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ABSTRACT

In life science, there is a great need in understandings of biological systems for

therapeutics, synthetic biology, and biomedical applications. However, complex be-

haviors and dynamics of biological systems are hard to understand and design. In

the mean time, the design of traditional computer architectures faces challenges from

power consumption, device reliability, and process variations. In recent years, the

convergence of computer science, computer engineering and life science has enabled

new applications targeting the challenges from both engineering and biological fields.

On one hand, computer modeling and simulation provides quantitative analysis and

predictions of functions and behaviors of biological systems, and further facilitates

the design of synthetic biological systems. On the other hand, bio-inspired devices

and systems are designed for real world applications by mimicking biological func-

tions and behaviors. This dissertation develops techniques for modeling and ana-

lyzing dynamic behaviors of biologically realistic genetic circuits and brain models

and design of brain-inspired computing systems. The stability of genetic memory

circuits is studied to understand its functions for its potential applications in syn-

thetic biology. Based on the electrical-equivalent models of biochemical reactions,

simulation techniques widely used for electronic systems are applied to provide quan-

titative analysis capabilities. In particular, system-theoretical techniques are used

to study the dynamic behaviors of genetic memory circuits, where the notion of

stability boundary is employed to characterize the bistability of such circuits. To

facilitate the simulation-based studies of physiological and pathological behaviors in

brain disorders, we construct large-scale brain models with detailed cellular mech-

anisms. By developing dedicated numerical techniques for brain simulation, the
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simulation speed is greatly improved such that dynamic simulation of large tha-

lamocortical models with more than one million multi-compartment neurons and

hundreds of synapses on commodity computer servers becomes feasible. Simulation

of such large model produces biologically meaningful results demonstrating the emer-

gence of sigma and delta waves in the early and deep stages of sleep, and suggesting

the underlying cellular mechanisms that may be responsible for generation of ab-

sence seizure. Brain-inspired computing paradigms may offer promising solutions

to many challenges facing the main stream Von Neumann computer architecture.

To this end, we develop a biologically inspired learning system amenable to VLSI

implementation. The proposed solution consists of a digitized liquid state machine

(LSM) and a spike-based learning rule, providing a fully biologically inspired learn-

ing paradigm. The key design parameters of this liquid state machine are optimized

to maximize the learning performance while considering hardware implementation

cost. When applied to speech recognition of isolated word using TI46 speech corpus,

the performance of the proposed LSM rivals several existing state-of-art techniques

including the Hidden Markov Model based recognizer Sphinx-4.
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2.11 (Left) Write one successfully with high transcription rate of geneR.
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pushed away from the initial stable state. . . . . . . . . . . . . . . . . 34

2.12 SNMs of the conditional memory for varying kS. (This figure is an
illustration.) The left and right figures show the SNMs for write and
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for the kth

R value as a function of kS. For the write, the regions above
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R − khold
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and kwrite
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2.13 SNMs of the conditional memory for kR and kS. (This figure is an
illustration.) As an extension of situations with fixed kS values, this
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S , khold
R )

and the curve kth
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posed to tolerate noises on both kR and kS such that the inputs of the
memory do not move beyond the curve kth

R (kS). Similarly, for inputs
writing one to the memory, the SNM is the distance between the
point (kwrite

S , kwrite
R ) and the curve kth

R (kS). . . . . . . . . . . . . . . . 37

x



2.14 (Left) Write one successfully by long time activation of geneR. Ini-
tially, the memory circuit holds the stable state zero. The transcrip-
tion rate of geneS is kept at a low level. geneR is activated for a period
of time to flip the state from zero to one successfully. The duration
of geneR activation is limited to resemble a more realistic activation.
(Right) Fail to write one by short time activation of geneR. The tran-
scription rate of geneS is always low. The memory circuit holds zero
and the transcription rate of geneR is low at the beginning. Then
geneR is activated to a level which is high enough to write one if the
duration is long enough. After the activation of geneR, there is a
significant decrease of the concentration of A&A2. The concentration
of B&B2 also increases considerably. However, before geneB is ca-
pable of inhibiting geneA independently, geneR is deactivated and its
transcription rate comes back to its initial low level (0.01 nM/min). . 39

2.15 (Left) Equilibria of a bistable system. A bistable system has three
equilibria, among which two are stable. The third one is called the
saddle point, which is unstable. (Right) The state space of a bistable
system. A hypersurface separates the state space into two parts, of
which each one is the stable region of a stable equilibrium. That is,
if the state of the system is within a stable region, it will eventually
converge to the corresponding stable equilibrium. The saddle point is
on the separatrix and the separatrix is the stable region of the saddle
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.16 Inputs and the steady state of the memory circuit. The values k1
R,k

2
R,k

3
R,k

4
R

and k5
R on the left panel correspond to points zero, s2, s3, s4 and one

on the right panel, respectively. The initial state of the memory circuit
is zero. In the input space shown in the left figure, if inputs are in the
region of hold “zero”, the corresponding steady states of the circuit
would be in the stable region of zero in the right figure. For inputs
in the write “one” region, the states of the memory circuit would be
one. And when inputs are on the boundary of write “one” and hold
“zero”, the system states are on the separatrix. . . . . . . . . . . . . 43

2.17 The definition of the dynamic noise margins. (Top) The dynamic noise
margin is defined as twrite

o − twrite
cross for write. The longer the duration of

the inputs, the greater the DNM value. (Bottom) The dynamic noise
margin is defined as tholdcross− tholdo for hold. The shorter the duration of
the inputs, the greater the DNM value. As measures to quantify the
susceptibility of the memory circuit to injected noises, larger values of
DNMs are always preferred. . . . . . . . . . . . . . . . . . . . . . . . 43
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2.18 Backward tracing of 1-D separatrix. (Left) The state space of a 2-
dimensional bistable system S1 is split into two stable regions of stable
equilibria e1 and e2. The separatrix is the stable region of the saddle,
that is, starting from any point on the separatrix, the spontaneous
process of the system would drive the state to the saddle. (Right)
The state space of a system S2, which is constructed in such a way
that its transient responses are inverse processes of those of S1. There-
fore, the separtrix for S1 becomes the unstable region of the saddle,
that is, starting from a state in the neighborhood of the saddle, the
spontaneous state trajectory for S2 would follow half of the separatrix. 47

2.19 Backward transient simulation on a 2-D separatrix. For a two-dimensional
separatrix, a backward transient simulation starting from the neigh-
borhood of the saddle generates a state trajectory on the separatrix.
However, it is impossible to cover the 2-D surface by finite number of
such trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.20 Eigenvectors of the system Jacobian at the saddle point. For a N -
dimensional bistable memory circuit, the Jacobian matrix hasN eigen-
vectors, among which N − 1 are stable ones, and the other one is
unstable. Stable eigenvectors are tangent to the separatrix while the
unstable one is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.21 Check the tangent crossing point. The trajectory starts from zero,
and crosses the tangent at x2. Because both x2 and the saddle are on
the tangent, and the normal vector is perpendicular to the tangent,
the inner product vn · (x2 − xe) is 0. For a point x1 between zero and
x2 on the trajectory, the inner product vn ·(x1−xe) is negative because
the angle between vn and x1 − xe is obtuse. For point x3 on the other
side of the tangent, the inner product vn · (x3−xe) is positive because
the angle is acute. If the normal vector is normalized, the absolute
value of the inner product |vn · (x − xe)| is the distance between the
tangent and point x. There are two normalized normal vectors of
a tangent plane with opposite directions: vn and −vn. The above
analysis also applies to −vn. In this case, the three inner products
mentioned before are 0, positive and negative, respectively. In either
case, if the inner product is checked on the fly, when the trajectory is
crossing the tangent, the inner product would change sign. This can
be used to check when the trajectory crosses the tangent. . . . . . . . 55
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2.22 (Left) Illustration of search for the separatrix crossing point. While
conducting the simulation of the state trajectory starting from zero, it
is straightforward to find out the tangent crossing time t1 by checking
the sign of vn · (x(t)− xe) on the fly, where vn is the normal vector of
the tangent, xe and x(t) are the saddle and the system state at time
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continues for ∆t and reaches x(t2), where t2 = t1 +∆t. Because x(t2)
is still in the stable region of zero, we double ∆t and continue the
simulation until t3 = t2 +∆t. Since the x(t3) is in the stable region of
one, we do binary search in [t2, t3] to find and check t4 and t5. (Right)
The other case of search for the separatrix crossing point. Here, the
transient test check1 indicates that the tangent crossing point x(t1) is
within the stable region of one. Therefore, next state to be checked is
x(t2), where t2 = t1−∆t. Because x(t2) is still within the stable region
of one, we double ∆t and check the state x(t3), where t3 = t2 − ∆t.
Since x(t3) is in the stable region of zero, the separatrix crossing time
is within [t3, t2]. Then, binary search is applied similarly. . . . . . . . 59

2.23 Flowchart of the search algorithm. The flow is divided into 3 steps: 1)
The state trajectory starts from the stable equilibrium es1 and reaches
the tangent; 2) As illustrated by the loop, based on the results of
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Binary search is applied to find the exact separatrix crossing time. . . 60
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2.28 Writing a “one” to the faster circuit. Left: 30-minute clock signal;
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2.32 State trajectory and the tangent of the separatrix at the saddle for
the case study 1. The initial state of the memory circuit is zero.
After activating geneR, the state is pushed to the stable region of
equilibrium one. We show subspaces A2 −B2, A−B and R2 −RS of
the full state space in three columns. In each plot in the top row, the
trajectory starts from the stable equilibrium state zero, crosses the
separatrix and ends at the tangent. Each of the three plots shows the
projections of the state trajectory and the separatrix crossing point
to the corresponding subspace. In each plot in the bottom row, the
straight line is the intersection of the tangent hyperplane and the 2-
dimensional space including the saddle. . . . . . . . . . . . . . . . . . 73
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1. INTRODUCTION

In recent years, the development of traditional computer architectures faces in-

creasing challenges in power consumption, device variability, process variations and

so on. In the mean time, the advancement of biotechnology has create an excit-

ing new interdisciplinary applications in therapeutics, biomedicine, biomaterial and

bio-inspired computing. Development of these applications requires understanding

and design of biological and biologically motivated systems. However, complicated

behaviors and dynamics of biological systems are hard to understand and design.

To this end, great research efforts have been devoted to quantitative studies of

biological systems and bio-inspired engineering. On one hand, targeting a variety of

biomedical applications, behaviors, functions and various design issues of biological

systems have been studied quantitatively by mathematical modeling and computer

simulations [1][2][3][4][5][6]. On the other hand, bio-inspired engineering systems

have emerged in the past. For example, a number of bionic devices and systems

have been demonstrated [7][8][9]. There has also been ambitious work to build neu-

romorphic computers by mimicking functions of the brain [10][11]. In the process of

working toward this goal, spiking neural networks have been constructed for various

applications [12].

As illustrated in Fig. 1.1, this dissertation builds network models and develops

numerical simulation techniques to quantitatively study dynamic behaviors of bio-

logical and biologically-motivated systems for a number of applications. Leveraging

the capabilities of developed techniques for quantitative analysis, we study the im-

pacts of key parameters on system behaviors to facilitate the design of these systems

or their components. This dissertation has three main contributions summarized as
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follows.

DNA

Cell

Neural Network

Simulation

Behavior

Network

Brain

Figure 1.1: Quantitative study of biological and biologically-motivated systems by
network modeling and numerical simulations, and its role in the system design.

First, we study dynamic behaviors of genetic memory circuits, which are promis-

ing candidate for information storage in synthetic biological systems. As an infor-

mation storage unit, a genetic memory circuit has two (or more) stable states. Its

biological functions critically depend on its dynamics, i.e., the retention of certain

states and the transition dynamics between different stable states, corresponding to

data retention and writing, respectively. However, the desired stability and dynamics
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are subjective to noise, cell-to-cell variation and other design issues. To this end, we

quantitatively study the impacts of these factors on behaviors of genetic memory cir-

cuits. To facilitate the quantitative study, we build electrical-equivalent models for

biochemical reactions involved in the memory circuits and use a network comprised

of biochemical reactions to model the the entire circuit. Simulation techniques widely

used for electronic systems are applied to provide quantitative analysis capabilities.

We further demonstrate an optimization-based parameter identification procedure

with the proposed simulation engine. To rigorously and efficiently characterize sta-

bility, system-theoretical techniques developed for semiconductor memory cells are

extended to study the dynamic behaviors of genetic memory circuits. The notions

of stability boundary and dynamic noise margin are employed to characterize the

bistability of such circuits.

Second, we develop techniques to model and analyze physiological and pathologi-

cal behaviors in the brain. Due to the high complexity of neuronal systems, the exist-

ing work on brain simulation focuses either on small network models or large networks

of simplified neuron models without detailed biophysical mechanisms. To gain bet-

ter understanding of brain behaviors, we bridge this gap by constructing large-scale

brain models with detailed cellular mechanisms and develop dedicated numerical

simulation techniques. With greatly improved simulation speed, dynamic simulation

of large thalamocortical models with more than one million multi-compartment neu-

rons becomes feasible on commodity computers. Simulation of the adopted models

demonstrates the emergence of sigma and delta waves in the early and deep stages

of sleep, and suggests the underlying cellular mechanisms that may be responsible

for generation of absence seizure.

The third main contribution of this dissertation aims to address the limitations of

the mainstream Von Neumann computer architecture in terms of power consumption
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and susceptibility to device failure and process variations. To this end, brain-inspired

computing paradigms may offer promising solutions. We design a fully biologically-

inspired and hardware-friendly learning system, consisting of a digitized liquid state

machine and a spike-based learning rule. Taking into account hardware implemen-

tation cost, the learning performance of the liquid state machine is maximized by

optimizing key design parameters. Tested by speech recognition task using TI46

speech corpus, the liquid state machine produces top-notch performance compara-

ble to existing state-of-art techniques including the Hidden Markov Model based

recognizer Sphinx-4 [13].

These three main contributions are discussed with more details below.

1.1 Modeling, Simulation and Dynamic Stability Analysis of Genetic Memory

Circuits

Bistability, or more generally, multistability, has been found in many biologi-

cal networks. In such systems, there exist multiple stable equilibria and biological

functions critically depend on retaining certain desired stable equilibria, correspond-

ing to memory, or proper transitions between equilibria. In the field of synthetic

biology, for example, there exist research works that attempt to modify biological

functions of organisms and construct new biological systems to satisfy human needs

[14, 15]. Many basic engineered gene circuits have been designed and implemented

to comprise more complex synthetic biological systems. These basic circuits include

biological toggle switches, oscillators, and logic gates and so on. Among these basic

engineered gene circuits, biological memories such as toggle switch [16, 17] and con-

ditional memory [18] are most well known. As illustrated in Fig. 1.2, these circuits

are designed to possess bistability; The gene regulatory network can hold one of its

two stable states through a feedback loop even under small perturbations. Under
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large external excitations, it is possible to overwrite the stored state and force the

system to transit to the other stable equilibrium. These attributes make the sys-

tem memorize information, and qualify it to serve as a storage device in larger and

more complex biological systems. In designing this kind of gene circuits, there are

several important issues to be considered, such as dynamics, bistability, cell-to-cell

variations and noises.

Gene 2 Protein 2

Gene 1Protein 1

Inducer 2 Inducer 1

Gene 2 Protein 2

Gene 1Protein 1

Inducer 2 Inducer 1

Figure 1.2: Quantitative study of bistability of genetic memory circuits.

Dynamics of biological systems and their building blocks are of great importance

to their behavior [19–22], while existing works on toggle switch and conditional mem-

ory [16, 18, 23, 24] do not quantitatively analyze bistability from a dynamic point of
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view.

Both stochastic models [25] and deterministic models [18] may be used to study

behaviors of genetic circuits. The former captures the stochasticity of circuit behav-

iors caused by low molecular counts, but requires quite a few simulations to reflect

the average behavior of each specific circuit. The later reflects the average behavior

in the limit of large molecular counts, but does not capture stochastic fluctuations

that act as noisy inputs to the circuits. Under this situation, the stability of a net-

work must be examined while considering its susceptibility to noise. In the past

decade, research has been geared to understanding cellular noises from different per-

spectives [25–28]. In view of all these works, it is not surprising to expect that noises

may render a memory circuit to lose its stability. Hence, to understand how noise

may influence the stability of a multistable system in a dynamic fashion is of great

interest.

Individual differences are common in the biological world [29]. Therefore, in

genetic regulatory networks, cell-to-cell variation is an important issue and shall be

carefully examined. The same shall also be the case when studying dynamic stability.

To address the problems mentioned above, the ability in detailed modeling and

simulation of complex genetic networks is not only attractive, but also essential.

First-principle based computer models and simulations can provide quantitative anal-

ysis and prediction of the behaviors and functions of genetic networks, thereby pro-

viding valuable verification and design guidance. If successful, computer simulation

or in silico analysis may offer accurate predictions that do not involve time con-

suming or expensive lab (in vitro or in vivo) experiments. And these simulations

may provide deep understanding and insights that are not accessible from in vivo

or in vitro experiments. In addition to design guidance for specific genetic circuit

design, calibrated simulation models and analysis can assist the basic understanding
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of fundamental biological pathways; they may also enable the understanding of large

genetic networks by superimposing verified component models.

We propose to model biological genetic memory circuits using electrical-equivalent

modeling and develop biological simulation capability by leveraging the resulting

SPICE-like electronic circuit simulation environment. With the developed simula-

tion engine, we propose a Bayesian framework for model parameter identification

to avoid the difficulty of directly measuring model parameters. We introduce and

apply dynamic stability concepts, namely, dynamic noise margins, developed in [30]

to characterize the stability of a conditional memory circuit [18] and its immunity to

injected noises. Static noise margins are first presented to capture the effects of the

amplitudes of the noise perturbations. Then, this static view of stability is extended

to dynamically characterize the memory circuit, leading to dynamic noise margins

that further capture nonlinear dynamics of the network.

1.2 Large-Scale Modeling and Simulation of Brain with Detailed Cellular

Mechanisms

To understand brain behaviors, it is important to directly associate the network

level activities to the underlying biophysical mechanisms. While detailed network

models are useful for the studies of physiological and pathological behaviors of the

brain, existing computational works towards this direction are typically restricted to

small-scale networks due to limitations in computing power. The reason is that, in

order to take into consideration complex cellular and molecular mechanisms, the neu-

rons in the network have to be described by biophysically realistic and computation-

ally expensive models such as Hodgkin-Huxley (HH) models[31]. In addition, most

simulation works that are based on biophysically realistic models are only limited to

local cortical circuitry and do not take into consideration the global structure of the
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brain, which includes multiple brain regions, corticocortical connections, and so on.

However, those ignored elements can play important roles in generating physiologi-

cal and pathological behaviors of the brain. For example, to study the initialization,

propagation, and termination of seizure, as shown in Fig. 1.3, the topology of the

brain network needs to be considered.

Brain Modeling Brain Simulation time

Figure 1.3: Simulation of a brain model with global brain structure and cellular
mechanisms demonstrates the emergence and termination of seizure.

On the other hand, with the emergence of more powerful processors and super-

computing platforms, it is not surprising for a lot of recent works to use parallel

computing to simulate large scale brain models. For example, in the recent work

from IBM DARPA SyNAPSE project[3], a cortical network comprised of more than

one billion neurons is simulated on a supercomputer. However, as those works are

based on simple phenomenological models[32], they cannot be used to directly asso-

ciate network level behavior with underlying cellular and molecular mechanisms. As

a result, while some interesting brain behaviors can be demonstrated, their applica-

bility is limited. More recently, massively parallel graphic processors or GPUs, have

also been employed to simulate brain models [33, 34] to achieve high computational

efficiency. However, the models in those works are highly simplified and do not in-
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clude sufficient biophysical details to study the biophysical mechanisms underlying

the brain function.

While noticeable efforts are ongoing towards modeling the whole brain down to

the molecular level, the goal cannot be easily achieved owning to limited computa-

tional power and lack of detailed knowledge of neuronal systems. To bridge the gap in

the current stage, we take an intermediate step by constructing a large-scale biophys-

ically realistic brain model with sufficient biophysical details. In our brain model,

there are a six-layered cerebral cortex with seventy regions and multiple thalamic

nuclei. Both local cortical microcircuits and global corticocortical connections are

constructed from a careful literature review[35–42]. There are twenty-two types of

neurons being modeled, and each type is modeled by a biophysically detailed multi-

compartment Hodgkin-Huxley model. The dynamic models of different ion channels

and synaptic receptors are adopted from various available literatures to best reflect

their roles[1, 43–48]. The brain model is scalable to different sizes by changing the

number of neurons while maintaining the spatial density. Most experimental results

in this dissertation are obtained with a model with one million neurons.

While general purpose simulation tools such as GENESIS and NEURON are

available for neural systems [49, 50], to address the associated computational chal-

lenges in simulation of networks of such complexity, we develop a customized simu-

lator, in which parallel computing is leveraged and efficient techniques are proposed

and adopted from different angles. Our simulator has the capability of simulating

brain networks composed of more than one million neurons and hundreds of mil-

lions of synapses with biophysically detailed models. As a first step towards using

computer simulation to understand brain behavior, we reproduce sigma and delta

waves emerging in the early and deep stages of sleep, respectively, by simulating

the detailed model of the thalamocortical network. We also demonstrate the role of
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GABAA receptors in the generation of epileptic seizure: the typical spike-and-wave

(SW) pattern in absence seizures can be initialized from both sigma and delta waves

by globally suppressing the GABAA-mediated inhibition and can be subsequently

terminated by recovering the GABAA-mediated inhibition.

Those initial results are interesting because they show the possibility to determine

underlying causes of diseases by simulating the biologically realistic brain model.

At the same time, as the results are consistent with the basic understanding of

seizure generation and existing experimental results[47, 51–53], the effectiveness of

the modeling and simulation work has been initially validated. To the best of our

knowledge, little work has been done to link the transition between physiological and

pathological states of the brain to underlying cellular mechanisms with a biologically

realistic brain model of such complexity. With further development, the work is

geared to assisting the clinicians in determining underlying causes of brain disorders

and selecting the optimal treatment on an individual basis in the future.

1.3 A Hardware-Oriented Liquid State Machine with Biologically Inspired

Learning

Spiking neural networks are proven to be computationally more powerful than

previous generations of neural networks based on McCulloch-Pitts neurons and thresh-

old gates [12]. Therefore, many recent research works on neural networks are geared

to more biologically-inspired learning algorithms, network structures and applica-

tions of spiking neural networks [54][55][56][57][58][59]. On the other hand, as spik-

ing neurons more closely resemble the behavior of neurons in nervous systems, they

may also consume lower power than previous generations of neural networks when

implemented in hardware [60][11][10]. In addition, it has been shown that spiking

neural networks are error resilient [61], a very appealing property for implementa-
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tion in modern VLSI techniques in which device reliability and process variation are

growing challenges. With these inherent advantages, spiking neural networks become

promising for designing new hardware architectures. In recent years, various neuro-

morphic chips have been designed or fabricated to demonstrate their computational

capability and low power consumptions for certain applications [11][10][61].

Inspired by the fact that neocortex processes wide spectrum of information by

stereotypical neural microcircuitry, the network model of liquid state machine (LSM)

is proposed and subsequently proven to be efficient for various tasks [55][62][63][64].

Structurally, the LSM consists of a reservoir receiving input spike trains and a group

of readout neurons receiving signals from the reservoir. With a group of neurons

randomly connected by fixed synapses, the reservoir has a recurrent structure. This

leads to decaying transient memories represented by the dynamic response of the

reservoir to input spike trains. For this reason, the LSM is specially competent for

processing temporal patterns such as speech signal [65][66]. For readout neurons, [65]

uses ridge regression to calculate synaptic weights between the reservoir and readout

neurons for classification tasks. [66] trains output neurons using backpropagation-

based multi-layer perceptrons.

Comparing with other standard methods of recognizing isolated utterance such

as HMM based approach[13], template based approach [67] and acoustic phonetic

approach [68], the liquid state machine is more biologically plausible and is a more

general model for speech recognition. The internal model parameters are learned by

extracting statistical information from the data without using acoustic models and

language models that are specific to languages and data sets. And LSM is compu-

tationally powerful such that its performance on isolated word recognition can be

comparable to state-of-art signal processing methods. Comparing with other neural

network based methods such as LSTM nets[69] and multi-layer perceptron based
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classifiers[66], LSM is either superior in performance or more hardware-friendly and

biologically plausible, as shown in Fig. 1.4. However, the off-line learning in [65]

requires a large amount of storage for intermediate results during training. And the

learning rule used in backpropagation-based multi-layer perceptrons [66] is arith-

metically complicated and not local. Both of these increase the complexity of the

network model. These drawbacks limit the potential application of the network

model to real-time low-power hardware implementation.

Speech

Signal

"one"

"two"

"three"

 ...

Speech

(Input)

Recognition

(Output)

Brain

Inspired

on silicon

Figure 1.4: Hardware friendly biologically inspired spiking neural network for speech
recognition.
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In this dissertation, we apply a bio-inspired online learning rule to liquid state

machine for solving the problems mentioned above. All model parameters are dig-

itized for VLSI implementation. With the purpose of hardware-friendly network

design while keeping the recognition performance, we study and simplify synaptic

dynamics and properly choose key parameter values for arithmetic customization.

Our simulation results show that in terms of isolated word recognition evaluated

using the TI46 speech corpus, the performance of the proposed digital liquid state

machine rivals the state-of-the-art Hidden Markov Model (HMM) based recognizer

Sphinx-4 [13].

1.4 Organization of the Dissertation

Focusing on the three main contributions introduced above, the remaining part

of this dissertation is organized as follows, as illustrated in Fig. 1.5. The modeling,

simulation and dynamic stability analysis of genetic memory circuits are elaborated

in Section 2. The large-scale modeling and parallel simulation of brain models for

the study of epilepsy are in Section 3. Section 4 discusses the design of the hardware

friendly liquid state machine for speech recognition. And we draw conclusions in

Section 5.
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2. MODELING, SIMULATION, AND DYNAMIC STABILITY ANALYSIS OF

GENETIC MEMORY CIRCUITS 1

In this section, we target dynamic stability analysis of genetic memory circuits.

As a prerequisite, quantitative analysis capability is developed leveraging mathemat-

ical modeling and simulation techniques.

To begin with, we propose to model biological genetic memory circuits using

electrical-equivalent modeling and develop biological simulation capability leverag-

ing a SPICE-like electronic circuit simulation environment. A similar effort has been

recently pursued at the Sandia National Lab [2]. In our approach, we specifically

target gene-regulatory memory networks and model the nonlinear dynamics associ-

ated with transcription, translation, dimerization, binding and degradation of various

species using chemical reaction equations, which is appropriate when the system is at

the thermodynamical limit [70]. We map the involved nonlinear kinetics into equiv-

alent circuit models and employ a SPICE-engine to perform time-domain dynamic

simulation. The composability of these equivalent circuit models allows flexible con-

struction of large gene networks via straightforward model stitching. As such, under

our modeling and simulation environment, a gene network is described by an input

netlist and the dynamical behavior of the network is simulated using an established

nonlinear ODE solver developed for integrated circuit applications.

While the aforementioned simulation engine provides appealing quantitative un-

1Section 2.1, 2.2, 2.3, 2.7.1, and 2.7.2 are reprinted with permission from Y. Zhang and P.
Li. Gene-regulatory memories: Electrical-equivalent modeling, simulation and parameter identifi-
cation. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
pages 491-496, c⃝2009 ACM, Inc. http://doi.acm.org/10.1145/1687399.1687492. Section 2.4, 2.5,
2.6, 2.7.3, 2.7.4, 2.7.5, and 2.8 are reprinted with permission from Y. Zhang, P. Li, and G. M.
Huang. Quantifying dynamic stability of genetic memory circuits. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 9(3):871-884, 2012. c⃝2012 IEEE.
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derstanding of the behavior of gene networks, the fidelity of such analysis is con-

tingent upon the availability of detailed network model parameters such as various

chemical reaction rates. In practice, it is difficult to directly measure model parame-

ters. To address this difficulty, we propose a Bayesian framework for model parameter

identification. By properly formulating likelihood functions, constrained nonlinear

optimizations are solved to find the optimal posterior parameter estimates for given

measured noisy gene circuit outputs. Our simulation engine is employed at the inner

loop of the iterative procedure to search for the best parameter estimate. Since the

parameter identification is a numerical procedure, it is critical to ensure that key

network properties shall be inferred correctly. For memory circuits, one of such key

network properties is bistability, in the sense that only a bistable (or more precisely,

multi-stable) network can behave as a memory device. To achieve the realizable iden-

tification of bistability vs. monostability, we propose a two-step structure-preserving

parameter identification approach. In the first step, measurements that are strongly

correlated to bistability are employed to reliably determine bistability. If succeeded,

in the subsequent step, model parameters are further optimized to match the mea-

sured dynamical characteristics while preserving the identified bistability. This is

achieved through a constrained nonlinear optimization formulation.

We introduce and apply dynamic stability concepts, namely, dynamic noise mar-

gins, developed in [30] to characterize the stability of a conditional memory circuit

[18] and its immunity to injected noises. Static noise margins are first presented to

capture the effects of the amplitudes of the noise perturbations. Then, this static

view of stability is extended to dynamically characterize the memory circuit, leading

to dynamic noise margins that further capture nonlinear dynamics of the network.

Using rigorous system theory, we develop computationally efficient algorithms

to compute the defined dynamic noise margins of the conditional memory circuit.

16



These algorithms operate on the ODE based kinetic models and have their roots in

the notion of stability boundaries, or separatrices, which provides a systemic view of

system dynamic stability properties [30]. We discuss the issues involved in computing

separatrices in low and high dimensional state spaces of the entire genetic memory

circuit, and present approaches that are more amenable to high-dimensional models.

The tangent approximation of separatrices is also developed as a more efficient way

of characterizing dynamic noise margins.

Using the developed computational techniques, dynamic noise margins of the

conditional memory circuit have been analyzed for both hold and write operations

under constant parameters which are not time varying. Cell-to-cell differences are

modeled as parametric variations of the memory circuit model and their impacts on

dynamic stability are analyzed. It is shown that the sensitivities of dynamic noise

margins to different parametric variations vary significantly, revealing important dif-

ferences in structure and time scales, and reflecting nonlinear interactions between

various biochemical reactions. Such knowledge is expected to be able to facilitate

robust memory circuit design.

While focusing mostly on bistable memory circuits, the presented dynamic sta-

bility and computational algorithms are quite general in nature. With proper ex-

tensions, they may be employed to study dynamic stability of a broad range of

multistable biological networks.

2.1 Genetic Memories

2.1.1 Genetic Toggle Switch

The genetic toggle switch design and its functional circuit equivalent, an RS

latch of [16], are shown in Fig. 2.1. The toggle switch is implemented in Escherichia

coli plasmids and consists of two repressors and two constitutive promoters. The
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structure is designed to possess bistability. Without any inducer, there exist two

stable states in this mutually inhibitory genetic network. In the first one (ON-state),

gene A maximally transcribes and represses promoter B (hence the transcription

of gene B). In the second stable state (OFF-state), gene B maximally transcribes

and represses Gene A. The promoters and repressors can be Lac repressor (lacI)

with Ptr-2 promoter and PLs1con promoter with a temperature-sensitive repressor

(cIts). The state can be flipped by introducing a pulse of one of the two inducers:

isopropyl-β-D-thiogalactopyranoside (IPTG) or a thermal pulse. With the presence

of an inducer, the inactive repressor is allowed to be maximally transcribed until it

stably represses the original active promoter. The two inducers are analogous to the

R and S inputs to an RS-latch, or the write-one and write-zero events to an SRAM

cell.

Gene A Gene BPromoter BA Promoter A

Inducer 1

Inducer 2

A

B

Inducer 1

Inducer 2

Figure 2.1: Genetic toggle switch and its functional model.

2.1.2 Genetic Conditional Memory

In [18], a regulatory front end is added through protein heterodimerization to

realize a conditional memory, as shown in Fig. 2.2. A more detailed model encom-
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passing the dynamics involved in all steps of transcription, translation, dimerization,

binding and degradation in Fig. 2.3.

Gene A Gene BPromoter BPromoter A

R R R S

A

B

S

R
(clock)

Figure 2.2: Genetic conditional memory and its functional model.

Two combinational control genes R and S are the inputs. This conditional mem-

ory behaves like an electrical D-latch. In the regulatory front end, the transcription

of gene A can be repressed if protein R is present and forms homodimers (R2).

With the presence of protein R, if S is highly expressed, mostly heterodimers (RS)

will form (instead of R2) and gene B will be repressed. As a result, when R is ab-

sent, neither R2 nor RS forms and the latch maintains its current state regardless

of the level of S. Otherwise, the state will reflect S. R and S are analogous to the

clock and input signal to an electrical D-latch. Detailed chemical reaction models

can be established to quantitatively describe the processes of transcription (DNA

→ mRNA), mRNA degradation, translation (mRNA → protein), protein degrada-

tion, and protein dimerization for both species R and S. Quantitative models also

exist to describe the binding and unbinding of homodimers (R2) and heterodimers

(RS) to the corresponding binding sites of Genes A and B, hence characterizing gene

regulation.
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Figure 2.3: The complete biochemical model of the conditional memory circuit.

The back end of the network is similar to the toggle switch design [16]. Depending

on the presence of input signals R and S, one of genes A and B will maximally tran-

scribe. Detailed chemical reaction equations can be used to describe the production

of the corresponding mRNA (DNA → mRNA), protein (mRNA → protein), protein

dimerization, mRNA and protein degradations, and the binding of the protein on

the opposite genes promoter site.

2.2 Electrical-Equivalent Modeling and Simulation

In this work, we have developed an electrical-like simulation environment for

analyzing biological genetic networks. We specially target genetic memories such as

the ones discussed in the previous section. In this section, we first present the basic
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biochemical models for various biological processes involved in a genetic memory. We

also present our proposed electrical-equivalent modeling, and discuss specific network

modeling and simulation issues.

In the biochemical domain, there exist a lot of correlated chemical reactions; the

rate of each reaction is fully determined by the concentration of its reactants and

resultants if the reaction is invertible [18]. In the electrical domain, circuit behaviors

follow the law of conservation of charge, or Kirchhoffs Current Law (KCL). When

applied to each circuit node, KCL states that the net sum of currents flowing into

the node is zero. A similar balance exists for each chemical substance in chemical

reactions, which often take place in a container, in our case, within the cell volume.

For a specific substance, it can react as a reactant, be produced as a resultant, and

stored in the container. So the balance is among the substances consumed, produced

and the incremental mass stored in the container. In an electrical circuit, the charge

stored in a linear capacitor is proportional to the capacitor voltage. For chemical

substances, the mass stored in the container is proportional to its concentration,

which will regulate the rate of reactions that are related to this substance. As shown

in Fig. 2.4, conceptually, each chemical substance is modeled as an equivalent circuit

node with a grounded a capacitor. The capacitance is determined by the volume of

the container.

2.2.1 Degradation

mRNAs and proteins have finite life time. In chemistry, degradation of these

species is characterized by half-life time Thalf−life. The degradation rate is propor-

tional to its mass. As a result, the equivalent RC circuit in Fig. 2.4 is used. Since
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Figure 2.4: Modeling degradation.

the capacitance is determined by the cell volume, the resistance is given by

R =
Thalf−life

C · ln2
. (2.1)

2.2.2 Chemical Reactions

Mass conservation takes place in each reaction. This is guaranteed by stoichio-

metric balance on chemical reactions, from which we construct the circuit-like model.

For example, the heterodimer RS in the genetic conditional memory [18] is produced

by the following invertible reaction

R + S
k−RS⇐=

k+RS=⇒ RS, (2.2)

where k+
RS and k−

RSs are reaction rate constants for combination and decomposition

reactions, respectively. This reaction can be viewed as two separate ones:

R + S
k+RS=⇒ RS, (2.3)
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RS
k−RS⇐= R + S, (2.4)

These two reactions can be described with more details as

d[RS]

dt
= −dR

dt
= −dS

dt
= k+

RS · [R] · [S] (2.5)

−d[RS]

dt
=

dR

dt
=

dS

dt
= k−

RS · [RS]. (2.6)

The overall effects are

d[RS]

dt
= −dR

dt
= −dS

dt
= k+

RS · [R] · [S]− k−
RS · [RS]. (2.7)

The above equation can be modeled as a three-terminal device, shown in Fig. 2.5.

And the mass flux through each terminal is a function of the concentrations of

reactants and resultants. The model can also be viewed as three concentration-

controlled flux sources. When stitching them together in a circuit, we treat the

device as a black box.

2.2.3 Transcriptions and Translations

In transcriptions and translations, RNAs and proteins are produced from ribonu-

cleotides and amino acids, respectively. The information carried by DNA and RNA

is essential in these chemical processes. Take translation as an example. A protein

molecule is assembled from amino acid according to the information contained in the

corresponding mRNAs. The process can be described as

amino acid
RNA
=⇒ protein. (2.8)
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Figure 2.5: Modeling chemical reactions.

One difference between this process and the chemical reactions we have talked

about is that this translation process is unidirectional. Another difference is that the

reaction rate is influenced by RNAs, which is neither a reactant nor resultant. In this

work, we assume that there is sufficient amount of amino acid so that the influence

of its concentration on the reaction rate is insignificant. The dominant factor for

the reaction rate is the concentration of the RNA. The rate at which proteins are

produced is proportional to the mass of the RNA. So if protein A is produced by the

corresponding RNA mA, and the translation rate is , this process is described as

mA
ν−→ A. (2.9)
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We model a translation as a concentration-controlled flux source, whose electrical

equivalent is shown in Fig. 2.6. The same approach is applied to transcriptions.

Figure 2.6: Modeling translation.

2.2.4 Gene Regulations

The transcription of a gene can be regulated. There exist multiple promoter sites

on a gene. If a promoter site is bounded, or blocked, by a small molecule, the process

of transcription is stopped. As an example, in the genetic memory circuit, gene A

has three promoter sites, of which one is for protein dimer and two are for dimer

. Therefore, gene A can be in one of the following six states:geneA, geneA · B2,

geneA · B2 · B2, geneA · R2, geneA · R2 · B2 and geneA · R2 · B2 · B2, which involve

seven reactions:

geneA+B2

k−gB⇐=
2·k+gB
=⇒ geneA ·B2, (2.10)

geneA ·B2 +B2

k−gB⇐=
2·k+gB
=⇒ geneA ·B2 ·B2, (2.11)

geneA ·R2 +B2

k−gB⇐=
2·k+gB
=⇒ geneA ·R2 ·B2, (2.12)
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geneA ·R2 ·B2 +B2

k−gB⇐=
2·k+gB
=⇒ geneA ·R2 ·B2 ·B2, (2.13)

geneA+R2

k−gR⇐=
k+gR
=⇒ geneA ·R2, (2.14)

geneA ·B2 +R2

k−gR⇐=
k+gR
=⇒ geneA ·R2 ·B2, (2.15)

geneA ·B2 ·B2 +R2

k−gR⇐=
k+gR
=⇒ geneA ·R2 ·B2 ·B2, (2.16)

geneA geneA ·R2

geneA ·B2

geneA ·B2 ·B2

geneA ·R2 ·B2

geneA ·R2 ·B2 ·B2

R2 B2

Figure 2.7: Modeling gene regulation.

We use the macromodel in Fig. 2.7 to capture gene regulation. Because genes

do not degrade, the summation of the above six gene concentrations is constant. So
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the number of independent variables in simulation is five. Since transcription only

works for unblocked genes, we treat the variables corresponding to blocked genes as

internal nodes in the model, as shown in Fig. 2.7.

Biological system may be affected by some external interference, which serves

as inputs. For example, in the gene memory circuit considered in this section, the

transcription rates of geneR and geneS are controlled by external signals [18]. We

model them as two time-varying current sources connected to the corresponding

mRNAs.

2.3 Simulation-Driven Bayesian Parameter Identification

While the modeling and simulation framework presented in the previous section

provides powerful analysis capabilities for quantitative prediction of biological net-

work behaviors, practical difficulties arise when coming to determine the detailed

model parameter values such as chemical reaction rates. These parameters are not

easily directly exposed in lab experiments. To address this difficulty, we propose

a Bayesian based framework to identify model parameters based upon measured

genetic circuit outputs. Our approach takes into consideration unavoidable lab mea-

surement noises and prior statistical distributions of model parameters while opti-

mizing certain likelihood functions. The optimizations are driven by the developed

simulation infrastructure.

Unlike existing Bayesian approaches [71][72], we propose a two-step structure-

preserving parameter identification approach in a way relevant to genetic memories.

Our specific emphasis is to reliably identify one of the most important properties of a

memory device, bistability, and maintain such property if identified in the presence of

measurement and numerical noises. As shown in Fig. 2.8, the first identification step

utilizes bistability specific output measurements to drive the initial model parameter
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identification. If a memory design is identified to be bistable, in the following step, a

constrained parameter identification process is performed that furthers matches the

measured dynamic behaviors while maintaining bistability.

θ1

θ2

bi-stable

bi-stable
& dynamics

matched

Figure 2.8: Two-step bistability preserving parameter identification.

2.3.1 Bayesian Model Parameter Identification

Let us assume that under a given input u(t), the outputs of a genetic network, say,

the transcription levels measured by using green fluorescent protein (GFP)mut3 as a

reporter [16], are sampled at N time points: t1, t2, · · · , tN . Denote the corresponding
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sampled outputs as ym = [ym(t1), ym(t2), · · · , ym(tN)]T . Now consider an additive

Gaussian noise output model

ym = f(θ, u) + ϵ, (2.17)

where ϵ = [ϵ(t1), ϵ(t2), · · · , ϵ(tN)]T is the additive measurement noises and is assumed

to be Gaussian: ϵ ∼ N(0, Cϵ). Denote the true outputs as y = [y(t1), y(t2), · · · , y(tN)]T ,

which are given by y = f(θ, u) = [f(θ, u, t1), f(θ, u, t2), · · · , f(θ, u, tN)]T in (17),

where f(·) is a functional that maps the network input to the network outputs, and

θ = [θ1, θ2, · · · , θP ]T is the unknown network parameters to be identified. In our

case, f(·) is defined by the network model and the noise-free outputs can be ob-

tained through model simulation. Furthermore, it is assumed that the prior statisti-

cal distributions for θ are available and θ is considered to be multivariate Gaussian:

θ ∼ N(µθ, Cθ). Under the framework Bayesian inference, we define the posterior

probability density for θ

p(θ|ym) =
p(ym|θ)p(θ)

p(ym)
, (2.18)

where p(ym) is the marginal probabilistic density for ym, which is independent of θ.

Hence, θ is identified by maximizing the following likelihood [72]

L(θ) = p(ym|θ)p(θ) ∝ p(θ|ym) (2.19)

From (17) we get: ϵ = ym − f(θ, u), which implies that

p(ym|θ) = exp
(
−1

2

(
ym − f(θ, u)

)T
C−1

ϵ

(
ym − f(θ, u)

))
(2.20)

Plugging p(θ) = exp
(
−1

2
(θ−µθ)

TC−1
θ (θ−µθ)

)
and (20) into (19) and computing
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the logarithm of the likelihood gives

log{L(θ)} = −
(
ym − f(θ, u)

)T
C−1

ϵ

(
ym − f(θ, u)

)
+ (θ − µθ)

TC−1
θ (θ − µθ)

2
(2.21)

In this work, the above log likelihood is maximized to estimate θ. This is achieved

by interfacing a sequential quadratic programming optimization package [73] with

our biological simulator. The evaluation of f(θ, u) for a given θ in (21) is facilitated

by running our biological simulator.

2.3.2 Bistability Check

The previous section lays out the classical framework of Bayesian interference. In

this subsection, we address the stability issues. Bistability is one of the most impor-

tant properties of a memory device. Typical memory cells, including the biological

ones we focus on in this section, posses two stable equilibriums (hence bistable),

representing the ON and OFF states, respectively. The third equilibrium is unstable

and is also referred to as the saddle. Under certain design parameters, gene memory

circuits may lose bistability and become monostable, hence stopping operating as a

memory device [16][18].

To reliably identify bistability in the first identification step, we propose to em-

ploy the presented Bayesian approach to identify the model parameters under lab

experiments that are geared to expose the stability property. Once the complete

mathematical model is available, bistability can be checked rather straightforwardly

by examining the model. An example of a suitable lab measurement setup is shown

in Fig. 2.9 (a). Inputs R and S are set up in a way such that the ON-state is being

written into the memory circuit with sufficient time margin. After that, input R is

disabled and the experiment continues for a sufficiently long period to expose the

DC characteristics of the design. The protein As concentration is sampled at the late
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part of the experiment and is used to drive the parameter identification. Intuitively,

the sampled outputs manifest whether or not the memory circuit can maintain the

ON-state once it is written. A similar measurement can be set up to check whether

a written OFF-state can be maintained.

A_tot

S

R

Sampled outputs

(a)
A_tot

S

R

Sampled outputs

(b)

Figure 2.9: Measurement setups for the two-step identification: a) first step (bista-
bility check), and b) second step.

2.3.3 Bistability-Preserving Parameter Identification

If a memory design is identified to be bistable, the second identification step

is conducted to further match the measured dynamical behaviors, hence increasing

the accuracy of the identified model. Various dynamic measurements can be done.

One example is shown in Fig. 2.9 (b). Note that in the case, the entire dynamic

output response is sampled. Additionally, the measurement experiment needs not

to be taken over an excessively long period of time to expose “DC” characteristics.

However, the model identified by this process should maintain bistability.

Fig. 2.10 illustrates how continuous circuit parameter changes may convert a

bistable system via saddle-node bifurcation to mono-stable. At bifurcation, one

stable equilibrium coalesces with the saddle, and then both equilibriums disappear,

leaving only one stable equilibrium [74]. Let us describe the dynamical model of the
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Figure 2.10: Bistability, bifurcation and mono-stability.

entire gene circuit in the following general form

q̇
(
x(t)

)
+ g

(
x(t)

)
+ u(t) = 0, (2.22)

where x(t) = [x1(t), x2(t), · · · , xM(t)]T is the state vector, and

g(·) = [g1(·), g2(·), · · · , gM(·)]T . (2.23)

The saddle-node bifurcation theory [74] indicates that saddle-node bifurcation hap-

pens if the Jacobian matrix gx, which is given as follows, becomes singular at any

equilibrium

gx =



∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xM

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xM

...
...

. . .
...

∂gM
∂x1

∂gM
∂x2

· · · ∂gM
∂xM


(2.24)

To maintain bistability, we solve the following constrained Bayesian inference
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problem

min
θ

log{L(θ)} = −
(
ym − f(θ, u)

)T
C−1

ϵ

(
ym − f(θ, u)

)
+ (θ − µθ)

TC−1
θ (θ − µθ)

2

(2.25)

s.t. |λi,j| > δ, i = 1, 2, j = 1, 2, · · · ,M, (2.26)

where we denote the two stable equilibriums as xe
1 and xe

2, λi,j is an eigenvalue of

the Jacobian gx evaluated at xe
i : gx(x

e
i ), and δ > 0 is a user-defined constant. The

bistable model parameters identified in the prior step are used as the initial guess for

the optimization problem of (23). By adding the constraint in (25), we ensure that

all the eigenvalues of each evaluation of the Jacobian is kept away from zero by a

certain margin. This constraint ensures that each Jacobian is nonsingular, and hence

from the saddle-node bifurcation theory, the model is guaranteed to be bistable.

2.4 Static Noise Margins

As a widely accepted way of analyzing the susceptibility of a system to noise,

noise margins are commonly defined for electric circuits [75]. More specifically, two

types of noise margins are possible: static and dynamic. While static noise margins

are widely used for electronic circuits, dynamic noise margins are less well studied

even though they are strongly desired [30, 76]. This section first extends the concept

of static noise margins for understanding the stability of genetic memory circuits. In

the following discussion, each input signal is held at a constant level indefinitely.

To illustrate the static noise margins, we take the state flip from zero to one as

an example. To write one, we assume that the geneR is activated for long enough

and the gene expression level of geneS is maintained at a low level klow
S . A successful

write operation is shown in Fig. 2.11 (Left). Let ks
R denote the transcription rate of

geneR in this successful write process.
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Figure 2.11: (Left) Write one successfully with high transcription rate of geneR. The
bottom plot shows the input to the conditional memory. The transcription rate of
geneS is kept at low level (0.01 nM/min) while geneR is activated to transcribe at a
high rate (1 nM/min). The top plot shows the response of the memory: the system
flips its state from zero to one. The concentration of A&A2 decreases from more
than 500 nM to almost 0. The concentration of B&B2 increases from almost 0 to
more than 500 nM . (Right) Fail to write one with low transcription rate of geneR.
Similar to the left panel, the transcription rate of geneS is also kept at low level
(0.01 nM/min). geneR is activated to transcribe at a rate (0.04 nM/min) higher
than that of geneS. However, the transcription rate of geneR is not high enough to
flip the state of the system: the concentration of B&B2 has little change, and that
of A&A2 is kept high even though it decreases slightly. In this case, the state of the
memory circuit is only slightly pushed away from the initial stable state.

In the write process mentioned before, if the transcription rate of geneR is not

activated as high as ks
R, it may fail to flip the state of the memory. Fig. 2.11 (Right)

shows a failing example. Let kf
R denote the transcription rate of geneR in this failing

write process. Between kf
R and ks

R there exists a transcription rate of geneR, which

is referred to as threshold kth
R . Only above this value, the activation of the geneR

can write one successfully. For the write operation, the static noise margin (SNM)
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is defined as

kwrite
R,SNM(kwrite

R ) = kwrite
R − kth

R , (2.27)

where kwrite
R is the transcription rate of geneR, k

write
R,SNM is a function of kwrite

R . kwrite
R,SNM

is a metric of noise tolerance of the memory circuit on kwrite
R . Similarly, when the

memory circuit is holding its state, noises on khold
R may undesirably perturb the circuit

such that the state of the memory flips unexpectedly. Under this circumstance, the

static noise margin for the transcription rate of geneR khold
R is defined as

khold
R,SNM(khold

R ) = kth
R − khold

R . (2.28)

In the above definitions of the static noise margins, the other input kS is assumed

to be fixed at klow
S . In practice, the value of kS may vary. For a larger value of kS,

after activating geneR, the quantity of protein RS produced would be more than the

case with smaller kS. Therefore, more R molecules are consumed by producing RS.

As a result, the concentration of protein R2 would decrease. This way, a larger kS

results in more RS and less R2 such that the activation of geneR is less capable of

flipping the state from zero to one. In other words, the threshold of kR to flip the

state increases with kS.

As discussed above, kth
R is a function of kS, as shown in Fig. 2.12. Furthermore,

the static noise margin can be more generally defined as

kwrite
R,SNM(kwrite

R , kS) = kwrite
R − kth

R (kS), (2.29)

and

khold
R,SNM(khold

R , kS) = kth
R (kS)− khold

R . (2.30)
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Figure 2.12: SNMs of the conditional memory for varying kS. (This figure is an
illustration.) The left and right figures show the SNMs for write and hold, respec-
tively. In each of the two figures, the curve kth

R (kS) stands for the kth
R value as a

function of kS. For the write, the regions above and below the curve correspond
to successful writes and write failures, respectively. In contrast, for the hold, these
two regions correspond to hold failures and successful holds. For fixed kS values:
kth,i
R − khold

R and kwrite
R − kth,i

R are defined as SNM i
hold and SNM i

write, respectively,
where i = 1, 2. As kth

R varies with kS, the static noise margins for holds and writes
are functions of kS.
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In reality, as inputs to the conditional memory circuit, noises may be injected

onto both kR and kS. For this reason, the static noise margins need to be extended

to consider these noises simultaneously. When the memory circuit holds zero, in

Fig. 2.13, the more general concepts of static noise margins are defined as the distance

between (kS, kR) and the curve kth
R (kS) in the kS − kR plane. These noise margins

account for concurrent noises on kR and kS for both hold and write.
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Figure 2.13: SNMs of the conditional memory for kR and kS. (This figure is an
illustration.) As an extension of situations with fixed kS values, this definition of
SNM takes noises on kS into consideration. The static noise margin for hold is the
distance between the point (khold

S , khold
R ) and the curve kth

R (kS). A noise margin which
is big enough is supposed to tolerate noises on both kR and kS such that the inputs
of the memory do not move beyond the curve kth

R (kS). Similarly, for inputs writing
one to the memory, the SNM is the distance between the point (kwrite

S , kwrite
R ) and

the curve kth
R (kS).
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2.5 Dynamic Noise Margins

2.5.1 Limitation of Static Noise Margins

Conceptually, the static noise margins are effective metrics for characterizing a

bistable system. For the genetic conditional memory, they specify the maximum

tolerable noise magnitudes. However, the flipping of a system is a dynamic pro-

cess. Even if the magnitude of noise exceeds the static noise margin, it still takes

considerable period of time for the memory to flip.

In practice, every biological or biochemical process takes finite period of time.

For instance, if this period is shorter than the time required to flip the memory, the

write process would still be a failure even if in a static way the write is predicted to

be successful. Fig. 2.14 shows a successful write and a write failure for the same level

of geneR activation with different durations. Therefore, in the write process, the

static noise margin may optimistically predict flip of the system under an activation

of geneR with kwrite
R exceeding the threshold. Similarly, when the memory is holding

its state, the static noise margin for hold may pessimistically predict that noises with

a magnitude exceeding the static noise margin would destroy the information held.

To this end, the dynamics of the memory circuit must be considered when defining

noise margins. As a powerful tool, the concept of state space is used to help to

understand the flipping dynamics of a bistable system. To simulate the dynamical

behaviors of a gene network, we use the simulator in [23].

2.5.2 State Space of Memory Circuits

Since the dynamics is described as how the concentration of each species varies

with time, we model the entire system by the following dynamic equation

ẋ = f(x), (2.31)

38



0 50 100 150 200
0

1

2

Time (min)

R
at

e 
(n

M
/m

in
)

 

 
Transcription of geneR

Transcription of geneS

0 50 100 150 200
0

500

Time(min)C
on

ce
nt

ra
tio

n(
nM

)

 

 

Protein A&A
2

Protein B&B
2

0 50 100 150 200
0

500

1000

Time(min)C
on

ce
nt

ra
tio

n(
nM

)

 

 
Protein A&A

2

Protein B&B
2

0 50 100 150 200
0

1

2

Time (min)

R
at

e 
(n

M
/m

in
)

 

 

Transcription of geneR
Transcription of geneS

Figure 2.14: (Left) Write one successfully by long time activation of geneR. Initially,
the memory circuit holds the stable state zero. The transcription rate of geneS is
kept at a low level. geneR is activated for a period of time to flip the state from
zero to one successfully. The duration of geneR activation is limited to resemble a
more realistic activation. (Right) Fail to write one by short time activation of geneR.
The transcription rate of geneS is always low. The memory circuit holds zero and
the transcription rate of geneR is low at the beginning. Then geneR is activated
to a level which is high enough to write one if the duration is long enough. After
the activation of geneR, there is a significant decrease of the concentration of A&A2.
The concentration of B&B2 also increases considerably. However, before geneB is
capable of inhibiting geneA independently, geneR is deactivated and its transcription
rate comes back to its initial low level (0.01 nM/min).

where x ∈ RN is the vector of species concentrations. f(·) represents chemical laws

which relate the concentrations of all species and their rates of change. For a bistable

system, there are three equilibrium states that satisfy

f(x) = 0. (2.32)

Two of these equilibrium states are stable and represent the zero state and one state.

The third one is unstable, which is called the saddle. As illustrated in Fig. 2.15 (Left).
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Figure 2.15: (Left) Equilibria of a bistable system. A bistable system has three
equilibria, among which two are stable. The third one is called the saddle point,
which is unstable. (Right) The state space of a bistable system. A hypersurface
separates the state space into two parts, of which each one is the stable region of a
stable equilibrium. That is, if the state of the system is within a stable region, it
will eventually converge to the corresponding stable equilibrium. The saddle point
is on the separatrix and the separatrix is the stable region of the saddle point.

Since each point in the state space of the entire memory circuit stands for a

system state, we use trajectories of moving states to describe the transient behavior

of the bistable system.

For an equilibrium e, the stable manifold or region of attraction is defined as

[74, 77]

M s(e) = {x ∈ RN | lim
t→∞

T (x, t) = e}, (2.33)

where T (x, t) represents the trajectory of the system state starting from an initial

state x, and t is the time variable. Fig. 2.15 (Right) shows the stable manifolds of

the two stable equilibria of a bistable system. Similarly, the unstable manifold of the
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equilibrium e is defined as

Mu(e) = {x ∈ RN | lim
t→−∞

T (x, t) = e}. (2.34)

From (2.33) and (2.34), it is clear that if the vector field (defined as the derivative

of the system state with respect to time) is reversed, we have a new system

ẋ = −f(x), (2.35)

in which all trajectories flow in the reverse direction and the stable manifold of the

equilibrium e is the unstable manifold for the original system [30].

For a bistable system, as shown in Fig. 2.15 (Right), there are two stable equilibria

and two corresponding stable regions as mentioned before. The stability boundary

of the two stable regions is referred to as separatrix. Importantly, the separatrix is

the stable region of the unstable equilibrium or the saddle point [77, 78].

Intuitively, if the state vector of the system falls in the stable region of a stable

equilibrium, the dynamics of the system would drive the trajectory towards the

corresponding stable equilibrium. If the initial state is on the separatrix, in principle,

the system state would end up staying at the saddle. This is the case of metastability.

In reality, perturbations may push the state away from the saddle towards a stable

equilibrium. Whenever the system is perturbed by certain excitations and/or noises,

the system state may be pushed away from a stable equilibrium in the state space.

To see whether the system can come back to the original state autonomously, one

needs to check whether the state goes beyond the stability boundary/separatrix. If

the perturbed state is within the same stable region, the system state would come

back spontaneously. Otherwise, the state would be attracted to the other stable
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equilibrium and a state flip results.

2.5.3 Dynamic Noise Margins

We define dynamic noise margins (DNMs) to quantify the memory circuit’s sus-

ceptibility to injected noises. As being dynamic, these dynamic noise margins not

only take the magnitude of the noise into consideration as in the case of static noise

margins, importantly, they also capture the effects of duration of the noise. In

later sections, we further consider the variability of DNMs due to parameter changes

within the memory circuit.

The same example of flipping the state from zero to one in the section of static

noise margins would also be used here to show how dynamic noise margins extend

SNMs. Therefore, as inputs, the write signals have constant amplitudes in the ex-

ample. We study the dynamic noise margin in the state space of the memory circuit

as illustrated in Fig. 2.16. Besides the amplitude, the timing information of input

signals is also taken into consideration in the concepts of dynamic noise margin. In

static cases, when inputs of the memory circuit are in the region of hold “zero”, the

steady-state solutions of the circuit would be in the stable region of zero in the state

space. Under these circumstances, the inputs push the state away from zero but the

state does not cross the separatrix. Therefore, the time used to cross the separatrix

under these inputs is denoted by ∞ in the following context. For inputs located in

the region of write “one”, the steady-state solution of the memory circuit is one. In

this case, the time for crossing the separatrix must be a finite value.

Fig. 2.11 (Left) shows a successful write by infinitely long time of geneR acti-

vation, while for the same magnitude of inputs, the simulation results in Fig. 2.14

demonstrate that finite duration of the geneR activation may also cause write failure.

To this end, we represent a successful write and hold by state trajectories in state
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spaces as shown in Fig. 2.17. In the successful write, the state travels beyond the

separatrix before geneR is deactivated. Therefore, the duration of the geneR activa-

tion must be longer than the separatrix crossing time. For a specific write input, let

to and tcross denote this duration and the separatrix crossing time, respectively. The

dynamic noise margin for the write operation is defined as

twrite
DNM = twrite

o − twrite
cross , (2.36)

where twrite
DNM is positive for a successful write. This quantity characterizes the robust-

ness of the write operation to noises. That is, the further the system state is moved

past the separatrix, the less the chance of moving back under stochastic fluctuations

on the system. A successful hold is equivalent to a write failure. In Fig. 2.17 (Right),

geneR is deactivated before the state reaches the separatrix. Therefore, in this case,

the duration of geneR activation must be shorter than the separatrix crossing time. If

the dynamic noise margin is calculated by (2.36), the value would be negative. Con-

sider the activation of geneR of which the duration equals to the separatrix crossing

time. At the end of this input, the system state would be on the separatrix. This

is the case of the metastability. Theoretically, since the dimensionality of the sep-

aratrix is lower than that of the entire state space, the probability measure of the

metastability is zero. In practice, if the state is close to the separatrix, it also takes

long time for the system to reach a stable equilibrium. In addition, random noises

may significantly influence the stable equilibrium to which the system would reach.

Therefore, the case that the state is close to the separatrix can also be treated as

metastability in reality.

Based on all the discussions about the dynamic write processes, the relation
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between the predicted results of writes and the DNMs can be summarized as follows

result of write :


success if twrite

DNM > 0

failure if twrite
DNM < 0

metastability if twrite
DNM = 0.

(2.37)

The hold operation can be analyzed similarly. The DNM for hold is defined as

tholdDNM = tholdcross − tholdo , (2.38)

The relation between the predicted results of holds and the DNMs is similar to that

of write

result of hold :


success if tholdDNM > 0

failure if tholdDNM < 0

metastability if tholdDNM = 0.

(2.39)

(2.36) and (2.38) show that the dynamic noise margins are functions of the du-

ration of operations. Because the separatrix crossing time is related to the strength

of the input kR, the DNMs are also functions of kR. From the analysis in the section

of static noise margins, it is clear that the memory inputs kR and kS interact with

each other. Therefore, the dynamic noise margins should depend on kR, kS and the

duration of the operation. More general forms of DNM definitions for write and hold

are

twrite
DNM(kR, kS, t

write
o ) = twrite

o − twrite
cross(kR, kS), (2.40)

tholdDNM(kR, kS, t
hold
o ) = tholdcross(kR, kS)− tholdo . (2.41)

From a memory circuit’s perspective, the durations of inputs are controlled by
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the external environment. The dynamic noise margin can be easily computed if

the separatrix crossing time is known. In the remaining parts of this section, the

separatrix crossing time is always a key issue.

2.6 Methodology and Algorithms

2.6.1 Separatrix Tracing for Two-Dimensional Bistable Systems

We review the existing work on separatrix tracing for two-dimensional systems de-

veloped for static semiconductor memories [30]. As shown in the left plot of Fig. 2.18,

the system S1 has two state variables V1 and V2. Hence, the separatrix is a one-

dimensional curve. Another system S2 is constructed in such a way that T (t) in

[0, t0] is a spontaneous state trajectory of S2 if and only if T (t0 − t) in [0, t0] is a

spontaneous state trajectory of S1. In other words, transient responses of S2 are

inverse processes of those of S1, as shown in the right plot of Fig. 2.18. Thus, the

simulation of S2 is carried out by conducting the transient simulation of S1 back-

wardly in time. Since in S1 the stability boundary is the stable region of the saddle,

in system S2, that curve becomes the unstable region of the saddle. Therefore, start-

ing from a state close to the saddle, an inverse transient simulation would follow

half of the separatrix for the system S1. This way, the separatrix can be traced by

two inverse transient simulations. By conducting transient simulation of the state

trajectory starting from an initial state, the separatrix crossing time can be obtained

as the time it takes for the state to reach the separatrix.

However, the tracing method becomes inefficient for higher dimensional systems.

Take a three-dimensional bistable system as an example. The separatrix is a two-

dimensional surface, as illustrated in Fig. 2.19. Since each inverse transient simu-

lation generates a one-dimensional curve, in principle it is impossible to cover the

two-dimensional surface by finite number of tracings. Even in practice, potential
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Figure 2.18: Backward tracing of 1-D separatrix. (Left) The state space of a 2-
dimensional bistable system S1 is split into two stable regions of stable equilibria e1
and e2. The separatrix is the stable region of the saddle, that is, starting from any
point on the separatrix, the spontaneous process of the system would drive the state
to the saddle. (Right) The state space of a system S2, which is constructed in such
a way that its transient responses are inverse processes of those of S1. Therefore,
the separtrix for S1 becomes the unstable region of the saddle, that is, starting from
a state in the neighborhood of the saddle, the spontaneous state trajectory for S2

would follow half of the separatrix.

methods of reconstructing the two-dimensional surface may require a large num-

ber of inverse transient simulations. For systems with even higher dimensionality,

performance of the inverse tracing deteriorates drastically.

To this end, we propose our exact algorithm to compute the separatrix crossing

time of high-dimensional bistable systems directly without obtaining the separatrix.

Another tangent-based fast algorithm is also developed. In the following texts, our

algorithms are explained in detail starting from related basic system theory.
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Figure 2.19: Backward transient simulation on a 2-D separatrix. For a two-
dimensional separatrix, a backward transient simulation starting from the neigh-
borhood of the saddle generates a state trajectory on the separatrix. However, it is
impossible to cover the 2-D surface by finite number of such trajectories.

2.6.2 System Theory of Dynamic Stability

2.6.2.1 Stability of Linear Dynamic Systems

For simplicity, consider a linear dynamic system of which the only equilibrium is

at the origin. The dynamic equation is

ẋ = Ax, x ∈ RN , (2.42)

where A is the real N×N system matrix, which has N eigenvalues with the repeated

ones counted. We sort them into three groups according to the real part of each
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eigenvalue

{λ1, · · · , λns},

{λns+1, · · · , λns+nu}, (2.43)

{λns+nu+1, · · · , λns+nu+nc},

where the first group has negative real parts, the second group has positive real parts

and the third group is purely imaginary. The ns, nu, and nc are the numbers of

eigenvalues in these three groups and the corresponding eigenvectors are

{u1, · · · , uns},

{uns+1, · · · , uns+nu}, (2.44)

{uns+nu+1, · · · , uns+nu+nc},

where the ns, nu, and nc satisfy

ns+ nu+ nc = N. (2.45)

After a similarity transformation defined by these eigenvectors, the dynamic equa-

tion of the system becomes


˙̃xs

˙̃xu

˙̃xc

 =


Ãs 0 0

0 Ãu 0

0 0 Ãc



x̃s

x̃u

x̃c

 , (2.46)

where the three block rows correspond to the dynamics of the system state within
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the subspaces spanned by the corresponding groups of eigenvectors

Ss = span{u1, · · · , uns},

Su = span{uns+1, · · · , uns+nu}, (2.47)

Sc = span{uns+nu+1, · · · , uns+nu+nc}.

The original N-dimensional space is Ss
⊕

Su
⊕

Sc. In (2.46), the x̃s, x̃u, and x̃c

are within Ss, Su, and Sc, and represent stable, unstable and marginally stable

components of the state vector, respectively.

2.6.2.2 Stability of Nonlinear Systems at Fixed Points

For a general nonlinear dynamic system, the system equation is

ẋ = f(x), x ∈ RN , (2.48)

where f(·) is a nonlinear equation representing the nonlinear dynamics of the sys-

tem. The linearization of the system (2.48) by first-order Taylor expansion at an

equilibrium point xe is

d(x− xe)

dx
= Jf (xe)(x− xe) + o(x− xe), (2.49)

where Jf (xe) is the Jacobian matrix of the nonlinear system f(·) at point xe and

o(x − xe) represents higher order terms. Substituting x∆ = x − xe into the above

equation leads to

ẋ∆ = Jf (xe)x
∆ + o(x∆). (2.50)
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Because o(x∆) is higher order terms, the nonlinear system described by (2.50) can

be approximated by the linear system

ẋ∆ = Jf (xe)x
∆, (2.51)

where Jf (xe) is aN×N system matrix. Applying similarity transformation according

to the three groups of eigenvectors of the matrix Jf (xe), equation (2.51) becomes


˙̃x∆
s

˙̃x∆
u

˙̃x∆
c

 =


J̃f
s 0 0

0 J̃f
u 0

0 0 J̃f
c



x̃∆
s

x̃∆
u

x̃∆
c

 , (2.52)

where J̃f
s , J̃f

u and J̃f
c are the three diagonal blocks in the transformed Jacobian

matrix. x̃∆
s , x̃

∆
u and x̃∆

c are the stable, unstable and marginally stable components of

the state vector in the transformed coordinate. Accordingly, the original nonlinear

system equation can be expressed as


˙̃x∆
s

˙̃x∆
u

˙̃x∆
c

 =


J̃f
s 0 0

0 J̃f
u 0

0 0 J̃f
c



x̃∆
s

x̃∆
u

x̃∆
c

+


o(x̃∆

s )

o(x̃∆
u )

o(x̃∆
c )

 , (2.53)

where o(x̃∆
s ), o(x̃

∆
u ) and o(x̃∆

c ) are the higher order terms in the stable, unstable and

marginally stable subspaces under the transformed coordinates.

The nonlinear system (2.53) and its linearized system (2.52) are linked by the

following theorem [78]

Theorem 1 Suppose the nonlinear dynamic equation (2.53) is Cn, n ≥ 2. (2.52) is

the linearized system dynamic equation of (2.53). Let (x̃T
s , x̃

T
u , x̃

T
c ) = 0 denote a fixed
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point of (2.53). At (x̃T
s , x̃

T
u , x̃

T
c ), (2.53) has local invariant stable, unstable and center

manifolds with dimensionality of ns, nu, and nc, respectively. These manifolds are

tangent to the corresponding invariant subspaces of the linear vector field (2.52) at

the fixed point (x̃T
s , x̃

T
u , x̃

T
c ).

The above theorem provides the theoretical basis for computing the tangents of the

three manifolds in the state space at a fixed point. In our problem, the fixed point

is the saddle, as the separatrix is the stable manifold of the saddle point.

2.6.2.3 Genetic Memory Circuit as a Nonlinear Bistable System

For the conditional memory, if the dimensionality of the state space is N , the sep-

aratrix is (N−1)-dimensional. Since the separatrix itself is the stable manifold of the

saddle point, according to Theorem 1, the dimensionality of the tangent hyperplane

at the saddle is also (N − 1)-dimensional.

Since the system under study is a memory circuit, for practical reasons, we do not

expect to see oscillations in the network and hence assume that there is no center

manifold. According to Theorem 1 and (2.45), the summation of the dimension-

alities of the three manifolds of (2.53) is N . Therefore, the unstable manifold is

1-dimensional.

For the nonlinear system (2.53), since the tangent of the stable manifold is the

stable subspace of the Jacobian matrix Jf (xe) of the linearized system (2.52), this

tangent can be expressed as

Ss = span{v1, · · · , vN−1}, (2.54)

where the space is spanned by all the N − 1 eigenvectors of Jf (xe) of which the

associated eigenvalues have negative real parts. The separatrix and all eigenvectors
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at the saddle in the state space are illustrated in Fig. 2.20, where vN denotes the

only eigenvector with positive real part.

zero

one

separatrix
…

1v 1 Nv

Nv

zero

one

saddle separatrix

Figure 2.20: Eigenvectors of the system Jacobian at the saddle point. For a N -
dimensional bistable memory circuit, the Jacobian matrix has N eigenvectors, among
which N − 1 are stable ones, and the other one is unstable. Stable eigenvectors are
tangent to the separatrix while the unstable one is not.

2.6.3 Tangent Crossing Point/Time

Since the shape of the real separatrix is fairly complicated and it is difficult to

find a compact expression of the nonlinear high-dimensional manifold, the tangent

hyperplane discussed in the previous subsection is used to approximate the real sep-
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aratrix. In addition, it is more straightforward to check whether the state trajectory

has crossed the tangent or not by

vn · (x− xe), (2.55)

where the normalized vector vn is perpendicular to the tangent hyperplane, and xe is

the saddle point. As illustrated in Fig. 2.21, if the value of the above expression is 0,

the state x is on the tangent, while non-zero values indicate that the state is off the

tangent: the absolute value is the distance between x and the tangent, and the sign

of the value indicates which side of the tangent a state x is at. During the simulation

of the state trajectory, the state can be checked by the above expression on the fly

to see at which point the trajectory intersects the tangent. The computation of the

normal vector is discussed in the next subsection.

2.6.4 Computing the Tangent and the Normal Vector

In this subsection, we address the problem of computing the normal vector of

the tangent (2.54). Staying the same as before, we use v1, · · · , vN−1 to denote all

eigenvectors whose eigenvalues have negative real parts. Let vN denote the only

eigenvector whose eigenvalue has positive real part.

We first consider the simplest case, where all eigenvectors of the Jacobian matrix

at the saddle point xe are real. In this case, the tangent hyperplane is the space

spanned by all eigenvectors with negative eigenvalues (2.54). The normal vector of

the tangent can be computed in the following way.

Applying the Gram-Schmidt Orthogonalization Process to

{v1, · · · , vN} (2.56)
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Figure 2.21: Check the tangent crossing point. The trajectory starts from zero, and
crosses the tangent at x2. Because both x2 and the saddle are on the tangent, and
the normal vector is perpendicular to the tangent, the inner product vn ·(x2−xe) is 0.
For a point x1 between zero and x2 on the trajectory, the inner product vn · (x1−xe)
is negative because the angle between vn and x1 − xe is obtuse. For point x3 on the
other side of the tangent, the inner product vn · (x3 − xe) is positive because the
angle is acute. If the normal vector is normalized, the absolute value of the inner
product |vn · (x − xe)| is the distance between the tangent and point x. There are
two normalized normal vectors of a tangent plane with opposite directions: vn and
−vn. The above analysis also applies to −vn. In this case, the three inner products
mentioned before are 0, positive and negative, respectively. In either case, if the
inner product is checked on the fly, when the trajectory is crossing the tangent, the
inner product would change sign. This can be used to check when the trajectory
crosses the tangent.

leads to

{v′1, · · · , v′N}, (2.57)

where all these N vectors obtained are orthonormalized and span{v′1, · · · , v′i} =

span{v1, · · · , vi} for 1 ≤ i ≤ N . Thus

v′N ⊥ span{v′1, · · · , v′N−1}, (2.58)
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and

span{v′1, · · · , v′N−1} = span{v1, · · · , vN−1}, (2.59)

where span{v1, · · · , vN−1} is the tangent hyperplane Therefore, the normal vector of

the tangent plane is

vn = v′N . (2.60)

However, in most situations the Jacobian matrix J is asymmetric. Therefore,

some eigenvalues are likely to be complex numbers. In this scenario, without loss

of generality, let x + iy and u + iv denote one of the complex eigenvalues and the

associated eigenvector, respectively, where x, y are real numbers and u, v are real

vectors. Since J is a real matrix, complex eigenvalues must come in conjugate pairs,

that is, x− iy and u− iv are also an eigenvalue and the corresponding eigenvector of

J , respectively. Because J has only one unstable eigenvector, the associated eigen-

value must be real. Otherwise the unstable eigenvalue as well as the corresponding

eigenvector would come in a pair. Therefore, all complex eigenvalues correspond to

stable eigenvectors of J . In this scenario, before applying the Gram-Schmidt Orthog-

onalization Process to all eigenvectors as shown in (2.56), we add an additional step:

u+ iv and u− iv are replaced by u and v for each conjugate pair in the eigenvector

set. Then, the following steps are carried out as if all eigenvectors are real. In this

procedure, the added step is interpreted as follows.

For the conjugate pair of eigenvalues and eigenvectors

J · (u+ iv) = (x+ iy) · (u+ iv) (2.61)

J · (u− iv) = (x− iy) · (u− iv) (2.62)
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(2.61)+(2.62) and (2.61)-(2.62) lead to

J · u = x · u− y · v, (2.63)

J · v = x · v + y · u. (2.64)

For any vector w ∈ {p|p = s · u+ t · v, s ∈ R, t ∈ R},

J · w = (s · x+ t · y) · u+ (t · x− s · y) · v

∈ {p|p = s · u+ t · v, s ∈ R, t ∈ R}.
(2.65)

Therefore, for any w ∈ span{u, v}, J · w ∈ span{u, v}.

For the dynamic equation of the linearized system

ẋ = J · x, x|t=0 = w, (2.66)

the state x would stay in span{u, v}.

As stated above, we can conclude that the tangent hyperplane is spanned by real

eigenvectors, and real parts and imaginary parts of complex eigenvectors.

2.6.5 The Exact Algorithm for Computing the Separatrix Crossing Time

We assume that the separatrix crossing time is close to the tangent crossing time.

Therefore, a searching based refinement starting from the tangent crossing point is

conducted subsequently. The searching based refinement has two steps: looking for

a time interval including the separatrix crossing time and binary search within this

interval. When looking for the time interval, there are two possibilities. One is that

until the tangent crossing time, the trajectory has not crossed the separatrix. The

other case is that the trajectory crosses the separatrix before reaching the tangent.
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For the first case, the refinement is illustrated in Fig. 2.22 (Left). Let t1 and x(t1)

denote the tangent crossing time and the corresponding state, respectively. Then we

do a transient test which is called check1 starting from x(t1) to check whether t1 is

before the separatrix crossing time or not. For a transient test, the memory circuit

is assumed to be free from noise. In addition, the system inputs are set in a way

as if the memory is in hold. This way, the simulation follows the rule that the test

trajectory would head to certain equilibrium if and only if the starting point is within

its stable region.

As shown in Fig. 2.22 (Left), the result of the transient test starting from x(t1)

indicates that the trajectory has not reached the separatrix. Therefore, we continue

the simulation of the trajectory. Our method does a transient test every time after

the simulation proceeds for ∆t. Since a transient test is time consuming, we reduce

the number of them by doubling ∆t after every use. After finishing check3, which

is the first transient test indicating that the starting point is in the stable region of

one, we know that separatrix crossing time is within the last ∆t, so binary search is

applied to find it.

For the second case, check1 indicate that t1 is in the stable region of one. In

this scenario, the next time point to conduct the transient test is before the tangent

crossing time, as illustrated in Fig. 2.22 (Right).

In the process of refinement, it may happen that one transient test converges to

the saddle or enters a small neighborhood of the saddle. Under this circumstance,

the starting point of the transient test is almost on the stability boundary. Therefore,

the searching process as well as the entire algorithm ends at this point.

The searching based exact algorithm for computing the separatrix crossing time

is summarized in the flowchart in Fig. 2.23.
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Figure 2.22: (Left) Illustration of search for the separatrix crossing point. While
conducting the simulation of the state trajectory starting from zero, it is straightfor-
ward to find out the tangent crossing time t1 by checking the sign of vn ·(x(t)−xe) on
the fly, where vn is the normal vector of the tangent, xe and x(t) are the saddle and
the system state at time point t, respectively. The transient test check1 indicates
that x(t1) is in the stable region of zero. Therefore, the simulation of the trajectory
continues for ∆t and reaches x(t2), where t2 = t1 +∆t. Because x(t2) is still in the
stable region of zero, we double ∆t and continue the simulation until t3 = t2 +∆t.
Since the x(t3) is in the stable region of one, we do binary search in [t2, t3] to find
and check t4 and t5. (Right) The other case of search for the separatrix crossing
point. Here, the transient test check1 indicates that the tangent crossing point x(t1)
is within the stable region of one. Therefore, next state to be checked is x(t2), where
t2 = t1 − ∆t. Because x(t2) is still within the stable region of one, we double ∆t
and check the state x(t3), where t3 = t2 −∆t. Since x(t3) is in the stable region of
zero, the separatrix crossing time is within [t3, t2]. Then, binary search is applied
similarly.
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e : Unstable equilibrium, i.e. the saddle

Perform transient simulation until the state

reaches the tangent of the separatrix at the saddle

Set a small time interval t� for

the following separatrix searching

Perform transient test to check the

location of the tangent crossing point

Change the time point to be checked by t�

to the opposite direction of the transient test

Perform transient test

Is the separatrix

crossing time within

the t� ?

Perform binary search in t�

Double t�

Figure 2.23: Flowchart of the search algorithm. The flow is divided into 3 steps: 1)
The state trajectory starts from the stable equilibrium es1 and reaches the tangent; 2)
As illustrated by the loop, based on the results of transient tests, time points to be
checked change monotonically until a time interval containing the separatrix crossing
time is found; 3) Binary search is applied to find the exact separatrix crossing time.
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2.7 Results

Our biological simulator is implemented in C/C++ by extending an SPICE-like

electronic simulation environment. The sequential quadratic programming optimiza-

tion package [73] is interfaced with our simulation to perform optimization-based

parameter identification. All our experiments are conducted on a Linux server.

2.7.1 Simulation of the Conditional Memory

Within our biological simulation environment, we model the conditional genetic

memory circuit in [18] using the proposed electrical-equivalent models and perform

various dynamic simulations. The reported values in [18] are used to set the model

parameters.

In Fig. 2.24, we demonstrate the write operation of the memory circuit using two

clock signal ( R ) durations: 16 minutes and 15 minutes. In the figure, mR and mS

and the transcription rates for Genes R and S, which are the inputs, and Atotal and

Btotal are the protein concentrations of species A and B, which are the outputs. As

can be seen, a 16-minute long clock signal leads to a success write while the write

operation fails when the duration of the clock signal is reduced to 15 minutes.

In Fig. 2.25, we set two clock signal durations, 53 minutes and 52 minutes, to

write a logic “one” (on-state) to the memory. As can be seen, the duration of 52

minutes is too short, which leads to a failure. In Fig. 2.26, input “R” is held high

for a long period of time. The memory stays in the expected on-state, however, the

protein concentration Atot is lower, indicating that the presence of external inputs

can alter the bistability of the cell, hence making it possible to overwrite the state.

In this case, the presence of high RS signals weakens bistability. This is because

that the resulting dimers R2 and RS reduce the efficiency of promoters A and B,

respectively.

61



0 100 200 300
10

−2

10
−1

10
0

Time(min)

T
ra

ns
cr

ip
tio

n 
R

at
e(

m
in

−1
)

 

 

m
R

m
S

0 100 200 300
0

200

400

600

Time(min)

P
ro

te
in

 C
on

ce
nt

ra
tio

n(
nM

)

 

 

A
total

B
total

0 100 200 300
10

−2

10
−1

10
0

Time(min)

T
ra

ns
cr

ip
tio

n 
R

at
e(

m
in

−1
)

 

 
m

R

m
S

0 100 200 300
0

200

400

600

Time(min)

P
ro

te
in

 C
on

ce
nt

ra
tio

n(
nM

)

 

 

A
total

B
total

Figure 2.24: Writing a “zero”. Left: 16-minute clock signal; Right: 15-minute clock
signal.
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Figure 2.25: Writing a “one”. Left: 53-minute clock signal; Right: 52-minute clock
signal.
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Figure 2.26: Impacts of inputs on bi-stability.
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Next, through simulation, we demonstrate how the change of key biological pa-

rameters will alter the behaviors of the memory. It is understood biologically that

a higher degradation rate of proteins and RNAs leads to faster circuit response [18].

In see this, we double all degradation rates and also double the transcription and

translation rates to maintain the same levels of output proteins. In Fig. 2.27, we

repeat the simulations done in Fig. 2.24. Now for a successful write, the duration

of the clock signal is shortened from 16 minutes to 9 minutes. For the case of writ-

ing a logic “one”, faster circuit responses are also observed as shown in Fig. 2.28.

Variations of biological parameters can also render the circuit loose bistability. We

change the degradation rate of mRNA B from 0.231/min to 0.347/min, and those

for protein B and the dimer B2 from 0.139/min to 0.277/min. As can be seen in

Fig. 2.29, the circuit becomes mono-stable and the off-state cannot be written.

2.7.2 Bayesian Parameter Identification

We demonstrate the application of the proposed parameter identification tech-

niques using two genetic memory circuits. For each of these circuits, lab experi-

ment measurements are mimicked by simulated output responses with added ran-

dom noises. When generating the “measurements”, a set of model parameters are

chosen for each circuit while these model parameters are not exposed to the param-

eter identification process. Since the “exact” models are known, bistability can be

checked before hand and used as a known reference. Running on a Linux server, our

optimization-based parameter identification takes a few hours to complete for each

circuit.

The first genetic memory circuit is created to be bistable. We apply the proposed

two-step parameter identification. The first step successfully identifies the bistability

of the network and the identification proceeds to the second step. Fig. 2.30 shows
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Figure 2.27: Writing a “zero” to the faster circuit. Left: 9-minute clock signal; Right:
8-minute clock signal.
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Figure 2.28: Writing a “one” to the faster circuit. Left: 30-minute clock signal;
Right: 29-minute clock signal.
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Figure 2.29: Loss of bistability due to parameter change.
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Figure 2.30: Parameter identification of the bistable circuit.
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the final parameter identification results in the second step. In the figure, the in-

puts used to generate the measurements are shown on the top. On the bottom, the

“measured” protein output levels (with noise) that are used as the inputs to param-

eter identification are labeled as “experiment” while the ones based on the identified

model are labeled as “identified”. A good agreement between the true model and

the identified model is achieved. To start the iterative optimization based parameter

identification process, an initial guess (model) needs to be provided. The outputs for

this initial model are labeled as “start”. In Table 2.1, the true model and identified

model are compared on the transcription and translation rates of the four DNA or

RNA species.

Table 2.1: True vs. Identified Models for the Bistable Circuit.
Parameter DNA-A DNA-B RNA-A RNA-B

True model 5.0/min 5.0/min 2.3/min 2.3/min
Identified 5.062/min 5.007/min 2.331/min 2.306/min

The second circuit is created to be mono-stable. The first step of parameter

identification successfully identifies the mono-stability and the second step is not

conducted. Similar to Fig. 2.30, we compare the true model, identified model and

initial model but based on the results of the first step, in Fig. 2.31. In this case, the

mono-stable system cannot be written to the off-state properly. Even though the

measured outputs have large noise, the Bayesian inference still predicts the mono-

stability correctly.
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Figure 2.31: Bistability check of the mono-stable circuit.

71



2.7.3 Dynamic Properties of the Memory Circuit - Crossing the Stability

Boundary

In our DNM definitions and dynamic stability analysis, the separatrix crossing

time is of key importance. It represents the time used to flip the memory by certain

excitation. In this subsection, we show two case studies of the conditional memory

shown in Fig. 2.3. Both cases are based upon the same circuit structure, but cell-to-

cell variations are reflected by slightly different parameter values. Here we assume

that all parameters conform to normal distributions and the standard deviation of

each parameter value is 5% of its nominal value.

In the plots for the two case studies, we show tangents instead of the real sep-

aratrices. Since the conditional memory circuit has twenty-two state variables, the

dimensionalities of the full state space and the separatrix are twenty-two and twenty-

one, respectively. Because it is difficult to visualize high-dimensional tangent hyper-

planes, we only show several 2-D subspaces to illustrate the real full state spaces.

These subspaces are A2−B2 planes, A−B planes and R2−RS planes which contain

the saddle point. On each of these planes, the tangent is the intersection of the 2-D

plane mentioned before and the 21-D tangent hyperplane we computed.

For the first case study, all the 34 parameters are at the nominal values. Those of

the second one are randomly picked according to the normal distributions mentioned

before. The state spaces, tangents and trajectories of the two cases are shown in

Fig. 2.32, Fig. 2.33, respectively. In each of these figures, the left, middle and right

plots are for A2 − B2, A− B and R2 − RS planes, respectively. The trajectory and

separatrix crossing point are shown in the top row while the saddle and the tangent

are shown in the bottom row.

For plots in the top row, state trajectories start from the stable equilibrium zero,
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Figure 2.32: State trajectory and the tangent of the separatrix at the saddle for the
case study 1. The initial state of the memory circuit is zero. After activating geneR,
the state is pushed to the stable region of equilibrium one. We show subspaces
A2−B2, A−B and R2−RS of the full state space in three columns. In each plot in
the top row, the trajectory starts from the stable equilibrium state zero, crosses the
separatrix and ends at the tangent. Each of the three plots shows the projections of
the state trajectory and the separatrix crossing point to the corresponding subspace.
In each plot in the bottom row, the straight line is the intersection of the tangent
hyperplane and the 2-dimensional space including the saddle.

under the write signal shown in Fig. 2.14 (Left). The state trajectories cross the

separatrices and end at the tangent crossing points. The separatrix crossing times

and and tangent crossing times are shown in Table 2.2.

Comparing the results of the two cases, it is apparent that small parameter vari-

ations can significantly alter the circuit behaviors. This gives rise to the issue of

parametric sensitivity.
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Figure 2.33: State trajectory and the tangent of the separatrix at the saddle for
the case study 2. The trajectory of the system state starts from zero, and ends at
the tangent crossing point. This trajectory as well as the sepratrix crossing point
is projected to the subspace A2 − B2, A − B and R2 − RS as shown in the three
plots in the top row. Each subspace in plots in the bottom row contains the saddle.
The straight line going through the saddle is the intersection of the corresponding
subspace and the tangent of the separatrix.

Table 2.2: Crossing Times of Separatrices and Tangents.
Cases Separatrix Crossing Time Tangent Crossing Time

Circuit 1 16.53 min 19.08 min
Circuit 2 11.13 min 13.93 min

Separatrix/Tangent crossing times of three circuits with different parameters.
Parameter values of circuit 1 are nominal values, and circuit 2 is a randomly picked
case. Results of these two circuits are very different.

2.7.4 Parametric Sensitivity - Individual Differences on Dynamic Properties and

Robustness

In this subsection, we more extensively study the influence of cell-to-cell varia-

tions, reflected by varying circuit model parameters. Here, we model each varying
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model parameter as a Gaussian random variable with standard deviation equal to

5% of the mean. We first show two case studies of parametric sensitivities where

individual differences have a significant impact on the dynamic property of systems.

In each of the two case studies, we allow only one parameter to be a Gaussian ran-

dom variable with all other parameters fixed to their nominal values. The varied

parameters are the transcription rate of geneA and the dimerization rate of protein

R for the two cases, respectively.

30 cases are computed for each case study. The results of these two case studies

are shown in Fig. 2.34 and Fig. 2.35, respectively. In each figure, the left histogram is

for separatrix crossing times and the right one is for tangent crossing times. For each

of the four distributions the average value, standard deviation and the coefficient of

variation, which is defined as the ratio of the standard deviation and the mean value,

of the separatrix crossing times are listed in Table 2.3.
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Figure 2.34: Parametric sensitivity to the transcription rate of geneA. The tran-
scription rate of geneA conforms to Gaussian distribution, of which the standard
deviation is 5% of its mean value. 30 random cases are computed. The left plot
is the distribution of separatrix crossing times and the right one is that of tangent
crossing times.

Here we use the following metric to reflect the sensitivity of the separatrix crossing
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Figure 2.35: Parametric sensitivity to the dimerization rate of protein R. The dimer-
ization rate of protein R conforms to Gaussian distribution, of which the standard
deviation equals to 5% of its mean value. We computed 30 random cases. The dis-
tribution on the left is for separatrix crossing times. The one on the right is for the
distribution of tangent crossing times.

Table 2.3: Mean Values and Standard Deviations of Separatrix/Tangent Crossing
Times.

Random Parameter
Transcription
Rate of Gene A

Dimerization Rate
of Protein R

Separatrix
Crossing
Time

mean value 21.173 min 16.003 min
standard deviation 2.725 min 0.2853 min
CV 0.1287 0.01783

Tangent
Crossing
Time

mean value 22.813 min 17.962 min
standard deviation 2.167 min 0.6187 min
CV 0.09499 0.03444

Distributions of separatrix crossing times and tangent crossing times under the
variation of transcription rate of geneA and dimerization rate of protein R. These
two variations have different levels of influence on the dynamic properties of the
system. For the same parameter variation, separatrix crossing time and tangent
crossing time have different sensitivities. CV = coefficient of variation

time with respect to a parameter p

Sp =
CVt

CVp

, (2.67)

where CVt and CVp stands for the coefficients of variation of the separatrix crossing
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time and p, respectively.

For both of the two cases, the coefficient of variation for each parameter is 0.05.

In the first case, the coefficient of variation for the separatrix crossing time is 0.1287.

The parametric sensitivity is 2.574. For the second case, the coefficient of variation

for the separatrix crossing time is 0.01783. The parametric sensitivity is 0.3566. It

is apparent that sensitivities of these two parameters have a considerable difference.

In a similar way, we compute more random cases, and obtain the distribution of

the separatrix crossing times for each types of parameters in Table 2.4. The resulting

histograms are shown in Fig. 2.36. Statistical parameters of these distributions are

shown in Table 2.5. For most histograms, we compute 160 random cases with varied

RNA lifetimes, protein lifetimes, bonding/unbonding rates, transcription/translation

rates and dimerization rates, respectively. (For histogram d and f , we compute

107 and 149 cases, respectively.) Here all random parameters conform to Gaussian

distributions, and the standard deviations are 2% of their nominal values.

In view of results for all the subsets, it is clear that the system is more sensitive

to reaction rates in the toggle switch, than in the front-end.

2.7.5 Fast Dynamic Noise Margin Analysis Using Separatrix Tangents

For each set of parameters considered in the previous subsection, we also com-

pute the tangent approximations and tangent crossing times. Histograms of tangent

crossing times are shown in Fig. 2.37. Shapes of most distributions are similar to

those of the separatrix crossing times.

In almost every case, a memory circuit has different separatrix crossing time

and tangent crossing time. The relative difference, which is defined as the ratio of

the difference and the corresponding separatrix crossing time, also varies greatly for

different sets of parameters. The average relative difference computed for all cases is
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Figure 2.36: Parametric sensitivities of the separatrix crossing time. Each plot is a
distribution of separatrix crossing times under parameter variations. The standard
deviations of the studied parameters are 2% of their nominal values. We computed
160 cases for most of these plots except that 107 and 149 cases are computed for his-
tograms d and f , respectively. For lifetimes of RNAs, and transcription/translation
rates, the variances of the distributions are large. Therefore, we also studied these
parameters of the toggle switch and the front-end separately. The comparison be-
tween plots b and c, and that between h and i show that the separatrix crossing time
is more sensitive to parameters of the toggle switch than those of the front-end. In-
terestingly, sensitivities of the separatrix crossing time to variations of dimerization
rates are much smaller than those of other parameters.
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Figure 2.37: Parametric sensitivities of the tangent crossing time. Distributions
of tangent crossing times under variations of different parameters. 160 cases are
computed for each histogram except for d and f , for which we compute 107 and
149 cases, respectively. Since the variances of tangent crossing time distributions are
large for variations of protein/RNA lifetimes and transcription/translation rates, we
split these parameters into smaller groups and study them in histogram b, c, g, h
and i.
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Table 2.4: Different Types of Parameters.

Figures
Number of
Parameters

Parameters

a 4 Lifetimes of RNAA, RNAB, RNAR and RNAS

b 2 Lifetimes of RNAA and RNAB

c 2 Lifetimes of RNAR and RNAS

d 8 Lifetimes of protein A, B, R, S, A2, B2, R2 and RS

e 8
Binding and unbinding rate constants for A2, B2, R2

and RS

f 6
Translation rate constants of RNAA, RNAB, RNAR

and RNAS Transcription rate constants of geneA and
geneB

g 2 Transcription rate constants of geneA and geneB
h 2 Translation rate constants of RNAA and RNAB

i 2 Translation rate constants of RNAR and RNAS

j 8
Dimerization and inverse dimerization rates constant
for A2, B2, R2 and RS

Different types of parameters studied in Fig. 2.36 and Fig. 2.37. All 34 parameters
are split into 5 groups and studied in panels a, d, e, f and j, respectively.
Parameters in the group studied in panel a are further divided into two subgroups
and studied in panels b and c. Similarly, the group studied in panel f is split into
three subgroups studied in g, h and i.

13.36%. For different sets of parameters, the smallest average relative difference is

7.73%, which is for variations of transcription/translation rates in the toggle switch.

For the bistability analysis of the conditional memory, the tangent approximation

is always faster than the exact algorithm. Under variations of transcription rates and

translation rates, we conduct experiments on a shared memory Linux server with two

quad-core Intel Xeon processors with 2.33GHz clock speed and 8GB memory. On

average, computations of the tangent crossing time and separatrix crossing time in

the twenty-two-dimensional state space for a single case take 10.2 seconds and 27.0

seconds, respectively. The speedup is 2.65×. In studies of statistical characteristics
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Table 2.5: Statistical Parameters of Separatrix Crossing Time.
Figures Mean Value (min) Standard Deviation (min)

a 27.324 8.436
b 24.139 8.432
c 14.924 1.990
d 14.105 6.752
e 18.612 7.704
f 17.434 7.591
g 23.723 7.591
h 23.723 7.591
i 15.161 1.689
j 16.428 0.268

Statistical parameters of each distribution in Fig. 2.36. The mean values and
standard deviations of each histogram are shown in the second and third column of
each row.

such as parametric sensitivities in the previous subsection where thousands of cases

have to be computed, the fast DNM analysis saves time considerably.

2.8 Discussion

2.8.1 Dynamic Stability Analysis of General Multi-Stable Systems

For a multistable genetic regulatory network, a stable equilibrium represents a

gene expression profile, of which each gene has a stable expression level. Besides

the genetic conditional memory we discussed in the previous sections, multistability

is also a common attribute for other biological systems and has caught a lot of

attention [79–83]. In these previous works, transitions between stable equilibria in

multistable systems are topics of interest. In these systems, designed inductions force

the expressions of certain genes. While the detailed working mechanisms of many of

these systems are not fully understood, the use of partially complete dynamic models

provides valuable insights into the dynamic characteristics of the system. With
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more biological details becoming available, refined models will provide increasing

understanding of these systems. It is worthwhile to note that while these systems

may differ significantly in terms of biochemical characteristics and time scales, from

a dynamic system perspective, they all share a common attribute: multistability. It

is possible to extend the presented work to study the dynamic characteristics of such

systems, when appropriate, to aid the system design.

In multistable systems, there might be multiple saddles. Under this circumstance,

there is a tangent hyperplane associated with each saddle. By applying our approach,

each tangent hyperplane computed approximates one part of the separatrix in the

state space of the system. After obtaining all tangent hyperplane of all saddles,

stability boundaries of the state space are approximated. In addition, this may

provide insights into the stable region of each stable equilibrium.

2.8.2 Parametric Sensitivity

From Fig. 2.36 and Table 2.5, it is apparent that the sensitivities of separatrix

crossing time with respect to different sets of parameters vary a lot. Fig. 2.36.b and

Fig. 2.36.c show that the sensitivities to the RNA lifetimes in the toggle switch part

are greater than those in the front-end. This is also true for the translation rates

as revealed in Fig. 2.36.h and Fig. 2.36.i. This phenomenon is probably caused by

different ways in which the toggle switch and the front-end influence gene expressions

in the network. In both components, the RNA lifetimes and translation rates directly

control the quantities of proteins that are produced. However, there exist structural

differences between the toggle switch and the front-end. In the front-end, each protein

has only one binding site on its target gene, while in the toggle switch part, each gene

has two binding sites. Furthermore, the toggle switch itself is a positive feedback

loop which may amplify the the effect of binding. Such structural differences may
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contribute to the observed parameter sensitivity differences.

In a nonlinear dynamic system, various parametric variations may interact. There-

fore, they may alter statistical characteristics of the interested performance other

than the standard deviation. For example, Fig. 2.36.a and Fig. 2.36.b show the

histograms of the separatrix crossing times with the variations of all RNA lifetimes

in the network, and only with those of the toggle switch part, respectively. It is

clearly seen that the two cases produce close variances of the separtrix crossing time,

although the former includes a larger number of parametric variations. However,

a closer inspection reveals that the former case does introduce a larger mean shift,

which is likely to see in a nonlinear network.

It is instrumental to understand the parametric sensitivities of key system perfor-

mances with respect to main variational sources in the network. The knowledge of

parametric sensitivities helps to identify dominant sources of variability and provides

guidance in robust system design.

2.9 Summary

In this section, we have presented a simulation environment for biological genetic

memory networks. The presented electrical-equivalent modeling allows the extension

of an electrical circuit simulator for biological applications. The proposed Bayesian

based parameter identification is shown to be able to correctly and accurately iden-

tify the system model under simulated noisy measurements. The dynamic stability

of a genetic conditional memory circuit is quantitatively characterized by the new

dynamic noise margins which capture both the amplitudes and durations of noise per-

turbations. Based on rigorous system theory and the concept of stability boundary

(separatrix), we have developed an exact algorithm for the computation of dynamic

noise margins. A faster computation based on tangent approximation of the separa-
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trix is also presented. Parametric analysis show that due to differences in structure,

time scales and nonlinear interactions between multiple reactions, the sensitivities of

the dynamic stability of the memory circuit to different biochemical reactions in the

network varied significantly. The efficiency of the proposed algorithms is instrumen-

tal in analyzing dynamic stability. With proper extensions, presented techniques are

broadly applicable to other multi-stable biological systems.
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3. MODELING AND BIOPHYSICALLY BASED SIMULATION STUDY OF

THE BRAIN1

The previous section shows the application of mathematical modeling and com-

puter simulation to the study of relatively small genetic regulatory memory circuit.

However, for complicated biological systems, an additional challenge is that large

models and large amount of computations may be required to capture their behav-

iors and functions. In this section, to facilitate the study of brain behaviors, we build

large-scale brain models with detailed cellular mechanisms to capture physiological

and pathological behaviors of the brain and develop dedicated numerical techniques

to tackle the computational challenge.

To understand brain behaviors, it is important to directly associate the network

level activities to the underlying biophysical mechanisms, which requires large-scale

simulations with biophysically realistic neural models like Hodgkin-Huxley models.

However, when simulations are conducted on models with sufficient biophysical de-

tails, great challenges arise from limited computer power, thereby restricting most

existing computational works with biophysical models only to small-scale networks.

On the other hand, with the emergence of powerful computing platforms, many recent

works are geared to performing large-scale simulations with simple spiking models.

However, the applicability of those works is limited by the nature of the underlying

phenomenological model. To bridge the gap, an intermediate step is taken to con-

struct a scalable brain model with sufficient biophysical details. In this work, great

efforts are devoted to taking into account not only local cortical microcircuits but

1Reprinted from Y. Zhang, B. Yan, M. Wang, J. Hu, and P. Li. Linking brain behavior to
underlying cellular mechanisms via large-scale brain modeling and simulation. Neurocomputing,
97:317-331, 2012, Copyright (2012), with permission from Elsevier.
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also the global brain architecture, and efficient techniques are proposed and adopted

to address the associated computational challenges in simulation of networks of such

complexity. With the customized simulator developed, we are able to simulate the

brain model to generate not only sleep spindle and delta waves but also the spike-

and-wave pattern of absence seizures, and directly link those behaviors to underlying

biophysical mechanism. Those initial results are interesting because they show the

possibility to determine underlying causes of diseases by simulating the biologically

realistic brain model. With further development, the work is geared to assisting the

clinicians in selecting the optimal treatment on an individual basis in the future.

3.1 Models

Modeling and simulation are two different aspects. In this section, we present

techniques for modeling brain networks. We focus on the construction of the large-

scale biophysically realistic brain model. We limit our scope to thalamocortical

oscillations to study the mechanisms underlying the transition between physiologi-

cal and pathological oscillations. The various oscillatory rhythms generated in the

thalamocortical system are mediated by intrinsic mechanisms (ion channels), which

depend on the interplay between specific intrinsic currents, and network mechanisms

(synaptic receptors, axon delays, etc), which require the interaction of excitatory and

inhibitory neurons within a population [84].

In order to reproduce typical physiological and pathological oscillations, a large

number of mechanisms suggested by studies in vivo, in vitro, and in silico, have to

be taken into consideration and integrated together in a consistent way [85]. In the

following part, we describe the construction of the model and briefly mention the

relevance of the model parameters to the biological phenomena of interest.
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3.1.1 Models of Neurons and Underlying Biophysical Mechanisms

Based on morphology and functionality, the neurons in our model are classified

into twenty-two basic types as shown in Table 3.1 [41]. As dendrites of some neurons

stretch for long distance, a multi-compartment neural model can span several cortical

layers. Since the functionality of axons is to transmit signals, we only consider their

delays in the model.

Table 3.1: Twenty-Two Basic Neuron Types.

Location Neuron Type Excitability Description

Cortex

p2/3 Excitatory Pyramidal in L2/3

ss4(L2/3) Excitatory Spiny stellate in L4 (project to L2/3)

ss4(L4) Excitatory Spiny stellate in L4

p4 Excitatory Pyramidal in L4 (project to L4)

p5(L2/3) Excitatory Pyramidal in L5 (project to L2/3)

p5(L5/6) Excitatory Pyramidal in L5 (project to L5/6)

p6(L4) Excitatory Pyramidal in L6 (project to L4)

p6(L5/6) Excitatory Pyramidal in L6 (project to L5/6)

b2/3,b4,b5,b6 Inhibitory Basket interneurons in L2/3/4/5

nb1,nb2/3,nb4,nb5,nb6 Inhibitory Non-basket interneurons in all layers

Thalamus

TCs/TCn Excitatory
Thalamocortical relay cells in
specific/nonspecific nucleus

TIs/TIn Inhibitory
Thalamocortical interneurons in
specific/nonspecific nucleus

RE Inhibitory Thalamic reticular cells

3.1.1.1 Compartment Model

For each of the compartments, the Hodgkin-Huxley model is used to describe its

dynamics

C
dV

dt
= −gleak(V − Eleak)−

∑
i

I iint −
∑
j

Ijsyn −
∑
k

Ikcc, (3.1)
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where C is the specific capacitance of the neuron membrane, V is the membrane

potential, gleak is the conductance for the leakage current, Eleak is the reversal po-

tential for the leakage current,
∑

i I
i
int is the sum of intrinsic ion currents,

∑
j I

j
syn is

the sum of synaptic currents, and
∑

k I
k
cc is the sum of currents flowing into or out

of the neighboring compartments when there are differences in potentials.

3.1.1.2 Models of Ion Channels

Intrinsic mechanisms play important roles in mediating thalamocortical oscilla-

tions. Certain physiological oscillation patterns can be generated by intrinsic mech-

anisms alone. For example, thalamic delta (1 − 4 Hz) is a well known example

of rhythmic activity generated intrinsically by thalamic relay neurons [86]. When

combined with network mechanisms, more physiological oscillation patterns can be

generated as discussed in the next section.

Intrinsic currents Iint of an ion channels are modeled by kinetic models of the

Hodgkin and Huxley type [31] described by the following equations

Iint = ḡintm
NhM(V − Eint)

ṁ = αm(1−m)− βmm

ḣ = αh(1− h)− βhh,

(3.2)

where ḡint is the maximal conductance, and Eint is the reversal potential. The gating

properties of the current are dependent on N activation gates and M inactivation

gates, with m and h representing the fraction of gates in open form and with re-

spective rate constants αm, βm, αh, and βh. Rate constants are dependent on either

membrane voltage or intracellular calcium concentration.

Some representative ion channels in our model are introduced as follows. Na+

and K+ currents contribute to action potentials and are included in all the cell
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models [44]. Interneuron cells contain only Na+ and K+ currents and produce “fast-

spiking” [43] firing. For the pyramidal cells, one additional slow voltage-dependent

K+ current (IM) [46] producing “regular-spiking” pattern characterized by adapta-

tion is modeled [43]. There are T-currents in the model of thalamic cells such that

bursts of action potentials can be produced. The T-current in reticular cells ITs are

of slow kinetics, which is given in [45, 48]. The T-current in thalamocortical cells

IT is modeled by kinetics similar to the model of [45] with activation considered at

steady state and inactivation described by a first order equation [47]. Thalamus plays

an important role as it can spontaneously oscillate at low frequencies (<4 Hz) due

to the post-inhibitory rebound bursting property of the T-current in thalamocortical

cells. In addition to IT , thalamocortical cells also include leak potassium current IKL

and hyperpolarization-activated inward current Ih [47]. We only consider the volt-

age dependence of Ih and do not include the upregulation of Ih by intracellular Ca2+

which leads to wax-and-wanning properties. The electrical parameters of neurons of

different types are summarized in Table 3.2.

Table 3.2: Electrical parameters of neurons of different types.

Neuron Type C(nF ) gL(S) gNa(S) gK(S) gM (S) gT (S) gTs(S) gh(S) gKL(S)

p2/3,p4,p5,p6,ss4 0.12 2.43e−9 6.63e−6 0.71e−6 8.88e−9 0 0 0 0

b2/3,b4,b5,b6 0.1 3.87e−9 5.9e−6 0.4e−6 8e−9 0 0 0 0

nb1 0.05 0.94e−9 2.5e−6 0.2e−6 1.4e−9 0.2e−7 0 0 0

nb2/3,nb4,nb5,nb6 0.25 4.7e−9 12.5e−6 1e−6 7e−9 1e−7 0 0 0

TCs/TCn 0.29 2.9e−9 2.61e−5 0.29e−5 0 5.8e−7 0 5.8e−9 3e−9

TIs/TIn 0.029 2.9e−10 2.61e−6 0.29e−6 0 5.8e−8 0 5.8e−10 3e−10

TRN 0.14 7e−9 2.8e−5 0.28e−5 0 0 4.2e−7 0 0

A wide variety of ion channels are believed to play important roles in the gen-
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eration of seizures, and some of them are important targets for anti-epileptic drug

design [85].

3.1.1.3 Models of Synaptic Receptors

In addition to intrinsic mechanism, various oscillatory rhythms generated in the

thalamocortical system are also mediated by network mechanisms, which require the

interaction of excitatory and inhibitory neurons mediated by various synaptic recep-

tors. For example, spindle oscillations [87–89] depend on the interaction between

thalamic relay and reticular neurons as well as on their intrinsic properties. Network

mechanisms also have direct influence on the generation of pathological oscillations.

For example, when a shift from dominant inhibition to dominant excitation in a

neuronal network occurs, the network tends to transit from physiological oscillations

to seizure-like oscillations.

Therefore, detailed modeling of those synaptic receptors are extremely important

to investigate the role of biophysical and molecular properties of neurons in causing

brain disorders and thus provide valuable insight on therapeutic intervention [85].

As shown in Fig. 3.1, in the Hodgkin-Huxley type model of a compartment, the

total synaptic currents is the summation of currents flowing through all receptors,

∑
j

Ijsyn =

nAMPA∑
i=1

gAMPAi
· (V − EAMPA)

+

nNMDA∑
i=1

gNMDAi
·

(V + 80)2

(V + 80)2 + 602
· (V − ENMDA)

+

nGABAA∑
i=1

gGABAAi
· (V − EGABAA

)

+

nGABAB∑
i=1

gGABABi
· (V − EGABAB

),

(3.3)

where nAMPA, nNMDA, nGABAA
and nGABAB

are the number of AMPA, NMDA,

GABAA and GABAB receptors on the compartment, and EAMPA, ENMDA, EGABAA
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Figure 3.1: Hodgkin-Huxley type model of a compartment. In the model, gNa, gK
are conductances and ENa, EK are reversal potentials of Na+ and K+ ion channels,
respectively; gL and EL are leakage conductance and reversal potential; C is the
membrane capacitance; gGABAA

, gGABAB
and ECl, EK are conductances and rever-

sal potentials of inhibitory synaptic receptors GABAA and GABAB, respectively;
gAMPA, gNMDA are the conductances of excitatory synaptic receptors AMPA and
NMDA and the corresponding reversal potentials of both are 0V .

and EGABAB
are the corresponding reversal potentials, respectively. Typically, EAMPA =

0mV , ENMDA = 0mV , EGABAA
= −70mV and EGABAB

= −95mV .

The dynamic response of gAMPA, gNMDA and gGABAA
to an input arriving at time

t = tj can be obtained by solving the following differential equation [90]

d2gj(t)

dt2
+

2

τ
· dgj(t)

dt
+

1

τ 2
· gj(t) = 0, (3.4)

with initial conditions

gj(t)|t=0 = 0

dgj(t)

dt
|t=0 =

aje

τ
,

(3.5)

where aj denotes the peak amplitude, τ denotes the time-to-peak value, and e is

the base of the natural logarithms. Note that, by exploring linearity, the responses

of all the inputs applied to the synaptic receptors of the same type in the same

compartment can be merged to significantly reduce the cost of computation [90].
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Due to the nonlinear property, the models of GABAB receptors are described by

the following different equations [91]

IGBABB
= ḡGBABB

sn+KD

sn
(V − EGABAB

)

ṙ = K1[T ](1− r)−K2r

ṡ = K3r −K4s,

(3.6)

where [T ] is the GABA concentration in the synaptic cleft, r is the fraction of GABAB

receptors in the activated form, s is the normalized G-protein concentration in acti-

vated form, ḡGABAB
is the maximal postsynaptic conductance of K+ channels, KD

is the dissociation constant of G-protein binding on K+ channels, V is the postsy-

naptic membrane potential, and EGABAB
is the reversal potential. The parameters

are as follows: KD = 100, K1 = 9 × 104M−1s−1, K2 = 1.2s−1, K3 = 180s−1, and

K4 = 34s−1, with n = 4 binding sites. As shown in the studies[53], the nonlinearity

of GBABB receptors are playing an important roles in seizure generation.

Synaptic receptors play complex roles in the generation of epileptic activity. For

example, although both GABAA and GABAB are inhibitory, while GABAA receptor

is generally believed to inhibit seizure activity, GABAB receptor has been shown

to induce absence seizure like activity [92–95]. As a result, while many anti-absence

drug (clobazam, clonazepam, pheobarbital, primidone, etc.) are designed as GABAA

agonists to inhibit seizures, GABAB antagonists hold the promise as anticonvulsants

for absence seizures.

3.1.2 Models of Local Cortical Circuitry and Global Connections

Most existing simulations works based on biophysically realistic models are only

limited to local cortical circuitry and do not take into consideration the global struc-

ture of the brain, which includes multiple cortical regions connected by the white
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matter pathways. However, those ignored elements can play important roles in gen-

erating both physiological and pathological behaviors of the brain.

Normal brain function requires the dynamic interaction of functionally specialized

but widely distributed cortical regions. Long-range synchronization of oscillatory

signals has been suggested to mediate these interactions within large-scale cortical

networks, and thus dynamically establish such task-dependent networks of cortical

regions [96]. Disturbances of such synchronized networks have been implicated in

several brain disorders, such as schizophrenia, autism, epilepsy, Alzheimer’s disease,

and Parkinson’s disease [97]. For example, in terms of absence seizure, recent research

has suggested that cortical local and long-range synchronization interplay plays an

important role in human absence seizure initiation [98].

To take into consideration all the relevant factors, the global structure of the brain

is explicitly modeled in our brain model, which includes multiple cortical regions

and thalamic nuclei. As illustrated by Fig. 3.2(Top), a total number of seventy

regions are being modeled in this model, and each region includes a cortical part

and a thalamic part. The global connections are derived from a macroscopic cortico-

cortical connectivity network derived from a diffusion-magnetic resonance imaging

(MRI) data set[42]. The relative connectivity between all cortical region pairs is

quantified by an structural adjacency matrix (SAM). Based on the distance between

regions and the signal speed of 1 m/s for myelinated fibers in whiter matter, we

calculate the delays of global connections.

The local cortical circuitry in each region is based on the detailed reconstruction

studies of cat area 17 (visual cortex) [40]. To construct the model, it is important

to estimate the relative distribution of neuronal types, the relative distribution of

synapses, and the typical axonal arborizations of various neuronal types. The relative

distribution of neuronal types in the model is based on the published data in [37, 38,
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Cerebral 

Cortex

Thalamus

Figure 3.2: (Top) Illustration of the entire brain model. The entire model is divided
into many regions. (Bottom) Illustration of a region in the brain model. In a brain
region, dots on the contact of axons and dendrites represent local connections. Axons
across the region boundary (dashed line) may form global connections with dendrites
of neurons in other regions.

40], the relative distribution of synapses in the cortex is based on the data in [40],

the relative distribution of synapses in the thalamus is based on the data in [39],

and the typical axonal arborizations of various neuronal types are based on the data
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in [35, 36]. The above mentioned data were summarized as a distribution matrix,

and applied to build phenomenological brain models [41].

3.2 Efficient Network Simulation Techniques

As we mentioned before, modeling and simulation are two different aspects. In

this section, we present simulation. To study the physiological and pathological

behaviors of the brain, we have constructed a brain model with sufficient biophysical

details as described in the previous section. However, significant challenges exist

when simulating networks of such complexity. To tackle computational challenges,

a customized simulator has been built. In this section, we first give a brief overview

of some important aspects of the parallel simulator, and then focus on an advanced

numerical integration technique proposed for neural network simulation.

3.2.1 Overview of the Parallel Simulator

In order to address the computational challenge, efficient techniques have been

proposed and adopted in our simulator from different angles including locality en-

hancement, telescopic projective integration, linear receptor merging, and parallel

computing with dynamic load balance.

3.2.1.1 Efficient Simulation by Locality Enhancement

The time scales of the model behavior in the network level are quite different.

While the time granularity for simulating the neuronal behavior has to be as small

as 0.01 ms, the axon delay ranges from milliseconds to dozens of milliseconds. This

prompts us to adopt two different time steps for the whole network simulation. A

similar ideal has been suggested in [99].

If we use ∆Tnet and ∆Tcell as the macro-step and micro-step, respectively (∆Tnet =

0.01 ms and ∆Tcell = 1 ms in our simulation), during each macro-step, one neuron
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can be continuously simulated using multiple micro-steps without considering the ac-

tivities of others. As cache locality is enhanced by continuous simulating one neuron

for a longer period of time, accesses to global memory can be significantly reduced

and thus the efficiency of simulation can be increased. To do this without sacrific-

ing the accuracy, all the inputs to the neuron being simulated in the period of one

macro-step have to be known a priori when the simulation of this macro-step starts.

As each macro-step is smaller or equal to the axonal delay by definition, the require-

ment is satisfied by the fact that all the inputs to the neuron being simulated in the

period of one macro-step are caused by the firings of other neurons in the previous

macro-steps. Note that the locality enhancement does not change the brain model

and simulation accuracy. Thus, the simulated brain behaviors are not affected.

3.2.1.2 Telescopic Projective Integration Method

While locality enhancement method is leveraged to speedup simulation in a

network-level, in each macrostep, all the neurons have to be simulated with some

numerical integration method for a large number of microsteps. To further mitigate

the computational cost in the cell-level, a telescopic projective based explicit inte-

gration technique is proposed to boost efficiency. The method will be described in

detail in Section 3.2.2.

3.2.1.3 Efficient Modeling by Merging Linear Receptor Models

For the biologically realistic model, as the number of synapses per compartment

is much larger than the number of ion channels, the majority of these differential

equations are for the modeling of synaptic receptors, which accounts for most of

the computational effort in simulation. While the number of synaptic receptors is

large, as discussed before, most of the synaptic receptors (AMPA, GABAA, NMDA)

are typically described by simple linear model. By exploring linearity of synaptic
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receptors, the responses of all the inputs applied to the synaptic receptors of the same

type on a given compartment are merged mathematically in our implementation,

which significantly reduce the cost of computation without sacrificing accuracy [90].

3.2.1.4 Parallel Implementation with Dynamic Load Balancing

The brain simulator is implemented on a 24-core PowerEdge R715 machine with

2 AMD Operton 2.2GHz 12-core processors and 32GB RAM. Multi-thread paral-

lelization is adopted in our simulation, which allows a maximum of 24 threads to

work simultaneously. Since the simulation of the network has to be synchronized for

each ∆Tnet time step, we conduct the parallelization for each ∆Tnet of simulation

time. To dynamically adjust the load of each thread based on the load distribution,

we adopt the dimension exchange method [100–102] with neighborhood averaging

scheme for load balancing [103].

3.2.2 Telescopic Projective Integration Method

In this section, we first briefly compare explicit and implicit integration techniques

when applied to neuronal network simulation. To relax the stability constraint of

the former, we propose a telescopic projective integration framework, and a stability

analysis is given to demonstrate the efficacy. Finally, on top of enhanced stability,

we present an on-the-fly error control mechanism to meet the accuracy requirement

of network simulation.

3.2.2.1 Explicit and Implicit Integrations

Implicit integration methods like backward Euler and Crank-Nicholson method

are adopted by most existing simulation tools [49, 50] due to their good stability

properties. On the other hand, from an efficiency point of view, explicit integration

methods are very appealing for simulating large-scale brain models. Their application
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relaxes the needs for solving any coupled nonlinear system of equations using an

iterative method such as the Newton method, and hence the underlying matrix

problems as well, whose cost grow superlinearly with the problem size. One of the

key limitations of standard explicit methods (e.g. forward Euler) is the key stability

property. A small enough time step size must be chosen in order to sufficiently damp

the fast error components of the system so as to ensure the stability. In this work,

an advanced multi-level explicit integration method with enhanced stability is used.

3.2.2.2 Projective Integration

To boost the step size, we adopt and develop more advanced stable numerical

integration methods based on the recently developed telescopic projective integration

framework[104]. Often, the long term transient responses of a system are mainly de-

termined by slow components (corresponding to large time constants) in the network.

Fast components only exist for a short period of time and dissipate quickly. Since

it is often sufficient to only track the slow components in the transient responses, it

is desirable to use a time step that is comparable to large time constants. In this

regard, the problem with a standard explicit integration method (e.g. forward Euler)

is that the step size has to be comparable to the smallest time constant to maintain

stability, a significant constraint on efficiency. This problem can be alleviated by

adopting the projective integration method shown in Fig. 3.3(Top)

Intuitively, to ensure stability, n+1 explicit integration (e.g. forward Euler) steps

are taken at the inner loop to integrate the system from, say from time t0 to time

tn+1. Here, a small step size is used to sufficiently damp fast transient responses.

Then, a large projective or extrapolation step with a step size commensurate with

the slow time constants is taken to project into the forward direction of time to derive
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Figure 3.3: (Top) Illustration of projective integration method. There are n + 1
small steps of forward Euler integration at the beginning followed by a projective
integration step. (Bottom) An example of projective integration method in (a),
which shows how projective integration method works for the simulation of a curve
decreasing exponentially with time.

the response at time tn+1+M (M is desired to be large)

xn+1+M = (M + 1)xn+1 −Mxn (3.7)

where xn+1 and xn are the solutions at the last two time points computed at the

inner loop.

From a stability point of view, the sequence of n+1 integration steps with a

small step size exponentially (in n) damps the numerical integration error, while the

potential error amplification incurred by the large projective step is only linear in

step size. This makes it possible to maintain a large M without sacrificing stability.
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Hence, the combination of several small integration steps and one large extrapolation

step boosts the effective step size of the overall integration scheme.

3.2.2.3 Stability Analysis

In this section, we compare projective integration methods with standard forward

Euler based a linear stability analysis.

Consider the standard test problem for stability analysis: ẏ = f(y), which repre-

sents a linear differential equation. For the system ẏ = f(y), the stability of a linear

numerical integration technique can be equivalently analyzed by considering a set of

scalar equations in the form

ẏ = λy (3.8)

where the λ is an eigenvalue of A. Starting from the initial condition y(t0) = y0, the

application of the inner integrator to equation (3.8) over a single step with step size

h gives

y1 = ρ(hλ)y0, (3.9)

where ρ is the amplification factor of the method, which is ρ(hλ) = 1+hλ for forward

Euler. Suppose that the error at t0 corresponding to eigenvalue λ is ϵ0. After n inner

integration steps, the amplified error will be

ϵn = ρ(hλ)nϵ0 (3.10)

where

σ(hλ) = [(M + 1)ρ(hλ)−M ]ρ(hλ)n. (3.11)

Therefore, the region of absolute stability in the hλ-plane is the set of hλ for which

|σ(hλ)| ≤ 1, which can be found by plotting the locus of all hλ for which |σ(hλ)| = 1.
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This locus will divide the hλ-plane into two or more continuous regions. If any point

in a region is stable, then all the points in the region are stable by continuity.

Fig. 3.4 shows the comparison of stability regions of different methods. First, we

take a look at the the projective integration methods with stepsize h with n = 2 and

M = 5, 7, 9, respectively. As shown in Fig. 3.4, the stability region has split into

two parts as M increases. This means the method is suitable to handle very stiff

problems if the eigenvalues are separated into two clusters, one containing the stiff,

or fast, components, and one containing the slow components. By carefully choosing

the parameters k and M , the two parts of the stability regions can cover the two

clusters of the eigenvalues of the system.

As shown in Fig. 3.4, the stability region of forward Euler of size h (FE(h))

is the unit circle centered at (−1, 0), which is determined by |1 + hλ| ≤ 1. Note

here, to satisfy the stability constraint, the time step h cannot be more than twice

as large as the smallest time constant of the system. This significantly limits the

efficiency of simulation. In this regard, projective methods are more efficient due

to the use of large extrapolation step, which has a stepsize of Mh. For example,

compared with projective integration with n = 2 and M = 9 (P2-9), forward Euler

takes 12(= n+1+M) steps calculation but projective integration method only takes

4(= n+1+1) steps calculation ( 3 inner integrations and 1 extrapolation). In order

to achieve the same cost as method P2-9, forward Euler needs to use step sizes three

times larger. In this case, as shown in Fig. 3.4, the stability region of method FE(3h)

is much smaller and not sufficient to cover those fast components anymore.

3.2.2.4 Telescopic Projective Integration

It can be shown that with proper choices of n and M the projective integrator

maintains the so-called [0, 1] stability [104]. However, in practice, when the eigen-
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Figure 3.4: The comparison of stability regions of different methods, where FE(h) is
forward Euler with stepsize h, P2-5, P2-7, P2-9, are projective integrations of size h
with k = 2 and M = 5, 7, 9, respectively, and FE(3h) is forward Euler with stepsize
3h, whose computational cost is the same as P2-9.

values of the system are widely distributed with no clear clustering or the eigenvalue

distribution is not known a priori, the step size of the outer projective step must

be conservatively controlled to ensure stability. In other words, M needs to be cho-

sen conservatively small to ensure the [0, 1] stability, leading to reduced step size

amplification. To maintain good efficiency in general practical cases, the concept of

projective integration has been generalized to a multi-level telescopic scheme [105].

Fig. 3.5 illustrates a two-level telescopic projective integration scheme. The steps

viewed at the top level are similar to those of a projective integrator except that

each basic integration step is expanded into a projective integration step at the bot-
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tom level. As such, while at each individual projective integration level, limited step

size amplification is obtained with a relatively small M, significant overall step size

amplification may be obtained in the multi-level telescopic framework.
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Figure 3.5: (Top) Illustration of two-level telescopic projective method. The scheme
of each of the two levels is the same as the projective integration method. In the level
2, each small step of integration at the beginning is the replaced by level 1 projec-
tive integration. (Bottom) An example of two-level telescopic projective integration
method applied for the simulation of the curve in Fig. 3.3(Bottom).

3.2.2.5 On-the-Fly Error Control

While multi-level telescopic projective integration method addresses the stability

issues, accuracy is another important requirement for simulation. During the gener-

ation of action potentials, the membrane potential and other state variables evolve

very quickly in time so as to produce sharply rising and falling spiking patterns. In
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this case, the accuracy requirement is often much more stringent and very small step

sizes need to be used to ensure accuracy, which effectively reduces the computational

benefit of telescopic projection integration method. On the other hand, around the

resting potential, no significant activity takes place in a neuron. In fact, on average

a neuron sits around the resting potential, or is inactive, around 80% of time un-

der typical network conditions. This may allow one to use the telescopic projection

integration method in such low-activity periods to boost the simulation efficiency.

Therefore, we introduce a on-the-fly mechanism to predict action potentials and

disable telescopic projective when needed. Currently, our implementation is based

on a two-level telescopic projective integration. As the top-level projective step size

is comparable to the duration of the action potential, the top-level projective step

needs to be disabled when action potentials are predicted. The prediction is achieved

by comparing the membrane potential of each neuron with a predefined threshold

voltage. The threshold voltage is chosen conservatively to capture all the firing

activities. Whenever the membrane potential goes above the threshold, we disable

the top-level projective step.

Fig. 3.6 shows the top-level telescopic projective integration. The simulation

starts with top-level inner loop, which is composed of steps of lower-level projective

integration. After top-level inner loop, if the membrane potential is lower than the

threshold, continue the simulation with top-level projective step to speed up the

simulation. Otherwise, disable top-level projective step and continue the simulation

with top-level inner loop to be conservative. After top-level projective step, if the

membrane potential is lower than the threshold, continue the simulation with top-

level inner loop to start the next cycle. Otherwise, the previous top-level projective

step is not conservative and might lead to errors. In this case, the simulation done by

the previous top-level projective step needs to be redone with top-level inner loop.
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Figure 3.6: Telescopic projective integration method with dynamic disabling top-
level projective step.

3.3 Simulation of Brain Activities

While existing works based on mean field or phenomenological models cannot

easily link brain behaviors to underlying physiological and pathological mechanisms

at the molecular and cellular levels, most computational works based on biophys-

ically realistic models are often limited to local cortical circuitry and ignore the

global structure. With biologically realistic brain modeling and advanced simulation

techniques, our final goal is to link the brain dynamics to underlying biophysical

mechanisms. In this section, we reproduce some physiological and pathological os-

cillations and demonstrate the transitions between different brainwave states caused

by cellular and molecular level mechanisms.

3.3.1 Normal Sleep Spindle and Delta Oscillations

First, we use our brain model to produce normal spindle and delta oscillations

based on the mechanisms suggested by studies in vivo, in vitro, and in silico.
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Sleep spindle oscillations consist of waxing-and-waning field potentials at 7-14

Hz, which are typically observed during the early stages of sleep in vivo. Studies

suggest that the minimal substrate accounting for spindle oscillations consists in the

interaction between thalamic reticular and relay cells [87–89]. Burst firing of retic-

ular cells induces inhibitory postsynaptic potentials in thalamocortical cells. This

deinactivates low-threshold Ca2+ current IT , inducing burst firing in thalamocortical

cells, which, in turn, excites reticular cells allowing the cycle to start again. Spon-

taneous spindle oscillations are synchronized over large cortical areas during natural

sleep and barbiturate anesthesia.

Thalamic delta oscillation (1-4 Hz) is a well known example of rhythmic activity

generated intrinsically by thalamic relay cells as a result of the interplay between their

low-threshold Ca2+ current IT and hyperpolarization activated cation current Ih. As

such, the delta oscillation may be observed during deep sleep when thalamic relay

cells are hyperpolarized sufficiently to deinactivate IT [86]. The mechanism of single

cell delta activity is the following: a long-lasting hyperpolarization of thalamic relay

cell leads to slow Ih activation that depolarizes the membrane potential and triggers

rebound burst, mediated by IT , which was deinactivated by the hyperpolarization.

Both Ih (because of its voltage dependency) and IT (because of its transient nature)

inactivate during burst, so membrane potential becomes hyperpolarized after burst

termination. This afterhyperpolarization starts next cycle of oscillations.

The sleep spindle and delta oscillations correspond to the simulation results of

the first second in Fig. 3.7 and Fig. 3.8, respectively. In both figures, the two panels

on the top show the waveforms of two randomly selected pyramidal cells from layer 6

that project to level 4 and level 5/6, respectively. Since there are 22 types of neurons,

we show the spike rasters of 22 neurons with different types in the bottom left panel.

Each neuron is randomly selected from neurons of a specific type. There are 22
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Figure 3.7: Transitions between spindles and the spike-and-wave patterns in epileptic
seizure. Each of the two panels on the top shows the firing pattern of a randomly
selected pyramidal cell from deep layers of the brain. The bottom left panel shows
the spike raster of 22 neurons of different types. The bottom right panel shows the
local field potential computed from the postsynaptic currents of neuron p6(L5/6).

rows and each row shows the firing density of the corresponding neuron within the

simulated four seconds. In the bottom right panel, the local field potential (LFP) is

computed from the postsynaptic currents of one p6(L5/6) neuron. As all the neurons

nearby are highly synchronized during the oscillation, the LFP computed based on

the average activities of the neurons nearby is very similar.

For spindle oscillation, as shown in Fig. 3.7, the brain begins to produce bursts

of rapid, rhythmic brain wave activity at about 9 Hz, and pyramidal cells generate

107



0 1000 2000 3000 4000
−100

−80

−60

−40

−20

0

20

40

60
p6(L4)

Time(ms)

V
ol

ta
ge

(m
V

)

0 1000 2000 3000 4000
−100

−80

−60

−40

−20

0

20

40

60
p6(L5/6)

Time(ms)

V
ol

ta
ge

(m
V

)

0 1000 2000 3000 4000
0

5

10

15

20

Time(ms)

N
eu

ro
n 

T
yp

e(
1−

22
)

Spike Rasters

0 500 1000 1500 2000 2500 3000 3500 4000
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time(ms)

L
FP

 (
m

V
)

Figure 3.8: Transitions between delta wave and spike-and-wave patterns in epileptic
seizure. Each of the two panels on the top shows the firing pattern of a randomly
selected pyramidal cell from deep layers of the brain. The bottom left panel shows
the spike raster of 22 neurons of different types. The bottom right panel shows the
local field potential computed from the postsynaptic currents of neuron p6(L5/6).

a few spikes per cycle (top panels), and the local field potential consists of successive

positive and negative deflections (bottom right panel). For delta oscillation, as shown

in Fig. 3.8, the behavior of the brain is characterized by 3 Hz wave activity, where

pyramidal cells generate a few spikes per cycle, and the field potential consists of

successive positive and negative deflections. The two different modes of the brain

are realized in this model by modulating the conductance of leakage potassium in

thalamocortical cells to mimic the effects of brainstem modulation. Starting from
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spindle oscillation, if the conductance is increased, the thalamic relay cells will be

more hyperpolarized. In this case, delta oscillations will emerge to replace spindles

oscillations, and vice versa.

3.3.2 Spike-and-Wave Epileptic Activities

The term spike-and-wave refers to a pattern of the electroencephalogram (EEG)

typically observed during epileptic seizures. In particular, one of the most common

types of epileptic manifestations, the absence seizure, displays a clear-cut oscillation

consisting of generalized and bilaterally synchronous spike-and-wave (SW) EEG pat-

terns recurring at a frequency of about 3 Hz in humans. In this section, we show

epileptic spike-and-wave oscillation can arise from both normal spindle and delta

oscillations caused by cellular and molecular level mechanism.

As shown in Fig. 3.7, after the first second, as the synaptic GABAA receptors are

suppressed, the network transits from the spindle oscillations to a slower oscillation at

about 4Hz with field potentials characterized by large-amplitude negative spikes and

small-amplitude positive waves. As mentioned before, the spike-and-wave patterns

are typically observed during epileptic seizures. In this pathological mode, all the cells

fire prolonged high-frequency discharges synchronously during the negative spikes

and the positive waves are coincident with the silent periods of all the cells. The spike

raster(bottom left panel) demonstrates the synchronization of 22 types of neurons.

After two seconds of epileptic seizure, the brain resumes generating spindle oscillation

when the GABAA-mediated inhibition comes back to normal condition. This portrait

is typical of experimental recordings of cortical and thalamic cells with the SW

oscillation pattern[106–111].

In addition to early sleep stage, we also show the occurrence of seizure at the deep

sleep stage. As shown in Fig. 3.8, after the first second, by globally suppressing the
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GABAA-mediated inhibition, the network transits to the abnormal delta oscillation

characterized by spike-and-wave patterns. After two seconds of epileptic seizure, the

brain resumes generating normal delta waves when the GABAA-mediated inhibition

comes back to normal condition. Note that, although oscillations in both normal

delta wave and spike-and-wave are less than 4 Hz, they are different in terms of

the patterns of both action potential firing and field potentials. In terms of action

potential firing, while pyramidal cells in normal state generate a few spikes per cycle,

they generate prolonged firing per cycle in the pathological state. As a result, while

the field potential in the normal state consists of successive positive and negative

deflections, the field potential in the pathological state consists of large-amplitude

negative spikes and small-amplitude positive waves.

3.3.3 Visualization of the Brain Activities

To illustrate the activities of the brain, we show three-dimensional visualization

of postsynaptic currents of pyramidal cells from different regions during the 4 seconds

simulation in Fig. 3.8. The visualization is achieved by using the utility functions

of Brainstorm [112]. Fig. 3.9 shows the snapshots at 570ms, 1190ms, 2140ms, and

3700ms. The activities at 570ms and 3700ms correspond to the active and inactive

phases of delta waves at the deep sleep stage, respectively. The activities at 1190ms

and 2140ms correspond to the active and inactive phases of spike-and-waves during

seizures, respectively. As neurons generate prolonged firing per cycle during seizure,

the magnitudes of the postsynaptic currents are much larger compared with those in

normal delta waves.

In addition, during different phases of waves, although coherence exists to a

large degree, complex spatial and temporal patterns are exhibited by spontaneous

neuronal dynamics within the cerebral cortex. As the same microcircuitry is used in
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Figure 3.9: Snapshots of postsynaptic currents of deep layer pyramidal cells at differ-
ent times: 570ms(top left), 1190ms(top right), 2140ms(bottom left), 3700ms(bottom
right). The activities at 570ms and 3700ms correspond to the active and inactive
phases of delta waves at the deep sleep stage, respectively. The activities at 1190ms
and 2140ms correspond to the active and inactive phases of spike-and-waves during
seizures, respectively.

different brain areas, such temporal and spatial variations might largely come from

the underlying anatomical connections between regions of the cerebral cortex. Recent

studies have shown that the structural connections shape functional connectivity
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on multiple time scales [113] and form dynamic links mediated by synchrony over

multiple frequency bands for large-scale integration [114].

With biologically realistic brain modeling and advanced simulation techniques

developed, we have demonstrated some initial results to show the applicability of

the modeling and simulation work to link the brain dynamics to underlying bio-

physical mechanisms. While further development and calibration of the model are

still ongoing, those initial results are interesting because they show the possibility to

determine underlying cause of diseases by simulating the biologically realistic brain

model. At the same time, as the results are consistent with the basic understanding

of seizure generation and existing experimental results[47, 51–53], the effectiveness

of the modeling and simulation works has been initially validated. With further de-

velopment, the work is geared to assisting the clinicians in determining underlying

causes of brain disorders and selecting the optimal treatment on an individual basis

in the future.

3.4 The Efficiency of the Simulator

So far, we have proposed advanced techniques to develop a highly efficient parallel

simulator to cope with the computational challenges associated with the biologically

realistic brain model with millions of neurons and hundreds of millions of synapses.

In this section, we show the efficiency of the simulator with networks of different

scales.

To show the efficiency of the proposed techniques, brain models with four different

sizes are generated by scaling the total number of neurons (30K, 60K, 105K and

1.05M). The detailed characteristics of these models are listed in Table 3.3.

First, we demonstrate the performance improvement achieved via parallelization

with dynamic load balancing. We simulate the 30K network with linear receptor
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Table 3.3: Characteristics of Networks.

Network 30K 60K 105K 1.05M

Number of regions 10 20 70 70

Total number of neurons 30,090 60,180 105,770 1,050,630

Number of excitatory neurons 23,550 47,100 82,670 822,640

Number of inhibitory neurons 6,540 13,080 23,100 227,990

Total number of compartments 223,940 447,880 786,590 7,819,700

Total number of synapses 8,760,347 17,523,723 30,784,998 305,959,213

Number of excitatory synapses 7,352,717 14,788,923 26,081,068 259,235,823

Number of inhibitory synapses 1,407,630 2,734,800 4,703,930 46,723,390

Total number of state variables 5,295,550 10,430,180 18,120,550 180,054,490

merging for 10 ms of simulation time using different number of threads and the

results are listed in Table 3.4. The performance is measured by parallel efficiency,

which is defined as the ratio between the achieved parallel speedup and the number

of threads. As shown in Table 3.4, the parallel efficiency is high (still close to 1 even

for the maximum number of threads).

Table 3.4: Outcome of Parallelization with Dynamic Load Balancing.

Number of Threads Runtime (s) Speedup Parallel Efficiency

1 177.721 1 1

12 14.9522 11.886 0.9905

18 9.98306 17.802 0.9890

24 7.5014 23.692 0.9872

On top of the parallelization, we show the performance improvement with linear

receptor merging, locality enhancement, and telescopic projective integration. Simi-

larly, the 30K network in deep sleep mode is used for performance evaluation. The

setups and results of all three simulations are shown in Table 3.5, where the macro-
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step is the step size for continuous simulation of a neuron without being interrupted

by the computing work of other neurons, and the micro-step is the step size for nu-

merical integration. Note that, with two-level telescopic projective integration, the

micro-step is the smallest step being used (the steps in the inner loop of the bottom

level telescopic projective integration).

Table 3.5: Speedup by Receptor Merging (RM), Locality Enhancement (LE), and
2-Level Telescopic Projective Integration (2LTPI).

Setup Basic RM RM+LE RM+LE+2LTPI

Macro-step Size (ms) 0.01 0.01 1 1

Micro-step Size (ms) 0.01 0.01 0.01 ≥ 0.01

Simulation Time (s) 0.3 0.3 0.3 0.3

Runtime(s) 7127.04 2103.26 1335.74 323.95

The basic simulation setup without merging is shown in the second column of

Table 3.5, where parallelization with dynamic load balancing is applied. On top of

the basic setup, we merge linear synaptic receptors and this provides about 3.39×

speedup as shown in the third column of Table 3.5. In the previous two simulations,

the macro-step is the same as the micro-step. On top of the basic setup, we introduce

the locality enhancement method. By continuously simulating each neuron during

one macro-step of 1ms, the locality of cache is enhanced and accesses to global

memory can be significantly reduced. As shown in the forth column of Table 3.5,

this brings 1.57× speedup in terms of runtime. On top of the setup with 1 ms

macro-step, the 2-level telescopic projective integration is applied within the 1 ms
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macro-step. For the bottom level projective integration, the parameters are

n = 1,M = 2, (3.12)

and for the top level projective integration, the parameters are

n = 7,M = 17. (3.13)

As shown in the fifth column of Table 3.5, the 2-level telescopic projective integration

method further brings 4.12× speedup.

We also demonstrate the capability of the simulator for simulating the networks

of different sizes listed in Table 3.3. The simulation time and corresponding runtime

for different networks are shown in Table 3.6. The results demonstrate that the

runtime scales linearly with the size of networks.

Table 3.6: Runtime Scaling with Network Size.

Network Size Runtime (s) Simulation Time (s)

30K 1083 (18.05 min) 1

60K 2162.33 (36.04 min) 1

105K 3899.59 (1.08 h) 1

1.05M 16035.7 (4.45 h) 0.5

To summarize, parallelization with dynamic load balancing provides linear speedup

in the number of processors. With our 24-core processor, the maximum speedup is

about 24× for the 30K network. On top of parallelization, linear receptor merging,

locality enhancement, and telescopic projective integration further produce 3.39×,

1.57× and 4.12× speedup, respectively, and the accumulated speedup brought by
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the three techniques is about 21.93×. Therefore, with all the techniques proposed,

the accumulated speedup is about 526×.

3.5 Discussion

Given the complexity and inaccessibility of the brain, computational modeling

is an essential tool for bridging the gap between the understanding of neural cir-

cuits at cellular level and that of full-scale behavior and function of nervous system.

To achieve this goal, computational models should be biophysically detailed, con-

strained, and validated by available experimental data at various levels.

In this section, we discuss specifically the granularity and applicability of the

proposed model.

3.5.1 The Morphology of Pyramidal Cells

The morphology of pyramidal neurons is believed to play important roles in

synaptic integration. For example, the existence of dendritic domains with dis-

tinct synaptic inputs, excitability, modulation and plasticity appears to be a com-

mon feature that allows synapses throughout the dendritic tree to contribute to

action-potential generation [115]. These properties support a variety of coincidence-

detection mechanisms, which are likely to be crucial for synaptic integration and

plasticity.

In terms of epilepsy, while studies often focus on the changes in inhibitory and

excitatory synaptic function, the role of changes in intrinsic excitability and abnor-

mal dendritic properties has recently received some attention. For example, cortical

dysplasia is often associated with intractable seizures. Evidence in the rat freeze-

lesion model of cortical dysplasia has suggested that alterations in HCN channels

and dendritic morphology may play a role [116]. At current stage, our brain model is

still generic and the multi-compartments models are crude. Modeling and simulating
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brain behavior at a large scale is very challenging and it is limited by the availability

of data. However, given the existing evidence of the importance of dendritic mor-

phology, we believe inclusion of multi-compartmental models into the analysis, even

in a limited manner, as what has been done in our model, can be beneficial.

3.5.2 The Brain-Wide Connectivity

Due to the limitations of existing experimental techniques, a complete picture of

all the pathways in the brain is still largely unknown. Nevertheless, it is still nec-

essary to incorporate existing brain-wide connectivity information into the model.

While the knowledge is still incomplete, a wide range of typical cortical dynamics

and functions have been demonstrated by incorporating the brain-wide connectivity

information into computational models [113, 117–119]. For example, in [113], net-

work structure of cerebral cortex has been shown to shape functional connectivity

on multiple time scales by simulating nonlinear neuronal dynamics on a network the

captures the large-scale interregional connections of macaque neocortex. Recently,

significant efforts [120, 121] have been devoted to identifying signal pathways to make

the picture clearer.

In terms of epilepsy, it is necessary to include the brain-wide connectivity into the

model to study the pathways of propagation as seizures (secondary generalized types)

start from one region of the brain and spread to both sides of the brain. Recently,

the interplay of cortical local and long-range synchronization has been found to play

an crucial role in human absence seizure initiation by M/EEG recordings [98]. The

observations reveal a multifocal fronto-central network and contradict the classical

view of sudden generalized synchronous activities in absence epilepsy. Currently, we

are using computational models to investigate the dependencies of epilepsy on global

connectivity. Hopefully, we will be able to report more results along this line in the
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near future.

3.5.3 The Size of the Network

Due to limited computer power, most exiting computational works with biophys-

ical models are often restricted to small-scale networks. In this section, large-scale

brain models are constructed to link network level activities to the underlying bio-

physical mechanisms. Due to a large number of brain regions, finite-size effects, and

the spatial resolution for practical applications, it is necessary to perform simulations

with large-size networks.

The influence of finite-size effects can be in different aspects. First, finite-size

effects influence the convergence time of a system. The time needed for convergence

to a stable state starting from an initial state is studied numerically for networks up to

N = 105, and the variance of the distribution in convergence times as a function of N

is demonstrated in [122]. It suggests that the average convergence time is increasing

as a function of N . Additionally, the spread of the distribution of convergence

times decreases for large N . Therefore, for a large-size network, the transition time

between different states tends to be longer and more deterministic while for a small-

size network, the transition time tends to be shorter and more randomized. The

transition time is important to accurately characterize the dynamic behavior of the

brain. For example, a transition to a synchronization state of the brain can result

in a seizure, and the transition time is critical for seizure prediction. As a result,

large-size networks are needed to obtain simulation results close to reality.

In addition to convergence time, finite-size effects can also influence the mean

field in a population of interacting oscillators [123]. If the coupling strength exceeds a

threshold value, a nontrivial state (mutual synchronization) with a finite macroscopic

mean field (its order parameter) appears. The order parameter is a complex-valued
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number used to characterize the synchronization of the network. The amplitude

of the order parameter measures the coherence of the oscillator population and the

phase is the average phase. It has been shown that both the variance of the amplitude

and the diffusion constant of the phase scales with the system size as 1/N . Therefore,

given the same set of parameters, while a small size network gets synchronized, a

large size network might not be. As the size increases, the simulation results will

become more deterministic and closer to reality. While these observations were made

when oscillator models were used, it is expected that they may hold true in realistic

models of the brain because under some conditions realistic models can be simplified

to oscillator models by phase reduction method [124].

The large size network is necessary not only because multiple brain regions are

included and finite size effects are considered but also because it is important to

maintain a high spatial resolution in the presence of heterogeneity for practical ap-

plications. For example, this is the case if the effects of local structure changes (axon

sprouting, cell death, brain lesions, etc) of some parts of a brain region are to be

studied. Another example is the potential usages of computational models to simu-

late the effects of a surgery, which is to remove the brain tissue producing seizures,

or interrupt the nerve pathways through which seizure impulses spread. To maintain

critical brain functions such as language, sensation and movement, it is important

to determine if a surgery is appropriate, where to cut, and how to cut. If the brain

tissue cannot be safely removed, multiple subpial transection is needed to control

seizure, which makes a series of transection in the brain tissue. These cuts interrupt

the movement of seizure impulses but do not disturb normal brain activity, leaving

the person’s abilities intact. To simulate the effects of a surgery, the spatial reso-

lution of the model has to be high and a large size network has to be employed to

fulfill this mission.
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3.5.4 Comparison with Phenomenological Models

Compared with phenomenological models, the advantage of HH models is that

it is convenient to link the network-level activities to underlying physiological and

pathological mechanisms at the cellular and molecular levels, which are especially

useful to model therapeutics targeting molecular pathways. For example, cellular

mechanisms (ion channels) in pyramidal cells have been shown to play important

roles in seizure generation [85, 125, 126]. Those ion channels, which are potential

therapeutic targets, include persist sodium current, high-threshold calcium current,

M-current, afterhyperpolarization current, hyperpolarization-activated inward cur-

rent, etc. While the cell-level responses are complex and highly dependent on the

interplay of those ion channels, only the effects of spike frequency adaptation (M-

current) are taken into consideration and all other effects are omitted in the corre-

sponding phenomenological model for pyramidal cells (regular spiking types [127]).

Moreover, as the cell-level responses are dependent on the numbers and characteris-

tics of ion channels, once the ion channels are changed, the effects can be immediately

evaluated with HH models. In contrast, the goal cannot be easily achieved with phe-

nomenological models because the coefficients in those models have no direct link to

the underlying biophysics.

3.5.5 Comparison with Macroscopic Models

For macroscopic models, there is a key distinction between models that summarize

the activity of a neuronal population with a single state (e.g., its mean activity) and

those that model the distribution of states in terms of probability densities (i.e.,

density dynamics). Following the terminology established in [128], if the model can

be cast as a set of ordinary differential equations describing the evolution of neuronal

states, it is called a neural-mass model [129–131]. This is motivated by treating the
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current state as a point‘mass’ (i.e., delta function) approximation to the underlying

density on the population’s states. In addition, models that are formulated as partial

differential equations of space and time are referred to as neural field models [132–

134], because they model the spatiotemporal dynamics on spatially extensive (e.g.,

cortical) fields. Conversely, models based on stochastic differential equations that

include random fluctuations are referred to as mean-field models [4, 135–140]. This

nomenclature appeals to the use of the term ‘mean-field’ in statistical physics and

machine learning.

Both neural field and mass models are parsimonious models of mean activity (e.g.,

firing rate or membrane potential) and have been used to emulate a wide range of

brain rhythms and dynamics [141, 142]. Neural-mass models are particularly suitable

for data that reflect the average behavior of neuronal populations such as the EEG

and MEG [143, 144]. Recently, by unifying data from different imaging modalities,

neural field models have provided a direct connection from neural activity to EEG

and fMRI data [145–147]. Moreover, dynamic causal modeling (DCM), which is

frequently invoked for the interpretation of fMRI data, has been extended from

a data-driven perspective to incorporate activity models based upon neural field

equations [148].

As the the switches of brain activity between qualitatively different states can be

represented by dynamical behavior of many neural population models, those mod-

els have been widely applied to understand the genesis and evolution of epileptic

activity [149–160]. While the simplest neural mass models only include two sub-

population models (excitatory and inhibitory) with both inhibitory and excitatory

connections among them, more complex models with more than two subpopulations

are needed to animate various complex EEG patterns seen in experiments. Wendling

et al. elaborated those models to describe the hippocampus activity in temporal lobe
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epilepsy(TLE) [149, 151, 153]. Suffczynski et al. investigated the mechanisms of

transition between normal EEG activity and epileptiform paroxysmal activity using

a computational macroscopic model of thalamocortical circuits [154]. Robinson et

al. used this type of modeling approach to study epileptic seizures and different nor-

mal EEG rhythms such as slow-wave sleep, alpha and low-gamma waves [150, 158].

Liley et al. showed that seizure-inducing properties of some general anaesthetic

agents could be reproduced with neural mass model [157]. Molaee-Ardekani et al.

proposed a neural mass model to analyze mechanism underlying the generation of

fast oscillation (80Hz and beyond) at the onset of seizures [160].

Those macroscopic models have certain advantages over the more detailed mod-

els. First of all, they are easier to analyze numerically because relatively few variables

and parameters are involved. Their computational efficiency is an important advan-

tage. Second, since the models describe mean activity of neuronal populations, they

are particularly appropriate for data that reflect the average behavior of neuronal

populations like EEG and MEG.

The main disadvantage is that important biological details (ionic currents, den-

dritic structure, etc) tend to get lost in those macroscopic models or are captured

using high-level characteristic parameters. As such, the models are less suitable for

suggesting physiological and pathological mechanisms at the molecular and cellular

levels and modeling therapeutics targeting molecular pathways.

3.5.6 Limitation Due to Data Availability

Finally, we would like to point out that, while it is very promising to build bio-

physically realistic models, there is not enough information to fill the very detailed

parameter space of the model currently. For example, while the local cortical cir-

cuitry might be different from region to region, due to lack of data availability, the
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local cortical circuitry in all brain regions in our model is based on the detailed re-

construction studies of cat area 17 (visual cortex). Under current conditions, the

potential benefits of such a detailed model with global brain connectivity as well as

local biophysics cannot be fully materialized. Therefore, the level of details in the

modeling of the network shall be made consistent with the amount of available data.

As such, the power of detailed large-scale computer simulation may only be fully

leveraged when sufficient biological data becomes available in the future.

3.5.7 Implementation on Other Computing Platforms

The simulation experiments adopting multi-thread parallelization in this section

are conducted on the shared-memory machine PowerEdge R715 [161]. To further par-

allelize the simulation by utilizing the supercomputers with more CPUs and comput-

ing power, this work is extended to leverage hybrid MPI/OpenMP simulation [162]

(Not included in this dissertation). Through message passing interface, the commu-

nications between neurons would be much slower. In this work, since the simulation

is conducted on a share-memory machine, the exchange of data between neurons is

more efficient. We simulate the network with 105K neurons for half second. The

time spend on exchanging data is below 0.12%. The brain is most active during

epilepsy, where lots of neurons fire simultaneously and exchange data much more

frequently. Under this circumstance, less than 5.5% of simulation time is spend on

exchanging data between neurons.

Another popular hardware platform for large scale parallel simulation is GPU.

Decent simulation speeds are obtained by utilizing the large number of cores in

GPU [33][34]. But disadvantages of GPU are also obvious. This single-instruction

multiple-data platform is efficient only for the situation in which all cores execute

the same instruction and no branches are in the sequence of instructions. However,
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this is rarely the case due to the dynamical behavior of the network and the diversity

of neuron activities across the entire network. Managing thread divergence is a key

factor in achieving good simulation efficiency on GPUs.

3.6 Summary

The simulation-based studies of physiological and pathological behaviors like

brain disorders are typically limited to small scale networks due to the lack of com-

puting power. On the other hand, most recent large-scale simulation works are based

on simple spiking models and thus cannot be used to directly associate network level

behavior to underlying physiological and pathological mechanisms at the molecular

and cellular levels. To bridge the gap, in this work, we have constructed large-scale

biophysically realistic brain models with sufficient biophysical details, which consist

of six-layered cerebral cortex with seventy regions as well as multiple thalamic nu-

clei. To address the associated computational challenges in simulation of networks

of such complexity, we have proposed and adopted efficient techniques from different

angles. With all of the techniques applied, the simulator is able to simulate the de-

tailed model to generate biologically meaningful results. We have demonstrated the

applicability of the modeling and simulation work by showing the role of GABAA-

mediated inhibition in the generation of absence seizure from early and deep stages

of sleep. With further development, the work is geared to assisting the clinicians in

determining underlying causes of brain disorders and selecting the optimal treatment

on an individual basis in the future.
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4. A HARDWARE-ORIENTED LIQUID STATE MACHINE WITH

BIOLOGICALLY INSPIRED LEARNING

In the previous two sections, engineering methods, i.e. mathematical modeling

and computer simulation, are applied to facilitate the study of biological systems. In

this section, we take an opposite direction in which we leverage the inspirations drawn

from biology to build better engineering systems. With the mainstream Von Neu-

mann computer architecture increasingly challenged by concerns in device reliability

and process variations, we propose a hardware-friendly bio-inspired learning system,

consisting of a digital liquid state machine (LSM) and biologically inspired learning

rule. With optimized design parameters, we also demonstrate its good performance

on isolated utterance recognition.

This section is organized as follows: Section 4.1 briefly introduces the concept of

liquid state machine, and describes its network structure, and application to speech

recognition. Section 4.2 explains the motivation for our proposed learning rule,

followed by the design and spiking neural network implementation of the new rule

in Section 4.3. In Section 4.4, we study the influence of the synaptic model on the

fading memory and LSM performance. To be hardware-friendly, Section 4.5 conducts

efficiency optimization of the network model. Section 4.6 evaluates the application

of our spiking neural networks to speech recognition and studies the influence of the

synaptic precision and reservoir size on the LSM performance. We summarize our

key findings in Section 4.7.
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4.1 Liquid State Machine for Speech Recognition

4.1.1 General Network Structure

The network structure of a liquid state machine is illustrated in Fig. 4.1. The

reservoir in the middle is comprised of a group of neurons connected either purely

randomly [163] or in a way following certain distributions of spatial locations of

neurons [55]. As multiple recurrent loops are created by these synaptic connections,

the reservoir features transient behavior which memorizes information of its inputs in

the past. Reservoir neurons and readout neurons are connected by plastic synapses of

which the weights are to be adjusted according to training data and adopted learning

rules. Through its plastic synapses, each readout neuron receives weighted sum of

signals from reservoir neurons.

From the LSM structure, it is clear that input signals are processed in two steps.

The first step involves input neurons, reservoir neurons and synapses connecting

these neurons. Since the number of neurons in the reservoir is generally larger than

that of the neurons providing inputs, in this step the reservoir maps the input signal

to liquid response, a higher dimensional transient state. Note that this mapping is

nonlinear in nature and that after being nonlinearly casted to higher dimensional

space, complex patterns are more likely to be linearly separable [164]. In the second

step, the liquid response is projected to readout neurons through plastic synapses

Io(t) =
∑
i

wi,o · ri(t), (4.1)

where t is time, Io(t) is the net input to a readout neuron, ri(t) is the output of the

ith reservoir neuron, and wi,o is the weight of the synapse connecting the ith reservoir

neuron and the readout neuron. Over the duration [0, T ] of a input temporal signal,
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Input Neurons

Reservoir Neurons

Readout Neurons

Figure 4.1: Illustration of the network structure of a liquid state machine. Dots and
arrows represents neurons and synapses, respectively. Neurons on the left provide
input spike trains to reservoir neurons. The reservoir in the middle consists of a
group of neurons randomly connected to each other, receives input spike trains and
project outputs through plastic synapses to readout neurons on the right.

the net input to the readout neuron is

∫ T

0

Io(t) =
∑
i

wi,o ·
∫ T

0

ri(t). (4.2)

Since the net input to each readout neuron is a linear combination of outputs of

all reservoir neurons, each readout neuron can be viewed as a linear classifier of

liquid responses. In this linear classification, only liquid responses produced by

inputs of certain class are expected to activate a specific readout neuron. In the

feature space, a hyperplane defined by all wi,o separates these inputs from others.

This linear classification problem is solved by calculating weights of plastic synapses
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mathematically using Ridge regression [65]. In [66], a hidden layer is added between

the reservoir and readout neurons. Thus, backpropagation-based training algorithms

for multi-layer perceptrons are used such that liquid responses do not have to be

linearly separable.

4.1.2 Preprocessing of Speech Signals

To apply the LSM to speech recognition, the speech signals have to be prepro-

cessed and encoded by spike trains. A number of methods exist for this step, such as

Hopfield coding [165], MFCC (Mel-Frequency Cepstral Coefficients)[166][167], pas-

sive ear model [168][169], BSA (Ben’s Coding Algorithm) [170] as summarized in [65]

and temporal based linear predictive coding [66]. For good performance and to be

biologically plausible, we use data processed by Lyon passive ear model [168][171]

and BSA.

The preprocessing stage combining Lyon passive ear model and BSA is illustrated

in Fig. 4.2. After the filter modeling the outer ear and middle ear, the speech

signal is processed by the cochlea modeled by 77 cascaded band pass filters with

each extracting certain frequency band of the voice spectrum. Filter 1 extracts the

highest frequency band and the filter 77 the lowest. The signal extracted from each

filter is further modified by a half wave rectifier and compressed by automatic gain

control (AGC) modules. The signal compression by AGC is inspired by the fact

that human ear can hear sound levels in a dynamic range of about 120 dB while

the firing frequency of neurons in response to sounds only varies within about two

orders of magnitude. After the compression, the time domain signal is converted to

spike trains by BSA [170], where a stronger signal is converted to a spike train with

a higher instantaneously spiking rate.

To summarize the preprocessing stage, this module converts the input speech
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Figure 4.2: Preprocessing of speech signal. The speech signal is processed by a filter
representing the outer ear and middle ear followed by 77 cascaded bandpass filters
modeling the cochlea. After each half wave rectifier, the magnitude of time domain
signal in each frequency band is compressed by an automatic control module. The
resulting signal is converted to spike trains by BSA.

signal into 77 parallel spike trains representing different frequency channels covering

the entire voice spectrum.
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4.1.3 The Entire System for Speech Recognition

For the liquid state machine used as a speech recognizer in this section, the

reservoir has a regular grid structure [62]. It is an k × l × m grid with an neuron

in each grid point, as illustrated in Fig. 4.3. Synaptic connections are allocated

randomly such that neurons closer to each other have a higher probability to be

connected. The probability of a connection [55] is

Input Neurons

Reservoir Neurons

Readout Neurons

Figure 4.3: Illustration of a liquid state machine with reservoir of 3×3×5 grid struc-
ture. Dots and lines represent neurons and synapses, respectively. The connectivity
of neurons are determined by the distance between neurons. This grid structure
more closely resembles a neuron column in the cortex.

Pconnection(N1, N2) = k · e−
D2(N1,N2)

r2 (4.3)

where N1, N2 represent two neurons, D(N1, N2) is the Euclidean distance between

the two neurons, k and r are two appropriately chosen constants.
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The 77 spike trains produced by the preprocessing stage are fed to the liquid state

machine as the inputs. Conceptually, there is a input layer of 77 neurons of the LSM

whose outputs are generated by the BSA algorithm. The entire speech recognition

system combining the preprocessing stage and the liquid state machine is illustrated

in Fig. 4.4.

Spike Train 77

Filters

&

Halfwave

Rectifiers

&

Automatic

Gain

Control

Speech Signal

BSA

BSA

BSA

Spike Train 1

Spike Train 2

Reservoir Neurons

Readout Neurons

Figure 4.4: The entire system for speech recognition using liquid state machine. 77
spike trains from the the preprocessing stage are used as input to the reservoir of
the LSM. In our implementation, the BSA algorithm is implemented in each input
neuron of the LSM.

4.2 Motivation for the Proposed Bio-Inspired Learning Rule

4.2.1 Hebbian Learning

As stated in the previous section, each readout neuron is viewed as a linear

classifier. The online training of a linear classifier is conducted as input data streams

in. This process is illustrated in Fig. 4.5(Left). The 3 lines represent the training

process of the hyperplane to separate two classes of data in the feature space. Our

131



goal is to find a spike-based learning rule for this training process.
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Figure 4.5: (Left) Online training of a linear classifier. The orientation of a hyper-
plane is adjusted gradually to separate two classes of data. (Right) Linear classifier
with margins to guarantee better generalization performance.

In the neuroscience community, activity-based synaptic plasticity is believed to

be the basic phenomenon in the learning process [172]. Based on this observation,

Hebb’s postulate is proposed and widely accepted. The postulate claims that neurons

that fire together wire together [173]. More specifically, if the firing activity of a

neuron A tends to induce/inhibit spikes of another neuron B, the synapse sending

signals from A to B tends to be potentiated/depressed.

The basic plasticity rule that follows Hebb’s postulate is

τl
dw

dt
= upreupost, (4.4)

where w is the synaptic weight, upre and upost represent the activities of the presy-

naptic neuron and postsynaptic neuron, respectively. τl is a time constant associated
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with the learning speed. To include synaptic depression into the learning rule, dif-

ferent forms of covariance rules are proposed as summarized in [172].

4.2.2 Instability and Saturation

The Hebbian learning rules in the previous subsection capture the most funda-

mental behavior of synapse and are of great theoretical importance. However, there

are practical issues mainly because of instability, that is, synaptic weight may ex-

hibit uncontrolled growth according to these rules. The solution to this problem is

imposing upper/lower limits to the synaptic weight. However, with these limits these

rules suffer from a new problem of synaptic saturation, in which all synaptic weights

can be driven to the upper/lower limit such that the synapses stop learning and the

network loses its capability to discriminate different input patterns. In the previous

example for illustration, this case corresponds to the situation that all data points,

regardless of its class label, move the hyperplane to the same direction such that the

hyperplane loses its classification capability.

To solve the synaptic saturation problem, quite a few research works have been

conducted. The BCM rule [174] uses a sliding threshold to modulate synaptic plastic-

ity. Other rules are also proposed by modifying Hebb rules to include various forms

of synaptic normalization or synaptic competition, e.g. Oja rule [172]. Theoretically,

they all successfully solve the saturation problem, thus show the potential to be used

in real applications. On the other hand, these rules also have obvious drawbacks as

candidates for hardware implementation. First of all, the complicated computation

involved in synaptic dynamics requires a great deal of hardware resource. In addition,

synaptic normalization/competition based rules are not local, that is, the learning

dynamics of a synapse does not only depend on the firing activity of the presynaptic

and postsynaptic neurons. The additional communications between different parts
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of the neural network and the associated computations are not hardware-friendly

and limit the network scalability.

As stated above, the best online learning rule for LSM is expected to be free from

the saturation problem and preferably simpler than existing rules such as BCM rule,

Oja rule, and so on.

4.3 The Proposed Learning Rule

Previous sections show that a well designed learning rule for the LSM is expected

to be local and free from synaptic saturation. In addition, as a common issue in

machine learning [175], overfitting problem shall also be considered in the design

of the learning algorithm. In this section, we first introduce an abstract learning

rule that meet these requirements. A similar abstract rule for binary synapses is

used for two-layer feed-forward networks in [54]. Then we implement the abstract

learning rule for the proposed LSM. Comparing with [54], our way of implementation

is greatly simplified, thereby more hardware-friendly.

4.3.1 Abstract Learning Rule

In this subsection, we introduce the abstract local learning rule that is free from

saturation issue. Then this rule is further improved on its generalization performance.

As illustrated in Fig. 4.5(Left), the learning process is driven by incorrectly clas-

sified data points. In a neural network, if an inactive (active) neuron is desired to

be active (inactive), synapses providing inputs tend to be potentiated (depressed)


potentiation of wi if ui = A & ur = I & ud = A

depression of wi if ui = A & ur = A & ud = I,

(4.5)

where ur and ud represents the real and desired activity of the readout neuron,
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respectively, ui is the activity of the ith presynaptic neuron, and wi is the corre-

sponding synaptic weight, A and I represent that the neuron is active and inactive,

respectively.

Since learning requires presynaptic neural activity, presynaptic spikes are used to

induce learning in the rule. Quantitatively, the value of wi after a presynaptic spike

may become 
wi +∆w if ur < uθ & ud > uθ

wi −∆w if ur > uθ & ud < uθ,

(4.6)

where ur and ud are quantitative values of neuron activity, uθ is a threshold value to

determine whether the postsynaptic neuron is active or not, i.e., whether the data

represented by all presynaptic neurons is classified to one class or the other. It is clear

that for any data point on the hyperplane of a linear classifier, uθ = ud =
∑

iwi · ui.

For better generalization performance, a margin is introduced around the hyper-

plane for the linear classifier, as illustrated in Fig. 4.5(Right), This way, the learning

is not only driven by incorrectly classified data, but also driven by data that are

correctly classified but fall into the margins, i.e. between the two hyperplanes p and

n. For any data on p (or n), uθ+∆u = ud =
∑

i wi ·ui (or uθ−∆u = ud =
∑

iwi ·ui),

where ∆u corresponds to d in Fig. 4.5(Right).

Since slow learning rate is usually used in neural networks for good performance

[176][54], to some extent smaller learning steps are preferred in the training. However,

the resolution of discrete synaptic weights may be limited since we target at hardware

implementation. So we modify synaptic weights stochastically to further reduce the

learning rate.

With the above improvements, the further modified learning rule states that the
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value of wi following a spike from the ith presynaptic neuron may become


wi +∆w with p+ if ur < uθ +∆u & ud > uθ

wi −∆w with p− if ur > uθ −∆u & ud < uθ,

(4.7)

where ∆w is the potentiation/depression granularity, p+ and p− are the potentiation

and depression probability, ∆u represents the margin described above.

In a biological neuron, the internal calcium concentration is a good indicator of its

instantaneous activity in a time window as suggested in [54]. Therefore, by replacing

neuron activity u by calcium concentration c, the equation (4.7) becomes


wi +∆w with p+ if cr < cθ +∆c & cd > cθ

wi −∆w with p− if cr > cθ −∆c & cd < cθ,

(4.8)

Note that this rule is mathematically similar to a more abstract rule for binary

synapses in [54], which is proved to work for linearly separable patterns with a finite

number of iterations of training [177][178].

4.3.2 Learning in Spiking Neural Networks

The previous subsection introduces the abstract learning rule used in the LSM.

In this subsection, an implementation of the abstract rule in spiking neural networks

is described. Our implementation is much simpler than that in [54], thereby more

hardware-friendly.

To implement the learning rule to mimic the behavior of a biological synapse, the

plasticity shall follow the Hebb’s postulate that synaptic potentiation/depression is

possible only if the presynaptic neuron tends to induce/inhibit firing of the post-

synaptic neuron. From this perspective, the learning rule is expected to take the
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following form: The learning of the synapse following a presynaptic spike is


wi → wi +∆w with prob. p+ if cr > c′θ

wi → wi −∆w with prob. p− if cr < c′θ,

(4.9)

where c′θ is another threshold of calcium concentration to determine if synaptic po-

tentiation or depression is possible.

To take advantage of the merits of both equations (4.8) and (4.9), we combine

these two principles. To be intuitive, we first illustrate these two rules in Fig. 4.6,

where each subfigure is divided into several regions that show the learning activity

of a synapse under different combinations of cr and cd.
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Figure 4.6: (Left) This subfigure illustrates the abstract learning rule of (4.8), where
the difference between the real neural activity and expected activity determines
whether the learning is potentiation or depression. (Right) This subfigure illus-
trates Hebbian learning of (4.9), where a presynaptic spike together with an active
(inactive) postsynaptic neuron leads to synaptic potentiation (depression).

The subfigure on the left illustrates the abstract learning rule in (4.8), where the
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direction of learning is determined by the difference between the real activity of the

postsynaptic neuron and its desired activity. The subfigure on the right illustrates

equation (4.9), where the direction of the learning is determined by the activity of

the postsynaptic neuron.

We choose c′θ to be the same as cθ when combining these two principles. Since

in a biological neuron, synaptic learning is determined only by the real activity

of presynaptic and postsynaptic neurons but not the desired activity, learning is

expected to be independent of cd, thereby only depends on cr. To avoid synaptic

saturation, we keep the “stop learning” regions for cr > cθ + ∆c and cr < cθ −∆c.

In the region cθ − ∆c < cr < cθ + ∆c, Hebbian learning is employed such that

potentiation happens for cθ < cr < cθ + ∆c and depression happens for cθ − ∆c <

cr < cθ. Thus the combined learning rule states that the learning of a synapse

following a presynaptic spike is


wi → wi +∆w with prob. p+ if cθ < cr < cθ +∆c

wi → wi −∆w with prob. p− if cθ > cr > cθ −∆c.

(4.10)

Comparing the combined learning (4.10) with (4.8), it is clear that these two de-

scriptions disagree in the region {(cd, cr)|cd < cθ, cr > cθ} and the region {(cd, cr)|cd >

cθ, cr < cθ}, where depression and potentiation occur, respectively, according to

(4.8). To this end, we employ a teacher signal to alter the real activity of the

postsynaptic neuron to induce the desired learning of the synapse. Take the region

{(cd, cr)|cd > cθ, cr < cθ} as an example. Since the desired learning according to (4.8)

is potentiation, while depression occurs according to (4.10), the teacher signal moves

a point in {(cd, cr)|cd > cθ, cr < cθ} to {(cd, cr)|cd > cθ, cθ < cr < cθ + ∆c}, where

potentiation occurs according to (4.10). The teacher signal under various scenarios
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is illustrated by arrows in Fig. 4.7. To summarize, the application of the teacher
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Figure 4.7: Illustration of our proposed learning rule. The eight regions in the
diagram shows how different combinations of cd and cr of the postsynaptic neuron
determine the plasticity of a synapse. The four arrows show how the teacher signal
may drive the output neuron from one region to another region.

signal modulates the activity of the postsynaptic neuron such that the its calcium

concentration is driven to
[cθ, cθ +∆c] if c′r < cθ & cd > cθ

[cθ −∆c, cθ] if c′r > cθ & cd < cθ,

(4.11)

where c′r is the internal calcium concentration of the postsynaptic neuron without

applying the teacher signal.

The teacher signal of a postsynaptic neuron is implemented as a large constant

current. In the case of a positive teacher signal, which increases the activity of
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the corresponding postsynaptic neuron, a large constant current is injected to the

target neuron if cd > cθ and cr < cθ + δ (cd < cθ and cr > cθ − δ), where δ is a

value in [0,∆c] such that the teacher signal moves the (cd, cr) deep into the region

{(cd, cr)|cd > cθ, cθ < cr < cθ +∆c}, where potentiation is induced according to the

equation (4.10). Note that the teacher signal is stopped when cr > cθ + δ. The

quantitative model of the teacher signal is introduced in the next subsection.

The existence of the teacher signal in our proposed learning rule requires a su-

pervised learning scheme in the liquid state machine. We label the readout neurons

by their corresponding class label Ri (i = 1, 2, 3, . . . ). The goal of training is that

when an input signal in class i is applied to the system shown in Fig. 4.4, Ri is the

most active readout neuron, i.e. Ri emits more spikes than all other readout neu-

rons. Thus, during training, a positive teacher signal is applied to Ri while negative

teacher signals are applied to other readout neurons.

To summarize, the rule described by equations (4.10) and (4.11) is free from

saturation issue, Hebbian and local, i.e. the synaptic plasticity only depends on

the activities of it presynaptic neuron and postsynaptic neuron. In addition, the

generalization performance is considered by using the margin ∆c.

4.3.3 Models for Implementing the Proposed Learning Rule

In the liquid state machine, we adopt the widely used leaky-integrate-and-fire

(LIF) model for each reservoir and readout neuron. The dynamics of the membrane

potential of a neuron is described by the following differential equation

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmi · s(t− tij − di), (4.12)
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where vm and τ are the membrane potential of the neuron and the time constant of

its first-order dynamics, respectively. i and j are indices of presynaptic neurons and

spikes from them, respectively. More specifically, wmi is the weight of the synapse

that transmits the spiking signal from the ith presynaptic neuron. tij is the time of

the jth spike emitted from the ith presynaptic neuron. And dij is the corresponding

synaptic delay. s(·) is the dynamic response of a synapse to an input spike.

Since the teacher signal is modeled as a strong current to the neuron to increase

or reduce the activity of a specific neuron, the neuron model is modified to

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmi · s(t− tij − di) + it(c), (4.13)

where it(·) is the current modeling the teacher signal, which is a function of calcium

concentration c.

In the digitized neural network, the above equation is rewritten as

V n
m =V n−1

m − V n−1
m

τm

+
∑
i

∑
j

Wmi · S(T n, Ti,j +Di) + In−1
t ,

(4.14)

where capitalized letters represent the digitized variables. And superscripts of V , T

and It are the indices of time steps. The neuron fires and resets the membrane voltage

to rest potential Vrest if the membrane voltage reaches or exceeds Vth. Following each

spike, there is an absolute refractory period τrefrac, within which the neuron cannot

fire.

The dynamics of the calcium concentration is

dc

dt
= − c

τc
+
∑
i

δ(t− ti − di) (4.15)
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where τc is the time constant for the first-order dynamics of calcium concentration,

respectively. i is the index of spikes emitted from the neuron itself. From this

differential equation, it is clear that the internal calcium concentration level of the

neuron increases with its firing frequency. The digitized dynamics is

Cn = Cn−1 − Cn−1

τc
+
∑
i

δTn,Ti+Di
(4.16)

where the same conventions for capitalization and superscripts as mentioned above

are used, δi,j is the Kronecker delta, of which the value is 1 if i = j, and 0 if i ̸= j.

To digitize the synaptic weight, let Wmax and Wmin denote the upper and lower

limits of weight values. We also denote the quantization step size Wmax−Wmin

2b−1
by ∆W ,

where b is the number of bits used to represent the weight.

In the digitized learning rule, the update of synaptic weight is initialized by a

spike emitted by the presynaptic neuron. We assume a presynaptic spike at time Tn,

then synaptic potentiation happens, i.e. W n = W n−1 +∆W , with a probability p+

if the following conditions are satisfied


Cθ < Cn−1 < Cθ +∆C

W n−1 < Wmax

(4.17)

where Cθ is the threshold of the calcium concentration that allows synaptic po-

tentiation. Similarly, synaptic depression happens, i.e. W n = W n−1 − ∆W , with

probability p− when the following requirements are met


Cθ −∆C < Cn−1 < Cθ

W n−1 > Wmin.

(4.18)
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4.4 Influence of Synaptic Model on LSM Performance and Implication on

Hardware Implementation

Theoretical studies show that the computational performance of a recurrent neu-

ral network depends critically on its dynamics [179][180][181]. For superior compu-

tational performance, the reservoir in a liquid state machine shall operate at the

edge of chaos, where the system has long transients (fading memory). This is in

sharp contrast to an ordered system or chaotic system, where the state evolves to

a simple steady state or stable limit cycle (a state cycle relatively short in time) in

the former, while exhibits chaotic behavior (long state cycle for an discrete system

with finite number of possible states) in the latter [180]. This implies that longer

fading memory is of great importance in increasing the computational performance

of the LSM in terms of boosting its separation property [55][180]. Since the fad-

ing memory arises from recurrent loops formed by synapses. The model of synapse

may have great impact on the length of fading memory, and consequently the LSM

performance. However, this problem has not been studied. In addition, for the

hardware-oriented LSM, evaluating the complexity of different synaptic models and

their impacts on the LSM performance at the same time provides design guidance

to optimize the hardware cost. Therefore, in this section, we empirically study the

influence of synaptic models with different complexity on the length of the fading

memory and the performance of the LSM.

4.4.1 Impact of Synaptic Models on LSM Performance

Since our liquid state machine is hardware oriented, simple synaptic models are

preferred over complicated ones. Therefore, we first test the performance of the LSM

with the simplest static synaptic model, where the synaptic response to an incoming

spike is also static, i.e. the temporal transfer function is Dirac delta function δ(·), as
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used in many research works [11][10][61]. By using static response, the LIF model

becomes

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmi · δ(t− tij − dij). (4.19)

We test this model by training the liquid state machine with settings similar to

[65] except that we use the spike-based learning rule. More detailed information

of the LSM including settings and parameter values are introduced in Section. 4.6.

Here we only study the influence of synaptic models on the network performance.

500 utterances of digits 0− 9 are used in 5-fold cross validation to test the LSM. We

train the LSM for 500 iterations and test its classification rate on the fly. The results

are plotted in the top left panel of Fig. 4.8. We observe that the recognition rate

reaches about 88.85%, i.e. 88.85% of the training samples are correctly recognized

by the liquid state machine. Note that the best performance is an averaged value

over a window of 20 epoches to reduce the influence of performance fluctuation. The

same method is used hereinafter.

For comparison, we also test the LSM performance with dynamical behavior

involved in the synaptic model, where the synapse has first order dynamical response

to an presynaptic spike. The corresponding LIF model is described as follows

dvm
dt

= −vm
τm

+
∑
i,j

wmi ·
1

τ s
e−

t−tij−dij
τs ·H(t− tij − dij),

(4.20)

where τ s = 4 ms for all synapses is the time constant of the first order response.

H(·) is the Heaviside step function. And 1
τs

normalizes the first order transfer func-

tion. Without modifying any other models or parameters, solely adding dynamical

response in the synaptic model improves the recognition performance to 90.49%, as
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Figure 4.8: (Top Left) Performance of the liquid state machine using synapses with
static response. (Top Right) Performance of the liquid state machine using synaptic
model using first order response with time constant 4 ms. (Bottom Left) Perfor-
mance of the liquid state machine using synaptic model with first order response
with time constant 8 ms. (Bottom Right) Performance of the liquid state machine
using synaptic model with second-order response.

shown in the top right panel of Fig. 4.8. We also test the performance using time

constant 8 ms. As shown in the bottom left panel of Fig. 4.8, the recognition rate is

90.73%, accordingly.

145



We further test the network performance with second order transfer function

dvm
dt

= −vm
τm

+
∑
i

∑
j

wmi · e
−

t−tij−dij
τs1 ·H(t− tij − dij)

τ s1 − τ s2

−
∑
i

∑
j

wmi · e
−

t−tij−dij
τs2 ·H(t− tij − dij)

τ s1 − τ s2

(4.21)

where τ s1 and τ s2 are the time constants of the second order response. And 1
τs1−τs2

normalizes the second order dynamical response function. For excitatory synapses,

τ s1 and τ s2 are 4 ms and 8 ms, respectively. For inhibitory synapses, τ s1 and τ s2 are

4ms and 2ms, respectively. Results are plotted in the bottom right panel of Fig. 4.8.

The recognition rate is further improved to 99.09%.

The above results show that by using synaptic models with higher order dynamics,

the LSM performance is improved significantly. A more complicated model is used

in [65], where short term plasticity (STP) is captured, that is, synaptic weight has

dynamical behavior in response to presynaptic and postsynaptic neural activities.

The comparison of the LSM performance in [65] and that of our LSM using synapses

with only second order response is in the Section 4.6.4. This comparison shows

that the performance of our LSM using synapses without STP does not degrade.

This is probably because the reservoirs used in these LSMs are not large enough

to take advantage of the STP in the computation [182][183]. By avoiding the STP,

the associated state variables and computations are eliminated from the synaptic

model. Therefore, the hardware complexity and cost are also reduced. For sake

of simplicity, we stop trying synaptic models with higher order responses. And we

adopt the synaptic model using second order dynamical response without STP in
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our liquid state machine to obtain good performance with simple hardware-friendly

implementation.

4.4.2 Fading Memory - Linking Synaptic Model to LSM Performance

The results in the previous subsection show the performance improvement of

neural networks by using dynamic synaptic responses instead of static responses,

especially for the second-order dynamic response. The reason for this big difference

lies in the reservoir, where recurrent network is used to memorize temporal patterns

by fading memory.

The impacts of synaptic models on the fading memory are shown in Fig. 4.9-

4.12. In each figure, the 3 plots show the activity of the reservoir as a response to

input spike trains ended at 23 ms. Each plot shows the total number of spikes in

the reservoir with each 1 ms bin. The plot on the top of each figure uses the same

input spike trains. The frequency of spike trains are 3 times and 10 times higher

for plots in the middle and bottom of all figures. As shown in Fig. 4.9, responses

of the reservoir vanish immediately after the end of spike trains. This indicates

little temporal memory in the reservoir. Only the strength of the reservoir activity

increases with input frequencies. Using the first order synaptic model, Fig. 4.10 shows

that the reservoir exhibits temporal memory, that is, the reservoir activity persists

for a period of time after the end of input spike trains. It is straightforward to see

that by increasing the time constant of synaptic response, the temporal memory

in Fig. 4.11 lasts longer. And the network performance also increases accordingly.

However, larger time constants only increase the memory of strong input signals

significantly, as shown in the bottom plots. By using the second order synaptic

response, Fig. 4.12 shows that the memory of weaker input signal in the middle of

the plot also increases significantly, as shown in middle plots.
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Figure 4.9: Responses of the reservoir using static synaptic response. With input
spike trains end at 23 ms, the reservoir shows little temporal memory. The top,
middle, bottom plots use input spike trains with ascending frequency. These plots
show that only the magnitude of reservoir response increases with input frequencies.
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Figure 4.10: Responses of the reservoir using first-order synaptic response with time
constant 4 ms. Comparing to the results for static synaptic response, this reservoir
exhibits temporal memory. The duration of the responses also increases with the
frequencies of input spike trains.

149



0 10 20 30 40 50
0

10

20

0 10 20 30 40 50
0

10

20

0 10 20 30 40 50
0

10

20

Figure 4.11: Responses of the reservoir using first-order synaptic response with time
constant 8 ms. Comparing to the results for first-order synaptic response with time
constant 4 ms, the temporal memory is longer. Specially, the bottom plot shows
much longer memory than the middle plot.
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Figure 4.12: Responses of the reservoir using second-order synaptic response. The
temporal memory is longer than that for first-order synaptic response. Specially, the
middle plot also shows longer temporal memory comparing to the response of the
LSMs with first-order synaptic models.
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The phenomena in these figures show that higher order synaptic dynamics helps

the reservoir to produce longer fading memory, which further helps produce richer

dynamics and boosts the recognition performance. By using dynamic responses, the

influence of a spike to the postsynaptic neuron is spread out in time. The long lasting

effect helps asynchronously emitted spikes to interact with each other in the reser-

voir. Together with the recurrent structure of the network, these interactions create

rich dynamics that forms short-term memory and enhances the readout neurons’

ability to recognize the given pattern. Comparing with the first-order dynamics of a

exponential form

1

τ s
e−

t−tij−dij
τs ·H(t− tij − dij),

where the peak value of the response is located at the arrival of the spike and the

response decreases exponentially subsequently, the second-order dynamics

(
e
−

t−tij−dij
τs1 − e

−
t−tij−dij

τs2

)
·H(t− tij − dij)

τ s1 − τ s2

ramps up to the peak value then decreases over time. Thus, the second-order response

spreads out even more, leading to longer interactions between neurons. This may be

the part of the reason that the second-order response produces better results. For

the second-order model, the time constants for excitatory responses and inhibitory

responses are different. This can also produce richer dynamics which helps to boost

the network performance.
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4.5 Hardware-Friendly Efficiency Optimization

4.5.1 Division Simplification

The above text shows that computations that have to be implemented include

the neuron model and synaptic model described in (4.16) and (4.21), and learning

rules described in (4.17) and (4.18). While there are well developed VLSI modules

for efficient addition and comparison operations [75] and random number generation

[184], division and evaluation of exponential terms are expensive to implement in

hardware. In this subsection, we simplify the division operations in (4.16) and (4.21).

In (4.16) and (4.21), division operations are used to calculate the spontaneous

exponential decrease of calcium concentration and membrane potential. While there

is previous work using look-up tables (LUT) to implement exponential decrease of

digitized variables [61], the precision of computations is limited by the affordable

LUT area.

In the neuron models, since both the time constants of calcium concentrations

and membrane voltages are constant numbers throughout the entire neural network,

a general purpose division module is not necessary. Therefore, we use customized

division modules for specific denominator values to perform division operations. To

divide a binary number n by another number m, a computationally rather simple

case is when m = 2k for some non-negative integer k. In this case, division can

be done by simply right shifting the binary number n by k bits. Since bit shift is

much cheaper to implement on VLSI [75], we choose time constant values of calcium

concentration and membrane voltage to be binary (i.e. 2k for some integer value of k)

such that bit shift modules can be used to perform customized division operations.
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4.5.2 Synaptic Model Simplification

As a neural network, the liquid state machine is comprised of neurons and

synapses. A closer look at the LSM reveals that the number of synapses is usu-

ally much larger than that of neurons. Take the LSM for speech recognition as an

examples, to fully connect hundreds of reservoir neurons and 10 output neurons re-

quires thousands of plastic synapses already, not to mention the synapses needed

for connecting the reservoir neurons. Therefore, reducing the complexity of synaptic

models is of great importance for reducing the hardware cost of network implemen-

tation.

To reduce the complexity, we first take a closer look at the models used in the net-

work. Since (4.21) describes the dynamics of both the neuron and incident synapses,

the model can be rewritten as

dvm
dt

= −vm
τm

+
∑
i

Ii (4.22)

Ii =
∑
j

wmi ·
1

τ s1 − τ s2
e
−

t−tij−dij
τs1 ·H(t− tij − dij)

−
∑
j

wmi ·
1

τ s1 − τ s2
e
−

t−tij−dij
τs2 ·H(t− tij − dij),

(4.23)

where (4.22) and (4.23) are the models of the membrane voltage and the ith incident

synapse, respectively. Ii is the current injected to the neuron from the ith incident

synapse. Let the values of all tij to be positive, e
−

t−tij−dij
τs1 · H(t − tij − dij) and

e
−

t−tij−dij
τs2 ·H(t− tij − dij) are respectively the solutions of the following differential

equations 
dx
dt

= − 1
τ1
x+ δ(t− tij − dij)

x(t)|t=0 = 0

(4.24)
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and 
dx
dt

= − 1
τ2
x+ δ(t− tij − dij)

x(t)|t=0 = 0.

(4.25)

For these linear ordinary differential equations, it is clear that wmi

∑
j ·e

−
t−tij−dij

τs1 ·

H(t− tij − dij) and wmi

∑
j ·e

−
t−tij−dij

τs2 ·H(t− tij − dij) are respectively the solutions

of 
dx
dt

= − 1
τ1
x+ wmi

∑
j ·δ(t− tij − dij)

x(t)|t=0 = 0

(4.26)

and 
dx
dt

= − 1
τ2
x+ wmi

∑
j ·δ(t− tij − dij)

x(t)|t=0 = 0.

(4.27)

This way, each synapse is modeled by two state variables that can be calculated by

the method introduced in the previous subsection. However, the cost of implement-

ing these second-order synapse is still considerable since the number of synapse is

significantly larger than that of neurons.

To this end, we further explore the linearity of synaptic models to merge the re-

sponses of all synapses incident to a neuron [90][185], as illustrated in Fig. 4.13. Con-

sidering that all synaptic responses are described by the same linear ordinary differen-

tial equations with different inputs, by superposition the terms
∑

iwmi

∑
j ·e

−
t−tij−dij

τs1 ·

H(t − tij − dij) =
∑

i,j wmi · e
−

t−tij−dij
τs1 ·H(t − tij − dij) and

∑
iwmi

∑
j ·e

−
t−tij−dij

τs2 ·

H(t− tij − dij) =
∑

i,j wmi · e
−

t−tij−dij
τs2 ·H(t− tij − dij) are respectively the solutions

of 
dx
dt

= − 1
τ1
x+

∑
i wmi

∑
j ·δ(t− tij − dij)

x(t)|t=0 = 0

(4.28)
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Figure 4.13: Illustration of linear merging of synaptic responses. Responses of three
synapses incident to a neuron is linearly merged to form the response of one synapse
receiving all spikes from the three presynaptic neurons.

and 
dx
dt

= − 1
τ2
x+

∑
i wmi

∑
j ·δ(t− tij − dij)

x(t)|t=0 = 0.

(4.29)

From (4.23), we have

∑
i

Ii

=
∑
i,j

wmi
e
−

t−tij−dij
τs1 − e

−
t−tij−dij

τs2

τ s1 − τ s2
H(t− tij − dij)

=
∑
i,j

wmi

τ s1 − τ s2
· e−

t−tij−dij
τs1 ·H(t− tij − dij)

−
∑
i,j

wmi

τ s1 − τ s2
· e−

t−tij−dij
τs2 ·H(t− tij − dij),

(4.30)

which states that
∑

i Ii is the summation of the solutions of (4.28) and (4.29). Thus,∑
i Ii can be computed by solving the two state variables in (4.28) and (4.29).

It is clear that instead of having two state variables for each synapse, the state
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variables of all synapses incident to the same postsynaptic neuron are merged into

two. In other words, the number of state variables describing the dynamic behaviors

of synapses is reduced from “two per synapse” to “two per postsynaptic neuron”. As

estimated at the beginning of this subsection, an LSM is comprised of hundreds of

neurons and at least thousands of synapses. Thus, to merge these synaptic responses,

the number of state variables describing all synaptic dynamics is reduced by at least

one order of magnitude.

(4.30) shows that the two state variables have to be divided by τ s1−τ s2 . To simplify

the division operation, we use the approach introduced in the previous subsection

and choose parameters such that τ s1 , τ
s
2 and τ s1 − τ s2 can all be expressed in the form

of 2k.

4.5.3 Precision of Synaptic Weight

Due to the large number of synapses, the number of bits used to represent the

synaptic weight also has a considerable influence on the total hardware resources

needed to implement the LSM. Using less bits reduces the hardware cost but limits

the precision of synaptic weights. Intuitively, this limits the precision of adjusting

the location and orientation of the hyperplane in the linear classifier, thereby may

potentially degrade the LSM performance. The trade-off between the number of bits

and network performance is studied in the next section.

4.6 Experiments

We first introduce the settings of our experiments. To reduce hardware resources

of potential implementations, we study the impact of bitwidth of synaptic weights

and reservoir size on the network performance. Finally, our results are compared

against existing works.
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4.6.1 Experimental Settings

Before presenting experimental results, this subsection introduces experimental

settings, including parameter values in our models, the benchmark used to evaluate

the LSM performance, and settings for the LSM training and validation.

First of all, the liquid state machine is set up using parameters summarized in

Tables 4.1, 4.2 and 4.3 for parameter values used in the LIF neuron model, synaptic

connectivity and learning rule, respectively. In Table 4.2, E and I denote excitatory

and inhibitory neurons, respectively. E → I denotes the type of synapses with

excitatory presynaptic neurons and inhibitory postsynaptic neurons. Note that time

constants of membrane voltage and calcium variable in Table 4.1 are set to be 2i

with integer i for simplified division as discussed in Section. 4.5.1. In each neuron,

16-bit binary numbers are used for membrane voltage and calcium concentration.

Within the reservoir, 20% neurons are inhibitory and 80% are excitatory. Weights of

synapses connecting these neurons are fixed. In the LSM, reservoir neurons are fully

connected to readout neurons by plastic synapses. Note that in the network, we set

all synaptic delays dij to be 1 ms. This is an simplified model. Using different delay

values may potentially help neurons firing asynchronously to interact better and

improve the memory capacity [186] for further boosting the network performance.

Table 4.1: Parameter Values in LIF Neuron Model.
Parameters in LIF model Value

Threshold voltage Vth 20 mv
Resting potential Vth 0 mv
Time constant τm 32 ms
Time constant τc 64 ms
Refractory period τrefrac 2 ms
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Table 4.2: Parameter Values in Synaptic Model.
Parameters in synaptic model Value

r (in Eqn. (4.3)) 2
type value

E → E 0.45
k (in Eqn. (4.3)) E → I 0.3

I → E 0.6
I → I 0.15
type value

fixed synaptic E → E 3
weight in the E → I 6
reservoir I → E −2

I → I −2
type value

Wmax E → E/I 8(1− 2nbit−1)
I → E/I 8
type value

Wmin E → E/I −8
I → E/I −8(1− 2nbit−1)

∆W 0.0002× 2nbit−4

dij 1 ms

Table 4.3: Parameter Values in Learning Rule.
Parameters in the learning rule Value

Cθ 5
∆C 3
δ 1

To evaluate the performance of the proposed liquid state machine, we use a

subset of TI46 speech corpus as benchmark. The benchmark contains isolated word

utterances of 5 different speakers. 10 different utterances of each word in ‘zero’

to ‘nine’ are recorded for each speaker. Thus, the benchmark contains 500 speech
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samples. We also adopt 5-fold cross validation to test the LSM performance. In

this setup, all samples in the benchmark are divided into 5 groups: G1, G2, G3, G4,

and G5. And 5 different LSMs are trained and tested. For the kth (k = 1, 2, 3, 4, 5)

LSM, the testing dataset is the group Gk and training dataset is the union of all other

groups. During the training of an LSM, the temporal signal (speech) is applied to the

input of the system shown in Fig. 4.4. In the mean time, the teacher signal is applied

to each readout neuron. After the preprocessing, the input signal is transformed into

77 spike trains that feed into the reservoir. The combined influence from activities of

reservoir neurons and readout neurons determines the learning of synapses connecting

them. After applying each training sample to the LSM once, the LSM is trained for

one epoch. To optimize the LSM performance, the LSM has to be trained for multiple

epoches. During the testing, temporal signal of a testing speech sample is applied to

the input while the teacher signal is not applied to any of the readout neuron. The

recognition is based on the activities of readout neurons. The neuron that fires the

most spikes is the winner, which indicates the classification result.

4.6.2 Precision of Synaptic Weights

As discussed in Section. 4.5.2, the number of synapses in the LSM is much larger

than that of neurons. Therefore, reducing the hardware cost of synapse can poten-

tially reduce the cost of the entire system significantly. In this subsection, we study

the influence of the bitwidth (precision) of synaptic weight on the performance of

liquid state machines. The reservoir size used in LSMs is 3× 3× 15 [55].

Fig. 4.14 shows the performance of the LSM with different precisions of synaptic

weights. The influence of the bitwidth of synaptic weights is summarized in Table 4.4,

where initial results and best results are shown for synapses using different bitwidths.

The initial results are obtained by training the LSM for only one epoch. The decent

160



0 100 200 300 400 500
400

420

440

460

480

500
5−bit synapses

Epochs

N
um

be
r 

of
 r

ec
og

ni
ze

d 
sa

m
pl

es

0 100 200 300 400 500
400

420

440

460

480

500
6−bit synapses

Epochs

N
um

be
r 

of
 r

ec
og

ni
ze

d 
sa

m
pl

es

0 100 200 300 400 500
400

420

440

460

480

500
7−bit synapses

Epochs

N
um

be
r 

of
 r

ec
og

ni
ze

d 
sa

m
pl

es

0 100 200 300 400 500
400

420

440

460

480

500
8−bit synapses

Epochs

N
um

be
r 

of
 r

ec
og

ni
ze

d 
sa

m
pl

es

0 100 200 300 400 500
400

420

440

460

480

500
9−bit synapses

Epochs

N
um

be
r 

of
 r

ec
og

ni
ze

d 
sa

m
pl

es

0 100 200 300 400 500
400

420

440

460

480

500
10−bit synapses

Epochs

N
um

be
r 

of
 r

ec
og

ni
ze

d 
sa

m
pl

es

Figure 4.14: Influence of the precision of synaptic weights on the LSM performance.
The six panels show performance of liquid state machines with synaptic weights with
a resolution of five to ten bits. Results are for 5-fold cross validations with 500 speech
samples. Plots show the recognition performance for the first 500 epochs of training.
As shown in each plot, the performance almost saturate after less than 300 epochs
of training. Comparison between these plots shows that the network performance
is generally improved as the number of bits increases. And the performance almost
saturates for synaptic weights using more than eight bits.
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recognition rates show that the LSMs learn quite fast at the beginning of the training

process. The best results represent the highest performance achieved in 500 epoches

of training. To reduce the performance fluctuations over different epoches as shown

in Fig. 4.14, the best performance is an average value over a 20-epoch interval.From

these results, it is clear that the performance of the LSM generally increases with

the bitwidth of synaptic weights. However, the performance almost saturates when

the bitwidth of synaptic weights exceeds eight. This observation indicates that by

using 8-bit synaptic weights, the precision of synaptic weights is not a performance

bottleneck for the LSM anymore. Therefore, synapses with bitwidth larger than 8

is not necessary on hardware since it increases the storage as well as computational

cost. Note that the summation of the recognition rate and the error rate is less than

1. This is because the network cannot recognize some speech samples due to fact

that the number of readout neurons firing the most spikes can be more than one.

Since in this case the input can be potentially recognized by using another classifier,

this situation is better than recognizing the input erroneously.

Table 4.4: Performance of LSM vs. Bitwidth of Synaptic Weight.
Bitwidth No. of correctly Recognition Error
of synaptic recognized inputs rate rate
weights Initial Best Initial Best Initial Best

5 407 480.5 81.4% 96.09% 17.0% 3.24%
6 417 487.5 83.4% 97.49% 12.4% 2.00%
7 422 493.9 84.4% 98.77% 13.0% 0.96%
8 439 494.8 87.8% 98.96% 7.8% 0.75%
9 443 495.2 88.6% 99.03% 5.4% 0.86%
10 435 495.5 87.0% 99.09% 5.4% 0.80%

Training and testing of 5 recognizers (in 5-fold cross validation) for 500 epoches
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takes about 25.8 hours wallclock time. Or about 5.16 hours for each recognizer. On

average, the training and testing of each recognizer for one epoch take only about 37

seconds in total. While the average duration of each word utterance is 0.66 second,

the simulation of the recognition takes 0.073 second. That is, the temporal signal

processing (recognition) speed of the LSM simulation is about 9 times faster than read

time. Because of the parallel nature, we expect that the hardware implementation

can be more efficient, thereby can process input signals in real time with a low clock

speed to save power. To more closely resemble the hardware behavior, simulation on

FPGA can also be used to prototype the proposed LSM.

4.6.3 Size of the Reservoir

For more cost effective designs of the LSM, we test the recognition rates and

error rates of liquid state machines with reservoirs of different sizes. We use the

same settings and parameter values introduced at the beginning of this section and

10-bit binary numbers for synaptic weights. Results are shown in Table 4.5. The

first and second columns show the shape and the size of the reservoir. The third

and fourth columns show the recognition rates and error rates, respectively. In all

these tested LSMs with different size of the reservoir, the best performance reaches

99.79% recognition rate and 0.08% error rate. Clearly, the performance of LSMs

varies with the reservoir size. The relation between them are visualized in Fig. 4.15.

In the diagram on the top, each diamond represents an LSM. The two axes show the

recognition rates and the number of neurons in the reservoir. Similarly, the bottom

diagram shows that the error rate decreases with the size of the reservoir. From the

figure, it is clear that with reservoirs of sizes smaller than 100 neurons, performance

of LSMs are significantly lower than those with larger reservoirs. For reservoir sizes

larger than 100 neurons, the recognition and error rates are around 99% and 1%,
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respectively. And further increasing the reservoir size does not significant increase

the LSM performance. Therefore, taking into account both performance and cost

effectiveness, a reservoir of size slightly larger than 100 neurons is a good choice for

an LSM for this application.

Table 4.5: Performance of LSM with Various Reservoir Sizes.
Reservoir Reservoir Recognition Error
shape size rate rate

2× 2× 20 80 96.25% 3.24%
2× 2× 30 120 99.31% 0.41%
2× 2× 40 160 98.74% 1.16%
2× 2× 50 200 99.21% 0.58%
3× 3× 10 90 97.16% 2.18%
3× 3× 15 135 99.09% 0.80%
3× 3× 20 180 98.78% 1.01%
3× 3× 25 225 98.87% 1.01%
3× 3× 30 270 98.55% 1.37%
3× 3× 40 360 98.90% 0.88%
3× 3× 50 450 98.91% 0.92%
4× 4× 5 80 96.90% 2.97%
4× 4× 10 160 98.43% 1.44%
4× 4× 15 240 98.69% 1.29%
4× 4× 20 320 99.08% 0.74%
4× 4× 25 400 98.15% 1.78%
5× 5× 5 125 99.10% 0.81%
5× 5× 10 250 99.00% 1.00%
5× 5× 15 375 98.54% 1.27%
6× 6× 6 216 99.24% 0.61%
6× 6× 8 288 98.79% 1.11%
6× 6× 10 360 99.64% 0.28%
6× 6× 12 432 98.86% 0.92%
7× 7× 7 343 99.79% 0.08%
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Figure 4.15: The diagram on the top shows the recognition rate of LSM vs. the size
of the reservoir. The bottom one shows the error rate of LSM vs. the size of the
reservoir.

4.6.4 Comparison with Other Methods and Discussion

The liquid state machine in [65] uses the same TI46 benchmark and the same

preprocessing module introduced in Section. 4.1.2. The main difference lies in the

training method. [65] adopts ridge regression for training readout neurons. With

the reservoir size ranging from 300 to 2000 neurons, the word error rate (WER) on

testing dataset is between 10% and 3%, which is significantly higher than that of the

proposed LSM. The advantage of the proposed method may be due to the following

factors. In [65], the temporal signal is sampled every 20 ms for the training. This

may lead to loss of information in higher-frequency components of the temporal

signal. In the proposed method, learning is driven by neuron activities at any time.
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Thus, the loss of information is less. Therefore, the proposed LSM may overperform

the method used in [65] in terms of both error rate and storage (Off-line learning

requires large storage for all data). To reduce storage, [187] discusses an online

sequential ELM (extreme learning machine) algorithm, which can be interpreted as

an online version of the ridge regression. Even when this algorithm is adopted by

the LSM system in [65], sampling of the temporal signals would be still required.

In comparison, the proposed approach may be still more advantageous for hardware

implementation because simpler computation is involved and the adopted learning

rule is biologically motivated, local and hence highly parallel.

In [66], the liquid state machine uses different settings. The speech signals from

TI46 are preprocessed by temporal based linear predictive coding. With only 8

to 27 neurons, the reservoirs are much smaller. But more complicated multi-layer

feedforward networks consisting of 62 to 168 neurons are used for backpropagation

learning algorithms. This work reports recognition rates between 80% and 100%. It

should be pointed out that [66] uses less speech samples (200 in total, divided into

two datasets for training and testing, respectively), which potentially leads to greater

variations on the recognition rate when compared to results on a larger dataset. And

[66] only reports the best result in different trials for each network configuration.

[69] builds long short-term memory recurrent neural networks for speech recog-

nition. The network is constructed by connecting 121 units of different types. Using

MFCC method for signal preprocessing, the WER on TI46 benchmark reaches 2%.

The state-of-the-art HMM based recognizer Sphinx-4 is introduced in [13] (A pre-

vious version Sphinx-2 is used in commercial products). Tested on the TI46 data set,

a WER of 0.168% is reported. Comparison between this WER and our best results

of 0.08% error rate and 99.79% recognition rate shows the top-notch performance

of the proposed LSM. Note that Sphinx-4 uses dataset-specific language models and

166



acoustic models and is heavily tuned for the specific dataset. In contrast, the pro-

posed LSM is not designed specifically for any language or dataset. Thus, without

changing the LSM, we expect similar performance if it is applied to another dataset

even in another language. The resulted LSM trained by another dataset is only dif-

ferent in terms of the readout neurons and the weights of their incident synapses. In

other words, other parts of the liquid state machine, including the reservoir and the

preprocessing stages, are generally applicable to different datasets even in different

languages for speech recognition. To take advantage of this generality, a hardware-

base LSM may be built as an accelerator for speech recognition and a number of

other applications.

In addition to the behaviors of LSMs, the speech aerodynamics is also chaotic.

In [188], this is characterized by multiscale fractal dimension (MFD). Due to friction

and aspiration, dynamics of airflow often result in certain degree of turbulence, which

contributes to geometrical complexity and fragmentation of speech waveforms. This

geometrical complexity is modeled by their fractal dimensions at multiple scales

and used as an additional feature in speech recognition. Utilizing the extracted

information from the speech waveform by MFD, [188] shows improved performance

of speech recognition. Therefore, it is possible to take into account chaotic behaviors

in both speech aerodynamics and liquid state machines to further improve the LSM

performance.

4.7 Summary

We propose a fully bio-inspired digital liquid state machine for the purpose of low

power hardware implementation. The spike-based online learning rule reduces the

algorithm complexity and facilitated VLSI implementation by removing communi-

cations between non-neighboring elements in the neural network. Using a subset of
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TI46 speech corpus as benchmark, we study the influence of synaptic dynamics on

the LSM performance and merge the dynamics for simplified hardware implemen-

tation. To reduce the potential hardware cost, we also study the trade-off between

the number of bits used for synaptic weights and the LSM performance. To better

understand the LSM, we study the influence of reservoir sizes on the recognition per-

formance. Tested on TI46 dataset, our proposed LSM shows top-notch performance

among all speech recognizers, including the state-of-art HMM based Sphinx-4.
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5. CONCLUSION

This dissertation develops techniques for modeling and analyzing dynamic be-

haviors of biologically realistic genetic circuits and brain models and design of brain-

inspired computing systems.

As a promising candidate for information storage in synthetic biological systems,

genetic memory circuits exhibit dynamic behaviors, which have significant impact on

their biological functions. As such, the dynamic stability of genetic memory circuits

is studied to understand their functionality for their potential applications in syn-

thetic biology. Based on the electrical-equivalent models of biochemical reactions,

simulation techniques widely used for electronic systems are applied to provide quan-

titative analysis capabilities. In particular, system-theoretical techniques are used to

study the dynamic behaviors of genetic memory circuits, where the notion of stabil-

ity boundary is employed to characterize the bistability of such circuits. While the

contribution is focused on the bistable genetic memory circuits, with proper exten-

sion, our proposed techniques are broadly applicable to other multi-stable biological

systems [189].

To apply large-scale computation to quantitative studies of complicated biologi-

cal systems, we construct large-scale brain models with detailed cellular mechanisms

to facilitate the simulation-based studies of physiological and pathological behaviors

in brain disorders. By developing dedicated numerical techniques for brain simula-

tion, the simulation speed is greatly improved such that dynamic simulation of large

thalamocortical models with more than one million multi-compartment neurons and

hundreds of synapses on commodity computer servers becomes feasible. Simula-

tion of such large model produces biologically meaningful results demonstrating the
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emergence of sigma and delta waves in the early and deep stages of sleep, and sug-

gesting the underlying cellular mechanisms that may be responsible for generation

of absence seizure. With rapid progress in experimental brain research, increasingly

available data in the future would help to build more complete and accurate brain

models capturing more biologically meaningful brain behaviors for broader appli-

cations [190][191]. On the side of computation, the numerical techniques may be

extended to larger computing platforms for faster simulation of the brain [162].

Brain-inspired computing paradigms may offer promising solutions to many chal-

lenges facing the main stream Von Neumann computer architecture. To this end,

we develop a biologically inspired learning system amenable to VLSI implementa-

tion. The proposed solution consists of a digitized liquid state machine (LSM) and a

spike-based learning rule, providing a fully biologically inspired learning paradigm.

The key design parameters of this liquid state machine are optimized to maximize

learning performance while considering hardware implementation cost. When ap-

plied to speech recognition of isolated words using TI46 speech corpus, the perfor-

mance of the proposed LSM rivals several existing state-of-art techniques including

the Hidden Markov Model based recognizer Sphinx-4 [13]. These initial results on

the brain-inspired learning system provide a new starting point for further explo-

ration of both machine learning and the brain. On the side of machine learning, the

specific application of the LSM on speech recognition could be further extended to

larger vocabulary and continuous speech. This could lead to more powerful speech

recognizers for practical applications [192]. For the general study of the LSM, in-

troducing learning into the reservoir might lead to more memory capacity and close

mimicking of the brain behavior [186]. Taking advantage of the low power nature of

spiking neural networks, in the future reservoirs with a 3-D structure could be man-

ufactured on 3-D chips [193]. On the side of brain study, the critical dependency of
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LSM performance on the chaotic behavior of the reservoir [179][181] provides a new

perspective on the study of learning in the brain, which may be further explored.
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[20] C. Schöfer and K. Weipoltshammer. Gene dynamics and nuclear architecture

during differentiation. Differentiation, 76(1):41–56, 2008.

[21] R. K. Chesser. Heteroplasmy and organelle gene dynamics. Genetics,

150(3):1309–1327, 1998.

[22] S. Faisal, G. Lichtenberg, and H. Werner. Polynomial models of gene dynamics.

Neurocomputing, 71(13):2711–2719, 2008.

[23] Y. Zhang and P. Li. Gene-regulatory memories: Electrical-equivalent modeling,

simulation and parameter identification. In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pages 491–496, 2009.
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