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ABSTRACT 

 

 Artificial hydrophobic and superhydrophobic surfaces have been studied in 

the last ten years in an effort to understand the effects of structured micro- and nano-

scale features on droplet motion and self-cleaning mechanisms. Among these 

structured surfaces, hybrid surfaces consisting of a combination of hydrophilic and 

hydrophobic materials have been designed, fabricated and characterized to 

understand how surface properties and morphology affect enhanced droplet growth 

rates and droplet shedding during condensation. However, use of hybrid surfaces in 

condensation leads to a strong pinning effect that takes place between the 

condensing droplets and the hydrophobic-hydrophillic edge, leading to a significant 

contact angle hysteresis effect. In an effort to circumvent the pinning effect, a 

vibration-induced droplet shedding method has been explored to overcome contact 

angle hysteresis and facilitate droplet shedding at lower rolling angles. 

To understand the effects of hybrid surface morphology and vibration modes 

on droplet removal from surfaces used for condensation, this research study focuses 

on the effects of acoustic-induced vibrations on droplet sliding at different inclined 

angles on hybrid surfaces. A hydrophilic surface (silicon surface) has been used as 

the baseline in the study to be able to uncover the effects of vibration on pinned 

droplets. Firstly, the relationship between sliding angles and droplet volume was 

investigated experimentally for hybrid surfaces with different spacings. Then, the 

effects of natural resonance frequencies of droplets with different volumes on 
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different surfaces were also studied using a resonance model and a customized 

experimental setup. Acoustic-induced vibrations were then applied to the surfaces to 

understand the effects of single or multiple resonance frequencies on droplet sliding 

angles. Droplet vibration and roll-off processes were experimentally characterized 

using a high speed imaging system. An acoustic sensor was also used to measure the 

induced frequencies and amplitudes.   

 Experimental results to date show that hybrid surfaces with larger spacing 

leads to lower droplet sliding angles. Furthermore, droplets under the influence of 

acoustic waves depict different contour morphologies when vibrating at different 

resonance frequencies. Moreover, droplet sliding angles can be reduced through 

vibration when the proper combination of droplet size and surface morphology is 

prescribed. Future studies will consider the use of acoustic waves in actual 

condensers. 
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NOMENCLATURE 

 

A Area 

g Gravitational acceleration 

j Resonance mode 

m weight of the droplet 

p Half arc length of a droplet 

qj Wave factor for one dimensional capillary-gravity wave 

R Droplet radius 

rf roughness factor 

V Droplet volume 

γ Surface tension 

θ0 Intrinsic contact angel

θA Advancing angle 

θCB Apparent contact angle on a heterogeneous surface 

θR Receding angle 

θW Apparent contact angle on a rough surface 

ρ Density of droplet 

φ1 Ratio of the liquid-vapor interfacial area to the projected area 

φ2 Ratio of the liquid-solid interfacial area to the projected area 

ω Resonance frequency 
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Subscript: 

j Resonance mode 

L Liquid 

S Solid 

V Vapor 
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1. INTRODUCTION 

1.1 Motivation 

Artificial hydrophobic and superhydrophobic surfaces have been studied in the 

last ten years in an effort to understand the effects of micro- and nano-scale structures on 

droplet motion and self-cleaning mechanisms.  Such surfaces are characterized by 

having high contact angles and low contact angle hysteresis, resulting in easy liquid-

shedding, preferably during condensation [1, 2]. Recent studies [3, 4] have revealed that 

enhanced dropwise condensation occurs once nucleation has taken place. However, 

hydrophobic surfaces exhibit lower nucleation rates because of higher contact angles and 

a higher nucleation energy barrier [5]. Hybrid surfaces, consisting of a combination of 

hydrophilic and hydrophobic materials, were designed, fabricated and characterized to 

enhance droplet nucleation, droplet growth rates and droplet shedding during 

condensation [6-10]. 

Droplet shedding on hybrid surfaces, however, is limited because the pinning 

effect that occurs between the condensing droplets and the hydrophobic-hydrophillic 

edge, leading to a significant contact angle hysteresis effect. An external force is thereby 

required to minimize or eliminate the hysteresis effect. Previous studies [11-16] show 

that using acoustic vibration is an effective way to induce droplet shedding by forcing 

wetting transition from the Wenzel to the Cassie-Baxter state. Once the energy barrier 

associated with the pinning effect has been overcome through induced vibration, 

droplets are able to shed from the surfaces. Therefore, acoustic induced vibration of 
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droplets has been found to be a feasible method to resolve the problem of the pinning 

effect on hybrid surfaces.  

Even though the vibration-induced wetting transition was investigated in some 

recent studies, the vibration mechanism of droplet shedding has not yet been fully 

understood. This research quantitatively considers the effect of acoustic vibration on 

droplet sliding angles under various vibration resonance conditions, providing a possible 

way to effectively shed droplet off hydrophobic-hydrophilic hybrid surfaces with high 

contact angle hysteresis. 

1.2 Objectives 

The specific objectives of this research were to understand the effects of hybrid 

surface morphology and acoustic vibration on droplet removal from surfaces used for 

condensation. This study focused on the effects of acoustic-induced vibrations on droplet 

sliding at different inclined angles on hybrid surfaces. The relationship between droplet 

sliding angles and droplet volumes was firstly investigated through experimentation. 

Then, the effects of natural resonance frequencies of droplets with different volumes on 

different surfaces were also studied and analyzed using a resonance model and a 

customized experimental setup. Acoustic-induced vibrations were then applied to the 

surfaces to understand the effects of single or multiple resonance frequencies on droplet 

sliding angles. Droplet vibration and sliding processes were experimentally 

characterized using a high speed imaging system and an acoustic sensing device. 
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2. BACKGROUND AND LITERATURE REVIEW  

2.1 Fundamental theories of liquid micro-droplets 

The wetting characteristics of droplets have been described and analyzed using 

the Cassie and Wenzel theories. Droplets on the Cassie state, the state in which there are 

air pockets between the droplets and the bottom of a micro-structure, are much easier to 

leave surfaces than when they are on the Wenzel state, the state in which the droplet will 

wet the entire liquid-solid interfacial structure. The transition between wetting regimes 

(i.e. transition from the Wenzel to the Cassie state) is one of the main causes that affects 

contact angle hysteresis of droplets on the surfaces, which affects droplet mobility. 

This section introduces the fundamental theories related to droplet wettability and 

contact angle hysteresis, which are helpful in the understanding of the mechanisms that 

lead to droplet’s contact angle hysteresis. 

2.1.1 Contact angles and wettability 

From the established wettability theories, one is able to calculate the droplet 

contact angles when droplets sit on wtetable and non-wettable surfaces. Contact angles 

of droplets are related to surface tension by using the Young’s equation, which relates 

surface tension forces between the different phases and the intrinsic contact angle (θ0) 

when a droplet is at static equilibrium [17].  The Young’s equation is as follows: 

cos𝜃! =
𝛾𝑆𝑉−𝛾𝑆𝐿
𝛾𝐿𝑉

     (2-1) 
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Where γSV, γSL, and γLV  are the surface tension between the solid and vapor phases, solid 

and liquid phases, and liquid and vapor phases, respectively. As shown in Fig. 2-1, if θ0 

is greater than 90°, the surface is considered to be hydrophobic; contrarily, it is 

hydrophilic.  

 

 

Fig. 2-1 Schematic drawing of side view of (a) a droplet on the hydrophobic surface (b) 
a droplet on the hydrophilic surface 

The Young’s equation for any ideal surface, however, it is not enough to accurately 

describe the wetting characteristics of droplet on most surfaces in nature. Since there are 

various micro- or nano-structures existing on real surfaces, such as papillae, fold, and 

pores, which exhibits different surface roughness, Wenzel (1936) [18] and Cassie-Baxter 

(1944) [10] revised the Young’s equation to take into account homogeneous and 

heterogeneous wetting behavior on non-ideal surfaces. 

Wenzel proposed a model to describe homogeneous wetting regime as shown in 

Fig. 2-2(b) [18]. The Wenzel model is as follows: 

cos𝜃! = 𝑟!cos𝜃!     (2-2) 

γSV

γLV

γSL θ0γSV

γLV

γSL
θ0
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𝑟! =
!!"#
!!"#

     (2-3) 

Where θW is the apparent contact angle on a rough surface, θ0 is the intrinsic contact 

angle acquired from the Young’s equation, and the roughness factor, rf, is defined as the 

ratio of actual contact area between the droplet and the solid surface to the projected area. 

By definition, roughness factor rf is either equal or greater than 1, which means surface 

roughness will strengthen either the hydrophobicity or hydrophilicity of the surface with 

respect to the droplet.  

 

 

Fig. 2-2 Schematic drawing of droplet contact modes (a) on the ideal surface (b) for 
homogeneous wetting (c) for heterogeneous wetting 

However, the Wenzel model is not sufficient enough to account for the heterogeneous 

nature of rough surfaces. As seen in Fig. 2-2(c), air is trapped between the droplet and 

the surface structure, resulting in the composite surface formed by the liquid-solid and 

vapor-solid interfaces. The Cassie-Baxter equation was developed to explain 

heterogeneous wetting as shown below [10]. 

cos𝜃!" = 𝜑!cos𝜃! + 𝜑!cos𝜃!   (2-4) 

(a) smooth surface (b) wetted surface (c) composite surface

γSV
θw θc

γLV

γSL
θ0

γLV

γSL
θ0
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𝜑! + 𝜑! = 1     (2-5) 

𝜑! =
!!!!
!!"#

      (2-6) 

𝜑! =
!!!!
!!"#

     (2-7) 

Where θCB is the apparent contact angle on a heterogeneous surface, θ0 is the intrinsic 

contact angle of the liquid-solid interface, and θ1 is the intrinsic contact angle of the 

liquid-vapor interface. The φ1 is the ratio of the liquid-vapor interfacial area to the 

projected area, and the φ2 is the ratio of the liquid-solid interfacial area to the projected 

area. Drop shape is assumed to be spherical in air, thus θ1 is thereby 180°. Based on this 

assumption, Miwa et al. (2000) simplified the Cassie-Baxter equation (2-4) with the 

following [19]: 

cos𝜃!" = 𝜑!cos𝜃! + 𝜑! − 1    (2-8) 

By taking into account the roughness ratio (r), the Cassie-Baxter equation can be 

modified as follows: 

cos𝜃!" = 𝑟𝜑!cos𝜃! + 𝜑! − 1   (2-9) 

If r = rf and φ1 = 1, then Cassie-Baxter equation changes to the Wenzel equation.  
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2.1.2 Surface tension and surface free energy 

Surface free energy is the product of surface tension and contact area as a droplet 

wets a surface. Because of the significant difference in density between liquid and gas 

phases, liquid molecules at the liquid-surface interface are pulled inwards and therefore 

create tension which is called “surface tension.” In terms of energy, a minimum amount 

of surface energy is required to create one unit of surface area, which is called “surface 

energy.”  

A droplet is favorable to exist with intrinsically lower surface energy without any 

external energy. Patankar (2003) proposed a theorem of surface free energy to determine 

droplet contact modes based on the lowest energy level; however, a droplet does not 

always exist in the lower energy state. More accurately, the state where a droplet will 

remain lies on how the droplet is formed [20]. Patankar (2004) also investigated drop 

transition from the Cassie state to the Wenzel state, and proposed a methodology to 

determine the required energy barrier for the transition of state [21]. 

2.1.3 Hysteresis effect 

Hysteresis is the energy barrier that prevents dynamic behaviors or transitions of 

droplets on surfaces. If the surface containing a droplet at rest is slowly inclined, the 

droplet will begin to move at a specific angle of inclination, which defined as a “sliding 

angle.” At the moment that the droplet begins to move, the contour curvatures of the 

droplet on the left and right sides are different, as shown in Fig. 2-3. The right contact 

angle is the called the advancing angle (θA), while the left one is the receding angle (θR). 
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Fig. 2-3 Schematic drawing of the receding angle and the advancing angle of a droplet 

Albenge et al. (2002) described the “hysteresis effect,” as the process by which a 

droplet contour changes from its static equilibrium shape to one characterized by 

advancing and receding angles. Furthermore, droplet contact angle hysteresis is defined 

as the difference between the advancing and receding angles [22]. 

∆𝜃 = 𝜃! − 𝜃!     (2-10) 

From the energy point of view, droplets should overcome the energy barrier caused by 

the hysteresis effect in order to move or roll off a surface. 

2.2 Sliding behavior of droplets on an inclined surface 

 The sliding behavior of droplets sitting on inclined surfaces has been studied in 

detail for many years. It is well understood that droplets have to overcome the energy 

barrier associated with the hysteresis effect before they can move or roll off a surface. 

The effect of roughness on droplet wetting behavior has been studied and analyzed using 

the modified Cassie-Baxter and Wenzel equations as explained above. However, effect 

of roughness on droplet mobility has recently renewed received attention in the heat 
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transfer community. Miwa et al. (2000) investigated the effects of the surface roughness 

on sliding angles of water droplets on superhydrophobic surfaces. At higher levels of 

hydrophobicity, the droplet sliding angle decreases while the contact angle increases 

[19]. Miwa et al. derived an equation (2-11) to describe the relationship between sliding 

angles and contact angles on superhydrophobic surface by taking into account surface 

roughness. 

𝑠𝑖𝑛 𝛼 =
2𝑟𝑘𝑠𝑖𝑛𝜃′ 𝑐𝑜𝑠𝜃′+1

𝑔 𝑟𝑐𝑜𝑠𝜃+1
3𝜋2

𝑚2𝜌 2−3𝑐𝑜𝑠𝜃′+𝑐𝑜𝑠3𝜃′

! !

 (2-11)  

Here α is the sliding angle, θ’ is the equilibrium contact angle on a rough surface, and θ 

is the equilibrium contact angle on a flat surface. The ρ is density of water, m is the 

weight of the droplet, and g is the gravitational acceleration. The r presents the ratio of 

the side area to the bottom area of the needle represented by a/b as shown in Fig. 2-4, 

and k is proportionality constant as shown in the following equation. 

𝑘 =
9𝑚2 2−3 cos𝜃+𝑐𝑜𝑠3𝜃

𝜋2

1 3 sin𝛼 𝑔𝜌1 3
6 sin𝜃   (2-12) 

The constant value k can be obtained by measuring α, θ, and m values for any flat 

surface. The calculated sliding angles when using Equation 2-11 agree well with the 

experimental results [19]. 
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Fig. 2-4 Schematic illustration of the surface model with a series of uniform needles 
used in Miwa et al. (2000) [19] 

Hyväluoma et al. (2007) simulated the behavior of droplets on inclined 

heterogeneous surfaces by the lattice- Boltzmann method using the Shan-Chen 

multiphase model. The simulation results showed that increased roughness leads to 

larger contact angle hysteresis, and increased hydrophobicity of these surfaces decreases 

contact angle hysteresis. This study also considered droplet sliding on an anisotropic 

surface and concluded that contact angle hysteresis may vary significantly depending on 

the direction in which the surface is tilted regardless of initial droplet shape and identical 

apparent contact angles [23]. 

Öner and McCarthy (2000) proposed that the proper design of the three-phase 

(solid-water-air) contact line is a crucial factor to lower the energy barrier for droplet 

motions and thereby improve the sliding behaviors of droplets [24]. Yoshimitsu et al. 

(2002) found out that the length and continuity of the three-phase contact line on a 
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surface also influence the sliding behavior of water droplets. It was also observed that a 

continuous short three-phase contact line is ideal for excellent droplet-shedding behavior 

[25]. Yoshimitsu et al. compared the sliding behavior of water droplets on surfaces with 

pillar-like and groove structures. They found out that the surface with groove structures 

leads to better droplet-shedding in the parallel direction of the grooves, because the 

three-phase line toward the sliding direction is continuous. The three-phase line that 

droplets make when sitting on a surface containing pillar-like structures is discontinuous 

which results in greater sliding angles [25]. 

ElSherbini and Jacobi (2004) found that contact angle variation along the periphery 

of the droplet contour was best fitted by a third-degree polynomial function after testing 

droplets on eight surfaces. Based on this finding, ElSherbini and Jacobi (2004) 

developed a general relation between advancing contact angle, receding contact angle, 

and the maximum Bond number for a liquid–surface combination on inclined plane 

surfaces [26].  

Annapragada et al. (2012) developed a pseudo-Lagrangian methodology based on 

the Volume Of Fluid - Continuous Surface Force (VOF-CSF) model to simulate droplet 

motion down on an inclined surface. The terminal velocity of droplets is predicted 

through this model and agrees with the experimental results [27]
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2.3 Vibrations of free liquid droplets 

 Vibrations have been considered as an effective way to induce droplet motions 

on surfaces. The following sections review previous studies to understand the effects of 

droplet resonance frequencies and how vibration affects wetting transition of droplets in 

motion. 

2.3.1 Prediction of droplet resonance frequencies 

The vibrations of spherical liquid droplets have been studied more than a century 

ago by Kelvin [28] and Rayleigh [29]. Lamb (1932) established a general expression for 

different resonance modes of oscillated spherical-droplets as follows [30]: 

𝑓! =
𝑛 𝑛−1 𝑛+2

3𝜋𝜌𝑉      (2-13)  

Where fn is the frequency for the resonance mode n, ρ is the density of the liquid, γ is the 

surface tension, and V is the droplet volume. However, the Lamb equation is not 

sufficient to describe the case of sessile droplets partially contacting or wetting a 

substrate. In other words, the droplet shape was not taken into account in the 

development of the Lamb model. Very few studies have considered the effect of droplet 

oscillation on droplet contact line. 

Noblin et al. (2004) proposed a model that considers both droplet contact angle 

and the contact line. In their study, two regimes of axisymmetric drop oscillations were 

observed including Type-I, where the contact line remained fixed at low amplitude, and 
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Type-II, where the contact lined oscillated and appeared above the threshold amplitude 

[31]. For Type-I modes, the resonance frequency ωj with immobile contact line can be 

predicted as follows [31]: 

𝜔!! = 𝑔𝑞! +
𝛾
𝜌 𝑞!

! tanh 𝑞!
𝑉
𝜋𝑎2

   (2-14) 

Where j is resonance mode number, g is the gravitational acceleration, γ is the surface 

tension, ρ is the density of the droplet, V is the drop volume, and a is the drop contact 

radius. The wave factor qj for one dimensional capillary-gravity wave is as follows: 

𝑞! =
𝜋 𝑗−0.5

𝑝       (2-15) 

Here p is the half arc length of a droplet, depending on the drop volume and contact 

angle as shown in Fig. 2-5. Since there was no analytical expression for p values in 

general, Noblin et al. (year) performed numerical calculation for various droplet profiles 

to acquire the values of p.    

For Type-II modes, the contact angle variations induced by vibration can 

overcome the contact angle hysteresis which makes the drop contact line mobile. This 

study assumed a perfectly smooth surface, where there was no hysteresis and no viscous 

dissipation, and the wave factor qk corresponding to resonance mode number k is as 

follows [31]: 

𝑞! =
𝑘𝜋
𝑝       (2-16) 
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Fig. 2-5 Schematic drawing of the half arc length (p) of a droplet [31] 

Boreyko et al. (2009) derived an analytical expression for p in Type-I cases as follows 
[13]:  

𝑝 = 𝑅𝜃     (2-17) 

Where R is the droplet radius related to the droplet volume (V) and the apparent contact 

angle (θ) as shown in Fig. 2-6. 

𝑅 = 3𝑉
𝜋 1−cos𝜃 2 2+cos𝜃

    (2-18) 

In their study, the calculated values agreed with the experimental results. 

 

 

Fig. 2-6 Schematic drawing of a droplet for the model Boreyko et al. developed [13] 
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 Celestini and Kofman (2006) used a simple oscillator model to derive a 

semianalytical expression for the eigenfrequency ω0 of a supported droplet, and a scaling 

law of the energy dissipation as follows [32]: 

𝜔! =
6𝛾ℎ 𝜃

𝜌 1−cos𝜃 2+cos𝜃 𝑅!! !   (2-19) 

Where θ is droplet wetting angle, and h(θ) was computed by the authors as shown in Fig. 

2-7. 

 

 

Fig. 2-7 Numerical values obtained for h(θ) [32] 

The experimental results obtained for mercury drop on glass surface agreed with the 

predicted values of resonance frequencies the drop when radius was greater 0.1 mm [32]. 
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Ramos (2008) also used this semiempirical model to bring into agreement the measured 

and calculated frequency values for water droplets on amorphous-silica (a-SiO2) nano-

structured surface [16]. 

2.3.2 Wetting transition and droplet motion induced by mechanical vibration 

The contact behavior of droplets on roughness surfaces can be changed with 

vibration. Bormashenko et al. (2007, 2007) observed Cassie-Wenzel transition when a 

liquid droplet was placed on a polymer honeycomb pattern under the action of vibration 

[11, 14]. Furthermore, the authors predicted the resonance frequencies via the simple 

model developed by Noblin et al. [31], and the calculated values coincide with the 

experimentally established resonance frequencies. This research also concluded that the 

resonance wetting transition is related to the behavior of the triple line caused by both 

the inertia force and the increase in the Laplace pressure [11, 14]. 

Ramos (2008) reported the effects on both a-SiO2-layers surfaces with a 

controlled hydrophobicity and the vibration modes of submillimeter drops supported by 

such surfaces. These two parameters resulted in a drastic reduction in the contact angle 

hysteresis and substantially increased the mobility of the supported droplets [16]. 

Boreyko et al. (2009) took advantage of mechanical vibration to induce Wenzel 

to Cassie wetting transition. They performed experiments on a lotus leaf which was 

sticky to the water drops after condensation on a cold plate. The experimental results 

showed that the kinetic energy caused by vibration was converted to surface energy 

which was used to overcome the adhesive work of droplets. It is plausible that antidew 
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superhydrophobicity of lotus leaves can be reached through this vibration-induced 

wetting transition [13].  

Jung and Bhushan (2009) investigated the Cassie to Wenzel wetting transition 

induced by drop dynamic effects, such as bouncing and vibration, which may disrupt the 

composite solid-air-liquid interface. In the bouncing study, it was observed that the 

transition easily happened due to a larger-distance dynamic impact on the surface.  In the 

vibration study, the inertia force of the vibrated droplets could overcome the adhesion 

force and the droplets could bounce off the surface before the Cassie to Wenzel wetting 

transition occurred. Moreover, this study also showed that the hierarchical-structured 

surface had a much better ability to counteract the dynamic effects and the composite 

solid-air-liquid interface was able to remain stable [15]. 

Brunet et al. (2007) reported on an experimental study of glycerol-water mixture 

drop vibrated vertically on an inclined plexiglass substrate (without surface treatment). 

Droplets with different kinematic viscosities (31-55 mm2/s) were tested.  The resulting 

drop motions depended on the values of amplitudes and frequencies used. In summary 

the droplets could move down the substrate (sliding), remained stationary (static) or 

moved up the substrate (climbing) depending on the imposed conditions. From the study, 

phase diagrams for different drop volumes, viscosities, and angles of the inclined surface 

were obtained. In their experiments, droplet experienced an upward motion above when 

threshold in vibration acceleration was exceeded. For the drops with lower viscosities 

(such as water drops, 1.004 mm2/s), the drops broke up before the onset of climbing [12].  
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2.4 Conclusion 

Previous studies mainly focused on the effects of surface roughness and the 

motion of the three-phase contact line on droplet mobility. For structured surfaces, 

however, the effects of acoustic vibration on water droplet sliding behaviors have not yet 

been fully investigated. Thus, this study investigates the relationship between droplet 

sliding angles and vibration modes, providing a possible way to effectively shed droplets 

on hydrophobic-hydrophilic hybrid surfaces with high contact angle hysteresis.
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3. EXPERIMENT SETUP AND PROCEDURE 

In order to achieve the objectives of this research project, an experimental setup 

has been designed and built for the sliding-angle experiment with or without the use of 

acoustic vibration. The experimental setup consists of four main systems: tilting stage 

system, acoustic vibration system, data acquisition system, and image capture system as 

shown in Fig. 3-1 and Fig. 3-2. 

 

 

Fig. 3-1 Experimental Apparatus I 
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Fig. 3-2 Experimental Apparatus II 

3.1 Tilting stage system 

 In this study, a customized stage, including coarse-tilting and fine-tilting stages, 

were made with controllable inclined angles as shown in Fig. 3-3 and Fig. 3-4. The 

inclined angle of this tilting stage can be tuned by using either the coarse or fine 

adjustment. 
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Fig. 3-3 Schematic illustration of the tilting stage system 

 

Fig. 3-4 Image of the tilting stage system 

The coarse-tilting stage was homemade, where plastic blocks (Lego’s) were used to 

provide discrete inclined angles at 10°, 30°, 50°, 70°.  Above the coarse-tilting stage, a 

goniometer (OptoSigma Inc.) was used as the fine-tilting stage, which had a tilting angle 
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range of  ±15°. The fine-tilting stage could continuously change inclined angles from -

15° to +15° in addition to the angle provided by the coarse stage. The composite tilting 

stage system was completely adjustable in the range of 0° to 90°. Some examples of the 

cases considered are as shown in Fig. 3-5. 

 

 

Fig. 3-5 Schematic drawing of some system-operation examples 

3.2 Acoustic vibration system 

 An 8-in subwoofer with 1000-watts peak power handling (Infinity Reference 

860w, Infinity Inc.) was utilized to provide vertical vibrations as shown in Fig. 3-6. The 

frequency response of the speaker was varied from 30 Hz to 400 Hz. A computer was 

used to control the speaker and display specific frequencies with the tone generator 

software (Tone Generator Software, NCH Inc.) 
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Fig. 3-6 Image of the speaker (Infinity Reference 860w, Infinity Inc.) 

3.3 Data acquisition system (DAQ system) 

 An accelerometer (Model 1000A, MISTRAS group Inc.) with a power supply 

(P5000, MISTRAS group Inc.) was used as the acoustic sensor to detect the vibration 

signals of the vibrated substrate during the vibration experiments. The sensor was 

attached on the tilting stage to measure the frequencies and amplitudes of the induced 

acoustic vibrations.  

 An NI-card (NI USB-5132, NATIONAL INSTRUMENTS Inc.) was used to 

fetch the data detected by the sensor, which was connected between the sensor and the 

computer. The acquired signals were then digitally analyzed using LabVIEW, which was 

used to obtain the numerical values of the vibration frequencies and amplitude as shown 

in Fig. 3-7. 
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Fig. 3-7 Image of data reading with LabVIEW programming 

In order to make sure that the frequency of the vibrated substrate read by the DAQ 

system (output signal) was as same as the frequency of the signals given by the PC 

(input signal), a mono-frequency calibration test was undertaken. Fig. 3-8 depicts the 

calibration curve which shows that input and output frequencies were linearly related. 

 



 

 25 

 

Fig. 3-8 Calibration curve of the output frequency and the input frequency 

3.4 Image capture system 

 The dynamic images of droplets, including their vibration behaviors and the 

sliding processes, were captured using a high speed camera (Photron SA3) as shown in 

Fig. 3-9.  The maximum speed of the camera was set at 60,000 frames per second, and 

the maximum view of vision was 1024×1024 pixel. The lens and the frame rate 

determine the resolution. High-resolution lens (zoom 6000 series lens Navitar) were 

used in this study. 
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Fig. 3-9 Image of the high speed camera used in this research 

3.5 Hybrid surface 

 The hybrid surfaces were fabricated as part of a comprehensive condensation 

study (Yao et al. (2012) [33]). As seen in Fig. 3-10a and 3-10b, these structured surfaces 

includes hydrophilic silicon oxide (SiO2) for the top sides of the micropillars, and a thin 

film of the hydrophobic material ((C2F4)n) which covers the sides and troughs of the 

micropillar arrays. Three designs with edge-to-edge spacings of 25 µm, 37.5 µm, 50 µm, 

respectively were used in this study as shown in Fig. 3-11.  
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Fig. 3-10 Schematic drawings of (a) side view of the hybrid surface, (b) top view of a 
hybrid surface, where a1 is the width of hydrophilic material, a2 is the width of 

hydrophobic material [33] 

 

Fig. 3-11 SEM images of a hybrid surfaces with a micropillar array with spacing values 
of (a) 25 µm (b) 37.5 µm, and (c) 50 µm [33] 
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3.6 Procedures 

 The following subsections describe the experimental protocols used to measure 

contact angles, sliding angles, and natural resonance frequencies used in the study. 

3.6.1 Contact angle measurement 

 Droplets were slowly placed on each horizontally-aligned surface using a pipette, 

and the images of each droplet was captured using the high speed camera. The contact 

angles of the droplets were measured using the software “Drop Shape Analysis” (a 

plugin for ImageJ). Fig. 3-12 provides an example of image used for measuring contact 

angle. 

 

 

Fig. 3-12 Image of the contact angle measurement for 5-µm droplet on the hybrid 
surface with 25-µm spacing value   
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3.6.2 Sliding angle measurement 

 The test surfaces were horizontally fixed on the fine-tilting stage, and then the 

tilting stage system was inclined to a specific angle using the coarse-tilting stage. A 

droplet was slowly placed on the test surface.  When the droplet became static, the 

system was slowly inclined with the fine-tilting stage until the droplet started to move.  

At that point, the inclined angle of the tilting-stage system was assumed to be the sliding 

angle of the droplet. The sliding process of the droplet was recorded using the high 

speed camera. 

3.6.3 Resonance frequency of impinged droplets 

 To reduce sliding angle efficiently, the resonance frequency of each droplet were 

calculated taking into account droplet volume and static contact angle based on the 

Noblin et al. [31] and Boreyko et al. [13] equation as shown below. The basic idea relied 

on the use of resonance to facilitate droplet shedding. To that end, the theoretical droplet 

resonance model was used in conjunction with experimental data to identify the most 

suitable frequency modes that could improve shedding. The first two active resonance 

frequencies would be used to vibrate the tilting-stage system to investigate their effects 

on droplet sliding angles. 

3.6.3.1 Theoretical values of droplet resonance frequency 

 The theoretical model proposed by Noblin et al. (2004) [31] and revised by 

Boreyko et al. (2009) [13] was used for predicting the resonance frequencies of droplets. 
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This model (Type-I of the Noblin et al. model) can be used to identify droplet oscillation 

placed on the structured surfaces at low-amplitude vibration as shown in Fig. 3.13. The 

theoretical values of droplet resonance frequencies were obtained using the following 

equations. 

 

 

Fig. 3-13 Schematic drawing of a droplet with parameters used in the theoretical model 
[13] 

𝜔!! = 𝑔𝑞! +
𝛾
𝜌 𝑞!

! tanh 𝑞!
𝑉
𝜋𝑎2

   (3-1) 

𝑞! =
𝜋 𝑗−0.5

𝑝       (3-2) 

𝑝 = 𝑅𝜃     (3-3) 

𝑅 = 3𝑉
𝜋 1−cos𝜃 2 2+cos𝜃

    (3-4) 

Where ωj is resonance frequency corresponding to resonance mode number j, g is the 

gravitational acceleration, γ is the surface tension, ρ is the density of the droplet, V is the 
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drop volume, and a is the drop contact radius. The wave factor qj for one dimensional 

capillary-gravity wave was calculated using Equation (3-2), where p the half arc length 

of a droplet was obtained from Equation (3-3) and (3-4). The apparent contact angle (θ) 

was measured as mentioned in the section 3.6.1. The theoretical values from Equation 

(3-1) to (3-4) were calculated using MATLAB for different droplet volumes (V) on 

different surfaces (θ) with different resonance modes (j). 

3.6.3.2 Experimental values of droplet resonance frequency 

 The resonance frequencies of droplets were experimentally searched as well. 

Droplets were placed on the test surfaces fixed on top of the acoustic vibration system as 

shown in Fig 3.1.  The input frequency of the acoustic vibration system was varied from 

30 Hz to 200 Hz using a similar amplitude. Once the droplet experienced resonance 

vibration, the frequency was read by the DAQ system. This search process was repeated 

for different droplet volumes (5 µL, 10 µL, 15 µL) on different surfaces (silicon wafer, 

hybrid surfaces with 25µm, 37.5µm, 50µm spacing) The resonance frequencies with the 

lowest and the second low values corresponded to the first and the second resonance 

modes, respectively were identified for all the combinations of droplets and surfaces.  

3.6.3 Sliding angle measurement with resonance-based vibration 

 Once a droplet was placed on the test surface fixed on the tilting-stage system, 

the system frequency was set at the experimental droplet resonance frequency to vibrate 

each droplet vigorously. Then the tilting-stage system was slowly inclined until the 
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droplet began to move.  Images of the droplet rolling off the surfaces were captured 

using the high speed camera.  The inclined angle of the tilting-stage system was recorded 

as the sliding angle of each droplet under the applied vibrated conditions.
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4. RESULTS AND DISCUSSION 

 In this section, droplet characteristics on hybrid surfaces are presented based on 

experimental observations. First, resonance frequencies of droplets were identified 

through calculations and experimentation. Resonance motions were observed and 

correlated to the primary and secondary resonance modes. Then, sliding angles under 

various vibrated conditions were measured when using mono-resonance frequency, 

multi-resonance frequencies, and amplitudes. The relationship between different 

vibrated conditions and sliding angles was further investigated to understand the effects 

of vibration on overcoming droplet hysteresis during droplet roll off events. 

4.1 Wetting characteristics of droplets on hybrid surfaces  

 Water droplets exhibit different wetting characteristics on hybrid surfaces with 

different structured spacings. The following sections showed the results of measured 

contact angles and sliding angles of droplets on different hybrid surfaces. A silicon 

wafer (hydrophilic surface) was used as baseline in the study.   

4.1.1 Measured contact angles  

 The apparent contact angles of droplets were measured by imaging each droplet 

at rest. The Droplet Analysis software was used to estimate contact angle by taking into 

account water properties and the morphology of the droplet using images captured by the 

camera.  Examples of contact angle measurements are provided in Fig. 4-1. Table 4-1 
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and Fig. 4-2 shows the values of apparent contact angle for different droplet volumes on 

different surfaces. 

 

 

Fig. 4-1. Apparent contact angle measurement of three droplet volumes on a hybrid 
surface with 50 µm spacing 

 Apparent Contact Angle ( ° ) 

Droplet Volume (µL) 5 10 15 

Hybrid surface 

50 µm 137.7 142.3 149.3 

37.5 µm 136.4 138.4 143.6 

25 µm 136.4 137.7 140.2 

Silicon Wafer 34.2 35.6 37.4 

Table 4-1 Apparent contact angles of droplets with different volumes on different 
surfaces  
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Fig. 4-2 Apparent contact angles of droplets with different volumes on different hybrid 
surfaces 

As seen in Fig. 4-2, droplets with larger volume exhibit greater contact angle, 

specifically at higher micropillar spacing. He et al. (2004) also observed the same trend 

when droplet volume was increased, resulting in greater apparent contact angle until it 

reached a maximum static contact angle [34]. The increase in the apparent contact angle 

with volume can be attributed to the pinning of the droplet’s contact line on the substrate. 

Once the advancing value of the contact angle is reached, the contact line moves and 

thereby causes no significant change in the apparent contact angle [34]. Droplets placed 

on hybrid surfaces with greater spacing exhibit a markedly hydrophobic behavior. Yao et 

al. (2012) also observed the same trend, which was consistent with the prediction from 
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the revised Cassie-Baxter equation (Yao et al. (2012)) as seen in Equation (4-1) to (4-3) 

[33]. 

cos𝜃!" = 𝑥 ∙ cos𝜃! + 1− 𝑥 cos𝜃!    (4-1) 

−1+ 𝐴 1+ cos𝜃!" = cos𝜃!    (4-1) 

𝐴 = 𝑎2
𝑎+𝑏 2      (4-3) 

Where intrinsic contact angle (θie) of the top surface is calculated using Equation (4-1), 

where x represents relative area of the hydrophilic material with respect to the total top 

surface area, θ1 is the contact angle of the liquid droplet on a flat hydrophilic surface, θ2 

is the contact angle of a liquid droplet on a flat hydrophobic surface. The equilibrium 

contact angles on the hybrid surface (θa) are predicted using Equation (4-2), and the area 

fraction A in Equation (4-3) is determined by knowing a and b which represent 

hydrophilic and hydrophobic lengths, respectively. From Equations (4-1) to (4-3), it is 

known that lower area fraction (A), which is caused by the hydrophobic area (b), results 

in greater equilibrium contact angle. Thus, the greater spacing always leads to a more 

pronounced hydrophobic behavior due in part to the presence of having more air trapped 

(i.e. air pockets) between each droplet and micropillars below.
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4.1.2 Measured sliding angles 

 Droplet sliding angles on the static surfaces were measured as described in 

Section 3.6.2. Table 4-2 provides sliding angle values for different droplet volumes on 

different surfaces. 

 

 Sliding Angle ( ° ) 

Droplet Volume (µL) 5 10 15 

Hybrid surface 

50 µm 35.2 23.5 17.5 

37.5 µm 41.8 27.1 20.5 

25 µm 65.2 38.5 31.5 

Silicon Wafer DS 65.2 38.1 

Table 4-2 Original sliding angles of droplets with different volumes on different surfaces. 
“DS” represents that a droplet does not move even at 90 º. 

 The data in Table 4-2 are also shown in Fig. 4-3, from which it can be observed 

that sliding angle decreases with increasing spacing of hybrid surfaces and droplet 

volume. Previous studies have shown that sliding angles increase as the weights of 

droplets decrease on both flat and rough surfaces once the dimension of the surface 

roughness is small enough with respect to the size of the droplet [19, 25, 35]. Miwa et al. 

also observed the similar trend when sliding angles decreased with decreasing surface 

roughness because of the high trapped-air ratio and small roughness values, which lead 

to better droplet shedding [19]. In this study, larger spacings of hybrid surface are 
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considered as small surface roughness, where lower sliding angles should be expected 

because of the high trapped-air ratio.  

 

 

Fig. 4-3 Original sliding angles of droplets with different droplet volumes on different 
surfaces. Note: zero spacing represents the baseline (i.e. silicon wafer)
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4.2 Resonance frequency of droplets 

 This section presents the results of resonance frequencies obtained from the 

Noblin’s model [31] and experiments, discusses the difference between the calculated 

and experimental values, and investigates the reason why the first resonance mode 

should be adjusted for 10 µL and 15 µL droplets to ensure adequate resonance behavior. 

4.2.1 Calculated resonance frequency values and expected vibration behavior 

 The theoretical frequency values for adequate droplet resonance were calculated 

from the model mentioned in the section 3.6.3.1. The gravitational acceleration g was set 

to 9.81 m/s2, while surface tension (γ) and density of water (ρ) were set to 72.8 mN/s, 

and 998 kg/m3, respectively. The calculated results acquired from MATLAB are shown 

in Table 4-3. 

 

  1
st
 Natural Frequency (Hz) 

j = 1.5 
2
nd

 Natural Frequency (Hz) 
j = 2.0 

                     Volume (µL) 
           Surface 5 10 15 5 10 15 

Hybrid surface 
50 µm 60 39 33 108 68 57 

37.5 µm 61 43 34 109 76 60 
25 µm 60 43 35 108 77 62 

Silicon Wafer 47 35 30 100 74 63 

Table 4-3 Calculated frequency values for droplet resonance for different droplet 
volumes on different surfaces 
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The resonance modes (j) were set as 1.5 and 2, corresponding to the first and the second 

resonance frequencies, respectively.  When droplets were vibrated at the first resonance 

frequency with j equal to 1.5, droplets were expected to exhibit lateral resonant motion 

with a pinned three-phase contact line as shown in Fig. 4-4b [13]. Lateral resonant 

motion of droplets has the most important effect on droplet mobility, because vibration 

induces an increase in advancing angle and a decrease in receding angle.  Furthermore, 

the contact angle varies along the contact line resulting in an unbalanced condition 

which induces droplet motion under the effects of gravity as discussed in greater detail 

below. Moreover, when the droplet vibration is strong enough, it can overcome the 

droplet’s contact angle hysteresis threshold which leads to droplet shedding [32] as 

presented below. When droplets vibrate at the second resonance frequency, they 

continuously stretch vertically and horizontally as shown in Fig. 4-4c [15, 16, 31].  In 

Section 4.3 the effects of frequency modes on sliding angle is discussed in greater detail. 

 

Fig. 4-4 Schematic drawing of expected droplet motions (a) without vibraion (at 
static equilibrium), (b) at the first resonance frequency (j = 1.5), (c) at the second 
resonance frequency (j = 2.0).  The dash line in (b) and (c) represents the droplet 

contour at static equilibrium.
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4.2.2 Experimental resonance frequency values and droplet resonance behavior 

 The experimental frequency values for droplet resonance were obtained 

following the procedure described in Section 3.6.3.2 and are shown in Table 4-4. 

 

  1
st
 Natural Frequency (Hz) 2

nd
 Natural Frequency (Hz) 

                          Volume (µL) 
           Surface 5 10 15 5 10 15 

Hybrid surface 
50 µm 61 54 46 109 68 58 

37.5 µm 62 54 45 109 71 61 
25 µm 62 54 49 108 71 62 

Silicon Wafer 45 31 below 30 100 75 67 

Table 4-4 Experimental frequency values for droplet resonance for different droplet 
volumes on different surfaces 

 As it can be seen in Tables 4-3 and 4-4, the experimental values agree well with 

the calculated ones when vibrating a 5 µL droplet. However, when droplet volume is 

increased between 10 and 15 µL, the difference between calculated and measured 

resonance frequencies become significant when the first natural frequencies are imposed.   

To understand the effect of droplet volume on the difference between calculated 

and measured resonance frequencies, droplet vibration motion were recorded using a 

high speed camera. Fig. 4-5 shows different droplets vibrating at two distinct resonance 

frequencies on a 25 µm-spacing hybrid surface. Similar droplets motions were observed 

on 37.5µm-spacing and 50µm-spacing hybrid surfaces. 
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Fig. 4-5 Droplet resonance motions on the 25 µm-spacing hybrid surface 
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 As seen in Fig.4-5, it can be observed that the first resonance motions for 10 µL 

and 15 µL droplets are quite different from the 5 µL droplet. The 5 µL droplet exhibits 

significant lateral vibration which matches the prediction of droplet motions as shown in 

Fig. 4-4(b); while the 10 µL and 15 µL droplets displayed vertical resonance motions 

which are more common when the second resonance frequencies are imposed. It can be 

concluded that the first resonance frequencies for 10 µL and 15 µL droplets obtained 

from experiments correspond to a resonance mode (j) other than 1.5. On the other hand, 

when vibrating the droplets at the second resonance frequency, all the droplets 

continuously vibrate vertically and horizontally as predicted by the model, as shown in 

Fig. 4-4(c). 

4.2.3 Natural Resonance Frequency Mode Adjustments for Optimal Droplet 

Vibration 

 In order to match experimental results of the first resonance frequencies, the 

resonance mode (j) was adjusted for the 10 µL and 15 µL droplets. It was found that the 

calculated values and the experimental results were similar once the resonance mode (j) 

was set equal to 1.7. Table 4-5 shows the calculated values with different resonance 

modes (j =1.5, 1.7) and the experimental frequency values for the 10 µL and 15 µL 

droplets.  It is obvious that the calculated values when j equal is set equal to 1.7 agree 

better with the experimental results.  This suggests that at greater droplet volumes, 

Equations 3-1 through 3-4 cannot account for the pinning effect that takes place between 

the droplets and the hybrid surfaces [33].  Furthermore, Yao et al. reported that the 
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pinning effect affects the motion of the contact line during droplet evaporation, which 

could explain why the calculated resonance frequency is not sufficient to induce droplet 

vibration under resonance conditions [33].  

 

 10 µL Droplet 15 µL Droplet 

 
Calculated Frequency (Hz) Experimental 

Frequency 
(Hz) 

Calculated Frequency (Hz) Experimental 
Frequency 

(Hz) j = 1.5 j = 1.7 j = 1.5 j = 1.7 
Hybrid 
Surface 

50 µm 39 54 54 33 42 46 
37.5 µm 43 56 54 34 44 45 
25 µm 43 56 54 35 45 49 

Table 4-5 Calculated and experimental first resonance frequencies for 10 µL and 15 µL 
droplets 

 In order to differentiate droplet motion induced by resonance modes 1.5, 1.7 and 

2.0, wave nodes along the droplet profile were taken into account. Previous studies 

observed three and four nodes along the droplet profile when droplets vibrated at 

resonance mode of 1.5 and 2.0, respectively. Fig. 4-6 shows the expected droplet 

motions with wave nodes for the resonance modes of 1.5 and 2.0 [13, 16, 31]. 
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Fig. 4-6 Schematic drawing of expected droplet motions (a) at the first resonance 
frequency (j = 1.5, 3 nodes), (b) at the second resonance frequency (j = 2.0, 4 

nodes).  The dash line in (a) and (b) represents the droplet contour at static 
equilibrium, and the black spots emphasizes the nodes. 
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1st Resonance Frequency 

             
 V Experimental Image Schematic Drawing 

5µL 

 

 

10µL 

 

 

15µL 

 

 

Fig. 4-7 Experimental image and schematic drawing of the first resonance frequency for 
each droplet volume on a 25µm-spacing hybrid surface 
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2nd Resonance Frequency 
             
 V Experimental Image Schematic Drawing 

5µL 

  

10µL 

 

 

15µL 

 

 

Fig. 4-8 Experimental image and schematic drawing of the second resonance frequency 
for each droplet volume on a 25 µm-spacing hybrid surface 

  

  

  

  

  

  



 

 48 

Figures 4-7 and 4-8 show schematic drawings of specific droplet behaviors (Schematic 

Drawing) correspond to the experimental results of droplet motion (Experimental Image) 

taking account into wave nodes. 

 As seen in Fig. 4-7, when a 5 µL droplet vibrates at the first resonance frequency, 

it exhibits lateral resonance motion with three nodes corresponding to resonance mode 

of 1.5, while the 10 µL and 15 µL droplets exhibit vertical resonance motion with two 

nodes, which resembles the vibration behavior when the mode is set to 1.0 (j = 1.0) in 

Equations 3-1 through 3-4. The observed behavior suggest that droplets sitting on hybrid 

surface exhibit the same type of lateral and vertical resonance motion as the ones 

predicted by the equations [13, 31] even though the resonance frequencies do not match 

the values obtained using the equations as explained above.  In Fig. 4-8, when vibrating 

at the second resonance frequency, 5 µL, 10 µL and 15 µL droplets vibrated vertically 

and horizontally continuously with four nodes corresponding to a resonance mode of 2.0.  

Therefore, it can be concluded that different resonance modes (j = 1.5, 1.7, 2.0) 

corresponds to distinct resonance motions by recognizing the number of nodes along 

droplet profile.  Furthermore, when droplets sit on hybrid surfaces, their vibration 

behavior can be explained by previous studies [11, 16, 31] even under the influence of 

the pinning effect when considering a range of mode values.    

 From the first resonance frequency experiments, it is evident that the resonance 

modes for 10 µL and 15 µL droplets should be 1.7 instead of 1.5. Furthermore, the first 

observed resonance motion is mainly characterized by vertical resonance motion even 

though the 5 µL droplet vibrated laterally.  The possible reason for this phenomenon 
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could be the effect of gravity on larger droplets. It is known that surface tension force is 

dominant at the micro scale; however, the influence of gravitational force could not be 

ignored for droplet with larger volumes. Evidence of the effect of gravity on large 

droplets can be seen in Fig. 4-9, where larger droplets are characterized by having a 

flattened configuration. On the hybrid surfaces, the shape of droplets with larger volume 

was more elliptical. The elliptical shape might impede the lateral resonance motion 

induced by the resonance mode of 1.5. Therefore, the resonance motion with resonance 

mode of 1.5 was subtle in the 10 µL and 15 µL droplets. 

 

 

Fig. 4-9 The configuration of (a) 5 µL, (b) 10 µL, (c) 15 µL droplet on the hybrid surface 
with 50-µm spacing
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4.3 Sliding angles under various vibrated conditions 

 Sliding behaviors of droplets under acoustic vibration were recorded as explain 

Section 3.6.4. The subsections below present experimental results of droplet sliding 

angles influenced by vibration. The resonance frequencies used for testing sliding angles 

were acquired experimentally as shown in Table 4-4. 

4.3.1 Effects of mono-resonance frequency 

 The effect of resonance frequency was investigated by placing droplets on all the 

test surfaces. Droplets were continuously vibrated at either the first resonance frequency 

or the second resonance frequency when inclining the substrate. The corresponding 

sliding angles were recorded as shown in Table 4-6. The amplitudes of vibration were 

set to about 0.1 g, and the actual values (measured amp) read by the DAQ system were 

also recorded as shown in Table 4-6. 
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w/o 

Vibration 
1
st
 Resonance 
Frequency 

2
nd

 Resonance 
Frequency 

5 µL 

Surface Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp (g) 

Sliding 
Angle 

Measured 
Amp (g) 

Hybrid 
surface 
(spacing) 

50 µm 35.2° 20.8° 0.096  25.5° 0.098 

37.5 µm 41.8° 26.3° 0.093 34.4° 0.097 

25 µm 65.2° 46.6° 0.107 52.9° 0.102 
Silicon wafer 
(hydrophilic) DS DS 0.095 DS 0.099 

10 µL 

Surface Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp (g) 

Sliding 
Angle 

Measured 
Amp (g) 

Hybrid 
surface 
(spacing) 

50 µm 23.5° 14.8° 0.094 15.8° 0.092 

37.5 µm 27.1° 22.3° 0.099 26.3° 0.101 

25 µm 38.5° 31.1° 0.093 37.3° 0.102 
Silicon wafer 
(hydrophilic) 62.5° 61.5° 0.091 42.9° 0.098 

15 µL 

Surface Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp (g) 

Sliding 
Angle 

Measured 
Amp (g) 

Hybrid 
surface 
(spacing) 

50 µm 17.5° 12.7° 0.080 14.3° 0.096 

37.5 µm 20.5° 16.4° 0.079 18.8° 0.097 

25 µm 31.5° 22.2° 0.083 25.6° 0.096 
Silicon wafer 
(hydrophilic) 38.1° N/A N/A 37.2° 0.095 

Table 4-6 Droplet sliding angles measured at different mono- resonance frequencies. 
Note: “DS” means that droplets stick on the surface, and “N/A” means that the 

experiment was not undertaken due to the limitation of instruments. 

 In order to understand the effect of mono-resonance frequency on the reduction 

in sliding angles when testing hybrid surfaces, the experimental data are presented in 

Table 4-6 and in Figures 4-10 to 4-12. 
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Fig. 4-10 Sliding angle of 5 µL droplet vibrating at different resonance frequencies 

 

Fig. 4-11 Sliding angle of 10 µL droplet vibrating at different resonance frequencies 
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Fig. 4-12 Sliding angle of 15 µL droplet vibrating at different resonance frequencies 

As seen in Fig 4-10 to Fig. 4-12, for different droplet volumes on hybrid surfaces with 

different spacings, the sliding angles (diamond and square spots) were entirely lower 

than original sliding angles (triangle spots) when vibrating at either the first or the 

second resonance frequencies. Furthermore, droplets vibrating at the first resonance 

frequency presented lower sliding angles (diamond spots) than when the droplets 

vibrated at the second resonance frequency (square spots). The difference between 

sliding angles resulting from the first and second resonance frequencies can be attributed 

to the droplet resonance motions shown in Figures 4-5, 4-7 and 4-8. The resonance 

motions for the first resonance frequencies were more active than those for the second 

resonance frequencies as seen in Fig. 4-5. One possible explanation for the significant 

decrease in sliding angle can be attributed to effect of vigorous lateral droplet motion, 

which helps overcome the droplet contact angle hysteresis effect easier.  In the case of 
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hybrid surfaces, it has been reported that sliding angle is directly correlated to contact 

angle hysteresis [33]. In addition, previous studies [11, 13] show that the wetting 

transition is caused by the displacement of the triple line, which takes place once the 

amplitude threshold has been reached. Moreover, the threshold amplitude corresponding 

to the first resonance frequency is lower than the second resonance frequency [11]. 

Therefore, the first resonance frequency is more favorable for reducing sliding angles 

due to the lower threshold amplitude required for the dewetting transition.   

From Fig. 4-10 to 4-12, it is evident that micropillar spacing has an effect of 

sliding angle which is consistent with the results obtained by Yao et al. [33].  From 

Table 4-6, it can be seen that droplet volume affects sliding angle considerably.  

Furthermore, both resonance frequencies helped reduce the sliding angle when the 

droplet volume was 15 µL. 
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4.3.2 Effects of 1st resonance amplitude 

 In order to understand the influence of vibrated intensity on sliding angles, 

droplets were vibrated at the first resonance frequency and two different amplitudes 

(0.05g and 0.1g). Table 4-7 shows sliding angles of droplets under different resonance 

amplitudes. 

 

  
w/o 

vibration Lower Amp. (0.05g) Higher Amp. (0.1g) 

5 µL 

Surface Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp. (g) 

Hybrid 
surface 
(spacing) 

50 µm 35.2° 21.9° 0.052 20.8° 0.096  

37.5 µm 41.8° 29.9° 0.051 26.3° 0.093 

25 µm 65.2° 51.0° 0.056 46.6° 0.107 

10 µL 

Surface Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp. (g) 

Hybrid 
surface 
(spacing) 

50 µm 23.5° 16.5° 0.052 14.8° 0.094 

37.5 µm 27.1° 24.8° 0.051 22.3° 0.099 

25 µm 38.5° 33.4° 0.046 31.1° 0.093 

15 µL 

Surface Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp. (g) 

Hybrid 
surface 
(spacing) 

50 µm 17.5° 13.8° 0.039 12.7° 0.080 

37.5 µm 20.5° 17.5° 0.036 16.4° 0.079 

25 µm 31.5° 26.0° 0.040 22.2° 0.083 

Table 4-7 Droplet sliding angles measured at the first resonance frequency with different 
amplitudes 
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Fig. 4-13 to Fig. 4-15 show that droplets with different volumes vibrating at higher 

amplitude exhibited lower sliding angles. It is known that once the threshold amplitude 

corresponding to the resonance frequency is reached, the triple line of a droplet is able to 

move continuously [11, 13]. Furthermore, when droplets vibrate at larger amplitudes 

after reaching the amplitude threshold, droplet hysteresis should be easier to overcome 

leading to the downward displacement of the droplet triple line on the inclined surface. It 

can be concluded that larger amplitudes are favorable to reduce sliding angles. Moreover, 

larger amplitudes involve greater acoustic energy that could explain why droplets exhibit 

lower sliding angles on hybrid surfaces. 

 

 

Fig. 4-13 Sliding angle of 5 µL droplet vibrating at the first resonance frequencies with 
different amplitudes 
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Fig. 4-14 Sliding angle of 10 µL droplet vibrating at the first resonance frequencies with 
different amplitudes 

 

Fig. 4-15 Sliding angle of 15 µL droplet vibrating at the first resonance frequencies with 
different amplitudes
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4.3.3 Effects of multi-resonance frequencies 

Multiple-resonance frequencies were used to determine their effects on sliding 

angle.  From the experiments, it is evident that droplet sliding angles were effectively 

reduced when using single resonance frequency as mentioned in Section 4.3.1. However, 

sliding angles of small droplets (5 µL droplets), were still not low enough when vibrated 

at mono-resonance frequency. Furthermore, the difference between sliding angles when 

using first and second resonance frequencies is more significant at low droplet volumes 

as shown in Table 4-6. Moreover, little is known about the effect of multiple-resonance 

frequencies on sliding angle. Therefore, multiple-resonance frequencies were applied 

consecutively to the droplets using the first and second resonance frequencies (one 

second per frequency) as shown in Table 4-4. Table 4-8 shows the sliding angles of 5µL 

droplets on different hybrid surfaces vibrating at two frequencies (first and second 

resonance frequencies). 

 

 
w/o 

vibration 
1
st
 Resonance 
Frequency 

2
nd

 Resonance 
Frequency Multi-Frequency 

Hybrid 
Surface 

Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp, 1st  (g) 

Measured 
Amp, 2nd  (g) 

50 µm 35.2° 20.8° 0.096  25.5° 0.098 22.5° 0.041 0.042 
37.5 µm 41.8° 26.3° 0.093 34.4° 0.097 31.9° 0.017 0.039 
25 µm 65.2° 46.6° 0.107 52.9° 0.102 45.1° 0.037 0.041 

Table 4-8 Sliding angles of 5 µL droplets measured at mono- or multi- resonance 
frequencies 
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Figure 4-16 shows the effects of first resonance frequency (diamond spots), second 

resonance frequency (square spots) and multi-frequency (round spots) on sliding angle 

for multiple micropillar spacing on the surfaces. In the cases of hybrid surfaces with 50 

µm and 37.5 µm spacing, sliding angles of the 5 µL droplets were reduced when using 

multi-frequencies when compared to the second resonance frequency cases. However, 

the first resonance frequency cases resulted in lower sliding angles than when multi-

frequencies were used. On the other hand, in the case of hybrid surface with 25 µm 

spacing, multi-frequency vibration resulted in a lower sliding angle than either the first 

or the second mono-resonance frequency cases.  

From Figure 4-16, it can be seen that multi-resonance frequencies are more 

effective than using first or second resonance frequency when the micropillar spacing is 

small. It is known that first and second resonance frequencies result in different droplet 

motions from Figures 4-7 and 4-8. When multi-resonance frequencies are applied 

consecutively, the lateral motion observed by the 5 µl droplet in Figure 4-7 would be 

limited by imposing the second resonance frequency every other second. This suggests 

that lateral motion should be constrained somewhat when droplet contact angle 

hysteresis is high to be able to reduce sliding angle.     
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Fig. 4-16 Sliding angle of 5 µL droplet vibrating at mono- or multi- resonance 
frequencies 

 The effects of droplet volume and multi-frequencies on sliding angles are shown 

in Table 4-9. 

 

 
w/o 

vibration 
1

st
 Resonance 

Frequency 
2

nd
 Resonance 

Frequency Multi-Frequency 
Hybrid 
Surface 

Droplet 
Volume 

Sliding 
Angle 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp. (g) 

Sliding 
Angle 

Measured 
Amp, 1

st
  (g) 

Measured 
Amp, 2

nd
  (g) 

25 µm 

5 µL 65.2° 46.6° 0.107 52.9° 0.102 45.1° 0.037 0.041 
10 µL 38.5° 31.1° 0.093 37.3° 0.102 30.3° 0.086 0.081 
15 µL 31.5° 22.2° 0.083 25.6° 0.096 26.7° 0.072 0.075 

Table 4-9 Sliding angles of droplets with three different volumes measured at mono- or 
multi-resonance frequencies on a hybrid surface with 25 µm spacing 
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Table 4-9 shows that vibrating 5 µL and 10 µL droplets using multi-frequencies result in 

lower sliding angles. Contrarily, 15µL droplet vibrated by multi-frequencies shows 

higher sliding angles than in the other two cases. This shows the limitations of using 

multi-frequencies to promote lower sliding angles. Furthermore, experimental 

observations confirmed that using multi-frequencies were ineffective in actuating larger 

droplets possibly because of droplet weight at low acoustic amplitudes. Moreover, it 

appears that using multiple frequencies consecutively inhibits the complete droplet 

motion seen when mono-frequencies are used, which in turn result in higher sliding 

angles in large droplets.  
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5. CONCLUSION 

This research investigates the effects of hybrid surface morphology and acoustic 

vibration on droplet removal from surfaces used for condensation. The relationship 

between droplet sliding angles and droplet volumes on hybrid surfaces with different 

structured spacings was firstly investigated through experimentation. Then, the effects of 

natural resonance frequencies of droplets with different volumes on different surfaces 

were also studied and analyzed using a resonance model and a customized experimental 

setup. Acoustic-induced vibrations were then applied to the surfaces to understand the 

effects of single or multiple resonance frequencies on droplet sliding angles. Droplet 

vibration and sliding processes were experimentally characterized using a high speed 

imaging system and an acoustic sensing device. 

From the experimental observation of droplet characteristics on hybrid surfaces, 

droplets with larger volume placed on hybrid surfaces with greater spacing exhibit 

greater apparent contact angles. The pinning of the droplet’s contact line on the substrate 

leads to an increase in the apparent contact angle with volume, while higher air trapped 

ratio results in more hydrophobicity on hybrid surfaces with greater spacing. Moreover, 

droplet sliding angle decreases with increasing droplet volume and spacing of hybrid 

surfaces. Furthermore, experiments reveal that sliding angles decrease as hybrid 

surface’s spacings increase because of the high trapped-air ratio and small roughness 

values, which lead to better droplet shedding. 

From the results of droplet resonance frequency study obtained from the 

theoretical model and experimental observations, the resonance motions and calculated 
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resonance modes of the first resonance frequency were found to be different for different 

droplet volumes.  Furthermore, a 5 µL droplet vibrating at the first resonance frequency 

exhibits lateral resonance motion with three wave nodes corresponding to the resonance 

mode of 1.5, while the 10 µL and 15 µL droplets exhibit vertical resonance motions with 

two wave nodes corresponding to the resonance mode of 1.7. The difference in behavior 

can be attributed to the effect of gravity on larger droplets which exhibit a flattened 

configuration, which impedes the lateral resonance motions induced by the resonance 

mode of 1.5. On the other hand, when vibrating the droplets at the second resonance 

frequency, all the droplets exhibit continuously vertical and horizontal vibration with 

four wave nodes corresponding to the resonance mode of 2.0. 

The experimental droplet vibration results show that sliding angles decrease with 

first or the second resonance frequencies at different droplet volumes on hybrid surfaces 

with different spacings. Furthermore, droplets vibrating at the first resonance frequency 

always exhibited lower sliding angles than when the droplets vibrated at the second 

resonance frequency. This can be attributed to the first resonance frequency more active 

resonance motions and lower threshold amplitude required for the dewetting transition.  

Furthermore, observations reveal that the first resonance frequencies can be used to 

overcome the droplet contact angle hysteresis effect easier. In addition, larger amplitudes 

are favorable since they can reduce sliding angles because of the greater amount of 

acoustic energy available for overcoming contact angle hysteresis on the hybrid surfaces. 

Multiple-resonance frequencies were also investigated to determine their effects 

on sliding angle. Multiple-resonance frequencies were applied consecutively to the 



 

 64 

droplets using the first and second resonance frequencies. It was found that multi-

resonance frequency cases are more effective than the second resonance frequency cases 

on reducing sliding angles. Moreover, when 5-µL droplets were vibrated using multi-

frequencies on a 25-µm spacing surface, the reduction in sliding angle was better than in 

the other two mono-frequency cases. This suggests that lateral motion should be 

constrained somewhat when droplet contact angle hysteresis is high to be able to reduce 

sliding angles.  

The study shows that resonance-based vibrations are effective in reducing sliding 

angles on a variety of hybrid surfaces.  Future studies should consider the effects of 

acoustic vibration on droplet shedding during condensation. 
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