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ABSTRACT

Small samples are commonplace in genomic/proteomic classification, the result

being inadequate classifier design and poor error estimation. A promising approach

to alleviate the problem is the use of prior knowledge. On the other hand, it is

known that a huge amount of information is encoded and represented by biological

signaling pathways. This dissertation is concerned with the problem of classifier

design by utilizing both the available prior knowledge and training data. Specifically,

this dissertation utilizes the concrete notion of regularization in signal processing

and statistics to combine prior knowledge with different data-based or data-ignorant

criteria.

In the first part, we address optimal discrete classification where prior knowledge

is restricted to an uncertainty class of feature distributions absent a prior distribution

on the uncertainty class, a problem that arises directly for biological classification us-

ing pathway information: labeling future observations obtained in the steady state by

utilizing both the available prior knowledge and the training data. An optimization-

based paradigm for utilizing prior knowledge is proposed to design better performing

classifiers when sample sizes are limited. We derive approximate expressions for the

first and second moments of the true error rate of the proposed classifier under the

assumption of two widely used models for the uncertainty classes: ε-contamination

and p-point classes. We examine the proposed paradigm on networks containing

NF-κB pathways, where it shows significant improvement compared to data-driven

methods.

In the second part of this dissertation, we focus on Bayesian classification. Al-

though the problem of designing the optimal Bayesian classifier, assuming some
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known prior distributions, has been fully addressed, a critical issue still remains: how

to incorporate biological knowledge into the prior distribution. For genomic/proteomic,

the most common kind of knowledge is in the form of signaling pathways. Thus, it

behooves us to find methods of transforming pathway knowledge into knowledge of

the feature-label distribution governing the classification problem. In order to in-

corporate the available prior knowledge, the interactions in the pathways are first

quantified from a Bayesian perspective. Then, we address the problem of prior

probability construction by proposing a series of optimization paradigms that uti-

lize the incomplete prior information contained in pathways (both topological and

regulatory). The optimization paradigms are derived for both Gaussian case with

Normal-inverse-Wishart prior and discrete classification with Dirichlet prior.

Simulation results, using both synthetic and real pathways, show that the pro-

posed paradigms yield improved classifiers that outperform traditional classifiers

which use only training data.
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NOMENCLATURE

ML Maximum-Likelihood

RML Regularized Maximum-Likelihood

OBC Optimal Bayesian Classifier

REML Regularized Expected Mean-Log-Likelihood

RMEP Regularized Maximum Entropy Prior

RMDIP Regularized Maximal Data Information Prior

ln(.) or log(.) Natural logarithm of x ∈ R+

|A| Determinant of the matrix A

f(X|Y = y) Conditional density of X given Y = y

Ex[g(x)], or Ex[g(x)] Expectation of g(x) with respect to x

Pr(X|Y = y) Conditional probability of X given Y = y

Bin(n, p) Binomial distribution

T rin(n, p1, p2) Trinomial distribution

Dir(α) Dirichlet distribution parametrized by α

Beta(α, β) Beta distribution parametrized by α and β

N (µ,Σ) Multivariate normal distribution

Γ(.) Gamma function

ψ(.) Digamma function
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1. INTRODUCTION ∗

A pattern recognition problem is on predicting a random variable, called inter-

changeably a label , class or response variable, from some other statistically related

random variable (vector), called feature vector or prediction vector . Whenever pat-

terns are distinguished using some intermediate functional derived from existing la-

beled observations , called training data, pattern recognition is interchangeably known

as supervised learning . Depending on the continuity or discreteness of the label, the

problem respectively falls into regression or classification.

1.1 Classification Problem

Let x ∈ X , where X = Rp in the continuous setting or a finite set of numbers

(bins) X = {1, . . . , b} in the discrete scenario, be an event from the sample space

of dimension p or bin-size b, coming from one of the subgroups of the overall pop-

ulation. In the binary classification problem, the population is divided into two

subgroups: y ∈ {0, 1}. Then, the problem of classification is to design a classifier

ψ(x) : X → {0, 1}. We will refer to this case, simply as classification throughout this

proposal. Further, the relationship between the sample and the subgroup label, y is

fully characterized by their joint distribution f(x, y). Hence, the subgroups can be

described by probability density functions, called class (label)-conditional densities

f(x = X|Y = y); y ∈ {0, 1}.
∗Parts of this section are reprinted with permission from M. Shahrokh Esfahani, J. Knight, A. Zol-
lanvari, B.-J. Yoon, and E. R. Dougherty, “Classifier design given an uncertainty class of feature
distributions via regularized maximum likelihood and the incorporation of biological pathway knowl-
edge in steady-state phenotype classification,” Pattern Recognition, vol. 46, no. 10, pp. 2783–2797,
2013. © 2013 ELSEVIER.
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1.1.1 Complete Knowledge of Underlying Distributions

In this case, it is assumed that the complete knowledge about class-conditional

densities and class prior probabilities c = Pr(Y = 0) (similarly 1 − c = Pr(Y = 1))

is known. Using the Bayes theorem, fixing the label Y = y, the likelihood associated

with the x is computed: f(x = X|Y = y), from which the Bayes (optimal) classifier

(optimal) is defined as follows

ψ(x = X) =


1, if f(x=X|Y=1)

f(x=X|Y=0)
≥ c

1−c

0, if f(x=X|Y=1)
f(x=X|Y=0)

< c
1−c

(1.1)

It should be noticed that in the case of a tie, i.e. f(x=X|Y=1)
f(x=X|Y=0)

= c
1−c , the class can be ei-

ther assigned as in (1.1) (arbitrarily) or by randomization (with some predetermined

probability). The ratio f(x=X|Y=1)
f(x=X|Y=0)

, is sometimes called likelihood ratio. Moreover,

taking the logarithm from both sides of the inequalities in (1.1), the optimal classifier

can be rewritten as follows

ψ(x = X) =


1, if log f(x = X|Y = 1)− log f(x = X|Y = 0) ≥ log c

1−c

0, if log f(x = X|Y = 1)− log f(x = X|Y = 0) < log c
1−c ,

(1.2)

in which, the terms log f(x = X|Y = y); y ∈ {0, 1} are called log-likelihood func-

tions.

1.1.2 Classification Using Training Data

The assumption of having complete knowledge of class-conditional densities is not

in fact a realistic one. In practice, one would have only access to a limited number

of training samples by which a classifier is trained . The training samples are usually
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denoted by Sn, embedding the sample size, n in the notation. A classification rule

is defined as a mapping from the training samples to a classifier: Ψ : Sn → ψn, or

more precisely:

Ψ : [X × {0, 1}]n → ψn.

In that regard, a classifier is the final product of a training process. The training

process is fully characterized by the classification rule. Associated with each of these

mappings or functions, a prediction error , or simply an error , is defined . The

most natural definition of the error for a designed classifier is its misclassification

rate, namely true error : εn = Pr(ψn(X) 6= Y ) = E[|Y − ψ(X)|]. The defined error

quantifies the rate of misclassification of future observations X, when the label is

assigned using the function ψ. Evaluating a classification rule for a feature-label

distribution f(x|Y = y) and class prior probability c, an expectation is taken with

respect to the training samples, Sn, each of which leads to different classifiers. In

this case, the error is called expected true error defined as follows

ESn [εn] = ESn

[
E[|Y − ψ(X)||Sn]

]
.

The main difference between true error and expected true error lies in that the

former deals with the actual error of ”one designed classifier” obtained by applying a

certain classification rule to a fixed training sample Sn. On the other hand, the latter

yields the expected performance of a rule on the whole feature-label distribution,

rather than one realization of that. Throughout this dissertation, we often deal with

expected true error to remove the dependency (randomness) originated from a single

realization of Sn.

The classification rules are categorized from modeling perspective into “model-
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based” and “model-free” rules. In model-free rules, no specific model for the data

generating process is assumed. In particular, no assumptions are made regarding

the feature-label distribution (population) from which the sample data have been

drawn, and instead a classifier is designed utilizing training data. Examples include

k−nearest neighbor, support vector machine (SVM), or decision tree. In model-based

methods instead, first a model is selected, called model selection stage, in which the

underlying distributions are usually modeled (parameterized). Then, the assumed

model is trained via training data. This process is usually done through model

parameter estimation. The estimated parameters are then plugged in the model

yielding the classifier. Examples include linear discriminant analysis (optimal when

the underlying model is Gaussian with identical covariance matrices for two classes)

or quadratic discriminant analysis (optimal when the underlying model is Gaussian

with unequal covaraince matrices). The main advantage of model-based methods is

in their tractability for evaluating their performance, e.g. the misclassification error

rate can be computed in the assumed model. Assuming a model is in fact adding

some information to the problem: prior information.

Although almost all the model-free and model-based rules perform admissibly in

large sample sizes, the difference between these methods becomes more salient when

one deals with small sample settings: when n is comparable with p (or b). It turns

out that the performance of most of the data-driven (model-free) classification rules,

in the sample size range of a typical phenotypic classification problem, significantly

degrades.

1.1.3 Phenotype Classification

In general the problem of phenotype classification is to classify between different

diseases or between subtypes of a heterogeneous cancer, e.g. BCR1 and BCR2 breast
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cancer. The input data here are usually in the form of gene expressions: the main

task here is to assign a phenotype (perhaps a macroscopic trait) to measured high-

dimensional gene expressions (a microscopic observation). Gene expressions can be

obtained through several techniques, e.g. microarray or next-generation sequencing

technology.

Despite of daily decrease in the cost of genomic data acquisition with the advent

of high-throughput sequencing technologies, there still remains a huge gap between

the sample size of a phenotypic classification problem and the dimension. There can

be tens of thousands of potential features (gene expressions) but the sample sizes

tend to be small, typically under 100 and often less than 50. This makes classi-

fication problematic. A promising approach to alleviate the problem is the use of

prior knowledge. For example, the usual procedure for classifier design is to apply

a classification rule to a set of features and sample data with the result being a

designed classifier that will be applied to the population (all future observations).

Prior knowledge can play a role in deciding upon the nature of the data and the

original list of features. Knowledge may also be used in choosing a classification rule

based on the nature of physical characteristics. The salient point from our perspec-

tive herein is that, once the features, sampling procedure, and classification rule are

decided upon, from that point on the typical classification rule proceeds without op-

erational knowledge concerning the features. In particular, no assumptions are made

regarding the feature-label distribution (population) from which the sample data are

drawn, despite the availability of a large amount of information contained in sig-

naling pathways that specify underlying interactions between entities (e.g. genes or

proteins), contributed either in normal functioning or malfunctioning (e.g. diseases)

cellular states. These pathways are mostly available in the relevant literature or in

public databases (e.g. KEGG, BioCarta, Reactome). If knowledge concerning the
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feature-label distribution is available, then it can be used in classifier design.

1.2 Biological Pathways

Biological pathways are graphical representation of a group of molecules (genes/proteins)

in a cell that work together to control one or more cell functions, such as cell division

or cell death. For instance, consider the mammalian cell cycle network illustrated in

Figure 1.1. After the first molecule in a pathway receives a signal , after some time

unites, it either activates or inhibits (suppresses) its downstream molecules directly

connected to it. This process is repeated until the last molecule is influenced by the

initial stimulating signal and the cell function is carried out. Abnormal activation of

these pathways can lead to cancer or other diseases. For example, in the mammalian

cell cycle shown in Figure 1.1, having permanent down-regulated Rb, p27 and in the

absence of the extra-cellular signal CycD, the system undergoes a faulty intercon-

nection, which represents cancerous phenotypes, in which the cell cycles even in the

absence of any growth factor.

1.2.1 Pathway-Based Classification

Protein-protein interaction (PPI) networks or gene-gene networks have been widely

used as a priori knowledge, namely called pathway-based classification, to improve

classification accuracy [6–11], consistency of biomarker discovery [12,13] and targeted

therapeutic strategies [14, 15]. For example, to improve classification performance,

several studies have proposed to interpret the gene expression data at the level of

functional modules (i.e., pathways), instead of at the level of individual genes, by

utilizing available pathway knowledge [16,17]. These pathway-based methods try to

infer the activity level of a given pathway by analyzing the expression of its member

genes, which is then used as a potential feature. These studies have shown that

such “pathway markers” are generally more reproducible compared to “gene mark-
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Figure 1.1: Pathways indicating the regulations between different molecules.

ers” and that they lead to better classification performance. Another example is

the network-based classification approach [18,19], which has been gaining interest in

recent years. These network-based methods try to identify “subnetwork markers” by

overlaying the gene expression data on a large-scale PPI network, where each gene

is mapped to the corresponding protein, and searching for differentially expressed

subnetwork regions. It has been shown that these subnetwork markers often yield

more accurate classification results and have better reproducibility compared to both

gene and pathway markers. Nonetheless, the majority of these studies utilize gene

expressions corresponding to sub-networks in PPI networks, for instance: mean or

median of gene expression values in gene ontology network modules [6], probabilis-

tic inference of pathway activity [9], and producing candidate sub-networks via a
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Markov clustering algorithm applied to high quality PPI networks [11, 20]. Consid-

ering that pathways are partial representations of the gene regulatory network and

that the PPI network provides a skeleton of the biological network underlying cells,

the aforementioned methods can be viewed as attempts to construct better classifiers

by integrating partial network knowledge with measurement data.

Although recent advances in pathway-based and network-based classification have

demonstrated the potential for utilizing prior knowledge to improve genomic classi-

fication, currently available methods mostly rely on heuristics. In this dissertation,

we propose a general paradigm for classification that incorporates prior knowledge

along with the data in the context of an optimization procedure.

1.3 Contributions

In our case, the application in mind is phenotype classification based on gene (or

protein) expression measurements in the steady-state of a biological network. This

“biomarker problem” is perhaps the most active area of research in genomics owing

to the potential for disease diagnosis and prognosis. Rather than depend only on

expression data, one can use classical genetic pathway information to provide prior

knowledge and augment classifier design. The contribution of this dissertation can be

categorized into two parts: (1) Utilizing pathway knowledge through an intermediate

step by which the pathways are first transformed to uncertainty class of dynamical

networks, being Boolean network with perturbation (BNp), and (2) Incorporation of

pathways from a Bayesian perspective.

In this dissertation, we employ regularization as an effective approach for inte-

grating prior knowledge with different criteria. Using regularization goes back to

1948 where regularization was introduced in the context of solving integral equation

numerically by Andrey Tikhanov [21], known as Tikhanov regularization. A simi-

8



lar approach was proposed by Phillips as “numerical solutions for certain integral

equations” in 1962 [22]. Under a different name and context, regularization has been

used in statistical problems as ridge regression [23]. Both Tikhanov regularization

and ridge regression can be seen as effective methods to solve ill-posed problems

via incorporating prior knowledge into the problem. Afterwards, there has been an

enormous amount of work both in statics [24–26] and more recently in signal process-

ing [27–30] dealing with regularization in a wide range of problems. A brief survey

on the use of regularization in statistics can be found in [31].

1.3.1 Regularized Maximum-Log-Likelihood

The example laid out in this approach involves the following chain: {pathways}

→ {class of networks} → {class of steady-state distributions}. Prior knowledge in the

form of a set of pathways constrains the possible behaviors of the dynamical system to

an “uncertainty class” of networks consistent with the pathway information [1]. Each

of these possesses a steady-state distribution, thereby yielding an uncertainty class

of steady-state distributions. Figure 1.2 shows an illustrative view of this process

chain. Detailed description of this figure is given in Section 2.5.

Hence, rather than assume nothing is known about the feature-label distribution

than what can be extracted from the data during classifier design, we can impose the

constraint that the feature distribution belongs to the uncertainty class of steady-

state distributions shown by a box in the middle of Figure 1.2. Put simply, a classifier

is designed based on the uncertainty class of steady-state distributions, denoted by

Π0 and Π1 in Figure 1.2, and the steady-state data.

We emphasize that while the particular application motivating our interest in-

volves the generation of a steady-state uncertainty class from genetic pathway in-

formation, the theoretical content of this dissertation lies solely within classification
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Generate all the regulatory 
networks consistent with the given 
pathways, i.e., an uncertainty class 

of dynamical systems. 

Biological 
pathways 

corresponding to 
label 1 

Biological 
pathways 

corresponding to 
label 0 

1Π

0Π

Class of all steady-state distributions 

Figure 1.2: An illustrative example of the chain: {pathways} → {class of networks}
→ {class of steady-state distributions}. In this schematic view, an intermediate step
is applied to construct a class of dynamical systems whose behaviors are consistent
with the given pathways, for example, see the methods in [1] and [2]. Two uncertainty
classes are shown by Π0 and Π1 for labels zero and one, respectively. These classes
will be employed as the prior knowledge in the classifier design.
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theory – classifier design assuming an uncertainty class of feature distributions. In

line with that focus, we provide analytic characterization of the first and second mo-

ments of the true error for two well-known uncertainty models, ε-contamination and

p-point uncertainty classes, under the assumption of stratified sampling. Characteri-

zation of these moments is basic to understanding the behavior of a classification rule

and has a long history in pattern recognition, most commonly with stratified sam-

pling [32], [33]- [34]. Recently, the issue of true-error moments has been addressed in

the context of the joint distribution of the true and estimated error moments, in this

case the most important moment being the second-order mixed moment between the

true and estimated errors because this mixed moment is critical to characterizing the

accuracy of the error estimate [32, 33, 35, 36]. The proposed method and the asso-

ciated moments for defined uncertainty class models are explained and extended in

detail in Section 2.

1.3.2 Bayesian Framework

In a different approach from above, a Bayesian framework is used for quantify-

ing and incorporating the information in biological pathways. A new sophisticated

method is proposed to quantify the knowledge in the pathways. We take a Bayesian

view, where everything is translated to expectations with respect to the model param-

eters found by prior probability. Two types information are extracted: (1) Regulatory

set, and (2) Pairwise regulations in which the type of influence, i.e. activation or

inhibition, is also taken into account. The Bayesian modeling of biological pathways

are described in details in Section 3.

The two-fold problem of pattern recognition has been recently addressed in a

Bayesian framework, Bayesian minimum-mean-square error (MMSE) error estima-

tor [37, 38], and optimal Bayesian classifier (OBC) [39, 40]. Considering the focus
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of this dissertation, it has been shown that using the Bayesian framework, the de-

signed OBC classifier performs optimally with respect to the assumed uncertainty

model represented by the prior probability.∗ It has been shown, to a great extent,

that Bayesian perspective can significantly improve classification. However, this im-

provement is extensively dependent on the prior chosen to be combined with the

data. In order to show the importance of having a ”good” prior distribution (in

the sense of being centered around the true underlying distribution), we show the

results of a small study here, where we focus on discrete OBC with Dirichlet prior

and multivariate Gaussian problem with Normal-inverse-Wishart prior on the mean

and covariance matrix of the underlying distributions [39].

1.3.2.1 Effect of prior mismatch: a small study

We generate two distributions as the true class-conditional ditributions via Zipf

model with b = 16 variables and the parameter a = 1.5 [41]. As of the hyperparam-

eters, we use

α0
mis = α0((1− ε)p0

Zipf + εpcont.), α
1
mis = α0p

1
Zipf

where vector pcont. is a random contamination probability mass function, and also

the parameter ε is used to control the amount of contamination into our prior distri-

bution. The setting above means that there is no mismatch in the center of prior for

class 1 and the contamination only affects class zero’s prior. The parameter α0 deter-

mines the concentration of the uncertainty class, i.e., the total variance of the Dirich-

let prior. We consider five scenarios for the variance parameter: α0 = b/2, b, 2b, 4b, 8b.

Two OBC classifiers are designed; one with the matched centered priors with hyper-

parameters α0 = α0p
0
Zipf and α1 = α0p

1
Zipf , and the other one using α0

mis and α1
mis,

∗It should be noted that, the OBC classifier is not guaranteed to perform better than traditional
methods for any specific model .

12



defined above.

We randomly generated n = 50 and n = 100 samples according to the true prob-

abilities whereas classes sample sizes are determined randomly based on c = 0.5. We

computed the expected loss due to the contaminated prior for class 0 by computing

E[
εmis
OBC−ε

true
OBC

εtrue
OBC

] where the expectation is taken with respect to random contamination

and training sample. The variables εtrue
OBC and εmis

OBC, respectively, stand for the true

error for the OBC classifier when the prior is centered around the true distribu-

tion, pyZipf ; y = 0, 1 and the OBC classifier when the prior’s center is shifted.The

expectation is approximated via Monte-Carlo with 50, 000 iterations.

Figure 1.3 illustrates the percentage of the performance loss as contamination in

the prior increases. It shows that, for a fixed parameter α0, as the contamination,

induced by parameter ε, increases, the performance of the designed OBC using the

contaminated prior significantly degrades. Thus, even if one is aware of the true

value of α0. On the other hand, for a fixed contamination, as the prior knowledge

concentrates more around an incorrect distribution, the expected loss tremendously

increases, where for ε = 0.6, and α0 = 4b = 64 about 15% loss incurs for n = 50 which

drops down to 10% by increasing sample size to n = 100. The latter is the everyday

compromise of Bayesian frameworks, if prior is not chosen properly, there would be

a need for elevating the sample size to compensate “inaccurate” prior probability.

Next, we perform a small study to show how improper prior can degrade supe-

riority of Bayesian framework when applied in a multivariate Gaussian setting. We

consider the problem of classification when the underlying covariance matrices fol-

low the proposed blocked structure [42]. The mean vectors are set to µtrue0 = 0.3Ip

and µtrue1 = −µture0 , in which p = 8 variables are contributing in the underlying

model. We consider unequal covariance matrices Σture
0 6= Σtrue

1 . Two cases are con-

sidered: (1) Prior on the mean covariance matrices centered around the truth for
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Figure 1.3: Effect of mismatch in the prior measured by its effect on the expected
true error of the designed optimal Bayesian classifier. The sampling is random with
class prior probability c = 0.5. The smaller box illustrates a zoomed-in version of
the interval 0 ≤ ε ≤ 0.1. One can see that for mismatch values less than 0.1, for
n = 50, there is a possibility of performing better than the prior centered on the true
distributions.
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both classes: µy ∼ N (µy,Σy/νy); Σy ∼ W−1((κ − p − 1)Σtrue
0 , κ) for y ∈ {0, 1}.

(2) The case with prior mismatch only on covaraince matrix for class y = 0 while

the prior for class y = 1 is left as case (1). Hence, for the mean vectors we have:

µmissy ∼ N (µtruey ,Σmiss
y /ν), in which for y = 0, a convex contamination model is

assumed, given by

Σmiss
0 ∼ W−1((κ− p− 1)[(1− ε)Σtrue

0 + εIp], κ).

Under this prior, the prior’s center, for class y = 0, is shifted to

(1− ε)Σtrue
0 + εIp.

The covariance matrix for y = 1 under the mismatched model is identical to that

of case (1). In the defined contamination model, as ε goes to 1, the correlation co-

efficients shrink towards 0, i.e. full independence. Similar to the discrete case, the

variable E[
εmis
OBC−ε

true
OBC

εtrue
OBC

] is computed through Monte-Carlo simulations with 10, 000 rep-

etitions. The results for two sample sizes n = 30 and n = 60 with random sampling

according to the fixed class prior probability, c = 0.5, are shown in Figure 1.4.

One can see that, again, similar to the discrete setting, as the contaminating

factor increase the performance of the Bayesian classifier compared to its optimal

performance degrades. For instance, with n = 30 samples, with ε = 0.4, the expected

loss is between 1% to 5% when we increase κ from 16 to 80. It means that as we trust

more on a contaminated prior, the degradation become more tangible. Increasing

the sample size to n = 60 decreases the performance loss. The reason is that we are

extracting more knowledge from the data compared to the case n = 30, and hence a

contaminated prior has a lesser deteriorative effect.
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Figure 1.4: Effect of mismatch in the prior measured by its effect on the expected
true error of the designed optimal Bayesian classifier. The sampling is random with
class prior probability c = 0.5. The smaller box illustrates a zoomed-in version of the
interval 0 ≤ ε ≤ 0.05.
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1.3.2.2 Prior Probability Construction: Definition

Let the class-conditional densities, being two distinct measures on (X ,B(X )),

be denoted by py(X) for y ∈ {0, 1} ∗. B(X ) contains the Borel subsets of X . For

simplicity, in what follows we drop the sup (sub-)scripts associated with the labels,

y. But, one should notice that all the results are applied for both classes. Now, we

give a definition to the problem of prior selection:

Given a set of prior information, e.g. biological (signaling) pathways, we aim to

find a prior distribution, denoted by π(θ), on the space of probability measures on

(X ,B), e.g., random multinomial probabilities. In other words, let

F = {p : p is a probability measure on (X ,B)},

and accordingly, A denotes some suitable σ−algebra of subsets of F . Then, we look

for measures, π(θ) on (F ,A), being consistent with the given prior information.

Although any measure on the space (F ,A) can be considered as the prior, it is

more desirable that the selected prior π(θ) satisfies certain properties. In [43], it is

mentioned that a constructed prior probability would need to have some properties

to be ”desirable” in a Bayesian framework:

• The class Π, of random prior distribution on F should be analytically tractable

in three respects:

– It should be reasonably easy to determine the posterior distribution on

F , given a ”sample”;

∗Although it is possible to give a definition to the conditional distributions using the conditional
expectation, here we define our problem of interest through giving a direct definition to the class-
conditional probabilities and then, to the prior probabilities.
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– It should be possible to express conveniently the expectations of simple

loss functions; and

– The class Π should be closed, in the sense that if the prior is a member

of Π, then the posterior is a member of Π, (i.e. conjugate priors).

• The class Π should be ”rich,” so that there will exist a member of Π capable

of expressing any prior information.

• The class Π should be parametrized in a manner which can be readily inter-

preted in relation to prior information.

In practice, specifically in the biological problems, the prior information is not

a testable piece of information. It is rather a qualitative pairwise illustration of

the dependency between the genes/proteins called thus far in this section biological

pathways. Hence, the first step before proceeding to any prior probability construc-

tion is to transform the knowledge in these pathways to a set of testable information

constraints.

1.3.3 Bibliography on Prior Construction

For about 200 years after the Bayes-Laplace uniform prior, Bayesian statistics was

based on non-informative priors [44]. After Jeffreys’ non-informative prior, which was

based on Fisher’s information [45], there followed several objective-based methods

have been proposed to construct prior probabilities in different contexts [44, 46–

54]. Among these, we have: maximal data information priors (MDIP) [51], non-

informative priors for integers [48], entropic priors [50], reference (non-informative)

priors obtained through maximization of the missing information [44], and least-

informative priors [49]. The principle of maximum entropy (MaxEnt) can be seen

as a method of constructing least-informative priors [55, 56]. Except for Jeffreys’
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prior, almost all methods are based on optimization: maximizing or minimizing

an objective function. In [57], several non-informative and informative priors for

different problems are found. All of these methods emphasize the separation of prior

knowledge and observed sample data. Although these methods are appropriate tools

for generating prior probabilities, they are quite general methodologies, i.e., they do

not target specific scientific prior information.

1.4 Objective-Based Prior Probability Construction

We introduce the notion of objective-based priors , when the prior information is

in the form of signaling pathways. Unlike the previously used methods where the

prior information is either in the form of known inequalities or equalities, we consider

the notion of ”slackness.” In order to bring the slackness variables, the interactions

in the pathways are quantified from a Bayesian perspective, ”mapping the signaling

pathways to a set of constraints on the hyperparameter space.”

In the objective-based approach, the prior construction problem falls into the

context of model selection. In general, we restrict ourselves to some parametrized

model shown in general by Π. For example in the multivariate Gaussian scenario, we

have

Π = {NW−1(m,Ψ, ν, κ) : m ∈ Rp, Ψ ∈ Rp×p
+ }

with known ν and κ. Here, Rp×p
+ stands for the positive definite matrices with di-

mension p. And in the discrete setting, the model space is restricted to that of

Π = {D(α) : α ∈ Sα0
b−1},
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where Sα0
b−1 denotes the (b− 1)−dimension simplex whereas

αi > 0, i ∈ {1, . . . , b}, and
b−1∑
i=1

αi ≤ α0.

Then, the problem reduces to estimating a set of parameters, called hyperparameters

here, so that not only satisfy the constraints imposed by the pathways, but meet

some sound criterion. These criteria can be data-based (similar to empirical Bayes

methods) or information theoretic functions, e.g. entropy.

1.4.1 Multivariate Gaussian: Normal-Wishart Prior

In Section 4 of this dissertation, the problem of prior probability construction

is addressed by proposing a series of optimization paradigms that utilize the in-

complete prior information contained in pathways (both topological and regulatory).

The optimization paradigms employ the marginal log-likelihood, established using a

small number of feature-label realizations (sample points) regularized with the prior

pathway information about the variables. In the special case of a Normal-Wishart

prior distribution on the mean and inverse covariance matrix (precision matrix) of a

Gaussian distribution, these optimization problems become convex.

1.4.2 Discrete Case: Dirichlet Parameter Selection

The problem of Dirichlet prior construction for the discrete classification is ad-

dressed in Section 5, where we extend maximum entropy and maximal data infor-

mation prior to the proposed framework. Moreover, a recently introduced method of

prior construction, regularized expected mean log-likelihood, is also revisited. Our

problem of interest in this case is discrete classification, and hence we consider the op-

timal Bayesian classification when the likelihood function results from a multinomial

distribution. All the methods are studied for Dirichlet prior families. We examine
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the proposed framework on a simplified set of pathways involving the TP53 gene.

We show that the Bayesian framework utilizing the informative constructed priors

via objective-based priors framework significantly outperforms those rules which do

not incorporate prior knowledge.
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2. CLASSIFIER DESIGN GIVEN AN UNCERTAINTY CLASS OF FEATURE

DISTRIBUTIONS DERIVED FROM BIOLOGICAL PATHWAYS VIA

REGULARIZED MAXIMUM-LIKELIHOOD∗

Contemporary high-throughput technologies provide measurements of very large

numbers of variables but often with very small sample sizes. This section proposes an

optimization-based paradigm for utilizing prior knowledge to design better perform-

ing classifiers when sample sizes are limited. We derive approximate expressions for

the first and second moments of the true error rate of the proposed classifier under the

assumption of two widely-used models for the uncertainty classes; ε-contamination

and p-point classes. The applicability of the approximate expressions is discussed by

defining the problem of finding optimal regularization parameters through minimiz-

ing the expected true error. Simulation results using the Zipf model show that the

proposed paradigm yields improved classifiers that outperform traditional classifiers

that use only training data. Our application of interest involves discrete gene regula-

tory networks possessing labeled steady-state distributions. Given prior operational

knowledge of the process, our goal is to build a classifier that can accurately label

future observations obtained in the steady state by utilizing both the available prior

knowledge and the training data. We examine the proposed paradigm on networks

containing NF-κB pathways, where it shows significant improvement in classifier

performance over the classical data-only approach to classifier design.

∗Parts of this section are reprinted with permission from “Classifier Design Given an Uncertainty of
Feature-Label Distributions via Regularized Maximum-Likelihood and the Incorporation of Biolog-
ical Pathway Knowledge in the Steady-State Phenotype Classification” by M. Shahrokh Esfahani,
J. Knight, A. Zollanvari, B-J Yoon, and E. R. Dougherty, 2013, Pattern Recognition, vol. 61, no.
15, pp. 3880–3894, © 2013 Elsevier, and “Designing enhanced classifiers using prior process knowl-
edge: Regularized maximum-likelihood” by M. Shahrokh Esfahani, A. Zollanvari, B-J Yoon, and
E. R. Dougherty, 2012, Proceedings of the International Workshop on Genomic Signal Processing
and Statistics, San Antonio, TX, December 2012, pp 1012–1016, © 2011 IEEE.
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This section is organized in the following manner. In Section 2.1, we introduce

our proposed paradigm. True error statistics for the stratified sampling case are

derived in Section 2.2. Section 2.3 contains a brief discussion on the regularization

parameter defined and used throughout the section. Simulation results are shown in

Sections 2.4 and 2.5 where we show the improvement of the designed classifier over

the histogram rule in synthetic and biologically inspired cases, respectively. Finally,

Section 2.6 contains concluding remarks.

We use the following notation and abbreviations. Boldface lower case letters

denote column vectors. The cardinality of the set, Π is denoted by |Π|. π(k) and

πT denote the k−th element and the transpose of the vector π, respectively . Pr(A)

denotes the probability of event A. The binomial distribution is shown by bin(n, p).

bin(n, p) = x is used to denote the binomial random variable having value x. The

trinomial distribution is shown by trin(n, p1, p2). Thus,

Pr(trin(n, p1, p2) = (x1, x2)) =

(
n

p1, p2, 1− p1 − p2

)
px1

1 p
x2
2 (1− p1 − p2)n−x1−x2 .

To show the comparison between two vectors, we use π1 � π2 meaning that the

vector π1 is element-wise less than or equal to π2. The notation Ex(g(x)) is used

to denote taking expectation of g(x) with respect to the subscript x. The indicator

function for the event A is shown by IA.

2.1 Regularized Maximum-Likelihood

In this section, we propose an optimization paradigm for classifier design that

utilizes both an uncertainty class (from prior knowledge) and the available training

data. Let πyac(k) = Pr(X = k|Y = y) be the true conditional distribution of the

feature X = k ∈ {1, ..., b} given the class label y ∈ {0, 1}, and let cy = Pr(Y = y)

be the prior distribution of the class label. We can build a classifier by first finding

23



label conditional probabilities π̂y(k) that estimate the true probabilities πyac(k) and

then defining

ψ(k) = I{c1π̂1(k)≥c0π̂0(k)} =


1, if c1π̂

1(k) ≥ c0π̂
0(k)

0, otherwise

. (2.1)

This can be viewed as using the “plug-in rule” in the Bayes classifier ψ(k) =

I{c1π1
ac(k)≥c0π0

ac(k)}. In the absence of prior knowledge, the label-conditional distribu-

tion Pr(X = k|Y = y) = πyac(k) is estimated solely based on the training data by

solving the following maximum log-likelihood problem:

min
πyT e=1,0�πy

−
b∑

k=1

uyk log πy(k), (2.2)

where uyk is the number of sample points at state k with label y and e is the all-one

column vector. The solution to (2.2) is

π̂ydata(k) =
uyk
ny
, (2.3)

where ny is the number of sample points with label y.

We now assume we have uncertainty classes , Πy = {πy1,πy2, ...,πy|Πy |}, y = 0, 1,

e.g., see Figure 1.2, conveying the prior network knowledge of the label-y conditional

distribution, πyac. We adapt (2.2) to form the following weighted-sum optimization

problem for the class labels y = 0, 1, which includes a term contributed by the

uncertainty class:

min
πyT e=1,0�πy

−(1− λy)
b∑

k=1

uyk log πy(k) + λy`(π
y,Πy) . (2.4)
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The regularization parameter λy ∈ [0, 1] reflects the uncertainty of the labeled train-

ing data compared to the total amount of uncertainty in our prior knowledge and

` : Sb × S |Π
y |

b → [0,∞), where Sb is the standard unit (b − 1)−simplex and S |Πy |b is

any uncertainty class containing |Πy| b−dimensional distributions, is a nonnegative

function to measure the dissimilarity between a given πy and the uncertainty class.

If the objective function in (2.4) is a convex function, then the optimization prob-

lem can be solved efficiently. Since the log-likelihood of the multinomial distribution

is concave (i.e., the negative log-likelihood function for πy(k), k = 1, ..., b, given the

sample, is convex), it is sufficient to use a convex function for ` (i.e., the regularizer

term) in (2.4) to make it a convex programming problem. We use

`(πy,Πy) :=
1

|Πy|

|Πy |∑
i=1

D(πyi ||πy), (2.5)

where D(πyi ||πy) =
b∑

k=1

πyi (k) log
πyi (k)

πy(k)
is the Kullback Leibler (information) distance

(KL-distance).

Lemma 1 (RML Classifier). Suppose that the dissimilarity function ` is defined as

(2.5). Then, the solution to the regularized maximum-likelihood (RML) problem in

(2.4) is obtained bin-wise as

π̂yRML(k) =
(1− λy)uyk + λyπ

y(k)

(1− λy)ny + λy
; y ∈ {0, 1},∀k = 1, ..., b, (2.6)

where πy(k) is the probability of the k−th bin obtained from the average of πyi , i =

1, 2, ..., |Πy| in the corresponding uncertainty class Πy, y ∈ {0, 1}. The corresponding

RML classifier can be found by plugging π̂0
RML and π̂1

RML in equation (2.1).
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Proof. Plugging (2.5) in (2.4), we obtain

π̂yRML = arg min−(1− λy)
b∑

k=1

uyk log πy(k) + λy
|Πy |

|Πy |∑
i=1

b∑
k=1

πyi (k) log
πyi (k)

πy(k)

= arg min−
[
(1− λy)

b∑
k=1

uyk log πy(k) + λy
b∑

k=1

log πy(k){ 1
|Πy |

|Πy |∑
i=1

πyi (k)}
]

= arg min−
[ b∑
k=1

[(1− λy)uyk + λyπ
y(k)] log πy(k)

]
(2.7)

The solution to this problem can be obtained using a Lagrangian multiplier similar

to (2.2), which leads to the label conditional probabilities in (2.6). Q.E.D.

Consider the following two special cases:

1. Suppose the uncertainty in the information extracted from the training data

is much less than that in the prior network knowledge. In the limiting case,

λy → 0 and

lim
λy→0

π̂yRML(k) =
uyk
ny
,∀k = 1, ..., b. (2.8)

This is consistent with our expectation: if there is infinite amount of training

data (hence no uncertainty therein), the classifier can be perfectly estimated

from the data.

2. Suppose we have very good prior network knowledge, so that the uncertainty

in this knowledge is much smaller compared to that extracted from the data.

In the limiting case, λy → 1 and

lim
λy→1

π̂yRML(k) = πy(k),∀k = 1, ..., b. (2.9)

If we have perfect knowledge of the steady-state distribution, then we do not

need training data.
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In this dissertation we consider two models having finite uncertainty classes:

2.1.0.1 ε-contamination uncertainty class

The ε-contamination class has been used for modeling uncertainty in a wide

range of applications, including robust hypothesis testing [58], robust Wiener filter-

ing (uncertainty about the spectral density) [59, 60], Bayesian robust optimal linear

filter design [61], robust decision making problems [62], and minimax robust quickest

change detection (with the application in intrusion detection in computer networks

and security systems) [63]. In [59]- [61], the ε-contamination class contains all the

power spectral densities (PSD) in the vicinity of the nominal PSD. In [58] and [63],

the ε-contamination contains all the probability densities in the vicinity of the nom-

inal one.

Here, we use ε-contamination to model the uncertainty about the label-conditional

probabilities. We define the ε-contamination class of multinomial distributions asso-

ciated with each label as the class containing the distributions in the form of

πy = (1− εy)πyac + εyπ; y ∈ {0, 1} (2.10)

where εy ∈ [0, 1) is the degree of contamination and π is one of a finite number

of randomly chosen densities from Sb. Increasing εy corresponds to increasing the

variance of prior knowledge about the true distribution. We assume a uniform distri-

bution for the contamination part whose domain is the relative interior of the volume

under the (b− 1)-simplex. Since our application of interest is related to steady-state

classifiers, we assume that in the simplex the corners and axes have measure zero.
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2.1.0.2 p-point uncertainty class

The p-point uncertainty class has been used to model uncertainty in rate dis-

tortion problems, detection problems, robust Wiener filter design, and robust non-

stationary signal estimation [60], [64]- [65]. In our application of interest, we often

only know that the cell, in its steady state, spends a specific portion of time in a sub-

set of states but know nothing about the details of these states individually. Hence,

to model this prior knowledge, we can see the problem as a partitioning scenario: if

we partition the state space, then the amount of time that the cell spends in each

subset in the partition is known. Therefore, we can say that the label-conditional

distributions belong to an uncertainty class of distributions satisfying the following

constraints:
b∑

k=1

π(k)I{k∈syp} =
b∑

k=1

πyac(k)I{k∈syp}; p = 1, ...,my, (2.11)

where πyac is the actual steady-state distribution , sy1, ..., s
y
my form a partition of the

state space denoted by Py, and π ∈ Sb is any density function.

We will use the following notation throughout the section for the probability mass

cumulated in each partition:

b∑
k=1

πyac(k)I{k∈syp} = ωyp ; p = 1, ...,my. (2.12)

Moreover, we define the following mapping from state space to the partition:

P y : {1, ..., b} → {1, ...,my}; y = 0, 1. (2.13)

In the extreme case, my = 1 means that we only know that the label-conditional

probabilities for the bins sum up to 1, which corresponds to a minimal amount of
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prior knowledge. On the other hand, my = b, i.e. |syp| = 1, for any p ∈ {1, ...,my}, y ∈

{0, 1}, means that we are certain about the label-conditional distributions, because

we are given all bin probabilities – hence minimal variance in the uncertainty class

(for more details refer to Section 1 of the supplementary materials on the companion

website).

2.2 Moments for the True Error

For a classifier ψn trained on the sample data Sn, the probability of error is defined

as εdata = Pr(ψn(X) 6= Y |Sn). The overall performance of the classification rule can

be evaluated by the expected classification error, E(εdata) = ESn [Pr(ψn(X) 6= Y |Sn)],

over all samples of size n. When prior knowledge (denoted by “uc” for uncertainty

class) is incorporated into classifier design, we rewrite the probability of error as

εdata,uc = Pr(ψn,Π0,Π1(X) 6= Y |Sn,Π0,Π1).

In this section we provide analytic representation of the first and second moments

for the error in the ε-contamination and p-point uncertainty models under stratified

sampling, in which sampling is performed from classes 0 and 1 in accordance with

their prior probabilities. Since we incorporate prior knowledge, the moments are

computed relative to all samples of size n and the uncertainty-class space. They take

the form

E(εRML) = E(εdata,uc) = EΠ0,Π1 [ESn [Pr(ψn,Π0,Π1(X) 6= Y |Sn)] |Π0,Π1] , (2.14)

E(ε2RML) = E(ε2data,uc) = EΠ0,Π1

[
ESn [Pr(ψn,Π0,Π1(X) 6= Y |Sn)]2 |Π0,Π1

]
. (2.15)
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We derive tight approximations for these moments for λy ∈ (0, 1). The cases λy ∈

{0, 1} can be handled with a slight modification to the proof.

Theorem 1 (First-Order Moment of the True Error: ε−Contamination Class). Sup-

pose that the uncertainty classes, Π0 and Π1, come from ε0− and ε1− contamination

classes, respectively. Then, the first-order moment of the true-error of the RML

classifier defined in Lemma 1 is given by

E(εRML) = c0

b∑
k=1

π0
ac(k)[

n0∑
l0=0

n1∑
j=0

n1∑
m=j

Pr(bin(n0, π
0
ac(k)) = l0)

× Pr(ζ0

k,l0
= j) Pr(bin(n1, π

1
ac(k)) = m)]

+ c1

b∑
k=1

π1
ac(k)[

n1∑
l1=0

n0∑
j=0

n0∑
m=j

Pr(bin(n1, π
1
ac(k)) = l1)

× Pr(ζ1

k,l1
= j)Pr(bin(n0, π

0
ac(k)) = m)].

(2.16)

where the random variables ζy
k,ly

, k = 1, ..., b, ∀ly = 0, .., ny; y ∈ {0, 1}, approximately

have the following probability mass function (pmf):


Pr(ζy

k,ly
= 0) = Φ(

−µyk,ly
σk,y

)

Pr(ζy
k,ly

= m) = Φ(
m−µyk,ly
σk,y

)− Φ(
m−1−µyk,ly

σk,y
);m = 1, .., ny

Pr(ζy
k,ly

= m) = 0;m ≥ ny + 1

, (2.17)

Φ(.) being the standard normal distribution. In equation (2.17) we have

µyk,ly =
gyly+(1−εy)αyπ

y
ac(k)−(1−εy)αyπ

y
ac(k)+

εyαy−εyαy
b

gy

σ2
k,y = (

α2
yε

2
y(b−1)

b2|Πy |(b+1)
+

α2
yε

2
y(b−1)

b2|Πy |(b+1)
)/g2

y; ∀k = 1, ..., b

(2.18)
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where y denotes 1− y and

gy := (1− λy)ny
[
ny(1− λy) + λy

]
αy := gyλy

1−λy .
(2.19)

Proof. Please refer to A.1. Q.E.D.

Theorem 2 (First-Order Moment of the True Error: p−Point Class). Let the un-

certainty classes, Π0 and Π1, be modeled by the p−point model with partition prob-

abilities ω0
p and ω1

p with p = 1, ...,my for labels 0 and 1, respectively. Then, the

first-order moment of the true-error of the RML classifier defined in Lemma 1 can

be written as in equation (2.16) in which the random variables ζy
k,ly

, k = 1, ..., b, for

any ly = 0, .., ny, approximately have the pmf as defined in equation (2.17), whereas

assuming the definitions in equation (2.19), we have

µyk,ly =

gyly+αy
ω
y
Py(k)

|sy
Py(k)

|
−αy

ω
y

Py(k)

|sy
Py(k)

|

gy

σ2
k,y =

[
α2
y(ω

y
P y(k))

2
(|sy
Py(k)

|−1)

|sy
Py(k)

|2(|sy
Py(k)

|+1)|Πy | + α2
y(ω

y
P y(k)

)2
(|sy
Py(k)

|−1)

|sy
Py(k)

|2(|sy
Py(k)

|+1)|Πy |

]
/g2

y,

(2.20)

where the mapping P y(.) is defined in equation (2.13).

Proof. Please refer to A.1. Q.E.D.

Theorem 3 (Second-Order Moment of the True Error). The second-order moment
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of the true-error of the RML classifier defined in Lemma 1 can be decomposed as

E(ε2RML) = EΠ0,Π1

[
c2

0

b∑
k=1

(π0
ac(k))2A1 + c2

1

b∑
k=1

(π1
ac(k))2A0

]
+EΠ0,Π1

[
c2

0

b∑
k1 6=k2

π0
ac(k1)π0

ac(k2)B1 + c2
1

b∑
k1 6=k2

π1
ac(k1)π1

ac(k2)B0

]

+EΠ0,Π1

[
c0c1

b∑
k1 6=k2

π0
ac(k1)π1

ac(k2)C1 + c0c1

b∑
k1 6=k2

π1
ac(k1)π0

ac(k2)C0

]
.

(2.21)

where A0 := ESn [I{ψ(X=k)=0}] and A1 := ESn [I{ψ(X=k)=1}] can be found similarly as

in Theorem 1. B0, B1, C0, and C1 are computed as follows:

B0 :=
∑
t11,t

1
2

[ ∑
(t01,t

0
2)�(ζ1

k1,t
1
1
,ζ1
k2,t

1
2
)

Pr(u0
k1

= t01, u
0
k2

= t02) Pr(u1
k1

= t11, u
1
k2

= t12)
]

B1 :=
∑
t01,t

0
2

[ ∑
(t11,t

1
2)�(ζ0

k1,t
0
1
,ζ0
k2,t

0
2
)

Pr(u1
k1

= t11, u
1
k2

= t12) Pr(u0
k1

= t01, u
0
k2

= t02)
]

C0 :=
∑
t11,t

1
2

[ ∑
t01≥ζ

1
k1,t

1
1
,t02≤,ζ

1
k2,t

1
2

Pr(u0
k1

= t01, u
0
k2

= t02) Pr(u1
k1

= t11, u
1
k2

= t10)
]

C1 :=
∑
t01,t

0
2

[ ∑
t11≥ζ

0
k1,t

0
1
,t12≤ζ

0
k2,t

0
2

Pr(u1
k1

= t11, u
1
k2

= t12) Pr(u0
k1

= t01, u
0
k2

= t11)
]
.

(2.22)

Proof. Please refer to A.2. Q.E.D.

The joint distribution of ζ0

k1,t01
and ζ0

k2,t02
(similarly for ζ1

k1,t11
and ζ1

k2,t12
) and the

joint distribution of ζ0

k1,t01
and ζ

0

k1,t02
(similarly for ζ1

k1,t11
and ζ

1

k2,t12
), which depend on

the uncertainty classes, are given in A.3 for ε−contamination and p−point classes.

2.3 The Regularization Parameter

The regularization parameter λy in (2.4) should be adjusted based on the relative

uncertainty between the training data and the prior knowledge. We propose three

approaches for tuning the regularization parameter.
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2.3.1 Minimizing the Expected True Error

The optimal value of the regularization parameter, based on expected true error,

can be found by solving the following optimization problem:

λ∗ = arg min
0�λ�1

E(εRML), (2.23)

where λ = [λ0, λ1], 1 = [1, 1], 0 = [0, 0] and E(εRML) is given in equation (2.16). In

(2.16), the only parameters affected by λ are Pr(ζy
k,ly

= j), y ∈ {0, 1}, approximated

in Theorems 1 and 2. (2.23) is a constrained non-linear programming problem whose

global minimum is not guaranteed to be found by classic gradient-based methods.

2.3.2 SURE-tuning of Regularization Parameter

One way to evaluate the performance of the estimator in Lemma 1 is to use

the mean-squared error (MSE) of the estimator. In the problem of multinomial

distribution estimation, the MSE can be expanded as follows

MSEy = E
[ b∑
k=1

[
π̂yλy(k)− πyac(k)

]2]
, y = 0, 1, (2.24)

where we drop the subscript RML and instead use the regularization parameter λy

to show that the estimate depends on λy. One strategy to find the regularization

parameter is to minimize MSEy in (2.24) [27,66]; however, MSEy depends on the pa-

rameter for estimating πyac. We use an approach called SURE (Stein’s Unbiased Risk

Estimator) [67], proposed for the i.i.d. Gaussian model. Here, an unbiased estimate

of the MSE of the designed estimator is found and then one can do optimization

to find the required parameters of the estimator. For the sake of simplicity, in the

following lemma we omit the superscript y.

33



Lemma 2. Let the uncertainty class, Π, be given and fixed. Denoting the RML

estimator of πac in Lemma 1 using λ as the regularization parameter by π̂λ, an

unbiased estimate of the MSE of the estimate in Lemma 1 is given by

ˆMSE =
b∑

k=1

[
π̂2
λ(k) + π2

ac(k)− 2{ δλ
n− 1

u2
k − uk(

δλ
n− 1

− θλ(k)

n
)}
]

(2.25)

where δλ = 1−λ
(1−λ)n+λ

and θλ(k) = λπ(k)
(1−λ)n+λ

.

Proof. Although we took a standard approach to find the unbiased estimator of the

MSE, in this part, for simplicity, we only show that E( ˆMSE) = MSE (it is sufficient

for the proof), where MSE can be expanded as follows

MSE = E(
b∑

k=1

[
π̂λ(k)− πac(k)

]2

) =
b∑

k=1

E
[
π̂2
λ(k) + π2

ac(k)− 2π̂λ(k)πac(k)
]

The first and the second terms in the right summation do not need any manipulation.

Therefore, in the remainder of the proof, we focus on the last term in the right

summation. Using the definitions of δλ and θλ(k), and the fact that E(uk) = nπac(k),

we have

E
[ b∑
k=1

π̂λ(k)πac(k)
]

=
b∑

k=1

(δλnπac(k) + θλ(k))πac(k)

Now, we return to the ˆMSE in Lemma 2 and take the expectation of the last term

in the summation (the term multiplied by 2). We obtain

E

[
b∑

k=1

δλ
n− 1

u2
k −

b∑
k=1

uk(
δλ

n− 1
− θλ(k)

n
)

]
=

b∑
k=1

δλ
n− 1

[n(n− 1)π2
ac(k) + nπac(k)]

−
b∑

k=1

nπac(k)(
δλ

n− 1
− θλ(k)

n
).

(2.26)

in which we used the terms for the first and second-moments of the multinomial
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distribution. Some simplification completes the proof. Q.E.D.

Minimizing the SURE-estimate of the MSE with respect to the regularization

parameter λ yields the following result for case of n ≥ 2.

Corollary 1 (SURE-Optimal Regularization Parameter). The SURE-optimal regu-

larization parameter of the estimator defined in Lemma 1 is given by

λ∗SURE =


λ̃ 0 ≤ λ̃ ≤ 1

I b∑
k=1

[
π(k)2−2

ukπ(k)

n

]
< 2
n−1
− n+1

n2(n−1)

b∑
k=1

u2
k

otherwise
(2.27)

in which we have λ̃ =
n

[
1−

∑b
k=1 (uk/n)2

]
(n−1)

[
1+

∑b
k=1 π(k)

[
π(k)−2uk/n

]] .
Proof. The corollary results from equating the derivative of (2.25) (with respect to

λ) to zero, while considering the boundary of the feasible region of the λ (the SURE

estimate in equation (2.25) is continuous in [0, 1]). Q.E.D.

Fixing the uncertainty class, as n→∞, we obtain

lim
n→∞

λ∗SURE =
1− ||πac||22

1− ||πac||22 + ||πac − π||22
, (2.28)

in which ||x||2 denotes the `2−norm of vector x.

To illustrate the effects of different sample sizes and different amounts of uncer-

tainty on λ∗SURE, we have run a simulation assuming an ε−contamination uncertainty

class and that the actual distribution follows a Zipf model with parameter a = 1 (a

detailed description of the Zipf model will be provided in Section 2.4). We observe the

behavior of λSURE = EΠ

[
ESn [λ∗SURE|Π]

]
using Monte-Carlo expectation over 25, 000
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pairs of training data sets (for each fixed sample size) and uncertainty classes. We

consider different values for ε ∈ [0, 1) and sample size n. Figure 2 shows the 3-D

figure with n as the x-axis and ε as the y-axis. As ε→ 1 (uncertainty is increased),

for a fixed sample size, λSURE decreases as in equation (2.28).

0 0.2 0.4 0.6 0.8 1 0
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|Π

]]

Figure 2.1: Illustrating the expected value of λ∗SURE for different amount of uncer-
tainty and sample sizes. The result is for ε−contamination classes. The uncertainty
class size, |Π| is set to 50.

In order to remove the effect of sample size on the range of log-likelihood func-

tion, we compute the normalized regularization parameter : EΠ

[
ESn [λ∗SURE|Π]

]
/n

via Monte-Carlo simulations. The results are summarized for some of the cases in

Table 2.1.

Table 2.1 shows that as n increases, removing the actual dependency to n, the

SURE-optimal regularization parameter decreases, meaning that the information in

the data become more and more reliable. Moreover, as the contamination increases
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Table 2.1: The normalized SURE-optimal regularization parameter. The simulation
setup is identical to the one used for Figure 2.1.

n
ε

0.1 0.25 0.40 0.55 0.70 0.85 1

5 0.1948 0.1940 0.1916 0.1923 0.1893 0.1899 0.1889
14 0.0705 0.0706 0.0703 0.0693 0.0685 0.0682 0.0655
23 0.0433 0.0432 0.0430 0.0420 0.0417 0.0407 0.0396
32 0.0311 0.0310 0.0308 0.0304 0.0299 0.0292 0.0283
41 0.0243 0.0242 0.0241 0.0236 0.0233 0.0227 0.0223
50 0.0199 0.0199 0.0197 0.0194 0.0190 0.0186 0.0181

the regularization parameter decreases, though not substantially.

2.3.3 A Heuristic Approach

Although one can use a stochastic algorithm to solve (2.23) (which is not neces-

sarily guaranteed to achieve the global minimum), or use the result in Corollary 1, we

can take a heuristic approach for specifying λy. Suppose |Π0| and |Π1| are the sizes

of the uncertainty classes for labels 0 and 1, respectively. Proceeding heuristically

and denoting the ith distribution with label y as πyi , we form a network-based esti-

mate, π̂yuc = πy, by averaging the πyi , i = 1, ..., |Πy|. A data-based estimate, π̂ydata,

is obtained from (2.3). Under this setting, we can estimate the relative uncertainty

by

λy :=
Var(π̂ydata)

Var(π̂ydata) + Var(π̂yuc)
. (2.29)

where

Var(π̂ydata) =
b∑

k=1

Var(π̂ydata(k))

Var(π̂yuc) =
b∑

k=1

Var(π̂yuc(k)).

(2.30)
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In (2.30), the variance of the training data is independent of the uncertainty class

model and can therefore be analytically computed by

Var(π̂ydata) =
b∑

k=1

πyac(k)(1− πyac(k))

ny
. (2.31)

The variance of the uncertainty class depends on the underlying model of the uncer-

tainty class. We obtain

Var(π̂yuc) =
ε2
yb(b− 1)

(b+ 1)b2
. (2.32)

for a ε−contamination class and

Var(π̂yuc) =

my∑
p=1

ωyp |syp|(|syp| − 1)

(|syp|+ 1)|syp|2
. (2.33)

for a p−point uncertainty class (please refer to Section 1 of the supplementary ma-

terials on the companion website).

2.4 Numerical Experiments

In this section, we evaluate the performance of the classifiers designed using the

proposed optimization paradigm. Let εRML denote the error of the RML classifier

designed via (2.4) using the estimated probabilities given in Lemma 1. Let εhist

denote the error of the traditional histogram rule obtained by designing the classifier

as in (2.1) using the data-based estimate π̂ydata given in (2.3). The exact expression

for E(εhist) is given in [35].

We use both the approximation in (2.16) as well as Monte Carlo simulations for

assessing E(εRML). In the Monte-Carlo estimation, based on the given assumption

for the structure of the uncertainty classes, we generate T pairs of uncertainty classes

denoted by (Π0
l ,Π

1
l ), l = 1, ..., T . Then for each pair, based on the given model for
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the true distributions πyac, y = 0, 1, we generate M sample sets with size n denoted

by Sl,mn ,m = 1, ...,M. For each sample Sl,mn , we estimate the conditional probabilities

using Lemma 1. The estimates π̂yRML(k) are then used to construct the classifier, as

defined in (2.1). The error of the classifier designed using Sl,mn (i.e., mth sample set

generated for the lth pair) is then computed analytically using the actual distribution

πyac which was used to generate the sample. We denote this error by εl,mRML. The first-

and the second-order moments of the true error are approximated by

E(εRML) ≈ 1

MT

T∑
l=1

M∑
m=1

εl,mRML, (2.34)

E(ε2RML) ≈ 1

MT

T∑
l=1

M∑
m=1

(εl,mRML)2 (2.35)

via Monte Carlo simulation. We estimate the variances, Var(π̂ydata) and Var(π̂yuc) in

(2.29) as

V̂ar(π̂ydata) =
b∑

k=1

uyk
ny

(1− uyk
ny

)

ny
, (2.36)

V̂ar(π̂yuc) =
1

|Πy| − 1

b∑
k=1

|Πy |∑
i=1

(πyi (k)− π̂yuc(k))2. (2.37)

2.4.1 Performance Assessment Using a Zipf Model

We first assume that the true label-conditional distributions (i.e., πyac, y = 0, 1)

follow a Zipf model,

π0
ac(k) =

ξ

ka
, π1

ac(k) = π0
ac(b− k + 1), (2.38)

where ξ is a normalizing constant. The Zipf distribution, originally introduced by

G.K. Zipf to model the frequency of words in common text [68], is a well-known
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power-law discrete distribution, encountered in many applications. In particular,

it has been used as a model to study the moments of error estimators for discrete

classifiers [35]. As a → 0, both conditional distributions (y ∈ {0, 1}) tend to be-

come uniform. Hence the classification problem becomes more difficult, resulting in

a larger Bayes error. We examine the performance under two sampling scenarios:

stratified sampling (i.e. sampling according to a known Pr(Y = 0) = c), and random

sampling. We consider two bin sizes b ∈ {8, 16} (which, respectively correspond to

the number of states in a three-gene and four-gene Boolean network when modeling

genomic regulatory networks [69]). We evaluate the proposed framework under two

different scenarios. First, we examine the accuracy of our approximate expressions

by comparing them with the Monte-Carlo simulation while one has access to the

exact regularization parameters defined by applying (2.31)-(2.33). The motivation

is to test the accuracy of our approximation when the regularization parameters are

found off-line, independent of the given sample data. In the second scenario, we

assume one has to estimate the regularization parameters based on the given data

and uncertainty classes using Corollary 1. Depending on the underlying assumption

for the uncertainty classes, for each size n and each set of model parameters (e.g., ε0,

ε1, or partitions in the p−point class), we generate T = 1000 different pairs of un-

certainty classes, (Π0
l ,Π

1
l ), l = 1, ..., 1000, for which we generate M = 2, 000 samples,

Sl,mn , l = 1, ..., 1000;m = 1, ..., 2000, for estimating the first- and the second-order mo-

ments of the true error, E(εRLM) and E(ε2RLM). For the approximate second-order

moments, where there are double-integrals, we use the adaptive Simpson algorithm

for approximating the integral values. Results for the various experiments are shown

in Figures 2.2-2.7. Two Zipf parameters a = 0.5 and 1 are examined, which depend-

ing on the bin size, yields different Bayes errors. Different parameters along with

their counterparts in the figures are summarized in Table 2.2.
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Table 2.2: A summary of the parameters used in the simulations. Two class sizes,
|Π0| = |Π1| ∈ {10, 250} are examined.

b = 8 a = 0.5 c = 0.4 =⇒ εBayes = 0.3442: Figures 2.2a, 2.2b, 2.3a, 2.3b, 2.4a, 2.4b, 2.5a, 2.5b
b = 8 a = 1.0 c = 0.4 =⇒ εBayes = 0.2261: Figures 2.2c, 2.2d, 2.3c, 2.3d, 2.4c, 2.4d, 2.5c, 2.5d
b = 16 a = 0.5 c = 0.4 =⇒ εBayes = 0.3268: Figures 2.2e, 2.2f, 2.3e, 2.3f, 2.4e, 2.4f, 2.5e, 2.5f
b = 16 a = 1.0 c = 0.4 =⇒ εBayes = 0.1903: Figures 2.2g, 2.2h, 2.3g, 2.3h, 2.4g, 2.4h, 2.5g, 2.5h
b = 8 a = 0.5 c = 0.5 =⇒ εBayes = 0.3630: Figures 2.6a, 2.6b, 2.7a, 2.7b
b = 8 a = 1.0 c = 0.5 =⇒ εBayes = 0.2335: Figures 2.6c, 2.6d, 2.7c, 2.7d
b = 16 a = 0.5 c = 0.5 =⇒ εBayes = 0.3440: Figures 2.6e, 2.6f, 2.7e, 2.7f
b = 16 a = 1.0 c = 0.5 =⇒ εBayes = 0.1961: Figures 2.6g, 2.6h, 2.7g, 2.7h

Table 2.3: Two settings for p−point uncertainty classes for any fixed bin size, b.

Label y bin size (b) Partition: Py1 Partition: Py2
0 8 {{1, 2, 3, 4}, {5, 6, 7, 8}} {{1, 2}, {3, 4}, {5, 6, 7, 8}}
1 8 {{1, 3, 5, 7}, {2, 4, 6, 8}} {{1, 3}, {5, 7}, {2, 4, 6, 8}}
0 16 {{1, 2, 3, 4, 5, 6, 7, 8}, {{1, 2, 3, 4}, {5, 6, 7, 8},

{9, 10, 11, 12, 13, 14, 15, 16}} {9, 10, 11, 12}, {13, 14, 15, 16}}
1 16 {{1, 3, 5, 7, 9, 11, 13, 15}, {{1, 3, 5, 7}, {2, 4, 6, 5},

{2, 4, 6, 8, 10, 12, 14, 16}} {9, 11, 13, 15}, {10, 12, 14, 16}}

We use the algorithm proposed in [70] for generating the contaminating distri-

bution generated uniformly under a unit-simplex. Three cases are considered for

the pair: (ε0, ε1): (0.3, 0.3), (0.6, 0.6), and (0.8, 0.8). The settings for the p−point

uncertainly class models for which the RML classifier performance is assessed are

summarized in Table 2.3. Fixing b, settings are designed such that the uncertainty

in the classes corresponding to setting 1, Py1 ; y ∈ {0, 1}, is always greater than that

of setting 2. The reason is that there is one subset in setting 1 which contains one

of the partition subsets of setting 2. In other words, the information in setting 2 is

always greater than that of setting 1.

Although we consider c = 0.5 in the random sampling scenarios, the stratified

case with c = 0.5 under separate sampling is not studied. The reason is that, due
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to the symmetry considered for the uncertainty classes, described above, the final

classifiers become trivial and identical to that of histogram rule. Therefore, we fix

the class prior probability c = 0.4 in the following whenever we deal with stratified

sampling. It should be noted that for the SURE-optimal regularization parameter

case, the classifiers would not be identical to the histogram. Nonetheless, for the

sake of fair comparison, we fix c = 0.4 for all the separate sampling settings.

Figures 2.2-2.3 show the results for the first scenario, under the separate sampling

scenario, for the ε−contamination and p−point uncertainty classes, respectively. The

expected true error of the proposed scheme is smaller than that of the histogram rule

in almost all the cases. Nonetheless, since the regularization parameters, in these

two figures, are set prior to observing data or uncertainty classes, increasing the

contamination factor leads to poor performance, even compared to the histogram

rule. Moreover, the results from the Monte-Carlo simulations are very close to those

obtained from Theorems 1 and 2, shown by “Ex” in the legends of plots.

Next, we examine the performance when the regularization parameter is chosen

using Corollary 1 and the sampling is stratified based on the true class prior proba-

bility, i.e. c = 0.4. The results are shown in Figures 2.4 and 2.5 for ε−contamination

and p−point classes, respectively. Comparing Figures 2.4 with 2.2, and similarly 2.5

with 2.3, one can see that selecting data-uncertainty-class-dependent regularization

parameters significantly improves the classification accuracy using the RML rule.

Moreover, Figure 2.6 shows that, by increasing the contamination factor from 0.3

to 0.8, the expected true error of the RML classifier increases, being a direct result

of “inaccurate” prior information. Nonetheless, despite of having this degradation,

owing to adaptive selection of the regularization parameters, the RML classifier still

outperforms the histogram rule in most of the cases. Figure 2.7 shows similar be-

havior for the p−point classes. Again, it can be inferred, in all the cases, the RML
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Figure 2.2: Results for the histogram and RML rules as a function of n, with c =
0.4, under stratified sampling, for ε−contamination classes, and fixed regularization
parameter computed as in (2.29).
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(d) b = 8, a = 1, |Π0| = |Π1| = 250
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Figure 2.3: Results for the histogram and RML rules as a function of n, with c = 0.4,
under stratified sampling, for p−point classes, and fixed regularization parameter
computed as in (2.29).
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classifier outperforms the histogram.

All the simulations so far have been resulted from stratified sampling with true

class prior probability, c = 0.4 leading to n0 = n1. While the focus in Figures 2.3-2.3

were mainly to validate our analytical results, given by Theorems 1-2, now we exam-

ine the performance when the sampling is random, with c = 0.5, and all regularization

parameters are chosen using Corollary 1. The results are shown in Figures 2.6-2.7

for ε−contamination and p−point classes, respectively.

2.5 Performance Assessment Using Networks Containing NF-κB pathways

While the theoretical development of this chapter pertains to uncertainty classes

of distributions for classification, as stated at the outset, our original motivation for

the theory comes from our desire to apply prior pathway knowledge in biological

network steady-state classification.

In this section, we use prior pathway knowledge and an associated cellular context

in order to improve the performance of a classifier which discriminates between bio-

logically relevant states of a biological system. More specifically, a biological system

can be modeled by a discrete, dynamical system that is subject to external stimuli

and behaves according to interactions amongst its constitutive components. These

interactions between components are often referred to as pathways and are time in-

variant in most biological processes. It is instead the varying cellular context that

activates or deactivates pathways in order for a cell to respond to the demands of life.

For many classification problems of interest and this example here, these pathways

will be identical in each class and it is the cellular context of available nutrients,

signaling proteins, or other agents that are of interest. However, the general method

can be used with differing pathways if the goal is to discriminate against such things

as the presence of mutations, separate organisms, or cancer. In all of these exam-
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(g) b = 16, a = 1, |Π0| = |Π1| = 10
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(h) b = 16, a = 1, |Π0| = |Π1| = 250

Figure 2.4: Results for the histogram and RML rules as a function of n, with c = 0.4,
under stratified sampling, for ε−contamination classes, and SURE-optimal regular-
ization parameters.
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(a) b = 8, a = 0.5, |Π0| = |Π1| = 10
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(b) b = 8, a = 0.5, |Π0| = |Π1| = 250
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(c) b = 8, a = 1, |Π0| = |Π1| = 10
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(d) b = 8, a = 1, |Π0| = |Π1| = 250
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(e) b = 16, a = 0.5, |Π0| = |Π1| = 10
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(f) b = 16, a = 0.5, |Π0| = |Π1| = 250
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(g) b = 16, a = 1, |Π0| = |Π1| = 10
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(h) b = 16, a = 1, |Π0| = |Π1| = 250

Figure 2.5: Results for the histogram and RML rules as a function of n, with c =
0.4, under stratified sampling, for p−point classes, and SURE-optimal regularization
parameters.
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(c) b = 8, a = 1, |Π0| = |Π1| = 10
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(d) b = 8, a = 1, |Π0| = |Π1| = 250
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(e) b = 16, a = 0.5, |Π0| = |Π1| = 10
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(f) b = 16, a = 0.5, |Π0| = |Π1| = 250
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Figure 2.6: Expected true error of the histogram and RML rules as a function of
total sample size, n, with c = 0.5, under random sampling, for ε−contamination
classes.
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(a) b = 8, a = 0.5, |Π0| = |Π1| = 10
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(b) b = 8, a = 0.5, |Π0| = |Π1| = 250
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(c) b = 8, a = 1, |Π0| = |Π1| = 10
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(d) b = 8, a = 1, |Π0| = |Π1| = 250
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(e) b = 16, a = 0.5, |Π0| = |Π1| = 10
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(f) b = 16, a = 0.5, |Π0| = |Π1| = 250
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(g) b = 16, a = 1, |Π0| = |Π1| = 10
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(h) b = 16, a = 1, |Π0| = |Π1| = 250

Figure 2.7: Expected true error of the histogram and RML rules as a function of
total sample size, n, with c = 0.5, under random sampling, for p−point classes.
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ples, we would expect the two classes to have different pathways through differing

genetics.

To set up the classification example, we use a single set of pathways describing our

biological system of interest, and choose two different cellular contexts which describe

the biological phenomena we are interested in classifying. Then for each (context,

pathways) tuple we generate an intermediate class of dynamical systems that have

behavior described by the the biological pathways under this context. These classes

represent all possible dynamical systems that can behave according to the constraints

of the pathways and cellular context. Each dynamical system in these two classes

possesses a unique steady-state distribution, and we can therefore obtain two classes

of steady state distributions from our two tuples of (context, pathways).

2.5.1 The NF-κB System

Nuclear factor-κB (NF-κB) is a family of transcription factors that control the

expression of over 100 genes. Its primary role is in the immune system as a central

regulator of inflammation. This makes it important in cancer research as inflam-

mation contributes to the reduction of apoptosis and increased angiogenesis in the

tumor microenvironment [71].

Biologically the NF-κB transcription factor can be activated through several par-

allel signaling pathways. In this section we use a model containing three stimulating

external inputs which are shaded in Figure 2.8. When a bacterial infection oc-

curs, the lipopolysaccharide (LPS) molecule present in the cell wall of the bacteria

binds to TLR4 receptors in immune cell membranes and initiates a strong NF-κB

response [72]. Tumor necrosis factor α (TNFα) is a cytokine produced primarily

by macrophages to induce an endogenous inflammatory response by binding to the

TNFR receptor. And finally, NF-κB responses can be initiated through the ‘alter-
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Figure 2.8: The interactions between members of this model are shown using directed
edges where an edge from species A to species B indicates that species A regulates
species B. Pointed edges represent promoting influences while tee edges represent
down regulating influences. LPS, TNFα, and LTβR are shaded indicating their role
as external stimuli to the cell. These three inputs provide the cellular context for
the model as described in [2].

native pathway’ with the lymphotoxin β receptor (LTβR). Once activated, each of

these inputs initiates a downstream signaling cascade activating the NF-κB system.

As there is no feedback from the system back onto these three external signaling

molecules, their state is constant once chosen and helps determine the behavior of

the other nine genes.

2.5.2 NF-κB Classification

In a biological system, we are often unable to directly measure or quantify the

cellular context which controls the behavior of some cells of interest. We consider

such a scenario as a classification problem. Given two possible cellular contexts

and some data samples of the 9 proteins whose behaviors are constrained by the

context, determine which context the samples were taken from. In Figure 2.9 we

graphically depict the two contexts (or classes) in three such classification problems

(or configurations). The presence of an input indicates activation, absence indicates
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Figure 2.9: The three classification problems (configurations) considered in this sec-
tion are defined by a pair of biologically interesting cellular contexts. For each
configuration we attempt to classify samples as coming from class 0 or class 1 given
measurements of the 9 downstream signaling proteins. The presence of an input
indicates activation, absence indicates inactivation, and a shaded input indicates the
input may either be active or inactive.

inactivation, and a shaded input indicates the input may either be active or inactive.

Qualitatively the three configurations in Figure 2.9 can be described in the follow-

ing manner: configuration 1 considers an endogenous macrophage induced inflam-

matory insult in class 0 versus inflammation as a result of bacteria and the response

of immune cells in class 1 [72]. Configuration 2 considers an inflammatory insult re-

sulting from bacteria and immune cells in class 0 versus an endogenous inflammatory

insult arising from many types of immune cells signaling in class 1. Configuration 3

compares inflammation resulting from a bacterial infection (either in the early stage

with no immune cells present or late stage after immune cells have arrived) in class

0 versus an inflammatory injury with immune cells present (possibly resulting from

a bacterial infection in class 1).

In these three configurations we measure the ability for the classifier to distinguish

the underlying context for an inflammatory response. The classification problem is

of significant medical and translational science import.
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2.5.3 Modeling the NF-κB System

Previously, we have used pathways collected from the literature to develop and

validate a discrete-time, finite-state Markov chain model of the NF-κB system [2].

This method was then generalized in [73] to generate a parameterized class of Markov

chains from the pathway knowledge instead of a single Markov chain.

The pathways which define the NF-κB model (which can be seen in [74]) constrain

the possible behaviors and interactions of the nine genes. As these pathways are

incomplete and sometimes conflicting, the evolution of the Markov chain in some

states is often uncertain. We model these uncertainties as independent Bernoulli

random variables in the state transition graph with unknown parameters. We then

consider the collection of these parameters in the vector θ = {θ1, θ2, . . . , θn}, where

θi ∈ [0, 1], in order to parameterize the uncertainty class of system behavior.

In the NF-κB model, there are only three uncertainties that arise from the path-

ways. These determine the parameterization of the uncertainty class via the vector

θ ∈ [0, 1]3. Choosing θ gives a single well-defined Markov chain from the uncer-

tainty class. For a small example see the companion website (Section 3 of the sup-

plementary materials) and for more details we refer to [2] and [73]. For the true

network, we choose a network from [2]. It is at the center of the parameter space,

θac = (0.5, 0.5, 0.5). From the standpoint of classification this network is unknown;

it is chosen here to generate samples. A priori we only know that the true network

exists inside our uncertainty class.

2.5.4 Results

To utilize this modeling technique with the proposed RML framework we define

two uncertainty classes of models for each configuration by fixing the inputs according

to Figure 2.9. Since the RML framework requires finite uncertainty classes, we
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discretize the continuous [0, 1]3 space as explained in the companion website. Then,

adding a perturbation probability p = 10−3 in our simulations to each network,

we obtain a class of ergodic irreducible Markov chains and, accordingly, a class of

steady-state distributions [69]. The perturbation probability for the true model is

set to p = 10−5. We generate data from the true network in each class. These

two data sets along with the two uncertainty classes allow us to compare the RML

classification framework with the classical histogram rule.
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Figure 2.10: Performance comparison between the Histogram-rule and the RML frame-

work. The x axis shows the number of samples n, with n = n0 + n1, n0 = n1. We

have εBayes = 0.193, εBayes = 0.299, and εBayes = 0.371 for Configurations 1, 2, and 3,

respectively.

Figure 2.10 shows the results for the histogram-rule and proposed method for differ-

ent configurations. In configuration 3, the error of the classifier briefly increases as
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a function of the sample size at the beginning. The regularization parameter is set

according to Corollary 1, denoted by λSURE. Both the histogram and RML classifiers

converge to the Bayes errors as n→∞. In all cases, the RML approach outperforms

the histogram-rule, illustrating the benefit of prior knowledge, if available.

2.5.4.1 Comparison to MAP

Designing the RML classifier begins with the assumption of having finite uncer-

tainty classes of feature distributions, in the absence of a prior distribution governing

these classes, i.e., no prioritization of any uncertainty class member in favor of the

others. Nonetheless, one would still solve the maximum a posteriori (MAP) to

find the most likely multinomial distribution existing in the uncertainty class and

build the “plug-in rule” classifier according to equation (2.1). Hence, using the log-

likelihood function in equation (2.2), we define the MAP distribution as

π̂yMAP := arg max
πy∈Πy

b∑
k=1

uyk log πy(k). (2.39)

Thereafter, we define the MAP classifier by plugging the estimates π̂yMAP in equa-

tion (2.1). In Figure 2.11, we compare performance of the RML given in Lemma 1

with that of MAP given in equation (2.39) by plotting the difference between the

corresponding expected true errors, i.e., ESn [εMAP − εRML] as a function of sample

size for the three configurations considered in Figure 2.10.

Figure 2.11 illustrates that for configurations 1 and 2 the RML classifier performs

always better than the MAP. For category 3, the MAP classifier performs better than

the RML in some range, but then, the RML classifier outperforms the MAP after

increasing the sample size.
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Figure 2.11: Performance comparison between the RML and MAP classifier defined in

Lemma 1 and the one designed using estimates in equation (2.39), respectively. The x axis

shows the number of samples n.

2.6 Discussion

We have proposed a novel classifier design paradigm that allows us to design

enhanced classifiers by incorporating available prior knowledge of the process gen-

erating the observation data. As shown in our simulations, such knowledge can

significantly improve the performance of the designed classifier, especially, when the

sample size is small. Having laid the theoretical groundwork for enhancing steady-

state classifier design via the use of prior process knowledge, our plan is to apply

the methodology to developing better biomedical classifiers in the presence of par-

tial knowledge of the underlying genetic regulatory network. More generally, given

the ubiquity of large feature sets and relatively small sample sizes now common in

many disciplines, including medicine, material science, environmental science, and

transportation, there will no doubt be an increasing number of methods proposed

for using prior knowledge in classifier design. We believe it is important to provide
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analytic performance characterization of the classifiers on standard models, as we

have done in this work, so that their behavior can be understood.
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3. BAYESIAN INFORMATION QUANTIFICATION OF BIOLOGICAL

PATHWAYS∗

The main task ahead of any pathway knowledge utilization is knowledge trans-

formation or information quantification. Biological pathways are graphical repre-

sentations of dependency between molecules. These dependencies are represented by

adding directed and regulated edges. Although these pathways are generated from

several quantitative measurements (through several experiments), the final represen-

tation is almost qualitative: (1) There is no timing associated with them, and (2)

Most of the interactions are tested using pairwise experiments. In other words, the

experiments’ conditions have not necessarily kept the same among different experi-

ments, bringing uncertainty to the problem. On the other hand, modeling a small

subset of molecules, is another source of uncertainty: the role of latent variables ;

those which are not taken into account in the modeling.

In this section, we give a formal definition of prior knowledge in the form of

pathways. Then, based on the given interpretation of these pathways, to the best of

our knowledge, for the first time, a Bayesian information quantification framework

is proposed. Doing so, the two-layer uncertainty in these pathways is characterized

and transformed to the hyperparameter space: the space of prior’s parameters.

For the sake of integrity, we denote the entities (e.g. gene or protein), in a discrete

setting (i.e., Boolean modeling), contributed in a given set of pathways by xi (as the

i-th element of the feature vector x). In the following section, the continuous case

is introduced in which instead of subscript we use x(i) to denote the i−th element

∗Parts of this section are reprinted with permission from “Incorporation of Biological Pathway
Knowledge in the Construction of Priors for Optimal Bayesian Classification” by M. Shahrokh
Esfahani and E. R. Dougherty, 2014, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, in press, © 2014 IEEE.
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of the vector x. In the following, we consider two cases separately: continuous and

discrete case, corresponding to discrete and continuous classifier design problems,

respectively. It will be noted that, the discrete case considers a more complete mod-

eling of pathways. The underpinning reason is the difficulty of continuous (Gaussian)

case for capturing all the information, while maintaining problem simplicity, to some

extent.

3.1 Continuous Model

Define the term “activating pathway segment” (APS) x(i) x(j) to mean that,

if x(i) is “up-regulated” (UR), then x(j) becomes UR (in some time steps). Similarly,

the term “repressing pathway segment” (RPS) x(i) x(j) means that, if x(i) is UR,

then x(j) becomes “down-regulated” (DR). A pathway is defined to be an APS/RPS

sequence, for instance, x(1) x(2) x(3). In this pathway, there are two pathway

segments, one APS x(1) x(2) and one RPS x(2) x(3). A set of pathways used

as the prior knowledge is denoted by G. We define GA and GR to include all the APS

and RPS segments in G, respectively. We refer to regulations of the form x(i) x(j)

and x(i) x(j) as “pairwise regulations.” We denote the set of genes involved in

G by G and, without loss of generality, we fix an order to the genes in G and denote

this vector of genes by g.

In addition to pairwise regulations, one can consider a subset of pathways. The

regulatory set for gene x is the set of genes affected by x, i.e., regulated by x through

some APS/RPS. We denote this set by Rx(i) for gene x(i). We denote the union of a

gene, x(i), with its regulatory set, Rx(i), by R̄x(i). As an example, for the pathways
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shown in Figure 3.2,

Rx(1) = {x(3), x(4)}, Rx(2) = {x(4), x(5)}, Rx(3) = {x(1)},

Rx(4) = {x(5)}, Rx(5) = {x(6)}, Rx(6) = ∅.

rx(i) and r̄x(i) denote the vectors of genes in Rx(i) and R̄x(i) given the order induced

from vector g.

(1)x (2)x

(3)x (4)x (5)x (6)x

Figure 3.1: An example of pathways with “feedback” containing 6 genes. This
contains 3 RPS’s and 4 APS’s.

Pathway information is not regulatory (in a functional sense) and is understood

to be marginal and incomplete [75]. Moreover, these pathways provide no “testable

piece of information” [55]. Nevertheless, we can introduce a way of quantifying them

objectively. For the moment, assume that these pathways convey “complete informa-

tion,” that is, they are not affected by unspecified crosstalk or conflicting interaction

therein. Under this assumption and recognizing the way in which the pathways

are built from different experimental settings (conditions) in different cell lines, in

a manner analogous to [75], we quantify the pairwise regulations in a conditional
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probabilistic manner:

APS: Pr(x(j) = UR|x(i) = UR) ≥ 1− εij; for some small εij > 0

RPS: Pr(x(j) = DR|x(i) = UR) ≥ 1− εij; for some small εij > 0.
(3.1)

For Gaussian joint distributions, we change the inequalities to simpler ones involving

correlation:

APS: ρx(i),x(j) ≥ 1− εij; for some small εij > 0

RPS: ρx(i),x(j) ≤ −1 + εij; for some small εij > 0,
(3.2)

where the notation ρx(i),x(j) is used to denote the correlation coefficient between two

entities x(i) and x(j). The definitions in equation (3.1) are directional and asym-

metric, so that the flow of influence is preserved; on the other hand, the definitions

in equation (3.2) are symmetric but not directional. Moreover, the interpretation of

equation (3.1) as correlations in equation (3.2) is not always be appropriate. Specif-

ically, in case of a cycle (directed loop regardless of type of regulation), this two-way

interpretation is inapplicable. As an example, see Figure 3.2, where there is an APS

from x(1) to x(3) while an RPS from x(3) to x(1). Hence, when using equation (3.2)

for the Gaussian case, we only apply it for acyclic pathways.

We also employ the conditional Shannon entropy of a gene given its regulatory

set via the constraint

Hθ(x(i)|Rx(i)) ≤ ξi;∀x(i) ∈ G, for some small ξi > 0, (3.3)

where Hθ(v1|v2) is the conditional Shannon entropy, obtained by a θ-parameterized

distribution and computed with respect to the uniform measure. Hθ(x(i)|Rx(i)) is the

amount of information needed to describe the outcome of x(i) given Rx(i). Note that

the regulatory set information does not take regulation type (activation, inhibition)
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into account. Hence, we consider them as two separate pieces of information.

The assumption of having complete pathways is unrealistic and there are many

sources of uncertainty impeding us from constructing a single distribution on the

features. Nonetheless, the available information can be utilized to impose a proba-

bility measure (prior probability) on an uncertainty class of distributions – that is,

a prior distribution, π(θ), over the θ-parameterized feature-distribution. We extend

the quantification in (3.1) and (3.2) to this prior probability by

APS: Eθ[Pr(x(j) = UR|x(i) = UR)] ≥ 1− εij; for some small εij > 0

RPS: Eθ[Pr(x(j) = DR|x(i) = UR)] ≥ 1− εij; for some small εij > 0.
(3.4)

Table 3.1: Continuous representation: regulations in a segment view of signaling
pathways when instead of ON and OFF, we respectively insert UR (up-regulated)
and DR (down-regulated).

Pathway segment Interaction type A sample logic Bayesian information quantification

xi xj APS x(j) = x(i) Eθ[Pr(x(j) = UR|x(i) = UR)] ≥ 1− ξai,j;
for some small ξai,j > 0

xi xj RPS x(j) = x̄(i) Eθ[Pr(x(j) = DR|x(i) = UR)] ≥ 1− ξri,j;
for some small ξri,j > 0

Upon relaxation to the correlation coefficients, we have

APS: Eθ[ρx(i),x(j)] ≥ 1− εij; for some small εij > 0

RPS: Eθ[ρx(i),x(j)] ≤ −1 + εij; for some small εij > 0.
(3.5)
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Furthermore, for the conditional entropy,

Eθ[Hθ(x(i)|Rx(i))] ≤ ξi;∀x(i) ∈ C, for some small ξi > 0, (3.6)

where C contains the constraints in the form of regulatory sets.

3.2 Discrete Model

Defined in Section 3.1, an “activating pathway segment” (APS), denoted by

xi xj, means that if species xi is ON then species xj becomes ON. Similarly,

a “repressing pathway segment” (RPS), denoted by xi xj, means that if species

xi is ON then species xj becomes OFF. Suggested in [76], here, we modify our inter-

pretation about the APS and update it as follows: if xi is ON and all the repressing

elements connected directly to xj, denoted by xj,rep are OFF, then xj is ON.

Furthermore, in this thesis, we also define the term “conditional APS” (CAPS)

denoted by

xi xj

xj,rep

xk

to mean that provided that species xk is OFF, then the APS xi xj is active.

Similarly, we define the term “conditional RPS” (CRPS) denoted by

xi xj

xk

to mean that provided that species xk is OFF, then the RPS xi xj is active. The

set of all the triple (i, j, k) in the form of a CAPS and CRPS is denoted by Gca
and Gcr, respectively. These regulations are summarized in Table 3.2 where we give
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1x 2x

3x
4x 5x

6x

Figure 3.2: An example of pathways with “feedback” containing 6 genes. This
contains 3 RPS’s and 4 APS’s.

an example for a very basic logic between interacting species using the basis, AND,

OR, and NOT, denoted by Ω = {∧,∨,−}, respectively. Then, a pathway is defined

to be a sequence of APS/RPS/CAPS/CRPS, e.g., x1 x2 x3. In this pathway,

there are two pathway segments, one APS x1 x2 and one RPS x2 x3. A set

of pathways used as the prior knowledge throughout is denoted by G. We define Ga
and Gr to include all the segments in G in form of APS and RPS, respectively. We

call the regulations in above the “segment-wise regulations.”

Similar to the continuous modeling, we use the term “regulatory set for gene

x” as the set of genes affected by x, i.e., regulated by x through some APS/RPS.

We denote this set by Rxi for gene xi. We denote the union of a gene, xi, with

its regulatory set, Rxi with Rxi . As an example, consider the pathways shown in

Figure 3.2.

According to the definitions above, one may write as in the bottom of the page.

Rx1 = {x3, x4}, Rx2 = {x4, x5}, Rx3 = {x1},

Rx4 = {x5}, Rx5 = {x6}, Rx6 = ∅.
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Pathway information s not a regulatory (in a functional sense) and is understood to

be marginal and incomplete [41]. Hence its information is quantified in a conditional

probabilistic manner in [41]. In this part, we extend it to the two newly defined

pathway segments as follows:

CAPS: Pr(xj = 1|xi = 1, xk = 0,xrep,j = 0) ≥ 1− ξcaijk; for some small ξcaijk > 0

(3.7)

CRPS: Pr(xj = 0|xi = 1, xk = 0) ≥ 1− ξcrijk; for some small ξcrijk > 0. (3.8)

The assumption of having complete pathways is unrealistic and there are many

sources of uncertainty impeding us from constructing a single distribution on fea-

tures. Nonetheless, the available information can be utilized to impose a probability

measure (prior probability) on an uncertainty class of distributions- that is a prior

distribution o, π(θ), over the θ−parameterized feature-distribution. Hence, as pro-

posed in [41], we summarize the Bayesian quantification of the information contained

in the pathways in Table 3.2. Furthermore, for the conditional entropy,

Hθ[xi|Rxi ] ≤ ξregi ;∀xi ∈ C, for some small ξregi > 0. (3.9)

where Hθ[.|.] is the conditional Shannon’s entropy, obtained by a θ−parameterized

distribution, computed with respect to the uniform measure. In (3.9), C denotes all

the genes whose regulatory set Rx is nonempty.

One should notice that, prior information may not be limited to what we list in

Table 3.2, meaning that as more experiments are done, other types of information

would be available.
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4. NORMAL-WISHART PRIOR CONSTRUCTION ON MULTIVARIATE

GAUSSIAN∗

If knowledge concerning the feature-label distribution is available, then it can be

used in classifier design. For instance, in [77], prior information in the form of a finite

uncertainty class of feature-label distributions is incorporated to design a discrete

steady-state classifier. One can employ minimum-mean-square-error (MMSE) error

estimation based on a prior distribution over an uncertainty class of feature-label

distributions [78, 79]. An optimal Bayesian classifier (OBC) is introduced in [39, 40]

by minimizing the corresponding MMSE error estimator. Together, the MMSE error

estimator and the Bayesian classifier significantly improve the two-fold goal of pattern

classification, classifier design and error estimation.

The application we have in mind is phenotype classification based on gene (or

protein) expression measurements. Rather than depend only on expression data,

one can use genetic pathway information to provide prior knowledge and augment

classifier design. The procedure involves the following chain:

{pathways} {prior probability} {optimal Bayesian classifier}.

Prior knowledge in the form of a set of pathways is employed to constrain the space

of all the measures on the feature-label distribution in accordance with the assump-

tion that the constructed prior probability should be consistent with the pathway

information. For instance a simplified illustration of the pathways that are highly

∗Parts of this section are reprinted with permission from “Incorporation of Biological Pathway
Knowledge in the Construction of Priors for Optimal Bayesian Classification” by M. Shahrokh
Esfahani and E. R. Dougherty, 2014, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, in press, © 2014 IEEE.

67



influential in colon cancer is shown in Figure 4.1.

EGF HGF IL6 

RAS PIK3CA STAT3 RAS PIK3C TAT EGF 

IL6 

IL6 

RAS PP

TSC1/TSC2 mTOR SPRY4 SPRY

MEK 1/2 PKC 2

TSC1/TSC2C1/TSC2

M

Figure 4.1: A simplified wiring diagram showing the key components of the colon
cancer pathways used in [3] and in Section 4.5. Dashed boxes are used to simplify
the representation indicating identical components of their counterparts in the solid
boxes.

Given the prior distribution governing the uncertainty class of feature-label dis-

tributions, a classifier can be constructed that performs optimally relative to the

prior distribution and new data [39].

Here we aim to construct a prior distribution on an uncertainty class of co-

variance matrices utilizing a framework consisting of three steps: (1) Pathway in-

formation quantification: information in the biological pathways is quantified via

an information-theoretic perspective and translated into a set of “testable” quanti-

ties [55]. (2) Data split: data are split into two sets; one for prior construction and

the rest for prior update (constructing the posterior). (3) Optimization: combining

the portion of data for prior construction with prior knowledge, we build an objective

function that is shown to be convex for a Normal-Wishart prior on an unknown mean

and precision matrix. In this objective function, the expected mean log-likelihood is
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regularized by the quantified information in step 1.

Since some sample data are incorporated to help build a more accurate and

informative prior, it is not a pure pre-existing prior, i.e., before any experimental

observations [80]. In this regard, one may call the constructed prior a “sample-based

prior” or a “reference posterior” [44]. This distribution will be utilized in future

analyses as a prior probability which can be updated by observing new data points.

Because the current section makes use of incomplete regulatory knowledge to

form a prior distribution to be utilized in conjunction with data to form a classifier

that is optimal relative to the prior distribution and the data, it fits into the general

paradigm of using incomplete regulatory knowledge to infer networks and feature-

label distributions. For instance, in [1], a procedure, which resolves pathway incon-

sistencies by relaxing pathway timings, is proposed to infer deterministic dynamical

models from Boolean pathway knowledge. In the case of incomplete knowledge the

procedure outputs an uncertainty class of deterministic models. In [74], inconsisten-

cies and incompleteness are incorporated into a single stochastic dynamical model

that can cope with underlying pathway inconsistencies stemming from timing over-

laps, different cellular contexts, and incomplete knowledge regarding pathways. In

Section 2, the RML classification rule utilizes uncertainty classes constructed via

an intermediate step in which pathway information is transformed to a finite num-

ber of dynamical systems, each possessing a steady-state distribution. Two class-

conditional distributions are estimated using a regularization between the likelihood

function and a distance to the uncertainty classes. The RML classifier is then built

from these. A basic problem in all uncertainty-based methods is to quantify the

uncertainty in the knowledge relative to achieving the objective, which in our case

would be classification. In [81], an objective cost of uncertainty is proposed that

provides such a measure based on the performance difference between the actual
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optimal operator (which one would know without the need for data if there were no

uncertainty) and the optimal operator relative to the prior distribution and the data.

This section is organized as follows. Section 4.1 is devoted to a review of the

optimal Bayesian classifier and then a methodology for quantifying the information

in biological pathways. The proposed sample-based prior constructing framework is

introduced in Section 4.2. In Section 4.3, the optimization framework is developed

for the Gaussian distribution with unknown mean and precision matrix governed by

a Normal-Wishart prior. Simulation results on the synthetically generated pathways

are provided in Section 4.4. We test the proposed framework on real pathways

containing genes associated with colon cancer in Section 4.5. Finally, Section 4.6

contains concluding remarks.

We summarize some notation used in this section. Boldface lower case letters

denote column vectors. Concatenation of several vectors is also denoted by a boldface

lower case letter. The k-th element of the vector π is denoted by π(k). Boldface

upper case letters are used to denote matrices. tr(.), (.)T , and |.| denote the trace,

transpose, and determinant operators, respectively; however, when the argument is

not a matrix, the notation |.| stands for the cardinality of a set. For a matrix W, if

A and B consist of a set of rows and a set of columns in W, respectively, then the

sub-matrix corresponding to the rows in A and columns in B is denoted by WA,B. If

A = B, then we simply write WA. Pr(E) denotes the probability of event E. Ex[g(x)]

denotes taking the expectation of g(x) with respect to x. Finally, log(.) denotes the

natural logarithm. We use the terms: feature, variable, and entity interchangeably.
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4.1 Background

4.1.1 Optimal Bayesian Classifier

Given a binary classification problem with classes y ∈ {0, 1}, we observe a col-

lection of n sample points, Sn, in a sample space X , with ny i.i.d. points from each

class. Call c the a priori probability that an individual sample point x ∈ Rp is from

class 0 and let the class-conditional distribution for class y, denoted fθy(x|y), be

parameterized by θy. The feature-label distribution is completely specified by the

modeling parameters θ = [c,θ0,θ1]. In [78], it is assumed that c, θ0 and θ1 are all

independent prior to observing the data. Denoting the prior for θy by π(θy), we

have π(θ) = π(c)π(θ0)π(θ1). The posterior preserves independence. Denoting it by

π∗(θy) and letting xyi be the i-th sample point in class y [39],

π∗(θy) ∝ π(θy)

ny∏
i=1

fθy(x
y
i |y). (4.1)

Priors quantify the known information about the distribution before observing

data. We have the option of using diffuse (non-informative) priors, as long as the

posterior (conditioned on the sample) is a valid density function. Alternatively, infor-

mative priors can supplement the classification problem with additional information.

In the Bayesian framework, we characterize the initial uncertainty in the “actual dis-

tribution” through the prior. As data are observed, this uncertainty should converge

to a certainty on the true distribution. The Bayesian framework for the problem of

pattern classification has been widely studied in the Bayesian network view [82–85].

The Bayesian framework for the pattern classification in which two prior distribu-

tions on the feature-label distributions are assumed was developed more recently with

the introduction of the Bayesian MMSE error estimator [78]. The optimal Bayesian
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classifier (OBC) is obtained by minimizing this error estimator. This classifier is

given by [39]

ψOBC =


0, if Eπ∗ [c]f(x|0) ≥ (1− Eπ∗ [c])f(x|1)

1, otherwise

, (4.2)

where f(x|y), y ∈ {0, 1}, called the “effective class-conditional densities” (ECCD),

are defined by

f(x|y) =

∫
fθy(x|y)π∗(θy)dθy.

Henceforth, we drop the sub (sup)-script denoting the dependency on the label, y,

but one should recognize that the prior knowledge is assumed to be available for

both classes, separately.

4.2 Regularized Expected Mean Log-Likelihood Prior

Using prior knowledge in the form of signaling pathways, we propose a regularized

expected mean-log-likelihood (REML) framework in which the expectation is taken

to marginalize the dependency of the mean-log-likelihood to the actual feature-label

distribution parameters (e.g. mean and covariance matrix in a Gaussian setting).

The regularization is performed to apply prior information as soft constraints. The

final objective function is a function of the hyperparameters of interest to determine

the prior distribution.

To this end, we first split the given sample, Sn, into two parts for each class

y ∈ {0, 1}: Sprior,y
npy

and Strain,ynty
, with ny = npy +nty and n = n0 +n1. Assume that the

sample set (consisting of np = np0 + np1 sample points) used for prior construction is

denoted by Spriornp . Moreover, assume that C contains the constraints in the form of

regulatory sets. Henceforth, for notational ease, we drop the index y.
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We state the proposed optimization framework with multiple constraints in C:

πREML(θ) := arg min

π(θ) ∈ Π, ξi ≥ 0

εiaja ≥ 0, εirjr ≥ 0

−(1− λ1 − λ2)Eθ

[
`np(θ)

]

+λ1

|C|∑
i=1

ξi + λ2

[ ∑
(ia,ja)∈GA

εiaja +
∑

(ir,jr)∈GR
εirjr

]
(4.3)

subject to the following constraints:

Eθ

[
Hθ(x(i)|Rx(i))

]
≤ ξi, x(i) ∈ G (4.4)

Eθ

[
Pr(x(ja) = UR|x(ia) = UR)

]
≥ 1− εiaja , (ia, ja) ∈ GA (4.5)

Eθ

[
Pr(x(jr) = DR|x(ir) = UR)

]
≥ 1− εirjr , (ir, jr) ∈ GR (4.6)

where Π is the feasible region to which the prior distribution belongs and `np(θ) :=

1
np
`(θ;Spriornp ), in which `(θ;Spriornp ) is the log-likelihood function. `np(θ) can be inter-

preted as an estimator of [86–88]

∫
x∈X

f(x|θtrue) log f(x|θ)dx,

which is a measure of “similarity” between the true model, governed by θtrue, and

the one governed by the parameter θ. This estimate is also employed in the Akaike’s

information criterion for model selection [89]. In (4.3), the parameters λ1 and λ2,

for which we have λ1, λ2 ≥ 0 and λ1 + λ2 ≤ 1, are the regularization parameters (or

the design parameter) depending on the relative importance of the prior sources and

likelihood. The Shannon entropy, Hθ(.), is computed with respect to the uniform

measure.
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In equation (4.3), the term Eθ

[
`np(θ)

]
reflects the “expected similarity between

the observed data and the true model.” Prior averaging performs marginalization

with respect to the model parametrization making us depend only on the hyperpa-

rameters.

Assuming Gaussian distributions, equations (4.5)-(4.6) become

Eθ

[
ρx(ia),x(ja)

]
≥ 1− εiaja , (ia, ja) ∈ GA (4.7)

Eθ

[
ρx(ir),x(jr)

]
≤ −1 + εirjr , (ir, jr) ∈ GR. (4.8)

4.3 Multivariate Gaussian with Normal-Wishart Prior

For the multivariate Gaussian distribution, x ∼ N (µ,Λ−1), we have θ = [µ,Λ].

Define the feasible region, Π, for given ν and κ, for the prior probability as Π =

{NW(m, ν,W, κ) : m ∈ Rp,W > 0}, the set of all Normal-Wishart distributions

(hence, an inverse Wishart distribution for the covariance matrix). The Normal-

Wishart distribution is determined fully by four parameters, [mp×1, ν,Wp×p, κ], via

µ|Λ ∼ N (m, (νΛ)−1)

Λ = Σ−1 ∼ W(W, κ) = B(W, κ)|Λ|(κ−p−1)/2 exp{−1
2
tr(W−1Λ)},

(4.9)

where B(W, κ) ∝ |W|−κ/2 [90]. In order to have a proper prior, we should have

W > 0 and κ > p− 1. As ν → 0, the prior probability for the mean vector tends to

be more non-informative (flatter).

The general optimization framework proposed in (4.3)-(4.6) does not yield a con-

vex programming for which a guaranteed converging algorithm exists. Therefore, to

facilitate convergence to the global optimum, we decompose the full procedure into

two optimization problems. The main advantage of this decomposition is tractability
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of existing algorithms for solving convex problems. In particular, although the final

solution is different from that of the initial problem, the effect of prior knowledge

can be assessed by deriving analytical expressions for the gradient and the hessian

of the cost functions. First, we assume λ2 = 0 by utilizing only the regulatory set

constraints: λ2 = 0→ solve optimization in equations (4.3)-(4.4). Then, the second

optimization problem treats the regulation types according to the constraints sim-

plified to correlations in (4.7)-(4.8). This procedure is outlined in Figure 4.2. The

second optimization will be discussed in detail in Section 4.3.2.

4.3.1 Regulatory Set Constraints: λ2 = 0

Setting the regularization parameter λ2 = 0, the general REML optimization

reduces to

min
m,W>0,ξ≥0

−(1− λ1)

∫
θ∈Θ

`np(θ)π(θ)dθ + λ1ξ, (4.10)

subject to constraints of the form

∫
Σ>0

Hθ(x|Rx)π(θ)dθ ≤ ξ.

Removing the additive constant parts, for the log-likelihood of the Gaussian distri-

bution we have

2`np(µ,Λ) = log |Λ| − 1

np

np∑
i=1

tr[Λ(xi − µ)(xi − µ)T ]. (4.11)
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Figure 4.2: Panel (a) is an illustrative view of the general REML approach. Relaxing
the framework for the Gaussian scenario, the figure in panel (b) demonstrates a
schematic view of the methodology of breaking the original REML optimization
problem.

Taking the expectation with respect to the mean and covariance matrix, i.e., EΛ[Eµ|Λ[.]],

yields

2Eθ[`np(µ,Λ)] = E log |Λ| − κ
np

np∑
i=1

tr(W(xi −m)(xi −m)T ) + p
ν

≡ log |W| − κtr(WVm) +
p∑
d=1

ψ(κ+1−d
2

),
(4.12)
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where the last equivalency is due to the assumption of predetermined ν (and κ), ψ(.)

is the digamma function defined as ψ(t) = d
dt

log Γ(t) [90], and

Vm =
1

np

np∑
i=1

(xi −m)(xi −m)T .

Solving the optimization problem in equation (4.10) with respect to m gives m̂REML =

1
np

∑np
i=1 xi. If λ1 = 0 (no regularization), then the optimization problem in (4.11)

implies Ŵ = (κV)−1, provided that np ≥ p+ 1, where V is the matrix Vm with m

replaced by its estimate m̂REML whereby

(µ,Λ) ∼ N (µ|m̂REML, (νΛ)−1)W(Λ|(κV)−1, κ).

From this distribution we obtain E[Λ] = V−1 (see [91] for the moments of the Wishart

distribution).

We will consider two cases for the covariance matrix, and consequently for W.

Throughout, we assume x /∈ Rx (no self-regulation) and have x ∼ N (µx,Σx), rx ∼

N (µRx ,ΣRx), and r̄x ∼ N (µR̄x
,ΣR̄x). Λ denotes the precision matrix. We use Σx

to denote the variance of the single variable x.

4.3.1.1 Covariance Matrix Containing Only R̄x(i)

Suppose the precision matrix contains only those entities contributed in the con-

straint: the constrained entity and the elements of its regulatory set. Omitting

the gene index and simply denoting a gene by x, if we write the precision matrix

ΛR̄x = Σ−1 in blocks as

ΛR̄x =

 ΛRx Λ12

Λ21 Λx

 ,
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knowing that ΛR̄x ∼ W(WR̄x , κ), we have ΛRx ∼ W(WRx , κ), where

WR̄x =

 WRx W12

W21 Wx

 .
Before restating the optimization problem for this special case, we first find the

constraint reflected from the Wishart prior distribution. Using existing formulas for

the mutual information and the entropy of Gaussian distributions, we obtain (see

Appendix C.1.1 on the companion website )

HΛ(x|Rx) ∝ log 2πe− log |ΛR̄x| − log |(Λ−1
R̄x

)Rx| = log 2πe− log |Λx|. (4.13)

From the properties of the Wishart distribution, Λx ∼ W(Wx, κ). Hence, the con-

straint can be written as

EΛ[HΛ(x|Rx)] ∝ log πe− log |Wx| − ψ(
κ

2
). (4.14)

Plugging the preceding results into the optimization framework yields

CP1(κ) :
min

WR̄x
>0,ξ≥0

−1
2
(1− λ1)

[
log |WR̄x| − κtr(WR̄xV)

]
+ λ1ξ

Subject to − log |Wx| − ψ(κ
2
) ≤ ξ; ξ ≥ ξ,

(4.15)

where ξ = − log(πe). From the inequalities in [92], one can see that the parts

containing log |WR̄x| are concave, thereby making the optimization problem (i.e, the

objective function and constraints) in (4.15) convex in the matrix WR̄x .

78



4.3.1.2 Covariance Matrix Containing R̄x along with other entities in G

In this subsection, we assume that the covariance matrix which needs to be

estimated has more genes than that of R̄x. We denote the covariance matrix and its

inverse by Σ and Λ, respectively, and the parameters of the Wishart distribution

governing the precision matrix by W and κ. The precision matrix and its prior are

represented in a block format by

Λ =


ΛRx Λ12 Λ13

Λ21 Λx Λ23

Λ31 Λ32 Λ33

 ; W =


WRx W12 W13

W21 Wx W23

W31 W32 W33

 . (4.16)

Then, knowing that Λx − Λ23Λ
−1
33 Λ32 ∼ W(Wx −W23W

−1
33 W32, κ − dim(W33))),

where dim(.) returns the dimension of a matrix, the optimization problem in (4.10)

can now be restated as (for the conditional entropy constraint please refer to Ap-

pendix C)

CP2(κ) :

min
W>0,ξ≥0

−1
2
(1− λ1)

[
log |W| − κtr(WV)

]
+ λ1ξ

Subject to − log |Wx −W23W
−1
33 W32| − ψ(κ−(p−|Rx|−1)

2
) ≤ ξ;

ξ ≥ ξ;x(i) ∈ C

(4.17)

Lemma 3. The programming, CP2(κ) is a convex programming.

Proof. Please refer to Appendix C.2. Q.E.D.

Corollary 2. The optimization problems CP1(κ) and CP2(κ) satisfy Slater’s condi-

tion.

Proof. It can be readily seen from the constraints and considering the relative interior

of the feasible region of the problem, by choosing W, a scaled identity matrix. Q.E.D.
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The optimization problem in (4.17) can be readily extended to multiple con-

straints, i.e., the situation where we incorporate all the entities’ information simul-

taneously, by considering the corresponding submatrix for a gene and its regulatory

set. This is given, for any ξi ≥ ξ, by

CP2(κ) :
min

W>0,ξi≥0
−1

2
(1− λ1)

[
log |W| − κtr(WV)

]
+ λ1

∑
i=1

ξi

Subject to − log |Wx(i)| − ψ(
κ−(p−|Rx(i)|−1)

2
) ≤ ξi,

(4.18)

where

Wx(i) := Wx(i) −Wx(i),g\R̄x(i)
W−1

g\R̄x(i)
WT

x(i),g\R̄x(i)
. (4.19)

4.3.2 Incorporating Regulation Types

Biological signaling pathways not only contain dependency information between

variables, they also illustrate the type of regulation between entities. This can help

decrease the uncertainty and modify our estimation of the matrix W. Since, we are

assuming that the underlying feature distribution is a joint Gaussian, we incorpo-

rate the APS and RPS effects using equations (4.7)-(4.8). Therefore, similar to our

interpretation indicated in CP1(κ) or CP2(κ), we try to manipulate the expected

correlation coefficients. However, instead of taking the expectation of the correlation

coefficient, which ends up with a non-convex function, we fix the variances according

to what we get from CP2(κ).

From the properties of the Wishart distribution, Σ ∼ W−1(Ψ, κ), where Ψ =

W−1. Define Ψ∗ = W∗−1, where W∗ is the optimal solution of CP2(κ). The

first moments of the elements of the covariance matrix distributed according to an

inverse Wishart distribution, i.e., Σ = [σij]p×p ∼ W−1(Ψ, κ), are E[σij] = 1
k−p−1

ψij,

80



i, j ∈ {1, ..., p} [91], from which we approximately write

E[ρij = ρx(i),x(j)] = E

[
σij√
σiiσjj

]
≈ E[σij]

1
k−p−1

√
ψ∗iiψ

∗
jj

=
ψij√
ψ∗iiψ

∗
jj

.

The goal of the second optimization paradigm is twofold: while satisfying the correlation-

coefficient constraints according to the regulation types, we wish to be as close to

the CP2(κ) solution as possible. Thus, we introduce a penalty term based on the

distance from the solution of CP2(κ) and aim to find the closest, in the sense of the

Frobenius norm, positive definite matrix to the matrix Ψ∗. Hence, we introduce the

following optimization problem, with optimization parameter Ψ = [ψi,j]p×p:

CP3 : min
Ψ>0,εij≥0

(1− λ2)||Ψ−Ψ∗||2F + λ2

[ ∑
(ia,ja)∈GA

εiaja +
∑

(ir,jr)∈GR

εirjr

]
, (4.20)

subject to the constraints



1− εiaja ≤ ψiaja√
ψ∗iaiaψ

∗
jaja

≤ 1; (ia, ja) ∈ GA

1− εirjr ≤ −ψirjr√
ψ∗irirψ

∗
jrjr

≤ 1; (ir, jr) ∈ GR

ψij = ψji, ∀i, j ∈ {1, . . . , p}

(4.21)

The parameter λ2 ∈ (0, 1) is again the regularization factor making the balance

between two functions. It can be readily shown that the optimization problem in

equations (4.20)-(4.21) is convex.

In sum, we break the general REML problem in equation (4.3)-(4.6) into two

sequential problems: (1) the optimization in equations (4.18)-(4.19) (CP2(κ)), and

then (2) the optimization in equations (4.20)-(4.21) (CP3).
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4.3.3 Algorithm for Solving CP2(κ)

For the sake of simplicity in the formula below, we only consider the one-constraint

problem. The multiple constraint problem can be treated similarly. Being a nonlinear

inequality constrained programming, we choose the log-barrier interior point method

for solving the optimization problem CP2(κ). The basic idea of the log-barrier inte-

rior point method is to replace an inequality constrained nonlinear optimization with

a sequential equality constrained problems whose total number of iterations depends

on the barrier parameter, some tolerance parameter, number of constraints, and the

convergence criterion for the centering problem solved via Newton’s method [93].

From Corollary 2, a local optimum for CP2(κ), which also satisfies the KKT

(Karush-Kuhn-Tucker) conditions, corresponds to the global optimum of the opti-

mization problem [93] (refer to Section 5.5 in [93] for more details). Hence, the

solution to the KKT system of equations will provide the optimal solution to the

problem of interest. Our proposed strategy is a mixture of existing strategies to solve

nonlinear convex and log-determinant problems [94, 95]. The core of the algorithm

is the log-barrier type of interior point method. Writing the first-order conditions

for optimality (KKT system of equations), we approximate these equations by their

quadratic approximation [93]. We change some notation to use existing results for

log-determinant problems. We write (owing to the symmetry property)

W =



w1 w2 w3 . . wp

. wp+1 wp+2 . . w2p−1

. . . . . .

. . . . . .

. . . . . wp(p+1)/2


.
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This matrix can be written as
∑p(p+1)/2

i=1 wiEi, where depending on the column (in

the above representation) at which the variable wi is located (e.g. j), the matrix Ei is

either Ei = eie
T
j +eje

T
i , j > i, or Ei = eie

T
i , where the vector ei is the column-vector

with 1 in its i-th position. Then, instead of the matrix W, which in general is the

parameter needing to be optimized, we need only find p(p + 1)/2 positions (due to

symmetry), these being denoted by w = [w1, w2, ..., wp(p+1)/2]T .

Hence, denoting the optimization parameter by z = [w, ξ], we may write the

objective function as follows, where to avoid confusion with the probability density

f and feature vector x, we use g and z to denote the objective function and its

argument, respectively:

g(z) = −1

2
(1− λ1)

[
log |W| − κtr(WV)

]
+ λ1ξ. (4.22)

Denoting the log-barrier parameter by µ, the optimization problem CP2(κ) may be

replaced by

min
z,u

g(z)− µ
2∑
i=1

log u(i),

subject to the new constraints

ξ − ξ − u(1) = 0

ξ + log |

 Wx W23

W32 W33

 | − log |W33| − u(2) = 0.

The new optimization problem is convex and therefor the solution to the KKT

conditions provides the global optimum. In order to solve the KKT conditions, we

employ the Newton method [94]. Define the vector y containing the Lagrangian
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multipliers. Following [94], we form the dual normal matrix

N(z,y,u) = Hess(z,y) + AT (z)U−1YA(z), (4.23)

where Hess(z,y) is the Hessian matrix and the matrices U and Y are diagonal

matrices whose elements correspond to vectors u and y, respectively. In equa-

tion (4.23), the matrix A(z) is the Jacobian matrix of the constraints (please refer to

Appendix C.3 for the Hessian and Jacobian calculus). Hence, the direction is found

based on the Newton’s method solver for the KKT conditions.

Considering the k-th iteration, once the direction, ∆z(k), is determined, a line-

search is employed to find an appropriate length of each step. As a standard approach

for constrained problems for determining the step length, α(k), we use the “merit

function” similar to that of [94].

The line-search used in the k-th step of the procedure (zk+1 = zk + αk∆zk) is

described in detail in Algorithm 1.

Algorithm 1 Line Search for α(k) for the centering program

Input: α(k),1, ρ = 0.5 (Default Value)
Output: α(k)

Initialize: α = 0.95(max{−∆u(k)

u(k)
,−∆y(k)

y(k)
; i = 1, 2}) ( [94]-Section 2.1)

αmax ← α, W←W + αmax∆W(k)

while W ≤ 0 do
αmax ← ραmax (similar to [95])
W←W + αmax∆W(k)

end while
if αmax ≤ α(k),1 then
α(k),1 ← 0.6αmax

end if
Form the merit function φ(k)(α) (similar to [94])
Implement back-tracking Algorithm for α ∈ [α(k),1, αmax]
return α(k)
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The augmented parameter vector u and the Lagrangian multiplier vector y must

be element-wise non-negative. Hence, as the initialization, we find an upper bound

denoted by α [94]. To assure the positive definiteness of the matrix W, we decrease

this maximum until the resulting matrix at the current iteration becomes positive

definite. From [95], if at the previous iteration the matrix W satisfies positive defi-

niteness, then for a symmetric ∆W, there exists an αmax for which decreasing α will

preserve positive definiteness. The parameter ρ is set to 0.5 as a default value. We

provide the algorithm with the input

α(k),1 = −2
φ(k)(0)− φ(k−1)(0)

φ′(k)(0)
.

The “back-tracking algorithm” [96] implementing the Wolfe first condition searches

for the best reduction in the merit function.

4.3.4 Solving CP3

The optimization problem CP3 is a linearly-constrained quadratic programming

problem. The quadratic programming without the positive definiteness constraint

could be easily solved. However, since we seek to find a proper prior distribution,

a positive definite matrix is of interest, making the quadratic programming more

challenging. To cope with this constraint, we add the logarithm of the determinant

of the matrix to the objective function. The added term can be considered as a

log-barrier function used to satisfy the constraint of having a matrix with positive

determinant. Because the latter condition is only a necessary condition for positive

definiteness, we still check the step size to be sure the search remains in the feasible

region of positive definite matrices. Overall, the search space is more restricted,

thereby leading to faster convergence. Hence, we simply add the term µ log(|Ψ|) to

the objective function, the parameter µ being the barrier parameter.
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4.3.5 Regularization Parameter

The parameter κ represents the spread of the prior, larger κ meaning that the

prior is more centered about the scale matrix. Thus, κ can be viewed as the total

amount of information in the prior. The regularization parameter aims at making a

balance between two sources of information; (1) data through expected likelihood,

and (2) slackness variables controlling the conditional entropy. λ1 governs the relative

importance of the slackness variables (information in the pathways) to the total

information. We can view the total information, as represented by κ, as being a

“sum” of the amount of data used to form the prior and a proportion of κ relating

to the importance of the slackness variables. Under this heuristic κ = np + λ1κ, so

that λ1 = κ−np
κ
.

We can also view κ as a sum of the data used to form the prior and the amount

of data, npw, that is “equivalent” to the pathway knowledge (recognizing that this

“equivalence” is purely a heuristic notion). This leads to κ = np + npw. Inserting

this expresion into the expression for λ1 yields

λ1 =
npw

np + npw
. (4.24)

We are left with defining npw. In the simulations we let npw = mp for different values

of m ≥ 2 and see that the performance is not very sensitive to m so that a default

value could simply be npw = 2p.

Reflecting on the preceding heuristics we see that we are confronted with a stan-

dard problem in pattern recognition, how to regularize two conflicting factors. One

thinks of the problem of adding a complexity term when dealing with model selection.

We take the usual approach of applying some heuristics and then demonstrating the

benefit of the regularization via simulation.
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4.3.6 Differences Between RML and REML Methods

Although both the RML classifier method of [77] and the current REML prior

construction method involve uncertainty classes, they are very different. The RML

classifier is built using two estimates of the class-conditional distributions that are

improved using the uncertainty classes. Moreover, there is no prior probability in-

volved and prior knowledge in the form of finite uncertainty classes of distributions

is utilized to improve classification accuracy. There are two key differences between

the RML and REML methods: (1) the REML method is used to construct prior

probabilities to be utilized by a Bayesian framework, e.g. optimal Bayesian classifi-

cation, and the designed classifier is optimal with respect to the assumed model; (2)

the RML classification rule needs a knowledge transformation, i.e. from biological

pathways to a set of models, whereas the REML prior construction approach per-

forms this knowledge transformation via the proposed optimization framework while

automatically assigning probabilities to the models.

4.4 Simulations on Synthetic Examples

Our aim is to compute the true error associated with the OBC using the REML

prior to examine the performance of the proposed prior construction approach. To

perform the simulations, we need to fix the ground-truth model from which sample

data are taken or pathways built up. We propose a method of generating synthetic

pathways for a fixed model to serve as the true model governing the stochastic

regulations in the network. Sample points are generated according to this model.

The generated pathways and sample points are then used for classifier design as

depicted in Figure 4.3.

For the simulations, we may have one or two sets of pathways, G or (G0,G1),

corresponding to one or two classes. The sample data are split into Spriornp and Strainnt
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Figure 4.3: An illustrative view of the methodology of splitting sample data into
two parts for the purpose of training the optimal Bayesian classifier. The training
module is implemented using equation (5.2).
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for prior construction and OBC training, respectively. The pathways are combined

with Spriornp to construct the REML prior distribution. The constructed priors will be

utilized with the rest of sample data Strainnt to train the OBC. .

4.4.1 Generating Synthetic Pathways Inspired by Real Experiments

We propose a method to generate synthetic pathways with different amounts

of incompleteness and uncertainty, controlled by the number of experiments and

number of sample points in each experiment. Details for the Gaussian case are

described in Algorithm 2, in which we assume an underlying ground-truth stochastic

system governed by a Gaussian distribution N (µtrue,Σtrue). An experiment takes

observations, X, from this distribution. These observations, denoted by S|O| in

Algorithm 2, are used for pathway construction. Each experiment generates a set,

Gi, of signaling pathways.

Pathway construction is based on Coefficient of Determination (CoD) [97]. The

CoD for a random variable x, considering the vector y as its predictor set, is defined

by CoDy(x) = (ε− ε•)/ε, where ε is the error of predicting x without observations,

that is, based on its own statistics, and ε• is the error of the optimal predictor of x

based on y. The CoD has been used since the early days of microarrays to analyze

gene interaction [98]. Based on the observations X, the model covariance matrix is

estimated and the CoD is computed using the least minimum-mean-squared error

(LMMSE) estimator. For entity x(i), we denote all subsets of size k, excluding x(i),

by G
−x(i)
k . The best CoD-based set of size k is given by∗

Rx(i) = arg max
y∈G−x(i)

k

CoDy(x(i)).

To choose APS or RPS, denote the corresponding LMMSE estimate of x(i) as

∗In this work, we avoid self-regulation.
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Algorithm 2 Synthetic Pathways Generation

Input: µtrue,Σtrue,r ∈ (50, 100), k ≥ 1
Output: G
for i = 1 to |E| do
S|O| ← take |O| Sample Points xi ∼ N (µtrue,Σtrue); i = 1, ..., |O|
CoD-based pathways construction using S|O|
for d = 1 to p do
Rx(d) = arg max

y∈X−x(d)
k

CoDy(x(d))

x̂LMMSE(d) = LMMSE of x(d) based on Rx(d) using S|O|
use x̂LMMSE(d): positive/negative coefficient: APS/RPS started from x(d)

end for
build Gi

end for
combine Gi’s to build a consensus G
for d = 1 to p do
A← ∅
for i = 1 to |E| do
A ← collect all the Entities x in Gi for which we have an APS, x(d) x, or RPS
x(d) x

end for
Ã ← count the repetitions in A, take union, and sort the elements based on their
repetitions
k′ ← average of the counts in Ã
k̃ = bmax{k′, r|E|/100}c
Rx(d) ← select the first k̃ elements from Ã

end for
build the consensus G using Rx(d), d ∈ {1, ..., p}
return G

x̂LMMSE(i). If the coefficient associated with a variable in this estimate is posi-

tive, then we assume APS; if it is negative, then we assume RPS. For example, if

x̂LMMSE(1) = 0.3x(2)− 0.7x(3), then x(1) x(2) and x(1) x(3).

Referring to Algorithm 2, each set, Gi, of pathways is constructed via CoD max-

imization after observing sample points. Having |E| sample sets, we have |E| sets

of pathways G1,G2, ...,G|E|. These need to be combined to find a single consensus

(similar to Figure 1). To build this consensus, for each entity its regulatory set is
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the union of regulatory sets obtained in G1,G2, ...,G|E|. This union is denoted by A

in Algorithm 2. Then we find the most frequent entities (controlled by k̃) in A, as

observed in the regulatory sets. Moreover, for a link to exist in the final consensus, it

must be present in a certain percentage, r%, of the Gi’s. Knowing all the regulatory

sets, a single consensus is constructed.

In our simulations, we build the ground-truth covariance matrix using a blocked

structure proposed in [42] to model the covariance matrix of gene expression mi-

croarrays. Here, however, we place a small correlation between blocks. A 3-block

covariance matrix with block size 3 has the structure

Σ =


B1 C C

C B2 C

C C B3

, (4.25)

where

Bi =


σ2 ρiσ

2 ρiσ
2

ρiσ
2 σ2 ρiσ

2

ρiσ
2 ρiσ

2 σ2

,C =


ρcσ

2 ρcσ
2 ρcσ

2

ρcσ
2 ρcσ

2 ρcσ
2

ρcσ
2 ρcσ

2 ρcσ
2

 , (4.26)

σ2 is the variance of each variable, ρi, i = 1, 2, 3, are the correlation coefficients inside

blocks, and ρc is the correlation coefficient between elements of different blocks.

4.4.2 Simulation Setup

The more concentrated the prior distribution is around the value of θ = [θ0,θ1]

corresponding to the true feature-label distribution, the better should be the perfor-

mance of the optimal Bayesian classifier. Since our aim herein is prior construction,

we analyze the simulations in that light. Let the misclassification error of a designed

classifier, ψ : Rp → {0, 1}, designed via feature-label distributions parameterized by
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θ be denoted by ε(ψ,θ) = Pr(ψ(x) 6= y|θ).

Assume that we observe sample points Sn = Spriornp ∪ Strainnt . Denote the OBC

designed according to REML priors constructed using Spriornp and training points

Strainnt by ψ
np
OBC,nt

. We are concerned with εn(ψ
np
OBC,nt

,θtrue). If the solutions to the

optimization paradigms stated in CP2 and CP3, shown by πyREML = πREML(θy), y =

0, 1, produce good priors, that is, priors that have strong concentration around θtrue,

then we should have εn(ψ
np
OBC,nt

,θtrue) ≤ εn(ψ,θtrue), where ψ is some other classifier,

the exact relation depending on the feature-label distribution, classification rule, and

sample size. On the other hand, if πyREML; y = 0, 1, are not concentrated around θtrue,

then it may be that εn(ψ
np
OBC,nt

,θtrue) > εn(ψ,θtrue).

Fixing the true feature-label distribution, we generate n points, composing Sn,i

in the i-th iteration, where, i = 1, ...,M . These points are split (randomly) into two

parts, denoted by Spriornp,i
and Strainnt,i , where np + nt = n. Denote the given pathways

by G. Using G and Spriornp,i
, we construct prior distributions πyREML,i; y ∈ {0, 1}. These

are updated using the remaining points Strainnt,i from which ψ
np
OBC,nt,i

is trained. The

expected true error, εn(ψ
np
OBC,nt

,θtrue), is evaluated via Monte-Carlo simulations:

εn(ψ
np
OBC,nt

,θtrue) ≈
1

M

M∑
i=1

εn(ψ
np
OBC,nt,i

,θtrue), (4.27)

where the error term, εn(ψ
np
OBC,nt,i

,θtrue) is also computed via Monte-Carlo simula-

tions with 10, 000 repetitions. The overall strategy, repeated through Monte-Carlo

simulations, is partly shown in Figure 4.3, and implemented step-wise as follows:

1. Fix true parameterization for two classes: [µtruey ,Σtrue
y ], y ∈ {0, 1}.

2. Use Algorithm 2 to generate two sets of pathways, Gy, y ∈ {0, 1}.

3. Take observations from N (µtruey ,Σtrue
y ) to generate Sn.
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4. Randomly choose np points from Sn for prior construction, i.e., Spriornp , and the

rest Strainnt for training.

5. Use Spriornp and Gy to construct the prior πyREML, y ∈ {0, 1}, by REML (CP2 and

CP3).

6. Use (5.2) to optimally combine the priors, πyREML, y ∈ {0, 1}, and Strainnt to build

the OBC, ψ
np
OBC,nt

.

The parameters used in our simulations are summarized in Table 4.1. We con-

sidered a setting with p = 8 entities. The covariance matrix in the form of (4.25) is

used with block sizes 3, 3, 2 for the first, second, and the third blocks, respectively.

Table 4.1: Table of parameters used for simulations. Two configurations associated
with two mean values are considered. Configurations C1, C2, C3 and C4 correspond
to the Bayes errors of εBayes = 0.167, 0.155, 0.091, and 0.085, respectively.

Class y Σtrue
y µtruey c |E| |O| νy M

0
ρ1 = ρ3 = 0.3
ρ2 = −0.3, ρc = 0.1

C1&C2: 0.31p
C3&C4: 0.51p

C1&C3: 0.5
C2&C4: 0.6

50 100 np0 15000

1 2Σtrue
1−y

C1&C2: − 0.31p
C3&C4: − 0.51p

C1&C3: 0.5
C2&C4: 0.6

50 100 np1 15000

We compute the Monte-Carlo approximation of the expected true error of the

designed OBC using the priors from CP2 + CP3 (shown by REML) and Jeffreys’

prior. We also train LDA and QDA classifiers for the purpose of comparison. In

the simulations, we fixed the true underlying model for two classes according to

Table 4.1.
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4.4.3 Results

We set λ1 according to (5.30), λ2 = 0.5, and consider three sample sizes, n ∈

{30, 50, 70}, and two class prior probabilities c ∈ {0.5, 0.6}. The sample sizes n0 and

n1 are determined according to the class prior probability as n0 = cn, and n1 = n−n0.

We consider κy = mp + npy,m = 2, 3, 4. We change the ratio of the number of

sample points used for prior construction to the total sample size, rp =
np0+np1
n

, from

0.1 to 0.9. We consider at most 90% to keep points for prior update and finding

the posterior. The sample sizes allocated for prior construction are determined as

npy = drpnye, y = 0, 1. For example, for c = 0.6 and n = 30, when 50% of the points

are used for prior construction, np0 = 9 and np1 = 6.

The results for the settings in Table 4.1 for m = 2 are shown in Figure 4.4. Since

we split the data, np for REML prior construction and n − np to design the OBC

from the REML prior, we need to examine the effect of np. Therefore, we plot the

expected true error as a function of the percentage of the data points used for prior

construction, 100 × np0+np1
n

%, for the OBC using the REML prior. The work-flow is

depicted in Figure 4.5, in which there are two general possibilities: (1) use all data

points for prior construction, shown in the hypotenuse of the figure, or (2) use part

of the data for prior construction and the rest for constructing the posterior.

We compare these results to both quadratic discriminant analysis (QDA) and

linear discriminant analysis (LDA). QDA is the plug-in classifier for the Gaussian

model with different covariance matrices, meaning that it is obtained from the Bayes

(optimal) classifier for the true model by estimating the means and covariance ma-

trices by the sample mean and sample covariance matrices, respectively. LDA is the

plug-in classifier for the Gaussian model with common covariance matrix. With small

samples, LDA often performs better than QDA in the different-covariance model on

94



account of better estimation using the pooled sample covariance matrix for LDA.

We also consider the OBC with Jeffreys’ non-informative prior. Since there is no

data splitting for QDA, LDA, and the OBC with a non-informative prior, all sample

points are used for classifier construction so that the plots in Figure 4.4 are constant.

In Figures 4.4(a), 4.4(d), 4.4(g), and 4.4(j), n = 30, by increasing number of

sample points used for the prior construction, the true error decreases. Thus, one

should use at least 90% of the sample points for prior construction. However, when

the total number of sample points increases, from 30 to 70, there is an optimal

number of points which should be utilized for the prior construction. For instance,

as illustrated in Figures 4.4(c), 4.4(f), 4.4(i), 4.4(l), after about np = 30, the true

error of the designed OBC increases. Note that in Figure 4.4(k), the LDA classifier

outperforms the OBC. Here we must remind ourselves that the OBC is optimal on

average relative to the prior distribution, but may be outperformed for individual

distributions. Even in this case, however, the REML-based OBC still significantly

outperforms the OBC with Jeffreys’ prior. Rsults for m = 3, 4 are provided on the

companion website.

The simulations demonstrate that splitting the data provides better performance

– that is, using np points (np < n) to design the prior and the remaining n − np

points to train the OBC provides the minimum expected error. To be precise, for a

given n, we are interested in the number of sample points for which the minimum

expected true error is achieved using the OBC designed via the REML prior, namely,

n∗p(n) := arg min
np∈{2,...,n}

εn(ψ
np
OBC,n−np ,θtrue).

n∗p(n) represents the REML-optimal investment of data size in the prior construction

process. After this point, the remaining points should be employed to update the
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Figure 4.4: The expected true error as a function of the percentage of the sample

points used for prior construction,
np0+np1
n

(%), shown in the x−axis. Sample points
for each class are stratified according to c = Pr(y = 0).
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Figure 4.5: A schematic view of two possibilities starting from a partially known prior
probability, i.e., in the Normal-Wishart prior in this dissertation, we assume known
ν and κ. First, using some part of the data for prior construction, and then using
the rest for finding the posterior probability. Second, utilizing all the data points
with the pathways to find a prior knowledge, or precisely the posterior probability.

constructed prior. Since there is no closed form for the true error of the OBC designed

using the REML prior, the exact value of n∗p cannot be determined. Thus, we search

for n∗p via Monte-Carlo simulations: For fixed n, we exhaustively search for n∗p(n)

by increasing np from 2 to n. We only consider configurations C1 and C3 for which

c = 0.5. Tables 4.2 and 4.3 demonstrate n∗p as a function of total sample size n for

four scenarios m = 2, 3, 4. Sample size n is changed from 30 to 70.

The key point is that increasing n does not necessarily lead to a larger n∗p; on the

contrary, there is a saturation point after which increasing n does not significantly

influence the optimal sample size for prior construction. For both tables (reflecting

εBayes = 0.167 and εBayes = 0.091), the optimal value is approximately n∗p ≈ 30, with

small variations around 30 having negligible effect on classifier performance. This

means that 30 points for prior construction provides close to optimal performance

when n ≥ 30, so that we can view the REML prior as taking up to 30 sample points
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Table 4.2: The optimal prior constructing sample size, n∗p as a function of total
sample size for the configuration C1.

κy

n
30 34 38 42 46 50 54 58 62 66 70

κy = 2p+ npy 26 28 34 32 26 28 32 28 28 28 32

κy = 3p+ npy 28 30 30 34 28 28 30 24 26 34 28

κy = 4p+ npy 30 28 32 38 24 34 32 34 30 28 32

Table 4.3: The optimal prior constructing sample size, n∗p as a function of total
sample size for the configuration C3.

κy

n
30 34 38 42 46 50 54 58 62 66 70

κy = 2p+ npy 30 26 28 28 32 28 28 26 28 28 30

κy = 3p+ npy 26 28 26 30 30 26 28 28 28 28 28

κy = 4p+ npy 30 28 28 30 24 28 28 32 28 28 30

for its construction, after which further sample points, however many there be, are

used for posterior construction. Should we have n < 30, using prior information

is still superior to a completely data-driven classifier; however, classifier design is

strictly from the prior without using a posterior to design the OBC. We would like

a closed form for the true error of the OBC designed using the REML prior, but

this problem appears difficult given the nature of the prior information and the

optimization problems involved in prior construction.

4.5 An Example Inspired by the Colon Cancer Pathway

4.5.1 Pathway Description

In this section, we evaluate the performance of the proposed method on real

pathways. These pathways, associated with colon cancer, are depicted in Figure 4.6.

This is a diagram that includes three basic pathways: the Ras/Raf/Mek pathway

at the left and middle in red, the PI3K pathway in the middle in blue, and the

JAK/STAT pathway on the right in green. On the top are the ligands/stimulation
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factors, EGF, HGF, NRG1, IL6, etc. They carry the external signals generated

by neighboring cells (sometimes themselves). Immediately under the factors are

the ligand receptors, which are anchored at the membrane. Once the ligand binds

to its receptor, it will initiate the downstream process, usually to form a dimer

or similar complex so that the kinase in one unit can activate the other unit. If

two nodes are drawn as attached together, they normally closely bind together to

form a dimer. For example, EGFR-ERBB2 is a heterodimer. MET-MET is an

homodimer. Or it means the interaction is conducted in a physically specific location.

For example, we believe JAK-SHP2-SOS must be three proteins interacting in a

place very close to the membrane where the receptor IS6ST-IS6R is located. These

reactions happen very fast once the ligand binds to the receptor. A long arrow

means that the protein will move into the cytoplasm and activate/inhibit/modify

the target protein. As indicated in the legend, ”+P” means phosphorylation and

”T” means transcription. ”GAP” means GTPase-activating protein, because RHEB

is a GTPase. So this is an activating process. Overall, phosphorylation and GTPas-

activating are both protein modification procedures that happen very fast since they

involve no transcription/translation. In particular, such a process cannot be observed

in a transcription assay, such as a microarray or RNAseq.

From the wiring diagram in Figure 4.6, we concentrate on 11 entities: EGF, Ras,

MEK1/2, PIK3CA, STAT3, mTORC1, HGF, IL6, PKC, SPYR4, and TSC1/TSC2.

Thus, the feature vector is

x = [EGF, HGF, IL6, Ras, PIK3CA, STAT3, TSC1/TSC2, mTORC1, SPYR4, PKC, MEK1/2],

where the TSC1/TSC2 tumor suppressor complex is considered as a single entity.

Since we do not exactly know what type of functioning exists for each of these
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Figure 4.6: A wiring diagram showing proliferation and survival pathway elements
whose transcriptional states could be altered in a cell exposed to the drug lapatinib
[3,4]. Nodes marked in yellow are ones for which a reporter would be used to assess
transcription for that gene. The places where the drug of interest and other drugs
that act at other points on these pathways are indicated by red labels.

100



genes, we simply assign some dependency between these genes according to the path-

ways in Figure 4.6. We do a similar procedure for both classes, assuming some mu-

tations or changes for the malfunctioning label. From these assumed dependencies,

we construct covariance matrices for two classes.

4.5.2 Pathway-Consistent True Model Construction

As discussed in Section 4.4.1, the basic requirements for the numerical experi-

ments are pathways for two classes and sample data generated using a fixed true

model. In the Gaussian case, we need to fix the underlying true mean vector and co-

variance matrix, µtruey ,Σtrue
y , for y ∈ {0, 1}.Owing to the structure of the colon cancer

pathways in Figure 4.6, we first set the covaraince matrix restricted to the top genes

[EGF, HGF, IL6], i.e. [x(1) x(2) x(3)]. We denote the mean vector and covariance

matrix restricted to these three genes by [µtrue0 ][x(1) x(2) x(3)] and [Σtrue
0 ][x(1) x(2) x(3)],

respectively. Thus, for class y = 0,

[EGF, HGF, IL6] ∼ N ([µtrue0 ][x(1) x(2) x(3)], [Σ
true
0 ][x(1) x(2) x(3)]).

We assume

[µtrue1 ][x(1) x(2) x(3)] = −[µtrue0 ][x(1) x(2) x(3)]

and

[Σtrue
1 ][x(1) x(2) x(3)] = 2[Σtrue

0 ][x(1) x(2) x(3)].

Then, to keep the Gaussianity, for both classes we assume linear dependencies in

the form of x(i) = aTi xi−1 + zi; i = 4, 5, ..., 11, where the vectors ai, i = 4, ..., 11, are

coefficients determining the influence of each gene in xi−1 = [x(1), ..., x(i − 1)]T on

the target gene x(i). The zis are additive zero-mean Gaussian noise, zi ∼ N(0, σ2
i ),

considered to model the effects of latent variables outside the model [69,99].
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Having Figure 4.6 as the foundation for the pathways, if two genes are not con-

nected we simply assume that the corresponding coefficient in the vector ai is zero. If

there is an APS/RPS, we assume a positive/negative coefficient, respectively. Hence,

considering the normal functioning of the cell, we consider the following linear rela-

tionships among the variables conditioned on being in class y = 0:

Ras = a4(1)EGF + a4(2)HGF + a4(3)IL6 + z4 (4.28a)

PIK3CA = a5(2)HGF + a5(4)Ras + z5 (4.28b)

STAT3 = a6(1)EGF + a6(3)IL6 + a6(5)PIK3CA + z6 (4.28c)

TSC1/TSC2 = a7(5)PIK3CA + z7 (4.28d)

mTORC1 = a8(7)TSC1/TSC2 + z8 (4.28e)

SPRY4 = a9(6)STAT3 + a9(8)mTORC1 + z9 (4.28f)

PKC = a10(3)IL6 + a10(9)SPRY4 + z10 (4.28g)

MEK1/2 = a11(4)Ras + a11(10)PKC + z11 (4.28h)

in which, those ai(j)’s, not contributing in equations (4.28a)-(4.28h), are set to zero.

Moreover, for nonzero coefficients, except a6(5), a8(7), and a10(9), all other coeffi-

cients are positive. The other difference we assume for distinguishing two classes

is a mutation for the TSC1/TSC2 tumor suppressor complex [100–102]. Precisely,

for y = 1, we change equation (4.28d) to x(7) = TSC1/TSC2 = z7, meaning that

this gene is stuck at 0 with a small probability of being changed. Considering the

conditional entropy constraints, we extract the regulatory set connections used for

the REML prior construction in Table 4.4 for the two classes. We set |ai(j)| = 1
Ni

,

where Ni is the number of nonzero elements of ai. The sign is determined based

on whether the influence is through an APS or an RPS. For example, for STAT3:

a6(1) = a6(2) = 1
3

and a6(3) = −1
3
.
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Table 4.4: Regulatory sets of the genes considered in our classification scenario using
pathways in Figure 4.6. The second and the third columns correspond to two classes
y = 0 and y = 1, respectively. The only mutation considered to distinguish two
classes is in TSC1/TSC2 complex which is stuck at zero.

Gene Regulatory set Regulatory set
(y = 0) (y = 1)

EGF {Ras, STAT3} {Ras, STAT3}
HGF {Ras,PIK3CA} {Ras,PIK3CA}
IL6 {Ras, STAT3,PKC} {Ras, STAT3,PKC}

Ras {MEK1/2,PIK3CA} {MEK1/2,PIK3CA}
PIK3CA {STAT3,TSC1/TSC2} {STAT3}
STAT3 {STAT3, IL6, SPRY4} {STAT3, IL6, SPRY4}
TSC1/TSC2 {mTORC1} {mTORC1}
mTORC1 {SPRY4} {SPRY4}
SPRY4 {PKC} {PKC}
PKC {MEK1/2} {MEK1/2}
MEK1/2 ∅ ∅

The coefficients for the true model used for simulations are given in Table 4.5, 1m

denotes an all-one column-vector with dimension m. Then, according to these coef-

ficients, using equations (4.28a)-(4.28h), we build the underlying true mean vectors

and covariance matrices for both classes. These moments will be used to generate

data points during our simulations, i.e., x ∼ cN (µtrue0 ,Σtrue
0 )+(1−c)N (µtrue1 ,Σtrue

1 ),

where c is fixed in our simulations to 0.5. We also have p = 11.

4.5.3 Results

Similar to Section 4.4.3, we show the results for different sample sizes, but for

a single Bayes error εBayes = 0.108 in Figure 4.7, which shows the comparisons for

sample sizes n = 30, 50, and 70, with n0 = n1 = n/2 and m = 2 (m = 3, 4 on
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Table 4.5: Table of parameters used for simulations. The Bayes error is εBayes = 0.132.

Class y [Σtrue
y ][x(1) x(2) x(3)] µtruey Noise variance

0

 1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

 0.31p σ2
i = 0.2, i = 1, . . . , 8

1

 2 0.4 0.4
0.4 2 0.4
0.4 0.4 2

 −0.31p σ2
i = 0.05, i 6= 7

the companion website). We have removed the line for LDA, since the LDA error

is so large that the differences between the other methods could not be easily seen.

One can see that the superiority of the OBC designed using the constructed prior

diminishes as number of sample points increases, with only small improvement over

QDA. Nonetheless, we see a significant improvement in the small sample settings

(n ≤ 50), which is our ultimate goal.

4.6 Discussion

Purely data-driven approaches to classifier design with small samples tend to

produce poor classifiers whose errors cannot be reliably estimated. The importance

of small-sample classification is highlighted by its prevalence in genomic/proteomic

applications. In general, prior (probability) selection is one of the main challenges

when one is dealing with any Bayesian framework. Conjugate priors are of great

interest because of their convenient properties for deriving the posterior probabilities;

however, there is no general rigorous mathematical machinery from which to estimate

the hyperparameters. The proposed optimization framework is different from its

predecessors in the sense that the REML prior relies on sample data and incorporates

these data with “pure prior knowledge” to obtain a prior probability. The objective

function is based on the notion of a model selection criterion, where the criterion is
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(c) n = 70

Figure 4.7: The expected true error as a function of the percentage of the sample
points used for prior construction in the biological pathways shown in Figure 4.6.

The x−axis shows
np0+np1
n

(%). Three sample sizes are considered: n = 30, n = 50,
and n = 70. The expected true errors for the LDA classification rule from left to
right are 0.434, 0.414, and 0.404, respectively. The parameter κy = 2p+ npy is fixed
for these results.

marginalized using the prior probability. The performance of the designed prior is

examined by evaluating the true error of the optimal Bayesian classifier designed via

the posterior.

As a final comment, let us note that the overarching goal is to use prior knowledge,

in the form of biological pathways, to assist in the design of genomic classifiers.

Since we use some initial data in prior construction and thereafter use new data to

construct a posterior distribution in the Bayesian framework, one might consider this

a “hybrid” approach. But from the perspective of our goal, integration of pathway

knowledge and data, this characterization is semantic. The fundamental conclusion

is that pathway knowledge and data are used in a Bayesian framework to produce

classifiers that are superior to those based on data alone, and this is done via an

optimization procedure that transforms the pathway knowledge into constraints on
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the feature-label distribution.
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5. DIRICHLET PRIOR CONSTRUCTION ON MULTINOMIAL

DISTRIBUTION

In this section, we consider the problem of prior probability construction for

the purpose of learning an optimal Bayesian classifier when the underlying model

is discrete. First, we introduce the notion of objective-based priors, when the prior

information is in the form of signaling pathways. Unlike the previously used methods

where the prior information is either in the form of known inequalities or equalities,

we consider the notion of ”slackness.” In order to bring the slackness variables, the

interactions in the pathways are quantified from a Bayesian perspective, ”mapping

the signaling pathways to a set of constraints on the hyperparameter space.” Then,

we extend maximum entropy and maximal data information prior to the proposed

framework. Moreover, a recently introduced method of prior construction, regular-

ized expected mean log-likelihood, is also revisited. Our problem of interest in this

part is discrete classification, and hence we consider the optimal Bayesian classifica-

tion when the likelihood function results from a multinomial distribution. All the

methods are studied for Dirichlet prior families. We examine the proposed frame-

work on a simplified set of pathways involving the TP53 gene. We show that the

Bayesian framework utilizing the informative constructed priors via objective-based

priors framework significantly outperforms those rules which do not incorporate prior

knowledge.

5.1 Background

5.1.1 Optimal Bayesian Classifier

Given a binary classification problem with classes y ∈ {0, 1}, we observe a col-

lection of n sample points, Sn, in a sample space X , with ny i.i.d. points from each
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class. Call c the a priori probability that an individual sample point, x (∈ {0, 1}p

or ∈ Rp in a p−dimensional binary or continuous case, respectively), is from class 0,

and let the class-conditional distribution for class y, denoted pθy(x|y) (sometimes f

is used for continuous cases), be parameterized by θy. The feature-label distribution

is completely specified by the modeling parameters θ = [c,θ0,θ1]. In [78], it is as-

sumed that c, θ0 and θ1 are all independent prior to observing the data. Denoting

the prior for θy by π(θy), we have π(θ) = π(c)π(θ0)π(θ1). Moreover, the posterior

preserves this independence and denoting it by π∗(θy), the following is obtained [39]

π∗(θy) ∝ π(θy)

ny∏
i=1

pθy(x
y
i |y) (5.1)

where xyi is the i−th sample point in class y.

Assume a discrete sample space with b bins, i.e. X = {1, ..., b}. Let p0
k and p1

k be

the class-conditional probabilities in bin k ∈ {1, ..., b} for class 0 and 1, respectively,

and define uyk to be the number of sample points observed in bin k ∈ {1, ..., b} from

class y ∈ {0, 1}. The class sizes are thus ny =
b∑

k=1

uyk. A general discrete classifier

assigns each bin to a class.

The discrete Bayesian model defines θy = [py1, ..., p
y
b ] where only b − 1 of these

are independent. The parameter space of θy is defined to be the set of a valid bin

probabilities, [py1, ..., p
y
b ] ∈ Θy if and only if 0 ≤ pyk ≤ 1 with

∑b
k=1 p

y
k = 1. Then,

considering Dirichlet priors with parameters αy, y ∈ {0, 1} (refer to Appendix D.1

for the definition) for two classes, the OBC is given by (refer to [39] for more details)

ψOBC(k) =


0 ifEπ∗ [c]

u0
k+α0

k

n0+α0
0
≥ (1− Eπ∗ [c])u

1
k+α1

k

n1+α1
0

1 o.w.

. (5.2)
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Tracing back the formula for the optimal Bayesian classifier or that of any Bayesian

framework, it is observed that the prior probabilities parameters (hyperparameters)

play the central role, thereby, one could see that the fundamental component prior

to use of this Bayesian approach is to have an accurate prior probability. In what

follows we drop the sub (sup)-script denoting the dependency to the label, y, but one

should notice that the prior knowledge is assumed to be available for both classes,

separately. Now, here is the question: How can one construct prior probabilities

π(θy), y = 0, 1? In the next part, we give a formal definition for the problem of

prior construction.

5.2 Objective-based Informative Priors

The Jeffreys’ prior was the first attempt for constructing priors after about 200

years of using uniform priors of Bayes and Laplace [44,45]. The Jeffreys’ prior is the

one with the following property [45]

π(θ) ∝
√
I[θ] =

√
det
[
E[

∂2

∂θiθj
log f(x|θ)

]
i,j

(5.3)

where I(θ) is the Fisher Information of the parameter θ. The main drawback of

the Jeffreys’ prior is that in many cases it yields an improper prior which does

not generate a proper posterior probability. It also shows some other unexpected

behaviors which limits its applicability [103]. Nonetheless, in the discrete scenario of

multinomial model for the likelihood, one would obtain a proper prior given by

π(θi) ∝ θi
−1/2, (5.4)

which is equivalent to a Dirichlet distribution with αi = 1
2
,∀i = 1, . . . , b.

Unlike the Jeffreys’ prior, all the attempts for constructing prior probabilities in
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the last seven decades have been concentrated on an optimization view for the prior

construction where the objective function is chosen so that it represents some type of

measure of the information. In this work, we are mainly interested in regularization

framework, where we introduce it in the general framework. The notion of regu-

larization goes back to solving ill-posed integral equation by Tikhanov [31]. After

Tikhanov, there has been an extensive number of works either in statistics, signal

processing, or machine learning dealing with regularization [28,30,104].

In the general framework, we define a regularized objective-based informative prior

probability as the solution to the following optimization problem

min
π(θ)

− (1− λT1)Eθ[g0(θ)] + λTL(ξ),

Subject to:


0m � ξ

Eθ[gi(θ)] ≤ ξi; i = 1, ...,m∫
Θ
π(dθ) = 1

(5.5)

in which the function Eθ[g0(θ)] is an information measuring term, e.g. the negative

entropy where the function g0(θ) = lnπ(θ), and L(ξ) is a linear function on the

slackness variables ξ. The vector ξ, encompasses the slackness variables which are

also optimization parameters, i.e. it is an ordered representation integrating all the

variables in the forms of ξai , ξ
r
i , ξ

ca
ij , ξ

cr
ij , ξ

reg
i . Define,

L(ξ) = [

|C|∑
i=1

ξregi ,
∑

(ij)∈Ga

ξaij +
∑

(ij)∈Gr

ξrij +
∑

(ijk)∈Gca

ξcaijk +
∑

(ijk)∈Gcr

ξcrijk]

In (5.5), the vector λ = [λreg, λfun], for which we have λT1 ≤ 1 and λ � 0, is the

regularization vector (or the design parameter) depending on the relative importance
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of different sources of information. The constraints Eθ[gi(θ)]; i = 1, . . . ,m, are ex-

tracted from the prior knowledge. In the case of restricted prior probability family,

Π, parametrized by a vector α (hyperparameters), we define

f0(α, ξ) = −(1− λT1)Eθ[g0(θ)|α] + λTL(ξ)

fi(α, ξ) = Eθ[gi(θ)|α]− ξi ≤ 0; i = 1, ...,m.

Then, the optimization problem can be rewritten as follows

min
π(θ|α)∈Π

f0(α, ξ)

Subject to:


fi(α, ξ) ≤ 0; i = 1, ...,m

0m � ξ

(5.6)

where Π is the feasible region to which the prior distribution belongs. From equa-

tion (5.6), one can see that in the parametric prior family, e.g. Dirichlet distributions,

the objective function and constraints are reduced to functions of only the parameter

vector α and the slackness variables. Since the regularization parameters are used

to make a balance between different sources of information, we assume that for each

”type” of prior knowledge, the corresponding element in the vector λ are equal. In

other words, for all ξaij, ξ
r
ij, ξ

ca
ijk, and ξcrijk we assume one regularization parameter de-

noted by λfun to emphasize on the ”functional” essence of this type of information.

Similarly for the regulatory set information, we use λreg. Hence, the term λTL(ξ),

in equation (5.6) can be expanded as follows

λreg
∑
i∈C

ξregi + λfun
[ ∑

(i,j)∈Ga∪Gr

ξaij + ξrij +
∑

(i,j,k)∈Gca∪Gcr

ξcaijk + ξcrijk

]
(5.7)

The constraints in the general objective-based informative prior framework are as
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follows

Eθ

[
Pr(xj = 1|xi = 1,xj,rep = 0)

]
≥ 1− ξaij; ∀(i, j) ∈ Ga (5.8a)

Eθ

[
Pr(xj = 0|xi = 1)

]
≥ 1− ξrij, ; ∀(i, j) ∈ Gr (5.8b)

Eθ

[
Pr(xj = 1|xi = 1, xk = 0,xj,rep = 0)

]
≥ 1− ξcaijk; ∀(i, j, k) ∈ Gca (5.8c)

Eθ

[
Pr(xj = 0|xi = 1, xk = 0)

]
≥ 1− ξcrijk; ∀(i, j, k) ∈ Gcr (5.8d)

Eθ

[
Hθ[xi|Rxi ]

]
≤ ξregi ; xi ∈ C (5.8e)

In the following subsections, we consider 3 constructive methods to select prior

probabilities compatible with the available prior information. The first two methods

are traditionally introduce for construct least-informative priors. We adopt these

methods, and modify them.

5.2.1 Regularized Maximum-Entropy Priors

The principle of maximum-entropy was first stated in statistical mechanics al-

most 55 years ago by Jaynes in [55] as an inference method [105]. This is used

for the probability construction of the different (random) states (in the state space)

that can be taken, i.e., microscopic states of the system. In statistical mechan-

ics the state functions are random, due to the randomness in the states, and only

some mean values of these state functions can be measured [106]. In this way, the

maximum entropy probability is the one whose (information) entropy is maximized

subject to these mean values: It leaves us with the greatest uncertainty given the

constraint in order to prevent adding spurious information. Mathematically speak-

ing, inserting g0(θ) = − ln π(θ) in (5.6) with λ = 0 (i.e., no slack variables) and

some predetermined vector ξ leads to the primitive maximum entropy setting (refer
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to Appendix D.2 for details). Incorporating the prior knowledge, we extend the no-

tion of maximum entropy probability into the Bayesian setting with slack variables

as in (5.6), where the objective function is given by

f0(α, ξ) = −(1− λT1)H[θ] + λTL(ξ). (5.9)

Inferring from equation (5.9), the RMEP objective function makes a balance

between the negative entropy and the knowledge obtained from signaling pathways.

5.2.2 Regularized Maximal Data Information Priors

The maximal data information prior (MDIP) is introduced by Zellner, et. al. [107].

Zellner’s choice of objective function is a criterion for prior probability construction

to remain ”maximally committed to the data” [103]. Adopting the original method

into the new framework, the MDIP is the one with

g0(θ) = −[lnπ(θ) +H[p(x|θ)]],

in which p(x|θ) is the likelihood of x when it is parameterized by θ. Taking the

expectation with respect to θ, we obtain

Eθ[g0(θ)] = H[θ]− Eθ[H[p(x|θ)]].

In the MDIP, ”data” does not mean any actual observation, rather it is used and

then marginalized by finding the entropy (refer to Appendix D.2 for details). Similar

to the RMEP, the regularized extension of MDIP (RMDIP) is the solution to the
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optimization problem in (5.6) in which

f0(α, ξ) = −(1− λT1)
[
H[θ]− Eθ[H[f(x|θ)]

]
+ λTL(ξ). (5.10)

Going from (5.9) to (5.10), one can see that the entropy is subtracted by the prior-

average of the entropy of the likelihood of data.

5.2.3 Regularized Expected Mean Log-Likelihood Priors

The general framework for the regularized expected mean log-likelihood priors

(REMLP) is detailed in Section 4. The main difference between regularized expected

mean log-likelihood prior (REMLP) with its preceding methods, is the way it takes

the observations into account [41]. Prior to introducing the REML, all the prior

constructing methods were maximally ignorant to the observations (measurements).

However, the REML optimization problem searches for the priors which are designed

to “remain committed to some part of the sample data” through the expected mean-

log-likelihood function while satisfying the constraints imposed by the pathways. The

expectation of the log-likelihood is taken with respect to the prior, to marginalize

the dependency of the mean-log-likelihood to the actual feature-label distribution

parameters and map it to the hyperparameter space. Henceforth, for notational

ease, we drop the index y.

To this end, we first split the given sample, u, into two parts: uprior and utrain,

with |u| = |uprior| + |utrain|, where the former is used for prior construction. Here,

we restate the REMLP in the general regularized framework given in equation (5.6).

The REML prior (REMPL) is found by solving the optimization problem in (5.6)

when the objective function is given by

f0(α, ξ) = −(1− λT1)Eθ[`np(θ;uprior)] + λTL(ξ). (5.11)
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where `np(θ;uprior) is the log-likelihood function of the samples uprior. In [41] it

has been shown that the variable `np(θ;uprior) can be interpreted as a measure of

“similarity” between the true model and the one governed by the parameter θ. This

is similar to the Akaike’s information criterion for model selection [89].

5.3 Derivation of Optimization Frameworks for Dirichlet Priors

In this section, we revisit all the aforementioned adopted prior constructing

methods, when the feasible space is limited to the family of Dirichlet distributions.

The Dirichlet process as a prior probability has been extensively studied in the non-

parametric Bayesian inference problems [43, 108–111]. In [112], a constructive def-

inition of the Dirichlet measure is discussed. Since in this section we concentrate

on the multinomial model, the Dirichlet process prior can be reduced to Dirichlet

distribution. In order to be consistent with the standard notation, we denote the

Dirichlet parameter by α. Then, the Dirichlet distribution, denoted by p ∼ Dir(α),

is defined as

π(p|α) =
Γ(
∑b

k=1 αk)∏b
k=1 Γ(αk)

b∏
k=1

pαk−1
k . (5.12)

Define α0 =
b∑

k=1

αk, which is interpreted as a measure of the strength of the prior

knowledge [108]. This parameter can be chosen by the practitioner to represent

the strength of his conviction, independent of his opinion about the ”shape” of the

distribution, α, [43]. Finally, we define the feasible region, Π, for a given α0 =∑b
k=1 αk, as follows

Π = {Dir(α) : α ∈ Sα0
b−1}

where Sα0
b−1 is the α0 − (b− 1)-dimension simplex, i.e. 0 ≤∑b−1

k=1 αk ≤ α0.

Now, we state two main lemmas which are the basics for the transformation of

the pathways knowledge to the hyperparameter space (the proofs are left in the
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appendices). The function ψ(x) : R+ → R, is the digamma function defined as

ψ(x) = d
dx

ln Γ(x).

Lemma 4. Suppose that p = (p1, p2, . . . , pb) ∼ Dir(α1, α2, . . . , αb), with
∑b

k=1 αk =

α0. Then, for any (nonempty) disjoint subsets A and B (A ∩ B = ∅) of the set

X = {1, 2, ..., b}, the first moment of the random fraction
∑
i∈A pi∑

i∈A pi+
∑
j∈B pj

is scale

invariance, and is given by

Ep[

∑
i∈A pi∑

i∈A pi +
∑

j∈B pj
] =

∑
i∈A αi∑

i∈A αi +
∑

j∈B αj
. (5.13)

Furthermore, the variance of the fraction above is given by

Varp[

∑
i∈A pi∑

i∈A pi +
∑

j∈B pj
] =

∑
i∈A αi

∑
i∈B αi

(
∑

i∈A αi +
∑

j∈B αj)
2(
∑

i∈A αi +
∑

j∈B αj + 1)
.

(5.14)

Proof. Proof is given in Appendix D. Q.E.D.

Corollary 3. Suppose that p = (p1, p2, . . . , pb) ∼ Dir(α1, α2, . . . , αb), with
∑b

k=1 αk =

α0. Then, for any (nonempty) disjoint subsets A and B (A ∩ B = ∅) of the set

X = {1, 2, ..., b}, as αi →∞; ∀i = 1, . . . , b, with limαi→∞α0→∞
αi
α0

= αi, we have

∑
i∈A pi∑

i∈A pi +
∑

j∈B pj

p→
∑

i∈A αi∑
i∈A αi +

∑
j∈B αj

(5.15)

Proof. An immediate consequence of Lemma 4 is that as αi → ∞; ∀i = 1, . . . , b,

with limαi→∞α0→∞
αi
α0

= αi the variance of the random variable
∑
i∈A pi∑

i∈A pi+
∑
j∈B pj

goes

to zero. Therefore, using the Chebyshev’s inequality, the convergence in probability

is readily resulted. Q.E.D.

Corollary 3 could be seen as a justification of the effectiveness of the constraint

116



on the Dirichlet parameter for large values of α0. Now, we state the second lemma

dealing with the conditional entropy.

Lemma 5. Suppose that the binary-valued random vector (u1, u2, . . . , ub) is dis-

tributed by a multinomial distribution Mult(p1, p2, ..., pb; 1), whereas the vector p =

(p1, p2, . . . , pb) is itself distributed by a Dirichlet distribution as p ∼ Dir(α1, α2, . . . , αb),

with
∑b

k=1 αk = α0. Moreover, for any arbitrary subsets A0, A1, . . . , AM of the set

X = {1, 2, . . . , b}, define ZAi =
∑

j∈Ai uj. Then, we have

Ep[H[ZA0|ZA1 , . . . , ZAM ]] = 1
α0

∑2M

k=1

∑1
y=0

[
ψ(
∑

i∈B0,y
k
αi +

∑
i∈B0,1−y

k
αi + 1)

−ψ(
∑

i∈B0,y
k
αi + 1)

]
×∑i∈B0,y

k
αi,

(5.16)

in which we have

B0,y
k =

M∩
i=1

(AiIyki ∪ A
c
iI1−yki ) ∩ (A0I1−y ∪ Ac0Iy), (yk1 , y

k
2 , . . . , y

k
M) ∈ {0, 1}M ,

with the convention of AI0 = ∅ and AI1 = A.

Proof. Proof is given in Appendix D. Q.E.D.

Using two known facts about the digamma function, being ψ(x + 1) = ψ(x) +

1
x
; ∀x ∈ R+ and ψ(x) ≈ lnx, for large values of α0, the expression in equation (5.16)

can be approximated as follows

Ep[H[ZA0|ZA1 , . . . , ZAM ]] ≈ 1

α0

2M∑
k=1

1∑
y=0

[
ln

∑
i∈B0,y

k
αi +

∑
i∈B0,1−y

k
αi∑

i∈B0,y
k
αi

]
×
∑
i∈B0,y

k

αi,

(5.17)

which is the corresponding expression for the conditional entropy of the binary-valued

random variable (u1, u2, . . . , ub) ∼Mult(α1

α0
, α2

α0
, . . . , αb

α0
; 1).
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5.3.1 From Pathways to Constraints on Dirichlet Parameter

In this subsection, using the main properties in Lemmas 4-5, we map the con-

nections in the biological pathways, detailed in Table 3.2, to the constraints on the

Dirichlet parameter vector. We make connections between a gene and a subset of

states in the steady-state behavior. In order to make analogy, one can see that hav-

ing a single gene being on or off, i.e. xi = 0 or xi = 1 respectively, corresponds

to a partition of the states, X = {1, . . . , b}. For example, considering our case of

interest (binary valued variables), half of states correspond to xi = 0 and the other

half corresponds to xi = 1.

To ease the notation, the portion of the state space X for which (xi = k1, xj = k2)

and (xi 6= k1, xj = k2), for any k1, k2 ∈ {0, 1}, are denoted by X i,j
k1,k2

and X i,j
kc1,k2

,

respectively. Similarly, the portion of the state space X for which we have Rx = b and

Rx 6= b, for any b ∈ {0, 1}|Rx|, is denoted by XRx
b and XRx

bc , respectively. Furthermore,

for a vector α indexed by X , we denote the variable, indicating the summation of

its entities in X i,j
kc1,k2

by

αi,jb1,b2 =
∑

k∈X i,jb1,b2

αk. (5.18)

The notation above, is extended below for the cases where there are more than two

fixed genes. Here, we only derive the equivalent constraints on the APS, and the

regulatory sets. Other constraints can be derived similarly and are summarized in

Table 5.1. Considering an APS, we expand the conditional probability as follows
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Ep[Pr(xj = 1|xi = 1,xrep,j = 0)]

= Ep

[ Pr(xi = 1, xj = 1,xrep,j = 0)

Pr(xi = 1, xj = 1,xrep,j = 0) + Pr(xi = 1, xj = 0,xrep,j = 0)

]
= Ep

[ ∑
k∈X

i,j,repj
1,1,0

pk∑
k∈X

i,j,repj
1,1,0

pk +
∑

k∈X
i,j,repj
1,0,0

pk

]
=

α
i,j,repj
1,1,0

α
i,j,repj
1,1,0 + α

i,j,repj
1,0,0

(5.19)

where we use from the notation introduced above. The last equality in (5.19) results

from applying Lemma 4 (equation (5.13)) with the fact that the two sets X i,j,repj
1,1,0

and X i,j,repj
1,0,0 are disjoint subsets of X .

In order to find a closed form expression, as a function of the Dirichlet parameter,

for the conditional entropy, here we make an analogy with the our problem with the

assumptions in Lemma 5. Considering the conditional entropy for gene xi given its

regulatory set Rxi , we want to simplify Ep[H[xi|Rxi ]]. For sake of simplicity in pre-

sentation, we show the regulatory set element-wise as Rxi = (xii , xi2 , . . . , xiM ) where

M = |Rxi |. Switching to the bin-wise representations of the variables xi; i = 1, . . . , N,

by using u1, . . . , ub, we have the following following equivalency in distribution:

xi
p≡
∑
k∈X i1

uk,

where (u1, u2, . . . , ub) ∼ Mult(p1, p2, . . . , pb; 1). And, hence, the conditional entropy

above can be rewritten as follows

H[xi|xii , xi2 , . . . , xiM ] = H[
∑
k∈X i1

uk|
∑
k∈X i11

uk,
∑
k∈X i21

uk, . . . ,
∑

k∈X iM1

uk].
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Using the result of Lemma 5, we obtain

Ep[H[xi|Rxi ]] =
1∑
b=0

∑
b∈{0,1}|Rxi |

α
xi,Rxi
b,b

α0

[
ψ(α

Rxi
b + 1)− ψ(α

xi,Rxi
b,b + 1)

]
.

General constraint Constraint on the Dirichlet parameter

(5.8a)
α
i,j,repj
1,1,0

α
i,j,repj
1,1,0 +α

i,j,repj
1,0,0

≥ 1− ξaij

(5.8b)
αi,j1,0

αi,j1,1+αi,j1,0

≥ 1− ξrij

(5.8c)
α
i,j,k,repj
1,1,0,0

α
i,j,k,repj
1,1,0,0 +α

i,j,k,repj
1,0,0,0

≥ 1− ξcaijk

(5.8d)
αi,j,k1,0,0

αi,j,k1,1,0+αi,j,k1,0,0

≥ 1− ξcrijk

(5.8e)
∑

b

∑
b

α
xi,Rxi
b,b

α0

[
ψ(α

Rxi
b + 1)− ψ(α

xi,Rxi
b,b + 1)

]
≤ ξregi

Table 5.1: Table of constraints on the Dirichlet parameter corresponding to different
interactions or prior information existing in the signaling pathways.

5.3.2 Objective Functions

In this subsection, we derive the closed-form expression of the objective functions

for three prior construction methods, REMP, RMDIP, and REMLP as a function of

Dirichlet parameter.
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5.3.2.1 RMEP Dirichlet

It is known that if p ∼ Dir(α), then the entropy H[p] is given by [90]

H[p] =
b∑

k=1

[
ln Γ(αi)− (αi − 1)ψ(αi)

]
+ (α0 − b)ψ(α0)− ln Γ(α0), (5.20)

where the last two terms do not depend on the individual vector components, instead

are determined ahead of hyperparameter estimation. Hence, removing the constant

parts (those which are not found through optimization problem), the RMEP for the

Dirichlet family of priors solves the following constrained optimization problem

RMEP-D :

min
α
−(1− λT1)

b∑
k=1

[
ln Γ(αi)− (αi − 1)ψ(αi)

]
+ λTL(ξ)

Subject to:


α � 0; ξ � 0∑b

i=1 αi = α0

eqs (5.8a)− (5.8e)

.

(5.21)

Consider the case that instead of prior probability, the posterior probability would

directly be obtained.

5.3.2.2 RMDIP Dirichlet

According to equation (5.10) and employing equation (5.20), after removing the

constant terms, for the RMDIP we have

b∑
k=1

[
ln Γ(αi)− (αi − 1)ψ(αi)

]
+ Ep[

b∑
k=1

pi ln pi] =
b∑

k=1

[
ln Γ(αi)− (αi − 1)ψ(αi)

]
+

b∑
k=1

αi
α0

[
ψ(αi + 1)− ψ(α0 + 1)

]
,

(5.22)
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Hence, the RMDIP optimization problem for the Dirichlet prior (RMDIP-D) after

removing the constant parts (assuming that α0 is known and fixed), is given by

RMDIP-D :

min
α
−(1− λT1)

b∑
k=1

[
ln Γ(αi)− (αi − 1)ψ(αi) + αi

ψ(αi + 1)

α0

]
+ λTL(ξ)

Subject to:


α � 0; ξ � 0∑b

i=1 αi = α0

eqs (5.8a)− (5.8e)

.

(5.23)

5.3.2.3 REMLP Dirichlet

Similar to above, we split the given data points into two parts: one for prior

construction and the rest for Bayesian classifier learning. We show the number of

sample point used for prior construction simply by np.

The mean-log-likelihood function, considering the multinomial distribution, in

this case can be written as

`np([p1, ..., pb]) =
1

np

b∑
k=1

upriork log pk + log
np!

u1!...ub!
. (5.24)

Removing the constant parts, using property P4 in Appendix D, the expected mean-

log-likelihood function is given by

Eθ[`np([p1, ..., pb])] =
1

np

b∑
k=1

upriork [ψ(αk)− ψ(α0)]. (5.25)

Denote the prior constructing sample set size by np. Then, defining p̂k := 1
np
upriork ,

the REMLP Dirichlet (REMLP-D) prior for a known α0, is found by solving feature-

distribution, whereby the final optimization problem for the REMLP-D is given by
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REMLP-D :

min
α
−(1− λT1)

b∑
k=1

p̂kψ(αk) + λTL(ξ)

Subject to:


α � 0; ξ � 0∑b

i=1 αi = α0

eqs (5.8a)− (5.8e)

.

(5.26)

5.4 Practical Implications of the Objective-Based Priors

In this section, we study some of the basic practical implications regarding the

proposed methodologies. Convexity of optimization problems and regularization

parameter selections will be covered.

5.4.1 On the Convexity of the Prior Constructing Optimization Problems

The optimization problems proposed in this section for prior construction are

not convex programmings. This is mainly due to the constraints coming from the

transformation of the knowledge in the pathways.

5.4.1.1 Convexity of the Objective Functions

So far we have introduced three optimization problems in which the objective

functions are different while the constraints are the same which are in accordance

with our view of the prior knowledge. We summarize our results regarding the

objective functions in the following lemma:

Lemma 6. Suppose that Π contains the Dirichlet family of prior distributions. Then,

the corresponding objective functions for RMEP and REML (equations (5.21) and (5.26))

are all convex provided that α and ξ belong to a convex set. The objective function

for RMDIP, equation (5.23) is also convex provided that α0 > 1 and that α and ξ

belong to a convex set.
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Proof. Throughout the proof we often use from the fact the digamma function ψ(x)

is concave in x. Therefore, the proof for the REML objective function is easy, since

the only non-linear part of is is the negative of digamma function, making it convex

provided that the feasible region is convex.

Now, we move on to the RMEP function. Ignoring the linear function, we need to

show that the term −∑b
k=1

[
ln Γ(αi)−(αi−1)ψ(αi)

]
is convex in α. Since this term

is the summation of a single function on elements of the vector, αi, it is sufficient

to show that each individual summand is convex in its element, i.e. showing that

h(x) := (x − 1)ψ(x) − ln Γ(x) is convex in x. It is only enough to show that the

second derivative of h(x) is positive in its domain. In order to show that we show

that the derivative itself is increasing. For the derivative, one may write

f ′ = (x− 1)ψ′(x) = xψ′(x)− ψ′(x).

We split the problem into two parts: x ∈ (0, 1] and x ∈ (1,∞). In the first case,

x ∈ (0, 1], take the second derivative, where we have f ′′(x) = ψ′(x) + (x − 1)ψ′′(x).

Since ψ(x) is an increasing and concave function, and also x − 1 is negative, the

second derivative is positive for ∀x ∈ (0, 1]. Now we consider the second interval:

x ∈ (1,∞). Expanding the function ψ′(x), we have ψ′(x) = 1
x

+ 1
2x2 + o( 1

x3 ), and

hence xψ′(x) = 1 + 1
2x

+ 1
6x2 + o( 1

x3 ). Then, the whole term can be rewritten as

follows

f ′(x) = 1− 1

2x
− 1

3x2
− 1

6x3
− 1

30x4
+

1

30x5
+ o(

1

x6
)

In this case, because x > 1, the dominant term is − 1
2x

which is increasing in x ∈

(1,∞). Finally, since each summand is convex, the linear combination is convex too.

Now consider the RMDIP function: −∑b
k=1

[
ln Γ(αi)−(αi−1)ψ(αi)+αi

ψ(αi+1)
α0

]
,
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where similar to above, we only consider one term: (x− 1)ψ(x)− xψ(x+1)
α0
− ln Γ(x).

From the properties of digamma function, we know that ψ(x+ 1) = ψ(x) + 1
x
, from

which, by defining β = α0−1
α0

, we rewrite the function as follows

(x− 1)ψ(x)− 1

α0

(1 + xψ(x))− ln Γ(x) = (βx− 1)ψ(x)− ln Γ(x),

for which the derivative is given by

ψ(x)(βx− 1) + ψ(x)(β − 1).

Since for α0 > 1, β ∈ (0, 1), the second term above, ψ(x)(β−1) is convex. Similar to

RMEP function, we can show that the first term is also convex, again due to having

β < 1. The summation of two convex functions leads to another convex function

finishing the proof. Q.E.D.

5.4.1.2 Convexity of the Constraints

Since all the three objective functions are convex (with the condition of having

α0 ≥ 1 for RMDIP), we only need to have convex constraints to have the whole

optimization problems convex. Unfortunately, we are unable of showing that the

constraints are convex in their current view, requiring us to use existing algorithms

for nonconvex optimization problems. A drawback of these methods is that there

is no guarantee for them to converge to the global optimum, which there might

converge to the local optimums. An effective method to solve nonconvex optimization

problems is sequential convex programming approach [93].
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5.4.2 Sequential Convex Programming

Sequential convex programming (SCP) solves a non-convex optimization problem

by iteratively constructing a convex subproblem, being an approximation of the

original problem around the current iterate of the optimization parameter [113,114].

The constructed convex subproblem is solved via existing efficient solvers. Knowing

from Lemma 6 that all the objective functions are convex, we would only need

to approximate the constraints by their first-order Taylor series expansion. In the

following, we consider the problem when the scale parameter in the Dirichlet prior,

α0, is known.

Denoting the aggregated optimization parameter by z = [α, ξ], the regularized

objective-based prior constructing framework in its general form may be written as

follows

min
z
f0(z),

Subject to:


zi > 0; i = b+ 1, . . . ,m+ b∑b+m

i=b+1 zi = α0

fi(z) ≤ 0; i = 1, . . . ,m.

(5.27)

Incorporating the constraints, a new aggregated function fµ(z) = f0(z)+µ
∑m

i=1 |fi(z)|+

is built, in which the parameter µ is the penalty on the constraints violation. The

operator |x|+ incurs a cost only if x is positive. Here, we deal with convex objec-

tive functions, i.e. f0(z) is convex. However, the constraint fi(z); i = 1, . . . ,m are

non-convex, which, in the k−th iteration of SCP, are replaced by their first-order

approximations around the current point z(k) leading to the approximated function

f̂µ(z; z(k)) = f0(z) + µ

b+m∑
i=1

|fi(z(k)) + (z − z(k))T∇fi(z(k))|+. (5.28)
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Then, any existing convex programming solver (e.g. interior-point method) can be

employed to solve the following constrained convex program:

CP(k) :

min
z
f̂µ(z; z(k)),

Subject to:


zi > 0; i = b+ 1, . . . ,m+ b∑b+m

i=b+1 zi = α0

z ∈ τ (k),

(5.29)

where τ (k) is the trust region in which the approximation is valid to some extent.

In our implementation, we use τ (k) = {z ∈ Rb+m||z − z(k)| < ρ(k)} whose size is

controlled by ρ(k).

The algorithm is illustrated in details in Algorithm 3, where three loops are

implemented: the outermost loop aims at satisfying the constraints by tuning the

parameter µ. The two inner loops iteratively update the approximations and the

trust region size, until some stopping criteria are met. The trust region size is

controlled by the parameter γ in Algorithm 3, where depending on the accuracy of

the approximated model, the trust region is either expended or shrunken for the next

iteration. The accuracy is evaluated via function decrease in the model to that of

the true function.

Knowing the computational limitations, two stopping criteria, in the form of num-

ber of iterations, are also added for inner loops. Moreover, the outermost loop stops

the algorithm whenever the sum of constraints violations falls below some predeter-

mined threshold, denoted by δ in the algorithm. Any convex programming solver

can be used for the approximated subproblems. In this work, we use “interior-point”

method. Specially, we use MATLAB fmincon function for non-linear constrained op-

timization, with the upper bound of 3000 function evaluations.
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Algorithm 3 Sequential convex programming

Input Parameters:
z0: initial solution
µ0: initial penalty coefficient (default: 2)
µmax: maximum penalty coefficient (default: 200)
t: penalty increment factor (default: 1.3)
ρ0: initial trust region size (default: α0– Dirichlet scale parameter)
ρthresh: trust region size threshold (default: 0.01)
γ (∈ (0, 1)): model to true improvement ratio (default: 0.7)
β− (∈ (0, 1)): trust region shrinkage coefficient (default: 0.5)
β+ (∈ (1,∞)): trust region expansion coefficient (default: 1.1)
δ : threshold for constraints satisfaction (default: 0.001)
Output: z∗ = [α∗, ξ∗]
Initialize: k = 0, z(k) = z0, ρ

(k) = ρ0, µ = µ0

while µ < µmax &&
∑m

i=1 |fi(z(k))|+ < δ do

construct the function: fµ(z) = f0(z) + µ
∑|ξ|

i=1 |fi(z)|+
while countout < countmax

out do
construct the convex function as in equation (5.28) around z(k)

while counttrust < countmax
trust do

(z̃, f̃)← solve CP(k) using z(k) and ρ(k)

if f(z̃)− f(z(k)) ≥ γ(f̃ − f̂(z(k))) then
ρ(k+1) = β+ρ

(k)

z(k+1) = z̃
break;

else
ρ(k+1) = β−ρ

(k)

end if
counttrust ← counttrust + 1

end while
counttrust ← 0
countout ← countout + 1
if ρ(k) < ρthresh then

break;
end if

end while
µ← tµ, k ← k + 1, countout ← 0, ρ(k) ← ρ0

end while
return z(k)

5.4.3 Regularization Parameter Selection

In order to choose a regularization parameter we take a heuristic approach similar

to that of [41]. The parameter α0 represents the spread of the prior, larger α0 meaning
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that the prior is more centered about the scale vector. Thus, α0 can be viewed as

the total amount of information in the prior.

We start this section with REMLP method, whereby the regularization parame-

ter aims at making a balance between two sources of information; (1) data through

expected likelihood, and (2) slackness variables controlling the conditional entropy.

λreg and λfun, respectively govern the relative importance of the regulatory informa-

tion and functional information in the pathways to the total information. We can

view the total information, as represented by α0, as being a “sum” of the amount

of data used to form the prior and a proportion of α0 relating to the importance

of the slackness variables. Under this heuristic α0 = np + (λreg + λfun)α0, so that

λreg + λfun = α0−np
α0

. In this dissertation, we heuristically use λreg = 2λfun.

We can also view α0 as a sum of the data used to form the prior and the amount

of data, npw, that is “equivalent” to the pathway knowledge (recognizing that this

“equivalence” is purely a heuristic notion). This leads to α0 = np + npw. Inserting

this expression into the expression for λreg and λfun yields

λfun = 2/3
npw

np + npw

λreg = 1/3
npw

np + npw

(5.30)

We are left with defining npw. In the simulations we let npw = mb, where b as so

far is the number of bins. In contrast to the situation in [41], here we have a little

sensitivity to the choice of m. We have shown the results for m = 1 and 2 for fair

comparison.

Since there is no data utilized in the RMEP and RMDIP process, the correspond-

ing regularization parameters cannot be found using the heuristics above. Instead,

we need to use more sophisticated approaches. One possible approach to take is
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cross-validation, where the the data are split into training the classifier and the rest

is used for performance evaluation, being misclassification rate. Nonetheless, in this

thesis, we simply use λreg = 0.6 and λfun = 0.3.

Reflecting on the preceding heuristics we see that we are confronted with a stan-

dard problem in pattern recognition, how to regularize two conflicting factors. One

thinks of the problem of adding a complexity term when dealing with model selection.

We take the usual approach of applying some heuristics and then demonstrating the

benefit of the regularization via simulation. Moreover, although the heuristic ap-

proach in this section is used in our simulations, we also develop a method based on

cross-validation described in details in the Supplementary Materials. Due to com-

putational limitations, the cross-validation based method is not implemented here.

However, in practice, where choosing a regularization parameter is a one-time task,

one could use the proposed cross-validation method.

5.5 Numerical Experiments

In this section, we examine the performance of objective-based prior construction

methods on a set of pathways, playing important role in different contexts: a sim-

plified pathways involved p53 gene consisting of an extra-cellular dna− dsb signal,

and a feedback interaction between ATM and p53−Mdm2−Wip1. Here, we focus

on Boolean modeling of gene/protein values introduced by Stuart kauffman [115].

The Boolean network (BN) model of the problem yields a deterministic representa-

tion of the system’s dynamics. Despite of its strength, lying in its simplicity, the

BN was then further extended to embrace finer factors into the model where BN

with perturbation (BNp) and probabilistic BN (PBN) were introduced in [69]. In a

BNp, a probabilistic factor is also considered to capture “latent variables,” influenc-

ing the dynamics, outside of the network under study. In this model, a perturbation
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probability, denoted by pper, influences the transitioning between states.

5.5.1 Pathways Involved TP53

5.5.1.1 Pathways Description

To characterize the dynamical behavior of normal pathways involving the p53

gene illustrated in Figure 5.1.

1

dna-dsb

ATM

p53

Wip1 Mdm2

Figure 5.1: A set of simplified pathways involved the TP53 gene, redrawn from [5].

We evaluated the performance of the proposed algorithm based on a family of

BNs constructed from pathways that involve the p53 gene. Tumor suppressor gene

p53 has been extensively studied and it is known to be involved in various well-

known biological pathways. It has been observed that p53 is mutated in 30-50% of

common human cancers [116]. In fact, in the presence of DNA damage, a mutant p53

may lead to the emergence of abnormal cells. Figure 5.1 shows the pathways that

involve the tumor suppressor gene p53 [117]. These pathways operate in different

ways depending on the context, determined by the presence (or absence) of a DNA

damage event that results in DNA double-strand breaks. The uncertainty in these
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pathways, in the context of Boolean network modeling, has been previously studied

in [1, 5].

The logic relationships between the genes, shown in the pathways in Figure 5.1,

are given in Table 5.2.

Table 5.2: Boolean functions of the pathways shown in Figure 5.1 [1].

Gene Node name Regulating function Regulatory set

dna− dsb v1 Extracellular signal
ATM v2 v4 ∧ (v2 ∨ v1) {v3, v5}
P53 v3 v5 ∧ (v2 ∨ v4) {v4, v5}
Wip1 v4 v3 {v2, v5}
Mdm2 v5 v2 ∧ (v3 ∨ v4) {v3}

Sequencing data of 138 patients with glioblastoma, provided by TCGA, showed

that 32% and 12% of the patients suffered from the alteration in the p53 and Mdm2

genes, respectively. Also among 316 patients with serous ovarian cancer, 96% suffered

from the mutation of p53 [5]. A similar study has revealed that about 26% of 216

patients with sarcoma have amplified Mdm2.

5.5.1.2 Classification Problem

The initial feature vector making the pathways in Figure 5.1 is composed of the

following elements

[dna− dsb,ATM,P53,Wip1,Mdm2]. (5.31)
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In order to construct the true model for evaluating the performance of the proposed

method, we use the logical dependencies given in [1]. Mathematically speaking,

the value of each gene in the pathways is determined either according to logical

in Table 5.2 or by flipping its current value chosen by a Bernoulli variable whose

probability of success is pper. As the perturbation probability increases, the final

stochastic system becomes more different from the Boolean network constructed

directly from Table 5.2.

Considering the perturbation probability leads to having a transition probability

matrix (TPM) instead of an adjacency matrix. If pper takes nonzero value, then

the resulting Markov chain becomes irreducible, and hence, possesses a steady state

vector. Using the Boolean functions in Table 5.2, we build the true steady-state

distributions py,true; y ∈ {0, 1} for two classes. The full functional regulations are

summarized in Table 5.2 yielding one single deterministic Boolean network, repre-

senting the relationships governing the cell in its normal functioning. Then, the

feature distribution can be computed using a small perturbation probability, e.g.

ppert = 0.05. It leads to an ergodic and irreducible Markov chain which possesses a

steady-state distribution, corresponding to the cell normal functioning. Now, based

on the studies reported above in existing cancer data, we consider a classification

problem as follows: No mutation vs permanently deactivation of p53.

Owing to the nature of dna− dsb which is not in fact a measurable component, we

marginalize the probability mass functions above to concentrate only on the following

components

x = [ATM,P53,Wip1,Mdm2]. (5.32)

Consequently, two class-conditional probability mass functions p0,true and p1,true are

fixed, which will be further utilized for taking samples.
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5.5.2 Results: Expected True Errors

We find the steady-state distributions on the pathways described above when the

perturbation probability is set to pper = 0.05. Increasing the perturbation proba-

bility would lead the network to act more randomly rather following the regulatory

relationships. The sampling from the true distributions are assumed to be random

where the class sizes are randomly chosen based on a predetermined true class prior

probability, c = 0.5. In the simulations, we compare 4 cases: (1) Histogram classi-

fication rule, and 3 OBC obtained with different priors: (2) REMP for both classes

assuming that the connections led to p53 do not exist, and hence the prior knowl-

edge is less, (3) RMDIP for both classes y ∈ {0, 1}, and (4) REMLP for both classes

y ∈ {0, 1}.

Out of 5 priors addressed in this section, 4 of them are data-independent, whereas

the REMLP method utilizes some part of the data for prior construction which will

be considered later. These data-independent prior constructing methods can be

used before any observation. Moreover, while the uniform and Jeffreys’ priors are

prior knowledge independent, the proposed RMEP and RMDIP methods are capable

of incorporating pathway knowledge. In our simulations study, we only examine

the performance in the cases where the prior knowledge, in the form of signaling

pathways, is available only for one of the class, being y = 0 throughout this section.

Therefore, in what follows we denote the given pathways by G without any class-

dependent indexing. Once the priors are constructed, they will be further utilized

in a Bayesian framework to construct optimal Bayesian classifiers whenever labeled

observations are acquired.

Fixing the true class-conditional bin probabilities, denoted by p0,true and p1,true

respectively for class zero and one, we take n samples from the bins, composing
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uyny ,i; y ∈ {0, 1} in the i-th iteration, whereas, i = 1, ...,M and n0 + n1 = n, where

n0 and n1 are random. The samples u0
n0,i

and u1
n1,i

are then used for updating the

prior (constructing the posterior), and classifier design via equation (5.2).

Now consider the REML method. Since we are assuming the pathways are only

available for the class y = 0, the sample vector u1
n1,i

will be unchanged and used

for updating the priors. In order to implement the REMLP method, the points

in u0
n0,i

must be randomly split into two parts, denoted by u0,prior
np0,i

and u0,train
nt0,i

,

respectively for prior construction and updating the prior. We also keep the equality

n0
p + n0

t = n0. Using G and u0,prior
np0,i

, prior probability π0
REML,i is constructed using

the optimization problem in (5.26). Similar to the other cases, the rest of the points

with y = 0, u0,train
nt0,i

will be used for training the OBC classifier using (5.2). Denote

the constructed classifier by ψun,i , where we denote the overall sample vector by

un,i = u0
n0,i

+ u1
n1,i
. The true error of this designed classifier is obtained by

ε(ψun,i|un,i) =
b∑

k=1

cp0,true
k Iψun,i (k)=1 + (1− c)p1,true

k Iψun,i (k)=0. (5.33)

We then compute the expected true error (with respect to the sample points u,

via Monte-Carlo (MC) simulations. Assuming an M−iteration MC procedure, the

expected true error will be given by

E[ε(ψun,i)] =
1

M

M∑
i=1

ε(ψun,i|un,i).

The overall strategy, for a fixed sample size, class prior probability, and set of

pathways for class zero (n, c, and G, respectively), repeated through MC simulations,

is implemented step-wise as follows:

1. Fix true bin probabilities for two classes: p0,true, p1,true.
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2. Determine n0 and n1 randomly with the given n and c, i.e. n0 = dcne, n1 =

n− n0. In this work, we consider two values for the c = 0.4 and c = 0.6.

3. Take observations from the multinomial distributions: u0
n0

and u1
n1
.

4. Using n0 and n1, the class prior probability is estimated using maximum-

likelihood: ĉ = n0

n
.

5. (Only for REMLP) Randomly choose np points from u0
n0

for prior construction,

i.e., u0,prior
np0,i

and the rest u0,train
nt0,i

, for training. Then, use u0,prior
np0,i

and G to

construct the REMLP.

6. Use (5.2) to optimally combine the priors and the training data, (un0 , un1 and

u0,train
nt0,i

un1 , respectively for non-REMLP and REMLP methods) and design

the classifier.

7. Compute the true error associated with the designed classifier using equa-

tion (5.33).

The results are shown in Figure 5.2. Figures 5.2a and 5.2b show the expected

true errors for the case with m = 2, c = 0.6 and n = 20 and n = 30, respectively.

Similarly, the results for the case with c = 0.4 are shown in Figures 5.2c-5.2d.

From Figure 5.2, one can see that the OBC classifier designed using the prior

constructing methods significantly outperforms those of designed using histogram

rule. Nonetheless, one should realize that the OBC classifiers are not designed to

be optimal for any specific model, rather they tend to perform optimally over an

assumed model for the uncertainty one would have about the true model. The curves

associated with the REMLP Dirichlet prior shows a convex property, meaning that at

some point, increasing prior constructing points does not lead to a better performing
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Figure 5.2: The expected true error of different prior constructing methods used for
classifying between the normal cell functioning and permanently down-regulated the
tumor suppressor gene p53.
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classifier. Hence, it suggests that there should be some optimal number of points to

be invested for prior construction.

5.6 Discussion

In one hand, the pattern recognition community has confronted with small-sample

problems in bioinformatics. On the other hand, it is widely known that there is a

huge amount of information in different contexts which can significantly improve the

task of phenotype classification. One of the important sources of information in bi-

ology is signaling pathways where interactions between substantial components are

illustrated in graphs. Edges in in these graphs convey the type of influence, being

either activating or suppressing. In this section, we propose a unified regularized

framework to translate this prior knowledge via mathematical and engineering tools

to prior probabilities. These prior probabilities can be utilized in different Bayesian

settings to design operators performing optimally with respect to our uncertainty

about the problem. We have proposed three methods, regularized maximum entropy,

regularized maximal data information, and regularized expected mean log-likelihood

to construct the priors. Among these, the first two are extensions of two of the

widely used methods for prior construction. The difference between these and the

last method is in their view towards the problem: while the REMP and RMDIP are

ignorant to the observed data, the REML method takes advantage of some portion

of the data to shape and guide the prior. Through simulations on both synthetic

and real examples, we showed that quantifying existing prior information from a

Bayesian perspective, and then utilizing it in designing an OBC classifier, signifi-

cantly improves the classification accuracy. An important factor in any regularized

framework is the role played by the regularization parameters. We used a heuristic

method to select the regularization parameters. Nonetheless, we have developed the
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foundations for selecting regularization parameter in a cross-validation procedure in

which the classification accuracy is measured for choosing an appropriate parameter.
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6. CONCLUSION

In this dissertation, we have presented a comprehensive study of the use of prior

knowledge in the design of classifiers to be applied on genomic data. Considering

the phenotype classification, and more specifically cancer biology, the most com-

mon type of trusted prior knowledge is in the form of signaling pathways. In that

regard, we develop mathematical and statistical tools for designing enhanced classi-

fiers, which significantly outperform traditional data-driven classification methods.

The main contribution of this dissertation lies in the fact that, for the first time in

protemic/genomic classification, the right source of prior knowledge is mathemati-

cally transferred to testable information, and further utilized to designing classifiers.

First, we define a problem which arises directly for biological classification using

pathway information. We develop a novel classifier design paradigm that allows us to

design enhanced classifiers by incorporating available prior knowledge of the process

generating the observation data. As shown in our simulations, such knowledge can

significantly improve the performance of the designed classifier, especially, when the

sample size is small. Having laid the theoretical groundwork for enhancing steady-

state classifier design via the use of prior process knowledge, our plan is to apply

the methodology to developing better biomedical classifiers in the presence of par-

tial knowledge of the underlying genetic regulatory network. More generally, given

the ubiquity of large feature sets and relatively small sample sizes now common in

many disciplines, including medicine, material science, environmental science, and

transportation, there will no doubt be an increasing number of methods proposed

for using prior knowledge in classifier design. We believe it is important to provide

analytic performance characterization of the classifiers on standard models, as we
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have done in this work, so that their behavior can be understood.

Secondly, we propose a Bayesian framework to transform the knowledge in the

signaling pathways to the mathematically sound expressions, which can be directly

interpreted by the corresponding paramterization in the Bayesian setting. All the

common sub-structures in the signaling pathways, i.e. activation, inhibition, and

regulatory set connections, are quantified from a Bayesian perspective, where the

“prior-expected structural-specific behaviors” of the models inside the uncertainty

class satisfy the pathway knowledge.

Thirdly, in this dissertation, we show that purely data-driven approaches to clas-

sifier design with small samples tend to produce poor classifiers whose errors cannot

be reliably estimated. The importance of small-sample classification is highlighted

by its prevalence in genomic/proteomic applications. In general, prior (probabil-

ity) selection is one of the main challenges when one is dealing with any Bayesian

framework. Conjugate priors are of great interest because of their convenient prop-

erties for deriving the posterior probabilities; however, there is no general rigorous

mathematical machinery from which to estimate the hyperparameters. The proposed

optimization framework is different from its predecessors in the sense that the REML

prior relies on sample data and incorporates these data with “pure prior knowledge”

to obtain a prior probability. The objective function is based on the notion of a

model selection criterion, where the criterion is marginalized using the prior prob-

ability. The performance of the designed prior is examined by evaluating the true

error of the optimal Bayesian classifier designed via the posterior. Moreover, since we

use some initial data in prior construction and thereafter use new data to construct a

posterior distribution in the Bayesian framework, one might consider this a “hybrid”

approach. But from the perspective of our goal, integration of pathway knowledge

and data, this characterization is semantic.
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Finally, we generalize the problem of prior construction using biological path-

ways in a general objective-based framework, where the objective function reflects

some information measuring functional regularized with the knowledge extracted

from pathways. The REML method is shown to be a special case of this general

methodology, and two other classical approaches are also adapted in our proposed

framework. Having that developed, one can now readily transform any set of bio-

logical signaling pathways to a set of constraints in the hyper-parameter space. As

a final comment on this part, to the best of our knowledge for the first time, in this

dissertation, rigorous mathematical methodology is developed by which biological

pathways can be readily mapped to a Dirichlet prior distribution, which can be later

used for designing optimal Bayesian classifier, or optimal Bayesian control policy.

In conclusion, let us note that the overarching goal is to use prior knowledge,

in the form of biological pathways, to assist in the design of genomic classifiers. In

that regard, model-based classification rules are strongly capable of embracing the

available prior information which comes from prior knowledge. The fundamental

conclusion is that pathway knowledge and data are integrated to produce classifiers

that are superior to those based on data alone, and this is done via optimization

procedures which are mostly based on incorporating the information obtained by

transforming the pathway knowledge into constraints on the feature-label distribu-

tion.
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APPENDIX A

PRELIMINARIES AND PROOFS IN SECTION 2

A.1 Proof of Theorems 1 and 2

In this appendix, we prove Theorems 1 and 2 for y = 0. The case y = 1 can be

handled similarly. Let the inner expectation in (2.14), ESn

[
Pr(ψn,Π0,Π1(X) 6= Y |Sn)

]
,

be denoted by EXP1. Then

EXP1 = ESn

[∑
k

Pr(X = k, Y = 0)I{ψn,Π0.Π1=1} + Pr(X = k, Y = 1)I{ψn,Π0.Π1=0}

]
= c0

∑
k

[
π0(k) Pr(ĉ1

(1−λ1)u1
k+λ1π1(k)

(1−λ1)n1+λ1
≥ ĉ0

(1−λ0)u0
k+λ0π0(k)

(1−λ0)n0+λ0
)
]

+c1

∑
k

[
π1(k) Pr(ĉ0

(1−λ0)u0
k+λ0π0(k)

(1−λ0)n0+λ0
> ĉ1

(1−λ1)u1
k+λ1π1(k)

(1−λ1)n1+λ1
)
]
,

(A.1)

in which we apply ĉy = ny
n

; y = 0, 1. We denote the average distribution by πy; y =

0, 1 which can be computed by πy = (1 − εy)πyac + εyπ, where π is the average of

contaminating distributions. Now, for y = 0, 1, define

gy := (1− λy)ny(n1−y(1− λ1−y) + λ1−y)

αy := gyλy
1−λy

py(k) := αyπy(k).

(A.2)

Equation (A.1) can be written as

EXP1 =
b∑

k=1

[
Pr(X = k|Y = 0)c0 Pr(g1u

1
k + p1(k) ≥ g0u

0
k + p0(k))}

+ Pr(X = k|Y = 1)c1 Pr(g0u
0
k + p0(k) > g1u

1
k + p1(k))

]
,

(A.3)
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EXP1 =
b∑

k=1

π0
ac(k)c0

[∑n0

l0=0 {
∑n1

m=ζ0
k,l0

(π1
ac(k))

m
(1− π1

ac(k))
n1−m(n1

m

)
}

(π0
ac(k)

l0(1− π0
ac(k))

n0−l0(n0

l0

)
)
]

+
∑b

k=1 π
1
ac(k)c1

[∑n1

l1=0 {
∑n0

m=ζ1
k,l1

(π0
ac(k))

m
(1− π0

ac(k))
n0−m(n0

m

)
}

×(π1
ac(k)

l1(1− π1
ac(k))

n1−l1(n1

l1

)
)
]
,

(A.4)

where

ζ0

k,l0
= max{0,

⌊
g0l0+p0(k)−p1(k)

g1

⌋
+ 1},

ζ1

k,l1
= max{0,

⌊
g1l1+p1(k)−p0(k)

g0

⌋
+ 1}.

(A.5)

In (A.4), we have two random variables ζ0

k,l0
and ζ1

k,l1
depending on the uncertainty

classes Π0 and Π1, respectively. We present the distributions of these random vari-

ables for the uncertainty class models described in Section 2.1 in the following sub-

sections:

A.1.0.1 ε−Contamination Class

We first show that the contaminating part π(k) in (2.10) has a Beta distribution

B(1, b− 1), where b is the number of states. Suppose that the contaminating distri-

butions come from a uniform distribution on a (b− 1)- simplex. Thus, as ∆x→ 0,

Pr(x−∆x/2 < π(k) < x+ ∆x/2) = ∆x
Vol(S1−x

b−2 )

Vol(Sb−1)
= ∆x

(1−x)b−2

(b−2)!
1

(b−1)!

= ∆x(b− 1)(1− x)b−2

(A.6)

where Vol(.) denotes volume under the specified argument and Sb−1 and S1−x
b−2 are

the unit (b − 1)−simplex and (b − 2)−simplex with corners on 1 − x, respectively.

(A.6) can be written as a density function according to

fπ(k)(x) = (b− 1)(1− x)b−2, x ∈ (0, 1) (A.7)
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which is a Beta distribution with parameters 1 and b− 1 whose mean and variance

are 1
b

and b−1
b2(b+1)

, respectively. Using the Edgeworth expansion to approximate the

cumulative density function of π(k), [118], we obtain

Pr(π(k) < x) = Φ(z) +R|Π0| (A.8)

where z =
√
|Π0| x− 1

b√
b−1

b2(b+1)

, and we have

R|Π0| := lim
w→∞

∑w
v=1 rv(Π

0)

exp(c|Π0|) , c > 0. (A.9)

In (A.9), according to the Edgeworth expansion, we have

rv(|Π0|) = O(|Π0| v2−1). (A.10)

Considering (A.9) and (A.10), one can conclude that R|Π0| → 0 for large enough

uncertainty classes. Therefore, for large uncertainty classes, we will approximately

have
π(k)− 1

b√
b−1

b2(b+1)

∼ N(0, 1
|Πy |). Hence, considering the last line of equation (A.2), we get

the following result:

p0(k) ∼ N(α0

[
(1− ε0)π0

ac(k) + ε0
b

]
, α2

0ε
2
0

(b−1)
b2(b+1)|Π0|)

p1(k) ∼ N(α1

[
(1− ε1)π1

ac(k) + ε1
b

]
, α2

1ε
2
1

(b−1)
b2(b+1)|Π1|).

(A.11)

Thus, since p0(k) and p1(k) are independent random variables, we get

g0l0 + p0(k)− p1(k)

g1

∼ N(µ0
k,l0
, σ2

0),
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where µ0
k,l0

, σ2
0 are defined in (2.18). It is now straightforward to find the distribution

of ζ0

k,l0
(and similarly ζ1

k,l1
) using equation (A.5).

A.1.0.2 p−Point Class

From the mapping defined in 2.13, we know that state k belongs to s0
P 0(k) and

s1
P 1(k) under labels zero and one, respectively. Considering class Π0, similar to (A.6),

one can show that

pπ(k)(x) =
|s0
P 0(k)| − 1

ω0
P 0(k)

(1− x

ω0
P 0(k)

)
|s0
P0(k)

|−2
, x ∈ (0, ω0

P 0(k)). (A.12)

which is equivalent to the random variable ω0
P 0(k)Y with Y ∼ Beta(1, |s0

P 0(k)| − 1).

Therefore, similar to (A.11), we obtain

p0(k) ∼ N(α0
ω0

1

|s01|
, α2

0(ω0
1)2 (|s01|−1)

|s01|2(|s01|+1)|Π0|)

p1(k) ∼ N(α1
ω1

1

|s11|
, α2

1(ω1
1)2 (|s11|−1)

|s11|2(|s11|+1)|Π1|),

from which we obtain g0l0+p0(k)−p1(k)
g1

∼ N(µ0
k,l0
, σ2

0), whereas

µ0
k,l0

=
g0l0+α0

ω0
P0(k)

|s0
P0(k)

|
−α1

ω1
P1(k)

|s1
P1(k)

|

g1

σ0
2 =

[
α2

0(ω0
P 0(k))

2
(|s0
P0(k)

|−1)

|s0
P0(k)

|2(|s0
P0(k)

|+1)|Π0| + α2
1(ω1

P 1(k))
2

(|s1
P1(k)

|−1)

|s1
P1(k)

|2(|s1
P1(k)

|+1)|Π1|

]
/g2

1.

(A.13)

Now, one can find the distribution of ζ0

k,l0
according to (A.5). The distribution of

ζ1

k,l1
can be found similarly. Afterwards, we obtain equation (2.16).
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A.2 Proof of Theorem 3

The second-order moment of the true error of the RML classifier can be written

as

E(ε2RML) = EΠ0,Π1

[
ESn [Pr(ψn,Π0,Π1(X) 6= Y |Sn)]2 |Π0,Π1

]
. (A.14)

For simplicity, we drop the subscript of ψn,Π0,Π1 , noting that the classifier depends

Sn and Π0,Π1. The proof has two parts shown in two appendices. First, we take

the expectation with respect to the training data, Sn. Later, we will see that the

dependency of the second-order moment on the uncertainty classes manifests itself

in the indices of the double-summations (found from combinatorial parts). In the

next section, then we find the distribution of those indices, knowing that the ran-

domness comes from the uncertainty classes. Let us start the proof by expanding

equation (A.14):

E(ε2RML) = EΠ0,Π1

[
c2

0

∑
k

(π0
ac(k))2 ESn [I{ψ(X=k)=1}]︸ ︷︷ ︸

A1

+ c2
1

∑
k

(π1
ac(k))2 ESn [I{ψ(X=k)=0}]︸ ︷︷ ︸

A0

+c2
0

∑
k1 6=k2

π0
ac(k1)π0

ac(k2) ESn [I{ψ(X=k1)=1}I{ψ(X=k2)=1}]︸ ︷︷ ︸
B1

+c2
1

∑
k1 6=k2

π1
ac(k1)π1

ac(k2) ESn [I{ψ(X=k1)=0}I{ψ(X=k2)=0}]︸ ︷︷ ︸
B0

+c0c1

∑
k1 6=k2

π0
ac(k1)π1

ac(k2) ESn [I{ψ(X=k1)=1}I{ψ(X=k2)=0}]︸ ︷︷ ︸
C1

+c0c1

∑
k1 6=k2

π1
ac(k1)π0

ac(k2) ESn [I{ψ(X=k1)=0}I{ψ(X=k2)=1}]︸ ︷︷ ︸
C0

]
.

(A.15)

In (A.15), parts A0 and A1 can be found similarly as in Appendix 1. In the following,

whenever we sum over ty1, t
y
2; y ∈ {0, 1} we implicitly consider ty1, t

y
2 ≥ 0 and ty1 + ty2 ≤
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ny. Furthermore, for any pair of (ty1, t
y
2) � 0 with ty1 + ty2 ≤ ny, we have

Pr(uyk1
= ty1, u

y
k2

= ty2) = Pr(trin(ny, π
y
ac(k1), πyac(k2)) = (ty1, t

y
2)).

Hence, for the B1, we may write

B1 = ESn [I{ψ(X=k1)=1}I{ψ(X=k2)=1}] = Pr(ψ(X = k1) = 1, ψ(X = k2) = 1)

= Pr(g1u
1
k1

+ p1(k1) ≥ g0u
0
i + p0(i), g1u

1
k2

+ p1(k2) ≥ g0u
0
k2

+ p0(k2))

=
∑
t01,t

0
2

Pr(g1u
1
k1

+ p1(k1) ≥ g0t
0
1 + p0(k1), g1u

1
k2

+ p1(k2) ≥ g0t
0
2 + p0(k2))

×Pr(u0
k1

= t01, u
0
k2

= t02)

=
∑
t01,t

0
2

Pr(u1
k1
≥ ζ0

k1,t01
, u1

k2
≥ ζ0

k2,t02
) Pr(u0

k1
= t01, u

0
k2

= t02)

=
∑
t01,t

0
2

 ∑
(t11,t

1
2)�(ζ0

k1,t
0
1
,ζ0
k2,t

0
2
)

Pr(u1
k1

= t11, u
1
k2

= t12) Pr(u0
k1

= t01, u
0
k2

= t02)


(A.16)

Similarly, we can get

B0 =
∑
t11,t

1
2

 ∑
(t01,t

0
2)�(ζ1

k1,t
1
1
,ζ1
k2,t

1
2
)

Pr(u0
k1

= t01, u
0
k2

= t02) Pr(u1
k1

= t11, u
1
k2

= t12)

 . (A.17)
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Next, we can obtain C1

C1 = ESn [I{ψ(X=i)=1}I{ψ(X=j)=0}] = Pr(ψ(X = k1) = 1, ψ(X = k2) = 0)

= Pr(g1u
1
k1

+ p1(k1) ≥ g0u
0
k1

+ p0(k1), g1u
1
k2

+ p1(k2) < g0u
0
k2

+ p0(j))

=
∑
t01,t

0
2

Pr(g1u
1
k1

+ p1(k1) ≥ g0t
0
1 + p0(k1), g1u

1
k2

+ p1(k2) < g0t
0
2 + p0(k2))

×Pr(u0
k1

= t01, u
0
k2

= t02)

=
∑
t01,t

0
2

Pr(ζ0

k1,t01
≤ u1

k1
, u1

k2
≤ ζ

0

k2,t02
) Pr(u0

k1
= t01, u

0
k2

= t02)

=
∑
t01,t

0
2

 ∑
t11≥ζ

0
k1,t

0
1
,t12≤ζ

0
k2,t

0
2

Pr(u1
k1

= t11, u
1
k2

= t12) Pr(u0
k1

= t01, u
0
k2

= t11)

 ,
(A.18)

Similarly, we obtain

C0 =
∑
t11,t

1
2

 ∑
t01≥ζ

1
k1,t

1
1
,t02≤,ζ

1
k2,t

1
2

Pr(u0
k1

= t01, u
0
k2

= t02) Pr(u1
k1

= t11, u
1
k2

= t10)

 . (A.19)

In (A.18)-(A.19), we have

ζ
0

k,l0
= min{

⌈
g0l0+p0(k)−p1(k)

g1

⌉
− 1, n1},

ζ
1

k,l1
= min{

⌈
g1l1+p1(k)−p0(k)

g0

⌉
− 1, n0}.

(A.20)

In order to take the last expectation in (A.15) with respect to the uncertainty classes,

we need to find the joint distribution of ζ0

k1,t01
and ζ0

k2,t02
(similarly for ζ1

k1,t11
and ζ1

k2,t12
),

and the joint distribution between ζ0

k1,t01
and ζ

0

k2,t02
(similarly for ζ1

k1,t11
and ζ

1

k2,t12
).

These distributions are found in A.3.
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A.3 Joint Distributions

To find the joint distribution of (ζ0

k1,t01
, ζ0

k2,t02
), we need to approximate the joint

distribution of (p0(k1), p0(k2)) defined in equation (A.2). We do this by a (zero-

order) Edgeworth expansion. Thus, similar to the single variate case in (A.11), for

the multivariate case we have (p0(k1), p0(k2)) ∼ N (µ0
k1,k2

,Σ0
k1,k2

), whereas we find

the parameters for different uncertainty classes in the following subsections.

A.3.1 ε−Contamination Class

From the definition of the joint probability distribution, for x1, x2 > 0, x1+x2 ≤ 1,

we have

Pr(π(k1) = x1, π(k2) = x2) = lim
∆x1→0∆x2→0

Pr(|π(k1)−x1|<∆x1
2
,|π(k2)−x2|<∆x2

2
)

∆x1∆x2

= lim∆x1→0∆x2→0

∆x1∆x2Vol(S1−x1−x2
b−3

)

Vol(Sb−1)

∆x1∆x2

= (b− 1)(b− 2)(1− x1 − x2)b−3.

(A.21)

Since we are going to use the zero-order Edgeworth expansion, we only need to find

the mean vector and the covariance matrix of these random variables. The variances

are already found in the previous section of the Appendix. Therefore, we only find

the covariance between these variables. Specifically,

Cov[π(k1), π(k2)] = E[π(k1)π(k2)]− E[π(k1)]E[π(k2)]

=
∫ 1

0

∫ 1−x1

0
x1x2(b− 1)(b− 2)(1− x1 − x2)b−3dx2dx1 − 1

b2

= −1
b2(b+1)

,

(A.22)

where in (A.22) we used integration by parts. Hence, considering our definitions

in (A.2) for p0(k1) and p0(k2), we obtain the following for the normal distribution
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statistics:

µ0
k1,k2

=

 α0( ε0
b

+ (1− ε0)π0
ac(k1))

α0( ε0
b

+ (1− ε0)π0
ac(k2))

 , (A.23)

Σ0
k1,k2

=

 α2
0ε

2
0

b−1
b2(b+1)|Π0| −α2

0ε
2
0

1
b2(b+1)|Π0|

−α2
0ε

2
0

1
b2(b+1)|Π0| α2

0ε
2
0

b−1
b2(b+1)|Π0|

 . (A.24)

Similarly, we can write for the joint distribution of (p1(k1), p1(k2)).

A.3.2 p−Point Class

Since we have partitions in this model, we need to know whether two states belong

to the same partition or not. First, suppose that P 0(k1) 6= P 0(k2). Then,

Pr(π(k1) = x1, π(k2) = x2) = Pr(π(k1) = x1) Pr(π(k2) = x2), (A.25)

from which we get

µ0
k1,k2

=


ω0
P0(k1)

α0

|s0
P0(k1)

|
ω0
P0(k2)

α0

|s0
P0(k2)

|

 , (A.26)

Σ0
k1,k2

=

 α2
0(ω0

P 0(k1))
2

|s0
P0(k2)

|−1

|s0
P0(k1)

|2(|s0
P0(k1)

|+1)|Π0| 0

0 α2
0(ω0

P 0(k2))
2

|s0
P0(k2)

|−1

|s0
P0(k2)

|2(|s0
P0(k2)

|+1)|Π0|

 .
(A.27)

Now, suppose P 0(k1) = P 0(k2) = mk1k2 . Then

Cov[π(k1), π(k2)] =
−(ω0

mk1k2
)2

|s0
mk1k2

|2(|s0
mk1k2

|+ 1)
, (A.28)

and we have

µ0
k1,k2

=


ω0
mk1k2

α0

|s0mk1k2
|

ω0
mk1k2

α0

|s0mk1k2
|

 , (A.29)
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Σ0
k1,k2

=

 α2
0(ω0

mk1k2
)2

|s0mk1k2
|−1

|s0mk1k2
|2(|s0mk1k2

|+1)|Π0| −α2
0(ω0

mk1k2
)2 1
|s0mk1k2

|2(|s0mk1k2
|+1)|Π0|

−α2
0(ω0

mk1k2
)2 1
|s0mk1k2

|2(|s0mk1k2
|+1)|Π0| α2

0(ω0
mk1k2

)2
|s0mk1k2

|−1

|s0mk1k2
|2(|s0mk1k2

|+1)|Π0|

 .
(A.30)

In the following, Pr(p0(k1) = α, p0(k2) = β) and Pr(p1(k1) = α, p1(k2) = β) will be

denoted by F 0
k1,k2

(α, β) and F 1
k1,k2

(α, β), respectively. Now, we start by computing

the pmf of (ζ0
k1,t01

, ζ0
k2,t02

). After quite some computation we obtain

Pr(ζ0

k1,t01
= m1, ζ

0

k2,t02
= m2) =



Int0(θ0
k1,L

, θ0
k1,U

; θ0
k2,L

, θ0
k2,U

);m1,m2 6= 0

Int0(−∞,−g0t
0
1; θ0

k2,L
, θ0
k2,U

);m1 = 0,m2 6= 0

Int0(θ0
k1,L

, θ0
k1,U

;−∞,−g0t
0
2);m2 = 0,m1 6= 0

Int0(−∞,−g0t
0
1;−∞,−g0t

0
2);m1 = m2 = 0

(A.31)

Pr(ζ1

k1,t11
= m1, ζ

1

k2,t12
= m2) =



Int1(θ1
k1,L

, θ1
k1,U

; θ1
k2,L

, θ1
k2,U

);m1,m2 6= 0

Int1(−∞,−g1t
1
1; θ1

k2,L
, θ1
k2,U

);m1 = 0,m2 6= 0

Int1(θk1,L, θ
1
k1,U

;−∞,−g1t
1
2);m2 = 0,m1 6= 0

Int1(−∞,−g1t
1
1;−∞,−g1t

1
2);m1 = m2 = 0.

(A.32)
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Furthermore, we have

Pr(ζ
0

k1,t01
= m1, ζ

0

k2,t02
= m2) =



Int0(θ
0

k1,L
, θ

0

k1,U
; θ

0

k2,L
, θ

0

k2,U
);

m1 6= n1,m2 6= 0

Int0(θ0
k1,L

, θ
0

k1,U
;−∞,−g0t

0
2);

m2 = 0,m1 6= n1

Int0(−∞,−g0t
0
1; g1(n1 − 1)− g0s,∞);

m1 = n1,m2 6= 0

Int0(g1(n1 − 1)− g0t
0
1,∞;−∞,−g0t

0
2);

m1 = n1,m2 = 0

(A.33)

Pr(ζ
1

k1,t11
= m1, ζ

1

k2,t12
= m2) =



Int1(θ
1

k1,L
, θ

1

k1,U
; θ

1

k2,L
, θ

1

k2,U
);

m1 6= n1,m2 6= 0

Int1(θk1,L, θ
1

k1,U
;−∞,−g1s);

m2 = 0,m1 6= n1

Int1(−∞,−g1t
1
1; g0(n0 − 1)− g1t

1
2,∞);

m1 = n1,m2 6= 0

Int1(g0(n0 − 1)− g1t
1
1,∞;−∞,−g1t

1
2);

m1 = n0,m2 = 0

(A.34)
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In equations (A.31)-(A.34) we use the following definitions (the notation
∫∫∫
. is used

to denote
∫∞
−∞

∫∞
−∞ .)

Int0(bk1
L , b

k1
U ; bk2

L , b
k2
U ) :=

∫∫∫
Pr
[ α + bk1

L

β + bk2
L

 �
 p0(k1)

p0(k2)

 �
 α + bk1

U

β + bk2
U

]
×F 1

k1,k2
(α, β)dαdβ

Int1(bk1
L , b

k1
U ; bk2

L , b
k2
U ) :=

∫∫∫
Pr
[ α + bk1

L

β + bk2
L

 �
 p1(k1)

p1(k2)

 �
 α + bk2

U

β + bk2
U

]
×F 0

k1,k2
(α, β)dαdβ

(A.35)

Table D.1 shows the parameters used in equations (A.31)- (A.34).

θ0
k1,L

= g1(m1 − 1)− g0t
0
1 θ0

k1,U
= g1m1 − g0t

0
1 θ0

k2,L
= g1(m2 − 1)− g0t

0
2 θ0

k2,U
= g1m2 − g0t

0
2

θ1
k1,L

= g0(m1 − 1)− g1t
1
1 θ1

k1,U
= g0m1 − g1t

1
1 θ1

k2,L
= g0(m2 − 1)− g1t

1
2 θ1

k2,U
= g0m2 − g1t

1
2

θ
0

k1,L
= g1m1 − g0t

0
1 θ

0

k1,U
= g1(m1 + 1)− g0t

0
1 θ

0

k2,L
= g1(m2 − 1)− g0t

0
2 θ

0

k2,U
= g1m2 − g0t

0
2

θ
1

k1,L
= g0m1 − g1t

1
1 θ

1

k1,U
= g0(m1 + 1)− g1t

1
1 θ

1

k2,L
= g0(m2 − 1)− g1t

1
2 θ

1

k2,U
= g0m2 − g1t

1
2

Table A.1: Defined parameters.

169



APPENDIX B

GENERATING UNCERTAINTY CLASSES FROM PATHWAYS

We provide a simple example of how a set of biological pathways can generate an

uncertainty class of stochastic network models. Consider three pathways describing

the dynamical behavior of two binary genes A and B:

B = 1 =⇒ A = 0 (B.1)

B = 0 =⇒ A = 1 (B.2)

A = 1 =⇒ B = 1 (B.3)

This simple system is almost completely specified, but when gene A is in state 0,

the dynamical behavior of gene B is unspecified. In [1], Layek et al. show how to

generate an uncertainty class of deterministic networks from a set of pathways by

relaxing timing considerations. Knight et al. in [74] use a stochastic approach to

generate a single Markov chain from a set of pathways and validate the approach

using pathways for the NF-κB transcription factor system. In [73] it is shown that the

earlier approach in [74] can be generalized to produce a parameterized uncertainty

class of Markov chains from a given set of pathways.

Based on [73] we generate the parameterized state transition graph in Fig.B.1.

By choosing θ ∈ [0, 1] we fix the stochastic evolution of gene B and this characterizes

a single Markov chain. We can therefore think of the graph in Fig. B.1 as the state

transition graph of an entire uncertainty class of Markov chains.

The regularized maximum likelihood classification technique requires a finite un-

certainty class so we effectively sample this uncountably infinite, parameterized un-
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01
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(a)

Figure B.1: The parameterized state transition graph of a two gene, four state
Markov chain system derived from three pathways. The node labels should be read
[A,B]. The parameter θ determines the evolution of gene B when gene A= 0.

certainty class of Markov chains by discretizing the values of θ. Specifically in this

simple example, we use θ ∈ {0, 0.5, 1} to consider three networks where the behavior

of gene B is deterministically up-regulated, deterministically down-regulated, and is

a mixture of the two behaviors. The mixture case can be understood to encompass

more complex biological regulation such as time-varying pulses or more complex, non-

linear stochastic regulation where we only care about the long-run activity. These

three networks are shown in Figure B.2.
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(b) θ = 1

00
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(c) θ = 0.5

Figure B.2: The state transition graphs of the Markov chains for different values of
θ, where all outgoing edges from a given node are equiprobable. Depending on the
value of θ the network can have a singleton atttractor state, a large attractor cycle,
or a mixture of these two long run behaviors.
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APPENDIX C

PROOFS IN SECTION 4

C.1 Conditional Entropy as a Function of Precision Matrix Components

C.1.1 Covaraince Matrix Containing R̄x

From the matrix inversion lemma, (Λ−1
R̄x

)Rx = [ΛRx − Λ12Λ
−1
x Λ21]−1, which is

called the Schur complement of the Λg. Moreover, from the properties of the Schur

complement we know that ( [93]-Appendix 4.4)

log |ΛRx −Λ12Λ
−1
x Λ21| = − log |Λx|+ log |ΛR̄x|.

Hence from the equality in equation (4.13), we obtain H(x|Rx) = log(2πe)− log |Λx|.

C.1.2 R̄x with Other Genes in G

Denote the precision matrix as in equation (4.16), Σ = Λ−1. A 4-block represen-

tation of the precision matrix given by

Λ =

 T11 T12

T21 T22

 , (C.1)

where

T11 =

 ΛRx Λ12

Λ21 Λx

 ; T12 =

 Λ13

Λ23

 ; T21 =

[
Λ31 Λ32

]
; T21 = Λ33.

Similarly, denote the covariance matrix by Σ and its 9-block representation as in

equation (4.16), where the difference in notation is that Λ in block components is
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replaced with Σ. Furthermore, denote

Σ =


ΣRx Σ12 Σ13

Σ21 Σx Σ23

Σ31 Σ32 Σ33

 .
Now, similar to above, the entropy is written as

H(x|Rx) = log 2πe+ log |

 ΣRx Σ12

Σ21 Σx

 | − log |ΣRx|, (C.2)

which needs to be rewritten as a function of the precision matrix. From the matrix

inversion lemma, we know that

 ΣRx Σ12

Σ21 Σx

 = (T11 − T12T
−1
22 T21)−1. From the

basic linear algebra ( [93]-Appendix 4.4),

log |Λ| = log |

 Λx Λ23

Λ32 Λ33

 | − log |ΣRx |, (C.3)

− log |Λ| = log |Σ| = log |

 ΣRx Σ12

Σ21 Σx

 | − log |Λ33|. (C.4)

Combining equations (C.3)-(C.4) with equation (C.2), we obtain

H(x|Rx) = log 2πe+ log |Λ33| − log |

 Λx Λ23

Λ32 Λ33

 |,
which can be written as

HΛ(x|Rx) = log 2πe− log |Λx −Λ23Λ
−1
33 Λ32|. (C.5)
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Now, we need to determine the expected conditional entropy:

EΛ[HΛ(x|Rx)] = log 2πe− EΛ log |Λx −Λ23Λ
−1
33 Λ32|.

From Λ ∼ W(W, κ), we have

 Λx Λ23

Λ32 Λ33

 ∼ W(

 Wx W23

W32 W33

 , κ), from which

we have

 Λx Λ23

Λ32 Λ33


−1

∼ W−1(

 Wx W23

W32 W33


−1

, κ). Hence,


 Λx Λ23

Λ32 Λ33


−1

11

∼ W−1((Wx −W23W
−1
33 W32)−1, κ− dim(W33)). (C.6)

On the other hand we know that (Λx − Λ23Λ
−1
33 Λ32)−1 =


 Λx Λ23

Λ32 Λ33


−1

11

,

from which we obtain (Λx − Λ23Λ
−1
33 Λ32)−1 ∼ W−1((Wx −W23W

−1
33 W32)−1, κ −

dim(W33)). Finally we have (Λx − Λ23Λ
−1
33 Λ32) ∼ W((Wx −W23W

−1
33 W32), κ −

dim(W33)). dim(W33) is equivalent to p − |Rx| − 1. Thus, using the expression

for the entropy of a Wishart distributed random matrix (from [90]), we obtain the

desired expression.

C.2 Proof of Lemma 3

Similar to the CP1, the objective function is convex; hence, we only need to show

that the constraints are also convex. From the Schur complement properties,

log |Wx −W23W
−1
33 W32|+ log |W33| = log |

 Wx W23

W32 W33

 |,
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from which we can write the constraint as

− log |

 Wx W23

W32 W33

 |+ log |W33| − ψ(
κ− (p− |Rx| − 1)

2
) ≤ ξ; ξ ≥ ξ = − log πe.

Now, from [92] (Theorem 29), the first two log summands form a convex function

and the proof.is complete

C.3 Calculus Required for Solving CP2

We find the matrix Hess(z,y) = ∇2(g(z))−
3∑
l=1

y(i)∇2(hl(z)). First,

∇2(g(z)) =

 1
2
(1− λ)[tr(W−1EiW

−1Ej)]i,j ∅

∅ ∅

 , (C.7)

which is a square matrix with size (p(p+1)
2

)2 + 2. Define

B1 =

 ∅|Rx|(|Rx|+1)/2 ∅

∅ [tr(W
−1

EiW
−1

Ej)]

 , (C.8)

and

B2 =

 ∅|R̄x|(|R̄x|+1)/2 ∅

∅ −[tr(W−1
33 EiW

−1
33 Ej)]

 , (C.9)

where W =

 Wx W23

W32 W33

. Then

∇2(h3(x)) =

 B1 + B2 ∅

∅ ∅

 .
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Denoting the Jacobian matrix of the constraints by A(z), we may write element-wise

A2,i(z) =


tr(W

−1
Ei) + tr(W−1

33 Ei); i ≥ |R̄x|(|R̄x|+ 1)/2 + 1

tr(W
−1

Ei); |Rx|(|Rx|+ 1)/2 + 1 ≤ i ≤ |R̄x|(|R̄x|+ 1)/2

1; i = p(p+ 1)/2 + 1.

Similarly, we have A1,:(z) = eTp(p+1)/2+1.
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APPENDIX D

PRELIMINARIES AND PROOFS IN SECTION 5

D.1 Dirichlet Distribution: Definition and Properties

The ratio
∏b
k=1 Γ(αk)

Γ(α0)
, called multinomial Beta function, is denoted by B(α) or

similarly by B([α1, ..., αb]).

The five major properties of the Dirichlet distribution, frequently used in this

dissertation, are listed below (for properties P1−P3, refer to [108]- [109])

P1. If [p1, p2, ..., pb] ∼ Dir(α1, α2, ..., αb) and r1, ..., rl are integers such that 0 < l1 <

... < rl = b, then

(

r1∑
i=1

pi,

r2∑
i=r1+1

pi, ...,

rl∑
i=rl−1+1

pi) ∼ Dir(
r1∑
i=1

αi,

r2∑
i=r1+1

αi, ...,

rl∑
i=rl−1+1

αi). (D.1)

P2. Assuming the assumption in I, then each pi is (marginally) distributed as follows

pi ∼ Beta(αi, α0 − αi). (D.2)

Considering the assumptions above, if properties P1. and P2. are combined,

then for some positive integer r1, one obtains

r1∑
i=1

pi ∼ Beta(

r1∑
i=1

αi, α0 −
r1∑
i=1

αi). (D.3)

P3. If [p1, p2, ..., pb] ∼ Dir(α1, α2, ..., αb), then for the first and the second moments
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we have

E[pi] =
αi
α0

E[p2
i ] =

αi(αi + 1)

α0(α0)
.

P4. If the random vector p is distributed according to the Dirichlet distribution

Dir(α), where α0 =
∑

i αi, then we have [90]

E[log pk] = ψ(αk)− ψ(α0),

where ψ is the digamma function.

Now, using the properties above, we prove two fundamental lemmas which are

frequently used in our analysis:

Lemma 7. Suppose that [p1, p2, . . . , pb] ∼ Dir(α1, α2, . . . , αb), then, for any Lebesgue-

measurable function g : Sb−1 → R, we have∗

Ep[pig(p)] =
αi∑b
k=1 αk

Ep′ [g(p′)],

in which

p′ ∼ Dir(α′1, α′2, . . . , α′b);α′i = αi + 1, α′k = αk, k 6= i.

Proof. Without loss of generality, we prove the property for i = 1. Expanding the

expectation as follows

∗Sb−1 denotes the unit simplex in the two-dimensional Euclidean space.
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Ep[p1 log g(p)] =
∫
p1g(p)

Γ(
∑b
k=1 αk)∏b

k=1 Γ(αk)
pα1−1

1 pα2−1
2 pα3−1

3 dp

=
Γ(α1+1)

∏b
k=2 Γ(αk)

Γ(α1+1+
∑b
k=2 αk)

Γ(
∑b
k=1 αk)∏b

k=1 Γ(αk)

∫
g(p)

× Γ(α1 + 1 +
∑b

k=2 αk)

Γ(α1 + 1)
∏b

k=2 Γ(αk)
p

(α1+1)−1
1 pα2−1

2 pα3−1
3︸ ︷︷ ︸

Dir(α1+1,α2,α3)

dp

=
α1

∏b
k=1 Γ(αk)

(
∑b
k=1 α1)Γ(

∑b
k=1 αk)

Γ(
∑b
k=1 αk)∏b

k=1 Γ(αk)
Ep′ [g(p′)]; p′ ∼ Dir(α1 + 1, α2, α3),

(D.4)

where in the last equality, we used the fact that Γ(x+ 1) = xΓ(x). Q.E.D.

D.1.1 Proof of Lemma 4

Define C = X\(A ∪B). From property P1 we have

(
∑
i∈A

pi,
∑
i∈B

pi,
∑
i∈C

pi) ∼ Dir(
∑
i∈A

αi,
∑
i∈B

αi,
∑
i∈C

αi).

Hence, Lemma 7 indicates that

Ep[

∑
i∈A pi∑

i∈A pi +
∑

j∈B pj
] =

∑
i∈A pi∑

i∈A αi +
∑

i∈B αi +
∑

i∈C αi
Ep′ [

1∑
i∈A p

′
i +
∑

j∈B p
′
j

]

(D.5)

in which

(
∑
i∈A

p′i,
∑
i∈B

p′i,
∑
i∈C

p′i) ∼ Dir(1 +
∑
i∈A

αi,
∑
i∈B

αi,
∑
i∈C

αi). (D.6)

Now, suppose (u, v, w) ∼ Dir(αu, αv, αw) where u+ v > 1. Then, since (u+ v, w) ∼

Dir(αu+αv, αw) (i.e. Beta-distributed), we may write E[ 1
u+v

] = E[1
z
], where (z, w) ∼

Dir(αu + αv, αw). Finally, we write

E[ 1
u+v

] = Γ(αu+αv+αw)
Γ(αu+αv)Γ(αw)

∫
1
z
zαu+αv−1wαw−1dzdw = Γ(αu+αv+αw)

Γ(αu+αv)Γ(αw)

∫
zαu+αv−2wαw−1dzdw

= Γ(αu+αv+αw)
Γ(αu+αv)Γ(αw)

Γ(αu+αv−1)Γ(αw)
Γ(αu+αv+αw−1)

= αu+αv+αw−1
αu+αv−1

.
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According to equation (D.6), we have αu = 1 +
∑

i∈A αi, αv =
∑

i∈B αi, and αw =∑
i∈C αi. Combining equations (D.5) and (D.7), the proof for the first moment is

finished.

For the variance, we find the second moment and then equation (5.14) would be

the direct result of combining the first two moments. Writing the second moment,

we have

Ep

[
[

∑
i∈A pi∑

i∈A pi+
∑
j∈B pj

]2
]

=
∑
i∈A αi(

∑
i∈A αi+1)

(
∑
i∈A∪B∪C αi)(

∑
i∈A∪B∪C αi+1)

×Ep′′
[
[ 1∑

i∈A p
′′
i +

∑
j∈B p

′′
j
]2
] (D.7)

where p′′ ∼ Dir(2 +
∑

i∈A αi,
∑

i∈B αi,
∑

i∈C αi). In equation (D.7), the equality

comes from applying Lemma 7 twice. Then similar to the approach leading to equa-

tion (D.7), we obtain

Ep

[
[

∑
i∈A pi∑

i∈A pi +
∑

j∈B pj
]2
]

=

∑
i∈A αi(

∑
i∈A αi + 1)

(
∑

i∈A αi +
∑

j∈B αj)(
∑

i∈A αi +
∑

j∈B αj + 1)

D.1.2 Proof of Lemma 5

First define B0,y
k , k ∈ {1, . . . , 2M} and y ∈ {0, 1} as in the Lemma. Moreover,

we use ZB0,y
k

to denote
∑

i∈B0,y
k
ui. Then, based on the assumptions, we would have

(ZB0,0
k
, ZB0,1

k
, 1− ZB0,0

k
− ZB0,1

k
) ∼Mult(

∑
i∈B0,0

k

pi,
∑
i∈B0,1

k

pi, 1−
∑

i∈B0,0
k ∪B

0,1
k

pi)
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Now, we expand the expected conditional entropy as follows

E
[
H[ZA0|ZA1 , . . . , ZAM ]

]
=

∑2M

k=1

∑1
y=0 E

[
Pr(ZA0 = y, fdec(ZA1 , . . . , ZAM ) = k)

× log Pr(ZA0 = y, fdec(ZA1 , . . . , ZAM ) = k)
]

− E
[

Pr(ZA0 = y, fdec(ZA1 , . . . , ZAM ) = k)

× log Pr(fdec(ZA1 , . . . , ZAM ) = k)
]

(D.8)

where fdec(ZA1 , ZA2 , . . . , ZAM ) is a function which maps the binary-valued vector

(ZA1 , ZA2 , . . . , ZAM ) to its corresponding decimal number. Then, using the definitions

so far, one may write

(ZA0 = y, fdec(ZA1 , . . . , ZAM ) = k) ≡p ZB0,y
k
.

Hence, equation (D.8) can be rewritten as follows

E
[
H[ZA0|ZA1 , . . . , ZAM ]

]
=
∑2M

k=1

∑1
y=0E

[
(
∑

i∈B0,y
k
pi) log(

∑
i∈B0,y

k
pi)
]

−E
[
(
∑

i∈B0,y
k
pi) log(

∑
i∈B0,0

k
pi +

∑
i∈B0,1

k
pi)
] (D.9)

where from property P1, we have (
∑

i∈B0,0
k
pi,
∑

i∈B0,1
k
pi, 1−

∑
i∈B0,0

k
pi−

∑
i∈B0,1

k
pi) ∼

Dir(∑i∈B0,0
k
αi,
∑

i∈B0,1
k
αi, α0 −

∑
i∈B0,0

k
αi −

∑
i∈B0,1

k
αi). That being said, applying

Lemma 4 to equation (D.9), knowing property P4, the result can be readily derived.
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D.2 Maximum Entorpy and Maximal Data Information

D.2.1 Maximum Entropy Method

D.2.1.1 General Methodology

The MaxEnt prior distribution is the solution to the following problem

max
P : X∼P

Hθ[θ] = −Eθ[lnπ(θ)] (D.10)

Subject to: Eθ[fi(θ)] = βi; i = 1, ...,m,

where fi(.) are some measurable functions, and βi are known due to prior knowledge.

The solution to the optimization problem in equation (D.10) is given by

π(θ) = Z−1 exp{
m∑
i=1

γifi(θ)},

where Z and γi’s are, respectively, normalizing factor and the Lagrange multipliers,

computed using the constraints in equation (D.10).

D.2.1.2 Multinomial with Dirichlet prior

Considering the Dirichlet prior, when there is no prior information in the form of

expectations available, the MaxEnt prior, provided that the parameter α0 is known,

is the solution to the following optimization problem:

max
α∈Sα0

b−1

b∑
k=1

log Γ(αk)− (αk − 1)ψ(αk). (D.11)

Solving equation (D.11) using Lagrange multiplier method, and knowing that
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∑b
k=1 αk = α0, one may obtain the Dirichlet prior shape as follows

α = α01b/b.

D.2.2 Maximal Data Information Prior

D.2.2.1 General Methodology

The simple MDIP is the solution to the following optimization problem

max H[θ]− Eθ[H[f(x|θ)]] (D.12)

Subject to: Eθ[gi(θ)] = βi; i = 1, . . . ,m (D.13)

whose solution is given by

π(θ) ∝ exp{−H[f(x|θ)] +
m∑
i=1

γigi(θ)}

D.2.2.2 Multinomial with Dirichlet Prior

For example, for the multinomial model (discrete setting), the MDIP prior is

given by

π(θ) ∝ (1−
b−1∑
i=1

θj)
1−

∑b−1
i=1 θj

b−1∏
i=1

θθii exp{
m∑
i=1

γigi(θ)}

where a normalization factor is needed to result in a proper MDIP. This factor is

computed for binomial and trinomial cases in [107].

D.3 Regularization Parameter Selection via Cross-Validation

In order to find a proper regularization parameter, one would need to define a

measure of performance. This measure assesses a constructed prior, when the regular-

ization parameter is applied into the process of prior construction. The regularization
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parameters (λfun, λreg) belong to the simplex λfun + λreg ≤ 1. Here, we restrict the

selection of parameters to a 2D grid of the space, denoted by Λ, where we make the

grid uniformly with steps of size 0.1 from 0 to 1, for one of the parameters, λfun and

the other one takes values uniformly with the same step size from 0 to 1−λfun. Then,

the search is done in this restricted space for the regularization parameters. In this

subsection, we first introduce an oracle regularization which is found by comparing

the center of the constructed prior, α̂/α0, with the true probability.

Here, we use cross-validation to choose a near-optimal regularization parameter,

the difference would be the measure used in the cross-validation process. The first

attempt to using cross-validation for determining the regularization parameter was

in ridge regression problem [119,120]. It was called generalized cross-validation.

In this appendix, we introduce a leave-one-out (LOO) approach to find an es-

timate for the (prior) expected mean log-likelihood (EMLL), denoted by ε`, of the

validation points. Then, we choose regularization parameters yielding the largest

LOO estimate of the EMLL.

First, we split the data points into two parts: prior construction and classifier

training, denoted by uprior
np and utrian

nt . Denote the constructed REMLD prior by using

unp , G, and λy; y = 0, 1 as sample points, pathways, and regularization parameter

vectors, respectively, with πy(unp ,G;λ0,λ1) (for sake of simplicity in notations we

will use only πyunp ). Moreover, the sample set with one point held out from its k−th

bin in class-y is denoted by u
uyk←u

y
k−1

np−1 . Owing to the discreteness nature of the data,

fixing G,λ0, and λ1, we may write the LOO estimate of the EMLL for the class-y

constructed prior as follows:

ε̂`(G,λy) =
1

np

b∑
k=1

uykψ(πy

u
u
y
k
←uy

k
−1

np−1

[k]) (D.14)
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Computing the estimated error via equation (D.14), the regularization vector, for

class-y is selected so that the largest LOO estimate is attained, i.e.,

λloo
y = arg max

λy∈Λ
ε̂`(G,λy) (D.15)

where, similar to above the maximization in equation (D.15) is found on the restricted

set Λ.

From the computational point of view, the number of iterations needed for im-

plementing the LOO does not exceed number of bins. It is due to the structure of

discrete (categorical) classification problem: all the points in one bin are seen the

same by the optimization framework. Therefore, as equation (D.14) indicates, at

each iteration of the LOO, it is enough to decrease number of points in a bin by one,

and then solve the optimization framework. The resulting expected log-likelihood can

be easily multiplied by the number of observations in that bin. Thus, the maximum

number of iterations is the number of nonzero bins.
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