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ABSTRACT

Shatsky Rise, located in the northwest Pacific Ocean, is one of the largest oceanic

plateaus. The origin and evolution of the oceanic plateaus are unclear because these

features are remote and poorly imaged with geophysical data. Recently, marine

multi-channel seismic (MCS) data were collected over Shatsky Rise to image its

upper crustal structure. These data have the potential to improve understanding

of the processes of basaltic volcanism and the formation and evolution of oceanic

plateaus by providing direct insights into the geometry and distribution of igneous

eruptions. In contrast to sedimentary settings, it is often difficult to interpret deeper

layers within basaltic crust because of rugged layering and scattering. Reflections

in igneous crust are characterized by poor lateral continuity compared with marine

sediments and often with weak impedance contrasts, resulting in lower signal-to-noise

ratio and more challenging interpretation. In this dissertation, we apply the 2-D

anisotropic continuous wavelet transform (CWT) method to improve interpretations

of MCS data from the Shatsky Rise oceanic plateau. Applying the transform to

the time-domain MCS profiles with appropriate values of wavelength and period

produces new images with enhanced continuity of reflectors and reduced amplitudes

of incoherent noise at different periods. The analysis of the results obtained by using

2-D CWT on the MCS data over the Tamu Massif part of the Shatsky Rise also

helps reveal features such as dome-like bulges possibly associated with lava intrusion

and faults in the deeper part of the crust associated with volcanic rock. These were

not readily seen in the original seismic images, but the suppression of random noise

and other signal with low coherence makes their interpretation possible. These and

similar results provide new insights into the complexity of the igneous processes

ii



forming Tamu Massif.

The other research topic is to apply the CWT analysis to characterize and mea-

sure the roughness of mineral surfaces to understand the effects of geochemical re-

actions on the surface of the mineral. The effects of the geochemical and environ-

mental reactions process are strongly related to the surface roughness. Because a

rough surface has a large number of molecules exposed with unfilled bonds, these

molecules have greater energy and react more readily. A thorough knowledge of the

surface roughness could lead to better understanding of geochemical reactions and

environmental effects on the mineral surface. We apply the 2-D CWT to character-

ize the surface of two samples of Fe2O3 and three samples of calcite. For a fresh

surface of the calcite mineral, a cleavage plane exposed by fracturing, the surface

measurements show discrete jumps in height because of the limited resolution of

measurements. These stair-step-like features have been detected by using 2-D CWT

with wavelength of 32.2 µ.

Two other samples of calcite and two samples of Fe2O3 show erosion effects and

are much rougher. In these cases, the application of 2-D CWT analysis helps to

localize the rough features at certain wavelengths of the wavelet, providing better

understanding of the characterization of surface roughness. These locations are asso-

ciated with the high energy surface where we expect the geochemical and weathering

reaction initially occur. In the future work, one could implement the 2-D CWT in-

version, allowing for the reconstruction of the surface of the mineral at selected wave-

lengths. Therefore we could observe directly the relationship between the roughness

and the wavelength.
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1. INTRODUCTION

1.1 Motivation and overview of research works

In this dissertation, we present two different scientific objectives where we apply

the 2-D CWT to study geological and geophysical data. The first one is to character-

ize the basement of oceanic plateaus of Tamu Massif of Shatsky Rise and the second

object is to study the surface roughness of the minerals in order to understand better

the effect of geochemical and weathering processes on the surface of the mineral.

1.1.1 The continuous wavelet transform

The wavelet transform (WT) was first introduced by a French geophysicist in 1982

(Morlet et al., 1982). Since then its theoretical formalism as well as its applications

have been expanded in many fields such as mechanical engineering, physics, digital

signal processing, numerical analysis, geophysics, oceanic and atmosphere science

(Foufoula-Georgiou and Kumar, 1994). The localization property in both space (or

time) and frequency of WT could extract most of information from non-stationary

signal that Fourier transform or even short Window transform can not do. Most of

the signal from geological and geophysical data are non-stationary signal, therefore

WT is a natural and logical method to apply for these types of data.

The application of WT have been used in the exploration of oil and gas indus-

try as well as in studying earthquake seismic. The application of CWT in seismic

imaging have been implemented in several works which are mostly in spectral decom-

position detect low frequency shadows beneath hydrocarbon reservoirs (Sun et al.,

2003; Sinha et al., 2005), seismic low frequency effects from fluid-saturated reservoirs

(Goloshubin et al., 2004; Korneev et al., 2002), and increase the vertical resolution

by extending seismic bandwidth (Smith et al., 2008; Kazemeini et al., 2008). In the
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recent work (Gersztenkorn, 2012), the 1-D CWT was applied to each trace of the 3-D

data in order to have better interpretation of the 3-D seismic profiles. Most of the

applications of CWT do not include the normalization factor which is critical to have

a quantitative results as discussed in (Torrence and Compo, 1998). Previous seis-

mic applications include studies of earthquake sources parameters (Allmann, 2008);

determine uncertainty estimates for wave parameters obtained by seismic-wave ra-

diometry (Poppeliers, 2011), and to characterize the refraction, reflection, coherent

noises (Miao and Moon, 1999) and to image the earthquake rupture (Allmann, 2008),

and detection of faults (Antoine et al., 2004).

In seismic imaging where the conventional Fourier transform is used, the 2-D

seismic data are transformed from space and time domains to wavenumber and fre-

quency, but the results are global in that there is no knowledge of temporal or spatial

variations in frequency or wavenumber content. To resolve this issue, the short time

Fourier transform was introduced (Allen, 1977) to analyze small sections (time win-

dows) of the signal at particular points in time within signals, however the quality

of the results depends on the selection of the window size, which is the same for

all frequencies. In contrast, 2-D CWT provide estimates of the local frequency and

wavenumber content of the seismic image. The 2-D CWT transform achieves this

result by utilizing a localized, 2-D wavelet function instead of the infinite sines and

cosines applied in Fourier transforms. The CWT will be used to study the marine

seismic data. The scientific problem of the first research topic is to apply the 2-D

CWT to characterization of the deeper part of oceanic crust to better understand the

volcanism evolution. In this dissertation, we apply the 2-D CWT with a correctly

normalized anisotropic Mexican hat wavelet, the first application of this method

to seismic image analysis. This normalization, discussed by Torrence and Compo

(1998), is important, since our goal is to make quantitative comparisons between sig-
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nal content at various frequencies and wavelengths and failure to normalize properly

can cause artificial changes in amplitude that are not true measure of variations in

signal content.

In material engineering, WT have been used to identify dominant orientations in

a porous medium of Massillon sandston (Neupauer and Powell, 2005), and identify

the spatial distributions of fractures (Sahimi and Hashemi, 2001). The WT has

also been applied to characterize surface of material, such as the 2-D continuous

wavelet transform (2-D CWT) have been applied to study the surface roughness

to characterize the texture (Josso, 2002), characterization of pitting corrosion to

an aluminum alloy (Frantziskonis et al., 2000), the sub-micron surface roughness

of anisotropy etched silicon (Moktadir and Sato, 2000), the quality of the painted

surface (Mezghania, 2011). For the large surface characterization of the geological

data, there have been several works as studying the high resolution topographic data

(Booth et al., 2009) for automation landslide mapping and to study the topography

of the river bed surface (Nyander et al., 2003). It is still open question since there

have been no single method can entirely analyze the surface roughness. In this

dissertation, we apply the 2-D CWT for the first time to characterize mineral surface

roughness, which has important implications for predicting the effects geochemical

and environmental reactions on the mineral surface. The mineral data we use in the

dissertation include two samples of Fe2O3 and three calcite samples.

1.1.2 Application of the 2-D continuous wavelet transforms to imaging of Shatsky

Rise plateau using marine seismic data

The scientific problem of the first research topic is to apply the 2-D CWT to

characterization of the deeper part of oceanic crust to better understand the vol-

canism evolution. Oceanic plateaus are very large igneous provinces in the deep
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oceans and are generally a result of massive basaltic volcanism. Observations show

that the size of these plateaus ranges up to millions of square kilometers, suggest-

ing they must be explained as a result of the generation of significant volumes of

magma in the mantle (Coffin and Eldholm, 1994). Several hypotheses have been

proposed to explain the origin of this volcanism, including leaking transform faults

(Thomas et al., 1976), spreading ridge reorganization (Anderson et al., 1992), and

lithospheric weakening associated with changes in plate stresses (Saunders, 2005).

However, these models have difficulty in explaining the large volume of magma in

the oceanic plateau. In contrast, the mantle plume head hypothesis (Richards et

al., 1989; Mahoney and Spencer, 1991; Coffin and Eldholm, 1994) can explain many

features of oceanic plateau, although; there are still some observations that do not

fit this hypothesis and may require an alternate explanation (Foulger, 2007). For

example, rock recovered from Shatsky Rise shows Mid ocean ridge basalt (MORB)

geochemistry and isotopic signatures, in contrast to the plume head model prediction

that the plume originates in the lower mantle (Sager, 2005; Mahoney et al., 2005).

Whatever the cause of oceanic plateaus, they are extraordinary volcanoes whose

structure and evolution are poorly understood. MCS data can lead to better under-

standing of the processes of basaltic volcanism and the formation and evolution of

oceanic plateaus by giving insights into the geometry of igneous rock layers and other

plateau features in the igneous basement. MCS data acquired over ocean plateaus

usually provide good images of the upper crustal structure, especially the sedimen-

tary layers. However, it is often difficult to interpret deeper layers, especially those

within the igneous basement. That difference in interpretability occurs because sed-

iments typically have continuous, well-layered and easily-traced structural features,

whereas volcanic materials are characterized by smaller features with poorer lateral

continuity and often with weak impedance contrasts. Since the basement tends to
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create weaker reflections, the signal-to-noise ratio decreases, creating additional dif-

ficulties that can be exacerbated by the presence of multiples generated by the sea

floor and other sources of noise.

We analyzed marine MCS data collected by R/V Marcus G. Langseth across

the Tamu Massif of Shatsky Rise in the Northwest Pacific. The seismic data from

this experiment display typical problems in imaging basement features. Therefore,

we seek to facilitate interpretation by applying 2-D continuous wavelet transforms

(CWT) to the data. Conventional applications of Fourier frequency-wavenumber

(f − k) transforms can help provide insights into data where the signal of interest

has a different frequency or wavenumber content from noise. However, a strong

limitation arises because the transform is a global approach that measures content

of the entire data set, a consequence of the fact that the sinusoidal basis functions

applied in the transform are infinite in extent. No measurement of space or time-

dependent variation in signal content can be made. In contrast, wavelet transforms

utilize a basis function, the wavelet, that is localized in space and time when applied

to a time-domain seismic image. It can thus measure variations in frequency and

wave-number content as a function of position within the image so that it is possible

to identify and extract features of interest more effectively.

Previous seismic applications include studies of earthquake sources (Allmann,

2008) and analysis of data from seismic radiometry (Poppeliers, 2011). Early work

applied to seismic reflection data applied the CWT to characterize reflections, re-

fractions and coherent noise in data sets (Miao and Moon, 1999). More recent work

has applied the general method to the detection and location of low-frequency “shad-

ows” associated with hydrocarbons (Sun et al., 2003; Sinha et al., 2005), seismic low

frequency effects from fluid-saturated reservoirs (Goloshubin et al., 2004; Korneev

et al., 2002), earthquake rupture imaging (Allmann, 2008), and detection of faults
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(Antoine et al., 2004).

In this study, we apply the 2-D CWT with a correctly normalized anisotropic

Mexican hat wavelet, the first application of this method to seismic image analysis.

This normalization, discussed by Torrence and Compo (1998), is important, since our

goal is to make quantitative comparisons between signal content at various frequen-

cies and wavelengths and failure to normalize properly can cause artificial changes

in amplitude that are not true measure of variations in signal content. The results

show that application of this CWT help to identify reflecting features in the noisy

portion of the images corresponding to igneous basement structures and offer strong

potential to improve interpretations.

1.1.3 Multi-scale analysis the surface roughness of the minerals

The second research topic is to apply 2-D CWT to characterize the surface rough-

ness of the minerals to better understand the effect of the geochemical and weathering

reaction on the mineral. Characterization surface is an interested research topic in

many fields, particularly in material science. The influence of surface morphology

on the final paint appearance was studied base on the multi-scale characterization of

painted surface (Mezghania, 2011). The surface roughness analysis at different scale

was also studied by using discrete wavelet decomposition (Josso, 2002). In mate-

rial engineering, WT have been used to identify dominant orientations in a porous

medium such as the 1 m x 1 m block of Massillon sandstone (Neupauer and Pow-

ell, 2005). Environmental effect on structural materials was stied in the paper of

Frantziskonis et al., the author showed that using the multi-scale analysis to iden-

tify the surface features hidden in digital data of the specimen such as Al 2024-T3

and characterize pitting corrosion to an aluminum alloy. The WT was also used to

identify the spatial distributions of fractures (Sahimi and Hashemi, 2001). The char-
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acterization surface of material is an open question in industry, 2-D WT are used to

characterize the material surface roughness (Moktadir and Sato, 2000; Gaillot et al.,

1997). The 2-D CWT was also apply in characterization surface in very large scale

such as landslide mapping (Booth et al., 2009), river surface roughness (Nyander et

al., 2003).

There has been no single method that can entirely analyze the surface roughness.

In this dissertation, the application of 2-D CWT for the first time to apply for char-

acterizing the surface roughness of the mineral to study the effect of the geochemical

and environmental reactions on the mineral surface. The minerals that we use in the

dissertation are two sample of Fe2O3 and three samples of calcite. The topographic

maps of the mineral are measured by confocal microscopic. The 2-D CWT can reveal

quantitatively the characteristic of the mineral surface. The application of 2-D CWT

analysis also help to localize any objects with any size created by geochemical and

weathering reactions by carrying out 2-D CWT coefficient at corresponding wave-

length. This property help us to understand better the characterization of surface

roughness during the geochemical and weathering processes. The 2-D CWT coeffi-

cients also help us to localize the positions on the mineral surface with high surface

energy. the geochemical and weathering reactions occur initially on these locations.

1.2 Dissertation structure

This section will summarize briefly the content of each chapter. Chapter I gives

scientific overview of the dissertation. The two main research topics are presented.

The motivation of the research works and the method to approach the existing prob-

lems by using CWT are given.

Chapter II is the application of 2-D CWT to characterize the deeper part of

the oceanic plateau. The review of the scientific studies of the oceanic plateau are
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given at the beginning of the chapter. The existing problem of how to understand

better the formation of the oceanic plateau by using marine seismic data are followed.

The description of the 2-D marine multiple-chanel seismic (MCS) datas using is this

dissertation are given. The chapter includes the geological setting and seismic datas

acquired from the Tamu Massif of Shatsky Rise oceanic plateau and the results of 2-

D CWT analysis. The review of CWT history as well as its formalism are presented.

The synthetic seismic data has been created to show how 2-D CWT work in term

of improving the seismic interpretations. The comparison of 2D CWT with f − k is

discussed. The results and the discussions of the applicaion of 2D CWT on the two

MCS datasets are presented.

Chapter III includes the application of 2-D CWT to study the effect of geochem-

ical reactions on the surface of the minerals. This is for the first time, 2-D CWT is

applied to study the small geological data scale. Five mineral datasets used to study

are three Calcite minerals and two Fe2O3 minerals. The formalism of the surface

roughness which is used in building topographic of confocal microscopic have been

presented. The topographic maps of these mineral are obtained by confocal micro-

scopic. The description of how the confocal microscopic works has been shown. The

topographic maps has been processed to remove spikes before carrying out the sur-

face analysis. The method of removing the spikes is discussed. The surface roughness

analysis and discussions of 2D CWT for each mineral have been presented.

Chapter IV review the conclusions of each chapters and summarize the main

scientific contributions of the dissertation.

8



2. APPLICATION OF THE 2-D CONTINUOUS WAVELET TRANSFORMS

TO IMAGING OF SHATSKY RISE PLATEAU USING MARINE SEISMIC

DATA

2.1 Introduction

Oceanic plateaus are very large igneous provinces (LIPs) in the deep oceans and

are generally a result of massive basaltic volcanism. The large size of some of these

features suggests they must be explained as a result of the generation of significant

volumes of magma in the mantle (Coffin and Eldholm, 1994). Several hypotheses

have been proposed to explain the origin of this volcanism, including leaking trans-

form faults (Thomas et al., 1976), decompression melting of fertile mantle at spread-

ing ridge reorganizations (Anderson et al., 1992), and melting caused by lithospheric

weakening resulting from changes in plate stresses (Saunders, 2005). However, these

alternative models have difficulty in explaining the large volume of magma in the

oceanic plateau (Foulger, 2007). In contrast, the mantle plume head hypothesis

(Richards et al., 1989; Mahoney and Spencer, 1991; Coffin and Eldholm, 1994) can

explain many features of oceanic plateaus, although; there are still some observations

that do not fit this hypothesis and may require an alternate explanation (Foulger,

2007). For example, rock recovered from Shatsky Rise shows mid-ocean ridge basalt

(MORB) geochemistry and isotopic signatures (Mahoney et al., 2005), rather than

lower mantle signatures as is predicted by the plume head model. Recently Sager

et al. (2013) proposed that Tamu Massif, the oldest and largest portion of Shatsky

Rise, is a single volcano that was formed by a sequence of massive lava fows forming

sets of subparallel layers.

Whatever the cause of oceanic plateaus, they are extraordinary volcanoes whose
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structure and evolution are poorly understood. MCS data can lead to better un-

derstanding of the processes of basaltic volcanism and the formation and evolution

of oceanic plateaus by giving insights into the geometry of igneous rock layers and

other plateau features in the igneous basement. MCS data acquired over ocean

plateaus usually provide good images of the upper crustal structure, especially the

sedimentary layers. However, it is often difficult to interpret deeper layers, especially

those within the igneous basement. That difference in interpretability occurs because

sediments typically have continuous, well-defined, and easily-traced layers, whereas

volcanic materials are characterized by less regular features with poorer lateral conti-

nuity and often with weak impedance contrasts. Because layers within the basement

tend to create weaker reflections, the signal-to-noise ratio decreases, creating addi-

tional difficulties that can be exacerbated by the presence of multiples generated by

the sea floor and other sources of noise.

We analyzed marine MCS data collected by R/V Marcus G. Langseth across

the Tamu Massif of Shatsky Rise. These data display typical problems in imag-

ing basement features. Therefore, we seek to facilitate interpretation by applying

2-D continuous wavelet transforms (CWT) to the data. Conventional applications

of Fourier frequency-wavenumber (f − k) transforms can help provide insights into

data where the signal of interest has a different frequency or wavenumber content

from noise. However, a strong limitation arises because the transform is a global

approach that measures the content of the entire data set, a consequence of the fact

that the sinusoidal basis functions applied in the transform are infinite in extent. No

measurement of space or time-dependent variation in signal content can be made.

In contrast, wavelet transforms utilize a basis function, the wavelet, that is local-

ized in space and time when applied to a time-domain seismic image. It can thus

measure variations in frequency and wave-number content as a function of position
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within the image so that it is possible to identify and extract features of interest

more effectively. Previous seismic applications include studies of earthquake sources

(Allmann, 2008) and analysis of data from seismic radiometry (Poppeliers, 2011).

Early work applied to seismic reflection data applied the CWT to characterize re-

flections, refractions and coherent noise in data sets (Miao and Moon, 1999). More

recent work has applied the general method to the detection and location of low-

frequency “shadows” associated with hydrocarbons (Sun et al., 2003; Sinha et al.,

2005), seismic low frequency effects from fluid-saturated reservoirs (Goloshubin et

al., 2004; Korneev et al., 2002), earthquake rupture imaging (Allmann, 2008), and

detection of faults (Antoine et al., 2004). In this study, we apply the 2-D CWT with

a normalized anisotropic Mexican hat wavelet (Antoine et al., 2004). The wavelet

normalization, the first application of this method to seismic image analysis. This

normalization, discussed by Torrence and Compo (1998), is important, since our goal

is to make quantitative comparisons between signal content at various frequencies

and wavelengths and failure to normalize properly can cause artificial changes in

amplitude that are not true measure of variations in signal content. To the best of

our knowledge, this normalization has not previously been applied for geophysical

interpretation applications. The results show that application of this CWT help to

identify reflecting features in the noisy portion of the images corresponding to ig-

neous basement structures and offer strong potential to improve interpretations. An

important motivation for testing its utility on the Shatsky Rise seismic data is to

help verify the hypothesis of Sager et al. (2013) that suggests the Tamu Massif is a

single volcano comprised of subparallel lava flows. If the CWT approach is useful,

it will facilitate more detailed interpretations of structure in the igneous basement

that will either be consistent with this hypothesis or contradict it.

The chapter is organized as follows. We first briefly review the geologic setting
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of the Shatsky Rise and important problems associated with explaining the origin

and development of such plateaus. In this context, we comment on previous seismic

imaging studies of the plateau and summarize some general characteristics of the

seismic data that we utilize in this work. Example data sections from the Tamu

Massif show some obvious reflecting structures but also have serious problems with

noise in the deeper portions of the geologic section. We then summarize the formalism

of the 1-D and 2-D CWT to illustrate its application and provide examples to show

both how it can help clarify noisy seismic images and how to interpret results. The

results of the 2-D CWT using the Mexican hat wavelet on synthetic test data show

clearly that we can characterize important features of the synthetic data by choosing

appropriate parameters. Finally we present the analysis of the 2-D CWT results

from the field data and give some summary interpretations, noting some new geologic

features suggested by the CWT images that had previously been identified. These

structures suggest additional complexity in the processes forming Tamu Massif than

those previously proposed by Sager et al. (2013).

2.2 Shatsky Rise: geologic setting and seismic data

The Shatsky Rise oceanic plateau is located ∼1600 km east of Japan in the

northwest Pacific Ocean (Figure 2.1). It has dimensions of 1650 km by 450 km and

the depth ranges from about 2.0 km to 5.5 - 6.0 km, the depth of the surrounding

seafloor. Three large volcanic edifices are defined in the Shatsky Rise, namely the

Tamu, Ori, and Shirshov massifs and a low ridge, the Papanin Ridge, extends from

the north of the plateau (Sager et al., 1999) (Figure 2.1). In addition, a low ridge,

the Papanin Ridge, extends from the north of the plateau (Sager et al., 1999). The

Tamu Massif is the oldest and largest of the volcanic structures (Mahoney et al.,

2005; Sager, 2005).
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The Shatsky Rise began to form at about the time of magnetic anomalies M21

and M20, which have ages of 149 Ma and 147 Ma, respectively (Gradstein et al.,

2004). Although the Tamu Massif may have formed rapidly (Sager and Han, 1993),

the total duration of volcanic activity forming Shatsky Rise was about 21 million

years (Nakanishi et al., 1999). Volcanic basement has subsequently been covered

by sediments that are generally thin on the flanks but can be as much as ∼1 km

thick at the summit (Houtz and Ludwig, 1979; Ludwig and Houtz, 1979; Sliter and

Brown, 1993). Igneous cores have been obtained from six drill sites on Shatsky Rise,

Site 1213 on Ocean Drilling Program (ODP) Leg 198 (Shipboard Scientific Party,

2002; Bralower et al., 2006) and five sites during Integrated Ocean Drilling program

(IODP) Expedition 324 (Sager et al., 2010) (Figure 2.1). Two types of basaltic lava

flows were recovered at most of the drill sites, pillow lavas with thicknesses on the

order of 0.2 m to 1.0 m, and massive flows up to ∼23 m in thickness (Sano et al.,

2012). The massive flows dominate at the Tamu massif (Sager et al., 2011; Sager

et al., 2012). According to recent seismic refraction results, the maximum crustal

thickness of the plateau is∼30 km, showing that the Shatsky Rise plateau was formed

from a very large volume of magma (Korenaga and Sager, 2012). Several potential

explanations have been proposed for the formation of this plateau (Thomas et al.,

1976; Anderson et al., 1992; Coffin and Eldholm, 1994). The plume head model

(Coffin and Eldholm, 1994) suggests that the oceanic plateau formed by the ascent

of a large plume from the lower mantle to the oceanic lithosphere, where it erupted

to form Shatsky Rise. Many of observations from Shatsky Rise are consistent with

the plume head hypothesis (Nakanishi et al., 1999; Sager, 2005), but there are some

aspects that do not fit. For example, geochemical and isotopic studies of basalt

samples from the plateau give results that are similar to MORB rather than lower

mantle sources as would be expected from the mantle plume (Mahoney et al., 2005).
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Figure 2.1: MCS lines over Shatsky Rise. In this paper we consider seismic Lines 5
and 6 (heavy red lines). Bathymetry is from satellite-predicted depths with 500-m
contours (Smith and Sandwell, 1997). The light red lines show magnetic lineations
with chron numbers labeled for reference (Nakanishi et al., 1999). Heavy blue lines
show MCS reflection profiles collected by R/V Marcus G. Langseth. Inset depicts
the location of Shatsky Rise relative to Japan and nearby subduction zones (toothed
lines) and the wider magnetic pattern.

This provides strong incentive for additional studies of the plateau to obtain new

and better constraints on its geometry, composition and structure to determine if

these aspects of the Shatsky Rise are consistent with the mantle plume hypothesis.

Detailed seismic images have the potential to provide important insights into the

geometry of igneous rock structures for this purpose. In addition, the seismic data

can help understand lateral variations in structures and materials found in the core

samples taken at the relatively sparse drill sites.
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2.2.1 2-D marine multi-channel seismic data

Older marine seismic data collected over the Shatsky Rise are low resolution,

analog, single-channel seismic profiles, which limited in resolution and penetration.

Such profiles typically show the thickness of the sediments and gross sedimentary

layering, but little detail within the igneous crust. Low-fold, digital, MCS profiles

were acquired in 1994 (Sager et al., 1999; Klaus and Sager, 2002). Because the seismic

source was relatively low in strength, the seismic data show only weak amplitude

signals in the volcanic basement (Sager et al., 1999). Two recent cruises acquired

new seismic lines utilizing the R/V Marcus G. Langseth with a 6660 cubic-inch

(108.2 L) air gun array source and 5.85-km-long, 468 channel seismic streamer in an

attempt to image the volcanic basement more clearly (Zhang et al.). The locations

of these MCS data lines are shown in Figure 2.1. We analyze portions of two of

these new MCS profiles, Lines 5 and 6 (Figure 2.1; Zhang et al.). The former crosses

the summit of Tamu Massif from southwest to northeast, whereas the latter runs

east-west down the western slope from the axis of the massif to near the base. These

MCS data were processed using the ProMAX software system with a standard work

flow including the following general steps: geometry setup, trace edit, bandpass filter,

deconvolution, velocity analysis, normal move-out, stack, time migration (Zhang et

al.). Parts of seismic profiles for Lines 5 and 6 are shown in Figures 2.2 and 2.3.

The post-process time and space sample intervals are 4 ms and 6.25 m, respectively,

for the seismic images.

2.3 Continuous wavelet transforms

The wavelet transform (WT) was first introduced by a French geophysicist in 1982

(Morlet et al., 1982). Since then it has been developed in the theoretical formalism

as well as applications in many fields such as mechanical engineering, physics, digital
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Figure 2.2: MCS data Line 6. The location of this line is shown in Figure 2.1. The
white boxes show the seismic data we used for 2-D CWT calculation.
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Figure 2.3: MCS data Line 5. The location of this line is shown in Figure 2.1. The
white boxes show the seismic data we used for 2-D CWT calculation.
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signal processing, numerical analysis, geophysics, oceanic and atmosphere science

(Foufoula-Georgiou and Kumar, 1994). The localization property in both space (or

time) and frequency of WT could extract most of information from non-stationary

signal that Fourier transform or even short Window transform can not do. Most of

the signal from geological and geophysical data are non-stationary signal, therefore

WT is a natural and logical method to apply for these types of data.

In seismic imaging where the conventional Fourier transform is used, the 2-D

seismic data are transformed from space and time domains to wavenumber and fre-

quency, but the results are global in that there is no knowledge of temporal or spatial

variations in frequency or wavenumber content. To resolve this issue, the short time

Fourier transform was introduced (Allen, 1977) to analyze small sections (time win-

dows) of the signal at particular points in time within signals, however the quality

of the results depends on the selection of the window size, which is the same for

all frequencies. In contrast, 2-D CWT provide estimates of the local frequency and

wavenumber content of the seismic image. The 2-D CWT transform achieves this

result by utilizing a localized, 2-D wavelet function instead of the infinite sines and

cosines applied in Fourier transforms. The CWT will be used to study the marine

seismic data.

In seismic data analysis where the conventional Fourier transform is used, 2-

D seismic data are transformed from space and time domains to wavenumber and

frequency, but the results are global in that there is no knowledge of temporal or

spatial variations in frequency or wavenumber content. To resolve this issue for

spectral analysis, the short time Fourier transform was introduced to analyze small

sections (time windows) of the signal at particular points in time (Allen, 1977).

However, the quality of the results depends on the selection of the window size,

which is the same for all frequencies. The wavelet transform (WT) was developed
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to address these problems (Morlet et al., 1982). Since its introduction, a number of

advances have been made both in the theoretical foundations and applications of the

WTs in many fields such as mechanical engineering, physics, digital signal processing,

numerical analysis, geophysics, oceanic and atmospheric science (Foufoula-Georgiou

and Kumar, 1994).

Although all applications in this paper apply a 2-D wavelet transform, we begin

by presenting the 1-D form to illustrate the basic idea and key expressions. The

CWT is the convolution of the signal f(x) with basis functions ψs,a(x). These basis

functions are generated from a mother function ψ(x) by applying translation a and

dilation s:

ψs,a(x) =
1√
s
ψ

(
x− a
s

)
. (2.1)

A number of wavelet functions have been proposed, and in our work we utilize the

Mexican hat wavelet function, which in 1-D is (Addison, 2002)

ψ(x) =
2√

3π−1/4

(
1− x2

)
e−x

2/2. (2.2)

The general expression for the wavelet transform of the signal f(x) is (Daubechies,

1992)

C(s, a) =

∫ ∞
−∞

f(x)ψ∗
(
x− a
s

)
dx, (2.3)

where ∗ represents the complex conjugate operation. The translation a applies the

transform to different times or positions in the data, and the dilation s corresponds

to the scale, which is analogous to period. The CWT coefficients measure in essence

the similarity of the signal f(x) with the wavelet at a particular scale. Thus the

high frequency features of the signal are better detected at small scales, and the

low frequency features can be better characterized at long scales. In the case of the
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Mexican hat wavelet, the relationship between scale s and the wavelet period T is

given by (Torrence and Compo, 1998)

T =
2π√
5/2

s. (2.4)

If the primary task is to measure variations in frequency content with time in seismic

data, this 1-D transform would suffice. However, for analysis of 2-D seismic images,

we apply the 2-D anisotropic Mexican hat wavelet described by the following equation

(Antoine et al., 2004):

ψs,a,b(x, y, σ) =
1

s
√
Kψ

(
2− (x− a)2

s2σ2
− (y − b)2

s2

)
e
− 1

2

(
(x−a)2

s2σ2
+

(y−b)2

s2

)
(2.5)

where a and b are the translation parameters in the x and y directions, respectively.

For application to seismic images, the variables x and y will normally correspond

to the horizontal and vertical directions, respectively, or distance and two-way time.

The parameter σ is the aspect ratio, or the ratio between the widths of the wavelet

measured in the vertical and horizontal directions, and it measures the anisotropy

of the wavelet. This anisotropy will be important for application to time-domain

migration images where these two directions correspond to two-way reflection time

and distance. The two scales sσ and s are chosen independently to measure signal

content at the wavelength and period, respectively, of interest (the wavenumber and

frequency are given by the reciprocals of these values).

The normalization constant Kψ in equation 2.5 is defined assuming s = 1 and

can be expressed with a = b = 0 since it is independent of position (Gaillot et al.,
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1997; Darrozes et al., 1997):

Kψ = (2π)2
∫ ∞
−∞

∫ ∞
−∞

|ψs,a,b(x, y, σ)|2

x2 + y2
dxdy =

σ2

16π3
. (2.6)

The influence of scale on the normalization is included through the quantity 1/s in

equation 2.5. If the aspect ratio parameter in this wavelet is large, the wavelet is

wide compared to its height, which would be appropriate for a horizontal reflector in

a seismic image, since reflections from interfaces typically extend over many traces

laterally, but over a comparatively small number of time units in the vertical dimen-

sion in the image. However, in some cases as reflector may have a comparatively

large dip angle. In this case, the wavelet can be rotated about an angle θ prior to

calculations, and the transform can also be used in general to assess dipping signal

content as well as variations in frequency and wavenumber. The rotation operator

Rθ is applied to rotate coordinates at the point of interest before applying the trans-

lation and scale parameters utilizing a standard rotation matrix multiplied by a data

vector (x, y) in the form

Rθ(x, y) =

 cosθ −sinθ

sinθ cosθ


 x

y

 , (2.7)

thereby allowing the wavelet transform to help identify features of different orien-

tations as well as shapes and sizes. Figure 2.4 shows an example of the Mexican

hat wavelet with θ = 45◦. Because the structure of an oceanic plateau is generally

relatively flat, most of our calculations in our investigation utilized a rotation angle

of θ = 0. The 2-D continuous wavelet transform is the 2-D convolution of the data

f(x, y) and the wavelet function and the expression is directly comparable to that in
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Figure 2.4: 2-D normalized anisotropic Mexican hat wavelet (equation 2.5) with
aspect ratio σ = 2, rotation angle θ = 45, and scale s = 5 (equation 2.4).

equation 2.3,

C(s, a, b, σ, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)ψ∗
[
Rθ

(
x/σ − a

s
,
y − b
s

)]
dxdy, (2.8)

where a and b are the two translation parameters and s is again dilation. The 2-D

CWT coefficients can determine the match between the signal and the wavelet at

scales of interest. A large coefficient C(s, a, b, σ, θ) results when the wavelet in the

convolution integral in equation 2.8 has a frequency and wavelength scales compa-

rable to features in the data at the location given by (x, y) = (a, b). Displaying

coefficient values as a function of distance and time in a seismic migration image

will give quantitative measures of the variation in frequency and wavenumber of re-

flectors in the image. Using a correct normalization, division by s
√
Kψ, is essential
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to gain quantitative measures of signal content at different wavelengths and periods

(Torrence and Compo, 1998), but to our knowledge previous applications to seismic

imaging neglect this term.

2.3.1 Tests on 2-D synthetic seismic images

Application of the CWT to a simple 2-D synthetic data set provides insights that

show how to interpret results and helps to illustrate its potential to improve image

interpretation when signal-to-noise ratio is low. The synthetic seismic section was

created by convolving a series of reflection coefficients, corresponding to three groups

of reflectors of varying width, with a Ricker wavelet. In addition, random noise was

added to the image with a signal-to-noise ratio of 0.75 (Figure 2.5A).

The presence of this strong noise partially obscures the reflection signals and their

terminations within the image. Test horizontal reflectors have lengths of 62.5 m,

187.5 m and 437.5 m, and two shallow and two deep reflectors applied frequencies

of 31 and 10 Hz, respectively. The combination of different sizes and frequencies in

CWT show how CWT coefficients are able to measure such variability in field data.

Discretization intervals in time and space were set to 4 ms and 6.25 m. We will show

that by using 2-D CWT with a 2-D anisotropic Mexican hat wavelet, we can detect

the test targets at different horizontal wavelengths of the wavelet and also illustrate

the influence of the wavelet frequency on the vertical resolution of the seismic data.

In this synthetic test, we computed CWT coefficients (equation 2.8) with frequencies

of 10 Hz and 31 Hz, setting the rotation angle to zero because the reflectors are

horizontal.

CWT coefficient results from the synthetic model for 10 Hz show several impor-

tant properties of the transform comparing horizontal wavelengths of 187, 437 and

800 m (Figure 2.5; Note: because the transform computes a value at each pair of
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Figure 2.5: (A) Test 2-D synthetic seismic section with random noise (signal-to-
noise ratio 0.75). The shallow reflectors have Ricker wavelets with frequency 31 Hz,
while the deeper versions have frequency 10 Hz. The lower three panels are CWT
coefficient sections at frequency 10 Hz with wavelengths (B) 187 m, (C) 437 m and
(D) 800 m.
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distance and time coordinates, these coefficients are analogous to seismic traces and

are plotted as such in this and subsequent figures). A clear dependence on frequency

is observed, with increased signal to noise at greater wavelengths countered by re-

duced horizontal resolution. Since the noise is uncorrelated horizontally from trace

to trace in the image, noise influence on coefficients decreases rapidly with increas-

ing wavelength. Thus coefficients at long wavelengths show the greatest reduction in

noise amplitude with respect to signal strength. At the same time, small features are

smeared horizontally at at long wavelengths, and the coefficients fail to clearly dis-

tinguish the three separate reflectors for a wavelength value of 800 m (Figure 2.5D).

Although the coefficient magnitude does decrease subtly between the real reflector

positions for the long wavelength solution, it is easier to detect the gaps present

between targets at the shorter wavelengths. Even for the shortest wavelength, the

reflectors are easier to identify than in the raw data, because the noise has minimal

influence on the computed coefficients (Figure 2.5B). Noise with spatial or tem-

poral correlation will not be suppressed as effectively, but incoherent noise in field

data images arising from processing artifacts or other uncorrelated sources should be

minimized.

Comparing these lower frequency coefficients to values for 31 Hz shows that many

of the same observations apply (Figure 2.6). The transform makes it easier to find

reflectors at long wavelength values, for all features in the test image. The long

wavelength coefficients will still lead to some horizontal smearing, but this effect is

not as significant at the higher frequency. Also, it is clear that the improved resolution

with the higher frequency wavelet allows easier identification of the truncations of the

separate target reflectors. The primary limitation of these results is that it is hard

to see the high frequency targets with the smallest width. Although the coefficient

plots at long wavelength are influenced primarily by the signal in the presence of
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uncorrelated noise, the reflectors themselves, with width 62.5 m, are much smaller

than the wavelet wavelength and do not create large wavelet coefficients: the CWT

coefficients are sensitive to both the temporal frequency and the spatial wavelength

of the signal content.

These CWT results suggest several guidelines for interpreting results from field

data. First, the transform should clarify coherent features in images affected by

relatively incoherent noise because the CWT coefficients are large when the signal

includes coherent signal associated with geologic structure. The coefficient displays

can also help assess size scales of features, but if the wavelet wavelength is too long,

especially at lower frequencies, lateral resolution will be diminished. In general,

high frequencies should be preferred, since time and spatial resolution are better.

However, signal is generally weaker at high frequencies, especially for deep crustal

targets, which will likely restrict application to low frequencies for field data.

2.3.2 Comparison to bandpass filters

Comparisons of these CWT coefficient results with conventional bandpass filtering

helps illustrate the differences in the operation of the wavelet approach (Figure 2.7).

Since the synthetic reflection signals have frequencies of 10 and 30 Hz, we filtered

the data with bandpass filters centered on those two values. The corner frequencies

for the zero-phase filter were 3, 8, 12 and 20 Hz for the low frequency case and 12,

20, 40 and 55 Hz for the filter designed to enhance the 30 Hz reflectors. The filters

applied sine-squared tapers. While this filtering does make the reflectors slightly

more visible than compared to the original, noisy synthetic, the signal-to-noise ratio

in the surrounding portions of the image is still much lower than for the CWT. This is

not surprising, since the CWT coefficients also apply a finite horizontal wavelength.

The random noise is uncorrelated from trace-to-trace, and therefore as wavelength
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Figure 2.6: (A) Test 2-D synthetic seismic section with random noise (signal-to-
noise ratio 0.75). The lower three panels are the 2-D CWT coefficient sections for
frequency 31 Hz and several wavelengths: (B) 187 m, (C) 437 m, and (D) 800 m.
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increases, the signal-to-noise ratio of the images increases. Uncorrelated noise has

negligible contribution to coefficients for the finite wavelengths. It is reasonable

to think of the CWT results as a filtering operation to extract signal content at

desired spatial and temporal scales (Torrence and Compo, 1998). Therefore, the

CWT approach will be beneficial when the image contains noise at different spatial

and frequency scales than the signal. If the noise has not particular spatial scale,

and is primarily present at specific frequencies, bandpass filtering may suffice. In

principle, f − k filtering might help to increase signal-to-noise ratio somewhat more

compared to simple band-pass filters, but it is very difficult to implement reliably for

the field data which include reflectors with large ranges of dips without suppressing

desired signal.

2.4 2-D CWT results

The complete seismic profiles in Figures 2.2 and 2.3 are too large to apply the

CWT along their entire lengths and to display and visualize the results effectively.

For this reason, we selected portions of these seismic profiles that include both simple

and more complicated geological structures to demonstrate the results of the CWT

and to discuss implications for interpretation of geologic structures. We carried

out the CWT calculations for the areas marked with the white boxes in Figures

2.2 and 2.3. Assuming a seismic velocity of 4000 m/s for the igneous basement

(Zhang et al., in this dissertation), the boxes on Line 6 correspond to depths ranging

from near the top of the igneous basement to about 4000 m below. For Line 5,

the two areas correspond to depths about 1000 m to 5000 m below the top of the

igneous basement. Given these subsets of the data, we can test the utility of CWT

results at various spatial and temporal scales to extract features of interest, such

as those that might be related to volcanic intrusions and associated features deep
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Figure 2.7: Comparison of (A) test 2-D synthetic seismic section with random noise
(signal-to-noise ratio 0.75), (B) result of a bandpass filter centered on 10 Hz, and
(C) a bandpass filter centered on 30 Hz. Details of filter design are provided in the
text.
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in the crust within the Tamu Massif. While the general CWT formulation allows

for analysis of dipping features, most of the reflectors are nearly horizontal, and

we therefore first set the rotation angle to zero (equation 2.8). The aspect ratio

constant σ is chosen in order to compute wavelet coefficients at horizontal length

scales ranging from 50 m to 3000 m to design transforms assisting in interpretation

tasks. Measurements of the frequency spectra of these seismic sections suggest that

the strongest frequency content is around 30 Hz. Because attenuation limits signal

content at higher frequencies, we present CWT results for frequencies near 30 Hz

and 10 Hz.

In the following sections, we will first present results for Line 6, where reflectors

can be inferred visually from the somewhat noisy data, before proceeding to the more

challenging case of Line 5, which is much more challenging to interpret. Though the

improvements are more useful for applications in the latter case, we begin with Line 6

to build on the insights of the synthetic data test case (Figs. 2.5, 2.6) to help show

how the CWT results provide improvements first in a case where the signal is not too

hard to identify. In addition, we will present results for a range of frequencies and

horizontal wavelengths. Not all of these results are directly useful for interpretation,

but comparing results for different values helps to clarify and support choices in later

examples. This initial set of results for the field data makes it easier to understand

what the CWT coefficients are measuring. Given the results to help demonstrate

that the CWT approach does truly provide reliable insights into the data structure

in the seismic images, we conclude with examples from Line 5 where the reflection

signal-to-noise ratio is much lower.
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2.4.1 CWT applied to line 6

The total length of Line 6 is about 197 km, but our analysis concentrates on

two areas marked with the white boxes in Figure 2.2, each about 25 km long, for

application of the CWT. The first, Box A near the beginning of the seismic profile in

Figure 2.2, is a section which extends from 20 km to 45 km (Figure 2.8A), where we

can see reflectors interpreted as lava flows that emanated from the volcanic center and

flowed down the flank to the left in the image (Zhang et al.). While some reflectors

are clear and continuous in the section between two-way times of 4.5 and about 5.5 s,

deeper features are less continuous and difficult to follow. The seismic profile also

shows that the image has decreased signal strength in the area from 43 km to 45 km

with two-way travel time from 4.5 s to 6.5 s. Another section extends from 45 km

to 70 km, where we can see many intra-basement reflectors.

Figure 2.8B displays the 2-D CWT result at a frequency of 10.5 Hz and horizontal

wavelength of 149 m. Because this frequency is lower than much of the signal, which

includes significant content at frequencies over 30 Hz, reflectors in the image have

lower frequency content and are broader in time. It is nonetheless easier to identify

some laterally continuous events than in the original image. For example, there are

a number of continuous lateral events from 4.5 s to 5.7 s. We can see that this CWT

coefficient is not strongly affected by the high frequency and high wavenumber noise

that is hindering identification of reflections in the original data image. Increasing

the wavelength parameter to 3 km (Figure 2.8) does provide an image with more

continuous reflectors, but this should be compared to the synthetic test (Figure 2.5),

where long wavelengths have much reduced horizontal resolution. This wavelength

of 3 km is therefore not an effective choice for interpretation of this data section.

These CWT coefficients are compared to analogous results at a frequency of
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C)

Figure 2.8: (A) A portion of MCS Line 6 that is located near the beginning of the
seismic profile (Figure 2.2, box A). CWT coefficients for these data are shown for
frequency 10.5 Hz and (B) wavelength 149 m and (C) wavelength 3 km.
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31.5 Hz, where the frequency spectrum has its maximum, in Figure 2.9. In this

case, we evaluated the CWT coefficients for wavelengths 50 m and 994 m, values

that keep the same aspect ratio of the 2-D wavelet as the parameters utilized at

10.5 Hz. Because frequency is increased by a factor of three approximately, the

wavelength values are reduced by the same factor to keep the same ratio between

period and wavelength. The smaller wavelength produce an image that is very similar

to the original seismic image (Figure 2.9B). On the other hand, the coefficients at

a wavelength of 994 m are not affected strongly by the random noise in the image

and the reflectors are more continuous and easier to interpret even at two-way times

from 5.5 to about 6.5 s. Similar effects were seen in the tests on the synthetic test

image (Figure 2.6), supporting the conclusion that the features seen in the figure are

present in the original image, though obscured by noise. It is possible that some of

the apparent reflectors could be associated with multiples or similar effects.

Comparisons of these results with conventional bandpass filtering to enhance

reflection signals and suppress incoherent noise illustrate the differences in the oper-

ation of the wavelet approach (Figure 2.10). For example, a bandpass filter centered

on 10 Hz produces a section that is similar to the CWT coefficients generated for

10.5 Hz and wavelength 149 m (compare Figures 2.8B and 2.10B). The filtering

applied a zero-phase filter with a sine-squared taper, utilizing corner frequencies 3,

8, 12, and 20 Hz. The similarity of images is expected, since the bandpass filter

operates on individual traces, and the wavelength of 149 m for the CWT includes

a comparatively small number of traces. Both also will emphasize signal content

on traces near the same frequency. However, the CWT approach has the potential

of emphasizing features of different spatial scales as well. Though the wavelength

of 3 km is too long compared to the relatively small features of interest in these

images (Figures 2.8C), other values may provide important comparisons with small
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Figure 2.9: (A) A portion of MCS Line 6 that is located near the beginning of
the seismic profile (Figure 2.2, box A). CWT coefficients for these data are shown
for frequency 31 Hz and (B) wavelength 50 m and (C) wavelength 0.99 km. The
wavelengths are smaller than for the low frequency results in Figure 2.8 to keep the
wavelet aspect ratio σ unchanged.
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wavelength images or bandpass filters. On the other hand, applying a bandpass

filter with a higher frequency range is less satisfactory (Figure 2.10C). The filter

in this case applied corner frequency values of 12, 20, 40 and 55 Hz. While some

noise is suppressed, it is difficult to extract signal content near 30 Hz and avoid an

increasingly ringy image in some areas. The CWT coefficients, on the other hand,

are able to measure signal near 30 Hz without dinginess, and in this case, the longer

wavelength image produces more coherent reflectors while suppressing noise at high

dip angles (Figure 2.9). While the bandpass filter approach may be satisfactory

in some cases, the CWT measures allow for easier detection of signal over specific,

narrow frequency ranges while also allowing for straightforward study of frequencies

at various wavelengths.

The second portion of Line 6 that we examine, from 45 km to 70 km, is more

geologically complicated (Box B, Figure 2.2). It passes near the center of the Tamu

Massif where it is expected that basement reflections may be less continuous because

it is near the center of eruptions where flows may be less continuous (Figure 2.11).

We can observe that there are two hazy zones from 47 km to 52 km and 64 km to

66 km expressed as approximately vertical features where amplitudes of horizontally

coherent reflections are reduced. Figure 2.11 displays the 2-D CWT result at a fre-

quency of 10.5 Hz and horizontal wavelength of 149 m. Compared to the original

seismic section, the transformed image shows higher lateral reflector continuity in

many regions. Arrows mark several locations where such features can be identified.

Nonetheless, regular, parallel reflections are not easily identified, especially in com-

parison with the previous example where a number of parallel reflections suggest

repeated, laminar lava flows (Figures 2.9, 2.9). While some indication of this dif-

ference in structure is evident without the application of the CWT, the absence of

such features in the CWT result, even with improved signal-to-noise ratio, helps to
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Figure 2.10: Comparisons of (A) portion of MCS Line 6 that is located near the
beginning of the seismic profile (Figure 2.2, box A), with bandpass filtered versions
of the data (B) from 8 to 12 Hz and (C) from 20 to 40 Hz. Additional details
regarding filter specification are provided in the text.
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confirm long parallel reflectors are not simply obscured by noise.

2.4.2 CWT applied to line 5

The second seismic line, Line 5 (Figures 2.1, 2.3) extends from a point near the

center of the plateau down the west side of Tamu Massif. This image should thus

sample lava flows descending the flank. As with Line 6, we concentrate on two

portions of the line. The first segment of Line 5 extends from 20 km to 45 km

(Figure 2.12), and the image suggests dipping events with two-way travel times

up to around 6 s, which is consistent with the lava flows trending downslope from

the summit. The section has a relatively low signal-to-noise ratio, however, and

includes some very steeply dipping artifacts. Because of this high noise level, we

present CWT coefficients computed for larger wavelengths, as the transform for short

wavelengths did not improve the image. For simplicity, we continue to apply θ = 0.

Specifically, at 10.5 Hz, Figure 2.12B shows coefficients for a wavelength of 3 km, a

value that emphasizes the lateral continuity. The results for 31.5 Hz were computed

for wavelength 994 m to maintain the same aspect ratio (Figure 2.12C).

At the lower frequency, the dipping reflectors in the upper portion of the image

become more obvious (Figure 2.12B). Reflector continuity in the lower part of this

10.5 Hz section is still difficult to follow, but reflecting layers are observed, whereas

they are virtually absent from the original section. Similar observations apply to

the wavelet coefficients for 31.5 Hz (Figure 2.12B). Vertical resolution improves with

higher frequency, as would be expected, but the continuity of reflectors is reduced,

especially in the deeper section.

In the second example extracted from Line 5 (Figure 2.13A), the original seismic

image is difficult to interpret. There are some reflections visible with lengths around

5 km, such as between 105 and 110 km, with two-way time of about 6.7 s. However,
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A)

B)

Figure 2.11: (A) A subset of the seismic image from Line 6 passing over the central
portion of the plateau (box B, Figure 2.2). (B) 2-D CWT coefficient computed for
frequency 10.5 Hz and horizontal wavelength 149 m. Arrows mark regions where
reflectors are easier to identify in the coefficient images.
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B)

C)

Figure 2.12: (A) A portion of the seismic profile Line 5, from 20 km to 45 km (box
C, Figure 2.3). 2-D CWT coefficient computed for (B) frequency 10.5 Hz, horizontal
wavelength 3 km, and (C) frequency 31.5 Hz, horizontal wavelength 0.994 km.
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B)

Figure 2.13: (A) A subset of the seismic profile Line 5, from 100 km to 125 km
(box D, Figure 2.3). (B) 2-D CWT coefficient computed for frequency 10.5 Hz, and
horizontal wavelength 3 km.
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more incoherent energy with low horizontal continuity is present in most of the image.

This part of the data corresponds to the lower flank of the Tamu Massif, where we

do expect small and discontinuous lateral events, but the low signal-to-noise ratio

hinders interpretations. We again show results from the low frequency of 10.5 Hz

with a horizontal wavelength of 3 km (Figure 2.13B) because that combination was

most effective in reducing the amplitude of the spatially discontinuous and laterally

incoherent energy in the previous example. The 2-D CWT images show features

that can be interpreted as several faults, which are hard to identify in the original

image. For example, there is a discontinuity beginning at the upper right corner of

the image and extending down to the left at an apparent dip of about 45 degrees in

the figure. The true dip is much less, given the vertical exaggeration in the figure.

Similar patterns suggesting faulting is present beginning at the top of the section at

a distance of 105 km and 120 km. Both features extend down to the left. Comparing

to (Figure 2.13A), the original seismic image is dominated by much less spatially

coherent energy, and because it is difficult to identify laterally continuous reflectors,

it will also be harder to locate potential faults.

2.5 Discussion

The CWT results show the potential value of this approach in facilitating in-

terpretations of data from geologically complex regions such as Shatsky Rise. In

general, the coefficient computed by the transform at a specific pair of values for

distance along the seismic profile and two-way traveltime is a measure of the energy

present in the seismic image for a chosen frequency and wavenumber. As long as

noise or artifacts have different frequency and wavenumber, a display of this coeffi-

cient in the same format as seismic data can therefore emphasize the image content

associated with reflections from geologic features such as massive lava flows more
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effectively than the original, noisy image. For example, Figure 2.8 displays the co-

efficient calculated for the relatively low frequency of 10.5 Hz, and the coefficient

values are strong for a number of intra-basement reflectors appearing from 5.5 s to

6.5 s that are almost completely hidden in the original data image (Figure 2.8A).

These reflectors have lengths approaching 20 km. Application of the CWT with

a longer wavelength produces an image with greater lateral continuity of reflection

amplitudes (Figure 2.8C) though this likely minimizes natural variation in reflection

amplitude. Arguably many of the trends associated with the longer reflectors may

have been detected even in the original image. However, one example of a relatively

significant change can be seen at the distance of 35 km and two-way times of about

5.8 s. In the original image, there is some indication of reflecting features, but the

CWT image for the wavelength 149 m produces much more similar reflection ampli-

tudes that help to see the geometry of the reflector without interference from the less

coherent signal in the image. Similarly, between distances of 25 to 30 km, around

6.5 s two-way time, both the original image and the CWT result show a fairly obvious

reflector. In the CWT image, we can also see a more irregular reflector that appears

to pinch out around 35 km, an observation we did not identify in the original image.

Also, a careful examination of the CWT image, especially for the wavelength 149 m

(Figure 2.8B), reveals an interesting arclike reflection pattern at distances around 25

to 28 km, with two-way travel time of about 5.1 s. We suggest that it is much more

difficult to identify this dome-like bulge in the original image and that it provides

evidence for a possible local accumulation of lava during an eruption. This especially

is a new result that was not obtained during original interpretations of these seismic

images (e.g., Zhang et al., in this volume).

Generally similar trends result for the 2-D CWT computed for different wave-

lengths at 31.5 Hz (Figure 2.9). Results for the very short horizontal wavelength of
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50 m are actually fairly similar to the original seismic image, since the noise con-

tent has similar scales (Figure 2.9B). In contrast, when the transform coefficients

are computed for the longer horizontal wavelength of 994 m, the short wavelength

noise does not affect the results, and the basement reflectors have increased lateral

continuity (Figure 2.9C). These intra-basement reflectors are interpreted as long

lava flows emanating from the center of the plateau. Therefore, one can vary the

horizontal wavelength of the wavelet to maximize the interpretation and to better

identify expected geologic features to the seismic image. In general, we find that

the combination of CWT coefficient images for 10.5 Hz and 149 m wavelength and

31.5 Hz and 990 m wavelength provides the greatest contributions to additional in-

sights into subsurface features in our interpretations. In general, we would expect

that examining CWT results for various combinations of frequency and wavenum-

ber will be important for understanding and explaining the images and for drawing

conclusions on geological issues.

Comparisons to the synthetic test image help to confirm these interpretations and

to demonstrate how to interpret them reliably. We recall that for lower frequencies,

the transform for a long wavelength can help to clearly locate reflecting features and

to suppress the effects of noise (Figure 2.5). However, the ability to resolve individual

reflectors is reduced. We can expect the same pattern for the field data, and this is

essentially what we see in Figure 2.8C. On the other hand, the longer wavelength

results at the higher frequency have suppressed the effects of noise but still allow

some inference of lateral variations in reflector amplitude.

The second area of Line 6, which is near the summit of the plateau is more

geologically complicated and has fewer long, continuous reflectors associated with

flows (Figure 2.11). It is also important to note that it is found underneath a cone-

like feature at shallower depths, and diffractions or other waves generated by this
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cone affect the image (see Figure 2.2). As a result, the image shows many short

intra-basement reflectors as well as significant noise. Unlike the results for the first

portion of Line 6, the 2-D CWT results calculated with the low frequency of 10.5 Hz

include a larger number of relatively short reflection events instead of long, continuous

reflectors (Figure 2.11B).

The first area of Line 5 to which we applied the CWT also displays some shallow

dipping reflectors (0.50−1.00), which in this case are similar to sedimentary clinoform

layers (Figure 2.12) (Zhang et al., in this volume). The 2-D CWT coefficients for

the low frequency of 10.5 Hz and horizontal wavelength 3 km show clear reflectors

and intra-basement reflectors with two-way traveltimes from 6.0 s to 7.0 s, while

values for the high frequency 31.5 Hz and wavelength 994 m are not much easier to

interpret than the original image. The lower frequency CWT result is more effective

for the complicated geological structure in this case. The noise and artifacts that

hinder analysis of the images are not well correlated over large distances or with

time, so they will have minimal impact on the coefficients for lower frequency and

longer wavelength.

The second area is difficult to interpret (Figure 2.13A) since there is a lot of

noise as well as shorter and more discontinuous reflection events. To improve the

interpretation, we calculate the 2-D CWT at low frequency of 10.5 Hz and long

horizontal wavelength of 3 km. Figure 2.13B shows intra-basement reflectors clearly

as well as some faults. For example, faults can be observed at position of 118 km with

two way travel times from 6.5 s to 7.5 s and at 123.5 km with two way travel-time

from 6.75 s to 8.1 s. These faults may be the results of ridge-related rifting or by

differential subsidence (Zhang et al., in this volume). The proposed faults are hard

to find in the original image, and identifying them is another important benefit of

utilizing the CWT images.
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These results therefore provide several examples of new geological insights that

result by applying the CWT to the seismic images, though systematic analysis to

make conclusions regarding Shatsky Rise will clearly require applications of the CWT

to entire seismic lines. Nonetheless, there are suggestions of some important new

results already. Based on initial interpretations of the multichannel seismic and

samples from core sites, Sager et al. (2013) suggested that Tamu Massif is a single,

massive volcano and that therefore it is composed of lava flows extending uniformly

away from a central site (see also Zhang et al., this volume). The layers would

therefore be subparallel in all directions. Complexities such as the bulging dome

identified in Line 6 suggest additional complexity that would motivate revision of

the hypothesis. An important goal for future research is therefore to carry out

more detailed processing and interpretation to better measure the geometry and

distribution of reflecting features such as lava flows around Tamu Massif.

2.6 Conclusions

In this research topic, we propose the application of 2-D CWT to characterize

the basement of oceanic plateaus such as Tamu Massif of Shatsky Rise. We use the

2-D normalized anisotropic Mexican hat wavelet to make quantitative comparisons of

results with different frequency and wavenumber. We note that it is important that

we apply the normalization constant mentioned in the discussion of equation 2.8 to

allow quantitative comparisons of coefficients for different wavelengths and frequen-

cies. The results of the 2-D CWT analysis on recent marine seismic data acquired

over Tamu Massif of Shatsky Rise help better reveal the structure and lateral vari-

ation of the basement. All of the images from 2-D CWT show that the amplitude

of incoherent noise is reduced in comparison to that of laterally continuous events.

While in some cases conventional bandpass filtering may be adequate for facilitating
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interpretation of images, the CWT will be a good option when the enhancement of

lateral continuity and minimization of signal with low coherence is required. The

test applications also show that is important to review CWT results with different

combinations of frequency and wavelength to select optimal values. In several cases,

the CWT provides benefits for interpretation by varying the horizontal wavelength

parameter to better correlate lateral reflectors which are associated as intra-basement

reflectors. On one line, the 2-D CWT allowed detection of possible faults not observed

in the original image, and in another example new dome-like features suggesting lava

intrusions were detected in the CWT image. These examples help support the role

of this approach in interpreting seismic images acquired in areas such as the Shatsky

Rise.
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3. MULTI-SCALE ANALYSIS THE SURFACE ROUGHNESS OF THE

MINERALS

3.1 Introduction

Geochemical reactions on mineral surfaces are important for a variety of studies,

including the movement of pollutants and ground water in acquirers. In addition, the

flow of hydrocarbons in reservoir formations is influenced by geochemical reactions

such as adsorption or absorption on pore surfaces. The relevant chemical processes

are strongly related to surface energy and the ability of exposed molecules to react

with materials in fluids. In particular, surface roughness is very important, because

a rough surface will typically have a much larger number of molecules exposed with

unfilled bonds (White and Brantley, 2003; Becker et al., 2001). Such molecules with

missing neighbors and unfilled bonds all have a greater free energy and can react

more readily. Therefore, it is very important to study the characterization of surface

roughness and its evolution during chemical reactions to better understand implica-

tions for the environmental or hydrocarbon applications. An enhanced knowledge of

the surface texture could lead to better understand the geochemical reactions and

environmental effects on the mineral surface.

The problem of studying surface texture and developing quantitative measures

for surface roughness at various spatial scales has been a challenging task (Reed

and Dubuf, 1993; Tuceryan and Jain, 1998). There is much previous work on the

characterization of texture (Thomas, 1982; Stout, 1993; Whitehouse, 1994), and

typical texture analysis is calculated at single spatial scale. In addition, the previous

methods are only applicable for stationary spatial patterns that show no variation

in scale with position. However, mineral surface textures are non-stationary and
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vary laterally. Therefore, the 2-D CWT is a good candidate for the study of the

spatial frequency content of such data. The 2-D CWT has been successfully applied

to characterize painted surfaces(Mezghania, 2011), where the surface roughness is

understood as any surface features with wavelength less than 0.8 mm. This surface

roughness measure is meaningful only for painted steel sheet surface (Mezghania,

2011). Another similar work is to observe the surface finishing of steel based on

decomposition of surface topographic by 2-D CWT (Zahouani et al., 2008), where

the surface roughness is defined as following

Ra =
1

N

N∑
i=1

zi (3.1)

Where zi is the element elevation, and the sum is taken over the entire of steel

surface sample. In this work, the author calculated the surface roughness of their

steel sample and the surface roughness parameter is 0.9 µm. This formula is also used

to calculate the surface roughness of material measured in atomic force microscope

(Namba et al., 2000). The 2-D CWT has not yet been applied to study mineral

surfaces to the best of our knowledge.

In this dissertation, we carry out the decomposition of the surface topography of

mineral surfaces by using 2-D CWT with a normalized Mexican hat wavelet, with the

aim of gaining information providing insights into the geochemical and weathering

effects on the mineral surface. There is no unique formula to calculate the surface

roughness. Since our surface elevation data for the minerals are measured by confocal

microscopy, we compare results from CWT to roughness measures computed using a

formula which is introduced by Lange et al. (1993). The details of the formalism are

given in section 3.3. We first calculate the surface roughness of each mineral sample,

then calculate the 2-D CWT coefficients at different wavelength. We study the
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characterization of 2-D CWT coefficients which are associated with the topographic

components at particular wavelength.

Below we first describe the confocal microscope system that is used to acquire

the surface height data for mineral samples of interest. Some errors can occur in

measurements, and these errors create “spikes” (artifacts) on the mineral surface.

We will show how we remove the spikes by using a 2-D median filtering method. We

review the formula of the surface roughness which is used in building topographic of

confocal microscopic, and we then calculate the surface roughness for each mineral

sample. Finally, we present data and 2-D CWT analysis for two samples of the

mineral Fe2O3 and three samples of calcite. The results of decomposition of the

mineral surface by using 2-D CWT are discussed.

3.2 The confocal microscope

In this research subject, we use confocal microscopy to obtain three-dimensional

descriptions of the minerals samples. We will describe how the confocal microscopic

work and the way topographic map of mineral sample is obtained.

Confocal microscope is optical device which have ability of obtaining the bright

images in focus region while causing all out of focus regions to be dark (Lange et

al., 1993). The Figure 3.1 shows the typical image at certain surface height value of

the sample mineral of Fe2O3. The topography image of the samples are created by

assembling a series of optical sections (Figure 3.2). Each optical section is presented

at different focal plane. Therefore there is no limitation of the depth field in the

measurement by using confocal microscopes (Lange et al., 1993). This is the reason

why confocal microscope is a useful method to image non-flat materials (Lange et

al., 1993). The intensity of each pixel in the image depends on each optical section as

the image can be in or out focus (Figure 3.3). The topographic map of the mineral
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Figure 3.1: Typical image obtained in confocal microscopic, mineral sample Fe2O3

. The grey scale image identifies the portion of the surface at a specific elevation
value.

obtained by using confocal microscopy is a digital image where each pixel represents

the vertical value (Lange et al., 1993).

The actual surface of the mineral sample was calculated by using the “Fiji”

software package to generate the geometric construction of the surface from the

microscope data. Figure 3.4 shows that the surface of mineral Fe2O3 sample displays

a number of single sample errors or glitches that we will refer to as spikes. The values

of these spikes are very different from the neighboring values. For example, the value

of the spikes is about 1 µ while the neighboring values are near 30 µ. These spikes are

likely due to some artifact of the confocal microscope measurements, and the surface

with these spikes does not reflect the true roughness of the surface of the mineral.

Therefore one needs to remove these spikes before carrying out surface analysis. We

remove these spikes by following the 2-D median filtering method. The reason is

that median filtering is a nonlinear operation and more effective than convolution
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Figure 3.2: Optical sections with confocal microscope (Lange et al., 1993).
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Figure 2 Confocal microscope and image analyser apparatus. 

Material properties were evaluated by a compre- 
hensive programme which included three-point bend 
tests of notched beams. The fracture surfaces resulting 
from the bend tests were observed by confocal micro- 
scopy as described below. 

3. Construct ion of the topographic  map 
A typical image observed using the confocal micro- 
scope is shown in Fig. 3. The image is a grey image in 
which a full range of brightness is present. The bright 
areas correspond to in-focus regions; the dark areas 
are out-of-focus regions. 

A topographic map is created by assembling a series 
of optical sections as illustrated in Fig. 4. As shown in 
Fig. 5, the intensity of a given pixel in the digital image 
will vary from section to section as the image goes in 
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Figure 4 Optical sectioning with the confocal microscope. 
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Figure 5 Typical pixel intensity as function of optical section z-level. 

Figure 3 Typical image observed in confocal microscope. 
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and out of focus. Every pixel (i.e. x - y  coordinate) in 
the topographic, map is assigned a numerical value 
that corresponds to the z-level of the section at which 
the pixel intensity is maximized. 

The topographic maps are constructed using the 
algorithm described by the flow diagram in Fig. 6. 

Figure 3.3: Typical pixel intensity as function of optical section (Lange et al., 1993).
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Figure 3.4: Topographic map of Fe2O3 mineral sample with spikes

Figure 3.5: Topographic map of Fe2O3 mineral sample without spikes
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(Matlab 2012b). The algorithm of 2-D median filtering is that with a given window

matrix m-by-n running over the 2-D surface data, the height value of the surface pixel

is replaced by the median value of m-by-n neighborhood around the corresponding

pixel. In our calculation, we select the window matrix is 4 by 4. Figure 3.5 shows

the surface of the mineral Fe2O3 sample after removing spikes. This operation is

applied to each topographic map of mineral sample. In the next sections, all the

topographic maps are presented without spikes.

3.3 The surface roughness formalism

Surface roughness, the variation in height of a surface relative to an ideal uniform

trend, has had several measurements defined in different fields of research, but there is

no unique value. In this section, we summarize the measurement of surface roughness

given in detail in Lange et al. (1993). We follow this formalism to calculate the surface

roughness of the minerals by using topographic measured in confocal microscopic.

The surface roughness is defines as

Rs =

∑
As∑
An

, (3.2)

whereAs is the approximate element area of topographic map, and An is the nominal

element surface area. The sum is over the entire surface. Figure 3.6 illustrates the

geometry of element topographic map which is used to calculate the actual surface.

The lines segments are calculated by the following equations (Lange et al., 1993)

sij = [s2 + (zi − zj)]1/2, (3.3)
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but for the line segment s13, the formula is

s13 = [2s2 + (z1 − z3)]1/2. (3.4)

Perimeters are given by

p1 =
1

2
(s12 + s23 + s13), (3.5)

p2 =
1

2
(s34 + s42 + s13), (3.6)

and the triangle areas are

A1 = [p1(p1 − s12)(p1 − s23)(p1 − s13)]1/2, (3.7)

A2 = [p2(p2 − s12)(p2 − s23)(p2 − s13)]1/2, (3.8)

and the element surface area is

As = A1 + A2. (3.9)

The normal surface area is given

An = s2 (3.10)

The values of surface roughness of each sample are calculated and presented in each

mineral sample figures in section 3.4 to compare to new CWT results. In the next

section, we describe the topographic maps of the mineral samples used for study the

surface roughness.
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Figure 3.6: Representative area element bounded by four neightbouring pixels in the
topographic map (Lange et al., 1993).

3.4 Topographic maps of minerals

In this section, we present the surface mineral datasets measured by confocal

microscope. The mineral samples that we study in this dissertation include two

samples of Fe2O3 and three samples of calcite. In the measurement by confocal

microscope, we have 173 optical sections for first Fe2O3 mineral sample (sample A,

Figure 3.7), 201 optical section for second sample (sample B, Figure 3.8), and 107,

125 and 322 optical sections for calcite in the Figures 3.9, 3.10, 3.11. Note that

the number of optical sections for sample C of Calcite (Figure 3.11) is quite large

compared to other sample of calcite because the surface of sample C is very rough.

It is also important to note that measurements for both Fe2O3 samples represent a

300 by 300 grid, but sample A has a horizontal sample interval 2.485 microns, and

sample B has 0.159 microns. For the calcite measurements, samples A and B both

have 590 by 590 points, while sample C has a 600 by 600 grid. The horizontal sample
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intervals for calcites A, B and C are 0.3, 0.295 and 0.147 microns, respectively.

In this dissertation, we study the effect of geochemical and weathering reactions

on the surface of the mineral, therefore we collected two different types of mineral

surfaces. The first group includes mineral with surfaces that were exposed to weath-

ering, and we can observe the erosion of geochemical and weathering reactions on

two samples of Fe2O3 mineral (Figures 3.7, 3.8) and two samples of calcite (Figures

3.10 and 3.11). The erosion effects create large fluctuations of the elevation on the

surface (Figures 3.7, 3.8, 3.10 and 3.11). We need to determine the location where

the most geochemical reactions will occur. These location are associated with the

surface energy which is defined as the disruption of inter-atomic bonds (White and

Brantley, 2003; Becker et al., 2001).

The second type of mineral surface is from the unweathered material, a fresh

crystal surface. Since this is the surface of a fresh cleavage plane from a calcite

crystal, we expect to see uniform surface of calcite (Figure 3.9). The topographic

map of this mineral is quite smooth compared to other calcite minerals.

3.5 Roughness analysis of surface of mineral samples

In this section, we apply the 2-D CWT method which is presented in Chapter

2 to study the characterization of surface roughness of the each mineral samples as

well as the effects of geochemical reactions. We use the 2-D normalized isotropic

Mexican hat wavelet (equation 2.5) for all calculations.

3.5.1 Fe2O3 mineral samples

The surface elevation maps for two samples of Fe2O3 mineral are given in Figure

3.7 and 3.8. The size of sample A (745.5 µ) is larger than the size of sample B (47.7

µ). The topographic maps of these Fe2O3 samples show the effects of geochemical

reactions on the mineral surfaces. The surface roughness is 1.2132 for sample A and
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Figure 3.7: Sample A: Fe2O3 sample, with computed surface roughness parameter
Rs = 1.2132

µ

µ

 

 

7.95 15.9 23.85 31.8 39.75 47.7

7.95

15.9

23.85

31.8

39.75

47.7 0

5

10

15

20

25

30

35

40

Figure 3.8: Sample B: Fe2O3 sample, with computed surface roughness parameter
Rs = 2.8007
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Figure 3.9: Sample A: calcite sample, with computed surface roughness parameter
Rs = 1.1774
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Figure 3.10: Sample B: calcite sample, with computed surface roughness parameter
Rs = 1.2499
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Figure 3.11: Sample C: calcite sample, with computed surface roughness parameter
Rs = 13.2589

2.8007 for sample B by using equation 3.2. We can observe that the surface of sample

B is more rough than the one in sample A.

3.5.1.1 Sample A of Fe2O3 mineral

The mineral surface of Fe2O3 mineral sample in Figure 3.7 displays very high

elevation at the right upper corner, and very low elevation in the right lower corner.

The surface is not smooth due to the weathering processes. The surface component

associated with 2-D CWT coefficient in Figure 3.16 calculated at wavelength of 368.1

µ, which is about half of the sample size, shows that the mineral surface in Figure 3.7

has several major distinct regions. The high elevation areas are represented in red

and low elevation as blue and green. At this large wavelength, we can not observe the

details of the surface since the surface roughness (Rs = 1.2132) is small while Figure

3.16 shows only the surface component at large size associated with the wavelength
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of 368.1 µ. Figures 3.13, 3.14 and 3.15 show the 2-D CWT coefficients calculated at

different wavelengths of 24.5 µ, 73.6 µ, and 122.7 µ. We see that when the wavelength

of the Mexico wavelet increases, the maximum values of amplitude of the 2-D CWT

coefficients also increase from 1800 to 3200 and 8000 respectively.

The 2-D CWT coefficient in Figure 3.13 calculated at wavelength of about 24.5

µ, one can identify locations of small objects with high amplitude (red spot) of the

topographic map. These objects are hidden in the surface data (Figure 3.7) which

are not easy to be identified. This observation can help us to identify the location

of chemical and weathering initial reactions since they have high surface energy.

These location have the size less than 24.5 µ. When we increase the wavelength

of the wavelet to 73.6 µ (Figure 3.14) and 122.7 µ (Figure 3.15), the location of

these details spread out as we expect because the 2-D CWT coefficient with larger

wavelength can only measure the larger objects on the surface.

3.5.1.2 Sample B of Fe2O3 mineral

The second sample of Fe2O3 mineral is displayed in the Figure 3.8. We note

that this sample is quite small, it is about 1/15 of the size of the previous Fe2O3

sample. The topographic map shows the surface of the mineral very rough, with

roughness 2.8007 (using equation 3.2). Figure 3.21 shows the 2-D CWT calculated

at wavelength of 23.6 µ, which is about half the size of the sample. We can not observe

the small surface object because the surface is rough, it forms by small object and

and this 2-D CWT coefficient represents the surface component of formed by object

at large wavelength. We carry out 2-D CWT calculations at smaller wavelengths of

0.4 µ, 3.0 µ, 7.0 µ. Figures 3.18 shows that at very small wavelength of 0.4 µ, one can

observe the location of very small objects with maximum amplitude of 0.7 µ. Other

areas of the surface mineral do not contribute much to the roughness since they have
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Figure 3.12: Sample A: Fe2O3 sample, with computed surface roughness parameter
Rs = 1.2132
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Figure 3.13: Sample A Fe2O3 mineral: 2-D CWT calculated at λ = 24.5 µ

µ

µ

 

 

124.25 248.5 372.75 497 621.25 745.5

124.25

248.5

372.75

497

621.25

745.5
3000

2000

1000

0

1000

2000

Figure 3.14: Sample A of Fe2O3 mineral: 2-D CWT calculated at λ = 73.6 µ
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Figure 3.15: Sample A of Fe2O3 mineral: 2-D CWT calculated at λ = 122.7 µ
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Figure 3.16: Sample A Fe2O3 mineral: 2-D CWT calculated at λ = 368.1 µ
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Figure 3.17: Sample B: Fe2O3 sample, with computed surface roughness parameter
Rs = 2.8007
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Figure 3.18: Sample B of Fe2O3 mineral, 2-D CWT calculated at λ = 0.4 µ
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Figure 3.19: Sample B of Fe2O3 mineral, 2-D CWT calculated at λ = 3.0 µ
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Figure 3.20: Sample B of Fe2O3 mineral, 2-D CWT calculated at λ = 7.0 µ
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Figure 3.21: Sample B of Fe2O3 mineral, 2-D CWT calculated at λ = 23.6 µ
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small amplitudes close to zero. These locations displayed red spots are not easy to

observe in the original topographic and they have very high surface energy. This

observation again help us to determine the initial chemical and weathering reactions

on the surface.

When we increase the wavelength of wavelet to 3.0 µ and to 7.0µ the details of

the surface will decrease as we expect from the nature of the 2-D CWT analysis.

The the maximum amplitude of the 2-D CWT coefficients increase from 3 µ to µ

proportionally with the increment of the wavelength from 3.0 µ (Figure 3.19) to 7 µ

(Figure 3.20). The details of the surface in Figure 3.18 could explain the weathering

process initially occur then spread out (Figures 3.19, 3.20).

3.5.2 Calcite samples

In this section, we present the results of 2-D CWT for the mineral samples of

calcite given in Figures 3.9, 3.10, and 3.11 and by using equation 3.2 the surface

roughness are 1.1774, 1.2499 and 13.2589, respectively. The sample A represents

the fresh cleavage plane surface of the mineral, where there is no geochemical or

weathering reaction effect on the surface. Therefore the surface is very smooth and

it has smallest value of surface roughness. Sample B and sample C are the samples

represents the exposed surface, where we can observe the effects of the chemical and

weathering reactions. The surface of sample C is much more rough than the one of

sample B, and it is confirmed by the biggest value of surface roughness Rs.

3.5.2.1 Sample A of calcite

This sample is a fresh cut of the calcite therefore there is no geochemical or

weathering process on the surface. We expect to observe the topography consistent

with a face of a calcite crystal on the surface. The cross section view of the mineral

sample is displayed in Figure 3.22. The figure shows stair-step periodic structure.
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Figure 3.22: Sample A: calcite, 1-D data line

The increments in surface height is 0.5 µ. This is due to artifact of the discretization

used in acquiring the microscope data. The width of each stair-step is around 31

µ. Figure 3.26 shows 2-D CWT coefficient calculated at wavelength of 32.2 µ, the

value of the wavelength is consistent with the observation of the width of the stair-

step pattern displayed in Figure 3.22. This 2-D CWT coefficient represents the

surface component at this large wavelength, therefore we can not observe the details

of the surface mineral since the surface is very smooth with the smallest roughness

of 1.1774. At this large wavelength, the 2-D CWT coefficient proves to detect the

surface objects with similar size, that is stair-step pattern.

The 2-D CWT coefficient calculated at 3.2 µ which is ten times smaller than the

width of the stair-step pattern in the Figure 3.24 shows the random distribution of

small object on the surface of calcite. This distribution is somewhat hard to observe

in the data (Figures 3.9). When the wavelength of the wavelet increase to about of
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Figure 3.23: Sample A: calcite, with computed surface roughness parameter Rs =
1.1774
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Figure 3.24: Sample A: calcite, 2-D CWT calculated at λ = 3.2 µ
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Figure 3.25: Sample A: calcite, 2-D CWT calculated at λ = 9.6 µ
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Figure 3.26: Sample A: calcite, 2-D CWT calculated at λ = 32.2 µ
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9.6 µ, all the detail of the surface are lost, and the surface component is more rough,

we can also observe the uniform distribution but with larger size objects. Since

this sample is very smooth with Rs = 1.1774, in order to observe small object, one

should calculate 2-D CWT coefficients with wavelength less than 3.2 µ. We do note

that these points are artificial, since the apparent stair-step topography is simply an

artifact of the limited resolution of the data set.

3.5.2.2 Sample B of calcite

Figure 3.10 shows another sample of calcite with almost the same size but with

higher value of surface roughness of 1.2499, and we can observe the surface is more

rough than the first sample (Figure 3.9). This sample is collected from an exposed

mineral surface, and there is more effect of chemical and weathering reaction on the

surface. The surface does not display any periodic pattern, but elevation gradually

changes from the bottom of the sample, and there is high elevation object running

from southwest to northeast on the surface. Figure 3.27 which displays the peak of

1-D vertical profile of the mineral surface data confirms further the existence of the

high elevation object, which may be results from weathering process.

The 2-D CWT coefficient in Figure 3.31 calculated at wavelength of 34.6 µ reveals

clearly the location of the high elevation object on the surface mineral. At this large

wavelength we can observe the other large features displayed as blue and red with size

of 34.6 µ. Figure 3.29 shows the 2-D CWT coefficient calculated at small wavelength

of 4.1µ, we could not observe the previous high elevation object anymore, one can

learn that the size of this object is much larger than 4.1 µ. From Figure 3.29, one

can start to observe some few objects displayed as red with very high amplitude

of 2 µ compared to the rest of the sample. These objects have very high surface

energy therefore it is ready for chemical and weathering reactions These locations
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Figure 3.27: Sample B: calcite, with computed surface roughness parameter, 1-D
data line

are more visible when 2-D CWT calculated at wavelength of 17.3 µ (Figure 3.30).

The surface component is more rough but we lost the detail objects. We expect the

erosion process geochemical reactions start from the above locations.

3.5.2.3 Sample C of calcite

The last sample of calcite is collected from exposed surface (Figure 3.11), the

surface is very rough and it is very difficult to identify the location with high surface

energy. The roughness of this sample is very high, which is 13.2589. The mineral

surface may be the effects of very strong erosion of the geochemical and weathering

processes. It is very difficult to determine the locations with high surface energy

from the topographic (Figure 3.11). Since the surface is very rough, it is formed by

small objects. Therefore we carry out 2-D CWT calculation with small wavelength

of wavelet of 2.15 µ (Figure 3.33) and 4.3 µ (Figure 3.34). When we increase the
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Figure 3.28: Sample B: calcite, with computed surface roughness parameter Rs =
1.2499
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Figure 3.29: Sample B: calcite, 2-D CWT calculated at λ = 4.1 µ
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Figure 3.30: Sample B: calcite, 2-D CWT calculated at λ = 17.3 µ
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Figure 3.31: Sample B: calcite, 2-D CWT calculated at λ = 34.6 µ
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Figure 3.32: Sample C: calcite, with computed surface roughness parameter Rs =
13.2589
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Figure 3.33: Sample C: calcite, 2-D CWT calculated at λ = 2.15 µ
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Figure 3.34: Sample C: calcite, 2-D CWT calculated at λ = 4.3 µ
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wavelength from 2.15 µ and 4.3 µ, the surface component associated with the 2-

D CWT coefficients become more rough, it also increases the maximum value of

amplitude from 12 µ to 22 µ. Comparing to the topographic of the mineral in Figure

3.11, one now can identify the locations of the small objects with the size of 2.15 µ.

These object have very high amplitude of around 10 while the rest of object on surface

component have very small amplitudes. The location of these object therefore have

very high surface energy which is critical for geochemical and weathering reactions.

3.6 Discussion

Equation 3.2 has been proposed as a statistic for measuring surface roughness and

comparing measurements from different materials. However, results for the mineral

samples we consider show the limited utility of this parameter, since four of five

samples have very similar values of Rs between 1 and 2. In particular, the rough,

weathered surface of Fe2O3 sample A was measured with a relatively coarse spacing

of 2.485 microns. The similar sample B was measured with 0.159 microns. Thus, even

though the mineral surfaces are very similar, the roughness statistic Rs for sample

B is 2.8 compared to the sample A value of 1.21. This is because the finer sampling

allows the measurement of more detailed variations in topography and thus the area

ratio in equation 3.2 is larger. This is also why the computed Rs for the iron oxide

sample A is essentially the same as that for the cleavage plane measured for calcite

A (1.18). Thus Rs has clear limitations in its ability to characterize topography,

and in the fact that it is a global measurement that provides no insights into spatial

variations in roughness.

In contrast, the CWT coefficient maps for both data sets from the Fe2O3 (Figures

3.7 and 3.8) clearly identify the portions of the mineral roughness with the increased

roughness at different spatial scales. Figure 3.13 shows that the surface, which has
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clear structure in the original plot of its topography, has concentrated areas with

sharper variations in height in the upper half of the image when measured at a

wavelength of 24.5 µ. Even increased wavelengths of 73.6 and 122.7 µ show the same

regions as having more structure in the upper portion of the image (Figures 3.14,

3.15). Only at the largest wavelength, 368.1 µ, does significant amplitude appear

in wavelet coefficients in the bottom portion of the image (Figure 3.16). Thus the

variation in elevation there is only present at comparatively long wavelengths, and

the surface is rather smooth. Though the CWT approach does not directly yield

a single number intended to represent roughness, it does make it easier to identify

the specific locations with greatest contrast in height (roughness), especially when

using the smallest wavelength, which also provides the best spatial resolution. This

is important for geochemical studies, since these will be the locations where reactions

will take place most rapidly.

The calcite B also presents an interesting example, since it is very smooth (Fig-

ure 3.27). While the original image shows very little variation, the CWT analysis

identifies clear structure in the surface, in this case most obviously at the wavelength

17.4 µ (Figure 3.30). The more intense red and blue colors in this coefficient im-

age again highlight portions of the mineral surface that have the largest variation

in elevation, and thus will experience faster reactions. It is also interesting to note

that the longest wavelength tested, 34.6 µ, also shows clearly a roughly linear surface

feature that extends diagonally across the surface (Figure 3.31).

Calcite C is clearly the roughest mineral surface sampled in our data set, with

the Rs value of 13.3 (Figure 3.11). In this case, the Rs value is useful in giving an

indication of the variability in surface height. However, even when examining the

surface data as shown in the figure, it is difficult to determine the areas with the

greatest degree of roughness where we would expect reactions to be concentrated.
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Here the wavelet results are also very useful, because the transform coefficients show

several regions of greater amplitude at relatively small wavelengths of 2.15 and 4.3 µ

(Figures 3.33, 3.34).

Future research could test these interpretations and analysis by conducting lab-

oratory experiments where the measured mineral surfaces are subjected to chemical

reactions. Repeating the surface topography measurements and CWT analyses after

the reactions have taken place should show changes in the positions of rough edges.

For example, the positions of the bands of red and blue colors marking rapid changes

in heigh, edges, in Figure 3.34 should be found in different locations. Comparisons

of such images could also then be used to infer how much of the mineral surface has

been altered or removed during these geochemical experiments.

3.7 Conclusions

For the first time, 2-D CWT has been applied to study the surface roughness at

very small scale (micron) such as surface of the minerals. The main purpose of this

research topic is to characterize the surface roughness of mineral samples to reveal

the structure pattern as well as the interested objects of the exposed surface to help

understand the geochemical and weathering processes.

We collect two different types of mineral surfaces, one fresh crystal mineral surface

of calcite and four exposed surface for two samples of Fe2O3 and two samples of

calcite. For the un-exposed surface of calcite, the width of the stair-step pattern

of the fresh-cut calcite have been detected by using 2-D CWT with wavelength of

32.2 µ. The other two surface samples of calcite and two samples of Fe2O3 show the

erosion effects, the application of 2-D CWT analysis help to localize any objects with

any size created by geochemical and weathering reactions by carrying out 2-D CWT

coefficient at corresponding wavelength. This property help us to understand better
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the characterization of surface roughness during the geochemical and weathering

processes. The 2-D CWT coefficients also help us to localize the positions on the

mineral surface with high surface energy. the geochemical and weathering reactions

occur initially on these locations. In the future works, if we can carry out the

2-D CWT inversion, we can rebuild the topographic map of the mineral at certain

wavelength of the wavelet, then calculate the surface roughness by using equation 3.2.

We can see direct the relationship between the surface roughness and the wavelength.
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4. CONCLUSIONS

Ins this section, I summarize the scientific contributions of the application of 2-D

CWT to study the marine seismic data and mineral surface data.

In this dissertation, we propose the application of 2-D CWT to characterize the

basement of oceanic plateaus such as Tamu Massif of Shatsky Rise. We use the

2-D normalized anisotropic Mexican hat wavelet to make quantitative comparisons

of results with different frequency and wavenumber. We find that it is important

that we apply correct normalization constants in the equation 2.8, to allow quan-

titative comparisons of coefficients for different wavelengths and frequencies. The

results of the 2-D CWT analysis on recent marine seismic data acquired over Tamu

Massif of Shatsky Rise help better reveal the structure and lateral variation of the

basement. All of the images from 2-D CWT show that the amplitude of incoherent

noise is reduced in comparison to that of laterally continuous events. We also show

the comparison between the conventional bandpass filtering and 2-D CWT. The re-

sults show that in some cases conventional bandpass filtering may be adequate for

facilitating interpretation of images, the CWT will be a good option when the en-

hancement of lateral continuity and minimization of signal with low coherence is

required. The test applications also show that is important to review CWT results

with different combinations of frequency and wavelength to select optimal values. In

several cases, the CWT provides benefits for interpretation by varying the horizontal

wavelength parameter to better correlate lateral reflectors which are associated as

intra-basement reflectors. On one line, the 2-D CWT allowed detection of possible

faults not observed in the original image, and in another example new dome-like

features suggesting lava intrusions were detected in the CWT image. These exam-
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ples help support the role of this approach in interpreting seismic images acquired in

areas such as the Shatsky Rise. In the future works, in order to understand better

deeper part of Tamu Massif oceanic crust, one should complete more sets of marine

seismic data so we will have a complete the interpretation of the oceanic crust. It is

very crucial to understanding the volcanism evolution.

For the first time, 2-D CWT has been applied to study the surface roughness at

very small scale (micron) such as surface of the minerals. The main purpose of this

research topic is to characterize the surface roughness of mineral samples to reveal

the structure pattern as well as the interested objects of the exposed surface to help

understand the geochemical and weathering processes.

We collect two different types of mineral surfaces, one fresh crystal mineral surface

of Calcite and four exposed surface for two samples of Fe2O3 and two samples of

Calcite minerals. For the un-exposed surface of Calcite mineral, the width of the

stair-step pattern of the fresh-cut Calcite mineral have been detected by using 2-D

CWT with wavelength of 32.2 µ. The other two surface samples of Calcite and two

samples of Fe2O3 show the erosion effects, the application of 2-D CWT analysis help

to localize any objects with any size created by geochemical and weathering reactions

by carrying out 2-D CWT coefficient at corresponding wavelength. This property

help us to understand better the characterization of surface roughness during the

geochemical and weathering processes. The 2-D CWT coefficients also help us to

localize the positions on the mineral surface with high surface energy. the geochemical

and weathering reactions occur initially on these locations. In the future works, if

we can carry out the 2-D CWT inversion, we can rebuild the topographic map of the

mineral at certain wavelength of the wavelet, then calculate the surface roughness by

using equation 3.2. We can see direct the relationship between the surface roughness

and the wavelength.
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