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ABSTRACT 

 

Understanding the climatic drivers of changes in sea ice extent in the Arctic has 

become increasingly important as record minima in the September sea ice extent 

continue to be reached. This research therefore addresses the question of which synoptic 

scale climatological features are most important in affecting changes in sea ice extent in 

the Beaufort Sea. First, three measures of sea ice extent—the Barnett Severity Index, the 

Beaufort Sea minimum sea ice extent, and the Arctic-wide minimum sea ice extent—are 

compared to assess their degree of agreement and consistency using goodness of fit 

techniques. Secondly, a number of atmospheric predictor variables are analyzed using a 

composite approach to identify the most relevant predictors of sea ice in the region. 

Thirdly, monthly statistical forecast models are created based on multiple regressions 

and classification and regression trees (CART) to predict the minimum sea ice extent 

beginning in October of the previous year. 

Many differing measures have been used to quantify sea ice conditions in the 

Beaufort Sea, although no study has assessed these measures for consistency. When 

compared, all three measures indicate the same level of agreement according to the 

goodness of fit tests. This indicates that the choice of measure can be determined based 

on the specific application, as no measure outperforms another. In addition to differing 

measures of sea ice extent, differing predictor variables have been utilized to predict 

summer sea ice conditions. This study assesses all potentially relevant predictor 

variables and indicates that upper atmospheric air temperatures at 850 hPa, 700 hPa, and 
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500 hPa, monthly mean surface air temperatures, freezing degree days, thawing degree 

days, sea level pressure, total ice concentration, and multiyear ice concentration showed 

the strongest relationships with sea ice. Various teleconnection patterns including the 

Arctic Oscillation, the North Atlantic Oscillation, and the Pacific-North American 

pattern also showed strong relationships with these variables and are therefore believed 

also have some predictive utility. Finally, monthly multiple linear regression and CART 

models are created to predict the September sea ice extent using a number of climatic 

predictor variables. The results of these models suggest that antecedent sea ice 

conditions (total and multiyear ice concentration) and surface air temperature are the 

most important variables in predicting summer sea ice extent. The potential predictive 

power of the forecasts increases as predictions are made closer to the September 

minimum sea ice extent, with the most precise predictions made during July. This 

research confirms previous studies and provides a useful compilation of the state of the 

knowledge on the drivers of sea ice changes in the Beaufort Sea. 
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NOMENCLATURE 

 

AA    Arctic Amplification 

AO    Arctic Oscillation 

AW    Arctic-Wide Minimum Ice Extent 

BS    Beaufort Sea Minimum Ice Extent 

BSI    Barnett Severity Index 

CART    Classification and Regression Trees 

CPC    Climate Prediction Center 

d    Index of Agreement 

DOE    Department of Energy 

EA    East Atlantic Teleconnection Index 

EAWR    East Atlantic/Western Russian Teleconnection Index 

ENSO    El Niño/Southern Oscillation 

EOF    Empirical Orthogonal Function 

EPNP    East Pacific-North Pacific Teleconnection Index 

FDD    Freezing Degree Days 

GOF    Goodness of Fit 

HDD    Heating Degree Days 

IHO    International Hydrographic Organization 

MAE    Mean Absolute Error 

MLR    Multiple Linear Regression 
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MYI    Multiyear Ice Concentration 

NAO    North Atlantic Oscillation 

NCEP    National Centers for Environmental Prediction 

NIC    National Ice Center 

NOAA    National Oceanic and Atmospheric Administration 

NSIDC   National Snow and Ice Data Center 

PC    Principal Component 

PCA    Principal Component Analysis 

PDO    Pacific Decadal Oscillation 

PE    Polar/Eurasian Teleconnection Index 

PNA    Pacific-North American Teleconnection Pattern 

rho    Spearman-Rank Correlation 

r    Pearson’s Product Moment Correlation Coefficient 

R2    Coefficient of Determination 

R/O    Range-Offset 

RMSE    Root Mean Square Error 

SAT    Surface Air Temperature 

SLP    Sea Level Pressure 

SLR    Stepwise Linear Regression 

SOI    Southern Oscillation Index 

SOM    Self-Organizing Map 

SST    Sea Surface Temperatures 
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TDD    Thawing Degree Days 

TI    Total Ice Concentration 

VIF    Variance Inflation Factor 

WP    Western Pacific Teleconnection Index 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Arctic climatology is strongly affected by those features of the cryosphere 

(portions of the Earth where water is in its solid form) that are present in the northern 

hemisphere (Lemke et al. 2007). The Arctic can be defined in many ways, including the 

area above the Arctic Circle (66.5°N) (Lemke et al. 2007), the area in the northern 

hemisphere where permafrost is present, or the area above the 50°F isotherm (Serreze 

and Barry 2005). Arctic climatology includes studies of glaciers, ice caps, ice sheets, sea 

ice, and frozen ground (Lemke et al. 2007). Although Arctic research began in the 1600s 

with explorations hoping to find new passages that linked the eastern and western 

hemispheres, quantitative studies focused on understanding the Arctic climate system 

did not begin until the late 1900s (World Climate Research Programme 2007). With the 

rise of the satellite era in the late 1970s, more detailed and reliable data could be 

obtained over larger spatial scales (World Climate Research Programme 2007). This 

allowed for more exhaustive studies to be performed and alleviated the accessibility 

problems that prevented extensive research before this time (World Climate Research 

Programme 2007).  

 The geography of the Arctic is characterized by the Arctic Ocean, located above 

70°N, which is almost entirely surrounded by the landmasses of North America and 

Eurasia (Serreze and Barry 2005). This geography makes the Arctic unique compared to 

the Antarctic, which consists of a large landmass at the highest latitudes surrounded by 
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an ocean. Because of its high latitude, the Arctic has a very low energy state throughout 

the year. The least amount of thermal energy is received during winter, when the region 

above the Arctic Circle experiences 24-hour darkness. During the summer, the Arctic 

experiences 24-hour daylight. Throughout the year, the Arctic Ocean is covered by sea 

ice, which is mobile and shows a distinct seasonal cycle. The seasonal cycle is 

dependent on the surface air temperatures in the Arctic, which show large amounts of 

variation throughout the region depending on the geographic location. For example, 

surface air temperatures in the central Arctic Ocean are moderated throughout the year 

by heat exchanges between the ocean water and the overlying atmosphere, while some 

land areas experience large temperature ranges throughout the year (Serreze and Barry 

2005).  

I.1 Importance of the Cryosphere 

 The cryosphere plays an important role in the global climate system. It contains 

approximately 80% of all freshwater, with frozen ground representing the largest areal 

component (Lemke et al. 2007). Because it represents such a large area, aspects of the 

cryosphere such as snow cover and sea ice have important influences on the global 

energy budget. Some of the components of the cryosphere (e.g., snow and ice) have very 

high albedos, meaning they reflect most of the incoming solar radiation that reaches the 

surface, up to 80–90%. These surfaces thus prevent the absorption of this solar radiation 

and cool the surrounding area as well as the global climate (Lemke et al. 2007). 

Additionally, the components of the cryosphere can insulate ocean and land surfaces. 

The snow and ice holds in heat, which slows the transfer of energy from these covered 
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surfaces (either land or ocean water) to the overlying atmosphere (Serreze and Barry 

2005). The Arctic also has important implications for the thermohaline circulation, 

which is driven by global oceanic temperature and salinity gradients (Serreze and Barry 

2005). These gradients are influenced by the amount of freshwater that exits the Arctic. 

If larger quantities of freshwater are exported from the Arctic, it is possible that this 

circulation will break down or change in some way (Serreze and Barry 2005, Lemke et 

al. 2007). For this reason, it is critically important to understand the ways in which the 

Arctic adapts to global climatic changes. 

I.2 Sea Ice 

 Sea ice extent in the Arctic has been steadily declining since the 1960s, and 

following slight increases in extent during the 1990s, has shown drastic decreases in the 

past decade (from 2002 onward) (Lemke et al. 2007, National Research Council 2012, 

Stroeve et al. 2011, Drobot and Maslanik 2003, Stroeve et al. 2008). Annual mean ice 

extent anomalies, calculated throughout the entire Arctic from 1978 to 2005, show a 

significant decreasing trend of –33 ± 7.4 × 103 km2 yr–1 (–2.7 ± 0.6% per decade), with 

summer minimum ice extent, calculated from 1979 to 2005, showing an even stronger 

trend of –60 ± 20 × 103 km2 yr–1 (–7.4 ± 2.4% per decade) (Lemke et al. 2007). While 

decreasing trends in ice extent are observed throughout the year, the most significant 

trends are observed in summer, where the six lowest ice extents on record have been 

observed in the last six summers (from 2007 to 2012) (National Research Council 2012, 

Stroeve et al. 2011, Serreze et al. 2007). 
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 Observed decreases in sea ice extent, especially during September, can be 

explained through a combination of many distinct, yet interacting processes. The 

September sea ice extent can be linked to internal climate variability in surface air 

temperatures, circulation patterns in the atmosphere and ocean, the surface energy and 

hydrologic budgets, and human-induced changes as a result of increased concentrations 

of greenhouse gases (Serreze et al. 2007a, b, Stroeve et al. 2011, Serreze and Barry 

2005). Although the basic physical explanations behind many of these processes are 

understood, the interaction between them is still a topic that needs further research. One 

of the most important unanswered questions in Arctic sea ice research is whether or not 

humans have induced an unprecedented change in Arctic sea ice and how this change 

will influence the global climate in the future (Stroeve et al. 2011, Serreze and Barry 

2005, Lemke et al. 2007). 

Of these Arctic-wide reductions in ice extent, the greatest decreases have been 

observed in the Beaufort and Chukchi seas and in the Kara and Laptev Seas (National 

Research Council 2012). Specifically, drastic ice extent decreases in the Beaufort Sea 

will have important impacts on international shipping legislation, as an ice-free Beaufort 

Sea signifies the opening of the Northwest Passage, a shipping lane connecting the 

Atlantic and Pacific Oceans (Griffiths 1987). The opening of this sea will represent the 

first battleground for unprecedented international shipping legislation, as countries 

compete for shipping privileges as well as exploration opportunities. 

 As the minimum ice extent continues to decline, more open water is present 

during the summer months. This increase in open water is accompanied by a host of 
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changes that may contribute a non-linear decline in ice extent in the coming years 

(Stroeve et al. 2011).  More open water in September is accompanied by thinner first-

year ice that is more susceptible to summer melt than older and thicker multiyear ice 

(Stroeve et al. 2011, National Research Council 2012). Multiyear ice is ice that survives 

the summer melt and is therefore thicker and more stable than first-year ice (Maslanik et 

al. 2007). Decreases in the amount of multiyear ice (increases in the amount of first-year 

ice) suggest that less ice is able to survive the summer melt and therefore more 

susceptible to yearly melting and continued decreases in ice extent. With thinner ice 

cover, open water is able to develop earlier in the year, which leads to an increase in the 

importance of the ice-albedo feedback mechanism (Stroeve et al. 2011). As ice cover 

decreases and more open water is present, albedo is decreased because the darker water 

absorbs more solar energy than the lighter ice (Deser et al. 2000). This increased 

absorption leads to further warming and melting of the ice (Deser et al. 2000). Also, in 

areas previously covered by ice the upper ocean is warmer and fresher and biological 

productivity at the base of the food chain has increased (National Research Council 

2012). Sea-ice dependent marine mammals such as seals, whales, and walruses continue 

to lose habitat (National Research Council 2012, Drobot and Maslanik 2003) and 

increased open water along the coasts may increase the risks associated with storm surge 

and coastal erosion (Drobot and Maslanik 2003). In the Beaufort Sea, decreasing ice 

extent also has implications for indigenous populations, fishing communities, offshore 

oil exploration, and commercial shipping (Drobot and Maslanik 2003, Drobot 2003, 

National Research Council 2012). Because of the possibility of extreme changes 
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associated with decreasing summer ice extent, it has become increasingly important to 

understand and predict interannual variations. 

I.3 Arctic Amplification 

 Arctic Amplification (AA) is the idea that the Arctic is warming 

disproportionately compared to overall global average warming (Serreze and Francis 

2006, Serreze and Barry 2011). Although warming has been observed throughout the 

northern hemisphere, the Arctic has shown larger warming trends (Serreze and Barry 

2011). At the time of carbon dioxide doubling, the Arctic warming (calculated for the 

region from 60°N to 90°N) was a large as 1.9 times greater than the global average 

warming (Winton 2006). This phenomenon has been observed in the temperature 

records for the past 50 years and has become increasingly noticeable in the last decade, 

especially during autumn and winter (Serreze and Francis 2006, Serreze and Barry 

2011). Evidence suggests that AA will continue to increase and may have implications 

not only for Arctic regions, but for the overall global climate (Lawrence et al. 2008). AA 

is thought to be a response to human practices that have induced planetary warming and 

has particular importance for studies of Arctic sea ice.  

 Although AA is caused by a host of different physical processes, sea ice plays a 

critical role in this phenomenon. Throughout most of the year, sea ice insulates the 

Arctic Ocean water from the cold atmosphere. When sea ice is thick (during all seasons 

excluding summer), it is difficult for heat to be transferred from the warm ocean waters 

to the cold overlying atmosphere (Serreze and Barry 2005). In this way, sea ice dampens 

the warming that could occur from this transfer of heat from the ocean. If sea ice thins or 
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disappears entirely at the end of summer, this heat will be able to escape and ultimately 

warm the atmosphere (Francis and Hunter 2006). Analogously, the ice-albedo feedback 

will allow ocean waters to absorb more solar radiation (because they are exposed for 

longer during the summer), which will allow for increased heating. If the ocean becomes 

warmer, the temperature gradient between the ocean and cold atmosphere will become 

more pronounced, and a greater amount of heat will be released into the atmosphere, 

contributing to atmospheric warming (Serreze et al. 2011). This process explains AA in 

general, and also why AA is most pronounced during autumn and winter. The largest 

amount of ocean water is exposed during the summer, when the sea ice reaches its 

minimum extent. Therefore, the ocean heats up the most during the summer months. The 

highest air temperatures in the Arctic also occur during summer, so the temperature 

gradient between the ocean and air is small and therefore less energy transfer occurs. 

When temperatures start to plummet during autumn and winter because of significantly 

shorter day lengths, this temperature gradient becomes more extreme and the large 

amount of heat stored in the oceans can be transferred to the atmosphere (Serreze et al. 

2009, Screen and Simmonds 2010, Serreze et al. 2011). This ultimately contributes to 

the pronounced AA signal during autumn and winter. 

 Because of the importance of sea ice changes in understanding AA, most 

scientists believe that AA is a surface-based phenomenon, meaning the signature of AA 

is most pronounced in the lower troposphere, with its influence becoming less noticeable 

as the distance to the surface is increased (Serreze et al. 2009, Serreze et al. 2011). The 

influence of AA on surface climatology, in the Arctic and in the northern hemisphere as 
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a whole, has already been observed. Studies have found that increased transfer of heat 

into the lower atmosphere has potentially weakened the polar jet stream (Overland and 

Wang 2010). Lui et al. (2012) and Francis et al. (2009) found that changes have occurred 

in the northern hemisphere atmospheric circulation, which can be attributed to AA, and 

that these new patterns resemble distinct phases of the Arctic Oscillation and North 

Atlantic Oscillation. Bhatt et al. (2010) suggest that AA has an influence on tundra 

vegetation growth, with increased air temperatures allowing for more vegetation to grow 

at high latitudes. Francis and Vavrus (2012) go even further and suggest that AA has 

contributed to observed changes in Rossby waves over North America. They suggest 

that AA could weaken zonal winds and increase wave amplitude. This would cause the 

Rossby waves to progress more slowly, increasing the possibility of extreme weather 

events in North America, such as flooding, drought, and heat waves (Fancis and Vavrus 

2012). Although evidence of the existing impacts of AA has been discussed, these 

impacts are not fully accepted or understood (see Barnes 2013). 

 The potential impacts of AA in the future have been studied extensively using 

model simulations, although no consistent pattern of changes has been observed in the 

many studies that have been conducted. Depending on the input parameters (the 

expected ice conditions, changes in greenhouse gas concentrations, etc.), different results 

are observed. Many studies, including Alexander et al. 2004, Yamamato et al. 2006, 

Deser et al. 2010, and Higgins and Cassano 2009, find that the impacts of AA are 

confined to the Arctic itself, although the magnitude of these impacts vary widely 

between studies. Other studies suggest that the impacts of AA will be more widespread 
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(Seierstad and Bader 2008, Petoukhov and Semenov 2010, Lawrence et al. 2008). 

Although it is unknown exactly how AA will influence global climate in the future, it is 

clear that this phenomenon is critical in understanding the importance of Arctic sea ice 

change. 

I.4 Prediction Techniques 

 To predict changes in sea ice extent, two modeling approaches are utilized: 

dynamical models and statistical models. Dynamical models utilize known physical 

relationships based on physics to make long-term projections about the state of the 

climate. Statistical models utilize statistical relationships between variables to make 

shorter-term predictions about climatic conditions. For sea ice forecasting, these 

statistical models rely on information about the seasonality of ice conditions and allow 

for forecasting up to a year in advance. The minimum ice extent is reached during 

September of each year, with ice beginning to refreeze in October as temperatures begin 

to decrease. The minimum extent in September represents the most noticeable change in 

ice conditions as a result of climate change and is therefore a useful proxy for the ice 

conditions each year. Starting with October climatological data, sea ice conditions for 

the following summer can be forecasted starting almost a year in advance and forecasts 

can be made up to one month in advance of the summer minimum. In the past, these 

statistical models have used a number of measures of summer sea ice conditions 

including the September minimum sea ice extent for the Beaufort Sea, the Barnett 

Severity Index, and the opening date of the Prudhoe Bay shipping lane (Drobot et al. 

2009, Barnett 1980, Drobot 2003). A more detailed explanation of the utility of each of 
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these measures is provided in chapter II. The utility of statistical models is that they are 

easily adaptable to changing ice conditions and can be recreated every year with 

different predictor variables to improve upon predictions (National Research Council 

2012).   

I.5 State and Limitations of Statistical Predictions in the Beaufort Sea 

 Although several studies have examined the predictability of Beaufort Sea 

summer sea ice extent (Barnett 1980, Walsh 1980, Drobot and Maslanik 2003, Drobot 

2003, Drobot 2007, Lindsay et al. 2008, Drobot et al. 2009), further research is needed to 

increase understanding of how predictor variables interact and how predictor 

relationships may change. Throughout these studies, many potential predictor variables 

have been examined, but no study has attempted to combine all useful variables. A more 

detailed analysis of the predictor variables utilized in these studies and the relative fit of 

these previous statistical models are provided in Chapter III and Chapter III. Studies 

have found that sea ice concentration (Drobot 2003, Drobot 2007, Lindsay 2008), 

surface air temperature (Walsh 1980, Drobot and Maslanik 2003, Drobot 2003, Drobot 

et al. 2009), sea level pressure (Walsh 1980, Barnett 1980, Drobot and Maslanik 2003, 

Drobot et al. 2009), teleconnections indices (Dumas et al. 2003, Drobot 2003), and 

ocean temperatures at varying depths (Lindsay et al. 2008) all have potential predictive 

ability, but no study has utilized all of these variables together. By combing all 

suggested variables, the predictive ability of seasonal forecasting models in the Beaufort 

Sea for all months can be improved. 
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 Because of the chaotic nature of the Arctic and the state of the knowledge about 

drivers of sea ice changes, there are many limitations to this type of seasonal forecasting 

method (National Research Council 2012, Lemke et al. 2007). Firstly, the precision of 

predictions is hindered by our incomplete understanding of the complex interactions 

between sea ice, the ocean, and the atmosphere (National Research Council 2012, 

Stroeve et al. 2011).  Secondly, a regime shift from thicker multiyear ice to thinner first 

year ice may limit the predicative ability of known climate variables (National Research 

Council 2012, Maslanik et al. 2007 b, Stroeve et al. 2007). With recent unprecedented 

sea ice melt and warming of the Arctic, it is possible that statistical relationships 

between sea ice extent and predictor variables are changing (Holland and Stroeve 2011). 

For example, Maslanik et al. (2007 b) and Holland and Stroeve (2011) suggest that the 

precision of the predictive relationship between AO and summer ice extent may be 

decreasing. Thirdly, the feedback processes between AA and sea ice are relatively 

unknown and it is therefore possible that more pronounced AA will have unknown 

impacts on Arctic sea ice, which could hinder our ability to accurately predict sea ice 

extent using statistical models (Serreze and Francis 2006, Serreze et al. 2011). Our 

predictive relationships rely on historical data, so as the Arctic shifts to predominately 

first year ice it is possible that the same relationships do not exist. 

I.6 Research Objectives 

This research addresses the question, which combination of synoptic scale 

climatological features drive summer sea ice extent in the Beaufort Sea?  The purpose of 

this study is to evaluate the measures of ice conditions in the Beaufort Sea and to 
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determine the climatological features with the most skill in predicting these sea ice 

conditions in the following summer. This research intends to assess the predictive skill at 

differing time scales, from eleven months in advance to one month in advance, to assess 

the utility of longer-scale predictions and the degree to which the predictive ability of 

climatic variables changes throughout the year. The following objectives will be used to 

answer this question: 

 1. Determine the yearly minimum sea ice extent in the Beaufort Sea and 

 evaluate this as a measure of sea ice conditions (chapter II), 

 2. identify relevant climatic predictor variables (chapter III), and  

3. utilize relevant climatic predictor variables to determine the predictability of 

minimum ice extent in the following summer using monthly statistical models 

(chapter IV).  

 Commonly used measures of sea ice extent will be compared in Chapter II to 

determine the most appropriate measure as well as improve understanding of how 

previous studies utilizing different measures can be compared. Previous works have 

utilized various measures to represent summer sea ice conditions, but no comparative 

study has been made. In this way, comparisons between studies are difficult. Chapter II 

addresses this problem by comparing three of the most commonly used measures. In 

Chapter III, an assessment of all relevant predictor variables will be made to identify 

which variables show the most promise in improving statistical forecasts of sea ice 

extent. In previous statistical models, only a small number of predictor variables were 

utilized as input variables, meaning the predictive ability of these models was potentially 
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incomplete. A comprehensive study utilizing a large number of variables is necessary to 

determine which aspects of the climate system have the strongest predictive relationships 

with sea ice. In Chapter IV, a large number of potentially relevant variables will be 

assessed for a comprehensive overview. Finally, Chapter IV will utilize these predictor 

variables in creating statistical forecast models up to 11 months in advance of the 

September minimum sea ice extent. Using a large number of predictor variables, this 

assessment will provide useful information on the importance of specific predictor 

relationships in forecasting sea ice conditions up to a year in advance. This represents an 

updated assessment of the predictability of the Beaufort Sea minimum sea ice extent, 

which will provide critical information on the changes in the predictability of sea ice 

extent that have potentially occurred in recent years. As the Arctic continues to change, 

information regarding the potential decrease in the predictability of sea ice extent as well 

as changes in predictor relationships is critical in understanding and forecasting further 

modifications of sea ice.  
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CHAPTER II  

ASSESSMENT OF MEASURES OF SEA ICE EXTENT 

 

II.1 Introduction 

Previous studies have examined changes in summer ice extent using various 

measures of summer sea ice extent, such as the Arctic-wide minimum ice extent 

(Lindsay et al. 2008, Stroeve et al. 2007) and the Barnett Severity Index (BSI) (Barnett 

1980, Drobot and Maslanik 2003, Drobot 2003, Drobot et al. 2009). Although these 

measures have been widely used to quantify summer sea ice extent, the utility of each is 

largely unknown. The Arctic-wide minimum extent, because it includes information for 

a large area, may not accurately reflect the sea ice conditions in the Beaufort Sea. The 

BSI describes ice extent using attributes of the summer shipping season (Barnett 1980), 

and therefore may not be climatologically significant. This measure also includes 

information about the shipping lane throughout the summer, which may not accurately 

reflect the minimum ice extent, which is reached in September. This portion of my thesis 

will establish a new dataset of minimum ice extent values for the Beaufort Sea, 

following the procedure used by the National Snow and Ice Data Center (NSIDC) for the 

Sea Ice Index. This measure will represent the minimum ice extent (similar to the Arctic-

wide extent) for only the Beaufort Sea, and is expected to represent Beaufort Sea ice 

changes more accurately than previously used measures. Specifically, this chapter will 

quantitatively compare these three different measures of summer minimum ice extent in 

the Beaufort Sea to assess the level of agreement between measures. This will provide 
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insight into the level of agreement between measures and can facilitate more direct 

comparisons between studies utilizing these different measures. This research will also 

provide a new measure of sea ice extent for the Beaufort Sea that can be utilized in 

future studies. 

II.2 Study Area 

 The extent of the Beaufort Sea was determined using the limits defined by the 

International Hydrographic Organization (IHO) (Figure 1). The northern edge of the sea 

is defined by the line from Point Barrow, Alaska to Lands End, Prince Patrick Island 

(IHO 1953). The easternmost edge of the sea is defined as the line from Lands End 

through the southwest coast of Prince Patrick Island, then following the coast of Banks 

Island, and then to the mainland (IHO 1953). For this study the easternmost edge is 

defined as 124°W, the longitude of Lands End. The southernmost edge is truncated at 

70°N. For the northern edge, all grid cells that intersect the line defined by the IHO are 

used. This includes all grid cells from 124°W to 156°W for latitudes 70°N to 72°N, from 

124°W to 154°W for latitudes 72°N to 73°N, from 124°W to 149°W for latitudes 73°N 

to 74°N, from 124°W to 144°W for latitudes 74°N to 75°N, from 124°W to 135°W for 

latitudes 75°N to 76°N, and from 124°W to 130°W for latitudes 76°N to 77°N. 

II.3 Data 

 In this study, three measures of ice extent are used: the Beaufort Sea minimum 

ice extent (BS), the Arctic-Wide minimum ice extent (AW), and the BSI. The time 

period of 1979 to 2012 will be used for comparison (Figure 2). 
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 Daily sea ice concentration data for September of every year were obtained from 

the NSIDC Sea Ice Concentrations from Nimbus-7 Scanning Multichannel Microwave 

Radiometer (SMMR) and Defense Meteorological Satellite Program (DMSP) -F8, -F11 

Figure 1: Map of study area. Basemap from ESRI online Basemaps in ArcMap 

10. Blue lines outline the definition of the Beaufort Sea from the IHO. Black box 

outlines the study area utilized in Chapter III. 
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and -F13 Special Sensor Microwave/Imagers (SSM/Is), and the DMSP-F17 Special 

Sensor Microwave Imager/Sounder (SSMIS) Passive Microwave Dataset for 1979 

through 2012 (Cavalieri et al. 1996). The SMMR was operational every other day for the 
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Figure 2: Ice extent values for each measure from 1980 through 2012. 
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period of 1980 through 1987. Starting in July of 1987, the two satellites (SSMR and 

SSM/I) are merged and provide daily sea ice concentrations. Concentration data are 

provided on a 25 km by 25 km grid as the percentage of each grid cell covered by ice. 

The daily minimum ice extent is defined as the total area of all grid cells in the study 

area with a sea ice concentration of 15% or greater, as used by the NSIDC for minimum 

ice extent calculations. BS is defined as the single day within the month of September 

when the minimum ice extent is reached. 

 AW is obtained from the Sea Ice Concentrations from Nimbus-7 SSMR and 

DMSP SSM/I Passive Microwave Data (Cavalieri et al. 1996). The daily minimum ice 

extent is defined as the total area of all grid cells with a sea ice concentration of 15% or 

greater. The daily minimum ice extent for the entire Arctic is defined as the single day 

within the month of September when the minimum ice extent is reached. 

 The BSI, obtained from the National Ice Center (NIC) in Washington D.C., is a 

unitless measure describing ice extent in the Beaufort Sea based on five parameters: (1) 

the distance (in nautical miles) from Point Barrow, AK northward to the ice edge on 15 

September, (2) the distance from Point Barrow, AK northward to the boundary of 4/8 ice 

concentration on 15 September, (3) the initial date the entire sea route to Prudhoe Bay, 

AK is less than or equal to 4/8 ice concentration, (4) the number of days the entire sea 

route to Prudhoe Bay, AK is ice-free, and (5) the number of days the entire sea route to 

Prudhoe Bay, AK is less than or equal to 4/8 ice concentration (Barnett 1980). These 

five values are added to form the BSI, where smaller BSI values indicate larger ice 

extent and larger BSI values indicate a smaller ice extent (Figure 2).  



 

19 

 

II.4 Methods 

II.4.1 Evaluation Techniques 

 Evaluation of the different measures of ice extent will consist of four parts: (1) 

comparison of long-term means, (2) analysis of the timing of heavy and light ice years, 

(3) goodness-of-fit measures, and (4) linear regression. Because the three measures 

describe ice extent using different scales, they are converted into Z-scores to allow for 

direct comparison. For each measure, the standardized value is calculated by subtracting 

the mean value from each individual yearly value and then dividing by the standard 

deviation of the dataset. BSI data represent ice extent inversely (higher BSI values 

indicate less ice), so the inverse of the BSI data are used for analysis to allow for direct 

comparison with the other two measures. 

II.4.1.1 Long-Term Means  

 The long-term mean ice extent value for each measure is determined. This is 

done using the non-standardized values and is intended to show the differences in 

magnitude between the three datasets. 

II.4.1.2 Analysis of the timing of light ice and heavy ice years 

  Using the standardized values, heavy and light ice years are determined for each 

measure and then compared for consistency. For each measure, a light ice year is any 

year with a standardized value less than or equal to −1 and a heavy ice year is any year 

with a standardized value greater than or equal to 1 (Rogers 1978, Drobot and Maslanik 

2003).   
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II.4.1.3 Goodness-of -Fit Measures 

 Goodness-of-fit (GOF) measures are used to determine the degree of association 

between the different measures of ice extent. GOF analysis is performed for each 

combination of measures (BS with AW, BS with BSI, and AW with BSI) for both the 

standardized datasets and detrended datasets. For the detrended datasets, the residuals 

obtained from linear regression equations for each measure are utilized. The GOF 

measures used are the Pearson’s product-moment correlation coefficient (r), the 

coefficient of determination (R2), the Spearman-Rank correlation (rho), the root mean 

square error (RMSE), the mean absolute error (MAE), the index of agreement (d), and 

the range-offset (R/O). 

 The correlation coefficient and coefficient of determination describe the strength 

of the relationship between the two measures used. The coefficient of determination 

describes the proportion of the total variance in one measure than can be accounted for 

by the other. Both of these measures are more sensitive to outliers than to observations 

near the mean (Legates and Davis 1997) and are insensitive to additive and proportional 

differences between measures (Willmott 1984). They may thus not accurately reflect the 

amount of agreement between measures. 

 The Spearman-rank correlation is a nonparametric statistic that is less sensitive to 

outliers and therefore may provide a more robust characterization of the correlation 

between variables (Legates and McCabe 1999). A drawback of this nonparametric 

statistic is that because the data are converted to an ordinal (ranked) form, there is a loss 

of information (Legates and McCabe 1999).   
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 The RMSE and MAE are commonly used to quantify the amount of error 

between datasets. For both the RMSE and the MAE, values closer to zero indicate better 

agreement between the two datasets. While the RMSE is a good indicator of agreement, 

it does not take into account the distribution of errors in the dataset, and is therefore 

sensitive to the distribution and magnitude of errors, as well as the sample size and 

outliers (Willmott and Matsuura 2005). The MAE is derived from the unaltered 

magnitude (absolute value) of difference between the two datasets (total error) divided 

by the number of observations (Willmott and Matsuura 2005).   

 The index of agreement (d) varies from 0.0 to 1.0, with higher values indicating 

better agreement between measures. This measure was developed to overcome the 

insensitivity of correlation-based measures to differences in the means of the two 

measures and variances (Willmott 1984). It represents an improvement over the 

coefficient of determination but is also sensitive to extreme values because it includes 

the squared differences between measures (Legates and McCabe 1999).   

 Finally, R/O represents the difference between the ranges of two datasets.  Lower 

values indicate that the two datasets have similar ranges and therefore are likely to be in 

better agreement. 

II.4.1.4 Linear Regression 

 Least-squares linear regression is performed for each measure and the resulting 

regression equations are compared. The slope will indicate the degree to which the 

datasets agree. If all measures are equal, it is expected that the regression equations 

(representing the overall trends in the datasets) would also be equal. 
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II.5 Results 

 All three measures of summer ice extent in the Beaufort Sea are similar (Figure 

3). Figure 4 shows the standardized values of each measure plotted against one another. 

If the two measures were identical, the plotted points should fall along the 1 to 1 line. 

The greatest similarity is seen between the AW and the BSI. While these two measures 

Figure 3: Standardized ice extent for each measure from 1979 through 

2012. BSI values are inverted. 
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show the strongest relationship, they each also show strong relationships with BS, 

suggesting that all three measures are related and depict summer ice extent variability in 

similar ways. When comparing the timing of light ice and heavy ice years, all three 
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Figure 4: Comparisons of the standardized values of each measure. 

A shows the Beaufort Sea and Arctic, B shows the Beaufort Sea and 

the Barnett Severity Index, C shows the Arctic and the Barnett 

Severity Index. 
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measures agree for the light ice years of 2007, 2008, 2011, and 2012 (Table 1). All years 

selected for BS and AW match, while 2009 was only selected for BSI. Overall, the 

heavy ice years do not show as much consistency as the light ice years. For the heavy ice 

years, 1983 was the only year selected by all three measures.  

 

The calculated long-term mean value for BS was 254,231 km2, for AW was 

6,119,515 km2, and for BSI was 452. Because the AW represents a much larger area, it 

has a significantly larger mean value than the BS. The BSI values are much smaller 

because they do not represent the ice extent in km2.  

 

 

 

 

Beaufort 

Sea BSI Arctic

Beaufort 

Sea BSI Arctic

2007 2007 2007 1980 1983 1980
2008 2008 2008 1983 1988 1982
2010 2009 2010 1985 1991 1983
2011 2011 2011 1991 1986
2012 2012 2012 1996 1992

1996

Light Ice Years Heavy Ice Years

Table 1: Timing of light ice and heavy ice years. 
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II.5.1 Goodness-of-Fit Measures 

II.5.1.1 Standardized Datasets 

 All three variable combinations (BS and AW, BS and BSI, and AW and BSI) 

indicate statistically significant correlations at the 95% confidence level (Table 2a). The 

strongest correlation is between AW and BSI (r = 0.85), while the weakest correlation is 

for BS and BSI (r = 0.74). According to the correlation coefficients, BS is the variable 

least associated with the other two measures. Despite these differences in the r values, 

the 95% confidence intervals of all three variables overlap, which indicates that these 

correlation coefficient values are not statistically significantly different (Figure 5).  

 Using rho, all three associations are again significant at the 95% confidence level 

and are similar in magnitude (Table 2a). The strongest correlation is between BS and 

A.

Measure R
2

RMSE MAE d R/O r p-value rho p-value

Beaufort Sea and Arctic 0.547 0.682 0.550 0.868 0.236 0.760 <0.001 0.545 <0.001
Beaufort Sea and BSI 0.458 0.710 0.579 0.854 0.127 0.740 <0.001 0.580 <0.001

Arctic and BSI 0.728 0.533 0.455 0.922 0.108 0.853 <0.001 0.557 <0.001
B.

Measure R
2

RMSE MAE d R/O r p-value rho p-value

Beaufort Sea and Arctic 0.192 0.667 0.530 0.658 0.714 0.438 0.011 0.367 0.036
Beaufort Sea and BSI 0.203 0.709 0.584 0.670 0.134 0.450 0.009 0.490 0.004

Arctic and BSI 0.377 0.525 0.447 0.770 0.580 0.614 <0.001 0.534 0.002

Goodness-of-Fit Measures

Correlation Spearman Rank

Correlation Spearman Rank

Table 2: Goodness-of-fit measures showing the level of agreement between the three 

measures of sea ice extent. A shows the results using the standardized datasets, B 

shows the results using the detrended datasets. 
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BSI (rho = 0.58), while the weakest correlation is for BS and AW (rho = 0.55). These 

Spearman-Rank correlations suggests that all three measures differ from each other by 

the same amount.  This can be contrasted to the results from the correlation coefficient 

and coefficient of determination, which show that the largest discrepancies are seen in 

BS, with the greatest similarities seen between AW and BSI. These differences could be 

a result of the limitations in the correlation coefficient and coefficient of determination, 

which are sensitive to outliers and therefore may not accurately reflect associations 
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Figure 5. Correlation coefficients between the three measures. 
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(Legates and Davis 1997), or because of the loss of data associated with rho (Legates 

and McCabe 1999).  

The RMSE values (Table 2a) indicate that AW and BSI (RMSE = 0.53) are most 

similar, and BS and BSI (RMSE = 0.71) are least similar. These results agree with the 

correlation coefficient and coefficient of determination. Associations with BS show the 

greatest magnitude of errors (RMSE = 0.68 with AW and 0.71 with BSI), indicating the 

largest discrepancy. The MAE values (Table 2a) further confirm these results, with the 

strongest agreement between AW and BSI (MAE = 0.46) and the weakest agreement 

between BS and BSI (MAE = 0.58). The MAEs are smaller (0.46–0.58 vs. 0.53–0.71 for 

RMSE), due to the fact that the RMSE provides the square of the errors, which would 

exacerbate differences between the datasets. 

 The index of agreement (d) also indicates the strongest association between AW 

and BSI (d = 0.92) and the weakest association between BS and BSI (d = 0.854) (Table 

2a).  

 The range-offset shows the greatest difference in range between BS and AW 

(R/O = 0.24) and the smallest difference between AW and BSI (R/O = 0.11) (Table 2a). 

The two associations with BSI show the lowest R/O’s (0.11 with AW and 0.13 with BS). 

In general, the three values are very similar and indicate that all three measures have 

similar ranges. 

II.5.1.2 Detrended Datasets 

 Table 2b shows the results from the goodness-of-fit measures for the detrended 

datasets. All three correlations are statistically significant at the 95% confidence level. In 
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all three cases, the correlation coefficient for the detrended datasets is weaker than the 

corresponding value for the standardized datasets, indicating that a common trend in all 

variables inflated the correlation magnitudes. As with the standardized datasets, the 

strongest correlation was seen between AW and BSI (r = 0.61), with weaker correlations 

between BS and AW (r = 0.44) and BS and BSI (r = 0.45). However, the overlapping 

confidence intervals (not shown) again suggest that these correlation magnitudes are not 

statistically significantly different. This is similar to the results seen with the 

standardized datasets.  

 The Spearman-Rank correlations for the detrended data differ from the 

standardized results. All three rho values are again significant at the 95% confidence 

level and the strongest correlation is again between AW and BSI (rho = 0.53). However, 

the weakest correlation is between BS and AW (rho = 0.37). The differences in rho 

between the standardized and detrended datasets again indicate that some of the 

associations observed in the standardized datasets are a product of a common 

(decreasing) trend in each of the three measures, and not a result of their degree of 

agreement. 

 The RMSE values for the detrended datasets (Table 2b) are very similar to the 

values obtained from the standardized datasets. For all three variable combinations, the 

detrended RMSEs are slightly lower than the standardized RMSEs, which suggests that 

the detrended datasets show slightly better agreement.  The MAEs (Table 2b) again 

show similar results, with similar but slightly lower MAE values for the detrended BS–
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AW and AW– BSI combinations. The MAE for BS and BSI is negligibly higher for the 

detrended data (MAE = 0.58). 

 For the detrended datasets, the index of agreement (d) is lower for all three 

combinations of measures when compared with the standardized d values (Table 2b). As 

for the standardized datasets, the strongest association is between AW and BSI (d = 

0.77), although it is weaker than the corresponding value from the standardized data (d = 

0.92). As with the standardized datasets, the d values for the associations between BS 

and AW (d = 0.66) and between BS and BSI (d = 0.67) are very similar. 

 The range-offset values for the detrended datasets (Table 2b) are larger than the 

standardized results for all three associations, which indicates that the negative trend in 

the standardized datasets may slightly skew the results of the analysis. 

II.5.2 Linear Regression 

 Linear regression was performed for each sea ice measure (Figure 6). For all 

three linear regression equations, the slope is statistically significant at the 99% 

confidence level. The R2 values indicate that the strongest level of agreement is seen for 

AW, where R2 = 0.72. The weakest level of agreement is seen for BS, where R2 = 0.49. 

For BSI, the R2 value is 0.57.  The BS and BSI represent summer ice extent in the 

Beaufort Sea, a much smaller area than represented by AW. These measures are 

therefore expected to show more interannual variation and should be less appropriate to 

represent using linear equations. 

 All three regression equations have approximately equal slopes (Figure 6). 

Because the three slopes are very similar, the three measures of summer ice extent and 
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their temporal change are also very similar. If the input data for the three measures are 

very similar, the resulting regression equations are expected to be very similar as well. 

Figure 6: Linear regression equations for each measure. The top panel represents 

the Beaufort Sea minimum ice extent, the middle panel represents the Arctic-wide 

ice extent, and the bottom panel represents the Barnett Severity Index. 
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The regression equations suggest that the three measures are indeed very similar (they all 

show about the same trends over time), although the distribution of AW may be more 

accurately reflected by the linear equation than the distributions of BS and BSI.  

II.6 Discussion and Conclusions 

This study examined the level of agreement between three different measures of 

summer sea ice extent: the Beaufort Sea minimum ice extent (BS), the Arctic-wide 

minimum ice extent (AW), and the Barnett Severity Index (BSI). The agreement 

between measures was assessed using an analysis of the timing of light ice and heavy ice 

years, goodness-of-fit measures, and linear regression. The following results were 

observed: 

1. Of the goodness-of-fit measures, r, R2, RMSE, MAE, d, and R/O indicate that the 

greatest amount of agreement is between AW and BSI, and less agreement with 

BS. This suggests that AW and BSI are the most similar of the measures and 

potentially provide more accurate representations of sea ice extent. 

2. The goodness-of-fit measures indicate that while there may be slightly better 

agreement between AW and BSI than with BS, this difference is likely small 

enough to be negligible. 

3. According to the results from the Spearman-Rank correlation (rho), the analysis 

of the timing of light ice and heavy ice years, and the linear regression, all three 

measures again show the same level of agreement. This indicates that any of the 

three measures could be used for an analysis of sea ice conditions and the same 

results would be expected. 
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4. An analysis of the detrended datasets indicates that the negative trend observed 

in all three datasets may have some effect on the results obtained from the 

goodness-of-fit measures, but this effect is very small. 

5. Comparison of the timing of light ice and heavy ice years showed a stronger 

agreement between the three measures for the light ice years than for the heavy 

ice years. This suggests that the light ice events, occurring in the most recent 

years of record, are extreme enough to be captured by all three of these measures.   

6. The linear regressions suggest that the trends are generally the same for all three 

measures. Because AW covers a larger area, a linear trend better captures the 

distribution of this data compared to the distributions of BS and BSI. 

Overall, this research suggests that all three measures of summer sea ice extent 

represent summer ice conditions equally well. This means that the choice of which 

measure to use in future research can be made based on the specific intent of the study. 

AW characterizes sea ice conditions for the entire Arctic and therefore is most useful in 

larger-scale studies. The BSI utilizes shipping information in the Beaufort Sea and 

includes information about the entire summer shipping season, and is therefore most 

useful when studying ice conditions throughout the summer. BS represents the Beaufort 

Sea minimum ice conditions. This measure would be most useful in studies to determine 

specific conditions causing decreasing ice extent because it captures the region of most 

extreme ice loss in each year.   

Because all three measures of ice extent represent different regions or time 

periods, it is interesting that they all show the same level of agreement. BS follows the 



 

33 

 

same general distribution as AW, even though AW represents a much larger area. Within 

the Arctic, specific seas show different trends in sea ice extent. Therefore it would be 

expected that certain smaller areas within the Arctic would have distributions that differ 

greatly from AW. It is therefore interesting that the Beaufort Sea follows the same 

general pattern of sea ice extent as the Arctic as a whole. The BSI does not incorporate 

any climatological measures to determine sea ice variability; it only uses the conditions 

of the shipping season to quantify sea ice extent. It is therefore interesting that the BSI 

shows a strong agreement with BS and AW. This indicates that even though the BSI 

may not be climatologically significant, it still represents the sea ice conditions well and 

is valid to use in climatological studies. 
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CHAPTER III  

ANALYSIS OF PREDICTOR VARIABLES 

 

III.1 Introduction 

To predict changes in sea ice extent in the Beaufort Sea, previous studies have 

focused on creating statistical models. These models predict the summer ice conditions 

using a variety of different atmospheric and oceanic variables as input predictors 

(Barnett 1980, Walsh 1980, Drobot and Maslanik 2003, Drobot 2003, Drobot 2007, 

Lindsay et al. 2008, Drobot et al. 2009).  

In one of the earliest studies applying a statistical prediction of sea ice extent, 

Barnett (1980) attempted to predict August extent in the Beaufort Sea using the strength 

of the Siberian High in April. Although he did not find any significant predictive skill 

using this high pressure system, he was able to define the BSI, which uses characteristics 

of the shipping lane north of Barrow, Alaska to quantify Beaufort Sea ice extent (Barnett 

1980). This index became used in a number of statistical predictions (Drobot and 

Maslanik 2003, Drobot 2003, Drobot et al. 2009) and will be used in this study as a 

check on the minimum ice extent obtained from the National Snow and Ice Data Center 

(NSIDC), Boulder, Colorado.   

Walsh (1980) attempted to use sea level pressure (SLP), surface air temperature 

(SAT), and prior sea ice extent anomalies to create monthly statistical models, lagged up 

to one year. He used empirical orthogonal functions and found the greatest predictive 

skill at a one month lag, and no significant predictive skill past a two month lag.   
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Drobot and Maslanik (2003) categorized ice extent into light and heavy ice years 

to identify the dynamic and thermodynamic mechanisms in winter and summer, which 

drive ice extent changes. In winter, a poorly defined Beaufort High (leading to a 

reduction in the Beaufort Gyre) and less multiyear ice lead to lighter ice summers 

(Drobot and Maslanik 2003). In summer, a well-defined Beaufort High (which results in 

strong easterlies and enhanced advection out of the Beaufort Sea) and elevated SAT lead 

to lighter ice conditions (Drobot and Maslanik 2003). Drobot and Maslanik (2003) also 

found a link between SLP and wind variations similar to phases of the Arctic 

Oscillation/ North Atlantic Oscillation (AO/NAO) and ice extent.   

 Drobot (2003) created monthly linear regression models to forecast BSI from 

October of the previous year through July of the prediction year. Input variables 

included teleconnections indices, heating degree days (HDD) from Barrow, Alaska 

station data, and total and multiyear ice concentration data from the NSIDC (Drobot 

2003). HDD accumulate daily based on a comparison of the SAT to a threshold of 65°F, 

where a mean daily temperature, e.g., of 40°F would accumulate 25 HDD units (Drobot 

2003). Total ice concentration data were only used for October, November, May, June, 

and July, when there was less than full ice coverage in the Beaufort Sea (Drobot 2003). 

Drobot (2003) found that the multiyear ice concentration gradient was the most 

significant predictor in every month, followed by the total ice concentration and the 

teleconnections indices (October East Atlantic index and March NAO). HDD also 

appeared as the final and least significant predictor variable retained in July (Drobot 
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2003). All monthly models had R2 values above 0.74 (October), with the highest in the 

July prediction model (0.92) (Drobot 2003). 

 Drobot (2007) predicted the regional minimum sea ice extent in the 

Beaufort/Chukchi Seas, the Laptev/East Siberian Seas, the Kara/Barents Seas, and the 

Canadian Arctic Archipelago by creating multiple linear regression models. The 

predictor variables included mean monthly weighted indices of sea ice concentration, 

multiyear ice concentration, surface skin temperature, surface albedo, and downwelling 

longwave radiation flux at the surface as input variables. March and June regression 

equations were created for each region. For the Beaufort/Chukchi Sea, the March model 

retained multiyear ice concentration with an R2 value of 0.52 and the June model 

retained multiyear ice concentration, June albedo, and June sea ice concentration with an 

R2 vale of 0.80. 

 Lindsay et al. (2008) created monthly forecast models to predict the Arctic-wide 

September ice extent using historical information about the ocean and ice obtained from 

an ice-ocean model retrospective analysis. The strongest predictive skill was found in the 

6-month lead (March) model, with a forecast skill of 0.77, and the 11 month lead 

(October), with a forecast skill of 0.75 (Lindsay et al. 2008). Ice concentration was the 

most important predictor for the first two months, and ocean temperature at a depth of 

200 to 270 m was the most important for longer lead times (Lindsay et al. 2008). 

 Drobot et al. (2009) assessed the interannual variability in the opening date of the 

Prudhoe Bay shipping season (one of the inputs of the BSI) using ordinal regression to 

predict and early, normal, or late opening date. Input variables included Freezing Degree 
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Days (FDD), mean sea ice area in the Bering Sea, and the frequency of occurrence of 

self-organizing map (SOM) patterns described by Maslanik et al. (2007) (Drobot et al. 

2009). FDD are similar to HDD, except that a threshold of 1.8°C is used (Drobot et al. 

2009). Sea ice concentration and FDD were found to have value in predicting whether an 

opening date would be early, normal, or late, with a correct prediction made in 32 out of 

53 years (Drobot et al. 2009). 

 Although these studies have examined varying predictor relationships between 

synoptic scale climatological variables and the minimum sea ice extent, these studies are 

lacking because of their use of only a small number of predictor variables. In each case, 

the predictive ability of only a select number of atmospheric variables was utilized. 

Though this does provide important information regarding the relationship between 

these select variables and the minimum sea ice extent, it does not reflect the greatest 

possible predictive ability. With a large number of variables included, the most useful 

combination of predictor variables can be obtained, yielding the most accurate 

predictions of sea ice extent. An extensive study using a large number of potential 

predictor variables is needed. 

III.1.1 Research Objective 

 The purpose of this chapter is to provide a comprehensive assessment of all 

potential predictor variables. In previous studies, only a small subset of predictors had 

been utilized as inputs. Therefore, only an incomplete picture of the most important 

predictor variables as well as the total predictive ability of variables has been achieved. 

This chapter aims to incorporate a larger number of potential variables to provide a 
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detailed and complete representation of the predictability of the Beaufort Sea minimum 

sea ice extent. This complete assessment involves a detailed analysis of the changes 

occurring in each potential predictor variable over the year prior to the September 

minimum sea ice extent. Each variable is compared between heavy ice years and light 

ice years to understand how these variables change in the year prior to these extreme ice 

events. Next, the relationship between each predictor variable and selected 

teleconnection indices is assessed to identify the large scale patterns potentially driving 

each of the predictor variables and therefore driving observed changes in sea ice extent. 

III.1.2 Atmospheric Variable Selection 

The variables that have been shown to have to most predictive ability include 

SLP, SAT, HDD, FDD, thawing degree days (TDD), surface wind speed, total ice 

concentration (TI), and multiyear ice concentration (MYI) (Barnett 1980, Walsh 1980, 

Drobot and Maslanik 2003, Drobot 2003, Drobot 2007, Drobot et al. 2009, Rogers 

1978). Surface albedo has been utilized as an input variable, but only appeared as a final 

predictive variable in one model for one forecast study (Drobot 2007). Surface albedo 

did not increase the predictive ability of the model by any appreciable amount, and is 

therefore not considered in this analysis. In addition to these atmospheric and ice 

condition variables, ocean temperature data at varying depths have been utilized in 

previous forecast studies (Lindsay et al. 2008). This study focuses on the atmospheric 

drivers of sea ice extent and therefore does not consider ocean temperatures as an input 

variable. In some forecasting studies, teleconnection indices have been utilized as input 



 

39 

 

variables. Specifically, the AO, NAO, and the East Atlantic (EA) index have been shown 

to have some predictive power (Drobot and Maslanik 2003, Drobot 2003).  

In this study, 16 atmospheric and surface predictor variables and 10 

teleconnection indices will be utilized. In previous studies, variables depicting the 

surface conditions in the Beaufort Sea region have been employed to create forecast 

models. Of the 16 predictor variables selected in this study, seven have been shown to 

have some utility in forecast models created in previous studies: SLP, SAT, FDD, TDD, 

wind speed, TI, and MYI (Barnett 1980, Walsh 1980, Drobot and Maslanik 2003, 

Drobot 2003, Drobot 2007, Lindsay et al. 2008, Drobot et al. 2009, Rogers 1978). One 

additional surface variable, wind direction, is included in this study because of the 

potential importance of ice motion in determining the sea ice extent during a given year. 

The remaining eight predictor variables represent the upper atmospheric 

conditions in the Beaufort Sea region. Although these upper level variables have not 

been included in previous studies, it is likely that the atmospheric conditions in the 

region may have some appreciable influence on the yearly minimum sea ice extent. The 

link between upper atmospheric conditions and surface conditions in the Arctic has been 

studied extensively, and it is expected that the upper level conditions will influence and 

ultimately strengthen surface phenomena (Kunkel et al 1993, Palecki and Leathers 1993, 

Klein and Walsh 1983, Leathers et al. 1991). For this study, upper level air temperatures 

and geopotential height at 850 hPa, 700 hPa, 500 hPa, and 300 hPa are utilized. The 850 

hPa level represents conditions near the surface and is expected to exhibit patterns most 

similar to the observed surface conditions. The 700 hPa pressure level is commonly used 
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in atmospheric studies as it represents conditions between the surface and the middle of 

the troposphere. The 500 hPa pressure level represents the level of non-divergence, 

which is the level in the atmosphere at which the horizontal velocity divergence is zero. 

Because of this, the 500 hPa level is expected to show a unique picture of the upper 

atmospheric conditions as well as represent characteristics of ridging and troughing in 

the atmosphere. The 300 hPa pressure level is expected to capture the influence of the 

polar jet stream as well as represent the upper tropospheric conditions, which may have 

some influence on the conditions observed at the surface. 

III.1.3 Teleconnection Selection 

 In this study, ten teleconnection indices will be used. In previous statistical 

forecasts, the AO, NAO, and EA index have been shown to have some utility in 

predicting sea ice conditions (Drobot and Maslanik 2003, Drobot 2003, Rigor et al. 

2002). Additionally, the Pacific-North American (PNA) pattern has also been shown to 

have a relationship with sea ice extent (L’Heureux et al. 2008). Beyond these four 

indices, little is known about the influence of other teleconnections on sea ice conditions 

in the Beaufort Sea region. It is likely that other high-latitude teleconnection indices may 

exert some influence on the region. Therefore, the East Atlantic/Western Russia 

(EAWR) pattern, the East Pacific-North Pacific (EPNP) pattern, the Polar/Eurasia (PE) 

pattern, the Western Pacific (WP) pattern, the Southern Oscillation Index (SOI), and the 

Niño3.4 index are included in this study. The EAWR, EPNP, PE, and WP patterns are 

included specifically because of their known links to high latitude processes, while the 

El Niño/Southern Oscillation (ENSO) measures are used due to their role in affecting 
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some teleconnections (e.g., PNA) as well as their general role in modulating 

extratropical Rossby waves.  

ENSO refers to a large-scale mode of climate variability related to sea surface 

temperature (SST) and Walker circulation patterns in the tropical Pacific Ocean. It is 

represented by two distinct phases, the El Niño phase and the La Niña phase, which are 

characterized by opposite SST patterns. During the El Niño phase, positive SST 

anomalies are observed in the eastern Pacific, while anomalously negative SST 

anomalies are observed in that region during La Niña events. Although this phenomenon 

is observed in the tropics, it is possible that ENSO has some indirect influence on the 

other teleconnection indices, and therefore ultimately some influence on the sea ice 

conditions in the Beaufort Sea. 

III.1.4 Long-Term Teleconnection Analysis 

Although it has been shown on a local scale that these atmospheric variables 

have some predictive ability, little is known about the larger scale drivers of these 

variables. To improve forecasts, it is important to understand which teleconnection 

patterns may be influencing the conditions of these predictive variables. In the Arctic, 

the role of the AO/NAO have been studied extensively. Studies have found that sea ice 

extent does exhibit a relationship with the phase of the AO/NAO (Parkinson 2008, Rigor 

et al. 2002). Along with the AO and NAO, the PNA pattern has also been shown to have 

a relationship with sea ice extent (L’Heureux et al. 2008). It then follows that each of the 

predictive variables will also have a relationship with these same teleconnection 

patterns. It is possible that certain teleconnection patterns influence specific predictor 
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variables, and that better insight into the specific large scale drivers of each predictor 

variable will allow for more accurate predictions of sea ice extent to be made. 

III.2 Study Region 

 For Chapter III, the study region is defined as a larger domain than for Chapter 

II. This is because the predictor variables show a large degree of spatial variability 

throughout the region and the conditions of the predictor variables in the area 

immediately adjacent to the study area used for Chapter II are important in 

understanding how and why the minimum ice extent is reached each year. For Chapter 

III, the northern edge of the study area is defined as 82.5°N, while the southern edge is 

defined as 62.5°N. The western edge is defined as 170°W, and the eastern edge is 

defined as 110°W (Figure 1). 

III.3 Data 

III.3.1 National Snow and Ice Data Center (NSIDC) Sea Ice Data 

 Monthly average sea ice concentration data were obtained from the NSIDC Sea 

Ice Concentrations from Nimbus-7 Scanning Multichannel Microwave Radiometer 

(SMMR) and Defense Meteorological Satellite Program (DMSP) -F8, -F11 and -F13 

Special Sensor Microwave/Imagers (SSM/Is), and the DMSP-F17 Special Sensor 

Microwave Imager/Sounder (SSMIS) Passive Microwave Dataset for 1979 through 2012 

(Cavalieri et al. 1996). The SMMR was operational every other day for the period of 

1979 through 1987. Starting in July of 1987, the two satellites (SSMR and SSM/I) are 

merged and provide daily sea ice concentrations. Concentration data are provided on a 

25 km by 25 km grid as the percentage of each grid cell covered by ice. Because this 
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dataset is only available beginning in 1979, the time period for this analysis is restricted 

to the period from 1979 through 2012. This source provides the data for the TI predictor 

variable. The TI is the monthly mean percentage of each grid cell that is covered by sea 

ice and this value ranges from 0% to 100%. 

III.3.2 Multiyear Ice Data 

 The multiyear ice dataset is obtained from personal communication with Drs. 

James Maslanik and Mark Tschudi. This dataset utilizes sea ice concentration data from 

NSIDC (detailed above) as well as gridded satellite-derived motion fields from the 

International Arctic Buoy Program buoy position data (Maslanik et al. 2011). The age of 

the ice in a particular grid cell is estimated using these motion fields by transporting a 

parcel of ice at weekly time steps (Maslanik et al. 2011). In cases where ice of multiple 

ages is present in one grid cell, the cell is assigned the older age (Maslanik et al. 2011). 

The NSIDC data are used to determine whether a parcel of ice has lasted through the 

melt season, i.e. if the ice in that grid cell remains at 15% or higher concentration 

throughout the year (Maslanik et al. 2011). When a parcel of ice lasts throughout the 

melt season, its age is increased by one year (Maslanik et al. 2011). This dataset is 

utilized from 1979 through 2012 and provides the basis for the MYI predictor variable, 

which represents the monthly mean ice age at each grid cell, ranging from 0–4+ years. 

III.3.3 National Centers for Environmental Prediction (NCEP)/Department of Energy 

(DOE) Reanalysis 2 

 The NCEP/DOE Reanalysis 2 dataset represents an advanced data assimilation 

effort that utilizes data from 1979 to the present to provide atmospheric variables with 
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global coverage (Kistler et al. 2001). This version 2 dataset was created to correct known 

errors in the National Centers for Environmental Prediction/National Center for 

Atmospheric Research (NCAR) Reanalysis 1 product, including updates such as a new 

boundary layer scheme and a fix in the cloud-top cooling radiation budget (Kistler et al. 

2001). In this study, the NCEP/DOE Reanalysis 2 dataset was selected because of its 

coverage of the desired study area and its state-of-the-art analysis system that represents 

one of the most accurate reanalysis datasets available (Kistler et al. 2001). The 

atmospheric variables utilized from this dataset include monthly average air 

temperatures at 850 hPa, 700 hPa, 500 hPa, and 300 hPa, daily and monthly average air 

temperatures at 2 meters, geopotential heights at 850 hPa, 700 hPa, 500 hPa, and 300 

hPa, sea level pressure, monthly mean u- and v-direction wind. 

 From these raw variables, some additional atmospheric predictor variables are 

calculated. FDDs are calculated using mean daily 2-m surface temperature values, where 

every degree Celsius below zero on each day is counted as a FDD and summed into a 

monthly FDD value (Polar Science Center 2010). For example, a daily temperature of 

−5°C will count as 5 FDDs toward the monthly total. TDDs are computed the same way, 

except only temperatures above 0°C are used toward the total (Polar Science Center 

2010). Thus, using both FDD and TDD will provide a measure of the magnitude and 

duration of temperatures both below and above freezing, which corresponds to formation 

and melting of sea ice. The wind speed and wind direction are derived from the u and v 

components of wind provided in the reanalysis dataset. 
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III.3.4 Teleconnections 

Teleconnection data are obtained from the NWS CPC 

(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). AO data are obtained 

from the AO-index data provided by David J. W. Thompson 

(http://jisao.washington.edu/data/annularmodes/Data/ao_index.html). Monthly values 

are obtained for each teleconnection index for January 1978 through December 2012. 

The teleconnection indices used for this study include the AO, the NAO, the PNA, the 

EA pattern, the EAWR pattern, the EPNP pattern, the PE pattern, the WP pattern, the 

SOI, and Niño3.4. The AO is defined as the leading mode of variability in the empirical 

orthogonal function (EOF) analysis of monthly mean 100 hPa heights north of 20° 

latitude (Wallace and Gutzler 1981). The NAO is defined as the SLP difference between 

the Azores High and the Icelandic Low, with a positive phase indicating below normal 

heights and pressure in the region (Wallace and Gutzler 1981). While the AO and NAO 

have similar values and are highly correlated, they represent fundamentally different 

things and are therefore both included in this analysis. The PNA represents a quadripole 

pattern of 500 hPa height anomalies, with similar anomalies found south of the Aleutian 

Islands and over the southeastern United States and an opposite sign anomalies found 

near Hawaii and central Canada (Wallace and Gutzler 1981). The EA pattern is the 

second mode of SLP variability over the North Atlantic and is structurally similar to the 

NAO, with anomaly centers that are displaced southeastward from the NAO centers 

(Barnston and Livezey 1987). The EAWR is defined by four main anomaly centers: a 

positive phase associated with positive anomalies over Europe and northern China and a 

http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
http://jisao.washington.edu/data/annularmodes/Data/ao_index.html
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negative phase with negative anomalies over the central North Atlantic and north of the 

Caspian Sea (Barnston and Livezey 1987). The EPNP pattern has three main anomaly 

centers located over Alaska, the central North Pacific, and eastern North America 

(Barnston and Livezey 1987). The PE pattern is represented by negative height 

anomalies over the polar region and positive anomalies over northern China and 

Mongolia in its positive phase (Overland et al. 1998). The WP pattern provides 

information about the location of the Pacific (East Asian) jet stream, with a strong 

positive phase representing pronounced zonal variation in the jet and a strong negative 

phase representing a pronounced meridional variation (Wallace and Gutzler 1981). The 

SOI and Niño3.4 both represent the phase of ENSO, but in different ways. The SOI 

represents the differences in the SST anomalies between Tahiti, French Polynesia and 

Darwin, Australia (Chen 1982). The Niño3.4 index represents the SST anomalies in the 

region from 5°S to 5°N and from 170°W to 120°W (NWS CPC). 

III.4 Methods 

III.4.1 Part 1: Composite Analysis 

 Using the five light ice years and five heavy ice years determined in Chapter II, 

composite maps were created for each predictor variable for each month of the year. The 

value of each variable during the five light ice or five heavy ice years was averaged to 

examine the most common pattern of variability for each variable throughout the study 

region throughout the year prior to the minimum sea ice extent, reached during 

September. Values from the five light ice years (2007, 2008, 2010, 2011, and 2012) and 

the five heavy ice years (1980, 1983, 1985, 1991, and 1996) were used for the months of 
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January through September, while values from the previous years (2006, 2007, 2009, 

2010, and 2011 for the light ice years and 1979, 1983, 1985, 1990, and 1995 for the 

heavy ice years) were used for the months of October through December. The 

characteristics of each predictor variable were thus examined throughout the year 

leading up to the minimum ice extent. 

 The values of the composite groups for each variable were then compared to the 

dataset averages (1979–2012) for each variable. The anomalies were calculated and 

mapped for the light ice composite and the heavy ice composite by subtracting the 1979–

2012average from each of these composite values for each predictor variable in each 

month. 

 To quantify how representative the composites are of average conditions, the 

standard deviation was also calculated and mapped for the five light ice years and the 

five heavy ice years at every grid cell in every month. The purpose of these maps is to 

identify regions in the study area that exhibit large deviations between the five years in 

each group. Larger deviations suggest that the composite is likely not representative of a 

consistent pattern for that variable in the years preceding extreme ice events, and 

therefore that variable may not have any predictive skill in a forecast model. 

 Lastly, maps of the differences between the light ice composite value and the 

heavy ice composite value at each grid cell were created by subtracting the value of the 

light ice years from the value of the heavy ice years. Statistical significance was assessed 

using Student’s T-tests  between means of the five light ice and five heavy ice years for 

each grid cell. First, an F-test was performed to determine whether the two groups had 
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equal variances. The results of this F-test were then used to determine the type of T-test 

to be used at each grid cell. At the grid cells where the variances were equal, a two-tailed 

T-test for independent samples was used. At the grid cells where the variances were not 

equal, a two-tailed Welch’s T-test for independent samples was used. 

III.4.2 Part 2: Teleconnections 

Many of the surface and upper atmospheric predictor variables may be related to 

and the result of synoptic-scale atmospheric variability related to various teleconnections 

patterns affecting the Arctic. This will be of particular importance in Chapter IV, where 

multicollinearity between the predictors may produce variance inflation factors, thereby 

biasing the multiple regression and CART models. To assess the relative influence of 

each teleconnection index on each predictor variable, correlation analysis is performed 

between each of the 10 teleconnection indices and each of the 16 monthly predictor 

variables at each grid cell. Only correlations that are significant at the 95% confidence 

interval will be considered for analysis. Maps showing the significant correlations are 

created during each month. These will provide information regarding the potential large 

scale drivers of each of the 16 atmospheric predictor variables and information regarding 

multicollinearity among input variables. 

III.4.3 Part 3: Long-Term Teleconnection Relationships 

In addition to looking at the relationship between each teleconnection index and 

each predictor variable at the monthly time scale (Section 3.4.1), the overall long-term 

relationships are also important. Correlations between the 1979–2012 time series of each 

predictor variable and each teleconnection index are calculated at concurrent and lagged 
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(up to 12 months) timesteps. For example, the 2-month lag correlation would provide 

information on the relationship between the pattern of each predictor variable two 

months after a certain pattern of each teleconnection index. 

 Each predictor variable is standardized at the monthly and yearly time scales 

over 1979–2012 at each grid cell. First, the monthly values of each variable are 

standardized to remove the seasonal cycle. For example, the mean and standard 

deviation values for January surface air temperatures are calculated for the 34-year time 

period at each grid cell. For each year, the mean is subtracted from the data value and 

then divided by the standard deviation. Once monthly standardization is performed, the 

same standardization is performed for the overall time series (408 total time steps) at 

each grid cell. This overall standardization is used to pre-process the data for subsequent 

principal component analyses (PCA). 

 Next, PCA is performed on each predictor variable. PCA is used as a data 

reduction technique in which a new set of orthogonal variables is created from the main 

variability in the input predictor variables (North et al. 1982, Abdi and Williams 2010). 

For spatial data, PCA is used to reduce the spatial pattern of a single variable into a 

smaller number of principal component (PC) variables, which represent the leading 

modes of spatial variability in the data. In this analysis, PCA is performed on each 

predictor variable over the entire time series (408 time steps). The loadings represent the 

spatial pattern of each PC and the scores provide the value for each PC at each time step. 

In this analysis, the first few PCs will be used because these likely represent the leading 
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modes of variability within the dataset. The higher-order PCs account for very little 

variability and will not be included in the analysis. 

 Lastly, correlation analysis is performed between each teleconnection pattern and 

the scores of the dominant PCs for each predictor variable. Correlations that are 

significant at the 95% confidence level are considered for analysis. To test the time lag 

influence of each teleconnection, one-month time lag correlations are performed up to 12 

months. For example, the values of the loadings of the predictor variables are lagged in 

one month intervals so that the influence of the previous month’s teleconnection pattern 

on that variable can be assessed. 

III.5 Results 

III.5.1 Part 1: Composite Analysis 

III.5.1.1 Upper Air Temperatures 

 Mean Patterns. The upper atmospheric temperature profile over the Beaufort Sea 

region is depicted by mean monthly temperature data at four pressure levels: 850 hPa, 

700 hPa, 500 hPa, and 300 hPa. Throughout the troposphere, air temperatures decrease 

with height and the highest air temperatures among these levels are thus observed at 850 

hPa and the lowest air temperatures at 300 hPa (not shown). At all four pressure levels, 

the highest temperatures during each month are observed in the southern portion of the 

study region and the lowest temperatures are observed in the northern and northeastern 

portions. The observed distributions generally follow a latitudinal pattern for most 

months of the year. 
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Differences. Throughout the four pressure levels, no significant differences were 

observed between the light and heavy ice composites for January, February, or March 

(Table 3). During these three winter months the air temperatures are extremely low 

because of a lack of incoming solar radiation. During April, May, and June, significant 

differences are observed at the 850 hPa, 700 hPa, and 500 hPa pressure levels, while 

significant differences are only observed for the 300 hPa level during May (Table 3). For 

the three pressure levels closer to the surface, the differences maps show the expected 

negative pattern indicating that the air temperatures were higher preceding the light ice 

years (Figure 7). During May, significant differences are only observed at very few of 

Table 3: Percentage of grid cells with significant differences at the 95% confidence 

level. Grey cells indicate that the specific measure is not applicable for that month. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total Ice - - - - 3 85 80 70 86 80 55 57
Multiyear Ice 6 6 7 6 5 6 8 7 21 9 16 11

FDD - - - 28 5 51 34 - 21
TDD 8 2 32

Surface Temp 3 - 2 35 9 13 22 41 53 61 30 32
Temp 850hPa - - - 28 8 17 4 56 59 33 23 24
Temp 700hPa - - - 29 8 18 - 63 5 - - 35
Temp 500hPa - - - 34 23 20 0 63 - - - 44
Temp 300hPa - - - - 2 - 3 10 - - - 21

SLP 15 - - 0 - 49 37 20 - - - -
Gph 850hPa 9 - - - - 33 8 35 - - - -
Gph 700hPa 2 - - - - 35 - 43 4 - - 5
Gph 500hPa - - - - - 31 0 48 - - - 18
Gph 300hPa - - - 4 2 32 - 55 - - - 25
Wind Speed 22 - 3 2 14 4 2 16 2 5 6 13

Wind Direction 10 1 4 3 2 17 26 4 2 6 2 4
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Figure 7: Air temperature difference maps during April (left column), May (middle 

column), and June (right column) at four pressure levels (from top to bottom: 300 

hPa, 500 hPa, 700 hPa, 850 hPa). Black dots represent the center point of grid cells 

with significant differences. 

the grid cells (Table 3). Throughout the remaining months (July through December) the 

expected negative patterns of temperature differences are observed for the 850 hPa, 700 

hPa, and 500 hPa pressure levels. Unexpected patterns of both positive and negative  
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differences are observed at the 300 hPa pressure level for all months. This may indicate 

that the 300 hPa pressure level is not representative of the mean upper atmospheric 

conditions, or that this pressure level is too far from the surface to have an effect on the 

conditions of the sea ice. Overall, the 850 hPa level shows the most significant 

differences throughout the largest number of months (Table 3). Generally, as the 

pressure level decreases (increasing elevation), the number of significant differences 

decreases and the number of months showing any significant differences also decreases. 

This agrees with Serreze and Barry (2011) regarding Arctic amplification, which is 

predominantly a surface-based phenomenon with evidence of enhanced Arctic warming 

only observed in the lower troposphere (Serreze and Barry 2011). For the 850 hPa, 700 

hPa, and 500 hPa pressure levels, the largest numbers of significant differences are 

observed during August, with large differences also observed during December (Table 

3). For the 300 hPa pressure level, the largest number of significant differences is 

observed during December (Table 3). 

Anomalies. It is expected that for the heavy ice years, negative temperature 

anomalies would be observed. This would indicate that temperatures during the five 

heavy ice years were below average for each month. For the light ice years, positive 

anomalies are expected, indicating that the temperatures during these five years were 

above average. During January, February, and March for all four pressure levels, 

unexpected positive and negative differences are observed. For the 850, 700, and 500 

hPa pressure levels the expected pattern of predominately negative anomalies for the 

heavy ice composites, and positive anomalies for the light ice composites are observed 
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from April through October (Figure 8). This indicates that the temperatures at these 

pressure levels are noticeably different in the months preceding these extreme ice events. 

During November, the expected patterns of extreme negative anomalies are observed for 

the heavy ice years at all four pressure levels, while unexpected negative anomalies are 

observed for the light ice years. December shows a return to the expected patterns for all 

three levels. Overall, the magnitude of the anomalies is greater for the heavy ice group as 

compared to the light ice group. This may indicate that the upper atmospheric air 

temperature conditions preceding the five heavy ice years were particularly anomalous 

when compared to the mean. The air temperatures preceding the light ice years are not as 

drastically different from average. Throughout the year, the weakest anomalies are 

observed during the spring and summer months of May, June, and July while the 

strongest anomalies are observed during the late summer, fall, and winter months of 

August, September, October, and December. At 300 hPa, unexpected patterns of both 

positive and negative anomalies are evident throughout the year. The expected anomaly 

pattern is only observed during December. It is important to note that this is also the 

month that showed the largest number of significant differences between the light and 

heavy ice composites at this pressure level. 

Standard Deviations. Overall, the largest standard deviations are observed 

during January, February, and March for all four pressure levels (Figure 9). As the 

months progress into the late spring and summer, the standard deviations decrease for 

both the heavy and light ice groups at all four pressure levels (Figure 9). Starting in 

November the standard deviations begin to increase again at all pressure levels (Figure  
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Figure 8: Air temperature anomaly maps during July for the 

heavy ice years (left column) and the light ice years (right 

column) at four pressure levels (from top to bottom: 300 hPa, 500 

hPa, 700 hPa, 850 hPa). 
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9). In general, the magnitude of the standard deviations is the same or similar for the 

heavy and light ice groups during each months. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Air temperature standard deviation maps for the heavy 

ice years (left column) and the light ice years (right column) at 500 

hPa during February (top row), July (middle row), and November 

(bottom row). 
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Discussion. Overall, this assessment of the upper atmospheric air temperature 

characteristics has shown that the largest and most significant differences between the 

heavy ice and light ice composites is observed at the 850 hPa pressure level, with the 

magnitude and number of significant differences decreasing with increasing height in the 

atmosphere. The pressure levels of 850 hPa, 700 hPa, and 500 hPa show similar patterns 

of temperature differences and anomalies throughout the year, while the 300 hPa level 

does not show the expected pattern throughout most of the year. This indicates that this 

pressure level may not be useful in forecasting surface conditions. Looking at each 

pressure level, it is clear that the months of January, February, and March are not useful 

in forecasting because of the lack of significant differences between the light and heavy 

composites and the unexpected patterns of anomalies observed. Because the remaining 

months of the year show the expected patterns of differences and anomalies with small 

standard deviations, the air temperature conditions during months are expected to have 

some utility in forecasting sea ice conditions. 

III.5.1.2 Geopotential Heights 

 Mean Patterns. Upper atmospheric variability in the Beaufort Sea region is 

further provided by geopotential height data at 850 hPa, 700 hPa, 500 hPa, and 300 hPa. 

Geopotential height is defined as the height in the atmosphere needed to reach a certain 

pressure level, and is therefore linked to air temperature. For the composite maps of the 

five heavy ice and five light ice years, a general latitudinal pattern of geopotential height 

is observed during all months at all four pressure levels. This corresponds to the 

latitudinal pattern observed with the upper atmosphere air temperatures, where the lower 
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latitudes have generally higher geopotential heights and the higher latitudes (specifically 

the northeastern portion of the study region) have lower geopotential heights. 

Differences. It is expected that heavier ice years will have overall lower 

geopotential heights. This would correspond to lower air temperatures during these 

years. This means that the difference maps are expected to show predominately negative 

height differences. At all four pressure levels during January, an unexpected pattern of 

strong positive differences is found. Only a small percentage of these differences are 

significant at the 850 hPa and 700 hPa pressure levels, with no significant differences at 

the two highest pressure levels (Table 3). No significant differences are observed during 

February and March (Table 3). Beginning in April, the expected negative differences are 

found at all four pressure levels. This predominately negative pattern is observed in all 

months until November (Figure 10). Differences are significant beginning in April, with 

larger percentages of significant differences during June, July, and August for all 

pressure levels (Table 3). During some months, a small region of positive differences is 

evident in the southern portion of the study region (June, July, October) (Figure 10). 

These positive differences are significant at some pressure levels and are consistent 

among the four pressure levels (Table 3, Figure 10). They are therefore likely physically 

significant and not an artifact of the analysis. December shows strong negative 

differences in the eastern portion of the study region and strong positive differences in 

the western portion (Figure 10). Overall, the spring and summer months exhibit the 

largest percentages of significant differences for all pressure levels with the expected  
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Figure 10: Geopotential height difference maps during June (left column), October 

(middle column), and December (right column) at four pressure levels (from top to 

bottom: 300 hPa, 500 hPa, 700 hPa, 850 hPa). Black dots represent the center point 

of grid cells with significant differences. 
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pattern of differences (Table 3). When lower temperatures are observed in the region, 

unexpected and weak differences are evident. This includes the months from November 

through March. There does not appear to be any consistent pattern in the percentage of 

significant differences observed at each pressure level. For example, during June the 

largest percentage of significant differences is observed at the 700 hPa pressure level 

(Table 3). During July, the largest percentage is observed at the 850 hPa pressure level 

and during August the largest percentage is observed at the 300 hPa pressure level 

(Table 3). This may suggest that the differences in the geopotential heights are not 

consistent at each pressure level throughout the year. 

Anomalies. When comparing the heavy ice years to the average, a pattern of 

negative anomalies is expected. This would indicate that the geopotential heights during 

the five heavy ice years are lower than average. A pattern of positive anomalies is 

expected for the light ice anomalies. Overall, the anomaly maps are consistent for each 

month at all four pressure levels (i.e. the same patterns are observed at all four pressure 

levels for each month), but the patterns do not persist throughout the year (Figure 11); 

each month has very different anomalies. This variability in the anomalies and lack of 

expected patterns suggests that the geopotential heights during the heavy and light ice 

years are not very indicative of differences from the normal conditions. Because they 

show no consistent differences from the average conditions, these variables may not be 

useful in forecasting sea ice conditions in the region. 

Standard Deviations. Overall, the standard deviations for both the light ice and 

the heavy ice groups are large for all months at all pressure levels. The largest standard  
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deviations are observed during the months from November through March for all 

pressure levels. This corresponds with the months where the least amount of significant 

differences are observed. The smallest standard deviations are observed during June, but 

these standard deviations are still large. The smallest values observed during these 

Figure 11: Geopotential height anomaly maps during March (left group) and 

during September (right group). The right column of each group represents the 

light ice anomalies and the right column represents the heavy ice anomalies. Maps 

are displayed for four pressure levels (from top to bottom: 300 hPa, 500 hPa, 700 

hPa, 850 hPa). 
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months are still approximately 5 standard deviations. Because such large differences are 

observed throughout the year at all pressure levels, this suggests that there is a large 

amount of discrepancy between the geopotential heights in the years preceding heavy 

and light ice events. 

Discussion. Overall, the geopotential height patterns do not show any 

consistency throughout the year. The differences and anomalies do not fit the expected 

patterns and change drastically from month to month. Coupled with large standard 

deviations, this suggests that geopotential heights are most likely not useful in 

forecasting sea ice conditions. It is possible that the geopotential height conditions are 

too variable throughout the years to provide a consistent pattern that would be useful for 

making predictions. 

III.5.1.3 Surface Temperature Conditions 

 Mean Patterns. The surface temperatures in the Beaufort Sea region are depicted 

by three variables: 2-meter monthly average air temperatures, FDD, and TDD. Of these 

variables, the mean monthly temperatures are used to provide an overall picture of the 

temperature variability throughout the year. The FDD and TDD will provide information 

about the duration and magnitude of temperature variability. 

 The three air temperature variables depict a consistent latitudinal pattern during 

all months. This corresponds to the upper air temperature patterns and the geopotential 

heights. For the monthly mean temperatures, the highest values are observed in the 

southern portion of the study region, while the lowest temperatures are in the 

northeastern portion. Higher FDDs indicate more persistent lower daily air temperatures. 
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The expected pattern of larger FDD values in the northern portion of the study region 

and smaller FDD values in the southern portion is evident. It is important to note that 

FDDs during the late spring and summer months are zero because there are no daily air 

temperatures below 0°C. For the TDD, larger values indicate more persistent high 

temperatures. The expected pattern of larger values in the southern portion of the study 

region and smaller values in the northern portion is found. TDDs from late fall to early 

spring are zero because no temperature values above zero are recorded. 

Differences. It is expected that mean differences for the three temperature 

variables will be consistent throughout the year. For the monthly mean temperatures, a 

predominately negative difference pattern is expected, suggesting that the air 

temperatures preceding heavy ice years are lower than those preceding light ice years. 

For FDD, positive differences are expected. This would indicate a longer and/or more 

severe freezing season preceding the heavy ice years than before light ice years. FDD 

will not be considered for analysis during the late spring and summer because all values 

are zero. For the TDD, a negative pattern is expected. This would suggest a longer 

and/or more intense melt season preceding light ice years. TDD will not be considered 

for analysis during late fall through early spring because all values are zero. During 

January, February, and March unexpected differences are observed for both the monthly 

mean temperatures and the FDD. During April, many statistically significant differences 

of the expected negative sign for the monthly temperatures and positive sign for the 

FDD are observed. From May through August, the monthly temperatures show large 

areas of unexpected positive differences (Figure 12). In these months, some differences  
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are significant, but these differences are confined to areas where the expected negative 

differences occur (Table 3, Figure 12). During June, July, and August, significant 

differences of the expected negative sign occur (Figure 12). For these three months, the 

negative pattern becomes most prominent during August (Figure 12). This is also when 

the largest percentage of significant differences is observed (Table 3). Beginning in 

September, the expected negative differences are found for the monthly temperatures 

and these patterns hold through November. Large percentages of significant differences 

occur during these months (Table 3). During September and October, expected positive 

differences (with many being significant) are observed for the FDD. Overall, the FDD 

Figure 12: Difference maps for surface air temperatures (top row) and TDD 

(bottom row) during June, July, August (from left to right). Black dots represent 

the center point of grid cells with significant differences. 
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and TDD conditions confirm the monthly mean temperatures. When monthly mean 

temperatures exhibit the expected differences, the expected pattern is also found for the 

FDD or TDD. In general, the months from December through March seem to have 

unexpected patterns. These variables may not be as useful during these months where 

the temperatures are extremely low. 

Anomalies. For the monthly mean temperatures and the TDD, negative 

anomalies are expected for the heavy ice years and a positive anomalies for the heavy ice 

years. For FDD, the heavy ice years should have positive anomalies while the light ice 

years should be negative. For all three variables, this would indicate that the 

temperatures during the heavy ice years are below average. As with the difference maps, 

unexpected anomalies occur during January, February, and March for the monthly 

temperatures and FDD (Figure 13). Beginning in April, expected anomalies are observed 

for the monthly temperatures, which persist through December (Figure 13). During June, 

July, and August the light ice years show some positive anomalies, but negative 

anomalies are also observed (Figure 13). For the TDD the expected anomalies occur 

during all months (June, July, and August) (Figure 13). Expected FDD anomalies are 

found from September through December (Figure 13). Throughout the year, the 

expected patterns are observed for all three variables during all months excluding winter 

and early spring. This indicates that these variables may have some forecasting utility. 
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Figure 13: Anomaly maps during January (left group), August (middle group), and October (right group) for SAT (top row) 

and FDD (for January and October) or TDD (August) (bottom row). Light ice anomalies are shown in the left column of 

each group and heavy ice anomalies are shown in the right column. 
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Standard Deviations. Monthly mean temperatures exhibit low standard 

deviations throughout the year. The lowest values occur during the summer months 

while the highest values are during winter. This corresponds to the overall pattern 

observed in the significant differences. For TDD, the same-magnitude standard 

deviations are observed for all three months. The largest FDD standard deviations are 

typically found during the light ice years for each month. There does not appear to be 

much change in the standard deviations throughout the year. 

Discussion. Overall, the three temperature variables exhibit consistent 

variability, with FDD and TDD patterns following similar monthly mean temperature 

patterns. The consistency throughout the year for these variables suggests that they will 

prove useful in forecasting sea ice extent because distinct patterns are evident for the 

extreme heavy ice and light ice years. 

III.5.1.4 Other Surface Variables 

Mean Patterns. The remaining surface variables include SLP, 2-meter monthly 

mean wind speed and 2-meter monthly mean wind direction. For SLP, a generally 

latitudinal pattern (following the observed pattern for all other variables) is observed, 

although this latitudinal pattern is not as distinct or consistent as for the other variables. 

This indicates that SLP may exhibit more subtle variability, potentially corresponding to 

the transient movement of high and low pressure systems. For both wind speed and wind 

direction, no distinct patterns occur for heavy ice and light ice composites for any 

month. 
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Differences. Regions of both positive and negative differences are observed 

throughout the year. The strongest and most significant differences occur during June, 

July, and August (Table 3). During these months, there are large significant negative 

differences in the northern portion of the study region and large significant positive 

differences in the south (Figure 14). The SLP patterns during these summer months are 

the most consistent when compared with the rest of the year. During the remaining 

months, the differences change on a month-to-month basis and very few, if any, 

significant differences occur (Table 3, Figure 14). These three summer months 

correspond with the monthly mean temperatures, which also had the most significant 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Difference maps for SLP (top row) and surface wind (bottom row) 

during March, June, and November (from left to right). Black dots represent the 

center point of grid cells with significant differences. 
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differences during this time of the year. For the wind speed and wind direction, some 

significant differences occur in almost all months (excluding February wind speed), but 

the percentage of significant differences is always small (Table 3). The difference maps 

for these two variables do not show any consistent patterns and the locations of the 

significant differences change from month to month with no apparent consistency 

(Figure 14). Because these differences are so sporadic, it suggests that the wind speed 

and direction in the year preceding extreme ice events may be too variable in the 

composites. 

Anomalies. No consistent SLP anomalies occurred from January through May 

(Figure 15). Starting in June, a consistent pattern for both the heavy and light ice 

anomalies is evident through November (Figure 15). For the heavy ice anomalies, 

generally negative anomalies occur in the northern portion of the study region and 

positive anomalies in the south, although the strength of the anomalies changes from 

month to month (Figure 15). For the light ice anomalies, generally positive anomalies 

are evident in the northern portion of the study region, with negative anomalies in the 

south (Figure 15). The persistence of these patterns suggests that SLP may have some 

forecasting utility from June–November. The December anomalies do not follow this 

same pattern. Wind speed and direction again do not exhibit any consistent anomaly 

patterns throughout the year (Figure 15) 

Standard Deviations. The greatest SLP standard deviations are observed from 

November through April. Beginning in May, standard deviations begin to decrease, with 

the smallest standard deviations during June, July, and August. The same magnitude 
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Figure 15: Anomaly maps during March (left group), July (middle group), and October (right group) for SLP (top row) 

and surface wind (bottom row). The left column of each group represents light ice anomalies and the right column 

represents heavy ice anomalies. 
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of standard deviations occur for both the heavy ice and light ice groups. For wind speed 

and wind direction, large standard deviations are observed throughout the study region 

for every month. There appears to be no pattern in the changes of the standard deviations 

throughout the year. 

Discussion. SLP also appears to follow the same general pattern as many of the 

other predictor variables, with the strongest and most significant differences occurring 

during the summer months. Although wind speed and direction are expected to have an 

influence on sea ice (Ogi and Wallace 2012, Ballinger and Sheridan 2013, Wood et al. 

2013), it is possible that the patterns for these two variables do not have enough yearly 

persistence to show a distinct pattern in the composite analysis. The wind conditions 

preceding the five heavy ice (or five light ice) years may not be the same for each 

extreme ice event, but that does not mean that it is not important. 

III.5.1.5 Antecedent Ice Conditions 

 Mean Patterns. The characteristics of the sea ice itself throughout the year have 

been shown to have a direct relationship with the September minimum ice extent, and 

two measures of the antecedent ice conditions are therefore used in this study: TI and 

MYI. The composite maps of the five heavy ice and five light ice years reveal obvious 

differences. For TI from July through October, differences in the ice concentration can 

be observed for each month (Figure 16). In all cases, the heavy ice composites show 

higher concentrations of ice in the months leading up to and following the minimum ice 

extent in September (Figure 16). During the remaining months of the year, from 

November through June, the composite maps are very similar for the two groups (Figure 



 

72 

 

 

Figure 16: TI (top row) and MYI (bottom row) for February (left group) and August (right group) during heavy ice 

(left column) and light ice (right column) years. 
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16). During these months, the sea ice cover expands to the coast of Alaska and therefore 

no differences are evident. For the MYI, differences between the heavy ice and light ice 

composites are also obvious throughout all months (Figure 16). The heavy ice 

composites have more older ice, specifically in the northern part of the study region 

(Figure 16). In contrast, the light ice composites have more younger ice, with the oldest 

ice types only appearing in the northeastern portion of the study region (Figure 16). 

Differences. No significant TI differences are observed from January through 

April. Beginning in May, significant differences occur during all months until December 

(Figure 17). The largest percentage of significant differences are observed during the 

summer and early fall, from June through October (Table 3). In these months, over 70% 

of the area exhibits significant differences between the heavy and light ice composites 

(Table 3). Where significant differences occur, they are positive, indicating that the 

heavy ice years have significantly higher ice concentrations than the light ice years 

(Figure 17). For the MYI, predominately positive differences are observed during all 

months (Figure 17, Table 3). These positive differences indicate that the heavy ice years 

exhibit older ice ages than the light ice years. All months have some grid cells with 

significant differences, although this is generally a small percentage (Table 3). The 

largest percentage of significant differences are in September, when the minimum ice 

extent is reached. 

Anomalies. TI anomalies for the heavy ice composites are expected to be 

positive, which would indicate that the ice concentration is greater during these heavy 

years. The light ice composites are expected to have negative TI anomalies. During the 
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Figure 17: Difference maps for TI (top row) and MYI (bottom row) during March (left) and September (right). 

Black dots represent the center point of each grid cell with significant differences. 
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winter and spring months (from November through May), very weak anomalies are 

observed for both the heavy ice and light ice groups. Beginning in June, the magnitude 

of the anomalies begins to increase, with the largest anomalies during September. This 

confirms the idea that the September ice conditions deviate the most from the patterns 

observed in the past. For the MYI, predominately positive anomalies occur during the 

heavy ice years in all months. This indicates that the heavy ice years have generally 

older ice types than the 1979–2012 average. During light ice years, predominately 

negative anomalies are evident. These patterns hold throughout the year for both the 

heavy ice and light ice anomalies, with the strongest and most consistent patterns 

observed during September. 

Standard Deviations. Larger TI standard deviations are found for the light ice 

group (when compared to the heavy ice group) from January through June. Beginning in 

July, the heavy and light ice composites show regions of both large and small standard 

deviations. The locations of these regions of large standard deviations change from 

month to month. Both November and December show very small standard deviations 

throughout the study region for both the heavy ice and the light ice groups. For the MYI, 

all grid cells during all months for both the heavy ice and light ice groups had standard 

deviations less than one. This indicates that there is a large amount of agreement 

between the patterns of ice age for the five heavy and five light ice years. This adds 

more validity to the use of this measure. 

Discussion. Overall, the TI and MYI confirm expected changes in the sea ice in 

the Beaufort Sea region. Both TI and MYI have the largest anomalies and number of 
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significant differences during September, which corresponds to the minimum ice extent. 

Because these measures represent the conditions of the ice throughout the year, they can 

be useful in forecasting the minimum ice extent.  

III.5.2 Part 2: Predictor Variable Correlations with Teleconnections 

III.5.2.1 Upper Air Temperatures 

 The upper atmospheric temperature variables (850, 700, 500, and 300 hPa 

monthly mean air temperatures) show consistent correlations with the ten teleconnection 

indices. The AO correlates predominately negatively with temperature throughout the 

year, with the strongest and most extensive correlations during winter when the AO 

signature is the strongest (Figure 18). This pattern is observed at all four pressure levels 

(Figure 18). In general, negative correlations are observed in the northern and 

northeastern portion of the study region, with no correlations present in the southern 

portion for many months (Figure 18). Negative correlations indicate that higher air 

temperatures are associated with the negative AO phase—higher pressure in the Arctic 

and lower pressure in the midlatitudes (Wallace and Gutzler 1981). A small region of 

positive correlations is present during July for the 300 hPa, 500 hPa, and 700 hPa 

pressure levels and during August at all four pressure levels. For the NAO, similar 

correlation patterns are observed, with strong negative correlations during the winter 

months for all four pressure levels. Again these correlations generally occur in the 

northern portion of the study region, with no significant correlations present in the south 

for most months. These negative correlations similarly mean that higher air temperatures 

are associated with the negative phase of the NAO, which brings higher temperatures to  
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Figure 18: Air temperature correlation maps with AO during 

December (left) and January (right) at four pressure levels 

(from top to bottom: 300 hPa, 500 hPa, 700 hPa, 850 hPa). 

Cells with correlations significant at the 95% confidence level 

are plotted. 
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the Canadian Arctic Archipelago and lower temperatures to Europe (Wallace and 

Gutzler 1981). As with the AO, some small regions of significant positive correlations 

are observed during summer and early fall (July for all four pressure levels, August for 

300 hPa, and September for the 500, 700, and 850 hPa levels). The patterns of 

correlations observed are fairly consistent between all four levels. 

 PNA is correlated predominately positively with temperature at all pressure 

levels throughout the year. From January through April these significant positive 

correlations occur in the southeastern portion of the study region for 850, 700, and 500 

hPa (Figure 19). The strength of the correlations decreases with height during these 

months (Figure 19). At the 300 hPa pressure level positive correlations are found during 

January, and instead some negative correlations from February through April (Figure 

19). Positive correlations with the PNA suggest that increased air temperatures are 

associated with ridging over the western United States, which moves warmer air into 

parts of the Arctic (Wallace and Gutzler 1981). Beginning in May, no large regions of 

significant correlations are observed at any pressure level until July. From July through 

December regions of positive correlations occur with temperature at the 850, 700, and 

500 hPa levels for all months (Figure 19). The patterns of these correlations are 

consistent for these three pressure levels. At 300 hPa, both positive and negative 

correlations are found (Figure 19). 

 For the SOI and Niño 3.4 index, only very small regions of significant 

correlations appear throughout the year for each pressure level. Significant correlations 

with SOI were only observed with temperature at 300 hPa. These correlations were both 
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Figure 19: Air temperature correlation maps with PNA during 

January (left) and October (right) at four pressure levels (from 

top to bottom: 300 hPa, 500 hPa, 700 hPa, 850 hPa). Cells with 

correlations significant at the 95% confidence level are plotted.  
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positive and negative and no spatially consistent patterns are observed. The Niño 3.4 

index showed some significant correlations at all pressure levels, although these regions 

are very small and generally not consistent for the four pressure levels. 

 Temperature at all four pressure levels exhibits significant negative correlations 

with the EAWR teleconnection index. For 300 hPa, the fewest significant correlations 

are observed throughout the year. At this level, large regions of significant negative 

correlations occur only during November and December (Figure 20). At the three lower 

pressure levels, regions of significant negative correlations are evident throughout the 

year, although the patterns of these correlations are not consistent between pressure 

levels. For example, large regions of strong negative correlations occur with temperature 

at 500 and 700 hPa during May, but a smaller area of significant negative correlations is 

evident at the 850hPa level (Figure 20). Significant positive correlations are also found 

during February and December for temperatures at all three lower pressure levels 

(Figure 20). 

 For the EA teleconnection index, regions of both positive and negative 

correlations are evident throughout the year at all four pressure levels. Where significant 

correlations are observed, they are clustered into very small regions. During all months, 

most of the study region shows no significant correlations. The patterns of isolated 

significant correlations are very inconsistent throughout the year and between pressure 

levels and therefore the EA index may not have an appreciable physical influence on the 

upper atmospheric air temperature profile. 
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Figure 20: Air temperature correlation maps with EAWR 

during May (left) and December (right) at four pressure 

levels (from top to bottom: 300 hPa, 500 hPa, 700 hPa, 850 

hPa). Cells with correlations significant at the 95% 

confidence level are plotted. 
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The EPNP teleconnection index has large areas of significant positive correlations 

throughout the year at all pressure levels. The most spatially extensive patterns of 

positive correlations occur from January through April for the three lowest pressure 

levels (Figure 21). Higher air temperatures are thus associated with the positive phase of 

the EPNP pattern, which includes positive height anomalies over Alaska and Western 

Canada and negative height anomalies over the central North Pacific (Barnston and 

Livezey 1987). For these three levels, negative correlations appear beginning in May and 

persist through August (Figure 21). The locations of these negative correlations are 

consistent for all three pressure levels. During October and November, large regions of 

positive correlations are evident (Figure 21). The 300 hPa pressure level does not follow 

the same correlation patterns throughout the year in terms of significant correlations of 

the same magnitude. For January and February some positive correlations are observed, 

which is similar to the three lower pressure levels. Beginning in March, no positive 

correlations occur and negative correlations begin to appear in April, which contradicts 

the pattern at the other pressure levels (Figure 21). The 300 hPa pattern deviates from 

the other pressure levels during all months until October and November, when large 

areas of positive correlations occur, in agreement with the other pressure levels (Figure 

21). 

Only very small regions of both positive and negative correlations are found 

between temperature and the PE index from January through August at all four pressure 

levels. Significant correlations occur only in very small clusters with little consistency 

between pressure levels. Starting in September, some consistency is observed between 
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Figure 21: Air temperature correlation maps with EPNP during March (left), July 

(middle), and November (right) at four pressure levels (from top to bottom: 300 

hPa, 500 hPa, 700 hPa, and 850 hPa). Cells with correlations significant at the 95% 

confidence level are plotted. 
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the three lowest pressure levels. In September, these three pressure levels indicate large 

regions of positive correlations. The 300 hPa pressure level does not show any extensive 

significant correlations. In October, large regions of negative correlations with 

temperature are found at all four levels. During November, no significant correlations 

are observed at the three lower levels. In December, negative correlations are evident at 

all four pressure levels. The lack of consistency between pressure levels and lack of 

significant correlations during most months suggests that this index is not useful in 

explaining the upper air temperature variability throughout the year. 

 Lastly, the WP teleconnection index shows some regions of positive correlations 

during many months throughout the year with temperature at all four pressure levels, 

although large regions of significant correlations are only found during July, August, and 

September for some pressure levels. When these large correlation areas are observed 

during July and August, they are not consistent between pressure levels. The 300 hPa 

pressure level shows the least consistency with the other levels. At this level, some 

regions of negative correlations also occur. 

Discussion. Overall, the AO, NAO, PNA, and EPNP teleconnection indices 

appear to have the most potential utility in explaining and driving the upper atmospheric 

air temperatures over the Beaufort Sea region. These four indices exhibit extensive 

regions of significant correlations and these patterns are consistent between pressure 

levels and throughout the year. This suggests that these indices may be useful in 

accounting for the air temperature patterns observed throughout the year, which may 

help in understanding the large scale drivers of sea ice changes. In general, the largest 
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amount of consistency was observed between the three lowest pressure levels, while the 

300 hPa level deviated from the common pattern. This follows the findings of the 

composite analysis: the 300 hPa pattern is different from the other three pressure levels 

and may be too far removed from the surface to provide any useful information 

regarding surface conditions. The other teleconnection indices studied do not appear 

useful in explaining the upper air temperature patterns because of a lack of significant 

correlations and a lack of consistency between pressure levels and throughout the year. 

III.5.2.2 Geopotential Heights 

 The geopotential heights at 300, 500, 700, and 850 hPa show consistent 

significant correlations throughout the year for most of the teleconnection indices. For 

the AO, strong negative correlations are observed throughout the year at all four pressure 

levels. In most months, these significant correlations show nearly continuous spatial 

patterns, especially from October through January for all four pressure levels (Figure 

22). Similar patterns are evident for the NAO, where strong negative correlations occur 

during nearly every month of the year for all four pressure levels (Figure 22). Unlike the 

AO, some small regions of positive correlations appear during July at the 300 hPa and 

500 hPa pressure levels and during September at all four pressure levels (Figure 22). The 

most extensive patterns of significant correlations are observed during October and 

November at all four pressure levels (Figure 22), although large areas of significant 

negative correlations are found in nearly every month. Negative correlations between 

geopotential height and the AO/NAO indicate that increases in height over the Beaufort 

Sea are associated with the negative phase of the AO/NAO (Wallace and Gutzler 1981). 
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Figure 22: Geopotential height correlation maps with AO during October (left) and 

NAO during September (middle) and October (right) at four pressure levels (from 

top to bottom: 300 hPa, 500 hPa, 700 hPa, 850 hPa). Cells with correlations 

significant at the 95% confidence level are plotted. 
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The negative phase of the AO/NAO is typically associated with high pressure in the 

Arctic (Wallace and Gutzler 1981). 

 The PNA exhibits large regions of positive correlations, with some small regions 

of negative correlations appearing in some months. The most extensive correlations are 

observed during September for all four pressure levels, where significant positive 

correlations cover most of the study region (Figure 23). The positive correlations suggest 

that increased geopotential height corresponds to the positive phase of the PNA, where 

positive geopotential height anomalies are normally present over the western half of 

North America (Wallace and Gutzler 1981). In general, the amount of significant 

negative correlations increased as the pressure level increases (Figure 23). For example, 

the largest areas of negative correlations during the most months are at the 850 hPa 

pressure level, with the fewest negative correlations at the 300 hPa. 

The SOI and the Niño 3.4 index show little to no grid cells with significant 

correlations. For the SOI, no significant correlations are observed throughout the year 

for the 300 hPa and 500 hPa pressure levels, while some very small regions of 

significant, albeit likely spurious, negative correlations occur during February, April, 

July, and September at the 700 hPa and 850 hPa pressure levels. Niño 3.4 shows only 

very small regions of significant positive correlations during July at the 300 and 500 hPa 

levels, and during February and July at the 700 and 850 hPa levels. Some small regions 

of negative correlations occur, but these regions are not consistent throughout the 

pressure levels. 
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Figure 23: Geopotential height correlation maps with 

PNA during September (left) and December (right) at 

four pressure levels (from top to bottom: 300 hPa, 500 

hPa, 700 hPa, 850 hPa). Cells with correlations 

significant at the 95% confidence level are plotted. 



 

89 

 

 The EAWR teleconnection index shows strong negative correlations over large 

regions of throughout most months of the year at all four pressure levels. The negative 

correlations are the most extensive during November and December (Figure 24). 

Positive geopotential height anomalies are associated with the negative phase of the 

EAWR pattern, which is associated with positive heights over central North America 

(Barnston and Livezey 1987). Some positive correlations occur at all four pressure levels 

during February at the three highest pressure levels in July (Figure 24). During months 

where significant positive or negative correlations are observed, the locations of these 

correlations are generally consistent between all four pressure levels. 

 For the EA index, small regions of positive and negative correlations are 

observed throughout the year at all four pressure levels. The largest spatially consistent 

patterns of significant negative correlations are in July at all four pressure levels (Figure 

25). Throughout the rest of the year, only very small regions of significant correlations 

are evident, and these regions are generally not consistent between pressure levels. 

 The EPNP teleconnection index has strong positive correlations that cover almost 

the entire study area throughout the year at all four pressure levels. For all months, the 

locations and spatial extent of these positive correlations is consistent between all four 

atmospheric levels (Figure 25). These positive correlations correspond to positive height 

anomalies with the positive phase of the EPNP pattern. The fewest significant 

correlations occur in August, when no significant correlations are observed at 300 hPa 

and 500 hPa and only a very small area of significant correlations at 700 and 850 hPa 

(Figure 25). 



 

90 

 

 

  

Figure 24: Geopotential height correlation maps with EAWR 

during February (left) and November (right) at four 

pressure levels (from top to bottom: 300 hPa, 500 hPa, 700 

hPa, 850 hPa). Cells with correlations significant at the 95% 

confidence level are plotted. 
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Figure 25: Geopotential height correlation maps with EA during July (left) and 

EPNP during January (middle) and August (right) at four pressure levels (from top 

to bottom: 300 hPa, 500 hPa, 700 hPa, 850 hPa). Cells with correlations significant 

at the 95% confidence level are plotted. 
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For the PE teleconnection, regions of both positive and negative correlations are 

evident throughout the year, consistent between the pressure levels. During January, 

August, and September, predominately positive correlations occur, and predominately 

negative correlations during March, April, May, October, November, and December. 

Throughout the remaining months, few to no significant correlations are observed. The 

most extensive correlation patterns occur during October at all pressure levels, 

November at the 500, 700, and 850 hPa pressure levels, and December for the 300hPa 

level. 

 The WP index is negatively correlated with height, although large regions of 

significant positive correlations do occur in August at all four pressure levels. In general, 

the spatial extent of the significant correlations decreases with increasing pressure level. 

For example, the largest spatial patterns of significant correlations are at the 850 hPa 

pressure level, with the smallest spatial patterns at 300hPa. Overall, the most extensive 

correlations are in October, November, and December, especially at the higher pressure 

levels. 

Discussion. In general, the AO, NAO, PNA, EAWR, and EPNP indices have the 

strongest relationships with geopotential heights over the Beaufort Sea. The PE and WP 

indices both show some relationship during specific months of the year (October through 

December), which indicates that these teleconnections may also provide some use in 

explaining the driving forces behind the geopotential height patterns observed in the 

region. The teleconnections with the strongest relationships with geopotential heights 
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generally follow the results from the upper air temperatures, indicating that these indices 

could be driving the upper atmospheric conditions of the region. 

III.5.2.3 Surface Temperature 

For the three surface temperature variables (SAT, FDD, and TDD), it is expected 

that similar spatial correlation patterns will be observed, with some differences in 

magnitude. The AO and NAO have negative correlations with surface air temperatures 

while large areas of positive correlations occur with FDD (Figure 26). This opposite 

pattern is expected because large FDD values indicate lower daily air temperatures. For 

AO, a large region of significant correlations is only evident during October for the 

Figure 26: Correlation maps with AO during January (left) and October (middle), 

and with NAO during October (right) for SAT (top row) and FDD (bottom row). 

Cells with correlations significant at the 95% confidence level are plotted. 
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surface air temperatures, with smaller regions during the remainder of the year (Figure 

26). For the NAO, a large region of negative correlations with surface temperature is 

observed during October (Figure 26). FDD has extensive regions of positive correlations 

during January, May, October, and December with the AO, and May and November for 

the NAO (Figure 26). The TDD, only used from June through August when air 

temperatures are above freezing, do not show many significant correlations. During the 

positive phase of the AO/NAO, lower air temperatures are present in the Canadian 

Arctic Archipelago and the Beaufort Sea region (Wallace and Gutzler 1981), which 

corresponds to the correlation patterns observed for SAT, FDD, and TDD. 

 The PNA has both positive and negative correlations throughout the year with 

surface air temperatures, although the positive correlations are more extensive, 

especially during August and September (Figure 27). For the FDD, strong and spatially 

consistent patterns of negative correlations are found throughout the year (excluding the 

summer months when FDD values are zero). The negative FDD correlations agree with 

the positive temperature correlations observed during August and September (Figure 

27). The TDD are only significantly correlated during August, when a large region of 

positive correlations occurs in the northwest portion of the study region and a small 

region of negative correlations in the southeast (Figure 27). These positive TDD 

correlations correspond to the positive temperature and the negative FDD correlations. 

These correlation patterns suggest that positive PNA brings increases in air temperatures 

to the Beaufort Sea region. This potentially corresponds to the ridging that is typically  
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present over the western United States during the positive phase (Wallace and Gutzler 

1981). 

 SOI and Niño 3.4 are again not significantly correlated with any of the three 

surface air temperature variables. For the EAWR teleconnection index, some regions of 

Figure 27: Correlation maps with PNA during August (left) and 

September (right) for SAT (top), FDD (middle), and TDD 

(bottom). Cells with correlations significant at the 95% 

confidence level are plotted. 
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negative correlations are found throughout the year for the surface air temperatures, 

although the locations of these regions are not consistent throughout the year. FDD 

shows both positive and negative correlations throughout the year with no discernible 

pattern. The location and timing of these correlations does not correspond with the 

surface air temperatures. The TDD show some negative correlations, although they do 

not correspond with the FDD or surface air temperatures. For the EA teleconnection 

index, only small regions of significant positive and negative correlations occur for the 

three surface temperature variables throughout the year. Where significant correlations 

are present for one variable, they are absent for the other variables and there appears to 

be no consistent pattern for the locations of the significant correlations. 

 For the EPNP index, strong positive correlations are evident for surface air 

temperatures from January through March and during November (Figure 28). These 

correspond with strong negative correlations for FDD during these same months (Figure 

28). Increases in air temperatures correspond to the positive phase of the EPNP pattern, 

where positive height anomalies are observed over Alaska (Barnston and Livezey 1987). 

Strong negative correlations are also found in October for the FDD, although no 

significant correlations occur based on surface air temperatures during this month. The 

TDD shows a strong and spatially consistent pattern of positive correlations during June, 

although no corresponding correlations are observed for the surface air temperatures. 

 The PE and WP teleconnection indices both indicate inconsistent patterns of 

significant correlations throughout the year. For these indices, correlations of both signs 

occur for all three variables throughout the year, and there appears to be no consistent 
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spatial pattern for the significant correlations. There is also no correspondence between 

the three variables in terms of the locations of these significant correlations. 

Discussion. Overall, the AO, NAO, PNA, and EPNP teleconnection indices 

have the most consistent and extensive patterns of significant correlations for all three 

temperature variables. These four teleconnection indices match with the most significant 

indices for both the upper atmospheric air temperatures and the geopotential heights. The 

inconsistent patterns observed for the remaining indices indicate that these 

teleconnections may not have an influence on the regional scale surface conditions in the 

Beaufort Sea region. 

Figure 28: Correlation maps with EPNP during February (left), July (middle), and 

November (right) for SAT (top) and FDD (for February and November) and TDD 

(for July) (bottom). Cells with correlations significant at the 95% confidence level 

are plotted. 
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III.5.2.4 Other surface variables 

 The remaining surface variables include SLP, wind speed, and wind direction. 

For the AO and NAO, a consistent pattern of predominately negative correlations is 

observed for SLP (Figure 29). The significant correlations are located in the north and 

northeastern portions of the study region for all months. Overall, the pattern of 

significant correlations is larger for the AO versus the NAO (Figure 29). Negative 

correlations indicate that positive SLP anomalies are associated with the negative phase 

Figure 29: Correlation maps for AO (left group) and NAO (right group) during 

March (left) and October (right) for SLP (top), wind speed (middle), and wind 

direction (bottom). Cells with correlations significant at the 95% confidence level 

are plotted. 
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of the AO/NAO, where high pressure is typically observed in the Arctic (Wallace and 

Gutzler 1981). For wind speed, both positive and negative correlations occur throughout 

the year for AO and NAO (Figure 29). Generally, when positive correlations occur they 

are in the northeastern portion of the study region, while negative correlations are 

generally found in the southwestern portion. Wind direction shows little to no significant 

correlations throughout the year for either the AO or the NAO, and when significant 

correlations occur they are not consistent throughout the year (Figure 29). 

 For the PNA, negative SLP correlations are found in the southern portion of the 

study region and positive correlations in the north for most months (Figure 30). Except 

for during May, June, and July, these patterns are consistent over extensive regions 

(Figure 30). Wind speed and direction again only have small regions of both positive and 

negative correlations throughout the year, although these correlations are not consistent 

(Figure 30).  

 The SOI and Niño 3.4 teleconnection indices do show some significant 

correlations with SLP, wind speed, and direction throughout the year. But these 

correlations are in very small areas and are seemingly randomly distributed throughout 

the study region. For the EAWR and EA teleconnection indices, no consistent patterns of 

correlations are found for SLP, wind speed, or direction. SLP has a large area of 

significant correlations during December for the EAWR index, and during July for the 

EA index. Throughout the rest of the year almost no significant correlations are 

observed. Wind speed and direction produce no large areas with significant correlations. 
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 The EPNP teleconnection index shows large regions of significant positive 

correlations throughout the year for SLP (Figure 31). Increases in SLP occur during the 

positive phase of the EPNP pattern, which is typically associated with positive height  

 

Figure 30: Correlation maps with PNA during February (left) 

and August (right) for SLP (top), wind speed (middle), and 

wind direction (bottom). Cells with correlations significant at 

the 95% confidence level are plotted. 
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anomalies over Western Canada (Barnston and Livezey 1987). For wind speed and 

direction, both positive and negative spurious correlations are again observed throughout 

the year with no consistency to their locations (Figure 31). 

Figure 31: Correlation maps with EPNP during January (left) 

and July (right) for SLP (top), wind speed (middle), and wind 

direction (bottom). Cells with correlations significant at the 

95% confidence level are plotted. 
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 The PE and WP teleconnection indices show similar correlation patterns for SLP. 

From January through May, significant negative correlations are observed. Beginning in 

June, positive correlations occur until August, and negative correlations from September 

through December. The most spatially consistent SLP correlation patterns are during the 

winter when both indices are negatively correlated. For wind speed, small regions of 

both positive and negative correlations occur throughout the year for both indices, and 

these correlations are again not consistent in their location or sign throughout the year. 

Wind direction has predominately positive correlations throughout the year with both 

indices, although these correlations are not very extensive. 

Discussion. Overall, the AO, NAO, PNA, and EPNP teleconnection indices have 

the most consistent correlation patterns with SLP. The PE and WP patterns also show 

some consistent patterns, although these correlations are not as extensive. Correlations 

with AO, NAO, PNA, and EPNP agree with the results for the upper atmospheric 

temperature variables, geopotential heights, and surface temperature variables. No 

consistent correlation patterns occur with wind speed and direction. This can be 

attributed to the fact that these two variables also showed no consistent patterns 

throughout the study region in the composite analysis. 

III.5.2.5 Antecedent Ice Conditions 

 AO and NAO have similar correlation patterns with TI and MYI. For both 

variables, predominately positive correlations are observed throughout most of the year 

with the AO (Figure 32). Positive correlations indicate that the positive phase of the 

AO/NAO may be associated with increases in sea ice concentration and sea ice age. The 
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positive phase generally brings lower air temperatures to the high latitudes (Walace and 

Gutzler 1981). The most spatially consistent correlation patterns are found during 

January and August for both variables (Figure 32, 33). For the NAO, the most spatially 

consistent patterns of significant positive correlations occur during July and August for 

Figure 32: Correlation maps with AO during January (left) and August (right) for 

TI (top) and MYI (bottom). Cells with correlations significant at the 95% 

confidence level are plotted. 
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both variables (Figure 33). Significant negative correlations are also found in September 

for both variables, which suggests a reversal of the relationship with the NAO during 

this month (Figure 33). 

 The PNA has positive and negative correlations with both ice variables, and more 

spatially consistent patterns of significant differences observed for TI (Figure 34). For 

TI, extensive positive correlations are found during June and large areas of significant 

negative correlations in August and September (Figure 34). MYI has few significant 

Figure 33: Correlation maps with NAO during July (left), August (middle), and 

December (right) for TI (top) and MYI (bottom). Cells with correlations significant 

at the 95% confidence level are plotted. 
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Figure 34: Correlation maps with PNA during January (left) and September 

(right) for TI (top) and MYI (bottom). Cells with correlations significant at the 

95% confidence level are plotted. 

correlations, except in September when a large area of significant negative correlations 

occurs (Figure 34). Negative correlations during September with both TI and MYI 

suggests that the PNA does have some relationship with sea ice conditions, especially 

when the minimum ice extent is reached. 
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The SOI and Niño 3.4 again produce very few significant correlations throughout 

the year for both TI and MYI. For the SOI, some significant negative correlations are 

evident, but with no consistent spatial patterns for either variable. Niño 3.4 similarly 

only has spurious positive correlations with the two ice variables. 

 The EAWR teleconnection pattern shows small areas of significant positive 

correlations with TI and MYI throughout the year. The most spatially consistent pattern 

of significant correlations is in August for TI, and in December for MYI. Throughout the 

rest of the year, only small areas of significant correlations occur. 

 For the EA teleconnection index, extensive negative correlations are evident 

during July and August for TI. This suggests that some relationship might exist between 

the EA and TI during these months, but no overall relationship emerges. For MYI, no 

spatially consistent pattern of correlations occurs. 

 The EPNP pattern shows consistent patterns of significant negative correlations 

with TI during January, and significant positive correlations during August and 

September. For MYI, significant correlations are observed during all months, although 

no spatially coherent pattern emerges. 

 The PE and WP teleconnections are significantly correlated with TI and MYI 

throughout the year, although these are not extensive patterns. The month with the 

largest spatial pattern of significant correlations is October for both TI and MYI. WP has 

no months with large correlations. 

Discussion. Overall, the AO, NAO, and PNA show extensive patterns of 

significant correlations with the most persistence throughout the year. Similar correlation 
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patterns are found for both TI and MYI, with many of the strongest patterns observed 

during September when the minimum ice extent is reached. Because these strong and 

spatially consistent correlations exist during September, it indicates that these 

teleconnection indices may have some relationship with the minimum sea ice extent in 

the Beaufort Sea region. This means that these teleconnections can be expected to have 

some utility in forecasting the minimum sea ice extent. 

III.5.3 Part 3: Long-Term Teleconnection Relationships 

III.5.3.1 Principal Component Analysis 

 PCA is performed on each of the standardized predictor variables to identify the 

leading modes of variability of each variable over the entire study region. The proportion 

of variance explained by the first five PCs for each variable is displayed in Table 4. For 

the upper atmospheric temperature variables (air temperatures at 300, 500, 700, and 850 

hPa), the geopotential heights (300, 500, 700, and 850 hPa), SLP, and FDD, the first PC 

explains over 50% of the variance in the respective original dataset (Table 4). For TDD 

and SAT, over 40% of the variance is explained by the first PC (Table 4). The presence 

of a dominant first PC suggests that these variables have a prevailing pattern of 

variability that can be utilized to represent the overall spatial distribution of the data over 

the study region. For the remaining variables (TI, MYI, wind speed, and wind direction), 

the first PC explains less than 35% of the variance in the dataset (Table 4), although the 

first PC can still be considered a dominant mode because the variance explained by the 

higher order PCs is substantially less. 
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 In this study, the first three PCs will be utilized in the correlation analysis. As 

observed in Table 4, after the third PC less than 10% of the total variance is explained by 

each PC (starting with PC 4). This means that these higher-order PCs do not represent 

any appreciable amount of variability in the dataset and therefore would likely not 

provide any useful information regarding the large-scale drivers of each of these 

predictor variables. Because the first three PCs represent an appreciable amount of 

variance in the data, they will be applied in the subsequent correlation analyses. 

 

 

Table 4: The proportion of variance explained by the first five PCs for 

each predictor variable. 

PC1 PC2 PC3 PC4 PC5

Total Ice 0.325 0.120 0.073 0.047 0.036
Multiyear Ice 0.229 0.054 0.052 0.028 0.020

FDD 0.563 0.167 0.123 0.039 0.028
TDD 0.480 0.136 0.122 0.047 0.042

Surface Temp 0.466 0.152 0.109 0.061 0.038
Temp 850hPa 0.571 0.188 0.121 0.039 0.025
Temp 700hPa 0.575 0.186 0.125 0.036 0.026
Temp 500hPa 0.590 0.173 0.130 0.035 0.025
Temp 300hPa 0.635 0.146 0.092 0.037 0.026

SLP 0.593 0.252 0.063 0.032 0.024
Gph 850hPa 0.610 0.222 0.081 0.029 0.026
Gph 700hPa 0.613 0.184 0.112 0.031 0.026
Gph 500hPa 0.608 0.168 0.133 0.032 0.025
Gph 300hPa 0.621 0.158 0.138 0.029 0.023
Wind Speed 0.308 0.143 0.115 0.075 0.063

Wind Direction 0.222 0.144 0.115 0.059 0.053

Proportion of Variance Explained by each Principle Component
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III.5.2.3 Correlation Analysis 

 Correlations were performed between the first three PCs for each predictor 

variable and each teleconnection index to further investigate the degree to which the 

individual teleconnections may drive the observed surface and atmospheric variability. 

These correlations were performed for the concurrent relationship and for monthly lags 

up to one year, with the teleconnections always leading. 

 The results for the concurrent correlations are provided in Tables 5, 6, and 7. 

Only results which are significant at the 95% confidence level are considered for 

analysis. For PCs 1 of the predictor variables, the teleconnection pattern showing 

significant correlations is the EAWR pattern (Table 5). Overall, only a small number of 

significant correlations are observed between the first PC and the teleconnection indices. 

When significant correlations are observed, these correlation values are very small 

(Table 5). Almost no significant correlations are observed between the teleconnection 

indices and PCs 2 for each variable (Table 6). Only three significant correlations are 

observed, and these occur between the EA index and SLP, the EA index and TI, and the 

PE index and 300hPa geopotential height (Table 6). Although these three correlations 

are significant at the 95% confidence level, their magnitudes are extremely small (Table 

6). It is likely that these significant correlations are not physically meaningful. For the 

correlations between the teleconnection patterns and PC 3 for each variable, only five 

significant correlations are observed (Table 7). These occur between the AO and MYI, 

the NAO and SAT, the NAO and MYI, the PE and 850hPa air temperatures, and the PE 

and wind direction (Table 7). In these cases, the correlations are again very small. 
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Table 5: Concurrent correlations between the teleconnection patterns and PC1. 

Shaded areas indicate correlations that were not significant at the 95% confidence 

level. 

p-value r p-value r p-value r p-value r p-value r p-value r p-value r
850hPa Air Temp 0.003 0.147
700hPa Air Temp 0.002 0.152
500hPa Air Temp 0.002 -0.155 0.022 0.114
300hPa Air Temp 0.022 -0.114

850hPa GPH 0.015 -0.121
700hPa GPH 0.011 0.126
500hPa GPH 0.091 -0.084 0.018 -0.117
300hPa GPH 0.026 -0.110 0.042 0.101 0.033 -0.106

SLP 0.032 -0.106
Wind Speed 0.011 -0.126

Wind Direction

FDD 0.020 -0.116
TDD 0.049 0.098
SAT 0.014 0.121

Total Ice 0.016 0.119
Multiyear Ice 0.004 0.143 0.010 0.129 0.001 0.164 0.004 0.142

PEAO NAO PNA EAWR EA EANP

Table 6: Concurrent correlations between the teleconnection patterns and PC2. 

Shaded areas indicate correlations that were not significant at the 95% confidence 

level. 

 

p-value r p-value r p-value r p-value r p-value r p-value r p-value r
850hPa Air Temp

700hPa Air Temp

500hPa Air Temp

300hPa Air Temp

850hPa GPH

700hPa GPH

500hPa GPH

300hPa GPH

SLP 0.009 -0.130
Wind Speed 0.021 -0.115

Wind Direction

FDD

TDD

SAT

Total Ice 0.048 0.098
Multiyear Ice

AO NAO PNA EAWR EA EANP PE
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Table 7: Concurrent correlations between the teleconnection patterns and PC3. 

Shaded areas indicate correlations that were not significant at the 95% confidence 

level. 

 

p-value r p-value r p-value r p-value r p-value r p-value r p-value r
850hPa Air Temp

700hPa Air Temp

500hPa Air Temp

300hPa Air Temp

850hPa GPH 0.042 -0.101
700hPa GPH

500hPa GPH

300hPa GPH

SLP

Wind Speed

Wind Direction 0.001 0.162
FDD

TDD

SAT 0.003 -0.150
Total Ice

Multiyear Ice 0.045 0.101 0.001 0.160

PEAO NAO PNA EAWR EA EANP

 

 

 

 

 

 

 

 

 

 

 

 

III.5.3.2.1 Lag Correlations for PC 1 

The significant lag correlations for select months for PCs 1 are provided in Table 

8. For PC1, large numbers of significant correlations are observed for the 1 and 2 month 

lags. For the 1-month lag, the largest number of significant correlations is observed for 

the EAWR, although these correlations are very small. The largest number of significant 

correlations occurs at the 2-month lag. For this lag, the significant correlations are found 

between many predictor variables and each of the teleconnections (excluding the EANP 

index), and these correlations are stronger than for any other lags. Significant 

correlations are evident between the NAO and every predictor, and these correlations are 

the strongest of all the lags. Many significant correlations are also observed between the  
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Table 8: Significant correlations for PC1 during the 1-month and 2-

month lags. 

1 Month Lag p-value r 2 Month Lag p-value r

AO and MYI 0.004 0.146 AO and MYI 0.003 0.150
NAO and TI 0.003 0.147 NAO and 850hPa Air Temp 0.000 0.260

NAO and MYI 0.000 0.173 NAO and 700hPa Air Temp 0.000 0.244
EAWR and 850hPa Air Temp 0.003 0.147 NAO and 500hPa Air Temp 0.000 -0.257
EAWR and 700hPa Air Temp 0.002 0.152 NAO and 300hPa Air Temp 0.000 0.225
EAWR and 500hPa Air Temp 0.002 -0.155 NAO and 850hPa GPH 0.000 -0.331

EAWR and Wind Speed 0.026 -0.110 NAO and 700hPa GPH 0.000 0.351
EAWR and FDD 0.020 -0.116 NAO and 500hPa GPH 0.000 -0.344
EAWR and TDD 0.049 0.098 NAO and 300hPa GPH 0.000 -0.343
EAWR and SAT 0.014 0.121 NAO and SLP 0.000 -0.267
EAWR and TI 0.016 0.119 NAO and Wind Speed 0.000 0.266

EAWR and MYI 0.001 0.164 NAO and Wind Direction 0.001 -0.169
EA and 500hPa Air Temp 0.022 0.114 NAO and FDD 0.000 -0.248
EA and 300hPa Air Temp 0.022 -0.114 NAO and TDD 0.009 0.130

EA and 300Pa GPH 0.042 0.101 NAO and SAT 0.000 0.224
EA and Wind Speed 0.011 -0.126 NAO and Total Ice 0.000 0.230
PE and 850hPa GPH 0.015 -0.121 NAO and Multiyear Ice 0.000 0.186
PE and 700hPa GPH 0.011 0.126 PNA and 850hPa Air Temp 0.000 -0.365
PE and 500hPa GPH 0.018 -0.117 PNA and 700hPa Air Temp 0.000 -0.396
PE and 300hPa GPH 0.033 -0.106 PNA and 500hPa Air Temp 0.000 0.335

PE and SLP 0.032 -0.106 PNA and 300hPa Air Temp 0.021 -0.114
PNA and 850hPa GPH 0.005 0.138
PNA and 700hPa GPH 0.000 -0.243
PNA and 500hPa GPH 0.000 0.305
PNA and 300hPa GPH 0.000 0.314
PNA and Wind Speed 0.039 -0.102

PNA and FDD 0.000 0.367
PNA and TDD 0.000 -0.201
PNA and SAT 0.000 -0.214

EAWR and 850hPa Air Temp 0.000 0.210
EAWR and 700hPa Air Temp 0.000 0.193
EAWR and 500hPa Air Temp 0.000 -0.190
EAWR and 300hPa Air Temp 0.002 0.156

EAWR and 850hPa GPH 0.000 -0.212
EAWR and 700hPa GPH 0.000 0.236
EAWR and 500hPa GPH 0.000 -0.234
EAWR and 300hPa GPH 0.000 -0.229

EAWR and SLP 0.006 -0.135
EAWR and FDD 0.000 -0.179
EAWR and TDD 0.004 0.141
EAWR and SAT 0.000 0.215

EAWR and Total Ice 0.002 0.153
EAWR and Multiyear Ice 0.000 0.177
PE and 300hPa Air Temp 0.021 0.114

PE and 850hPa GPH 0.005 -0.139
PE and 700hPa GPH 0.021 0.114
PE and 500hPa GPH 0.045 -0.099
PE and 300hPa GPH 0.035 -0.105

PE and SLP 0.000 -0.179
PE and Wind Direction 0.000 0.346

PE and MYI 0.014 0.122
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PNA and many of the predictor variables, and these correlations are again strongest at 

this 2-month lag. The same is true for the EAWR teleconnection pattern, which shows 

the strongest significant correlations with nearly all of the predictor variables during the 

2-month lag. The PE teleconnection pattern has the most significant correlations (when 

compared to the other lags), but does not show as many significant correlations as the 

NAO, PNA, or EAWR.  

Beginning with the 3-month lag, only few significant correlations occur and they 

are very weak. Generally, if correlations are significant, they only appear for one or two 

predictor variables and are not consistent between the lags. For example, a significant 

correlation may be observed between the PE pattern and wind speed at the 3-month lag, 

but not at any other lag. This indicates that these significant correlations are most likely 

spurious and do not have a physical relationship. One exception may be MYI, which is 

significantly correlated with the AO, NAO, and EAWR teleconnection patterns at many 

of the lags (Table 9). This suggests that MYI may be linked to these teleconnection 

indices. 

 The 12-month lag has many significant correlations between the AO and the 

predictor PCs and the correlations are generally strong (Table 10). This indicates that 

although strong significant correlations are not evident for the AO at the other lags, the 

AO may have an influence on the predictor variables at longer lag times. This follows 

the expected relationship between the AO and sea ice that has been discovered 

previously, where the wintertime AO pattern was significantly correlated with SAT and 

sea ice concentration throughout the following year  (Parkinson 2008, Rigor et al. 2002). 
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Table 9: Significant correlations for MYI between PC1 and AO, NAO, and EAWR. 

Shaded areas indicate correlations that are not significant at the 95% confidence 

level. 

p-value r p-value r p-value r
1 Month 0.004 0.146 0.000 0.173 0.001 0.164
2 Month 0.003 0.150 0.000 0.186 0.000 0.177
3 Month 0.002 0.157 0.000 0.202 0.000 0.181
4 Month 0.002 0.152 0.000 0.194 0.000 0.172
5 Month 0.002 0.156 0.000 0.182 0.002 0.154
6 Month 0.002 0.153 0.000 0.184 0.004 0.142
7 Month 0.003 0.150 0.001 0.170 0.006 0.135
8 Month 0.002 0.157 0.002 0.154 0.032 0.106
9 Month 0.001 0.166 0.011 0.126
10 Month 0.001 0.160 0.015 0.120
11 Month 0.000 0.172 0.012 0.125
12 Month 0.000 0.176 0.010 0.128

AO NAO EAWR

 

Table 10: Significant correlations 

between the teleconnection indices 

and PC1 for the 12-month lag. 

12 Month Lag p-value r

AO and 850hPa Air Temp 0.000 0.260
AO and 700hPa Air Temp 0.000 0.270
AO and 500hPa Air Temp 0.000 -0.294
AO and 300hPa Air Temp 0.000 0.342

AO and 850hPa GPH 0.000 -0.495
AO and 700hPa GPH 0.000 0.495
AO and 500hPa GPH 0.000 -0.467
AO and 300hPa GPH 0.000 -0.459

AO and SLP 0.000 -0.471
AO and Wind Speed 0.000 0.203

AO and Wind Direction 0.042 0.101
AO and FDD 0.000 -0.247
AO and TDD 0.011 0.126
AO and SAT 0.007 0.132

AO and Total Ice 0.004 0.143
AO and Multiyear Ice 0.000 0.176

NAO and TI 0.030 0.107
NAO and MYI 0.010 0.128

PNA and TI 0.019 -0.116
PE and 850hPa GPH 0.024 -0.112

PE and SLP 0.010 -0.127
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III.5.3.2.2 Lag Correlations for PC 2 

 As with PC 1, the largest number of significant correlations is observed at the 2-

month lag (Table 11). At this lag, the correlations are also strongest, although not as 

strong as for PC 1 (Table 8). Additionally, fewer significant correlations are observed for 

PCs 2 when compared to PCs 1. Among the lags there appears to be no consistency to 

the significant correlations. This means that the same correlations are not observed at 

multiple lags. Unlike PC 1, no consistent significant correlations with MYI are observed 

at different lags. 

 Because the second PC represents an appreciably smaller amount of the total 

variance in each of the predictor variables (Table 4), it is expected that fewer significant 

correlations are observed. The lack of consistency and fewer correlations indicates that 

PC 2 may not be useful for identifying the large-scale patterns influencing each of the 

predictor variables. 

III.5.3.2.3 Lag Correlations for PC 3 

 The significant lag correlations between the teleconnection patterns and PC 3 for 

each variable for the first two lags are displayed in Table 12. For PCs 3, only a very 

small number of significant correlations occur at each lag, and none at the 9-month lag. 

Unlike PC 1 and PC 2, the largest number of significant correlations is not observed 

during the 2-month lag, but at 6 months. The significant correlations are very weak 

(Table 12) with no consistency across multiple lags. Because these correlations are so 

weak and inconsistent, they likely do not explain any physical relationships. 
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Table 11: Significant correlations for PC2 during the 1-month and 2-month lags. 

1 Month Lag p-value r 2 Month Lag p-value r

NAO and 700hPa GPH 0.003 0.149 AO and Wind Speed 0.045 0.101
NAO and 500hPaGPH 0.004 0.141 NAO and 300hPa Air Temp 0.077 -0.088
NAO and 300hPa GPH 0.036 0.104 NAO and 850hPa GPH 0.000 0.212

NAO and SLP 0.002 -0.150 NAO and 700hPa GPH 0.000 0.172
EA and Wind Speed 0.021 -0.115 NAO and 500hPa GPH 0.035 0.104

EA and TI 0.048 0.098 NAO and SLP 0.000 -0.241
PE and SLP 0.009 -0.130 PNA and 850hPa Air Temp 0.000 0.220

PNA and 700hPa Air Temp 0.000 -0.240
PNA and 500hPa Air Temp 0.000 0.252

PNA and 850hPa GPH 0.000 -0.293
PNA and 700hPa GPH 0.009 -0.129
PNA and 300hPa GPH 0.001 -0.162

PNA and SLP 0.000 0.392
PNA and FDD 0.002 -0.154
PNA and SAT 0.000 0.309

EA and 300hPa Air Temp 0.021 0.115
EA and FDD 0.006 -0.136

EA and TI 0.049 0.098
PE and 850hPa Air Temp 0.007 0.133
PE and 700hPa Air Temp 0.009 -0.129
PE and 500hPa Air Temp 0.014 0.122
PE and 300hPa Air Temp 0.020 -0.115

PE and 850hPa GPH 0.000 0.238
PE and 700hPa GPH 0.000 0.272
PE and 500hPa GPH 0.000 0.279
PE and 300hPa GPH 0.000 -0.258

PE and SLP 0.000 -0.194
PE and Wind Direction 0.000 -0.206

PE and FDD 0.009 -0.129
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Table 12: Significant correlations for PC3 during the 1-month and 2-month lags. 

1 Month Lag p-value r 2 Month Lag p-value r

NAO and 500hPa GPh 0.029 -0.108 NAO and 500hPa Air Temp 0.003 0.148
NAO and 300hPa GPH 0.004 -0.142 NAO and 850hPa GPH 0.000 -0.240
NAO and Wind Speed 0.012 0.125 NAO and 700hPa GPH 0.000 -0.209

PNA and FDD 0.037 0.104 NAO and 500hPa GPH 0.000 -0.223
PNA and TI 0.047 0.099 NAO and 300hPa GPH 0.000 -0.254

PE and 850hPa GPH 0.042 -0.101 NAO and SLP 0.000 -0.246
PE and Wind Direction 0.001 0.162 NAO and Wind Speed 0.000 0.257

NAO and TI 0.046 0.099
EAWR and 850hPa GPH 0.012 -0.125

EAWR and SLP 0.022 -0.113
PE and 850hPa GPH 0.000 0.243
PE and 700hPa GPH 0.002 0.151

PE and SLP 0.000 0.258

 

 

 

 

 

 

 

 

 

 

 Overall, the third PC only represents a very small proportion of the total variance 

in each of the predictor variables, so it is not surprising that only a few weak correlations 

are found. As for PC 2, the lack of strong significant correlations suggests that these PCs 

are not useful in characterizing the possible influence of the teleconnection patterns on 

the predictor variables. 

III.5.3.3 Discussion 

This analysis has shown that PCA can be used to represent the dominant patterns of 

variability for each of the predictor variables and that the information is useful in 

identifying the overall large-scale relationships for each of these variables. The main 

conclusions are detailed below: 

1. Because PC 1 represents the dominant pattern of variability in each of the 

predictor variables, this PC is the most useful in identifying the teleconnection 
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patterns that may be driving the spatial distributions of each variable. PCs 2 and 

3 represent only a small amount of the total variance in the predictor variables 

and therefore do not provide any useful information regarding the large-scale 

relationships to the teleconnection patterns. 

2. Few significant correlations are observed at the concurrent lag. This suggests that 

if any relationship is present between the predictor variables and the 

teleconnection patterns, there is some amount of lag time present. The 

characteristics of the teleconnection patterns thus take some amount of time to 

exert any appreciable influence on the variables in the Beaufort Sea region. 

3. Of the lagged correlations, the 2-month lag had the most and the strongest 

significant correlations. At this lag, many significant correlations are observed 

for the NAO, PNA, and EAWR teleconnection patterns. Because of the many 

strong significant correlations, this 2-month lag is useful and important in 

identifying important teleconnection relationships. 

4. In addition to the 2-month lag, strong significant correlations between the AO 

and each of the predictor variables are observed at the 12-month lag. This 

suggests that there may be a relationship between the AO and the predictor 

variables, but that the variables take a longer time to express a response to the 

AO. The strong correlations at the 12-month lag suggest that there may be some 

predictive information a year in advance. 
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5. No significant correlations are observed for the EANP teleconnection pattern, 

which indicates that this pattern does not have an influence on the Beaufort Sea 

region. 

6. Of the predictor variables, only MYI has a consistent relationship with the 

teleconnection indices at many of the lags. MYI is significantly correlated with 

the AO, NAO, and EAWR at the concurrent and almost every other lag. This 

suggests that these three teleconnections do have some relationship with MYI 

and could be driving the changes observed in ice ages in the Beaufort Sea region. 

For the AO, a negative phase, characterized by high pressure in the Arctic and low 

pressure in the midlatitudes, typically brings warm conditions to the high latitudes 

(Wallace and Gutzler 1981). The positive phase, on the other hand, is typically 

associated with the northern movement of storm tracks, which contributes to wetter 

conditions in Alaska, Scotland, and Scandinavia and drier conditions in the western 

United States and the Mediterranean (Wallace and Gutzler 1981). The positive phase is 

also associated with lower air temperatures in the Arctic (Wallace and Gutzler 1981). It 

is possible that because significant correlations between the predictor variables and the 

AO during the 12-month lag are present, the conditions and phase of the AO may be 

driving temperature changes in the Beaufort Sea region. The positive phase of the AO 

would be associated with colder air in the Arctic, and therefore would lead to more 

expansive sea ice in the Beaufort Sea. 

The phase of the NAO is associated with changes in the intensity and location of the 

North Atlantic jet steam and storm track, and therefore could provide important 
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information about available moisture and air temperatures in the Arctic (Wallace and 

Gutzler 1981). The positive phase of the NAO brings lower air temperatures to the 

Canadian Arctic Archipelago, while bringing warmer and wetter air to Europe (Wallace 

and Gutzler 1981). The negative phase is associated with the opposite temperature 

pattern. The presence of significant correlations with the NAO at the 2-month lag 

indicates that the phase of the NAO could be useful in predicting the atmospheric 

conditions in the Beaufort Sea two months in advance. When the positive phase of the 

NAO is present, it is expected that colder air could be advected into the Beaufort Sea 

region. This would ultimately allow for more sea ice growth in the region. 

 The EAWR pattern is one of the main teleconnection patterns that influences the 

air temperature and precipitation patterns over Eurasia. During its positive phase, above-

average temperatures are observed over eastern Asia and below-average temperatures 

are observed over western Russia (Barnston and Livezey 1987). Associated with this is 

above-average precipitation in eastern China and below-average precipitation in central 

Europe (Barnston and Livezey 1987). It is possible that during its positive phase, the 

warm air located over eastern Asia is advected into the Arctic and specifically the 

Beaufort Sea region, causing the enhanced melt of sea ice. 

The positive phase of the PNA is associated with positive geopotential height 

anomalies over the western United States and negative geopotential height anomalies 

over the eastern United States (Wallace and Gutzler 1981). This results in the southward 

movement of cold air from the Arctic into the midlatitudes, ultimately creating below 

normal air temperatures in the eastern United States and above normal temperatures in 



 

121 

 

the western United States (Wallace and Gutzler 1981). The negative phase is associated 

with troughing over the western United States, which causes below average temperatures 

in the west and above average temperatures in the east (Wallace and Gutzler 1981). 

During the negative phase, if the ridge over the western United States extends far enough 

northward, above average air temperatures would be expected in the Beaufort Sea 

region. This would be associated with a smaller sea ice extent. 

Overall, the teleconnection patterns that show the largest number of significant 

correlations and therefore have the largest influence on the predictor variables are the 

NAO, PNA, and EAWR teleconnection patterns at a 2-month lag and the AO at a 12-

month lag. It is likely that each of the teleconnections has some influence on the 

predictor variables and the overall characteristics of the atmospheric patterns observed in 

the Beaufort Sea. This analysis suggests that these teleconnection patterns most likely 

interact to influence the predictor variables and that no one pattern can be identified as 

driving any specific predictor variables. 

III.6 Conclusions 

III.6.1 Part 1: Composite Analysis 

 Of the 16 predictor variables, the upper atmospheric air temperatures, surface air 

temperatures (monthly means, FDD, and TDD), SLP, TI, and MYI all appear to show 

consistent and significant differences between the heavy ice and light ice years based on 

the monthly analysis. This indicates that these variables will most likely have the most 

utility in predicting the summer minimum sea ice conditions in the Beaufort Sea. For the 

upper atmospheric air temperatures, the magnitude and number of grid cells with 
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significant differences decreased with height, with the most significant differences 

occurring at the 850 hPa pressure level. The three pressure levels closest to the surface 

(850, 700, and 500 hPa) showed consistent, significant differences throughout the year. 

Differences at the 300 hPa pressure level showed a different pattern with fewer 

significantly different grid cells, which may indicate that this pressure level is too far 

from the surface to have an appreciable predictive ability. The surface temperature 

variables, including monthly mean air temperatures, FDD, and TDD, all showed 

significant differences between the light ice and heavy ice years and these differences 

were consistent throughout the year. For SLP, the expected pattern of differences was 

observed throughout the year, with the largest and most significant differences during 

the summer months. This follows the patterns of the surface temperature variables. 

Lastly, TI and MYI experienced significant differences throughout the year with the 

most differences occurring during September when the minimum sea ice extent is 

reached. Because all of these variables show significant differences throughout the year 

preceding heavy ice and light ice events, they will most likely have the greatest 

contributions to more accurate sea ice forecasts. 

 The remaining predictor variables—including the four levels’ geopotential 

heights, wind speed, and wind direction—do not exhibit consistent patterns throughout 

the year and do not have many significant differences between the heavy ice and light 

ice years. For the geopotential heights, it is possible that the patterns preceding heavy ice 

and light ice years occur at a larger scales and therefore cannot be observed for this 

small study region. The wind speed and direction are known to drive sea ice transport in 
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the Beaufort Sea region, but it is likely that the wind conditions from year to year are too 

different and even though the wind characteristics are important, no typical mean pattern 

can be used for statistical forecasts. A case study approach would most likely show that 

the wind patterns do have some influence on sea ice extent. 

III.6.2 Part 2: Teleconnections 

 The monthly relationships indicate that the most important teleconnection 

patterns influencing the predictor variables in the Beaufort Sea region are the AO, NAO, 

PNA, and EPNP patterns. These four indices showed strong, significant correlations 

throughout the year for nearly every predictor variable (excluding wind speed and 

direction). This indicates that these teleconnection patterns have some relationship with 

the atmospheric and surface conditions in the Beaufort Sea region and therefore will 

most likely have some predictive ability. The EAWR teleconnection pattern did show 

large spatial patterns of significant correlations with the geopotential height variables, 

which indicates that this teleconnection may also have some predictive ability, at least in 

informing the geopotential height characteristics in the region. 

 For the antecedent ice conditions (TI and MYI), only the AO, NAO, and PNA 

showed large areas of significant correlations throughout the year. Because these two 

variables represent the conditions of the sea ice itself, it is possible that these three 

teleconnection indices are the most important for understanding the conditions of the sea 

ice and for predicting the minimum sea ice extent. 

 The remaining teleconnection indices, including the SOI, Niño 3.4, EA, PE, and 

WP, do not show any consistent patterns of significant correlations for any of the 
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predictor variables. This indicates that these teleconnection patterns most likely do not 

have any direct relationship with the Beaufort Sea region and therefore will not provide 

any useful information for improving statistical forecasts of sea ice in the region. 

III.6.3 Part 3: Long-Term Teleconnection Relationships 

The purpose of section 3.5.3 was to further identify the large-scale atmospheric 

teleconnection patterns that have the strongest influence on each of the predictor 

variables in the Beaufort Sea region. A better understanding of the large-scale drivers of 

these predictor variables will provide more accurate forecasts of sea ice conditions in the 

region. Of the teleconnection patterns investigated, the NAO, PNA, EAWR, and AO all 

show some relationship to each of the predictor variables. The NAO, PNA, and EAWR 

have the strongest correlations and are therefore the most influential at the 2-month lag, 

while the AO has the strongest relationship at the 12-month lag. The only variable that 

has a relationship with the teleconnections at most lags is MYI, which correlates 

significantly with the AO, NAO, and EAWR teleconnection patterns. Although the 

EPNP pattern appeared as a possible significant teleconnection in the analysis from 

section 3.5.2, it does not show up in section 3.5.3. The EPNP pattern is very weak during 

December, when it is no longer the leading mode of variability. Because it is so weak 

during this month, perhaps including December in the analysis diminished the 

correlations based on the yearly relationships. It is possible that the EPNP pattern does 

have a strong relationship with the predictor variables during many months of the year 

(as shown in section 3.5.2), but does not have an overall relationship with the variables 

over the entire time series (as shown in section 3.5.3). 
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Overall, these teleconnection patterns are expected to interact to drive the overall 

atmospheric and surface conditions in the Beaufort Sea region. Teasing out the influence 

of one single teleconnection pattern for each predictor variable is therefore difficult. 

III.6.4 Final Conclusions 

 Generally, it is clear that some of the predictor variables will have predictive 

ability in the statistical forecast models. These variables include upper atmospheric air 

temperatures at 850 hPa, 700 hPa, and 500 hPa, monthly mean surface air temperatures, 

FDD, TDD, SLP, TI, and MYI. Wind speed, wind direction, and the geopotential heights 

may not provide any useful predictive information. Of the teleconnections, the AO, 

NAO, and PNA have the strongest relationships with the predictor variables and 

therefore will most likely have the greatest contributions to the forecast models. The 

EAWR and EPNP patterns do have some significant relationships with the predictor 

variables, and may also have some predictive ability, at least during select months. 
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CHAPTER IV  

PREDICTING SEPTEMBER SEA ICE EXTENT 

 

IV.1 Introduction 

 Statistical forecast models predicting the minimum sea ice extent in the Beaufort 

Sea have varying levels of precision, with better predictions at shorter lead time before 

the September minimum ice extent is reached. While more accurate predictions can be 

made using data from the previous spring and summer, fairly accurate predictions are 

possible up to a year in advance, using data from the previous October (Barnett 1980, 

Walsh 1980, Drobot and Maslanik 2003, Drobot 2003, Drobot 2007, Lindsay et al. 2008, 

Drobot et al. 2009). These previous studies, in general, have utilized multiple linear 

regression (MLR) to create forecast models using information about the atmosphere and 

the conditions of the sea ice itself as inputs. 

 Drobot and Maslanik (2003) used MLR, starting in October and going through 

July, to predict summer sea ice conditions using the Barnett Severity Index (BSI). In all 

months, at least three predictors are utilized in the final forecast models, with useful 

variables from the previous months carried over for subsequent models. For example, if 

MYI was retained as a useful predictor in the October model, this variable was retained 

for the November model. Of these models, the least exact forecasts came from the 

October model (R2 = 0.74), with the fit of the models increasing every month through 

July (R2 = 0.92). For the October model, TI, MYI, and the EA are retained. In the 

subsequent models, both October TI and October EA remain in every model, while MYI 
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is replaced by the MYI data for each individual month. During March, the NAO is added 

as a predictor, while FDD is added for the July model. 

 Drobot (2007) applied MLR to predict the minimum sea ice extent in the 

Beaufort Sea using seasonally averaged input data for spring and summer. The final 

regression equations included one to three input predictors. As with the previous study 

(Drobot and Maslanik 2003), the variables from the spring model were carried over as 

inputs into the summer model. During spring, MYI was the only predictor in the model, 

with an R2 value of 0.52. Better predictive ability is observed for the summer model (R2 

= 0.80), which included spring MYI, summer surface albedo, and summer TI. When 

compared to climatology, the spring model provides a 33% increase in predictive ability, 

while the summer model provides a 55% increase. 

 Lindsay et al. (2008) create monthly statistical models using MLR to predict the 

Arctic-wide minimum sea ice extent. Once again, they find that the most truthful 

predictions are based on spring and summer data, while predictions made using data 

from fall and winter are slightly less precise. For each forecast model, two input 

variables are retained. The least correct predictions are made during October (R2 = 0.81), 

which are based on ocean temperature data and the NAO. From November through 

March, ocean temperature and the AO are retained. April includes ocean temperature 

data as well as the Pacific Decadal Oscillation (PDO), while May and June retain ocean 

temperature data and ice fraction. The models created for July, August, and September 

are based on ice concentration and either the NAO (July and August) or the PDO 
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(September). The most precise model is created for August, which has an R2 value of 

0.95.  

 Drobot et al. (2009) construct forecast models predicting the opening date of the 

Prudhoe Bay shipping season. Based on ordinal regression, they predict whether the 

opening date will be early, normal, or late. Ultimately, Drobot et al. (2009) create a 

statistical model using the mean sea ice concentration in the Bering Sea during April, the 

average accumulated FDD, and the frequency of the occurrence of self-organizing map 

(SOM) patterns depicting the SLP characteristics of the region. Their final model retains 

sea ice concentration and FDD, with a correct prediction of either an early, normal, or 

late opening date 60 percent of the time. 

 Overall, these previous models have found that the summer sea ice conditions in 

the Beaufort Sea can be forecast with some truth using both atmospheric data and sea ice 

concentration data. These previous models, however, are limited by their choices of 

input data (such as including only a few predictive variables to input) as well as their 

decisions on how to represent this input data (such as averaging the conditions of a 

variable over the entire study region or using data from only one grid cell to represent 

the conditions over the region) (Drobot and Maslanik 2003, Drobot 2007, Lindsay et al. 

2008, Drobot et al. 2009). These choices can act to either inflate or lessen the fit of the 

model results. 

IV.1.1 Limitations of Statistical Forecasts of Sea Ice Extent 

 Although linear forecast models of sea ice extent in the Arctic are useful in 

understanding the yearly conditions of Arctic sea ice, there are some uncertainties that 
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limit their forecasting ability. First, the fit of these models is dependent on our 

understanding of the complex interactions between sea ice and many atmospheric 

processes at differing scales (National Research Council 2012, Lemke et al. 2007). 

Although our knowledge of the drivers of changes in sea ice has progressed in recent 

years, there is still a large amount of uncertainty. Without a complete understanding of 

the complex interactions between sea ice, the ocean, and the atmosphere, seasonal 

forecast models cannot be entirely accurate (National Research Council 2012, Stroeve et 

al. 2011, Maslanik et al. 2007b).  

 Second, a regime shift in the character of sea ice in the Arctic may change the 

known relationships between sea ice conditions and atmospheric predictor variables. In 

recent years, the proportion of thinner first year ice present in the spring has increased, 

from 38% in the early and mid-1980s, to 52% by the spring of 1996 (Fowler et al. 2004, 

Maslanik et al. 2007b, Stroeve et al. 2011). This increase in first year ice is accompanied 

by a decrease in the proportion of thicker and more stable multiyear ice. This regime 

shift from predominately multiyear ice to predominately first year ice may limit the 

predictive ability of known climatic variables (National Research Council 2012, 

Maslanik et al. 2007b, Stroeve et al. 2007). It is likely that this thinner first year ice 

coverage will have different relationships with predictor variables than the relationships 

observed with the thicker multiyear ice. 

 Third, many positive feedback trends will become more important as the amount 

of sea ice present during the summer months continues to decrease. Of great importance 

is the ice-albedo feedback. As a smaller amount of sea ice is present in the summer, 



 

130 

 

more dark ocean water is exposed. This water absorbs a large amount of solar radiation, 

which heats the ocean surface and initiates further melt of sea ice. The observed 

downward trend of sea ice extent can be in part attributed to this ice–albedo feedback 

(Perovich et al. 2007, Lindsay and Zhang 2005). As the ice pack becomes thinner, this 

feedback mechanism will become even more important in accelerating sea ice loss 

(Stroeve et al. 2011). 

 Fourth, with large decreases in sea ice extent observed beginning in the 1990s, it 

is possible that a shift has occurred and that the sea ice dataset no longer shows a 

decreasing linear trend (Stroeve et al. 2011). The sea ice data before and after this shift 

exhibit differing linear patterns. Therefore, using the entire record of data (back to 1979) 

in creating a forecast model may limit the models’ predictive ability. With observed 

changes in the character of the Arctic sea ice since the 1990s, it is possible that the 

statistical relationships between sea ice and the predictor variables are changing 

(Holland and Stroeve 2011). Both Maslanik et al. (2007b) and Holland and Stroeve 

(2011) suggests that the usefulness of the predictive relationship between AO and 

summer sea ice extent may be decreasing over time. 

 Lastly, processes associated with AA are relatively unknown. It is possible that 

more pronounced AA will have unknown impacts on the climate system. Our predictive 

ability relies on knowledge of the interactions between sea ice and predictor variables in 

our current climate system. If AA brings unexpected changes, our ability to accurately 

predict sea ice extent based on our current knowledge may decrease drastically (Serreze 

and Francis 2006, Serreze et al. 2011). 
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 Although limitations to this forecasting approach do exist, a comprehensive study 

is needed to accurately reflect our knowledge of the existing relationships between sea 

ice and atmospheric predictor variables. This study aims to improve existing statistical 

forecast models by including a greater number of input parameters as well as 

representing these input variables in a less biased way using Principal Component 

Analysis (PCA). It will provide information regarding changes that have occurred in our 

predictive ability using the most up to date data available. 

IV.2 Study Region 

 The extent of the Beaufort Sea is defined using the limits outlined by the IHO 

(1953). Details on the exact coordinates used can be found in the Study Area section of 

chapter II. These coordinates are used to calculate the extent of the Beaufort Sea 

minimum sea ice extent, which serves as the dependent variable for all statistical models 

created for this chapter. 

 The Arctic-wide extents of the 16 atmospheric predictor variables are utilized to 

represent the character of the entire Arctic. In this study, the Arctic is defined as the 

region above 60°N. This differs from the smaller study area used to explore these 

variables in Chapter III. In Chapter III, each variable was investigated over the smaller 

study region to explore the atmospheric conditions of the Beaufort Sea region and to 

inform decisions about variable selection for the subsequent statistical models. Because 

these predictor variables represent aspects of the climate system that interact and vary 

over large distances, it is important to include a larger study area in this chapter to 

incorporate these changes and their potential influences on the Beaufort Sea region.  
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 Although there is no accepted definition of the Arctic, the region is typically 

defined as the region north of 66.5°N (north of the Arctic Circle) (Serreze and Barry 

2005). For this study, interactions between the Arctic and the surrounding land area to 

the south are important for understanding the larger scale patterns that are driving 

changes in the Beaufort Sea minimum sea ice extent. For this reason, the study area 

utilized for this chapter is extended farther south, to 60°N. 

IV.3 Data 

 The data used for Chapter IV comes from a combination of data assembled either 

in Chapter II or Chapter III. From Chapter II, the Beaufort Sea minimum ice extent (BS) 

will be utilized to quantify the September minimum sea ice conditions in the study 

region. This ice extent is calculated using daily sea ice concentration data from the 

NSIDC Sea Ice Concentrations from Nimbus-7 Scanning Multichannel Microwave 

Radiometer (SMMR) and Defense Meteorological Satellite Program (DMSP) -F8, -F11 

and -F13 Special Sensor Microwave/Imagers (SSM/Is), and the DMSP-F17 Special 

Sensor Microwave Imager/Sounder (SSMIS) Passive Microwave Dataset for 1980 

through 2012 (Cavalieri et al. 1996). See the data section of Chapter II for more details. 

 The 16 atmospheric predictor variables described in detail in Chapter III are also 

used here: 850, 700, 500, and 300 hPa air temperature and geopotential height, 2-meter 

SAT, SLP, wind speed, wind direction, FDD, and TDD, which are obtained or calculated 

from the NCEP/DOE Reanalysis 2 dataset. Of the two remaining predictor variables, TI 

is obtained from the NSIDC Sea Ice Concentration dataset, while the MYI dataset is 
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obtained through personal communication with Drs. James Maslanik and Mark Tschudi. 

See the data section of Chapter III for more details. 

 Along with the 16 atmospheric predictor variables, data for 10 teleconnection 

indices are also employed as predictors. These teleconnections include the AO, NAO, 

PNA, EA, EAWR, EPNP, PE, WP, the SOI, and the Niño 3.4 index. The AO index is 

obtained from the website maintained by Dr. David J. W. Thompson 

(http://jisao.washington.edu/data/annularmodes/Data/ao_index.html). Indices for the 

nine remaining teleconnections are obtained from the NOAA CPC 

(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). See the data section of 

Chapter III for more detailed information regarding these datasets. 

IV.4 Methods 

IV.4.1 Part 1: Principal Component Analysis 

 To create statistical models, one value for each year is needed for each predictor 

variable as an input. Because each predictor variable includes data over a large spatial 

area, PCA is used as a data-reduction technique. Once PCA is performed for each 

predictor variable in each month (October through August), the spatial loading patterns 

of the most significant PCs are examined. The spatial pattern of each PC will be 

compared to the map analysis performed in Chapter III to determine which PC most 

accurately reflects the most important mode of variability for each predictor variable. 

IV.4.2 Part 2: Stepwise Linear Regression 

Stepwise linear regression (SLR) is used to assess the predictability of the 

Beaufort Sea September minimum sea ice extent over the study period from 1980 to 

http://jisao.washington.edu/data/annularmodes/Data/ao_index.html
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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2012 for each predictor month (October through August). Both forward and backward 

selection methods of SLR are used. Forward selection involves starting with no variables 

in the model and then testing the addition of each variable by adding the variable that 

improves the model most until some critical threshold is reached. Backward elimination 

involves starting with all candidate variables and then testing the deletion of each 

variable. The results from these two methods are then compared for feasibility and 

model fit based on results from Chapter III. 

To avoid over-fitting the linear regression models, input variables are tested for 

multicollinearity. Over-fitting can occur when too many variables are used as inputs, and 

the resulting models therefore do not accurately reflect the actual predictive ability of the 

variables. Multicollinearity occurs when two input variables are highly correlated with 

one another. When two collinear variables are used as model inputs, the resulting model 

could produce inflated results, where the model results appear better than the real 

predictive ability of the variables because two variables representing the same 

information are utilized. The collinearity of the input variables is tested using the 

variance inflation factor (VIF). This index provides information on how much the 

variance of the model parameters is influenced by collinearity in the retained variables. 

In general, a VIF value near or slightly above 1 suggests that multicollinearity is 

negligible, while a VIF value greater than five indicates that there is a large influence 

from multicollinearity (Drobot and Maslanik 2003). When the VIF of a variable retained 

in the models is large, this variable is removed and the model is recreated without this 

variable as an input. Over-fitting of the models can also be observed in the model 
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outputs, where adding variables to the model only improves the model performance 

incrementally. To reduce over-fitting the models, output variables are systematically 

removed and the resulting models are compared.  

IV.4.3 Part 3: Classification and Regression Trees (CART) 

 In addition to the SLR models, CART models are created for each predictor 

month. A CART model partitions the input predictor variables into similar groups, and 

then makes a categorical prediction of sea ice extent using the terminal nodes of these 

groups (Breiman et al. 1984). The advantages of CART models are that multicollinearity 

is not an issue (Breiman et al. 1084). Additionally, CART models provide information 

about the relative importance of each predictor variable in predicting sea ice extent, 

which is difficult to ascertain with SLR models. For each forecast month, a regression 

tree is created. Each tree is pruned using the cross-validation method, where the number 

of splits in the final regression tree is chosen based on the cross-validation error 

associated with each split (Breiman et al. 1984, De’ath and Fabricius 2000). The tree 

containing splits that minimizes the cross-validation error is selected as the final 

regression tree for each month. 

IV.5 Results 

IV.5.1 Part 1: Principal Component Analysis 

 PCA was performed on each of the 16 atmospheric predictor variables for each 

predictor month and the loading patterns of the most significant PCs were examined to 

determine which PC most accurately reflected the most important mode of variability for 

each variable. If the eigenvalue for a PC was greater than one, then that PC was 
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considered. In most cases, the number of PCs selected using this method coincided with 

the number of PCs that would be selected using the scree plot for each variable. 

 The loading patterns for the first three PCs of the select predictor variables are 

depicted in Figure 35. For all 16 predictor variables, the loading pattern of the first PC 

showed a pattern similar to the distribution of sea ice in the Arctic, with the ice edge 

being represented by the observed changes in the loadings (Figure 35). The subsequent 

PCs each show a different spatial pattern of loadings. Because the loading pattern of the 

first PC appears to follow the average distribution of sea ice throughout the study period, 

this PC is selected for use as the model input for each predictor variable. The purpose of 

this research is to identify the influence of these predictor variables on sea ice extent, so 

this loading pattern represents the most ideal PC to use in creating the forecast models. 

IV.5.2 Part 2: Stepwise Linear Regression 

 Both forward and backward selection methods of SLR are performed for each 

predictor month and the results of this analysis are provided in Tables 1 and 2. The fit of 

these models is assessed using R2, the RMSE, and the MAE. For the coefficient of 

determination, a value closer to 1 indicates better agreement. For both the RMSE and the 

MAE, values closer to zero indicate better agreement. These two measures are 

dependent of the scale of the data, and are therefore presented in km2. An assessment of 

the impact of multicollinearity in the models is provided using the VIF. 
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Figure 35: PC maps for PC1, PC2, and PC3 for 850 hPa 

geopotential height (top group) and 850 hPa air temperature 

(bottom group) during January. 
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For the forward method (Table 13), final models included between one and three 

predictor variables. In general, these models retained a combination of SAT, TI, and 

MYI, although EAWR, PNA, and 300 hPa air temperature do show up for some months. 

All models show VIFs close to 1, indicating that multicollinearity is not inflating the 

model results. Models for October, November, and December all include SAT, while 

models created for January, February, and March all include TI and MYI (Table 13). 

EAWR also appears in the final models for November and March. For April and May, 

only one variable is retained (Table 13). June includes three variables (SAT, TI, and 

PNA), while July only includes TI and 300 hPa air temperatures (Table 13). The final 

model, created for August, only includes TI (Table 13). Generally, the coefficient of 

determination increases as the lag time between the prediction month and the September 

minimum sea ice extent decreases. Only a few months (December and May) do not fit 

this general pattern (Table 13). These two months have significantly lower R2 values, 

which can be attributed to the fact that they each retain only one predictor variable. 

Using the coefficient of determination, the most precise model is created in July (R2 = 

0.72). Overall, the RMSE values appear relatively steady (at around 90,000 km2) until 

June (Table 13). Beginning in June, the RMSE values begin to decrease from 68,789 

km2 in June to 61,228 km2 in August, indicating an increase in the fit of the model 

(Table 13). According to the RMSE, the most correct model is created in July, which has 

the lowest RMSE value of 59,482 km2 (Table 13). The values of MAE show this same 

general pattern, with steady values in all models through May, and a decrease in values 

beginning in June (Table 13). As with the coefficient of determination and  
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Table 13: Results of the forward method SLR for each forecast month. RMSE and 

MAE percentage of minimum extent are the RMSE and MAE values for each 

month expressed as a percentage of the mean Beaufort Sea minimum sea ice extent 

of 254,231 km2. 

Month Variables Retained VIF R
2

RMSE (km
2
)

RMSE 

Percentage of 

Minimum 

Extent

MAE (km
2
)

MAE 

Percentage of 

Minimum 

Extent

October SAT 1.000 0.371 87,469 34 15,226 6

November SAT 1.589 0.364 89,379 35 15,559 6
EAWR 1.589

December SAT 1.000 0.190 99,277 39 17,282 7

January TI 1.038 0.323 92,269 36 16,062 6
MYI 1.038

February TI 0.988 0.302 93,689 37 16,309 6
MYI 0.988

March EAWR 1.032 0.361 91,133 36 15,864 6
TI 1.002

MYI 1.031

April SAT 1.000 0.334 90,011 35 15,669 6

May MYI 1.000 0.134 102,634 40 17,866 7

June SAT 1.276 0.636 68,789 27 11,975 5
TI 1.475

PNA 1.277

July TI 1.002 0.719 59,482 23 10,355 4
300hPa Air Temp 1.002

August TI 1.000 0.692 61,228 24 10,658 4
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RMSE, the most precise model is created in July, which has a MAE value of 10,335 km2 

(Table 13). 

 The backward method models (Table 14) retain between one and six predictor 

variables. Generally, these variables match the forward models, although additional 

variables are included in the backward models for many of the forecast months. As with 

the forward models, SAT, TI, and MYI occur most frequently in the final models. Other 

variables present include FDD, 850 hPa air temperature, EAWR, WP, 300hPa air 

temperature, PE, EA, and 850 hPa geopotential height (Table 14). The variables retained 

in all forecast models have VIF values close to 1, which suggests that multicollinearity 

between the variables is not influencing the models (Table 14). Looking at the 

coefficient of determination for these models, there is less consistency than observed for 

the forward models. In general, the R2 values increase as the predictor month approaches 

the September minimum ice extent, but there are a greater number of months that do not 

fit this pattern. For example, both November (R2 = 0.25) and December (R2 = 0.19) have 

R2 values that are substantially lower than October (R2 = 0.37). February and May also 

have R2 values that are lower than expected (Table 14). According to the coefficient of 

determination, the most precise model is created during June (R2 = 0.76). The RMSE 

and MAE also show the same patterns as the forward models (a fairly steady value until 

a drop in June), although larger ranges in these values are observed (Table 14). Both the 

RMSE and the MAE suggest that the most correct model is created in June (RMSE = 

59,192 km2 and MAE = 10,304 km2) (Table 14). 
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Table 14: Results of the backward method SLR for each forecast month. RMSE 

and MAE percentage of minimum extent are the RMSE and MAE values for each 

month expressed as a percentage of the mean Beaufort Sea minimum sea ice extent 

of 254,231 km2. 

Month Variables Retained VIF R2 RMSE (km2)

RMSE 

Percentage 

of 

Minimum 

Extent

MAE (km2)

MAE 

Percentage of 

Minimum 

Extent

October SAT 1.000 0.371 87,469 34 15,226 6

November SAT 1.000 0.254 95,270 37 16,584 7

December SAT 1.000 0.190 99,277 39 17,282 7

January MYI 1.068 0.434 87,336 34 15,203 6
TI 1.126

FDD 1.539
850hPa Air Temp 1.467

February MYI 1.033 0.377 89,977 35 15,663 6
TI 1.013

EAWR 1.022

March WP 1.170 0.427 87,832 35 15,290 6
EAWR 1.040

TI 1.120
MYI 1.068

April MYI 1.033 0.409 86,195 34 15,005 6
SAT 1.033

May MYI 1.000 0.134 102,634 40 17,866 7

June WP 1.234 0.758 59,192 23 10,304 4
300hPa Air Temp 1.157

PE 1.238
EA 1.147

SAT 1.464
850hPa GPH 1.502

July TI 1.002 0.719 59,482 23 10,355 4
300hPa Air Temp 1.002

August TI 1.000 0.692 61,228 24 10,658 4
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These discrepancies in the values of R2, RMSE, and MAE in the backward 

models from the expected patterns observed for the forward models indicate that the 

additional variables retained in the backward models do not improve model fit. The 

addition of these variables appears to complicate the observed results and does not add 

any appreciable predictive skill to the models. For this reason, the models created by the 

forward method are considered more precise and physically significant. 

IV.5.3 Part 3: Classification and Regression Trees 

 The variables retained in the final regression trees for each forecast month are 

presented in Table 15, along with the number of years of record that are split into each 

terminal node. For each month, anywhere from zero to two splits are made. Four forecast 

months (January, February, March, and May) contain no splits in their final pruned 

regression trees. It is likely that during these months the differences observed in the 

predictor variables are not strong enough to allow for a split to be made using the cross-

validation method of pruning. This means that although there are predictor variables that 

show more importance in forecasting, none of these variables has a strong enough 

relationship with the September minimum sea ice extent to validate a split using this 

pruning method. For all months in which a split does occur, the first split is made using 

either TI or SAT (Table 15). This indicates that for most months these are the two most 

important variables in predicting the minimum sea ice extent. There are only two months 

where a second split is made. For April, the second split is made using MYI and for 

June, the second split is made using PE (Table 15). The results of the final regression 

trees match with the results of the SLR models, discussed in section 4.5.2, where SAT, 
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TI, and MYI appeared most frequently. PE, which only appears as a split in the 

regression tree for June, also only appears in the backward SLR model for June. This 

indicates that although a pattern between sea ice extent and PE is not present year round,  

 

Month
Splitting 

Variable

Number of Years 

in Terminal Node

October TI 12
21

November SAT 12
21

December SAT 12
21

January, 
February, 

March
(no splits)

April SAT 12
MYI 10

11

May (no splits)

June SAT 11
PE 13

9

July TI 18
15

August TI 11
22

Table 15: CART model results for each forecast 

month. 
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there may be some relationship between the two during June that can be utilized in 

forecasting. 

 While only a small number of splits are retained in the final regression trees, 

information about the importance of each predictor variable can still be obtained from 

the CART analysis. The order of importance of predictor variables indicates which input 

variables would have been used for further splits if a larger tree had met the cross-

validation criteria. The three most important variables for each forecast month are 

provided in Table 16. The variable importance has been scaled so that the most 

important variable for each month has a variable importance value of 100. As seen in the 

final regression trees for each month (Table 15), TI and SAT appear as the most 

important variables for most forecast months. Only February and March have different 

variables as the most important predictors (WP and MYI, respectively). Overall, TI, 

SAT, and MYI appear most frequently in the top three rankings of variable importance 

(Table 16). This matches the results of the SLR models. In many cases, other air 

temperature variables, such as FDD and air temperatures at varying atmospheric 

pressure levels, appear as the second and third most important variables. This supports 

the conclusion that air temperature conditions throughout the Arctic are critical in 

understanding the sea ice response each year. A few other predictor variables, such as 

SLP, wind speed, and geopotential height, appear as important variables for a small 

number of months. In most cases, these are months, such as January, where no splits 

were retained in the final regression tree. This indicates that although these variables 
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appear important, their predictive ability is not strong enough to add any predictive 

ability to a forecast model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 16: Ranked variable importance for each 

forecast month. Variable importance is scaled so that 

the most important variable for each month has an 

importance score of 100. 

1st 2nd 3rd

October TI SAT FDD
100 75 50

November SAT FDD EAWR
100 58.1 41.9

December SAT 300hPa Air 
Temp

500hPa GPH

100 57.1 50
January TI SLP Wind Speed

100 70 70
February WP MYI 700hPa GPH

100 69 27.6

March MYI 700hPa GPH AO

100 93.3 73.3

April SAT 500hPa Air 
Temp

PE

100 57.1 52.4

May SAT 500hPa Air 
Temp

TI

100 65.4 65.4

June SAT 850hPa Air 
Temp

300hPa GPH

100 58.3 50
July TI SAT MYI

100 69 55.2
August TI SAT 300hPa GPH

100 66.7 55.6

Variable Importance
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IV.6 Discussion and Conclusions 

 This study examined the predictive ability of atmospheric and sea ice data in 

forecasting the Beaufort Sea minimum sea ice extent, reached in September of each year. 

Monthly statistical models were created using SLR and CART. The following results 

were observed: 

1. The forward method of SLR (as compared to the backward method of variable 

selection) created models which had more reasonable predictive variables as well 

as more consistent results. For this application, the forward method of SLR is 

likely more truthful in creating realistic and practical forecast models. 

2. Overall, SAT, TI, and MYI were retained by the most models and can therefore 

be considered the most important predictor variables. This suggests that 

knowledge of the previous conditions of the sea ice and the surface temperatures 

of the Arctic throughout the year can provide useful information about the 

minimum sea ice extent in this region. Other variables that appeared in the final 

models include the EAWR teleconnection, PNA, and 300 hPa air temperature. 

Because these variables only appeared in a small number of the final models they 

are considered less important for future forecast skill. 

3. Results from the CART analysis suggest that TI and SAT are the most important 

variables for predicting sea ice extent. These variables appeared as the first split 

for all final regression trees (Table 15). MYI also appears as an important 

variable for many months (Table 16), although it only appears as a split in the 

final regression tree for April. These results match well with the variables 
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retained by the SLR models for each forecast month, and therefore confirm the 

variable selection used in the SLR models.  

4. The fit of the SLR models generally increases as predictions are made closer to 

the September minimum sea ice extent, with the best model fit during the 

summer months (June, July, and August). This fits with previous findings 

(Drobot and Maslanik 2003, Drobot 2007, Lindsay et al. 2008). 

5. Although the poorest model fit is observed for the models created for the fall 

months, these months still provide some useful information regarding the 

September minimum sea ice extent (Tables 13 and 14). These models can speak 

to the nature of sea ice up to a year in advance and thus still have some use in 

understanding the ice conditions of the following summer. 

IV.6.1 Comparison to Previous Studies 

 The most important variables retained in the statistical models created for this 

study do generally match with what has been found by previous research. Here, SAT, TI, 

and MYI are found to be the most important variables in predicting the minimum sea ice 

extent. Drobot and Maslanik (2003) found that TI, MYI, and the EA teleconnection 

index showed predictive ability in every forecast month. Although this study did not find 

that the EA was a significant contributor to the monthly forecasts, TI and MYI do match 

as important predictors. Drobot (2007) found that MYI was the most important predictor 

in the spring, while MYI, surface albedo, and TI were the most important predictors in 

the summer. Lindsay et al. (2008) indicated that ocean temperatures as well as varying 

teleconnection indices (primarily the AO) were significant predictors. Finally, Drobot et 
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al. (2009) found that ice concentration and FDD were the most influential predictors of 

sea ice conditions. Although there are some slight differences in the final predictor 

variables chosen in each study, TI and MYI appear consistently in all cases (where 

applicable). 

 Although the predictor variables do generally match between studies, the fit of 

the final forecast models created in previous studies and here show some discrepancy. In 

previous work, the final models created have higher R2 and model fit values. Drobot and 

Maslanik (2003) create monthly models with R2 values ranging from 0.74 in October to 

0.92 in July. Drobot (2007) found an R2 value of 0.52 for their spring model and 0.80 for 

their summer model. Lindsay et al. (2008) have R2 values ranging from 0.81 in October 

to 0.95 in August. Drobot et al. (2009) successfully predicted the opening date of the 

Prudhoe Bay shipping season 60 percent of the time. These values can be compared to 

R2 values ranging from 0.13 (forward method for May) to 0.72 (forward method for 

July) found in this study. 

Differences in the results obtained in this work and previous studies can be 

explained by a number of factors. Different time periods are utilized by each study. This 

study, because it represents the most updated effort in creating forecast models, uses 

more recent data. Thus, it is possible that the predictive ability of these models has 

changed solely due to the inclusion of more data in this study. This study attempted to 

include a large number of predictor variables as inputs into the forecast models. In 

contrast, each of the previous studies only used some small subset of variables as inputs, 

which could create differences in the final models. Each of the previous studies utilized a 
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different measure to quantify the summer ice conditions of the Beaufort Sea. The 

amount of consistency between many of these measures is assessed in Chapter II. 

Because the sea ice conditions are being represented in different ways, the subsequent 

forecast models are of course different. This study incorporated data from the entire 

Arctic when compiling input data for the PCA analysis. Therefore, the variability of the 

entire Arctic is utilized to predict the Beaufort Sea minimum sea ice extent. Previous 

studies used data only over the defined Beaufort Sea study area. The variables included 

in this study change and interact on a large scale, and it is therefore important to consider 

the conditions of each variable over a larger area. Lastly, different methods of 

representing the predictor variables as inputs into the models were employed. For 

example, for determining the input values of TI, Drobot and Maslanik (2003) strangely 

chose to use the data from the single pixel within the Beaufort Sea that had the largest 

coefficient of determination between the BSI (their measure of summer sea ice 

conditions) and TI for each month. Drobot (2007) input the average value for each 

variable over the study area. Here, PCA is used to represent the most significant patterns 

of variability in each of the input variables. This method provides more useful and robust 

information regarding the spatial changes in each of the input variables and does not 

inflate the fit of the resulting forecast models. This is an important factor in why the 

models in this study show poorer model fit than previous studies.  
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CHAPTER V  

SUMMARY AND CONCLUSIONS 

 

 This research addresses the question, what is the predictability of the Beaufort 

Sea minimum sea ice extent and which synoptic-scale climatological variables are most 

useful in making forecasts of summer sea ice conditions? This investigation answers this 

research question and addresses outstanding issues from previous studies through three 

distinct analyses. First, in studies of summer sea ice conditions in the Beaufort Sea, 

multiple measures of sea ice extent have been utilized. Each of these measures quantifies 

the conditions of sea ice in a different way, which makes comparisons between studies 

difficult. These measures include the Barnett Severity Index (BSI), the Beaufort Sea 

minimum sea ice extent (BS), and the Arctic-wide minimum sea ice extent (AW). 

Chapter II addresses this problem by providing a rigorous assessment of the consistency 

between these three measures. Second, previous studies have each focused on a small 

number of potential climatic predictor variables to predict summer sea ice conditions. A 

more comprehensive study incorporating all potential predictor variables was needed to 

fully understand the predictability of sea ice conditions in the Beaufort Sea. Chapter III 

offers a detailed evaluation of a large number of predictor variables, including 

atmospheric and surface variables, variables depicting the conditions of the sea ice itself, 

and teleconnection indices. Lastly, statistical forecast models created in previous studies 

use different data input methodologies, which have not been updated in many years. 

Chapter IV provides an updated assessment of the agreement between predictions and 
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observations up to a year in advance of the September minimum sea ice extent through 

monthly stepwise linear regression models. Information regarding the relative 

importance of the climatic predictor variables is provided through a classification and 

regression tree analysis. 

V.1 Assessment of Measures of Sea Ice Extent 

 Three measures of sea ice conditions, the BSI, BS, and AW, are compared using 

the timing of light and heavy ice years, various goodness-of-fit measures, and linear 

regression. The BSI describes the summer sea ice conditions of the Beaufort Sea using 

information about the Beaufort Sea shipping season, including measures such as the 

opening date of the shipping lane and the distance to the ice edge on certain dates 

throughout the summer. The BS uses ice concentration data from the National Snow and 

Ice Data Center (NSIDC) and quantifies the minimum sea ice extent as the total area of 

grid cells within the Beaufort Sea with a sea ice concentration of 15% or greater. The 

AW uses this same methodology, but incorporates the entire Arctic. 

 The timing of light ice and heavy ice years for each measure were compared. For 

each measure, a light ice year was defined as any year with a standardized value less 

than or equal to 1, and a heavy ice year was any year with a standardized value greater 

than or equal to 1. Overall, the timing of these extreme years matched well between 

measures, with better agreement between measures for the light ice years as compared to 

the heavy ice years. Goodness-of-fit measures, such as the coefficient of determination 

(R2), root mean square error (RMSE), and mean absolute error (MAE), were used to test 

the degree of association between measures. Overall, the best agreement was observed 
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between AW and the BSI, with slightly less agreement observed when either of these 

measures was compared to BS. Linear regression, performed for each measure, showed 

that all three measures have very similar slopes (-0.07 for BS, -0.09 for AW, and -0.08 

for BSI), suggesting similarity between the measures.  

 Overall, these results suggest that all three measures show the same level of 

agreement. This means that it is reasonable to use any of these measures, and that the 

selection of the most appropriate measure can be made based on the specific goals of the 

study. BSI should be used when conditions of the sea ice throughout the entire summer 

are important for the analysis. AW should be used when larger-scale processes are being 

studied. BS, because it represents the minimum sea ice extent of this smaller region, is 

the most useful in studies attempting to predict the minimum extent for this smaller 

region. 

V.2 Analysis of Predictor Variables 

 Sixteen predictor variables and ten teleconnection indices are examined using 

map analysis to determine which of these variables is expected to have the greatest 

predictive ability. The predictor variables include atmospheric air temperatures and 

geopotential heights at 300, 500, 700, and 850 hPa, surface air temperatures, freezing 

degree days, thawing degree days, sea level pressure, surface wind speed, surface wind 

direction, total ice concentration, and multiyear ice concentration. Teleconnection 

indices used include the Arctic Oscillation, the North Atlantic Oscillation, the Pacific-

North American pattern, the East Atlantic pattern, the East Atlantic/Western Russia 
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patter, the East Pacific-North Pacific pattern, the Polar-Eurasia pattern, the Western 

Pacific pattern, the Southern Oscillation Index, and the Niño 3.4 index. 

 Examination of these variables was made using composite maps depicting the 

mean conditions of each variable for the five light ice and five heavy ice years, 

difference maps comparing the conditions of these two groups, anomaly maps 

comparing these mean values to the dataset average, and standard deviation maps 

assessing the consistency in the data within each composite group. This analysis was 

performed for each variable during each month of the year. Next, correlations assessed 

the relationship between the sixteen predictor variables and the ten teleconnection 

indices. 

 The results of this analysis suggest that of the sixteen predictor variables, the 

upper atmospheric air temperatures, surface air temperatures (including the monthly 

mean values, freezing degree days, and thawing degree days), sea level pressure, total 

ice concentration, and multiyear ice concentration show the greatest potential for 

predictive ability. These variables had the greatest significant differences between the 

light ice and heavy ice composites throughout the monthly analysis, suggesting that they 

may provide useful information regarding whether the sea ice for a given year will be 

heavy or light. Of the teleconnections studied, the Arctic Oscillation, North Atlantic 

Oscillation, Pacific-North America, and East Pacific-North Pacific patterns consistently 

showed the most grid cells with significant correlations with the predictor variables. 

These four teleconnection indices therefore may be driving the changes observed in the 

predictor variables and therefore may have some predictive ability. 
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V.3 Predicting September Sea Ice Extent 

 Monthly forecast models are created using both forward and backward stepwise 

linear regression. These models predict the Beaufort Sea September minimum sea ice 

extent beginning in October and going through August. To begin, all predictor variables 

and teleconnection indices are input into the models. To avoid over-fitting, these 

variables are tested for collinearity using correlation analysis between variables and 

variance inflation factors (VIFs). When two input variables were collinear, one of them 

was removed. The determination of which variable to remove was made based on the 

results obtained in Chapter III. The predictive ability of the final models was assessed 

using the coefficient of determination (R2), root mean square error (RMSE), and mean 

absolute error (MAE). 

 Overall, surface air temperature, total ice concentration, and multiyear ice 

concentration were retained by the largest number of linear regression models. This 

suggests that these variables are the most important in predicting the September sea ice 

conditions in this region. The forecast skill of these models generally increased as 

predictions were made closer to the September minimum sea ice extent, which fit with 

the findings of previous studies. The best model fit was observed during the summer 

months (June, July, and August). Although the poorest model fit was observed in the fall 

models, these months still provide some useful information. This suggests that some 

knowledge of summer sea ice conditions can be obtained up to a year in advance of the 

September minimum sea ice extent. 
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 Classification and regression trees were utilized for each forecast month to rank 

the input variables based on their relative importance. Results from this analysis suggest 

that total ice concentration and surface air temperature are the two most important 

predictor variables throughout the year. Multiyear ice concentration also appeared as an 

important predictor in many months. These results match the variables retained in the 

stepwise linear regression models. 

 Comparisons of the final models to previous studies yielded interesting results. 

Overall, there was agreement in the most important predictor variables, with antecedent 

ice conditions (total ice concentration and multiyear ice concentration) appearing as 

important predictors in many previous models. The fit of the forecast models obtained in 

this analysis, however, did differ from previous studies. In previous studies, forecast 

models show much greater potential predictive ability. This discrepancy in model fit can 

be explained by a number of factors. Most importantly, non-stationarity may affect this 

analysis, as it represents an updated assessment of the predictability of summer sea ice 

conditions in the Beaufort Sea, and therefore includes more recent data. With the 

inclusion of the last few years, where record minima in sea ice extent have been 

observed, the predictive ability of these linear forecast models have decreased. This 

suggests that the distribution of minimum sea ice extent may no longer be following a 

linear pattern, as suggested by Stroeve at al. (2011). 

V.4 Final Conclusions 

 This assessment has contributed to the overall knowledge of sea ice conditions in 

the Beaufort Sea. The use of surface air temperature, total ice concentration, and 
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multiyear ice concentration as predictor variables was confirmed and a more current 

assessment of the model fit of linear regression models was performed. The results 

obtained in this analysis suggest that the predictive ability of linear forecast models has 

decreased in recent years. This confirms previous studies, which have suggested that 

changes in sea ice associated with Arctic Amplification have created a new climate 

regime in the Arctic, where sea ice is now responding to atmospheric conditions in a 

different way (National Research Council 2012, Maslanik et al. 2007b, Stroeve et al. 

2007, Stroeve et al. 2011, Serreze and Francis 2006, Serreze et al. 2011). 
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