilayers show that high density nanotwins 

formed in fully coherent systems can further strengthen the multilayers 

and significantly reduce softening at smaller h [32].  
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IV.3 Experimental 

 Cu (99.995%) and Co (99.95%) targets were used to deposit Cu/Co multilayers on 

HF etched Si (100) and (110) substrates by dc magnetron sputtering. The base pressure of 

the sputter chamber was 6.7 × 10-6 Pa and Ar pressure was ~ 2 × 10-1 Pa during 

deposition. There was no heating or cooling on substrates during deposition. The 

deposition rate was ~0.5 nm/s for both Cu and Co. The individual layer thickness was 

identical for Cu and Co, and varied from 1 to 200 nm. Single layer (100) and (111) Cu 

and Co films were also deposited as references for mechanical testing. The thickness of 

single layer films is ~ 1.2 µm. X-ray diffraction (XRD) experiments were performed by 

using a Bruker D8 Discover X-ray powder diffractometer at room temperature. 

Transmission electron microscopy (TEM) was conducted on a JEOL 2010 microscope 

operated at 200 kV. High resolution TEM (HRTEM), scanning transmission electron 

microscopy (STEM) and energy dispersive X-ray (EDX) analysis were performed on an 

FEI Tecnai ST F20 microscope operated at 200 kV, equipped with a Fischione ultra-high 

resolution high-angle annular dark field (HAADF) detector and Oxford instruments’ 

EDX detector with a spatial resolution of ~ 1 nm for chemical analysis. Hardnesses and 

elastic moduli of multilayer films were measured by a Fischerscope HM 2000XYp 

micro/nanoindentor with a Vickers diamond indenter tip. The maximum indentation 

depth was kept at 10~15% of total film thickness. The total thickness of multilayers was 

1 µm when h ≤ 10 nm, 1.5 µm when 10 nm < h < 100 nm, and   µm when h ≥ 100 nm, in 

order to avoid substrate effect and ensure that indentation experiments probe several to 

tens of bilayers. 



93 
 

IV.4 Results 

XRD patterns of as-deposited Cu/Co multilayers on the Si (100) substrate in Fig. 

42 reveal strong FCC (200) Co and Cu texture. When h is greater than 5 nm, the (200) Cu 

and Co peaks are clearly distinguishable. When h = 10 nm, the (200) Cu and Co peaks 

were accompanied by the first order satellite peaks. When h decreases to 5 nm, a 

diffraction peak corresponding to the average inter-planar spacing of Cu and Co (d = ½ 

(dCu(200) + dCo(200))) appears. When h  2.5 nm, the intensity of this peak becomes 

dominant, indicating the formation of fully coherent interface in FCC (100) Cu/Co 

multilayers. It is noted that XRD results indicate primarily out-of-plane coherency of 

multilayers, whereas the in-plane coherency is inferred from selected area diffraction 

(SAD) patterns of cross-sectional microstructures of multilayers that will be provided 

later. 

 
Figure 42 XRD patterns of (100) textured Cu/Co multilayers on Si (100) substrates 
show the formation of FCC Co when h varies from 1 to 100 nm. Satellite peaks appear 
when h < 10 nm. Interfaces became fully coherent when h  2.5 nm. 
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Figure 43 XRD patterns of (111) textured Cu/Co multilayers on Si (110) substrates 
exhibit FCC (111) Cu at all h, HCP (0002) Co at large h and FCC (111) Co at small h. 
The co-existence of HCP and FCC Co may occur when h = 10 or 5 nm. Satellite peaks 
appear when h < 25 nm. Interfaces became fully coherent when h < 5 nm and the middle 
peak that has the average d spacing of (111) Cu and FCC (111) Co dominates. 

 

In comparison, Co with different phases formed in Cu/Co multilayers on Si (110) 

substrates as shown in XRD patterns in Fig. 43. When h ≥ 25 nm, strong textures of (111) 

Cu and HCP (0002) Co are evident. When h = 10 nm, three major peaks exist, 

corresponding to Cu, FCC (111) Co, and a middle peak with their average inter-planar 

spacing. It is likely that the HCP and FCC Co may coexist at this layer thickness, which 

becomes evident from TEM studies shown later. When h  5 nm the middle peak has the 

highest intensity, implying the formation of out-of-plane coherent FCC (111) type of 

interfaces. For simplicity these multilayers are referred to as (111) Cu/Co hereafter. 

We now examine the cross-sectional microstructures of (111) Cu/Co by TEM. 

Fig. 44 shows SAD patterns of (111) Cu 5 nm / Co 5 nm multilayers (referred to as (111) 

Cu/Co 5 nm hereafter) grown on Si (110) substrate examined along two orthogonal 
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directions: FCC [ ̅ ̅0] for Cu (HCP [2 ̅ ̅0] for Co) in Fig. 44a, and FCC [1 ̅2] (HCP 

[01 ̅0]) in Fig. 44b. High-resolution TEM (HRTEM) image in Fig. 44c shows that an 

FCC Co layer, ~ 3 nm in thickness, first formed in direct contact with Cu, and a 2 nm 

thick HCP Co grew thereafter. Schematics of orientation relations between FCC and HCP 

Co in Fig. 44d shows that FCC [ ̅ ̅0] // HCP [2 ̅ ̅0] and FCC (111) // HCP (0002), and 

FCC Co grew epitaxially on Cu. 

The intensity of HCP Co diffraction dots in the SAD patterns of Cu/Co 100 nm is 

stronger than that of Cu/Co 5 nm as compared in Fig. 45a and 45b, implying that the 

volume fraction of HCP Co is greater when h increases. When h = 1 nm (Fig. 45c), fully 

coherent FCC Cu/Co interface formed as indicated by SAD pattern. When h = 100 nm, 

twins and SFs were observed in both Co and Cu layer, and the average twin spacing, t, is 

~ 4 nm in Co and ~ 25 nm in Cu. When h = 5 nm, t in both layers is similar, ~ 4 nm. 

Finally ultra-high density of nanotwins formed with t of ~ 1 nm in Cu/Co 1 nm film, and 

HRTEM micrograph in Fig. 45d shows the formation of such high-density growth twins 

and SFs, which are outlined by horizontal lines. Thus in general, the average twin spacing 

in Cu/Co multilayers increased with h as shown in Fig. 46. 
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Figure 44 Selected area diffraction (SAD) patterns of (111) Cu/Co 5 nm along (a) 
FCC [ ̅ ̅0] & HCP [2 ̅ ̅0] zone axis; and examined along (b) FCC [11 ̅] & HCP [01 ̅0] 
zone axis. The SAD patterns from the two orthogonal zone axes confirmed the co-
existence of FCC (111) Co and HCP (0002) Co. (c) HRTEM micrograph of (111) Cu/Co 
5 nm film reveals the coexistence of HCP (marked by A) and FCC (marked by B) Co. (d) 
Schematics of (111) Cu/Co 5 nm shows the orientation relationship among FCC/HCP Co 
and FCC Cu in (111) Cu/Co multilayers on Si (110) substrate. 
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Figure 45 Bright field TEM image of (a) (111) Cu/Co 100 nm and (b) Cu/Co 5 nm 
multilayers on Si (110) substrates examined along Cu <110> zone axis. Cu/Co 100 nm 
film showed a higher density of twins and stacking faults in HCP Co than in FCC Cu 
layer, whereas twins of similar density was observed in Cu/Co 5 nm films The Inserted 
SAD patterns show the coexistence of FCC and HCP phase, and the intensity of HCP 
diffraction dots appeared weaker in Cu/Co 5 nm multilayers (c) TEM image of (111) 
Cu/Co 1 nm films on Si (110) substrate reveals the formation of ultra-high density of 
nanotwins. The inserted SAD pattern shows fully coherent FCC Cu/Co structure without 
the evidence of HCP phase. The HRTEM micrograph of the same specimen in (d) shows 
the average twin spacing is ~ 1 nm. 
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Figure 46 The average twin spacing increases with layer thickness (h) in (111) 
Cu/Co multilayers. When interface is coherent or semicoherent (h < 25 nm), twin density 
is similar in both layers. When interface is incoherent (h > 25 nm), there is a large 
difference in density of twin or SFs between Cu and Co layers. 

 

The remaining TEM studies focus on (100) textured Cu/Co multilayers. Fig. 47a 

shows XTEM images of (100) Cu/Co 100 nm multilayer on Si (100) substrate. The 

inserted SAD pattern confirms the formation of highly (100) textured FCC Cu and Co. 

High density of SFs on inclined (111) planes formed in Co. Bright field (Fig. 47b) and 

centered dark field TEM image (Fig. 47c) reveal two sets of SFs that are perpendicular to 

each other. Inserted SAD pattern of Co in Fig. 47b shows satellite spots (arising from 

SFs) surrounding the (220) diffraction dots. Schematics in Fig. 47d illustrates two sets of 

orthogonal (111) planes when examined along FCC <100> zone axis. When h = 10 nm 

(Fig. 48a), the density of SFs in Co on inclined (111) planes is much less than that in 
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(100) Cu/Co 100 nm. Little SFs were observed when h  2.5 nm (Fig. 48b-c). Epitaxial 

growth of FCC Co was evidenced by SAD patterns and HRTEM micrograph in Fig. 48c. 

STEM micrograph and compositional line profiles of Cu/Co 2.5 nm in Fig. 48d shows 

chemically alternating layer structures indicating insignificant intermixing.  

 

Figure 47 (a) Bright field TEM image of (100) Cu/Co 100 nm multilayer shows high 
density of inclined SFs in Co layer. The inserted SAD pattern shows the epitaxial growth 
of (100) Cu and FCC Co. At higher magnification, bright field (b) and dark field (c) TEM 
micrographs reveal two sets of (111) SFs that are perpendicular to each other. Schematic 
in (d) shows these two sets of orthogonal (111) planes when examined along <100> zone 
axis. 
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Figure 48 (a) From bright field TEM image of (100) Cu/Co 10 nm, inclined (111) 
SFs can be observed occasionally in Co layers. Inserted SAD pattern shows the epitaxial 
growth of (100) Cu and Co. In contrast, there is no stacking fault detectable in (b) (100) 
Cu/Co 2.5 nm and (c) (100) Cu/Co 1 nm. The inserted SAD patterns show that fully 
coherent interfaces can be formed when h  2.5 nm. (d) STEM image of (100) Cu/Co 2.5 
nm shows the distinguishable alternating multilayer structure. The inserted compositional 
profiles obtained from a line scan show chemically modulated layer structure. 
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Figure 49 (a) Comparison of indentation hardness vs h -1/2 of (100) and (111) Cu/Co 
multilayers. (b) Comparison of indentation hardness vs h -1/2 among (100) and (111) 
Cu/Co and Cu/Ni multilayers. The hardness of (111) textured Cu/Co and Cu/Ni is 
comparable, whereas (100) textured Cu/Co multilayers has a much lower peak hardness 
than other systems. Softening was absent in the (111) Cu/Co multilayers. 
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Indentation hardnesses of (100) and (111) textured Cu/Co multilayers are plotted 

as a function of h-1/2 in Fig. 49a. Hardnesses of single layer Cu and Co films are shown as 

horizontal dash lines in the same plot. Similar to Co in (100) and (111) textured Cu/Co 

100 nm multilayers, (100) and (111) textured single layer Co exhibit inclined and parallel 

stacking faults, respectively. The following characteristics are noteworthy. 

a. In general, hardnesses increased with decreasing h. The hardnesses of (111) 

Cu/Co multilayers were greater than those of (100) Cu/Co at all layer thickness. 

b. When h ≥ 50 nm, a linear relation is identified. The H-P slopes were ~ 10.9 and 

2.7 GPa nm1/2 in (111) and (100) Cu/Co multilayers, respectively.  

c. When h = 2.5 nm, the hardness of (100) Cu/Co multilayers reached a maximum 

and slightly decreased thereafter at smaller h.  

d. When h = 1 nm, the hardness of (111) Cu/Co multilayers reached a maximum, ~ 6 

GPa, the highest among all single layers and multilayers in this study. No 

softening was observed. 

 

IV.5 Discussion 

IV.5.1 Evolution of Microstructure with Layer Thickness 

Highly (100) and (111) textured Cu/Co multilayers were synthesized. The degree 

of texture, epitaxy and coherency of multilayers increased with decreasing h. In (100) 

Cu/Co multilayers, XRD results show that the lattice mismatch between Cu and Co is 

2.6% (lattice spacing   Cu (100) = 1.80  ̇,    Co (100) = 1.754  ̇). Thus the critical thickness hc 

to form perfect misfit dislocations can be calculated by 

Equation 38    
 

   
 

 

     
 (  (

  

 
)   ) 
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where the magnitude of Burgers vector    is 0.255 nm, the mismatch strain   is 2.6%, the 

average Poisson’s ratio   is 0.3. The calculated    is ~ 1.8 nm when considering 

multilayer structure. However, as shown in Fig. 47, inclined SFs on (111) planes 

(bounded by groups of partial dislocations) can relieve a majority of mismatch induced 

elastic strain energy. Therefore, we assume that there exists a critical thickness to form 

partial dislocations (   ); which can be calculated when elastic strain energy created by 

mismatch strain equals to the line tension of the partials: 

Equation 39 
 

 
  

            
      

     
 

where the magnitude of Burgers vector of a partial dislocation    is 0.144 nm,   is 2.6%, 

  is 0.3,   is the angle between the slip plane and the film surface (       ). The 

calculated    is ~ 2.6 nm when considering multilayer structure. This estimation is 

consistent with experimental observations, which showed that SFs were rarely observed 

in (100) Cu/Co when h ≤ 2.5 nm. At greater h, the elastic strain energy is released 

through frequent formation of SFs and thus the density of inclined SFs in Co in (100) 

Cu/Co increased accordingly.  

In (111) Cu/Co multilayers, XRD results show that the lattice mismatch between 

Cu and FCC Co is 1.8% (lattice spacing    Cu (111) = 2.084   ̇ ,    Co (111) = 2.048   ̇). 

The    for the formation of perfect misfit dislocations in this system is ~ 3 nm calculated 

by equation (1), wherein   is 0.255 nm. Twins in this system may also release misfit 

strain and increase   . We also estimate    at which a partial dislocation with glide plane 

parallel to layer interfaces can form by using equation (2), wherein λ is 0° and    is 0.144 

nm. The calculated    is ~ 2.2 nm, consistent with experimental observation: when h < 2 
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nm, FCC (111) Co forms via epitaxial growth; and when h = 5 nm, misfit perfect or 

partial dislocations form to release the coherency strain.  

IV.5.2 The Formation Mechanisms of High Density Twins in (111) Cu/Co Multilayers 

When decreasing h, average twin spacing t in (111) Cu/Co decreased as shown in 

Fig. 46. When h = 1 nm, t is ~ 1 nm. In general, low SFE (SF is 41 and 24 mJ/m2 for Cu 

and Co [48, 49]) is necessary to form high density twins. However, our previous studies 

show the smallest t that can be achieved in sputtered single layer Cu, Co, Ag is 9, 5, and 

7 nm, respectively [52, 75, 76]. Thus SFE alone cannot explain the formation of 

extremely fine twins in epitaxial (111) Cu/Co 1 nm multilayer. Our recent study shows 

that Cu/Ni multilayers can have the smallest average twin spacing of ~ 3 nm due to the 

existence of coherency stress [80]. We now explore the possible formation mechanisms 

of ultra-fine twins in epitaxial (111) Cu/Co 1 nm film. In this system, there is no misfit 

dislocation as interface is fully coherent and HCP Co phase does not exist.  

First we estimate the critical stress  c necessary to nucleate Shockley partials from 

classical dislocation theory [153] 

Equation 40    
     

 
 

 

  
 

where α is 0.5 for edge and 1.5 for screw dislocations, μ is the shear modulus (  is 48 

GPa for Cu, 82 GPa for Co), γ is the SFE, D is the grain size,    is Burgers vector of a 

Shockley partial. D is ~ 40 nm as observed experimentally, thus    is estimated to be ~ 

0.46 GPa for both Cu and Co. This value may serve as an upper-bound estimation as MD 

simulation shows that the required shear stress for twinning in Cu is ~ 0.15 GPa [154]. 

Another MD simulation also shows that SFs instead of deformation twins were formed in 

deformed nanocrystalline Co [135]. 
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Secondly, we estimate the driving force available to nucleate twins during growth 

of Cu/Co multilayers. Partial dislocations must form prior to the formation of twins. It 

follows that shear stress must exist to trigger the formation of partial dislocations. At the 

free surface of Co islands that grow epitaxially on Cu substrate, there is no stress. But 

residual stress in Co quickly develops in films when moving away from free surface. 

Thus to introduce coherency stress in Co, an interfacial shear stress is necessary along the 

Cu/Co interfaces close to the free surface. The shear stress, τ, can be estimated by [84] 

Equation 41   
   

   
 √

    

     
 

where    and    are respective modulus of substrate and film;    is the film thickness; x 

is the distance from the island edge;   is mismatch stain. In Cu/Co multilayer systems, 

given   = 2%,     = 120 GPa,     = 210 GPa,   = 0.3, τ is estimated to be 0.52 ~ 0.91 

GPa when x = 1 ~ 3 hf. This estimation shows that the shear stress is sufficient to nucleate 

partials in (111) Cu/Co multilayers.  

IV.5.3 Strengthening Mechanisms  

As shown in Fig. 49a, the indentation hardness of (111) Cu/Co is greater than its 

(100) counterpart at all h. Furthermore, there is a large discrepancy of maximum hardness 

between the two systems.  

When h ≥ 50 nm, a large difference in H-P slope was measured between (111) 

and (100) Cu/Co. We can estimate the interface barrier stress    by [18] 

Equation 42    
  √

    

      
 

where    
  is H-P slope,    is the critical resolved shear stress for the transmission of 

dislocations (interface barrier strength),   is the shear modulus of softer layer (  = 48 
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GPa for Cu). By using   = 0.255 nm and   of 0.3, and measured     
 , we obtain    of 

0.02 GPa and 0.33 GPa for (100) and (111) Cu/Co, respectively. The calculated peak 

hardness is then 0.16 GPa and 2.77 GPa by multiplying Schmidt (2.8) and Tabor factors 

(3). This is in large contrast to the measured peak hardness (4 GPa and 6.1 GPa) for (100) 

and (111) Cu/Co. 

To understand the large discrepancy in size dependent strengthening mechanism 

in the two Cu/Co systems, it is important to compare them to the strength of the two 

Cu/Ni multilayers with similar texture. As shown in Fig. 49b, the size dependent 

variation of hardness of (111) textured Cu/Co and Cu/Ni is very close to each other 

except when h is 1 nm. However, there is a large difference in (100) textured Cu/Co and 

Cu/Ni. The strength of (100) Cu/Co is much greater than Cu/Ni system when h ≥ 50 nm. 

As shown in Fig. 47, high density inclined SFs were observed in Co when h ≥ 50 nm, 

whereas SFs or twins are largely absent in (100) Cu/Ni [80]. SFs are effective barriers to 

the transmission of dislocations and thus provide extra hardening in Cu/Co system. The 

effective feature size that determines the hardness of (100) Cu/Co system is no longer the 

layer thickness h. High density inclined SFs in Co lead to reduced effective feature size in 

(100) Cu/Co. Thus should the effective feature size be used, the H-P slope would be 

greater than that measured by using layer thickness alone. This observation also explains 

the large discrepancy between measured peak strength and the calculated value from the 

H-P slope as discussed previously.  

When 50 > h > 10 nm, dislocation pile-up becomes increasingly difficult and 

bowing of single dislocation in the layers comes into operation. Based on the CLS model 

[3], the critical resolved shear stress      can be calculated as  
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Equation 43      
  

    
(
   

   
)  (  

  

 
) 

where    is the distance between obstacles along the slip plane between adjacent interface. 

Using   = 48 GPa,   = 25 nm,   = 0.25 nm,      is calculated to be ~ 0.46 GPa, 

corresponding to a hardness value of ~ 3.8 GPa. This calculation fits experimental results 

((111) Cu/Co 25 nm) well. We also noticed that the hardness of (100) Cu/Co in this range 

(h = 10-50 nm) is lower than those of (100) Cu/Ni and (111) Cu/Co. Mechanisms behind 

such a difference will become evident when we compare peak strength of these systems 

in the following section.  

When h ≤ 5 nm, (100) Cu/Co multilayer reaches a maximum hardness, which is ~ 

1 GPa less than that of single layer Co and (100) Cu/Ni, and ~ 2 GPa less than that of 

(111) Cu/Co and Cu/Ni. In (100) Co single layer, high-density inclined SFs exist with an 

average spacing of a few nanometers. These SFs lead to high strength in single layer Co. 

In comparison, no SFs were observed in (100) Cu/Co 2.5 nm.  

We now analyze the large difference in peak strength between FCC (100) Cu/Co 

and (100) Cu/Ni systems. The interface barrier resistance  int can be expressed as 

Equation 44                         

where    is Koehler stress originating from modulus mismatch,     is chemical 

interaction term related to SFE difference between layer constituents,    is determined by 

misfit dislocations due to lattice mismatch,     is the modification to Koehler stress due 

to the variation of elastic modulus in each layer [31], and      is derived from coherency 

stress. In coherent Cu/Co and Cu/Ni systems, the differences of contributions of the last 

three terms (in equation (7)) to strengthening between are insignificant, and hence it 

follows that 
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Equation 45                
          

          
 

     

 
 

where       is the modulus difference,   is dislocation core size 3-4 b [155, 156], and 

      is the SFE difference. By using the parameters from Table 5,    and     can be 

calculated as shown in Table 6.      is estimated as 0.76 and 0.57 GPa for (100) Cu/Ni 

and FCC (100) Cu/Co system, respectively. As shown in Table 6,     and     terms are 

comparable, 0.43 vs. 0.33 GPa, in (100) Cu/Ni system, whereas in (100) Cu/Co systems, 

    is negligible (0.07 GPa) compared to    (0.5 GPa). Thus the calculation shows Cu/Ni 

has higher peak hardness (by ~ 1.5 GPa) than Cu/Co system, compared well to 

experimental observations (~1.2 GPa). Therefore, the low intrinsic SFE of Co is one of 

the key factors that lead to reduced peak strength in FCC (100) Cu/Co multilayers. A 

similar level of peak hardness difference by 1.3 GPa is calculated (Table 6) for (111) 

textured Cu/Co and Cu/Ni. But such a calculated hardness difference is much higher than 

what is observed experimentally (insignificant difference). Such large discrepancy will be 

discussed later when the significance of nanotwins is considered. 

 

Table 5 Material parameters of FCC Cu, Ni and Co. 

Material     ̇    (GPa) SF (     ) 
Cu 3.61 48 41 
Co 3.53  82 24 
Ni 3.52  76  125 
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Table 6 The influence of SFE difference on strengthening of FCC (100) and (111) 
textured Cu/Co and Cu/Ni systems.       is calculated hardness difference from      by 
using Schmidt and Tabor factor,           

     
     

     .       is measured hardness 
difference from Fig. 49 (b),           

     
     

     . 

Regime Interface    (GPa)    (GPa)     (GPa)       
(GPa) 

      
(GPa) 

Peak value 

h = 2.5~5 nm 

Cu/Ni ~ 0. 43 ~ 0.33 ~ 0.76  
1.5 1.2 

Cu/Co ~ 0. 5 ~ 0.07 ~ 0. 57 

Softening 

h = 1 nm 

Cu/Ni ~ 0. 18 ~ 0.33 ~ 0.51 
− 0.1 − 0.6 

Cu/Co ~ 0. 45 ~ 0.07 ~ 0.52 

Peak value 
(111) interface 

Cu/Ni ~ 0.6 ~ 0.33 ~ 0.93 
1.3 − 0.2 

Cu/Co ~ 0.7 ~ 0.07 ~ 0.77 

 

The influence of SFE on interface barrier resistance can be interpreted from 

hypothetical schematics in Fig. 50. In (100) textured Cu/Ni system, partials in Cu 

migrated toward layer interfaces. The transmission of partials across interfaces is difficult 

as Ni has much higher SFE than Cu. Consequently a full dislocation has to be nucleated 

in Ni to accommodate plastic deformation across interfaces. It is likely that constriction 

of partials may have occurred in Cu adjacent to interface as well. Unlike Cu/Ni interface, 

in FCC Cu/Co system, Co has even lower SFE than Cu, and hence the transmission of 

partials in Cu across interface is feasible (although there is resistance arising from 

Koehler stress). Meanwhile partials in Cu do not need to form a constriction when 

encountering the Cu/Co interface. The interface barrier resistance for transmission of 

partials (in Cu/Co) shall be much lower than that for the transmission of a full dislocation 

across the Cu/Ni interface. Therefore Cu/Ni system should have a higher peak hardness 

than Cu/Co. 
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Figure 50 Hypothetical schematics illustrate the difference between dislocation 
transmissions across (100) Cu/Ni and (100) Cu/Co layer interfaces. (a) In (100) Cu/Ni, 
the high SFE of Ni prohibits the transmission of partial (from Cu) across interface. 
Instead, a full dislocation must be nucleated in Ni to accommodate plastic deformation. 
In contrast in (b) (100) Cu/Co system, due to the low SFE of Co, partials in Cu layer 
could penetrate across layer interface without forming a perfect dislocation. 
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 Significant softening occurs in (100) Cu/Ni system. The hardness of Cu/Ni 1 nm 

films is ~ 2 GPa lower than Cu/Ni 2.5 nm films. In contrast softening in (100) Cu/Co 

system is insignificant. This may be related to difference in dislocation core size between 

partials and perfect dislocations. In (100) Cu/Ni system, the core spreading of 

dislocations is ~ 2.8 nm. Hence in (100) Cu/Ni 1 nm multilayers, the magnitude of 

Koehler stress decreases more than half, from 0.5 to ~ 0.18 GPa ([31]. In contrast, the 

maximum strength in (100) Cu/Co system is dominated by the transmission of partials 

across interface without constriction (shown in Fig. 50b). As the core size of Shockley 

partial is ~ 2b [31], the magnitude of core spreading (~ 1 nm or so) is also much less than 

that in Cu/Ni system. The narrower core of partials alleviates the rapid reduction of    in 

Cu/Co system when h = 1 nm. Assuming that the magnitude of Koehler stress is only 

reduced by 10% in Cu/Co system when h = 1 nm, we arrive that the peak strength of 

(100) Cu/Co is ~ 0.52 GPa, comparable to 0.51 GPa in (100) Cu/Ni systems. Hence 

softening is much more pronounced in (100) Cu/Ni than that in Cu/Co system as shown 

in Table 6. 

 Should (100) Cu/Ni have a higher peak strength than (100) Cu/Co, one expects 

the same relation may be applicable in the (111) Cu/Ni and Cu/Co systems. However, the 

hardness of (111) Cu/Co multilayers is nearly identical to that of (111) Cu/Ni. High 

density twins and SFs were frequently observed in (111) Cu/Co. t in (111) Cu/Co 1 nm is 

~ 1 nm, compared to t of ~ 6 nm in (111) Cu/Ni 1 nm multilayers [80]. These ultra-fine 

twins with smaller average twin spacing in Cu/Co provide extra hardening to the system, 

making its peak hardness comparable to that of Cu/Ni with similar h. MD simulations 

have shown that twin interfaces are effective barriers to the transmission of dislocations. 
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In Cu/Ni system for instance, a resolved shear stress of ~ 0.8 GPa is necessary for 

dislocations to penetrate layer interfaces [31]. In Ni, a resolved shear stress on the order 

of 1.7-3 GPa is required for dislocation to propagate across a coherent twin boundary [91, 

157]. These nanotwins can compensate softening that is typically observed in fully 

coherent system. Additionally the coexistence of FCC and HCP Co in (111) Cu/Co 5 nm 

films may also increase the barrier resistance to the propagation of dislocations. 

 

IV.6 Conclusion  

 Highly (100) and (111) textured Cu/Co multilayers with various individual layer 

thicknesses were synthesized by magnetron sputtering. In (100) textured systems, Co has 

primarily FCC structure, whereas in (111) texture system, Co has a mixture of FCC and 

HCP phase at large layer thickness and becomes FCC when h < 2 nm. Layer thickness 

dependent of parallel and inclined planer defect such as SFs and twins were observed in 

multilayers. Size dependent strengthening mechanisms in Cu/Co and Cu/Ni systems are 

closely tied to their microstructures.   

(1) When h > 50 nm, the (100) Cu/Co multilayers have greater hardness than those of 

(100) Cu/Ni presumably due to the formation of extremely high density of inclined SFs in 

Co. 

(2) When h is a few nanometers, the peak strength of (100) Cu/Co system is lower than 

that of (100) Cu/Ni. As both systems have nearly epitaxial microstructure, similar lattice 

mismatch and elastic modulus mismatch, the large difference in their peak strength 

implies that the interface barrier resistance to transmission of partials in Cu/Co may be 

lower than interface resistance to perfect dislocations in Cu/Ni system. Thus we 
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hypothesize the difference in SFE between layer constituents could contribute 

significantly to strengthening of multilayers.  

(3) In (111) textured systems the peak strength of Cu/Co and Cu/Ni systems is very close 

to each other with the existence of a similarly high density of SFs and nanotwins in both 

systems. 
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CHAPTER V 

A NEW METHOD FOR RELIABLE DETERMINATION OF STRAIN-

RATE SENSITIVITY OF LOW-DIMENSIONAL METALLIC 

MATERIALS BY USING NANOINDENTATION* 

V.1 Overview 

Nanoindentation technique is increasingly used to determine the strain rate 

sensitivity (SRS) of materials with small volumes, such as nanocrystalline metallic thin 

films. However traditional data analysis yields large scattering and uncertainty due to the 

influence of thermal drift on displacements measured at low strain rates. In the present 

work, we use a new method that renders hardness insensitive to thermal drift. The method 

involves (a) directly measuring contact stiffness by means of a small dynamic oscillation 

and (b) calculating contact area from the measured contact stiffness and the elastic 

modulus, which is insensitive to strain rate. The new technique is validated on 

nanocrystalline Ni and nanotwinned Cu films and returns expected values of SRS. 

 

 

 

 

 

 

___________________________ 
*This chapter reprinted with permission from “A new method for reliable determination 
of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation” 
by Y. Liu, J. Hay, H. Wang, X. Zhang; 2014. Scripta Materialia, Volume 77, Page 5-8, 
Copyright 2014 by Elsevier [158] 
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V.2 Introduction 

 Strain-rate sensitivity (SRS) is an important material property to understand 

thermally activated plastic deformation in metallic materials under a certain applied stress, 

such as creep. In general, a high value of SRS typically implies enhanced ductility or 

deformability. For most metals, the value of SRS is in the range of 0.005-0.05 [102]. In 

certain materials that manifest superplasticity, SRS values in the range of 0.33 or greater 

has been observed [159-161]. For metals with face-centered-cubic (fcc) structure, SRS 

typically increases with decreasing grain sizes, whereas the opposite holds for metals 

with body-centered-cubic (bcc) structure [102]. The dislocation-mediated plastic 

deformation of metals is a thermally assisted process, wherein the strain rate ( ̇) and 

steady-state creep rate (  ̇) are expressed as [100, 101] 

Equation 46  ̇      ( 
  

  
)  , and 

Equation 47  ̇      ( 
  

  
)  , 

respectively, where, A and B are constants which depend largely on microstructure,   is 

the applied uniaxial stress,   is the stress exponent,   is the activation energy for creep, 

   is the activation energy for the rate-controlling process,   is the Boltzmann constant 

and   is the absolute temperature.  

 The value of SRS, m, is defined as  

Equation 48   (
    

    ̇
). 

In turn, the stress-driven dislocation activation volume,   , is calculated as 

Equation 49     
     

 
 

√   

 
(
    ̇

    
)  

√   

  
 

where τ is the shear stress (    √ ). 
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 For bulk metallic materials, values of SRS (m) and stress exponent (n) are 

typically determined by means of uniaxial tension [162-167] or compression tests [168, 

169] on samples with uniform cross section. Tensile strain-rate-jump tests are frequently 

applied to determine m values by switching strain rates instantaneously during a single 

tensile test [170-173]. Recently significant interest arises to determine m values for 

nanocrystalline (nc) metallic materials. As a majority of these materials have low 

dimensions in form of thin foils or very often thin films, there is an increasing need to 

accurately determine m value by using a reliable technique. Under this context, 

nanoindentation is the best way to evaluate SRS (m) [174-176]. In a nanoindentation 

experiment, the strain rate (  ̇) is defined as the indenter displacement rate ( ̇) divided by 

the displacement of the indenter into the surface (h) [177]: 

Equation 50  ̇  
 ̇

 
 . 

Under many practical circumstances,  ̇  may also be expressed in terms of the applied 

indentation force rate ( ̇) and the indentation force ( ) [178]  

Equation 51  ̇  
 ̇

 
, 

which is experimentally advantageous for nanoindentation systems that are 

fundamentally force-controlled. 

  “Conventional” method to determine SRS by nanoindentation was developed by 

Lucas and Oliver, who measured hardness at a series of constant strain rates. [178]. Their 

method works well for moderate-to-high strain rates, but faces experimental difficulties at 

low strain rates, because the measured indenter displacement tends to be substantially 

affected by thermal drift. Normal procedures for accounting and compensating for 
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thermal drift are inappropriate for materials which creep over a long period of test time at 

low strain rates [121, 179].  

 To mitigate the thermal drift problem, Maier et al. proposed an indentation strain-

rate-jump test for measuring m [176]. In this method, the strain rate is abruptly changed 

for several times as the indenter proceeds into the material, and the value of hardness at 

each new strain rate is recorded in order to determine m. The influence of thermal drift is 

alleviated by applying the highest strain rates first and the lowest strain rates last (when 

the indentation displacement is large). This method has been applied to ultra-fine grained 

aluminum and nanocrystalline nickel. But this technique, in general, requires a minimum 

accumulative indentation depth of 500 nm or greater. Thus it is not appropriate for thin 

metal films with a total thickness of 1-2 μm, where the maximum indentation depth must 

be limited to 200-300 nm to avoid substrate effects. Recently, Maier et al. resurrected an 

alternate technique for accurately measuring creep properties at very low strain rates 

[180]. The technique was first proposed by Weihs and Pethica [181], but never 

substantially developed. It involves measuring contact stiffness by dynamically 

oscillating the indenter and inferring the contact area from this contact stiffness. 

 In this study, we apply two analytical methods to determine SRS (m) of thin 

nanotwinned (nt) Cu and nc Ni films deposited on silicon. The conventional method 

(described by Lucas and Oliver) measures displacement directly, and our new method 

calculates displacement from continuous stiffness measured by nanoindentation. 

Mechanical properties, such as hardness and elastic modulus, calculated by the new 

method are consistent with literature values by significantly suppressing thermal drift 

induced uncertainty. Most notably, new method significantly reduces data scattering and 
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improve accuracy for the determination of SRS values as validated in nc Ni and nt Cu 

films. This simple new method significantly increases the fidelity of using 

nanoindentation technique to determine mechanical properties at low strain rate and 

acquire reliable SRS values for metallic materials in small dimensions in general.  

 

V.3 Experimental 

 Two metallic films were tested in this study: epitaxial nt Cu and nc Ni (majority 

(111) texture) deposited on Si substrates by DC magnetron sputtering at room 

temperature. The thicknesses of Cu and Ni films were 1500 and 800 nm, respectively. An 

Agilent G200 NanoIndenter with a Berkovich indenter tip was used for all tests. The 

continuous stiffness measurement (CSM) option was also used in order to continuously 

measure elastic contact stiffness, S, throughout the experiment [121, 179]. At least twelve 

tests were performed on each sample to a depth limit of 200 nm using three different 

strain rates: 0.05/sec, 0.01/sec. and 0.002/sec. The same test results are interpreted by 

conventional indentation analysis (“conventional”) and the new method (referred to as 

“modified” hereafter). The average grain sizes of thin films were determined by 

transmission electron microscopy (TEM) experiments that were performed on a JEOL 

2010 microscope operated at 200 kV. 

 

V.4 Analysis 

 We now briefly explain the two analysis methods used for this study, 

conventional vs. modified methods, with the goal to highlight their major difference. Fig. 

51 is a flowchart that illustrates the two analyses side by side. For both analyses, 
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Sneddon’s stiffness equation [182] as commonly expressed for interpreting indentation 

data [121, 183] provides the foundational relationship between the reduced elastic 

modulus (Er), contact stiffness (S) and contact area (A): 

Equation 52    
√ 

 

 

√ 
 

In turn, the reduced modulus depends on the elastic modulus and Poisson’s ratio of 

sample (E,  ) and indenter (Ei,   ): 

Equation 53   

  
 

    

 
 

    
 

  
 . 

Further, both analyses define hardness (H) as load (P) divided by contact area (A): 

Equation 54      , 

where P is indentation force.  

 The two analyses differ primarily in the way through which contact area is 

calculated. The conventional analysis uses the direct measurements of force (P), 

displacement (h), and contact stiffness (S) to determine contact area, A. First, the contact 

depth,   , is calculated as 

Equation 55              , 

where the term 3P/(4S) expresses the deflection of the surface outside the contact area 

[121]. Then, contact area is calculated as an empirical function of contact depth: 

Equation 56       
      , 

where the values of    and    are determined through a calibration process that 

involves indenting a material of known elastic properties—typically fused silica [121]. 
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Figure 51 Flow charts explaining differences between conventional and modified 
analytical methods. (a) The conventional methodology that measures displacement (h), 
load (P), and contact stiffness (S) at different strain rate ( ̇). The contact depth (hc), 
contact area (A), reduced elastic modulus (Er), hardness (H), and sample modulus (E) can 
be derived. (b) The modified methodology firstly determines Er at high  ̇, then applies Er 
as known parameter to lower  ̇  measurement. The h measurement at low  ̇  can be 
calculated instead of direct measurement, in order to reduce the thermal drift effects on 
displacement measurement. 

 

 The modified analysis actually begins by executing the conventional analysis for 

indentation data acquired at a high strain rate (as shown in Fig. 51) in order to achieve an 

accurate measure of reduced modulus by means of Eqs. 7, 10, and 11.  But for lower 

strain rates, the directly measured displacements are presumed to be inaccurate due to 

thermal drift. However, the direct measurements of force and stiffness remain valid and 

can be used to calculate contact area by rearranging Equation 7 as 
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Equation 57   
 

 

  

  
  , 

where Er is the value of reduced modulus calculated at a high strain rate according to 

conventional analysis. The modified analysis calculates contact depth by inverting 

Equation 11: 

Equation 58    
    √  

      

   
, 

where A can be determined from Equation 12. Finally, the modified analysis calculates 

the indenter displacement (the direct measurement of which was erroneous at low strain 

rate or over a prolonged period of time) as 

Equation 59             , 

where hc is that determined by Equation 13. At this point, we note that the calculations of 

contact depth and displacement according to Eqs. 13 and 14 are not strictly necessary, 

because Equation 12 provides the only missing piece for determining reduced modulus 

and hardness by Eqs. 7 and 9 when displacement is not reliable. However, displacement 

calculated according to Equation 14 is useful for presenting data and controlling the real-

time progress of the physical nanoindentation test.  For example, we terminated the 

loading process when the displacements as calculated by Equation 14 reach our target 

displacement of 200nm. 

 It is clear from the above “modified” analysis that the dynamic measurement of 

stiffness by oscillating the indenter is an essential aspect of this method as contact 

stiffness is barely affected by thermal drift. Without this oscillation, there would be no 

instantaneous measurement of stiffness, and thus no reliable determination of contact area 

or hardness. 



122 
 

V.5 Results 

 In order to validate this modified method, we selected two systems, nt Cu  and nc 

Ni with a respective total film thickness of 1500 and 800 nm prepared by magnetron 

sputtering. The plan-view TEM micrograph of the nc Ni in Fig. 52a shows numerous 

grains and the statistical grain size distribution analysis yields an average grain size of 

~54 nm. The inserted selected diffraction (SAD) pattern displays a strong (111) texture of 

the film. The plan-view TEM micrograph of the nt Cu film and corresponding SAD 

pattern in Fig. 52b present an epitaxial (111) single-crystal-like film with a number of 

grains, and the average grain size (shown from the underneath grain size distribution 

chart) is ~ 68 nm. A cross-section TEM micrograph (Fig. 52c) of the same Cu specimen 

(examined along Cu <110> zone axis) shows the epitaxial (111) Cu film contains an 

extremely high density of nanotwins. The average twin spacing is ~ 10 nm. 

 
Figure 52 Plan-view TEM micrographs of (a) sputter-deposited nanocrystalline (nc) 
Ni (111) and (b) epitaxial nanotwinned (nt) Cu (111) films. Statistical analysis shows that 
the average grain size dave for nc Ni is ~54 nm, and the dave for nt Cu is ~68 nm. (c) 
Cross-section TEM micrograph of the epitaxial nt Cu displays high density growth twins 
with an average twin spacing of ~ 10 nm as evidenced by the corresponding statistical 
study. 
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Figure 53 Comparison of nanoindentation results obtained from conventional (black) 
and modified (red) analytical methods using the same sets of indentation data on nc Ni 
film. (a) Displacement vs. indentation time obtained at strain rates of 0.002, 0.01, and 
0.05/s. The conventional technique has substantial scattering at lower strain rate, whereas 
the modified method leads to tight convergence of different sets of data. (b) Calculated 
indentation hardness (H) vs. displacement plotted at different strain rate. At a high strain 
rate (0.05/s), the indentation hardnesses calculated from both techniques are similar. 
However at low strain rate (0.01/s), the conventional analysis leads to prominent 
scattering in hardness, and unacceptable results at a lower strain rate 0.002/s. In 
comparison, convergent and consistent hardness results were obtained from the modified 
method. (For interpretation of the colored figure legend, the reader is referred to the web 
version of this article). 

 

 In Fig. 53, we compare the nanoindentation results at various strain rates obtained 

by using two different analytical methods from the same sets of indentation result on nc 

Ni film. As shown in the indentation displacement vs. time plots in Fig. 53a, obtained at 

strain rates of 0.002, 0.01, and 0.05/s, the conventional technique has substantial 

scattering at lower strain rate, whereas the modified method leads to tight convergence of 

different sets of data at all strain rates. The calculated indentation hardness vs. 

indentation displacement in Fig. 53b exhibits the following characteristics. First the 

indentation hardnesses calculated from both techniques are similar at a high strain rate 
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(0.05/s), ~ 7.5 GPa. Second, at the intermediate strain rate (0.01/s), the conventional 

analysis (black traces) leads to prominent scattering in hardness, 7.9 ± 1 GPa, in 

comparison to 7.4 ± 0.1 GPa obtained from the modified method (red traces). Third, 

when a lower strain rate 0.002/s was applied, significant scattering results in unacceptable 

hardness, 22 ± 7 GPa obtained from the conventional method. Conversely, the hardness 

results derived from modified method has substantially improved convergence and 

reliability, 7.2 ± 0.1 GPa. Finally, the values of E determined by conventional method at 

low strain rate (0.002/s) is unreliable, ~ 500 GPa, comparing to the bulk (literature) value 

of 220 GPa for Ni. Table 7 summarizes the values of hardness and elastic modulus of Ni 

and Cu determined from two different techniques. 

 

Table 7 Comparison of mechanical properties of nt Cu and nc Ni determined from 
the conventional and modified methods by using the same sets of data. 

nt Cu 

Conventional method Modified method 

Modulus 

(GPa) 

Hardness 

(GPa) 

Modulus 

(GPa) 

Hardness 

(GPa) 

 ̇ = 0.05 /s 157 ± 4 2.35 ± 0.06 157±4 2.33 ± 0.04 

 ̇ = 0.01 /s 149 ± 6 2.03 ± 0.13 157±4 2.22 ± 0.04 

  ̇ = 0.002 /s 190 ± 27 3.06 ± 0.70 157±4 2.19 ± 0.04 

 

nc Ni 

Conventional method Modified method 

Modulus 

(GPa) 

Hardness 

(GPa) 

Modulus 

(GPa) 

Hardness 

(GPa) 

 ̇ = 0.05 /s 220 ± 5 7.55 + 0.18 220 ± 5 7.51 ± 0.15 

 ̇=0.01 /s 233 ± 11 7.89 ± 0.94 220 ± 5 7.37 ± 0.06 

 ̇=0.002 /s 494 ± 54 25.25 ± 4.21 220 ± 5 7.19 ± 0.07 
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 Fig. 54 compares the SRS values calculated from strain-rate-dependent hardness 

values obtained by the two different analytical methods for nt Cu and nc Ni films. The 

conventional analysis (open squares) yields erroneous results, as indicated by negative 

large SRS values for both specimens. However, the modified method (solid circles) 

yields a reasonable positive SRS value for nc Ni: m = 0.016 ± 0.002 (Fig. 54a), and for nt 

Cu: m = 0.020±0.002 (shown in Fig. 54b). We will compare these results with those 

reported in literature in the next section. 

 

 

Figure 54 Comparison of strain-rate sensitivity (SRS) calculated from two methods 
for nt Cu and nc Ni films as examples. SRS is calculated from the slope of ln (H/3) vs. ln 

( ̇) plots. The conventional analysis (half-filled black squares) yields erroneous results, as 
indicated by a negative SRS values. In contrast, the modified method (shown by solid red 
circles) produces a reliable positive SRS value: m = 0.016±0.002 for nc Ni and m = 
0.020±0.002 for nt Cu. 
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V.6 Discussion  

V.6.1 Advantage of the Modified Technique over Conventional Method 

 The key difference between modified and conventional method lies in the 

determination of contact area. In the conventional method, contact area is calculated 

based on direct measurement of indenter displacement and the indenter geometry. This 

technique is widely adopted to determine hardness and elastic modulus of thin films. A 

majority of measurements that yield consistent results were performed at an intermediate-

to-high strain rate, 0.01-0.05/s or greater. Such strain rates are typically recommended by 

the manufacturer to reduce indentation time (for practical applications), and more 

importantly to minimize the impact of thermal drift. Although modern technologies 

enable substantial thermal-drift mitigation, such techniques are not appropriate for 

materials which manifest substantial creep. Thus, thermal drift is significant when 

specimens are tested at low strain rates in an attempt to determine, for instance, strain-

rate sensitivity. The net effect of thermal drift is inaccurate measurements of hardness 

and Young’s modulus. As shown in Fig. 53 and Table 7, the hardness values of nc Ni 

exceeds 20 GPa, and elastic modulus reaches a bizarre value of 500 GPa.  

 At low strain rate, to minimize the impact of thermal drift, we employ the 

modified method to analyze the same sets of indentation data. Here the directly measured 

indentation displacements are not used. Instead contact area is calculated directly based 

on directly measured contact stiffness and Elastic modulus, which was determined 

previously at high strain rate to avoid the adverse influence from thermal-drift. Such a 

simple strategy works exceptionally well. The modified method not only leads to 

convergence of scattered data (as shown by using the conventional technique), but also is 
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very practical, as the same sets of data can be used without the need for significant 

modification of instrumentation and indentation method. 

V.6.2 Grain Size Dependent SRS Values in nc Metals – Validation of the Modified 

Methodology 

 In order to validate this modified method, we compare our SRS results to values 

obtained by generally accepted techniques, such as uniaxial tensile, compression, or 

indentation jump test for bulk specimens and in some cases, thin films. A comprehensive 

plot of m vs grain size was used because there is increasing evidence that m is grain-size 

dependent. In this study, the average grain size is determined to be ~ 55 and ~ 70 nm in 

nc Ni and nt Cu, respectively. Compiled plots for the m values for specimens tested by 

uniaxial tension, compression, and indentation jump test [164-167, 170, 172, 176, 184-

191] are shown in Fig. 55 for Ni and Cu, respectively. It is evident that the results 

obtained from the modified method (solid circle) agree well with the general trend 

reported in the literature, whereas the results from conventional analytical method (solid 

squares) is radically different from previous studies due primarily to significant thermal 

drift at low strain rates. The consistency of results produced by modified analytical 

method thus lends confidence on the reliability and accuracy of this new method. 
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Figure 55 Compiled plots of the SRS values (m) vs. grain sizes obtained from 
various techniques, including indentation jump, tensile and compression tests for (a) Ni 
and (b) Cu. The results obtained from the modified analysis technique are consistent with 
the general trend reported in literature, whereas the results from conventional analytical 
method are radically different from previous studies due primarily to significant thermal 
drift of specimens at low strain rate. 

 

 The dependence of m values on grain size has been well studied in the literature. 

In general for monolithic metals with fcc structure, the m value is typically found to 

increase with decreasing grain sizes, whereas the opposite holds true for metals with bcc 

structure [102]. For nc and ultra-fined grained fcc metals, the SRS can de described by 

[102] 

Equation 60     
  

  
 

 

 (   √  )  √ 
, 

where   is the distance swept out by a glide dislocation during a activation event, b is the 

magnitude of theBurgers vector,   is the shear modulus, d is the grain size, α, β, χ, are 

proportional factors. It follows that qualitatively, m will increase with decreasing grain 

sizes for nc and ultra-fine grained metals.  We also notice that the m value for nt Cu is ~ 
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0.02, consistent with what has been reported in the literature. The activation volume    

can be described by [192] 

Equation 61             

where l* is  the length of dislocation segment involved in thermal activation. For nc, or 

ultra-fine grained metals, l* can be described by [166] 

Equation 62         

For nt Cu, although the average twin spacing is smaller than d, there remains abundant 

dislocation activities within twins. As revealed by in situ nanoindentation studies on nt 

Cu, dislocations, such as Shockley partials, can propagate along twin boundaries until 

they encounter grain boundaries [53, 54]. Hence, the average grain size may remain the 

deterministic dimension for m value in this sputtered nt Cu film. 

 

V.7 Conclusion 

 We developed a modified method for reliable determination of SRS values of thin 

metal films. The analysis overcomes thermal-drift problems associated with long testing 

times at low strain rates. In particular the modified analysis does not use the directly 

measured indentation depth, which is increasingly erroneous as strain rate decreases. 

Instead the modified analysis uses the elastic modulus (measured at a relatively high 

strain rate) to reliably calculate contact area. The modified analysis circumvents the 

influence of thermal drift, and correctly returns accurate hardness, which in turn, leads to 

accurate values of SRS.  The SRS values we obtained for nc Ni and nt Cu, agree well 

with the values obtained from tensile tests.  
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CHAPTER VI 

DISLOCATION AND TWIN BOUNDARY INTERACTION IN 

EPITAXIAL NANOTWINNED CU BY IN SITU NANOINDENTATION 

STUDIES 

VI.1 Overview 

 In this letter, we report the first in situ evidence to identify the phenomenon and 

corresponding stress level of incoherent twin boundary (ITB) migration; dislocation 

nucleation; and dislocation penetration through coherent twin boundary (CTB) in one 

loading event on epitaxial nanotwinned Cu. We have observed the detwinning process 

triggered at ultra-low indentation stress level associate with stress plateau and drops 

before plastic yielding. We found that ITB migration of the thinner twin (~ 5 nm) occurs 

at very low stress at 0.1 GPa with about 15 nm/s velocity, whereas the thicker twin (~14 

nm) can stand until 0.6 GPa. Furthermore, we have captured dislocation nucleation and 

propagation before macroscopic yielding, which corresponds to dislocation penetration 

through twin boundaries. 
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VI.2 Introduction 

 Nanocrystalline (nc) metals have been well known of the great strengthening 

because of the resistance of grain boundaries to the transmission of dislocations [4-6, 124, 

193]. Similarly, nanotwinned (nt) metals exhibit the high strength as well due to (111) 

coherent twin boundaries (CTB) can provide great strengthening by resisting dislocation 

slip transfers[55-60]. Furthermore, nt materials show better ductility[51, 61, 62], thermal 

stability[63-65], creep and fatigue resistance[66-68], and electrical resistance[50, 69, 70] 

compare to nc metals. Both experimental and simulation studies have contributed the 

insight of the dislocation interaction with CTB on the mechanisms, kinetics and 

energetics of dislocations transmit across the CTB[91, 194-197]. Therefore, it is 

reasonable to speculate that materials performance can be further improved by increase 

the CTB density, or decrease the average twin spacing.  

 However, recent studies revealed that twin is less stable when the average twin 

spacing is a few nanometers. Lu et al., reported that electro-deposited nt Cu reaches its 

maximum strength with average twin spacing ~ 15 nm, not ~ 4 nm[51]. Anderoglu et al., 

revealed that most of fine twins (~ 5 nm spacing) are removed after plastic rolling on 

sputtered nt Cu foil[52]. The recent studies on (112) incoherent twin boundaries (ITB) 

have shown that ITB can migrate or slide during interaction with the dislocations[47, 54, 

198, 199], which may lead to the removal of the CTB, so called detwinning. Particularly, 

Wang et al., found in both experiment and molecular dynamics (MD) simulation, that 

ITB has more tendency to migrate in thinner twins[200]. Another detwinning mechanism 

has been reported by Li et al.,[53] and Zhu el al.,[201] in 2011 that partial or perfect 

dislocation could interact with twin dislocations and trigger the detwinning process. 
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 Since there are few studies on combining stress and microstructural analysis, 

some major issues remain poorly understood: (1) what is the stress level when ITB 

migrate? (2) what is the stress level when dislocation interact with CTB? (3) does load 

drops occur at these events? Techniques such as in situ deformation in a transmission 

electron microscopy (TEM) can be used to directly quantify the microstructure-stress 

relationship [113-115, 117]. 

 In this letter, in situ nanoindentation is performed on epitaxial nanotwinned Cu 

along <111> direction (perpendicular to coherent (111) twin boundary). We report the 

first in situ evidence to identify the phenomenon and corresponding stress level of ITB 

migration; dislocation nucleation; and dislocation penetration into CTB in one loading 

event. We also observed the indentation stress drops associate with detwinning process, 

and dislocation penetration process evident by in situ nanoindentation. Furthermore, we 

found that detwinning is layer thickness dependent by comparing the performance 

between a 14 nm thick twin (T1) and a ~ 5nm fine twin (T2). The result show that the 

ITB migration of T2 occurs at very low stress with about 15 nm/s migration velocity, 

whereas T1 can stand even after plastic yielding. 

 

VI.3 Experimental 

 Epitaxial (111) Cu films with 1.5 μm thickness were magnetron sputtered on HF 

etched Si (110) substrate[69]. The base pressure was 5 × 10-8 torr. The deposition rate 

was about 5  ̇ /s. In situ nanoindentation was performed by using a special holder 

manufactured by NanoFactory Inc. In situ TEM analyses were conducted within a JEOL 

2010 TEM with a point-to-point resolution of 0.23 nm. During in situ nanoindentation, a 
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wedge shape nanoindentor tip was used with known geometry. Alternatively we used 

Hertzian spherical contact estimation on true stress, marked as indentation stress at here, 

based on TEM observation of the contact geometry [123]. TEM foil thickness was ~ 30 

nm, measured by using conventional convergent beam electron diffraction (CBED) 

technique.  

 

VI.4 Results 

 Fig. 56a shows the indentation stress vs. displacement (and time) with loading 

(red, color online) and unloading (blue color online) curve. Before 20s, a clear stress 

plateau along with the stress drop was observed between 8s ~ 17s, which reveals ITB 

migration as shown in Fig. 57. The yield strength is 0.5 GPa at 31 s, which is also 

confirmed by bright field (BF) TEM snapshots in Fig. 58 where the dislocations nucleate. 

The detail of two load drops in plastic regime (30 ~ 53s) will discuss in Fig. 58 when 

dislocation propagate and penetrate through CTBs. Based on Hertzian spherical contact 

estimation, the strain is proportional of calculated contact area/ tip radius. Therefore, the 

work hardening exponent can be roughly estimated qualitatively. As shown in Fig. 56b, 

stress-strain behaviors of nt Cu exhibits the similar elastic modulus (slope) but much 

higher yield strength compare with Cu without twins. Furthermore, work hardening 

exponent of nt Cu at different sections (n1 and n2) are smaller than no twin Cu (n0). 
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Figure 56 In situ nanoindentation study that shows the elastic and plastic 
deformation of epitaxial nanotwinned (nt) Cu indented along <111> direction. (a) 
Indentation stress vs. displacement plots during loading (red, color online) and unloading 
(blue color online) process. A clear stress plateau along with the stress drop was observed 
between 8s ~ 17s. Yielding occurred at 31 s (0.5 GPa). A prominent load drop event was 
also observed (46-53 s). (b) Comparison of stress-strain behavior between Cu without 
twins and nt Cu. Work hardening exponent n0, n1 and n2 are labeled at different sections. 
Hertzian spherical contact was used to estimate strain. 

 

 Fig. 57 presents sequential in situ TEM snapshots that the ITB migrates along 

with stress plateau and stress drop corresponding 8-17s in Fig. 56 (see suppl. video 1 for 

detail). Two nanotwins (marked as T1 and T2) are focused with thickness 14 nm and 5 

nm, respectively. A clear ITB is marked as dash line in (b), and the rest as reference. 

During deformation, thinner twin (T2) migrates from 12s to 13s, and 16s to 17s. The two 

migration distance is both 15 nm. Thus, the migration speed is estimated as 15nm/s. 

 Fig. 58 shows the sequential in situ TEM snapshots that reveal the dislocation 

nucleation and penetration corresponding to yielding and two stresses drops from 29 to 

53s in work-hardening regime as indicated in Fig. 56 (see suppl. video 2 for detail). As 

shown in a-c from 29s to 31s, dislocations start nucleating and the density increase 

rapidly leads to the on-site yielding at 31s. As shown in d-f, dislocations network 
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propagates and expands quickly that result in another load drop at 35-37s. After that, the 

work-hardening are majority contributed by the interaction between CTB and 

dislocations. As shown in g-i, via dislocation penetration of CTB, the large load drop 

occurs from 46s to 53s as shown in Fig. 56.  

 

 

Figure 57 Sequential in situ TEM snapshots revealing the migration of incoherent 
twin boundary (ITB) during 8-17 s, corresponding to stress plateau in the ultra-low stress 
regime as indicated in Fig. 56 (see Suppl. video 1 for detail). (a) Two nanotwins, T1 and 
T2, were identified with thickness 14 and 5 nm, respectively. (b) A dotted line that 
marked at the ITB location was highlighted as a reference after 12 s. (c) By 13 s, during 
deformation, the thinner twin T2 migrated by 15 nm. Continuous deformation did not 
lead to obvious ITB migration in (d-e) during 15-16 s, until at 17 s (f) another prominent 
ITB migration event by 15 nm was captured. The peripheral of indenter tip is marked in 
(b). 
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Figure 58 Sequential in situ TEM snapshots reveal the dislocation nucleation and 
penetration corresponding to stresses drops indicated in Fig. 56 (see Suppl. video 2 for 
detail). As shown in (b), dislocations started to nucleate at 30 s, and a substantial 
nucleation of multiple dislocations was captured at 31 s (c) corresponding to the load 
drop at 31s in Fig. 56. (d-f) During 35-37s, the group of dislocations propagated rapidly 
towards T3. The migration of dislocations was hindered by TBs at T3. Simultaneously a 
large dislocation loop consisting of a band of dislocations formed along the TBs. (g-i) 
During 46-53 s, the band of dislocations penetrated through TBs, corresponding to the 
large load drip revealed in Fig. 56. 
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VI.5 Discussion 

 In order to better understand the phenomenon. A schematic of the phenomenon 

and the stress level of the ITB migration; dislocation nucleation; and dislocation 

penetration into twin boundaries is shown in Fig. 59. ITB migration of the fine nanotwins 

occurs at very low stress level (~ 0.1 GPa) before yielding. There is no evidence of ITB 

migration of the thick nanotwins prior to dislocation nucleation (~0.5 GPa). Once 

dislocation networks form, they will then interact with twin boundaries and penetrates 

through CTBs at higher stress level (0.6-0.8 GPa). 

 

 

Figure 59 Schematic of stress induced evolution of microstructures during in situ 
nanoindentation. Three distinct stages are identified: TB migration (detwinning), 
dislocation nucleation, and dislocation penetration across TBs. (a) ITB migration of the 
fine nanotwins occurs at very low stress level (~ 100 MPa) in the elastic regime. There is 
no evidence of ITB migration of the thick nanotwins prior to the onset of dislocation 
nucleation. (b) Dislocation nucleation occurs at ~ 500 MPa, dislocation networks are 
form when multiple dislocation combined together (c) Once dislocation networks form, 
they interact with TBs and penetrate TBs at higher stress level (600-800 MPa). 
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 At first, we examined dislocation nucleate when indentation stress at 0.5 GPa in 

this study. Previous studies on tensile test of pure Cu with similar average twin thickness 

revealed yield strength from 0.5 to 0.6 GPa [51, 202]. Our indentation stress 

measurement and tip geometric calculation shows accurate reflection to bulk deformation 

behavior. This comparison ensures the solid contact and stress recording during this 

indentation process. Therefore, the ultra-low stress level (~ 0.1 GPa) of ITB migration is 

a striking observation, because this phenomenon occurs before plastic yielding, or even 

dislocations nucleation in this study. However, ITB migration is clearly not elastic 

deformation since these ITBs does not revert back after the migration. Also, this may not 

qualifier for plastic deformation as dislocation has not been nucleated thus no dislocation 

interaction is observed at this regime. 

 Recent studies revealed that twin is less stable when the average twin spacing is a 

few nanometers [51, 52]. Wang et al. [200] reported 0.3 GPa shear stress is sufficient for 

ITB migration of 2 nm twinned Cu crystal using MD simulation. Furthermore, low stress 

triggers deformation twins in Cu have been seen in several studies both experimentally 

and theoretically [154, 203]. Their estimated Cu twin formation shear stress is ~ 0.12 

GPa. Our study first evident the ITB migration of 5 nm thick twin could occurs at 

theoretical twin formation shear stress ~ 0.1GPa, where no dislocation interaction has 

been captured. This leads to a major question, what is the mechanism of ITB migration? 

 A typical ITB boundaries is 3 atomic layer repeating structure, marked as ∑3(112) 

[47], where the sets of partials stay together due to the net Burgers vector is zero. 

Therefore, when applied shear stress is enough to destroy the ∑3(112) boundary, ITB 

migration occurs due to non-zero net Burgers vector. This mechanism is supported by the 
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observation of load plateau and load drop. First, the loss of energy providing by shear 

stress when destroying the ∑3(112) boundary leads to the load plateau from  -17s. Then, 

the fine twins has migrated to lower shear stress regime that shear stress is insufficient to 

trigger more ITB migration. After that, the measured indentation stress drops to nearly 

zero at 18s, which corresponds to the regeneration of shear stress field. Therefore, we 

think ITB migration is a non-dislocation interaction, non-revertible process, which is 

neither elastic nor plastic deformation. 

 It worth noticing that the ITB migration speed is estimated as 15 nm/s, which is 

much smaller than simulation results (>5m/s [200]). This is due to large loading rate 

differences between simulation and experimental results, where shock loading rate in 

simulation results is several magnitudes faster than our experimental results. 

 We then discuss the dislocation-twin boundary interaction in the plastic regime. 

As shown in Fig. 56 and Fig.58, three events can be clearly identified: dislocation 

nucleation at ~31s; dislocations propagation at ~35s; and dislocation penetration through 

twin boundaries at 46s. The general understanding of macroscopic plastic yielding is 

dislocation penetrate through grain boundaries. Therefore, we clearly captured the stress 

levels of dislocation nucleation and propagation before macroscopic plastic yielding, 

which corresponds to the dislocation penetration through twin boundaries. 

 Right at dislocations nucleation occurs at 31s, the area underneath the indenter is 

almost twinned free and a large number of dislocations nucleate and combine as a 

network almost immediately. The dislocation density increases from almost 0 to 5.4×1011 

cm2 in less than 1s. This leads to the large work-hardening from 31s to 35s, where a first 

load drop occurs corresponds to dislocation network expanding and propagating at the 
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twin boundaries as shown in Fig. 58. After 37s, dislocations accumulated and piled-up on 

the twin boundaries, which maintained large work-hardening. They penetrate through the 

twin boundaries with larger load drop after 46s. This is clearly the combination of 

dislocation-network itself interaction, and dislocation-twin interaction. The work-

hardening exponents of nt Cu (n1 and n2) is comparable with Cu without twins (n0) as 

shown in Fig. 56b. This shows coherent twin boundaries can indeed provide strong 

resistant on dislocation pile-up, and then contribute to the strength. 

 

VI.6 Conclusion 

 In summary, we report the first in situ evidence to identify the phenomenon and 

corresponding stress level of ITB migration; dislocation nucleation; and dislocation 

penetration into CTB in one loading event on nanotwinned Cu. We identified the 

indentation stress drops associate with ITB migration at 0.1 GPa, and dislocation 

penetration at 0.6-0.8 GPa. In ITB migration regime, twin with 5 nm thickness moves 

easily than twin with 14 nm thickness. The result show that the ITB migration of the 

thinner twin occurs at very low stress at 0.1 GPa with about 15 nm/s velocity, whereas 

the thicker twin can stand even after plastic yielding at 0.6 GPa. In work hardening 

regime, dislocations nucleation and penetration into twin boundaries are recorded. 

Dislocation network shows greater work-hardening exponent, where a clear stress drop 

was evident when dislocation penetrating into twin boundaries. This may corresponds to 

the plastic yielding captured macroscopically. 
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CHAPTER VII 

SUMMARY 

 First, we investigate the mechanical properties of sputtered, epitaxial Cobalt (Co) 

films with 1.2 μm thickness. By applying epitaxial Cu seed layer on Si substrates, 

epitaxial FCC (100) and HCP (0002) Co films can be achieved, respectively. High 

density stacking faults with an average spacing of a few nanometers are observed on 

(0002) Basel planes in HCP Co films. Compared to HCP Co, high density stacking faults 

intersecting ribbons are observed on different (111) planes. Furthermore, the volume 

fraction of these stacking faults intersecting ribbons in FCC Co can be controlled by 

deposition parameters of magnetron sputtering. The indentation hardness of the FCC Co 

rises from 4 GPa to 5 GPa with increasing the volume fraction of the stacking faults. The 

formation and strengthening mechanisms of these stacking faults are discussed. 

 Second, we investigate the interfaces and mechanical properties of sputtered, 

highly (100) and (111) textured Cu/Co multilayers. In (100) Cu/Co multilayers, Co has 

primarily face-centered-cubic (FCC) structure and high density of inclined stacking faults 

(SFs). In contrast in (111) textured Cu/Co, dependent on layer thickness, high density SFs 

and twins parallel to layer interface are observed. When individual layer thickness, h, is a 

few nanometers, both systems have fully coherent FCC interface. (111) Cu/Co has 

similar size dependent strengthening and peak hardness compared to (111) Cu/Ni 

multilayers. The peak strength of (100) Cu/Co may be dominated by the transmission of 

partial dislocations across interface, and hence it is lower than the peak strength of (100) 

Cu/Ni, which is dictated by transmission of full dislocations across interfaces.  
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Third, nanoindentation technique is increasingly used to determine the strain rate 

sensitivity (SRS) of materials with small volumes, such as nanocrystalline metallic thin 

films. However traditional data analysis yields large scattering and uncertainty due to the 

influence of thermal drift on displacements measured at low strain rates. In the present 

work, we use a new method that renders hardness insensitive to thermal drift. The method 

involves (a) directly measuring contact stiffness by means of a small dynamic oscillation 

and (b) calculating contact area from the measured contact stiffness and the elastic 

modulus, which is insensitive to strain rate. The new technique is validated on 

nanocrystalline Ni and nanotwinned Cu films and returns expected values of SRS. 

 Fourth, we report the first in situ evidence to identify the phenomenon and 

corresponding stress level of incoherent twin boundary (ITB) migration; dislocation 

nucleation; and dislocation penetration through coherent twin boundary (CTB) in one 

loading event on epitaxial nanotwinned Cu. We have observed the detwinning process 

triggered at ultra-low indentation stress level associate with stress plateau and drops 

before plastic yielding. We found that ITB migration of the thinner twin (~ 5 nm) occurs 

at very low stress at 0.1 GPa with about 15 nm/s velocity, whereas the thicker twin (~14 

nm) can stand until 0.6 GPa. Furthermore, we have captured dislocation nucleation and 

propagation before macroscopic yielding, which corresponds to dislocation penetration 

through twin boundaries. 
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