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ABSTRACT 

This dissertation investigates the interaction of model II in-plane dynamic rupture 

with a geometrical discontinuity along the fault strike: stepover. One goal is to understand 

how large the stepover width must be to stop the dynamic rupture, and whether the 

maximum width is affected by the undrained pore pressure and the off-fault damage 

during the coseismic process in conceptually simplified faults. In this research, we want to 

understand the rupture dynamics in a realistically complex stepover, the Aksay double-

bend in the Altyn Tagh fault, and its ability to stop the dynamic rupture.  

A detailed parameter-space study has been performed in the simplified model. From 

the single fault test, I find that the Positive Coulomb Stress (PCS) region at the end of the 

first fault controls the rupture initiation time and location on the second fault. The effects 

of off-fault plastic deformation and undrained pore pressure on the rupture dynamics 

within this simplified model have been discussed separately. The coupling effect of those 

two effects has also been studied.  

The possible correlation between the slip gradient nearby the first fault end and the 

ability of the rupture to jump over the structure stepover in the strike-slip fault system has 

been verified by my elastic models. I find that the slip gradients calculated over the final 1 

km of fault have a linear relationship with both the corresponding average stress drop in 

the fault system and the largest width of the step that could be jumped by the propagating 

rupture.  

In the model with realistically complex fault geometry, I use the slip and rate 

weakening law and the multi-cycle earthquake simulation method. I find that there are 
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multiple rupturing scenarios that could occur within this complex fault geometry.  My 

statistic analysis of the results of one-hundred-cycles’ simulations indicates that the Aksay 

bend successfully prevents nearly 90% events from propagating through it, which 

suggests that the Aksay bend works effectively as a barrier for coseismic ruptures. 

Viscosity in my models characterizes the effects of off-fault deformation on the faulting 

process. The results show that larger off-fault deformation strengthens the Aksay bend’s 

ability to stop a seismic rupture. 
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1. INTRODUCTION 

   What stops the seismic rupture on a certain fault? This is a question that requires 

the effort of multiple generations of seismologists. Previous researchers have paved 

multiple ways for us to follow, which have the potential to address this question. Two 

main directions have been intensively researched in the past several decades: 1. the 

heterogeneous distribution of frictional parameters, or the effect of sudden change of 

lithology or any other petrophysical property variations at the fault tip; 2. the geometry 

discontinuities: stepover, bend or any other sudden strike discontinuity or direction 

changes. In this dissertation, I focus on researching the effect of geometrical 

discontinuity along fault strike on stopping the seismic rupture first under homogenous 

frictional parameters, simplified normal and shear stresses on fault, then under a fault 

system with a realistically complex geometry and heterogeneous initial stresses. Because 

the precise description of the heterogeneous distribution of the frictional coefficients and 

stresses on the fault surface is so hard to obtain, I choose to narrow the scope of this 

dissertation down to the variation of fault geometry in two dimensions and the resulting 

heterogeneity of stresses.   

In section 2, I study the stepover’s ability to stop seismic rupture within a fault 

system consisting of two parallel strike-slip faults. Compared with previous researches 

about this topic, we involve the plastic off-fault behavior into our model to test its effect 

on rupture’s jumping ability. Furthermore, the poroplastic off-fault behavior has also 

been examined. Our results enrich the existing researches on the stepover topic.  
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In section 3, I study the relationship between the shape of final slip on the first fault 

and the seismic rupture’s ability to jump the stepover onto the second fault in the model 

consisting of two parallel strike-slip faults. This study is inspired by the research carried 

out by Elliott et al. (2009). They measured the slip gradient near the fault tip on many 

faults by digitizing those published slip measurements on faults after many earthquakes, 

and then proposed a threshold of the slip gradient measured 1 km away from the fault 

tip. If the final slip gradient on the fault is larger than the threshold, the seismic rupture 

propagating on it has a high possibility to successfully jump stepover locating at the end 

of the fault. Our simulation results confirm the close relationship between the slip 

gradient near the fault tip and the seismic rupture’s jumping ability on the fault. 

Furthermore, we specify the relationship is linear on a fault with a fixed length and a 

fixed stress drop on it. 

In section 4, we move from the simplified fault geometry to the field-measured fault 

geometry.  We attempt to study the behavior of the dynamic rupture on the Aksay 

double-bend of the Altyn Tagh Fault locating in Gansu province, China. Furthermore, 

we analyze the role that the Aksay double-bend has played in stopping or restraining the 

seismic ruptures. The largest differences of our study compared with previously similar 

researches are the field-measured fault geometry in our model and the usage of multi-

cycle earthquake simulation method developed by Duan and Olgesby (2006). The field-

measured fault geometry allows us to compare our results with the filed measurements, 

including slip-rate and paleoseismic observations. The multi-cycle earthquake simulator 

allows us to set the number of simulated earthquake cycles, which provide us the chance 
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to statistically analyze the Aksay double-bend’s effectiveness in stopping or restraining 

the seismic ruptures. The collaboration between the modelers and field geologists is also 

the bright spot of this research.  
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2. DYNAMICS OF PARALLEL STRIKE-SLIP FAULTS WITH PORE FLUID 

PRESSURE CHANGE AND OFF-FAULT DAMAGE 

2.1 Introduction 

In field observations, the traces of active faults where recent earthquake events could 

be observed are often discontinuous, and may consist of several segments which are 

separated by steps (Wesnousky, 1988). This geometrical feature has been proposed to 

control the final length of fault rupture (Sibson, 1985, 1986; Reasenberg et al., 1982), 

and to explain the location of basins (Burchfiel and Stewart, 1966). More quantitative 

studies have included the dislocation theory to quantitatively study the formation of 

basins in strike-slip systems, such as Rodgers (1980).  However, Rodgers’ analysis did 

not involve jumping rupture across a stepover. Segall and Pollard (1980) carried out a 

quasi-static analysis of earthquake rupture behavior at a stepover within a strike-slip 

fault system. Dynamic simulations of rupture propagation within a fault system with two 

parallel strike-slip faults embedded in an elastic medium were first performed by Harris 

et al. (1991) and detailed analyses were reported in Harris and Day (1993). Their 

numerical results about the maximum jumpable step width are consistent with 

Wesnousky’s (1988) field observations.  After summarizing 22 historical strike-slip 

earthquakes with rupture length from 10 to 420 km, Wesnousky (2006) found that 

roughly two-thirds of the measured steps acted as endpoints of strike-slip earthquake 

ruptures and those steps had widths larger than 3-4 km. On the other hand, when the step 
                                                 
 Reprinted with permission from “Dynamics of parallel strike-slip faults with pore fluid 
pressure change and off-fault damage” by Zaifeng Liu and Benchun Duan, 2014. Bulletin of 
Seismological Society of America, v.104, issue 2, Copyright 2014 by the Seismologyical Society 
of America.  
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width was smaller than 3-4 km, 60 percent of surveyed ruptures were able to propagate 

across the step.  

Field surveys of large-scale strike-slip faults have revealed the existence of a fracture 

zone around main slip surfaces (e.g., Chester et al., 1993). To simulate this type of 

energy absorption effect, Andrews (2005) employed a nonelastic model with a Coulomb 

yielding criterion in the medium off the main slip surface to simulate dynamic rupture 

with energy loss outside the slip zone. He found that off-fault yielding affects rupture 

velocity and peak slip velocity. Off fault plasticity has been investigated intensively in 

recent years. Ben-Zion and Shi (2005) revealed that off-fault plasticity could stabilize 

slip velocity of a propagating rupture. Duan (2008a) examined effects of low-velocity 

fault zones on rupture dynamics and near-field ground motion when off-fault materials 

yield. The distribution of off-fault deformation along a bimaterial interface and the effect 

of inelastic deformation on rupture propagation along a strike-slip fault with a kink were 

investigated by Duan (2008b) and Duan and Day (2008), respectively. Templeton et al. 

(2008) and Viesca et al. (2008) examined factors that influence plastic deformation 

distribution in “dry” and undrained systems, respectively, including the angle between 

the fault trace and the maximum compressive stress, the seismic S ratio, and the 

closeness of initial stress in off-fault material to Mohr-Coulomb failure. Ma and 

Andrews (2010) discussed inelastic off-fault response in a three-dimensional strike-slip 

fault and point out that the off-fault plasticity is narrowly confined to the fault in depth 

and the distribution pattern is correlated with the cohesion of off-fault material: low 

cohesion (~5 MPa) material allows the inelastic zone broadens near the surface; while, 
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high cohesion (~10 MPa) material confines the inelastic deformation mostly at deeper 

depth. Finzi, Y. and S. Langer (2012) addressed the effect of lower rigidity within the 

stepover could significantly promote the rupture propagation through the stepover.  Xu 

and Ben-Zion (2013) analyzed the spatial and temporal evolutions of non-local 

properties of the stress field and provided a quantitative description on the characteristics 

of the off-fault yielding at different scales.  

       Off-fault damage alters the dynamics stress field around a stepover, and thus is 

expected to affect the dynamics of earthquake ruptures on parallel strike-slip faults. This 

topic has not been systematically investigated before. In addition, detailed quantitative 

analyses of the effects of time-dependent pore pressure (undrained systems) on dynamic 

rupture propagation across stepovers have not been performed in great detail, although 

Harris and Day (1993) presented an investigation into this topic for the case of elastic 

off-fault deformation. This paper is intended to improve our understanding of the effects 

of off-fault damage in the form of plastic yielding, and time-dependent pore- pressure 

changes (undrained systems), both of which likely operate during large strike-slip 

earthquakes.  

2.2 Method 

We use the finite-element code EQdyna (Duan and Oglesby, 2006; Duan and Day, 

2008) to perform the dynamic earthquake rupture simulations in this study. The code is 

verified in a community-wide effort (Harris et al, 2009; 2011).   
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2.2.1 Model setup 

We work with 2D strike-slip faulting models, similar to those analyzed by Harris and 

Day (1993). In Figure 2.1, two left lateral strike-slip fault segments with half length 14 

km are embedded in a homogeneous medium. We primarily examine the case with the 

angle between maximum principle stress and the fault surfaces being 450.  In this case, 

three stress components,          and    , define the initial stress field, which is 

homogenous and is assigned in the entire medium. The initial stress field, fault slip sense 

and length are similar to those used by Harris and Day (1993). We choose the static 

coefficient of friction to be 0.75 (Byerlee,1978), and the dynamic coefficient of friction 

to be 0.3. The length of the fault segments’ overlap has been adjusted to make sure the 

overlap would not affect the jumping ability and 3 km is the value we select. We 

examine stepover widths in increments of 500 meters on both the dilatational and 

compressive sides of the first fault.  Furthermore, Harris and Day (1993) also discuss 

rupture’s jumping ability in both the supershear (         

      
 < 1.63) and subshear 

(        

      
 >1.63) ruptures in elastic models, where           and             

are the static and dynamic friction, respectively, and the compressive normal stress is a 

negative value. We will only focus on the supershear rupture case, because the subshear 

rupture would have very limited ability to jump stepovers.  

      The rupture is initiated at the middle of the first fault (the nucleation point), and 

is forced to grow outward at a certain speed within a nucleation patch Lc (Day, 1982; 

Andrews, 1976, 1985). Outside the nucleation patch, rupture propagates spontaneously 
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on the first fault. We examine whether and how the rupture may propagate across a 

stepover onto the second fault. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2. 1 The model geometry, sense of slip and initial stress in our 
calculations. Two parallel left-lateral strike-slip faults are imbedded in a 
homogeneous elastic or elastoplastic medium. Compressional and dilatational 
quadrants around the first fault are labeled by plus (+) and minus (-) signs, 
respectively. The convention of compressive normal stress is negative has been 
employed. 
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2.2.2 Fault frictional behavior 

 

We regard the earthquake rupture as a frictional behavior on a pre-existing fault 

surface. The evolution of frictional coefficient is approximated by a slip-weakening law 

(Ida, 1972; Palmer and Rice, 1973) in which the static friction decreases to the dynamic 

friction value after a critical slip distance D0 = 0.5 m on the fault. 

                            
   

         
  
            

                                               

                                         (2.1) 

 where    and    are the static and dynamic coefficients of friction, respectively.  

 

2.2.3 Off-fault elastoplastic behavior 

We know that rock yield beyond the elastic limit. The onset of inelastic deformation 

depends on the effective mean normal stress, i.e.,    
   
     

 

 
 in two dimensions, for 

rocks.      and      are the effective normal stresses under the constant pore pressure: 20 

MPa. Inelastic deformation may present itself in the form of frictional sliding on existing 

micro-fractures or micro-cracking. A Mohr-Coulomb yield criterion is used to 

characterize the inelastic behavior in the off-fault medium. In two dimensions, the 

maximum shear stress is: 

 

                                                   
    

     
  

 
                                               (2.2) 

For an internal coefficient of friction      and cohesion c, the Coulomb criterion is: 
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                                          (2.3) 

The negative sign on the right side of the equation corresponds to the convention that 

stress is positive. We remark that the Mohr-Coulomb yielding is just an idealization and 

approximation of rock behavior after reaching the yield point. If off-fault material 

violates the Mohr-Coulomb criterion, three stress components would be adjusted in the 

stress deviator domain (Andrews, 2005).  A parameter CF (Closeness to Failure) can be 

defined with respect to the initial effective normal stresses and initial shear stress 

according to the equation in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

Figure 2. 2 Mohr-Coulomb yield criteria for off-fault plastic deformation.   is 
the cohesion and   is the internal friction angle, and the closeness of stress state 
to failure is defined by CF. 
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2.2.4 Undrained pore pressure effect in the elastic case 

Pore pressure change during rupture propagation in the elastic case has been 

discussed previously by Sibson (1985, 1986), Rice and Cleary (1976), and Harris and 

Day (1993). Sibson (1985) proposed that the reduced normal and mean stress at a 

dilatational stepover would suddenly open extension fractures. The fluid pressure in the 

extension fractures would not have enough time to re-equilibrate during the time of the 

earthquake, and then the effective normal stress would suddenly increase, resulting in an 

increase in the frictional strength at the dilatational stepover. The pore pressure change is 

determined by the following equation: 

                                                
       

                                              (2.4) 

according to Rice and Cleary (1976). B is the Skempton’s coefficient, and           

is the time-dependent change in the total mean stress. For plane strain model, the strain 

is zero in the third direction:  

                                 
      

                                            (2.5) 

  where    is the undrained Poisson ratio (Rice and Cleary, 1976). 

 

 

2.2.5 Off-fault poroelastoplastic behavior 

Viesca et al. (2008) point out the poroelastoplastic behavior could be simply using 

elastoplastic behavior with altered plasticity parameters, and the corresponding altered 



12 

 

plastic parameters could be calculated by proposed equations. Drucker-Prager yield 

criterion has been used in their research:     
   

 
  , here   is the cohesion,   is the 

internal friction,      
 

 
        , the second invariant of the deviatoric stress         

   
   

  . In plane strain, the Drucker-Prager (DP) yield criterion approximates the 

Mohr-Coulomb (MC) (Templeton and Rice, 2008), which takes the form:        

             where   and    are the shear and normal traction on any plane,      is 

the internal friction coefficient and   is the cohesion. The DP and MC criteria coincide 

exactly for 2-D stress states when the out of plane principle stress is given by      

         
   

   
   . For those stress states, the cohesion and friction coefficients are 

related by          and       .  

We use the equations proposed by Viesca et al. (2008) in the Drucker-Prager yield 

criterion to derive poroelastoplastic equations in the Mohr-Coulomb criterion. Viesca et 

al. (2008) propose that the undrained elastoplastic mechanism could be transformed into 

the drained elastoplastic mechanism with modified material parameters. This means an 

undrained elastoplastic model is interchangeable to a drained elastoplastic model 

(without influence from undrained pore pressure) mathematically with changes in 

material parameters. Viesca et al.  (2008) propose the corresponding undrained DP 

criterion is:      
   

 
   ;                     ;          

 , in a 

three-dimensional model. In a two-dimensional model, we employ the equation: 

     
      

 
    

         
    

 
   

      and            (Ma, 2012). 
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Now, we could derive the mathematically equivalent undrained MC criterion:   

            ; in which 

                                                                                                       (2.6) 

                                         
       

    
 

        
 

                        
                                                   (2.7) 

    is the Skempton’s coefficient and     is the original mean stress, which equals 

       

 
. We just need to replace the parameters in the elastoplastic model with the 

undrained parameters to simulate the poroelastoplastic off-fault behavior.  

 

2.3 Results 

      We first calculate a reference case of a dynamically propagating rupture on 

parallel strike-slip faults with off-fault elastic behavior and constant pore pressure, and 

in this case we neglect any dynamic pore pressure variation during rupture propagation, 

which is similar to the “dry” materials in both researches by Harris and Day (1993) and 

Templeton and Rice (2008). Then we separately explore the effects of time-dependent 

pore pressure (i.e., an undrained system) and off-fault damage. Finally, we examine the 

combined effects of the two factors. We report jumping positions on the parallel second 

fault and the time needed for rupture to jump in each case in the two parallel faults 

model.  

      To understand jumping positions and the maximum jumpable stepover width, we 

also perform the single fault test (i.e., just the first fault exists in the model) and calculate 

the Coulomb stress evolution on the parallel receiver fault. The Coulomb stress is 
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defined as       
 
    , where    and    are the shear stress and effective normal stress 

resolved on the parallel receiver fault, and    is the static friction coefficient. We 

particularly examine the distribution of positive Coulomb stress (PCS) in the single fault 

test and its control on rupture jumping behavior across stepovers, by comparing the PCS 

history with the jumping time and position results in the two parallel faults model. Harris 

and Day (1993) point out that the single fault study can only check if the resolved shear 

stress is larger than the static friction on the receiver fault (the second fault), so the 

possible jumping position on second fault could be determined, but it is insufficient to 

evaluate if the stress concentration is enough to successfully induce rupture propagation 

on the 

Receiver fault (the second fault). Therefore, in our simulation, we only check if the 

rupture could or could not successfully initiate on the second fault, and ignore the ability 

of the rupture to sustain itself on the second fault. We perform simulations of both 

single-fault and two-fault models in each case. 

 

2.3.1 Elastic case with negligible changes in pore pressure (the elastic case) 

In this section, we present the results from one set of elastic calculations whose 

parameters are listed in Table 2.1. In this case, the presetting pore pressure (20.0 MPa) is 

incorporated in the initial stresses, but it has negligible changes during the dynamic 

rupture propagation. For each set, we run 20 or more simulations with a termination time 

of 15 seconds for different widths of the stepover with an interval of 500 meters. We do 

not set any constraint on the maximum stepover width that could be jumped. In the 
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elastic case, the rupture takes 3.479 s to reach the end of the first fault. The rupture is 

triggered at different times on the second fault. The maximum jumpable widths in the 

dilatational and compressive stepovers are 5000 m and 3500 m, respectively. Figure 

2.3(a) summarizes the location of rupture being triggered on the second fault, and Figure 

2.4(a) shows the time interval between the time rupture arrives at the end of the first 

fault and the time rupture is triggered on the second fault in this case. We observed that 

the rupture needs more time to be initiated on the second fault in the dilatational stepover 

than in the compressive stepovers. Moreover, in dilatational steps, the initiation position 

on the second fault is within the stepover and migrates towards the center of the first 

fault with an increase of the stepover width. On the other hand, in compressive 

stepovers, the initiation position on the second fault is beyond the stepover and gradually 

moves away from the stepover with increase of the stepover width. These observations 

are consistent with those reported by Harris and Day (1993).  
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Table 2.1 Material and computational parameters in model of elasticity 
 

Parameter Value 

Density 2700 kg/m3 

Vp 6000 m/s 

Vs 3464 m/s 

Initial normal stress:         -53.3 MPa 

Initial shear stress:     20.0 MPa 

Initial pore pressure 20.0 MPa 

Static coefficient of friction 0.75 

Dynamic coefficient of friction 0.30 
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Figure 2.3 Summary (map view) of the results of simulations of faults steps in 
left-lateral shear in our calculations. Positive width represents dilatational 
stepover and negative width represents compressional stepover. (a) Elastic case 
with drianed pore pressure. (b) Elastic case with undrained pore pressure.  (c)  
Elastoplastic case with drained pore pressure.  (d) Elastoplastic case with 
undrained pore pressure. The line in each case represents part of the first fault 
nearing the overlap, dots represent the triggered position of rupture on the 
second fault and the times to the right of the figure are the time of triggered 
ruptures on the second fault.  
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Figure 2.4  Summary of time needed for rupture to jump stepover from the first 
fault to the second fault. (a), (b), (c), (d) have the same meanings as in Figure 
2.3.  
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In order to have a better understanding of the jumping ability of rupture, we use the 

single-fault test results to examine the Coulomb stress variation around fault one during 

the dynamic rupture process. In the single-fault test, we just remove the second fault and 

keep the first fault intact in the model configuration. Figure 2.5 shows the stress 

distribution around the first fault at 7s, which is roughly 3.5 s after the rupture reaching 

the first fault end. As expected, the shear stress component is symmetrical about the 

fault; while the effective normal stress component at the end varies dramatically. In the 

dilatational quadrant, there is a relative high stress lobe followed by a low stress lobe. 

We further examine the Coulomb stress distribution at this time, and find that the region 

of the positive Coulomb stress is precisely consistent with the distribution of the rupture 

initiation position on the second fault (Figure 2.3(a)). Therefore, the initiation position of 

rupture on the second fault is controlled by the spatial distribution of the positive 

Coulomb stress (PCS).  

Because off-fault shear stress is symmetric about the fault in both quadrants, it is the 

effective normal stress that determines the different distribution of the PCS stress in the 

two quadrants of the first fault. We plot the effective normal stress distribution after the 

rupture reaches the fault end (Figure 2.6(a)), and find that there is a high effective 

normal stress patch in the dilatational quadrant and a low effective normal stress patch in 

the compressive quadrant propagating away from the first fault end. Therefore, the PCS 

in the compressive quadrant is generated by the low effective normal stress patch, and it 

is associated with the P wave propagation.  
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The PCS history in Figure 2.7(a) more clearly illustrates how the PCS controls the 

location and time of initiation of rupture on the second fault. At 4.0 seconds, the rupture 

just reaches the first fault end. The PCS has a larger extent in the compressive quadrant 

than in the dilatational quadrant. This explains why at the width of 1500 meters, rupture 

initiates on the second fault earlier in the compressive stepover than in the dilatational 

stepover (Figures 2.3(a) and 2.4(a)). At 4.5 seconds, there is a crescent-shaped PCS 

patch leaving the fault end and propagating towards the southeast direction into the 

compressive quadrant of the fault one.  From 4.5 to 6.0 seconds, this PCS patch would 

initiate rupture on the second fault over the region it sweeps. We remark that the strength 

(i.e., the maximum PCS value) of this patch decreases as it propagates away from the 

first fault and it dies out after about 6.0 seconds. The lobe shape positive Coulomb stress 

region around the first fault end keeps expanding in both quadrants of the first fault. This 

lobe and its expanding control the time and position of initiation of rupture on the second 

fault in a dilatational stepover.  

 

 

 

 

 

 

 

 



21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Summary of results from single fault test: fault shear (top panels), 
absolute value of fault normal (middle panels) stresses and Coulomb stress 
(bottom panels) around the first fault in one fault test after the propagating 
rupture arrives at the fault end in (a) the elastic case with drained pore pressure, 
(b) the elastic case with undrained pore pressure, and (c) the elastoplastic case 
with drained pore pressure. 
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Figure 2.6 The time-dependent history of the absolute value of effective normal 
stress in the fault-normal direction in (a) elastic case with drained pore pressure 
and (b) elastic case with undrained pore pressure in the single fault test.   
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2.3.2 Elastic case with undrained pore pressure (the poroelastic case) 

The effect of undrained pore pressure in parallel strike-slip fault systems has been 

discussed preliminarily by Harris and Day (1993).  They reported that the maximum 

dilatational stepover width jumpable to propagating earthquake rupture is greatly 

reduced by the existence of pore pressure change. In this section, we perform a detailed 

 

Figure 2.7 The history of the Positive Coulomb Stress (PCS) in single fault test. 
(a) the elastic case  with drained pore pressure. (b) the elastic case with 
undrained pore pressure.  (c) the elastoplastic case with drained pore pressure. 
(d) the elastoplastic case  with undrained pore pressure. 
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quantitative analysis of its effect, and we set the undrained Poisson ratio to be 0.25 and 

the Skempton’s coefficient to be 0.8.  

Figures 2.3(b) and 2.4(b) show the locations of rupture being triggered on the second 

fault and the corresponding time needed to jump over varying stepovers, respectively. 

As reported by Harris and Day (1993), the maximum jumpable width of the dilatational 

stepover is reduced significantly by the influence of time-dependent pore pressure: from 

5000 meters in the negligible pore pressure case to 1000 meters in this case. The time 

needed for the rupture to jump over the same stepover also increases significantly, e.g., 

from 0.386 s in the constant pore pressure case to 5.038 s for the 1000 meters wide 

dilatational stepover. At the compressive stepover, the maximum jumpable width 

increases from 3500 m to 4500 m.  

Figure 2.6(b) shows the snapshot of the effective fault normal stress in the off-fault 

medium. At 4.0 seconds, the nearby effective normal stress is dominated by a high value 

lobe in the dilatational quadrant. While in the compressive quadrant, a low effective 

normal stress lobe occupies the nearby off-fault region, and the lobe is larger than the 

case of constant pore pressure. This distribution has been intensified around the fault end 

in subsequent calculation times. 

Figure 2.7(b) shows the snapshot of the PCS in this case. Comparing with constant 

pore pressure (Figure 2.7(a)), time-dependent pore pressure imposes significant effects 

on the PCS distribution in the dilatational quadrant. The PCS lobe extending into the 

dilatational quadrant at an oblique (but high) angle with the fault in the constant pore 

pressure case (Figure 2.7(a)) cannot be developed in this case due to pore pressure 
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changes (Figure 2.7(b)).  This results in significant reduction in the stepover width that 

can be jumped by a propagating rupture across the dilatational stepover. In this case, the 

PCS lobe that grows beyond the fault end is responsible for the rupture being able to 

propagate through 500 m and 1000m wide dilatational stepovers. It takes more than 5 

seconds (after the rupture reaches the fault end) for the lobe to grow about 1000 m into 

the dilatational stepover, triggering rupture on the second fault rupture (Figure 2.4(b)). It 

cannot grow farther in the dilatational stepover due to reduced pore pressure and thus 

increased effective normal stress, resulting in the maximum jumpable width of about 

1000 m in this model. Time-dependent pore pressure also affects the PCS distribution in 

the compressive quadrant. A small PCS lobe extending from the fault end, which is 

absent in the reference case (Figure 2.7(a)), grows with time due to time-dependent pore 

pressure. The PCS lobe that grows beyond the fault end has a larger extent and 

amplitude due to increased pore pressure and thus reduced effective normal stress in the 

compressive stepover. A close comparison between Figure 2.7(a) and 2.7(b) at 5.0 

seconds indicates the split crescent-shaped PCS patch extends further into the 

compressive quadrant in the case of time-dependent pore pressure, which results in 

wider jumpable widths.     

 

2.3.3. Case with inelastic off-fault deformation under negligible changes in pore 

pressure (the elastoplastic case) 

In this section, we examine effects of off-fault damage in the form of plastic yielding 

on rupture dynamics of strike-slip faults with a stepover, assuming constant pore 



26 

 

pressure. To better illustrate possible effects, we present a set of models in which 

extensive plastic yielding occurs in dilatational quadrants of the first fault. In this set of 

models, internal frictional coefficient (tan  ) and cohesion are 0.75 and 14.45, 

respectively, leading the value of closeness of failure (CF) to be 0.633. 

Figure 2.3(c) summarizes the initiation position of triggered rupture on the second 

fault, and Figure 2.4(c) shows the time needed for rupture to jump in this case in the two 

parallel faults model. Compared with the elastic case with constant pore pressure, the 

obvious difference can be observed in the dilatational stepover. First, the rupture 

initiation position on the second fault occurs at the end of the first fault and does not 

migrate toward the center of the first fault. Second, the needed time is shorter than that 

in the elastic case, and the time difference in the two cases is proportional to the stepover 

width. On the other hand, effects for the compressive stepover are minor.  

 The aforementioned difference between the elastic case and the elastoplastic case in 

rupture behavior is caused by the stress distribution in dilatational stepovers, especially 

after the rupture arrives at the fault end, due to the occurrence of off-fault plastic 

deformation. In Figure 2.8, we show snapshots of off-fault plastic strain in the single-

fault test after the rupture reaches the fault end. At 4 s, the off-fault plastic strain only 

occurs in the dilatational quadrant, and its width normal to the fault strike is proportional 

to the propagation distance, as reported by Andrews (2005). In the following several 

seconds, the re-equilibration of the stress field due to rupture deceleration and 

termination causes accumulation of plastic strain around the fault end.  A strong plastic 

strain band makes an angle of ~ 45o with respect to the fault, and another band is roughly 
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perpendicular to the fault.  Xu and Ben-Zoin (2013) attributed this increasing plastic 

yielding zone to the increasing stress intensity factor associated with the decreasing 

rupture speed at the fault end.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 2.7(c), we plot the PCS distribution history in the single fault test. A 

triangular-shaped PCS patch, originating from the fault end and propagating into the 

compressive quadrant, is similar to the crescent-shaped PCS patch in the elastic case 

with constant pressure and would initiate rupture on a second parallel fault in the 

compressive quadrant. However, the PCS distribution at the fault end is altered 

significantly by off-fault plastic yielding. In the dilatational quadrant, a relatively narrow 

 

Figure 2.8 Snapshots of plastic strain distribution in elastoplastic case with 
constant pore pressure and CF=0.633 in the single fault test. 
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PCS band grows roughly perpendicular to the fault strike with time. This PCS band 

controls the rupture time and position on the second fault in the dilatational stepover 

(Figure 2.3(c) and 2.4(c)). This PCS band appears to correlate with a strong plastic strain 

band that is nearly perpendicular to the fault strike (Figure 2.8), suggesting stress 

adjustment by off-fault damage in this band facilitates rupture to jump over a dilatational 

stepover onto a second parallel fault. Another PCS lobe extends from the fault end and 

grows in a direction close to the fault strike.  

 

2.3.4 Case with inelastic off-fault deformation under an undrained pore pressure system 

(the poroelastoplastic case) 

Earthquake rupture may propagate under the influence of pore pressure changes and 

off-fault inelastic deformation, and even other factors, such as plastic hardening or 

weakening due to different rates of off-fault inelastic deformation or a low velocity fault 

zone.  In this section, we examine the combined effects of time-dependent pore pressure 

and off-fault inelastic deformation with the same CF as the case under the constant pore 

pressure. By employing equations (2.6) and (2.7), we use internal friction coefficient 

          and cohesion = 18.35 as the undrained case, which corresponds to the 

elastoplastic case with the negligible pore pressure above and the corresponding 

CF=0.901. 

Figure 2.3(d) and 2.4(d) summarize the initiation position of triggered rupture on the 

second fault and the time needed for the rupture to jump across the stepover in the two 

parallel faults model, respectively. Compared with the previous cases with only 
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undrained pore pressure or off-fault inelastic deformation, we find that the undrained 

pore pressure imposes the dominant effect on the jumping behavior of the propagating 

rupture, especially for a dilatational stepover. The jumpable width is much smaller (only 

1500 m) for a dilatational stepover due to the effect of varying pore pressure, while in 

the compressive stepover, the jumpable width decreased by 500 m, compared with the 

elastoplastic case with constant pore pressure. The PCS time history in Figure 2.7(d) 

could help to explain the difference. The region of PCS in the dilatational quadrant has 

been strongly limited by the effect of undrained pore pressure. In the compressive 

quadrant, PCS has a larger extent in Figure 2.7(d) than that in Figure 2.7(c), which 

explains the increased 500 meters jumpable width in the compressive stepover. We 

believe that the plastic deformation occurring at the compressive quadrant (Figure 2.9) 

under the influence of varying pore pressure causes the change in the PCS distribution. 

Plastic deformation in the dilatational quadrant is also significantly limited in the extent 

by the varying pore pressure compared with the case of constant pore pressure.  

Compared with the poroelastic case, the general pattern of rupture behavior has been 

kept. However, the initiation position of rupture on the second fault in the compressive 

quadrant moves farther away from the stepover along the strike direction compared with 

that in the poroelastic case. This may be explained by differences in the PCS distribution 

between the two cases (Figure 2.7(d) and 2.7(b)). In the compressive quadrant, the split 

crescent PCS, which controls the jumping location and time on the second fault, has a 

shorter extent in the direction perpendicular to the fault in figure 2.7(d) than that in 

figure 2.7(b) (e.g., 4.5 s and 5.0 s panels). Thus, the split crescent PCS sweeps the 
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second fault segment of the same stepover width at a distance farther away and at a later 

time in this case than that in the poroelastic case. On the other hand, the jumping 

position is mainly controlled by the PCS lobe extending from the fault end in the 

dilatational stepover, which appears extending to a farther distance in this case than that 

in the poroelastic case. Therefore, although pore pressure changes dominate in this case, 

off-fault damage still imposes some effects on the details of rupture initiation on the 

second fault.    

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

Figure 2.9  History of plastic strain distribution in elastoplastic case with 
undrained pore pressure and CF=0.901 
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2.4 Discussion 

In this study, we mainly extend previous theoretical studies on rupture dynamics of 

parallel strike-slip faults (Harris et al., 1991; Harris and Day, 1993) from an elastic off-

fault medium to an elastoplastic medium, and conduct a quantitative analysis of effects 

of pore pressure changes on rupture jumping behavior across a stepover. In the reference 

case (an elastic medium with constant pore pressure), our results of rupture jumping 

position and time across a stepover are consistent with those reported in the previous 

studies. Furthermore, we find that the distribution of the positive Coulomb stress using a 

single fault model is a powerful tool for gaining insights into rupture behavior across a 

stepover. In particular, we find that the time and position of rupture initiation on the 

second fault in the compressive stepover are controlled by a split crescent-shaped PCS 

patch that propagates away from the end of the first fault into the stepover, while they 

are controlled in the dilatational stepover by a PCS lobe that originates at the fault end 

and expands at a high angle with respect to the fault into the stepover.  

 In the case with off-fault damage and constant pore pressure, we find that one major 

effect of off-fault damage is to relax the requirement of overlap between the two fault 

segments for rupture to propagate through a dilatational stepover. This suggests that 

when off-fault material is weak, a propagating rupture may jump a dilatational stepover 

without a significant overlap between the two fault segments. We remark that the 

extensive plastic yielding in the model of elastoplastic case is associated with a very 

week off-fault medium, such as the closeness CF of 0.633. When the off-fault material in 

dilatational stepover is stronger, the extent and magnitude of the plastic strain will be 
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smaller (Figure 2.10). Correspondingly, the PCS distribution will also be altered (Figure 

2.11). In this set of models, we set off-fault material cohesion as 9.0 MPa, 20.0 MPa and 

40.0 MPa for CF= 0.736, CF=0.556 and CF=0.385, whereas the example analyzed in 

elastoplastic case has the cohesion of 14.45 MPa for CF=0.633. All these cases are 

shown in Figures  2.10 and 2.11 for comparison. Notice that the PCS distribution from 

the model of CF=0.385 is very similar to that from the reference case (i.e., Figure 

2.7(a)), as plastic yielding is very limited in this case (Figure 2.10). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 2.10 Plastic deformation at 14 s in the elastoplastic case with drained pore 
pressure, but different CF values. 
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Pore pressure changes in a stepover can significantly alter rupture behavior, 

particularly at a dilatational stepover. In the two cases of time-dependent pore pressure 

with an elastic or elastoplastic medium in the above section, the PCS region is hard to 

grow in the dilatational quadrant (Figures 2.7(b) and 2.7(d)) of the first fault. We remark 

that the value of B= 0.8 used in these models has been used in many previous studies 

(e.g., Rice and Cleary, 1976; Harris and Day, 1993; Duan and Day, 2010). However, 

there is not much observational evidence for one to choose the appropriate value of B. 

Integrating observations about rupture behavior of natural earthquakes at a stepover 

(e.g., Wesnousky, 2006) with theoretical studies of rupture dynamics of parallel faults 

 

Figure 2.11 The history of the Positive Coulomb Stress (PCS) in the elastoplastic 
case with drained pore pressure, but different values of CF.  (a) CF=0.736, (b) 
CF=0.633, (c) CF=0.556, and (d) CF=0.385.   
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with a stepover may provide us with a means to place some constraints on the value of B 

in natural earthquakes. Observations (e.g., Wesnousky, 2006) show that it is common for 

a rupture to propagate through a dilatational stepover with a width smaller than or equal 

to 3~4 km. One possible explanation is the limitation of the 2D model, the real rupturing 

process is occurring in 3D and 2D model may not be able to capture all possible aspects, 

such as: two faults are not parallel anymore in a certain depth, or majority of the field 

observable stepovers are not bounded by two perfectly parallel faults; another possible 

explanation is the B value of 0.8 used in the above models and other previous studies 

(e.g., Rice and Cleary, 1976; Harris and Day, 1993; Duan and Day, 2010) may be the 

upper limit of the B value to give out a reasonable simulation result. In the extreme case, 

the poroelastic effect through B may not operate in natural earthquakes (i.e., B=0). 

Nevertheless, Wesnousky (2006) noticed that the number of observable dilatational 

stepovers is much larger than that of the compressive stepovers in his data set, i.e., six to 

one (Wesnousky, 2006). We believe this observation suggests that time-dependent pore 

pressure does operate in natural earthquakes. Increased effective normal stresses in a 

dilatational stepover due to reduced pore pressure would make pre-existing secondary 

fractures more difficult to be reactivated, and thus maintain the dilatational stepover, as 

linkage of the two main fault segments by secondary fractures is more difficult. On the 

other hand, decreased effective normal stresses due to increased pore pressure in a 

compressive stepover are effective in removing the compressive stepover by linking 

secondary fractures between the two main fault segments.  
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In addition, we also test some cases in which rupture on the first strike-slip fault to 

be stopped at different velocity in the elastic model. In those cases, we gradually 

increase the value of dynamic friction coefficient toward the end of first fault. By doing 

this, we could decrease the stress drop when propagating rupture approaches the first 

fault end. We find that the Positive Coulomb stress distribution is greatly influenced by 

the suddenness of the rupture being stopped at the first fault end. We use the last 1 km 

slip gradient to quantify the suddenness of rupture stopping at the fault end, as did by 

Elliott et al. (2009) in their field measurements. The general observation is that the area 

of PCS around the first fault end is proportional to the suddenness of rupture stopping. 

Furthermore, the maximum jumpable width of stepover has a strong correlation with the 

suddenness of rupture stopping which is characterized by the slip gradient of last 1 km 

from the fault end. We will discuss this topic in another paper. 
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3.  COSEISMIC SLIP GRADIENT, RUPTURE COLLIDING VELOCITY AND 

RUPTURE JUMP ON PARALLEL STRIKE-SLIP FAULTS 

3.1 Introduction 

The final rupture length in an earthquake occurred on a strike-slip fault has been 

regarded to be proportional to the magnitude of the event (e.g., Scholz, 2002). 

Geometrical discontinuities, such as stepovers, along fault strike act as the main barriers 

for the rupture propagation. Effects of stepovers on rupture propagation have been 

investigated from both field and theoretical points of view (Segall and Pollard, 1980; 

Schwartz and Coppersmith, 1984; Sibson, 1985; Harris et al., 1991; Harris and Day, 

1993a; Wesnousky, 2006; Duan and Oglesby, 2006). Harris and Day (1993) numerically 

simulated the rupture behavior within two parallel strike-slip faults and found that the 

maximum jumpable stepover width is ~5km. The filed measurements from Wesnousky 

(2006) verified the crucial role stepovers play to stop rupture propagation and constrain 

the final rupture length and final earthquake magnitude. Oglesby (2008) first 

numerically explored the relationship between the form of rupture termination and the 

ability of the rupture to jump the stepover in a parallel strike-slip fault system. He points 

out the possible correlation between the slip gradient and the deceleration of the rupture 

front within the last several km of a rupture fault, which would control the rupture’s 

ability to jump. After digitizing many published slip measurements on earthquake faults 

and calculated the slip gradient over the final several kilometers, Elliott et al.(2009) 

suggested a threshold value 20.0 cm/km in the last 1 km of the fault. If the slip decreases 

within the last 1 km at a slip gradient less than 20.0 cm/km, the rupture would have a 
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higher possibility to be stopped by the stepover even with a width less than 1 km. On the 

other hand, if the slip decreases within the last 1 km at a slip gradient larger than 20.0 

cm/km, the opportunity of successfully jumping the stepover will be increased 

significantly. In this paper, we introduce a more complete version of the relationship 

between the slip gradient in the last 1 km and the maximum width of the jumpable 

stepover. In addition, we also examine how the colliding velocity, which is the rupture 

velocity at the end of the first fault in a parallel fault system, affects the slip gradient, 

and thus the jumping ability. 

3.2 Model 

We construct a simple 2D strike-slip faulting model shown in Figure 3.1 We use a 

finite-element computer program EQdyna (Duan and Oglesby, 2006; Duan and Day, 

2008) to perform dynamic rupture simulation in this study. In our model, two left lateral 

strike-slip fault segments with a half length 14 km are embedded in a homogenous 

elastic medium. We primarily perform our calculations under an initial stress field: 

        = -33.3 MPa and          MPa.  In this initial stress field, the maximum 

compressive principal stress makes an angle of 450 with respect to the fault surface. The 

material and computational parameters are listed in Table 3.1. We build two models: 

model A and B. In model A, both faults are having the same friction parameters. In 

model B, we assign a smaller static friction coefficient on the second fault to lower the 

shear strength on it. We employ the convention that negative normal stress value means 

compression. Elliott et al. (2009) found that the slip gradient measured at the last 1 km 

has a notable threshold value 20 cm/km, under which the rupture can’t successfully jump 
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a stepover even less than 1 km in width. In order to generate multiple slip gradients over 

the last 1 km on the first fault,  

 

 

 

 

 

 

 

 

 

 

 

 

 

we linearly increase the dynamic frictional coefficient over the final several kilometers 

of the first fault (Figure 3.2) in order to decrease the dynamic stress drop over that 

distance. In each case, the rupture starts at the middle of the first fault and propagates at 

a fixed velocity within a preset nucleation patch to allow rupture to gain enough energy. 

Outside of the nucleation patch, rupture propagates spontaneously.  We ensure that the 

rupture successfully reaches the end of the first fault and check the slip gradient over 

final 1 km distance. We also ensure different cases produce different slip gradients, and 

 

Figure 3.1 The model geometry, sense of slip and initial stress in our 
calculations. Two parallel left-lateral strike-slip faults are imbedded in a 
homogeneous elastic or elastoplastic medium. Compressional and dilatational 
quadrants around the first fault are labeled by plus (+) and minus (-) signs, 
respectively. 
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those gradients evenly distribute over a range of 0 to 250 cm/km, which is the range of 

slip gradient over final 1 km distance in field measurements (Elliott et al., 2009).  The 

corresponding parameters for each case have been listed in Table 3.2. In each case, we 

perform dynamic rupture simulations to find out the maximum jumpable width in both 

compressive and dilational stepovers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.2 The static friction coefficient and dynamic friction coefficient 
distribution on the primary strike-slip fault. We linearly increase the dynamic 
friction coefficient from a point of several kilometers away from the fault end to 
the fault end. We use two methods for the linear increase: (a) the dynamic 
friction coefficient is fixed at the fault tip and the starting point of the increase is 
variable; (b) the starting point of the increasing is fixed and the dynamic friction 
coefficient at the fault tip is variable.  
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Table 3. 1 Material and computational parameters in model 
 

Parameter Value 

Density 2700 kg/m3 

Vp 6000 m/s 

Vs 3464 m/s 

Initial normal stress:         -33.3 MPa 

Initial shear stress:     20.0 MPa 

Static coefficient of friction 0.75 (model A), 0.70 (model B) 

Original dynamic coefficient of friction 0.35 
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3.3 Results 

We summarize the results of eleven cases of model A in Figure 3.3. It is clear that 

the maximum jumpable stepover widths are proportional to the slip gradient over the last 

1 km of the first fault in both compressive and dilational stepovers: when slip gradient is 

51.0 cm/km, the rupture could not jump over the stepover larger than 500 m, while when 

Table 3. 2  Friction parameter in different cases 
 

Case # Endwidth 

(km) 

Updynamic Slip gradient in 

last 1 km (cm/km) 

Average stress 

drop (MPa) 

1 12.5 0.70 51.0 2.01 

2 10.0 0.70 73.8 3.27 

3 6.5 0.75 93.7 4.86 

4 5.0 0.75 112.0 5.66 

5 5.0 0.70 123.4 5.81 

6 3.5 0.75 136.1 6.47 

7 5.0 0.60 143.6 6.11 

8 2.5 0.75 155.4 7.00 

9 1.25 0.75 186.4 7.67 

10 0.50 0.75 198.9 8.08 

11 0.0 0.75 236.8 10.01 

    

*  Endwidth is defined as the distance away the first fault end to linearly increase 

the dynamic friction coefficient. Updynamic is the maximum value the linear 

increment would reach at the last node on the first fault.  
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slip gradient increases to be 236.8 cm/km, the jumpable width of stepover becomes over 

5000 m. Elliott et al (2009) calculated the coseismic slip gradients over 25 field 

measured faults, and found that the slip gradient in the last 1 km of the first fault should 

be larger than 20 cm/km to be able to renucleate the rupture on the second fault. The x-

axis intercepts in figure 3 are 26.37 cm/km for the dilational stepover and 24.59 cm/km 

for the compressive stepover, respectively, which are roughly comparable to the 20 

cm/km observed by Elliott et al (2009). To understand what physical parameters may 

control the slip gradient near a stepover, we analyze the average stress drop on the first 

fault and the colliding rupture velocity at the end of the first fault. In Figure 3.4, we 

present the relationship between the slip gradient over the last 1 km distance and the 

average stress drop over the entire first fault from the eleven models, and the nearly 

linear relationship indicates a strong correlation between them. In these relatively 

uniform stress drop model (i.e., uniform stress drop along the majority of a fault), the 

average stress drop determines the maximum slip amplitude. Figure 3.5 shows the final 

accumulative slip distributions on the first fault in seven cases with different average 

stress drops. It is obvious that the case with the largest average stress drop 10.01 MPa 

has the greatest maximum accumulative slip; meanwhile, the case with the 2.00 MPa 

average stress drop has the smallest maximum accumulative slip. For faults with a given 

length, large slip amplitudes result in larger slip gradients near the fault ends. The slip 

gradient on a single fault surface has been reported to be the function of the maximum 

slip on a fault and the dimensions of the fault surface in a field study (Walsh and 

Watterson, 1988). The above model results are consistent with this field observation.  



43 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

Gradually decreasing stress drop at the fault end is expected to decelerate a rupture, 

leading to different colliding velocity at the end of the fault. Figure 3.6 shows the rupture 

time along the first fault for the above seven cases with different slip gradients. We find 

that rupture in the cases with smaller slip gradients (e.g., 51.00 cm/km and 74.80 cm/km) 

collides with the first fault end with a subshear velocity, while rupture in the cases with 

larger slip gradients collides with the first fault end with a supershear velocity.  

 

 

 

 

Figure 3.3 The maximum jumpable stepover width versus the slip gradient in 
the final 1 km of the first fault 
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3.4 Coulomb stress analysis on single fault tests 

To understand why slip gradients at a fault end near a stepover dictate the maximum 

jumpable stepover widths, we examine the evolution of the stress field at the fault end 

using single fault tests. In particular, we examine the Coulomb stress variation after the 

rupture collides with the first fault end. The Coulomb stress is defined as       
 
    ; 

where    and    are the shear stress and normal stress resolved on the parallel receiver 

fault, and    is the static frictional coefficient. 

 

 

 

 

Figure 3.4 The Average stress drop in the first fault versus the slip gradient in 
the final 1 km of the first fault 
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Figure 3.6 Rupture time along the fault strike for seven cases with different slip 
gradients (cm/km). Vr , Vs and Vp are the Rayleigh wave velocity, Shear wave 
velocity and the pressure wave velocity respectively.  

 

Figure 3.5 The final accumulative slip of cases with different slip gradient in 
the last 1 km. The cases we choose to display here are the same as the cases 
in figure 3.6 
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We choose three cases with slip gradients of 50.0 cm/km, 155.4cm/km and 

236.8cm/km to perform the Coulomb stress history analysis, which represent different 

average rupture velocities in Figure 3.7.  

 

 

 

 

 

 

 

 

 

 
Figure 3.7 The average rupture velocity on the first fault versus the slip gradient in 
the final 1 km of the first fault. Here we define the average velocity as the result of 
the half fault length (14.0 km) divided by the time rupture needs to reach the fault 
end. 
 
 

 
In the case with slip gradient of 50.0 cm/km, the rupture needs 5.375 S to propagate 

from the center to the tip of the first fault with an average velocity of 2.605 km/s, which 

is much smaller than the S-wave velocity in our model. Here we define the average 

velocity as the result of the half fault length (14.0 km) divided by the time rupture needs 

to reach the fault end. In Figure 3.8, we show the Positive Coulomb stress history around 

the first fault from 5 S to 14 S. After the rupture reaches the first fault end at 5.37 S, a 
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small patch of positive Coulomb stress can  be observed, and in the following several 

seconds the size of this positive Coulombs stress is in limited growth at the end of first 

fault, which directly constrains the maximum width of jumpable stepover. At this slip 

gradient, the corresponding rupture velocity is below S-wave velocity in the model, and 

the low velocity also suggests the low dynamic stress drop during fault sliding.   

 

 

 

 

 

 

 

 

 

Figure 3.8 The history of positive coulomb stress distribution on the first fault end 
in the case of slip gradient 50 cm/km at first fault end in the single fault test. 
 
 

In the case with slip gradient of 155.4 cm/km (Figure 3.9), we use a relatively larger 

average stress drop (Figure 3.4) than the above case to generate this slip gradient over 

the final 1 km. Correspondingly, the average rupture velocity increases to the S-wave 

velocity in our model. The Coulombs stress analysis indicates that, due to the relatively 

larger rupture velocity, the positive coulomb stress has been intensified at the end of the 

first fault, and the positive coulombs tress appears at 4.0 S. During the following times, 
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the positive coulomb stress keeps growing. At 5.0 S, a crescent shape splits away from 

the fault end and propagates into the compressive quadrant of the first fault. This 

crescent-shape positive coulomb stress remains in the following 2 seconds and 

disappears before 8 seconds, which constrains the largest jumpable width of parallel 

compressive stepovers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case with slip gradient of 236.8 cm/km (Figure 3.10), the rupture has an even 

larger average rupture velocity, and arrives at the first fault end earlier than the previous 

two cases. The corresponding positive Coulomb stress has a larger extent around the first 

 

Figure 3.9 The history of positive coulomb stress distribution on the first fault 
end in the case of slip gradient 155.4 cm/km at first fault end in the single fault 
test. 
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fault end, and the split crescent positive coulomb stress has a bigger size, stronger 

intensification and longer lasting time.  

 

 

 

 

 

 

 

 

Figure 3.10 The history of positive coulomb stress distribution on the first fault end 
in the case of slip gradient 236.8 cm/km at first fault end in the single fault test. 
 

 

3.5 Discussion 

 How rapidly the rupture stops at the fault end could determine the existence and 

intensity of the stopping phase which has been regarded as the key factor to radiate 

seismic energy (Bernard and Madariaga, 1984; Spudich and Frazer, 1984). The radiated 

seismic energy can be the important parameter to trigger the rupture on nearby faults 

(Oglesby, 2008). In Oglesby’s research (2008), for the initial stress of the model, the 

shear stress has been linearly decreased to 0 MPa at the last several kilometers (e.g., 0.1-

2.5 km) of the first fault and the shear strength remains unchanged. Under that initial 

stress, the rupture decelerates just before colliding with the fault end. In our model, we 

choose the method of linearly increasing the dynamic friction coefficient at the last 
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several kilometers of the fault. The rupture starts to decelerate roughly at the 7.0 km 

away from the fault end, and our method successfully generates multiple scenarios of 

rupture colliding with the fault end with different velocities. The sudden stop (or rapid 

deceleration) and gradual deceleration of rupture have totally different efficiencies in 

generating stopping phase (Oglesby, 2008). Here we find that even in cases with sudden 

stop only at the fault end, the larger colliding velocity (super-shear) and the smaller 

colliding velocity (sub-shear) also have obvious differences in seismic radiations around 

the fault end. Notice that the case with slip gradient of 236 cm/km is a homogeneous 

dynamic friction case, so we can compare other cases with this case in examining effects 

of rupture deceleration. We find that the colliding velocity at a fault end can significantly 

affect the jumping behavior in a stepover fault system. If the rupture collides with the 

first fault end at a supershear velocity (Figure 3.6), the intensity of the stopping phase 

will be increased greatly, which results in the generation of the split crescent positive 

Coulomb stress (Figure 3.8-3.10) in the compressive quadrant and a large positive 

Coulomb stress lobe in the dilational quadrant. Furthermore, the size and intensity of 

those positive Coulomb stresses are proportional to the colliding velocity and 

corresponding average stress drop.  

In addition, Elliott et al (2009) noted a threshold value in slip gradient constraining 

the rupture’s jumping ability. Our modeling results suggest a linear relationship between 

the slip gradient and the maximum stepover width that can be jumped. Figure 3.11 is the 

summary of the results from field measurements, the vertical red dash line is the 

threshold value proposed by Elliott et. al. (2009), and the blue dash line is the linear 
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relationship from our model. It is obvious that the linear relationship we propose does 

not outline the boundary of dividing the jumpable and unjumpable stopovers found by 

Elliott et al. (2009). Many reasons can contribute to this difference. The first one would 

be the simplifications in our model. In both faults, we assign the same initial stresses and 

the same friction coefficients, which may not be the case in real earthquake faults. Our 

preliminary simulation in model B with a lower static friction coefficient (    0.7 )  

indicates that a lower initial shear strength would increase the rupture’s jumping ability 

on it in the model with the same slip gradient on the first fault. In figure 3.11, we could 

observe that the line from model B has a larger slop compared with the line in case A, 

which means that the linear relationship we find only exists under a specific set of model 

configuration. Second cause would be the fault length. In our model, we fix the half 

length of the strike-slip fault to be 14 km, which is approximately the seismogenic depth 

for many strike-slip faults (Ruth and Day, 1993). Meanwhile, in Elliott’s research, the 

measured length of fault trace could vary from 2~3 km to more than 40 km. We know 

under the same stress drop, the smaller ruptured fault length would give out a smaller 

slip gradient near the tip, but the seismic rupture on them may have the same jumping 

ability to stepovers. As we know a longer ruptured fault length indicates a larger 

propagation time of the rupture, which can generate a larger slip gradient.   
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Figure 3.11 Comparison of the dividing line from filed measurements by Elliott 
et al. and the lines generated by the models. The red dashed line represents the 
possible dividing line proposed by Elliott et al., (2009). The green dashed line 
and blue dashed line are the linear relationships between the slip gradient and 
the maximum width of stepover jumped by the rupture in mode A and B, 
respectively.  
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4. MULTI-CYCLE DYNAMICS OF THE AKSAY BEND ALONG THE ALTYN 

TAGH FAULT IN NORTHWEST CHINA 

4.1 Introduction 

 Fault geometry could greatly affect the earthquake rupturing process, especially the 

geometrical irregularities, such as: stepover, bend and branching. Harris and Day (1993) 

numerically examined the effect of stepover imposing on the fault system with two 

parallel strike-slip faults. Duan and Day (2008) tested the effect of a fault kink (sudden 

strike change) within a model with off-fault inelastic deformation. The rupture dynamics 

of branched fault geometry have also been discussed, either with no material contrast 

(e.g., Aochi et al., 2000; Oglesby et al., 2003; Duan and Oglesby, 2007) or with material 

constrast (DeDontney et al., 2011). Oglesby (2008) pointed out the correlation between 

rupture stop suddenness and the maximum jumpable stepover width. In the field research 

of the geometrical irregularities, Wesnousky (2006) measured 22 historical strike-slip 

earthquakes with length ranging 10 to 420 km and found that nearly two thirds of the 

measured stepovers with 3-4 km width or lager functioned as the barrier to the 

propagating rupture. Elliott et al. (2009) measured the slip gradient at the final several 

kilometers on faults and proposed the possible relationship between the slip gradients 

and the ability of rupture to jump the geometrical stepover at the fault end. In addition, 

earthquakes usually keeps occurring on large faults, for example, the San Andreas Fault 

in California, and Longmen Shan fault in Sichuan, China.  The repeat of earthquake on 

the same fault would greatly vary the stress condition on the fault, in particular at 

geometrical irregularities, and thus affect the seismic rupturing process. Sagy et 
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al.(2007), employed new laser-based methods to measure exposed fault surface ranging 

from 10 um to 120m, and provided a first-hand measurement of the variation of fault 

surface roughness with increasing accumulative slip or repetitive earthquake rupture 

events. Chester et al.,(1993) have noted the microstructure leading a low frictional 

strength of San Andreas Fault could be the result of repeated rupturing event and fault 

maturing process. Duan and Oglesby (2006, 2007) modeled the rupture behavior within 

the parallel strike-slip faults and branched fault system under a heterogeneous fault 

stress from prior earthquakes.  

Previous rupture dynamic research is usually carried out on the simplified and 

regular fault geometry. The roughly 200 km long Aksay bend is a restraining double-

bend and stepover within the active left-lateral Altyn Tagh fault in northwest China 

outlining the northern boundary of Tibet Plateau (Figure 4.1). In this study, we use a 

multicycle earthquake simulator developed by Duan and Oglesby (2006) to explore how 

the complex fault geometry would affect the stress accumulation and relaxation within 

the Aksay double-bend and how the stress heterogeneity would constrain the rupture 

interaction within the Aksay double-bend.  

 

4.2 Method 

The viscoelastic model proposed by Duan and Oglesby (2005) has been employed to 

simulate the interseismic loading period. A finite element code (EQdyna) developed by 

Duan and Oglesby (2006) is used to simulate the seismic rupturing process. I discuss 

each of them in this section. 
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Figure 4.1 Topographic map of the Aksay bend and its location on the Atlyn Tagh 
fault. NATF and SATF are northern and southern strands, respectively. The black 
arrows represent the loading direction on both sides of the ATF, and the three 
yellow stars are the locations where the paleoseismic trenches have been 
investigated by our collaborators.  
 

 
4.2.1 Linear viscoelastic model for the interseismic period 

The interseismic loading process has been represented by a Maxwell viscoelastic 

model. The stress loading and relaxation process on the fault are corresponding to the 

spring elastic loading and the dashpot viscous relaxation in the conceptualized Maxwell 

viscoelastic model. We allow the system to adjust the shear and normal stresses on a 

fault segment at time   in the interseismic period according to the equations proposed by 

Duan and Oglesby (2005):  

                              
           

 

 
                                                  (4.1) 

                              
           

 

 
                                                     (4.2) 
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where   is the shear modulus,   is the viscosity,    and    are strain rates resolved 

onto the normal and shear directions of the fault plane.  

 

4.2.2 Conceptual understanding on the viscoelastic loading in the interseismic period 

In order to understand the features of the viscoelastic model of interseismic loading, 

we use the Mohr circle analysis to analyze the elastic effect of increment on both shear 

stress and normal stress with different angles between the strike and the pure-shear 

loading direction. As the relaxed amounts on both normal and shear stresses are just 

limited portions of the elastic loadings within the loading time of several hundred years. 

The variation of the strike in ATF system ranges from 00 to nearly 450 with respect to the 

loading direction. In elasticity, strain and stress are interchangeable by using Hook’s 

law, so we could discuss it in the stress domain. Figure 4.2 is the Mohr circle 

representation of the pure shear environment. We use the convention that the 

compressive stress is the positive value and the dilatational stress is the negative value. 

The x and y axes are normal and shear axes respectively. Then the loading direction is 

along the y-axis (shear stress axis). We define   as the angle between the loading 

direction and the strike direction in reality (we assume the strike has the same positive 

direction as the loading), and then the angle    is the angle measured clockwise from the 

loading axis to the strike axis in Mohr circle. In this conceptual model, we assume the 

initial normal and shear stresses are zero, then we load the system under different   

value. It is obvious that when   = 00, which means the strike direction is parallel to the 

loading direction, the loading only works on the shear direction and no effect on the 
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normal direction. In Figure 4.3, when    = 900, which means the strike direction is 450 

with respect to the loading direction in reality, only the normal direction will be loaded. 

When    = 450 the loading will impose equal amount of increments on both the normal 

and shear directions. When           there is more amount of loading on the shear 

direction than the normal direction. When            more normal direction 

loading will be imposed compared with shear direction. Meanwhile, the viscous effect is 

also closely related with   due to the equations:               and              . 

Because the strain rate    is constant in one certain case, the   has a nonlinear 

relationship with the stress relaxation on both the normal and shear stresses. Therefore, 

the two competing factors: elastic loading and viscous relaxation make the final 

viscoelastic effect on normal and shear stresses to have a non-linear relationship with , 

which enriches the heterogeneity. We think the variation of   along strike is the main 

cause to the final stress heterogeneity on both strands of ATF after the first interseismic 

loading and in the following cycles.   
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Figure 4.2 The conceptual model and the corresponding Mohr circle. In the 
conceptual model, we assume the original normal and shear stresses are zero.  
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Figure 4.3 Analysis of the effect on stresses of the angle between the loading 
direction and the strike. 
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4.2.3 The model geometry 

The surface trace of Aksay double-bend in Altyn Tagh fault system has been 

measured by our collaborators at UC Davis. 29 and 17 controlling points have been 

measured along SATF and NATF respectively, from geological maps. We use the 

limited controlling points to generate complete fault geometry by employing the natural 

cubic spline interpolation method. We assume the lithostatic stress in the model to be 

50.0 MPa, which is corresponding to the depth of 3.0 km if the local lithostatic gradient 

is 25.0 MPa/km. It is assumed that the fault should have a smoother fault surface at the 

depth of 3.0 km than near the earth surface. So the interpolated fault trace was 

 

Figure 4.4  (a) the interpolated fault geometry of the Aksay bend based on the 
measured controlling points and the corresponding curvatures on both strands. 
(b) the smoothed version of the fault geometry in (a) and their corresponding 
curvatures on both strands. 
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smoothened (Figure 4.4(a)) to have a more even fault geometry (Figure 4.4(b)). The 

amount of smoothening operation has been quantitatively shown by using the concept of 

curvature, and the segment of NATF inside of the double-bend has been more strongly 

smoothened compared with the corresponding segment in SATF. We put the 

smoothening mainly on the bend part of NATF, because it has larger curvature values 

compared with other segments of NATF and SATF and those relatively small “bumps” 

(1-5 km) in curvature along fault strike would results in multiple locations of nucleation 

in our simulations, which is rarely observed in natural earthquakes.  

4.2.4 Multi-cycle simulation process 

A complete earthquake cycle consists of the interseismic loading process and the 

seismic rupturing process in our multi-cycle model. We have two separate components 

in our code to simulate the two processes. A homogenous initial stress outside of the 

nucleation patch has been assigned to the two fault strands before the first interseismic 

loading process starts. Then the interseismic loading follows the linear viscoelastic 

model according to equations (4.1) and (4.2). A presetting nucleation patch, within 

which a pre-existing initial shear stress (10 MPa) has been assigned, experiences the 

visoelastic loading too. We choose a nucleation patch size       somewhat larger than 

the critical value    which is able to sustain the dynamic instability (Palmer and Rice, 

1973):    
  

  

   

       
 
 , Where   is the shear modulus,   is the fracture energy, and the 

assumed Poisson’s ratio is 0.25,     and    are the static and dynamic friction 

coefficients respectively. When there is one node reaching the shear failure criterion, the 

interseismic loading is terminated and then a presetting 2.0 MPa would be added to the 
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shear stress on the nodes within the presetting nucleation patch. The shear and normal 

stresses at this moment are used as the initial stresses for following the dynamic 

rupturing simulation. After the completion of dynamic rupturing process, the frictional 

coefficient is reset to the static value and the first-cycle is finished. Then the second-

cycle interseismic loading process starts by utilizing the residual stresses of dynamic 

rupturing in the first cycle, which is followed by the second-cycle dynamic rupturing 

process. Between each cycle, we neglect the geometry evolution, which means that we 

keep using the same mesh to implement dynamic rupture simulation in each cycle. Due 

to the relatively short time length of the simulation (< 1,500 years), the fault geometry 

has been assumed that no obvious change occurred. 

4.2.5 Slip-and-rate weakening friction in dynamic simulation 

We combine a slip weakening law (e.g., Ida, 1972) and a rate weakening law ( 

Cochard and Madariaga, 1994; Shaw, 1995; Nielsen et al., 2000) as the main friction law 

in our model for dynamic rupture simulations.  

                   

 
 
 

 
           

  
  
                                                      

                                                                                

                      
   

  
                      

               (4.3) 

where    and    are static and dynamic friction coefficients,          is the 

restrengthened friction coefficient after the sliding stops.    and    are critical slip 

distance and critical velocity, respectively. In this friction law, before the slip reaches the 

presetting critical distance, the friction follows slip weakening law. After the slip 

distance is larger than the critical distance and the slip rate falls below the critical 
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velocity, the friction follows the rate weakening law. By using this friction law, we could 

incorporate the frictional healing process, which has been widely observed in seismic 

inversions and rock deformation experiments.  

 

Table 4. 1  Model parameters 

Parameter value 

Loading rate 1.8         

Equilibrium (ambient) stress 50.0 MPa 

Initial normal stress 50.0 MPa 

Initial shear stress 0 MPa 

Viscosity                      Pa S 

Shear modulus          Pa 

Possion’s ratio 0.25 

Density 2670 km/m3 

Static frictional coefficient 0.6 

Dynamic frictional coefficient 0.5 

Critical slip weakening distance Do 0.2 m 

Fault element size 200 m 

Critical nucleation length 2.0 km 
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4.3 Results 

In this section, we will first report the case of the preferred model, in which we will 

introduce the evolution of normal stress and shear stress, the event patterns over multi-

cycle earthquake simulations, and the statistic analysis of the effectiveness of the Aksay 

double-bend in stopping or trapping the earthquake ruptures. Then, we report results of 

models with variations in model parameters, particularly in viscosity.  

4.3.1 Results of the preferred model 

We have several criteria used to choose our preferred model. First, the value of 

maximum slip should be smaller than 10 meters. There are many existing filed 

measurements of the surface slips and inversed slip distributions of certain earthquakes 

at depth, which could lend supports to the constraint of maximum 10 meters we set up 

on the simulation results. The field measurement of the seismic slip on earth surface in 

Wenchuan earthquake occurred in China, 2008 (Xu et. al., 2009), indicates that the total 

slips on the fault are less than 7.5 meters. In the 1992 Landers earthquake, the surface 

slip was variable averaging 2 to 3 meters over much of the rupture ( Ponti, 1993; Sieh et 

al., 1993) . Two clear peaks in the slip distribution were observed, a southern peak on 

the northern part of the Johnson Valley fault and a broader northern peak on the 

Emerson and southern Camp Rock faults. Peak surface displacements of 6 meters were 

measured along the Emerson fault. (e.g., kanamori et al, 1992). Therefore, the common 

seismic slip expression on earth surface is roughly 2~7 meters. In our simulations, we set 

the lithostatic pressure in our model to be 50.0 MPa, which is corresponding to the depth 

of 2-3 km if we assume the local lithostatic gradient is 22-26 MPa/km. Therefore, we 
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could expect a somewhat larger maximum seismic slip than 2~7 meters. So we choose 

10 meters as the upper limit in our simulations. Second, we set a constraint on the 

maximum seismic stress drop.  The typical stress drop determined empirically from 

inversion of the radiated seismic waves are typically in the range 0.3 ~ 50 MPa with the 

median stress drop of 4.0 MPa (e.g., Allmann and Shearer., 2009 ).  In our simulations, 

we make the stress drop in our model be no more than 5 MPa, which is within the 

empirical range and corresponding to the maximum slip we set up for the model.  

4.3.1.1 Stress evolution and event pattern 

In the preferred model, we use the parameters listed in table 4.1 and the viscosity is 

1.8       Pa S. Figure 4.5 shows the stress evolution during the interseismic loading of 

the first interseismic period. It is the stress evolution from a homogenous preset initial 

stresses to a heterogeneous stress distribution just before the first seismic rupturing event 

occurs. It has the largest stress variation and forms the basic pattern for the following 

stresses evolution. In this first cycle, we have a limited size of preset nucleation patch 

roughly in the middle of the planer segment on SATF, which is the spike of initial shear 

stress before the first cycle loading. With the increment of loading time, the stress 

becomes strongly heterogeneous due to different angles between the strike direction and 

loading direction along the fault strike. Several features could be observed: firstly, both 

the shear stress and normal stress have been increased except the normal stress on the 

segment parallel to the loading and shear stress on the segment having 450 with respect 

to loading. On SATF, the positions at roughly 250 km and 350 km have large difference 

between the shear strength and the corresponding shear stress, which make it hard for 
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rupture to nucleate at or propagate through the two positions. On NATF, the segments 

with larger strike variations experience stronger stress heterogeneities after the loading.  

The angle between the strike and the loading direction could give a good explanation 

to the above stress features in the loading of first earthquake cycle. In Figure 4.5 (a), at 

the starting moment, we assume there is only the 50.0 MPa lithostatic stress on the fault 

surface and no shear stress exists on it. We choose three points on the SATF to check the 

stress evolution, and they have the angles of 00, 22.50 and 450 with respect to the loading 

direction (Figure 4.6). At point a, due to the roughly parallel between the strike and 

loading direction, so only shear stress has been loaded and the shear strength keeps 

unchanged. At point b, the angle between the strike and the loading direction is about 

22.50, the loading system would impose roughly equal amount increment on both the 

shear direction and the normal direction, which make the stress difference between the 

shear stress and shear strength almost unchanged compared with the starting moment, 

which make this segment become “locked”. At point c, the angle becomes nearly 450, 

which means that only the normal direction would be loaded and no shear stress 

increment.   

Figure 4.7 (a) illustrates the stresses at the starting moment of the coseismic rupture 

from event # 1- #10 on both SATF and NATF with a viscosity of               in 

interseismic loading. The predominant feature is the three segments favoring rupture 

initiation. Two segments are on the SATF, which are the relatively parallel to the 

loading direction. One segment is on the NATF. Those three segments have strikes 

roughly parallel to the loading, so they are rupturing-favored segments. Another feature 
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Figure 4.5 The evolution of shear stress and shear strength on the SATF (a) and 
NATF (b) during the intersesimic process in the 1st event. The dash line is the shear 
strength and the solid line is the shear stress. The number inside is the interseismic 
loading time (years).  

 

 

 
 
 



68 

 

is the alternative rupturing among the three favored segments in Figure 4.7 (b). The left 

planar segment in SATF is ruptured firstly due to the preset shear stress touches the 

strength within the nucleation patch. At the same time, the other two segments still need 

loading to reach failure. After the second cycle interseismic loading, one point in the 

planar segment of the NATF firstly fails then nucleates and rupture propagates 

bilaterally along the strike. After 14 seconds the right segment on the SATF is ruptured 

too. In the third cycle, only the left planar segment on the SATF ruptures again, which 

allows the rest two planar segments to regain the stresses to nucleate. In the fourth cycle, 

the rupturing repeats as the rupturing in the second cycle. In the following cycles # 5, 6 

and 7, the rupturing sequentially occurs on the left planar segment of SATF, right planar 

segment and the planar segment on the NATF. Then cycle # 8, 9 and 10 repeat the 

rupturing cycle from # 5 to 7 (Figure 4.7(b)). Due to the slip and rate weakening law, the 

residual shear stress becomes oscillatory after the seismic rupturing process, which is a 

feature of friction laws that involve rate dependence.   

Figure 4.8 is the complete representation of the coseismic slip of the one hundred 

earthquake cycles.  Eight repeated event patterns could be observed: 1. Slip only occurs 

on the planar segment outside of the double-bend on SATF, which takes up to 34% of all 

events; 2. Slip only occurs on the planar segment outside of the double-bend on NATF, 

which accounts for 12% of the total; 3. Slip occurs on both the planar segment outside of 

the double-bend on NATF and the planar segment within the double-bend on SATF, 

which accounts for 20% of the total; 4. Slip occurs on both the planar segment outside of 

the double-bend on SATF and the segment within the double-bend on NATF, which 
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takes only 2%; 5. Slip occurs on the entire SATF except the locked segment, which takes 

3%; 6. Slip only occurs on the planar segment of the SATF within the double-bend, 

which takes 15%; 7. Slip occurs on the entire “unlocked segment” of the SATF and the 

planar segment on NATF outside of the double-bend, which takes 6%; 8. Slip occurring 

on both strands outside and within the double-bend takes 2% of all of the events.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4.6  (a) the interpolated fault trace; (b) the acute angle between the strike 
and the loading direction. 
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Figure 4.7  (a) The initial stresses of coseismic process in event #1~ 10 on both 
SATF and NATF; (b) Rupture history of the first ten events. 
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Figure 4.8 The slip distributions on the two strands of ATF in the one hundred 
simulated cycles. 
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Figure 4.8 Continued 

 

4.3.1.2 The representative events 

We analyze representative events in the results of one hundred earthquake cycles in 

this section. We will examine the stress evolution, the accumulative slip, the slip rate 

evolutions and the rupturing history. Meanwhile, we will choose the cases with complex 

rupturing processes to discuss the possible scenarios of rupture jumping within this 

geometrically complex fault system.  
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One important output of our simulations is to provide possible rupturing scenarios 

within this geometrical complex fault system, which is unable to be pinpointed by field 

observations. We choose the event # 1, 5, 9, 15, 21, 22, 25, 88 as the representative 

events for the following discussion.  

      In figure 4.9, we summarize the initial stresses, final slips and the rupturing histories 

of those representative events. So the first rupturing scenario is that only the planar 

segment on the SATF ruptures just likes in the event # 1. In event # 1, we choose the 

center of the planar segment as the nucleation point, which could be observed at the 

initial stress. After propagating closely to the double-bend, it has been stopped and could 

no longer go into the double-bend. In event # 5, the planar segment on the NATF first 

nucleates, then propagates and dies at the entrance of the double-bend after propagating 

25.0 second. In event # 9, nucleation occurs on the planar segment of the SATF within 

the double-bend, and fails to propagate out of the double-bend. In the above three 

scenarios, the double-bend successfully functions to either stop or trap the propagating 

rupture. In event # 15, the rupture nucleating on the planar segment of SATF propagates 

to the entrance of the double-bend. Due to the high angle between the strike and the 

loading direction, a certain part has been “locked”, which means the yield stress is much 

higher than the shear stress. After 30 seconds reaching the double-bend, the rupture 

jumps over the “locked segment” and rejuvenates itself on the relatively planar segment 

within the double-bend. Here we think the double-bend prevent the rupture from 

jumping across the stepover and onto the NATF, even though it allows the rupture to 

enter the double-bend. In event # 21, the rupture nucleates at the point close to the 
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NATF right end; then propagates towards the double-bend. After being obstructed by the 

double-bend, the rupture jumps over the stepover and continues onto rupture the planar 

segment of SATF within the double-bend. However, the triggered rupture is unable to 

escape the double-bend and dies within it. In the event # 22, the rupture first nucleates 

roughly at the center of the planar segment of SATF, then being stopped by the double-

bend. Several seconds after the rupture’s nucleation on SATF, a small rupture is 

triggered on the left end of NATF, which is within the double-bend, but fails to grow up. 

After 20 seconds, the rupture continues to grow till being trapped by the double-bend 

again. Even though the rupture jumps over the stepover onto the other segment within 

the double-bend in both events # 21 and 22, it fails to jump out the double-bend. So we 

consider the double-bend successfully stops the rupture. In event # 25, nucleation occurs 

at the point close to the right end of NATF. After roughly 50 seconds, the two planar 

segments of SATF within and outside of the double-bend are ruptured consecutively, 

except the locked segment.  In this scenario, we think the double-bend is only partially 

successful in stopping the rupture due to the failure to trap the triggered rupture within 

the double-bend on SATF. In event # 88, the rupture first nucleates at the point close to 

the left side end of SATF and propagates into the double-bend. Then the rupture jumps 

the stepover and triggers a rupture on the segment of NATF within the double-bend. As 

the moment of death of the triggered rupture on NATF within the double-bend is about 

to die, the planar segment of SATF within the double-bend is triggered and the rupture 

propagates bilaterally on that segment. Finally, the planar segment of NATF outside of 

the double-bend is triggered and the rupture mainly propagates away from the double 
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end to the fault right end.  In this scenario, the double-bend has been jumped by the 

rupture and allows the rupture to propagate out. We consider the double-bend 

completely fails to serve as a barrier to the propagating rupture in this scenario. To sum 

up, the eight scenarios of rupturing are the possible stories, which could occur with the 

given fault geometry and the loading direction in our preferred model.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 The initial stresses of the coseismic process on both strands, and the 
final slip distribution and the rupture time history on the representative events.  
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4.3.1.3 Statistic analysis of the barrier effect of the Aksay double-bend 

One of the important goals of this research is to explore the effectiveness of the 

Aksay double-bend in stopping the seismic rupture within this complex fault geometry, 

which is hard to achieve by field observations. As we describe above, all the observed 

rupturing scenarios have been categorized into three groups: “completely stopped” by 

the double-bend, “partially stopped” by the double-bend and “not being stopped” by the 

double-bend. As shown in Figure 4.10, in our preferred model, 90% of the simulated 

events have been completely obstructed by the Aksay double-bend. Only 7% of the 

rupture has to be partially stopped by the double-bend. The rupture has 3% possibility to 

successfully propagate through the double-bend. So we conclude that the Aksay double-

bend acts as an effective barrier to seismic ruptures either propagating towards the 

double-bend from outside of it or nucleating within it. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 The statistic analysis of the Aksay bend’s ability to work as a barrier for 
seismic ruptures. 
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4.3.2 The variation of the viscosity in the interseismic loading  

The viscosity of the interseismic loading process in our model characterizes the 

effect of off-fault permanent deformation on the fault system ( Duan and Oglesby, 

2005,2006 ). The smaller value of viscosity means more significant off-fault permanent 

deformation, thus stronger effects on the fault stress. In order to test the effect of 

viscosity variations on the rupture behavior and the ability of double-bend to stop the 

rupture, we perform a group of simulations in cases with different viscosities. In the 

following section, we present these simulation results.  

 Figure 4.11 is the result of final slip of the one hundred earthquake cycles 

simulation with the viscosity value of               , and all other parameters remain 

the same as in the preferred model. We also choose the representative events as we did 

in the previous case. In Figure 4.12 are the ten events, whose rupturing processes are 

typical and could represent all possible rupturing scenarios occurring within the one 

hundred earthquake cycles’ simulation. The representative event numbers are: 4, 9, 11, 

13, 15, 17, 18, 22, 29 and 80.  

In event # 4, only the planar segment on the SATF is ruptured and then stopped by 

the double-bend. This kind of scenario is the most frequent one in the one hundred 

cycles, which accounts for 25% of the total events. As before, this rupturing scenario is 

defined as “completely stopped” by the double-bend. In event # 9, the rupture nucleates 

at a point close to the right end of NATF, and then the rupture propagates towards the 

double-bend. After being impeded by the double-bend, a triggered rupture on the SATF 

within the bend continues propagation and dies within the bend. But the rupture regains 
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nucleation on the segment of NATF within the double-bend and successfully reaches the 

right end of NATF. We call this rupturing scenario as “partially stopped” by the double-

bend. Because the double-bend allows the rupture to rupture the entire NATF except 

some “locked” parts.  In event # 11, the rupture first nucleates nearing the east end, and 

then it is stopped by the double-bend. After the rupture dies within the double-bend, the 

small planar segment of SATF within the double-bend is ruptured too. In this scenario, 

the double-bend successfully traps the triggered rupture on SATF within the bend. In 

event # 13, a “completely ruptured” case, the rupture first nucleates at the planar 

segment of NATF, outside of the double-bend. Then the planar segment of SATF within 

the double-bend is triggered, but fails to propagate out of the double-bend. Finally, the 

rupture consecutively propagates onto the segment of NATF within the double-bend and 

the planar segment of SATF outside. This rupturing scenario is one of the two in which 

we define as the “completely ruptured”. In event # 15, the rupture first nucleates roughly 

at the center of the planar segment outside of the double-bend on SATF, and then a 

triggered rupture initiates on the segment of NATF within the double-bend. However, 

both of ruptures are stopped or trapped by the double-bend. In event #17, the rupture 

nucleates outside of the double-bend on the NATF and propagates bilaterally along the 

segment, but is completely stopped by the double-bend on west and the fault end. In 

event # 18, the rupture nucleates on the SATF within the bend and dies within the bend 

after roughly 10 seconds after the nucleation. This is another scenario in which the 

double-bend completely traps or stops the nucleated rupture.  In event # 22, a completely 

ruptured event, the rupture first nucleates on the planar segment of SATF outside of the 
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double-bend, and then the west segment of NATF within the bend is ruptured, then the 

segment of SATF within the bend and finally the planar segment of NATF outside of 

double-bend.  Event # 29 and 88 are two scenarios that the double-bend partially stops 

the seismic rupture. In both events, the rupture first nucleates on the planar segment of 

SATF outside of the double-bend, and then the west segment of NATF within the 

double-bend is ruptured. After that, in event # 29, the rupture chooses to continue on the 

planar segment of NATF; but in event # 88 the rupture jumps back to the segment of 

SATF within the double-bend.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 The slip distributions on the two strands of ATF in the one hundred  
simulated cycles in case with viscosity:            . 
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We also performed the simulations of one hundred earthquake cycles in cases with 

viscosities of                and                 respectively. There was no 

exceptional rupturing scenario existing in the two cases. Therefore, we do not discuss 

them in details.  

 

Figure 4.12 The initial stresses of the coseismic process on both of strands, the 
final slip distribution and the rupture time history on the representative events. 
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4.4 Discussion 

4.4.1 The statistic analyses of the barrier effect of the double-bend 

Geometrical bend and discontinuity have been regarded as the main two geometrical 

features to stop the seismic rupture. Several field researches have proven the 

effectiveness of the stepover or discontinuity in stopping the seismic rupture.  

Multi-cycle simulations give us an opportunity to statistically analyze the barrier 

effect of the double-bend. In order to effectively categorize those results, we define three 

terminologies to describe the effectiveness of the double-bend in stopping the seismic 

rupture.  We term the following scenarios as the group of “completely stop”:  First, the 

rupture nucleating outside of the bend has been stopped by the bend or the rupture 

nucleating inside and then is trapped within the bend. Second, if the rupture nucleates 

outside of the double-bend and triggers the rupture on the other strand of ATF within the 

double-bend, but the triggered rupture fails to escape the entrapment of the double-bend. 

Third, if one strand was entirely ruptured, but the rupture could not jump the stepover 

between NATF and SATF.  We term the following rupturing scenarios as the group of 

“partially stop”:  the rupture nucleated at one strand outside of the bend and propagated 

into the bend, then triggered a rupture on the other strand and continued itself even 

outside of the bend. When the double-bend is not able to prevent the rupture from 

jumping the stepover and rupturing the two strands excepting the “locked segments” on 

both strands of ATF, we term those rupturing scenarios as the group of “fails to stop”.  
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Figure 4.13 The statistic analysis of  the Aksay bend’s ability to stop the seismic 
rupture. (a) case with viscosity:            ; (b) case with viscosity:     
       ; (c) case with viscosity:            ; (d) case with viscosity: 
           . 
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Figure 4.10 is the statistic analysis of the case with viscosity =               . It 

shows that 90% of the simulated events have been completely stopped by the double-

bend. Only 3% of the simulated events have the chance to propagate into the double-

bend, jump the stepover and finally escape out of the double-bend, which resulting in the 

failure of the double-bend to stop the rupture. In addition, 7% of the simulated events 

could only partially be stopped by the double-bend. Therefore, we conclude that the 

double-bend is an effective barrier to stop the seismic rupture.  

Furthermore, we have done the same analysis on other cases with different 

viscosities in the interseismic loading process to test the consistency of double-bend in 

stopping the rupture under different controlling parameters.  Figure 4.13 gives out the 

comparison of the results of the statistic analysis. We find that with the increment of 

viscosities, the capacity of the double-bend in completely stopping the seismic rupture 

has been weakened: from 90% in case with viscosity of          Pa S to only 78 % in 

case with viscosity of          Pa S. As we discussed previously, the value of 

viscosity represents the extent of the off-fault deformation. Therefore, our results 

indicate that the decreased off-fault deformation would weaken the double-bend’s ability 

in completely stopping the seismic rupture.  
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4.4.2 The accumulative slips and nucleation positions in cases with different viscosities 

Other features worth discussing are the final accumulative slips and the distribution 

of nucleation within the one hundred earthquake cycles. We summarize the 

accumulative slips on both fault strands after the one hundred earthquake cycles. In 

figure 4.14, we observe that the final slip amount is smaller within the double-bend than 

 

Figure 4.14 The accumulative slips of the four cases with different viscosity on 
both strands of ATF. 
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the slip on the segments outside of the double-bend. This could be explained by the 

geomorphic features inside and outside the double bend: inside of the double bend there 

are huge snow mountains indicating larger off-fault deformations compared with the part 

outside of the double bend. In addition, this can also be explained by the statistic 

analysis on the representative event scenarios. In many events, the rupture nucleates at 

the segment outside of the double-bend and then propagates bilaterally with respect to 

the nucleation. One side would be stopped by the fault end, and the other side would 

propagates into the double-bend and dies within it. The double-bend depresses the 

development of rupture within it. Even though, there are some events nucleating within 

the double-bend, but those ruptures fail to escape out of the double-bend, only resulting 

in a small ruptured segment. Those two rupturing scenarios accounting for roughly three 

quarters of the total events result in the above feature in accumulative slips: the segment 

outside of the double-bend has larger slip distribution than the part inside of the double-

bend. Another interesting feature is that there is one part within the double-bend on 

SATF that has no slip. In other words, this part has been “locked”. We find that it is the 

large angle (almost 45.00) between the loading direction and the fault strike that makes 

the interseismic loading mainly imposes on the normal component on that part, which 

results in a high shear friction strength. By comparing the accumulative final slips with 

different viscosities, we find that there is a trend in final slip on NATF: the slips on 

NATF within the double-bend become smaller and smaller with the decrement of 

viscosity. In other words, the increasing off-fault deformation along the ATF would 
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make the segment on NATF within the double-bend become harder and harder to be 

ruptured.  

In addition, we also review the distribution of nucleation positions in the simulated 

one hundred earthquake cycles. As what we do before, we present nucleation 

distributions of all four cases with different viscosities in interseismic loading.  In Figure 

4.15, we could observe that three segments which are nearly parallel to the loading 

direction are the most favorable places for nucleation. This feature makes good sense, 

because the smaller angle between the strike and the loading direction would allows 

more stress to be loaded in the shear direction and less stress to be loaded on the normal 

direction. Even though, in this situation, the stress relaxation would be also higher in the 

shear direction compared with the normal direction, but the relaxed amount is much 

smaller than the loaded, which would make those places to be unfavorable by the 

nucleation.  Furthermore, we could find that the nucleation can occurs along a longer 

segment within the bend of NATF with a larger viscosity. We attribute this feature to the 

stress heterogeneity developing during the multi-cycle simulations. Larger viscosity 

results in stronger stress heterogeneity. Therefore, the first order features of nucleation 

distribution are controlled by the angle between the strike and loading direction, and 

secondary features are controlled by the stress heterogeneity developed over multiple 

earthquake cycles in the models.  
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4.4.3 The effects of smaller stress drop: an increased dynamic friction coefficient 

The field measured seismic slips (Xu,et al., 2009; Ponti, 1993; Sieh et al., 1993) put 

constraints on our choices of the value of dynamic friction coefficient. Under the present 

friction law we are using, the slip and rate dependent friction law, the smallest dynamic 

 

Figure 4.15 The distribution of nucleation positions of the one hundred 
simulated events in the four cases with different viscosities. 
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friction coefficient that can be used is 0.5. Here now, we simulate a case with a larger 

dynamic friction coefficient: 0.55, but with all the same other parameters as the preferred 

model.  We want to know to what extent the above conclusions would be altered by the 

case with a larger dynamic friction coefficient (thus a smaller stress drop).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4.16 The slip distributions on the two strands of ATF in the one hundred 
simulated cycles in case with the dynamic friction coefficient 0.55. 
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Figure 4.16 continued 
 

Figure 4.16 gives out the final slip distribution of the simulated one hundred 

earthquake cycles. We observe that the maximum slips in this case are generally smaller 

than that in the main case. We calculate the stress drops of event # 15 in both the main 

case and this case. In figure 4.17, the main case, which is with a smaller dynamic friction 

coefficient: 0.5, has a larger stress drop on the ruptured segment compared with the case 

with larger dynamic friction coefficient: 0.55. We know that the average seismic slip is 

proportional to the average stress drop on the ruptured segment. So it is expected to have 

a smaller average slip in the case with a larger dynamic friction coefficient (thus a 

smaller stress drop).  
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In Figure 4.18, we choose the representative rupturing scenarios in the simulated one 

hundred cycles. There are only four identified representative rupturing scenarios within 

the one hundred cycles.  In event # 3, only the planar segment on SATF outside of the 

double-bend is ruptured, and then it is completely stopped by the double-bend. In event 

# 5, the rupture nucleates at roughly the center of the planar segment of NATF, which is 

outside of the double-bend. After rupturing the entire planar segment and being stopped 

by the double-bend, the rupture jumps the step and triggers a small portion of the 

segment on SATF within the double-bend. In event # 7, only the planar segment on 

NATF outside of the double-bend is ruptured, and the double-bend successfully stops the 

rupture. In event # 8, only the small planar portion inside of the double-bend on the 

SATF is ruptured, and the rupture dies within the double-bend.  

 

Figure 4.17 The stress drops in event # 15. (a) case with dynamic coefficient 0.55; 
(b) case with dynamic coefficient 0.50. Positive values are on the ruptured. 
segment and the negative values are on the unruptured segment.  
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Compared with the main case and other cases with a lower dynamic friction 

coefficient 0.50, the diversity of rupturing scenarios has been weakened. The higher 

dynamic friction coefficient reduces the average stress drop on the ruptured segment 

resulting in a decreased seismic energy budget and a slower rupture velocity.  

4.4.4 Slip-weakening law versus slip-and-rate weakening law  

Here we discuss the effect of using different friction law on the simulation results. In 

our code, we have both of slip weakening law and slip and rate weakening law available. 

So in the following discussion, we will first introduce the difference between the two 

 

Figure 4.18  The initial stresses of the coseismic process on both of strands, the 
final slip distribution and the rupture time history on the representative events.  
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friction laws, and then we will focus on the comparison of results employing the two 

different friction laws. 

4.4.4.1 Comparison of slip-weakening law and slip-and-rate weakening law 

Slip-weakening law was theoretically introduced by Ida (1972) and Palmar and Rice 

(1973), in which they consider the friction is weakened by the increment of slip within a 

critical distance Dc. It is simple and easy to be coded, so it has been wildly used in the 

past several decades in rupture modeling community. In addition, there are other 

researches using modified slip weakening friction law, for example, including a slip 

hardening phase and an exponential decrease of traction with displacement (Ohnaka, 

1996). Dietrerich (1979, 1984) and Ruina (1980, 1983) proposed the variation of traction 

on frictional surface is the function of slip rate and the state of the frictional surface, and 

the rate and state friction law has become more and more popular in the rupture 

modeling field now.  Here in our code, we do not have the standard rate and state friction 

law in place. Therefore, we choose to use a modified blender of the slip weakening law 

and the rate weakening law in our simulation, which is originally proposed by Aagard 

(1999). 
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Figure 4. 19 The model geometry for the comparison of slip weakening friction 
law and the slip and rate friction law. The red line is the size of the nucleation 
patch. 
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Figure 4. 20  Snapshot of slip velocity, slip and stresses on the strike-slip fault 
after the rupture propagates 2.8 seconds. (a) case with slip weakening friction 
law; (b) case with slip and rate weakening friction law with critical velocity: 10.0 
m/s;  (c) case with slip and rate weakening friction law with critical velocity: 20.0 
m/s.  
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In the following paragraph, we discuss the general differences between the slip- 

weakening law and the slip-and-rate weakening law in a simplified planar strike-slip 

fault (Figure 4.19). We use the same simulation parameters in the two cases with slip-

weakening law and slip-and-rate weakening friction law respectively, except that in the 

 

 

Figure 4.20 Continued.  
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slip-and-rate weakening friction law we need to assign a healing value (             ) 

to the dynamic friction and a critical velocity (                                ).  

 Figure 4.20 gives out the comparison of the three cases: a is the case with slip-

weakening law; b and c are cases with slip-and-rate weakening law, but with different 

critical velocity values (                     ). It is obvious that, even under the 

same frictional parameters (         ) and same initial stresses (         ), the slip-

weakening law and the slip-and-rate law would generate significantly differences in the 

evolution of slip velocity, accumulative slip and the stresses during the dynamically 

rupturing process. One of the important differences among those cases is the rupture 

type: in case a with slip weakening law, the rupture is a crack-like rupture, which means 

that the node on the fault surface is still moving even after the rupture front passes across 

in case, c with slip-and-rate weakening law, but with the critical velocity = 20.0 m/s, the 

rupture is a pulse-like rupture, which means the node on the fault surface is no longer in 

motion after the passage of the rupture front, in case b also with slip-and-rate weakening 

law, but with the critical velocity = 10.0 m/s, the rupture is a hybrid of a and c, in which 

the node on fault surface is not totally motionless after the passage of rupture front, but 

with a much smaller velocity compared with the nodes in case a. Furthermore, we could 

find that the rupture in case with slip-weakening law propagates faster and have a larger 

final slip than the rupture in cases with slip-and-rate law under the same frictional 

parameters ((         ) and same initial stresses (         ).  In addition, within the 

two cases with slip-and rate friction law, the case b has a larger final slip distribution 
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than the case c due to the smaller critical velocity. The stress drop distributions (not 

shown) of the three cases are consistent with the final distributions: the larger stress drop 

results in a larger final slip.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.4.2 The simulation results with slip-weakening law    

In this part, we present the simulation results from the case by using slip weakening 

friction law with         and         . In the early stage of this project, we first 

employ the traditional slip weakening friction law. It is our first attempt to use the slip 

 

Figure 4.21 The slip distribution of the first forty events of the case with slip 
weakening law. 
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weakening law in this kind of complex fault geometry with the multicycle simulator. So 

we encountered several challenges, which force us to turn to the slip and rate friction 

law. In the following discussion, we will first present the results with slip weakening 

friction law, and then discuss those problems in the results.  

Figure 4.21 is the final slip distribution in the first 40 events. One can see that all the 

events after event # 20 keep having the same slip distribution pattern: on SATF the 

entire fault is ruptured except the “locked” segment and on NATF only the planar 

segment outside of the double-bend is ruptured.  It means that the system reaches the 

“stable status” after the event # 20. Stable status means the evolution of stresses has 

reached stable situation, and it remains in the same status even with the process of multi-

cycle simulation. The swiftness of reaching stable status is not a good sign for our multi-

cycle simulations: it is not the way occurring in nature. The most important factor 

contributing to the swift form of stable status is the relatively small difference between 

the static and dynamic frictional coefficients. After several cycles, those planar segments 

would become more and more synchronized either on the interseismic loading process 

and the seismic process. The steady state occurs due to the simplified fault system. In 

our model now, we have a very long fault system which makes 2D models depart from 

what is occurring in nature. The 2D fault model artificially removes the healing signal 

rebounding from the seismogenic depth. The quickest way which we think has the 

potential to resolve this problem is the involvement of the slip rate into the friction law. 

Many previous researches pointed out that the involvement of slip rate into friction law 
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would make the residual stresses after a seismic rupturing become heterogeneous, which 

we think could avoid the quick appearance of the steady status in stress distribution. 

4.4.5 The length of interseismic loading and slip rate  

We record the time length of each interseismic loading process. The time length of 

interseismic loading could be one of the several simulated results which we could use to 

compare with paleoseismic researches to evaluate the quality of our simulated results.  

Figure 4.22 gives out the distribution of time length of the interseismic loading in the 

one hundred earthquake cycles simulations. In this figure, we summarize cases with 

different viscosities. Just like what we expect that the case with lowest viscosity: 

             has the largest average interseismic loading time. And the case with 

largest viscosity:               has the shortest average interseismic loading time. 

The larger viscosity means less off-fault relaxation resulting in shorter loading time 

before the shear stress reaches the shear strength on the fault. On contrary, the smaller 

viscosity means larger off-fault relaxation which could enlarge the time needed by the 

shear stress to reach the shear strength. This could also be observed in the number of 

events with different interseismic loading time. In the case with viscosity:     

        , the number of events with interseismic period more than 1000 years is much 

more than the other three cases. With the increase of viscosity value, the events with 

smaller interseismic period (< 200 years) become more frequent. Washbum et. al. (2001) 

carried out paleoseismic research on the central Altyn Tagh fault and two paleoseismic 

events have been identified. The possible recurrence intervals of the two paleoseismic 

events are:         k.y. and         k.y., respectively. The recurrence intervals (or 
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time length of the interseismic loading) in our results are comparable with the two field-

measured values: in case with viscosity:            , the largest recurrence interval is 

1.520 k.y. and recurrence of interval 0.3 k.y. is a common value in our simulation 

results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paleoseismologists usually use the geomorphological features to derive the seismic 

offsets in paleoseismic events, and date the events by using stratigraphic features. So the 

 

Figure 4.22 The analysis of interseismic loading time in four cases. 
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slip rate on certain fault segment is one of the typical outputs of paleoseismic researches.  

There are several paleoseismic slip-rate researches existing on the Altyn Tagh fault, and 

our collaborators are also conducting a more detailed paleoseismic research focusing on 

the segment of Aksay bend of the ATF. Those researches provide us an opportunity to 

compare the slip-rate calculated from simulated results to the field-researched slip-rate. 

Figure 4.23 is the summary of the slip-rate along the center segment of Altyn Tagh fault. 

It is obvious that the slip-rate at a specific location may have different values estimated 

by using different methods. But generally, we could observe that at, the vicinity of 

Aksay bend (the yellowed region), the real measured slip-rate value is within the range 

of 5 ~ 25 mm/yr. In our model, we have recorded the time length of the interseismic 

process. In further, we have the final accumulative slip along the fault. So we could 

calculate the final slip rate distribution along the fault and compare it to the filed-

measured slip rate, which could help us evaluate the quality of our simulation results. 

We are not attempting to compare the value of the simulated slip rate with the field-

measured slip rate at specific locations on the fault. We want to make sure that our 

simulated slip rate is roughly comparable with the field-measured ones. In figure 4.24, 

we present the simulated slip rate in the all the four cases with different viscosities. We 

could find that in the four cases the maximum values of slip rate are within the range of 

field-measured values. And the maximum values are proportional to the viscosities used 

in the model.  
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Figure 4.23 The estimates of slip rate along the Altyn Tagh fault by using 
different methods modified from He et al., (2013). 
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Figure 4.24 The final slip rate distributions along the two strands of the Altyn 
Tagh fault near the Aksay bend. 
 



104 

 

5. CONCLUSION 

Effects of off-fault damage and pore pressure changes at a stepover on rupture 

dynamics of parallel strike-slip faults are examined using spontaneous rupture models. 

We find that the distribution and evolution of the positive Coulomb stress (PCS) 

determine whether or not a propagating rupture on the first fault of a stepover can jump 

across a stepover onto the second fault, and the location and  time of rupture initiation on 

the second fault if rupture jumps. A split crescent-shaped PCS patch propagating away 

from the end of the first fault controls rupture initiation on the second fault in the 

compressive stepover, while a PCS lobe that gradually grows from the end of the first 

fault dominates rupture jumping behavior in the dilatational stepover. Off-fault damage 

in the form of plastic yielding allows a propagating rupture to jump across a dilatational 

stepover in which the two fault segments are barely overlapped, while a certain amount 

of overlap is required for the rupture to jump in the absence of off-fault damage. The 

maximum jumpable width for a dilatational stepover can be significantly reduced by 

time-dependent pore pressure. When both time-dependent pore pressure and off-fault 

damage are present, the former dominates rupture jumping behavior at a stepover. 

We verify the linear relationship between near-tip slip gradient near the stepover and 

the capacity of the rupture to jump on a fault with a fixed length, which is an add to the 

threshold of slip gradient proposed by Elliot et al.(2009).  In addition, the physical 

mechanism behind is the stress distribution, which could control the slip gradient and the 

rupture’s jumping ability. Furthermore, the slip gradient over the last 1 km is the 

indicator of the average stress drop on the entire first fault during the coseismic process. 
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Right now, we only discuss the slip gradient effect in the elastic model, and this topic is 

also worth further researching in model with off-fault plasticity in future.  

In our model configuration in section 4, the relatively planar segments outside of the 

double-bend on both SATF and NATF have been favored by the loading direction to be 

ruptured due to their strikes roughly parallel to the loading direction. One segment on 

SATF is “locked” in the simulations, because its strike has a large angle (~45.00) with 

respect to the loading direction. Multiple rupturing scenarios have been observed in the 

simulation results implying the interaction between the two strands of ATF through the 

Aksay bend (the double-bend). The statistic analysis indicates that the double-bend 

effectively keeps the seismic rupture either from entering the double-bend if the rupture 

nucleates outside of the double-bend or escaping the double-bend if the rupture nucleates 

inside it in almost 90 percent of the simulated events. In 3% of the simulated events, the 

double-bend fails to stop or trap the seismic rupture nucleating outside or inside of it. In 

5% of the simulated events, the seismic rupture is partially stopped by the double-bend. 

So we conclude the double-bend is an effective barrier for the seismic rupture under the 

current model configuration. Viscosity in our model represents the extent of off-fault 

deformation. Our results indicate that the effectiveness of the double-bend in stopping 

the rupture is affected by the extent of off-fault deformation we assign in the model: the 

larger off-fault deformation would make the double-bend more effective in functioning 

like a barrier for the seismic rupture.  
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