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ABSTRACT

This study investigates the benefits of employing a limited-area data assimilation

(DA) system to enhance lower-resolution global analyses in the Northwest Pacific

tropical cyclone (TC) basin. Numerical experiments are carried out with a global

analysis system at horizontal resolution T62 and a limited-area analysis system at

resolutions from 200 km to 36 km. The global and limited-area DA systems, which

are both based on the Local Ensemble Transform Kalman Filter algorithm, are

implemented using a unique configuration, in which the global DA system provides

information about the large-scale analysis and background uncertainty to the limited-

area DA system.

In experiments that address the global-to-limited-area resolution ratio, the limited-

area analyses of the storm locations for experiments in which the ratio is 1:2 are, on

average, more accurate than those from the global analyses. Increasing the resolution

of the limited-area system beyond 100 km adds little direct benefit to the analysis of

position or intensity, although 48 km analyses reduce boundary effects of coupling the

models and may benefit analyses in which observations with larger representativeness

error are assimilated. Two factors contribute to the higher accuracy of the limited-

area analyses. First, the limited-area system improves the accuracy of the location

estimates for strong storms, which is introduced when the background is updated

by the global assimilation. Second, it improves the accuracy of the background

estimate of the storm locations for moderate and weak storms. Improvements in the

steering flow analysis due to increased resolution are modest and short-lived in the

forecasts. Limited-area track forecasts are more accurate, on average, than global

forecasts, independently of the strength of the storms up to five days. This forecast
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improvement is due to the more accurate analysis of the initial position of storms and

the better representation of the interactions between the storms and their immediate

environment.

Experiments that test the treatment and quality control (QC) methods of TC

observations show that significant gainful improvements can be achieved in the

analyses and forecasts of TCs when observations with large representativeness error

are not discarded in the online QC procedure. These experiments examine the impact

of assimilating TCVitals SLP, QuikSCAT 10 m wind components, and reconnaissance

dropsondes alongside the conventional observations assimilated by NCEP in real

time. Implementing a Combined method that clips the special TC observations

via Huberization when multiple observation types are unavailable, and keeping the

TCVital observation when other special observations are present, showed significant

systematic improvements for strong and moderate storm analyses and forecasts.
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1. INTRODUCTION∗

Improvements for tropical cyclone (TC) track forecasts over the past decade have

been attributed to increasing model resolution, improved data assimilation techniques,

and the rapid increase in the number of routinely assimilated observations over oceans

(Rappaport et al. 2009). This dissertation will outline the use of novel techniques for

data assimilation that are consistent with those outlined in Rappaport et al. (2009)

to improve TC track and intensity analyses and forecasts.

The data assimilation approaches for TCs that will be implemented in this study

include 1) an ensemble based coupled global-limited-area analysis system, which is

used to obtain a higher resolution analysis in a particular area of interest (specifically

over a the NW Pacific TC basin), and 2) a method to make the initial ensemble

robust to large observation error and observation innovation (the difference between

an observation and the background estimate of the observed state). Both approaches

will be implemented for the first time with an EnKF in a real world scenario.

The research analysis/forecast system described in Holt et al. (2013) to assimilate

the observations is used and is based on the Local Ensemble Transform Kalman Filter

(LETKF) algorithm, the National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) model and Regional Spectral Model (RSM). The

somewhat unusual choice of the RSM as the regional model is motivated by its

consistency with the GFS in both dynamics and parameterizations. Since it is a

perturbation model, it also benefits from receiving information from the global base

fields at every grid point, instead of only through the lateral boundaries, like other

∗Parts of Section 1 are reprinted with permission from ”Can a Moderate-Resolution Limited-Area
Data Assimilation System Add Value to the Global Analysis of Tropical Cyclones” by C. Holt, I.
Szunyogh, and G. Gyarmati, 2013. Monthly Weather Review, 141,1866-1883, Copyright 2013 by
the American Meteorological Society.
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limited-area models.

While it may seem like an obvious choice, it is important to note that the

superiority of a fully cycled limited-area analysis to a lower resolution global analysis

is not self-evident. For instance, NCEP has struggled for many years to develop a

limited-area data assimilation system that would provide a better analysis for their

limited-area model than their global assimilation system. Their current limited-area

data assimilation system is based on a partial cycling strategy: a cold start of the

regional data assimilation system is started from a global analysis 12-h prior to the

actual analysis time and cycled over four 3-h analysis time windows to produce

the limited-area analysis (Rogers et al. 2009). The most likely explanation for the

difficulties with fully cycling the limited-area analysis is that propagating information

about the large scale flow through the lateral boundaries for an extended time is a

challenging task. In addition, the gainful assimilation of satellite radiance observations,

which has shown promising results for the global setting, is still an open problem of

limited-area data assimilation, because, among other issues, no effective algorithm

currently exists to estimate the bias in the radiance observations within the framework

of a limited-area data assimilation system (Schwartz et al. 2012).

Our ensemble-based data assimilation approach provides several potential benefits

for TC data assimilation. The coupling from the global to the limited-area component

provides a simple framework to introduce information about the large-scale uncertainty

into the limited-area data assimilation process. The benefits of flow dependent error

statistics are often cited as one of the most important attributes of the ensemble-based

approach for TCs, e.g. Torn and Hakim (2009); Torn (2010); Hamill et al. (2011);

Zhang et al. (2011). Lastly, the ensemble-based approach is thought to be an efficient

filter of imbalances that could be introduced by the assimilation of observations.

While improvements have been made to track forecasts for TCs, the improvement
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of intensity forecasts has been much more modest, which is not surprising considering

that the eyewall radius of a TC is about 25 − 50 km (Kimball and Mulekar 2004)

and, 4 to 10 grid points are needed to resolve a flow feature such as the eye of a TC

(e.g., Fiorino and Elsberry (1989a,b); Grasso (2000); Skamarock (2004)). The 5 km

nominal resolution that would be required, at minimum, to capture the structure of

the eye of a TC is expected to remain unattainable in an operational real-time global

analysis/forecast system until about 2020 (Källén 2012). Given that an appropriate

limited-area-to-global analysis resolution ratio can be found, this challenge could be

overcome without pushing the computational limits of significantly increasing global

model resolution. Because the goal of their study is to obtain basin-wide coverage for

a statistically significant sample of TCs, the global model resolution remains fixed at

a low resolution and the limited-area model resolution varies with low-to-moderate

grid spacing. At these resolution ranges, only a warm-core vortex can be expected,

and as a result representativeness error will be significant in the experiments since the

model grid cannot accurately resolve the flow features occurring in the atmosphere.

Both operational and research analysis systems typically employ algorithms

to initialize and/or reposition the TC, however, the system in the current study

uses only the assimilation of observations to update the TC position, intensity,

and flow field. With potentially large representativeness error, along with large

observation innovations that can result from poor estimates of background location,

many observations that are meant to update the TC estimates of position and

intensity are discarded in the online quality control procedure (an algorithm that

checks the observations against the background estimate and discards statistical

outliers). An offline QC procedure discards any observations that have NCEP flags

large than 4 before they are subjected to the online QC procedure. In this study,

efficient methods for the assimilation of observations with inherently large observation

3



innovations are tested. In particular, the goal is to obtain an efficient combination of

the quality control procedures and the definition of the observation errors. The focus

will be on three types of observations: QuikSCAT 10 m wind retrievals, Tropical

Cyclone Vitals (TCVitals) minimum sea level pressure (SLP), and dropsondes from

TC reconnaissance programs. Each of these observation types comes with its own

set of challenges, but together they provide examples of observations of several

atmospheric variables at a variety of vertical levels, from the surface through the

mid-troposphere.

Experiments and results that focus on the limited-area-to-global resolution ratio

are discussed in depth in Section 2, while Section 3 covers the advanced observation

quality control techniques and results. Section 4 is a summary and discussion of the

study.
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2. A COUPLED-GLOBAL-LIMITED-AREA DATA ANALYSIS/FORECAST

SYSTEM∗

2.1 Experiment Design

2.1.a Analysis/Forecast System

The data assimilation system is an implementation of the LETKF algorithm (Ott

et al. 2004; Hunt et al. 2007) on the NCEP GFS model (Szunyogh et al. 2005 and

2008) and the NCEP RSM (Merkova et al. 2011). The GFS is a spectral-transform

model, and we integrate it using a triangular truncation with a cut-off wave number

of 62 and 28 vertical sigma levels (T62L28).

The RSM is a nested limited-area version of the GFS model (Juang and Kanamitsu

1994), which uses a one-way nesting; that is, the global solution affects the regional

solution, but the regional solution has no affect on the global solution. The vertical

levels in the RSM are identical to the 28 sigma levels of the GFS. The horizontal

resolution of the RSM in our experiments, which is defined by the grid spacing,

varies from 200 km to 36 km. The particular implementation of the analysis/forecast

system used here was first tested on winter storms over the U.S. and is described

by Merkova et al. (2011). To obtain the LETKF analyses, all observations that

were assimilated by NCEP in real-time in Summer 2004 are used, excluding satellite

radiance observations and TCVitals information. (An example of the locations of

such observations for a typical analysis cycle is shown in Fig. A.1.) In addition, the

procedure to relocate the TCs in the background (first guess of the analysis), which

∗Section 2 is reprinted with permission from ”Can a Moderate-Resolution Limited-Area Data
Assimilation System Add Value to the Global Analysis of Tropical Cyclones” by C. Holt, I.
Szunyogh, and G. Gyarmati, 2013. Monthly Weather Review, 141,1866-1883, Copyright 2013 by
the American Meteorological Society.
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has been used in the operational systems of NCEP (Liu et al. 2000), is not used in

our system. Hence, adjustment of the position of the storm by the data assimilation

is due entirely to the assimilation of observations. In this Chapter, no consistent set

of observations that provide direct information about the TC position or intensity

are used. Occasionally reconnaissance dropsondes make it into the NCEP operational

files and are assimilated when available.

2.1.b LETKF Data Assimilation

The LETKF, similar to other formulations of the Ensemble Kalman Filter, gener-

ates an ensemble of forecasts to estimate the background and covariance matrix of

the background error. To be precise, the state update equation is

x̄a = x̄b + Kδy, (2.1)

where x̄a is the analysis, x̄b is the background, which is computed by taking the mean

of the background ensemble, K is the ensemble-based estimate of the Kalman gain

matrix PbHT (HPbHT + R)−1, and δy = yo −H(x̄b) is the observation innovation,

where yo is the vector of observations and H is the observation function that maps

the model grid point variables into observables at the observation locations. The

matrix H represents the linearization of H about x̄b and R is the observation error

covariance matrix. The ensemble provides the estimate of both the HPbHT matrix

of background covariance for the observation locations and the PbHT matrix of

background covariance for the observation and grid point locations.

The unique features of the LETKF are that it assimilates all observations that

may affect the estimate of a given state vector component simultaneously, and the

analyses of the different state vector components are computed independently of each

other (Hunt et al. 2007, Szunyogh et al. 2008, and Merkova et al. 2011). In practice,
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the observations that may affect the analysis at the given grid point are selected by

assimilating all observations from a prescribed local volume around the grid point.

The definition of the local volume is a tunable parameter of the LETKF algorithm.

In essence, the local volume has to be sufficiently small so that the ensemble can

provide an efficient representation of the most important degrees of freedom in the

space of the background errors, but sufficiently large, so the local volumes centered at

neighboring grid points include similar subsets of the observations, which is necessary

to ensure the smooth spatial variation of the analyzed fields.

2.1.c Configuration of the Data Assimilation System

In our configuration of the data assimilation system, each global ensemble member

has a limited-area counterpart: the k-th member of the global analysis ensemble at

the previous analysis time, tn−1, provides the initial condition for the global forecast

that (i) produces the k-th member of the global background ensemble at the analysis

time, tn and (ii) provides the boundary conditions and the large-scale forcing for the

limited-area forecast that produces the k-th member of the limited-area background

ensemble at tn. The initial condition for the computation of the k-th member of the

limited-area background ensemble at tn is the k-th member of the limited-area analysis

ensemble at tn−1. The global data assimilation process at tn produces the members

of the global analysis ensemble at tn, while the limited-area data assimilation process

provides the members of the limited-area analysis ensemble at tn. In what follows, we

refer to the ensemble mean of the global analysis ensemble as the global analysis and

the ensemble mean of the limited-area analysis ensemble as the limited-area analysis.

The tunable parameters of the LETKF are set to values that were found to provide

a near-optimal performance of the analysis system given the available computational

resources by the earlier studies with the same system (Szunyogh et al. 2008 and
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Merkova et al. 2011). In particular, all experiments are carried out with K = 40

ensemble members and observations are assimilated within 800 km of each grid point

in both the global and the limited-area system. In addition, covariance inflation is

applied to the ensemble-based estimates of the background error covariance matrix to

compensate for the effects of sampling errors (due to the finite size of the ensemble)

and nonlinearities in the evolution of the state estimation errors, and to account for

the effects of model errors. The covariance inflation in the global system is variable

with height and with latitude. In the southern hemisphere and tropics, the inflation

ranges from 1.25 at the surface to 1.2 at the top model level. There is a transition

zone near 25◦ North where the inflation tapers from 1.35 at the surface to 1.3 at the

top. At latitudes higher than 25◦ in the northern hemisphere, the inflation factor is

1.5 at the surface tapering to 1.3 at the top level. The covariance inflation factor in

the regional system varies only with height and ranges from 1.5 at the surface to 1.3

in the top level.

Four daily analyses are obtained by assimilating observations from an observation

time window of ∆t = 6 h. This approach provides analyses at 0000 UTC, 0600

UTC, 1200 UTC, and 1800 UTC. Analyses are prepared for the period between 0000

UTC June 22, 2004 and 1800 UTC August 15, 2004. We generate the initial global

ensemble for 0000 UTC June 22, 2004, which is necessary to start the cycling of the

analysis, with the 0000 UTC operational GFS analyses truncated to T62 resolution

from 40 different days during the summer of 2004. During the cycling period, there

were eight TCs in the northwest Pacific basin. Of these eight, there were a variety

of storm intensities ranging from Tropical Depression (< 34 kts) to Category 4

(113− 136 kts) on the Saffir-Simpson Scale (Atangan et al. 2004). Basic information

for each of these storms is included in Table B.1.

The domain for the limited-area calculations is chosen such that it includes the
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tropical northwest Pacific, a large portion of eastern Asia, and the northeast Pacific

ocean (Fig. A.2). The resolution of the limited-area system starts at roughly the

same scale as the global analysis (200 km) and is increased in increments to 36 km,

at which point it becomes too computationally expensive to further increase the

resolution for the same domain.

Five-day deterministic forecasts from both the global and limited-area 48 km

analyses are prepared every twelve hours over the course of the nearly two-month

period we study.

2.2 Verification Methods

2.2.a Nominal Resolution

Analyzing and predicting the storm locations on a finite resolution grid introduces

an inevitable error component into the position analyses and forecasts. Assuming

that the four grid points surrounding the storm location are the vertices of a ∆x×∆x

square, the magnitude of this error component can take any value between zero

and
√

2∆x
2

with equal probability. The discretization error formally enters the data

assimialtion process by limiting the accuracy of the observation function H and the

accuracy of the H linearization of H.

2.2.b Effective Resolution

Resolution also has a major effect on the accuracy of the estimate of the background

error covariance matrices HPbHT and PbHT . These effects are controlled, not by

the grid spacing, but the much coarser effective resolution of the model, because the

ensemble can estimate the background error covariances only at those scales that the

model can resolve. The effective resolution of the analyses and forecasts is coarser

than the ∆x grid spacing (nominal resolution) of the model. The exact difference

between the effective and the nominal resolution depends on a number of factors,
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which include the discretization strategy, the truncation strategy (when a spectral

discretization is used), and the parameterization schemes that represent the effect of

processes at the sub-grid scales on the processes at the resolved scales.

The NCEP GFS model is a spectral transform model, which we integrate using a

triangular truncation with cut-off wavenumber T = 62. The model uses an aliasing-

free approach for the computation of the nonlinear terms, which requires that the

number of grid points in the zonal direction, M , satisfies the condition M ≥ 3T + 1,

while the number of grid points in the meridional direction, Y , satisfies Y ≥ 3T/2.

To satisfy these conditions, we set the number of grid points to M = 192 and N = 94.

In the region where the TCs are typically located, these choices for M and N provide

a nominal resolution of ∆x ≈ 200 km.

To provide an estimate of the effective resolution of our global analyses, we note

that the LETKF analysis is obtained on the 192× 94 grid, but then transformed to

spectral space to obtain the spectral coefficients that provide the initial conditions for

the T62 forecasts. This step amounts to a spectral filtering of the initial conditions;

for instance, the cut-off wave number for the discrete Fourier transform of 192 grid-

point variables in the zonal direction would be 96 (> 62), thus the spatial resolution

associated with a cut-off wavenumber 62 is about 300 km. The effective resolution,

however, is expected to be even lower than that: in an ensemble based Kalman filter

scheme, the analysis is a linear combination of the background ensemble members,

which implies that the analysis cannot have a higher resolution than that of the

background forecasts, which usually have little energy at the tail end of the spectrum

due to the diffusive effect of the parameterization schemes. The overall effect of

the parameterization schemes must be diffusive, because the energy, which would

otherwise accumulate at the tail end of the spectrum, has to be removed (e.g. Durran

2010).
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An estimate for the effective resolution, which accounts for the effect of diffusion

and is usually considered a conservative one, can be obtained by assuming that

diffusion wipes out most kinetic energy for wave numbers larger than 2T/3. Applying

this estimation approach to our T62 resolution global analysis fields, leads to an

estimate of 460 km for the effective resolution. Based on similar arguments, the

effective resolution of our 100 km, 48 km, and 36 km limited-area simulations are

about 230 km, 110 km, and 80 km, respectively.

Even more pessimistic estimates of the effective resolution are obtained when it is

defined as the smallest scale where the model correctly captures the power spectrum

of the kinetic energy distribution in the atmosphere. Following this approach, Källén

(2012) concluded that the global model of the European Center for Medium-Range

Weather Forecasts (ECMWF) at nominal resolutions 16 km, 10 km, and 5 km, had

an effective resolution of 110 km, 70 km, and 30 km. Notice that this approach

provides the same estimate of 110 km for the effective resolution at nominal resolution

16 km as our estimate based on the 2T/3 rule at nominal resolution 48 km. This

relationship between the two estimates indicate that while a 48 km resolution model

can represent flow features with a characteristic spatial scale of 110 km, an efficient

representation of the nonlinear interactions between those features would require a

spatial resolution of 16 km.

2.2.c Estimation of the Track and Intensity Error

The Joint Typhoon Warning Center’s (JTWC) Best Track data (Atangan et al.

2004) is used as the verification data set to assess the errors in the track and intensity

analyses and forecasts. The Best Track is issued after the JTWC reassesses all

available data once a storm has dissipated. The data set includes both six-hourly

track and intensity information, but the intensity information has larger error. The
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use of the Dvorak model is the main source of the discrepancy in intensity from

real-time observations. Look-up tables based on the Dvorak intensity index have been

derived from empirical data to provide corresponding estimates of minimum central

pressure and maximum wind speed in given basins (Velden et al. 2006). Another

discrepancy from other agencies’ best track data sets arises from using the one-minute

mean sustained wind speed. This procedure can lead to estimates that are higher

than those provided by other agencies, which base their estimates on a ten-minute

mean (Chu et al. 2002). Neither the Best Track data, nor the realtime version, called

TCVitals (Keyser 2007), were assimilated in the experiments in this Chapter.

The Best Track data are all point estimates and are compared to our gridded

analysis and forecast data. Storm locations in the analyses and forecasts are deter-

mined using a technique described by Suzuki-Parker (2012): first we identify the

location of the storm as the grid point with the maximum positive vorticity at the

850 hPa level in the model, then determine the storm intensity as the lowest SLP

found within 1◦ of the vorticity maximum. Once the cyclone tracks and intensities

are extracted for all analyses or forecasts at times included in the Best Track data,

root mean square errors (RMSE) are calculated over all the locations along the track

to provide a measure of the track and intensity error for the entire lifetime of each

TC.

2.2.d Discretization Error

Because we use a 2.5◦ × 2.5◦ grid to verify the global analyses and forecasts, for

which ∆x ≈ 260 km, the maximum and the mean of the discretization error are

about 180 km and 90 km, respectively. For the 100 km resolution limited-area grid,

the maximum of the discretization error is 90 km, while the mean is 45 km. The

same numbers for the 48 km grid are 34 and 17 km, while for the 36 km grid they
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are 26 and 13 km.

2.2.e Statistical Significance Test for Auto-regressive Process

To test the statistical significance of the differences between the RMSE for the

different analyses, we employ a method described in Szunyogh et al. (2008) and

Aravéquia et al. (2011). The test is based on a paired t-test with a null hypothesis that

the means of the two time series are the same. Assuming that the difference between

two time series of analysis errors ∆(t) is described by a first-order autoregressive

process, the test statistic is

z =
∆̄

[V∆/T ′]1/2
, (2.2)

where ∆̄ is the time average over ∆(t) and V∆ is the variance of the time series

[∆(t), t = 1, 2, · · · , T )]. In Eq. 2, the effective sample size, T ′, is

T ′ = T
1− r
1 + r

, (2.3)

where the autocorrelation coefficient, r, is computed by

r =

T−1∑
t=1

{[∆(t)−∆T1][∆(t+ 1)−∆T2]}

{
T−1∑
t=1

[∆(t)−∆T1]2
T∑
t=2

[∆(t)−∆T2]2}1/2

. (2.4)

Here, ∆T1 is the average over the first T −1 time steps of ∆(t) and ∆T2 is the average

over the last T − 1 time steps of ∆(t).

Under the assumption that the time series of errors is described by a first order

autoregressive process, autocorrelation, r should fall within the range [0, 1]. While

the intensity analysis and forecast error statistics generally satisfy this assumption,

13



the position analysis errors do not, because the analysis position error has a ‘‘short

memory’’. Thus, in the computation of the statistical significance of the difference

between the track errors of each experiment, we assume that the effective sample

size T ′ is equal to the sample size T .

Once z is computed, the difference between the time series is deemed significant

if the likelihood of obtaining this z is less than the significance level being tested.

Differences between analysis time series of pressure or track error are sufficiently

significant for our purposes if the probability of achieving the observed value of z,

using a t-distribution with T ′− 1 degrees of freedom, is greater than 90% (i.e. p-value

<0.05 or p-value >0.95). An example of some of these metrics is provided in Table

B.2 for the comparison of the global LETKF and the limited-area 100 km LETKF

experiments.

2.2.f Steering Flow Error

A necessary condition for an accurate tropical cyclone track forecast, including

the forecast that provides the background, is an accurate analysis and prediction of

the steering flow. Here, we define the steering flow by the mass-weighted vertical

average of the wind vector between the 850 hPa and the 250 hPa pressure level. We

define the error in the deep layer wind, STWE, as

STWE =

√
(u− ut)2 + (v − vt)2, (2.5)

where u and v are the deep layer mean-weighted wind components in our analyses

or forecasts, and ut and vt are the proxies for the true values of u and v and the

overbar represents the time mean over all verification times. The two-dimensional

field of STWE is calculated for the entire limited-area domain. We use u and v

fields computed based on the NCEP operational analysis at 1◦ horizontal resolution
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as the proxies ut and vt. The flow associated with the TCs is not removed for the

calculation of the environment flow.

2.2.g Stratification by Storm Intensity

Verification statistics stratified by cyclone intensity are also prepared. This

verification approach is, in part, motivated by Torn (2010), who found that the

largest errors in the intensity analyses tended to occur for strong TCs (Category 3-5),

while the largest track errors tended to occur for weak TCs (Tropical Depressions and

Storms). The intensity and the position errors are separated based on Best Track

wind speed into the three groups used in Torn (2010): Tropical Depression/Tropical

Storm (< 63 kts), Category 1-2 (63− 96 kts), and Category 3-5 (> 96 kts).

2.2.h NCEP Operational Analyses

To assess the quality of our LETKF analyses, we employ the NCEP operational

analyses from 2004 as both benchmarks and verification data. For the computation

of the verification statistics, the operational analyses are considered on a 2.5◦ × 2.5◦

grid for the comparison with the global LETKF analyses, and on a 1◦ × 1◦ (about

100 km resolution) grid for the comparisons with the limited-area analyses. The

operational NCEP analysis used the same version of the model as we did, but with

the Spectral Statistical Interpolation (SSI), a 3D variational analysis method (Parrish

and Derber 1992), data assimilation system. The operational analyses have a higher,

T254L64, resolution, which is roughly equivalent to a 50 km nominal resolution

at 20◦N. It also assimilated a large number of satellite radiance observations in

addition to the observations assimilated in our system, and most importantly, it

employed a TC relocation technique (Liu et al. 2000) based on the TCVitals. Thus

the main sources of error in the operational analyses are the discretization error and

the differences between the TCVitals and the Best Track data. The latter source
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of error was examined by Trahan and Sparling (2012), who found that for the 2004

season, the frequency of the TCVitals position being different from the JTWC Best

Track position by more than 40 km was just over 10 %. They also found, however,

that in particular cases, the difference between the Best Track data and the TCVitals

were surprisingly large. For instance, the difference between the JTWC Best Track

data and the TCVitals can be larger than 100 km for weak storms.

2.3 Analysis Verification Results

2.3.a Verification of the Global LETKF Analyses

We start the discussion of the analysis verification results with the validation of

the global LETKF system. The purpose of this validation exercise to show that the

limited-area analyses are compared to a global analysis of reasonable quality.

The position RMSE for the different storms vary between about 150 km and

450 km (Fig. A.3.a), while the intensity RMSE varies between 5 hPa and 30 hPa

for the LETKF analysis for each storm (Fig. A.3.c). When the position RMSE is

compared for the global LETKF and the operational analysis at the resolution of the

LETKF analysis, the difference between the two analyses is much smaller than the

RMSE for the LETKF analysis. As expected, the differences between the intensity

RMSE for the two systems are small, as neither of the analyses considered here has

sufficient resolution to resolve the dynamics of the most intense phase of the lifecycle

of a TC.

2.3.b Comparison of the Global and the Regional LETKF Analyses

We first compare the performance of the limited-area data assimilation system to

that of the global LETKF system (Fig. A.4). Results are shown only for the 200 km

and the 100 km resolution regional analyses. The comparison shows, as expected,

that when the regional and global analyses have about the same resolution (200 km),
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the global analysis is more accurate. While we expect this result to be rather general,

we also expect the magnitude of the difference between the errors in the global and

the limited-area analyses of equal resolution to be strongly dependent on such factors

as the resolution, the size of the regional domain, the choice of data assimilation

system, and the observation density.

When the resolution of the limited-area analysis is doubled to 100 km, the limited-

area analysis has a statistically significant advantage over the global system for three

of the eight storms and shows some significant systematic advantage. For the rest of

the storms, the limited-area analyses is more accurate, but not at the 90 % confidence

level. For all but two storms, the 100 km limited-area intensity analysis is also

more accurate, but from a practical forecasting point of view, the advantage of the

limited-area analysis is small.

2.3.c Comparison of the Different Resolution Regional Analyses

In Fig. A.5, the accuracy of the analyses is compared for each resolution to

the accuracy of the analyses at the one step higher resolution (e.g. panels a and

b compare the 200 km and the 100 km analyses, panels c and d compare the

100 km and the 48 km analyses, etc.). There is a clear improvement in the position

analyses only when the resolution is increased from 200 km to 100 km, but further

increases of the resolution show no further significant improvement. There is also

a statistically significant improvement in the intensity analysis when the resolution

is increased from 200 km to 100 km. While further increases of the resolution lead

to further improvements in the intensity analysis (right panels), the magnitude of

the improvement is small from a practical point of view. (The average reduction in

the intensity RMSE due to increasing the resolution from 100 km to 48 km, or from

48 km to 36 km, is a mere 0.2 %.)
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2.3.d Stratification of the Errors by Storm Intensity

The effect of storm intensity on the errors in the global and the limited-area

position analyses is shown in Fig. A.6. The statistics shown in this figure are based

on 15 data points for strong storms, 48 data points for moderate storms, and 155

data points for weak storms. The results suggest that storm intensity has a major

effect on the distribution of the position error. First, the mean and the median of

the errors for the strong storms are smaller than for the moderate and weak storms

for all configurations of the analysis system. Second, large errors, which appear as

statistical outliers in Fig. A.6 in the case of weak storms, are not nearly as large and

do not occur with as great a frequency in the case of moderate and strong storms,

as in the case of the weak storms. We note that the outliers for the weak storms

are typically due to the given analysis not resolving a circulation at all. In addition,

weaker systems often have less well-defined steering flow. Most likely, these two

factors lead to the larger number of outliers for the weak storms.

The maximum error for the global LETKF analyses of strong storms is 246 km,

while the mean error is 136 km. The maximum is larger by about 60 km, while

mean by about 46 km, than what we would expect if the errors were solely due to

discretization errors. The distribution of the errors, however, is very similar to that

for the operational global analysis truncated to the resolution of the global LETKF

analysis. That is, at that resolution, the LETKF can compensate for the advantage

the operational system has due to the use of TC relocation.

The limited-area analyses of the positions of the strong storms are clearly more

accurate than the global LETKF analyses of the storms. According to a Kolmogorov-

Smirnov two-sample test for distribution (e.g., Massey (1951)), the distributions of

the errors for both the 100 km and the 36 km resolution systems, but not for the
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48 km system, are significantly different from the distribution of position errors for the

global LETKF at a 90 % confidence level. Neither the distributions, nor the means

of the errors are different for the three different resolution limited-area analyses.

Nevertheless, the maximum of the position error (excluding outliers) indicates a

slight decrease of the position error with increasing resolution: the maximum of the

position error for the 100 km, 48 km, and 36 km resolution limited-area analyses is,

respectively, 201 km, 177 km, and 94 km.

The mean (85 km) and the maximum (201 km) of the error for the 100 km

resolution system is consistent with our estimate of the effective resolution (230 km)

for that grid spacing, but the mean and the maximum for the 48 km and 36 km

resolution systems are larger than what would be expected based on the estimates

of the effective resolution. This suggests that at resolutions finer than 100 km, the

analysis system cannot take advantage of the smaller discretization errors and the

higher effective resolution. This result suggests that either there is no sufficient

observed information to take advantage of the higher-resolution grid and/or the

quality of the estimates of the background covariances do not improve sufficiently to

lead to a better use of the available observations. The operational analysis, which

has a nominal resolution about the same as that of the 48 km resolution limited-area

analysis, can achieve a higher accuracy than the limited-area analyses (a mean error

of 58 km and a maximum error of 99 km, excluding outliers). The higher accuracy

of the operational analysis is most likely primarily due to the use of TC relocation:

the TCVitals are based on a large amount of observed information, which is not

assimilated in our system. In addition, the TC relocation procedure does not rely on

the estimates of the background covariances for the correction of the storm location,

thus its accuracy is limited by the grid spacing and the accuracy of the TCVitals,

rather than the effective resolution. Finally, the assimilation of a large number of
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radiance observations in the operational system, which are not assimilated in our

system, may lead to a more accurate analysis of the steering flow.

The superiority of the higher-resolution limited-area analyses to the global LETKF

analysis is most apparent for the weak storms: the distributions and means of the

errors are significantly different from the global distribution of errors for all limited-

area resolutions at the 90 % confidence level.

For completeness, we also show the stratification of the intensity errors by storm

intensity (Fig. A.7). The most striking feature of the intensity errors is that they

are larger for the strong storms than for the moderate storms, and for the moderate

storms than for the weak storms. The differences between the performance of the

global systems, the performance of the global and limited-area systems, and the

performance of different resolution limited-area systems are small and not statistically

significant. This result suggests that, as expected, analyzing the intensity is equally

challenging for all investigated configurations of the system.

2.3.e Stratification of the Analysis Increments by Storm Intensity

Next, we investigate the effect of storm intensity on the relationship between the

background and the analysis errors. The results of our investigation are summarized in

Fig. A.8. In this figure, a dot over a diagonal indicates a case in which the assimilation

of the observation improved the state estimate provided by the background, while a

dot below the diagonal indicates a degradation by the assimilation of observations.

The one-sentence segue of the results is that the assimilation of observations tends to

help when the background error is large. In particular, in the case of strong storms,

data assimilation has a positive effect on the accuracy of the state estimate only

for the 200 km resolution data assimilation system, which is the one configuration

that tends to provide a low-accuracy background for strong storms. The assimilation
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of the observations leads to the largest improvement in the 100 km, 48 km, and

36 km resolution analyses of moderate storms. There is a similar, but somewhat less

dramatic improvement in the state estimates for the weak storms.

2.3.f Errors in the Analysis of the Steering Flow

The accuracy of the analysis of the steering flow can have a major effect on the

accuracy of the analysis of the location of the storms at later times through the

background estimate of the storm locations. The geographical distribution of the

RMSE of the difference between the analyses of the steering flow in the different

limited-area experiments is shown in Fig. A.9. (We recall that the proxy for the true

steering flow in the computation of the error is the operational NCEP analysis at

1◦ resolution.) In the extratropics, the limited-area analyses of the steering flow are

generally more accurate than the global analysis in all but the 200 km resolution

limited-area analysis. In the tropics the advantage of the limited-area system is less

obvious. The only regions where the limited-area analyses are clearly less accurate

than the global analysis are near the western and eastern lateral boundaries in the

extratropics. The magnitude of the degradation near the boundaries decreases with

increasing resolution. This result is most likely due to the fact that in the higher-

resolution system more grid points are used for the relaxation of the limited-area

model solution to the global model solutions near the lateral boundaries.

Is the improved analysis of the steering flow in the 100 km (and higher) resolution

limited-area analyses due to an improved background and/or to a larger improvement

of the state estimate in the update step? First, we compare the background errors for

the different resolution analyses (Fig. A.10). For the interpretation of the results, we

recall that the background is the ensemble mean of the ensemble of 6-hour forecasts.

The results show that except for the 200 km resolution configuration, the background
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error is smaller for the limited-area systems, than the global system. In addition,

while increasing the resolution from 200 km to 100 km helps significantly, the further

increase of the resolution cannot further enhance the quality of the limited-area

background. This result suggests that the 100 km and finer resolution analyses

are more accurate than the global analysis, in part, because the higher-resolution

limited-area model provides a more accurate background. To see whether the higher-

resolution limited-area analysis can also more efficiently assimilate the observations,

we compare the magnitude of the corrections made by the limited-area and the global

analyses to the background (Fig. A.11). The results show that the limited-area

systems more efficiently reduce the background error.

There are two potential factors that can contribute to the more efficient use of

the observations by the limited-area data assimilation systems: the more accurate

estimation of the background covariance and the more accurate computation of the

observation operator. In a system where the observation operator implements only

spatial and temporal interpolations, as is the case in our study, a higher-resolution

grid is a guarantee for a more accurate observation operator. A more accurate

observation operator can result in a more accurate analysis because it leads to more

accurate computation of the innovation, δy. It can also lead to a more accurate

weighting of the background and the observed information in the analysis, by allowing

for a more accurate estimation of HPbHT . Finally, it spreads the information more

efficiently from the observation locations to the model grid points with the help of

a more accurate estimate of PbHT . The small improvement found in the analysis

of the steering wind when the resolution is increased beyond 100 km suggests that

once that resolution is reached, the interpolation errors become secondary compared

to the errors in the background and the estimates of the background error statistics

and/or the limited availability of observed information.
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2.4 Forecast Verification Results

2.4.a Mean Forecast Error

We compare the error in the global forecasts started from the global LETKF

analyses with the error in the 48 km forecasts started from the 48 km limited-area

analyses. The mean error of the position forecasts for the first five forecast days

is reduced independent of the storm strength at analysis time (Fig. A.12). Are

these forecasts improved due to the better analysis of the position of the storms

or to the improvements in the analysis of the steering flow? First, in the domain

averaged sense, the advantage of the limited-area forecast of the steering flow is

short-lived; about 18 hours (Fig. A.13). A more careful investigation of the error

in the steering flow shows, however, that in the immediate vicinity of some of the

storms the improvements in the wind forecasts survive up to about 72-h forecast

time (Fig. A.14). Thus, we conjecture that the forecast improvements are due to the

more accurate analysis of the storm locations and the better representation of the

interactions between the storms and their immediate environment.

2.4.b Stratification of Forecast Errors by Storm Intensity

We find statistically significant improvements only in the forecasts of the weak

storms (Fig. A.15). (The results for the moderate and the strong storms are not

shown.) Even though the errors can be quite large in the forecasts of these storms,

the forecast improvement in the mean error by the limited-area system is statistically

significant up to the 72-h forecast time. Since the errors for the weak storms are

larger than for the moderate and strong storms, their weight in the overall average of

the errors is also larger. The combination of these relatively large improvements in

the forecast of weak storms and the small (statistically not significant) improvements

in the forecasts of the moderate and strong storms lead to the clear improvement in
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the overall forecast errors shown in Fig. A.12.
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3. THE ASSIMILATION OF TC OBSERVATIONS

Over the past decade, the increase in direct sampling activities of tropical cy-

clones (TCs) has led to a host of data assimilation challenges. One particularly

challenging aspect of assimilating observations of TCs is the proper interpretation of

large observation innovations (the difference between an observation of the state and

the background estimate of the state). Aside from gross errors in the observations,

large innovations can arise in two main ways for TC assimilation. One cause is

representativeness error, which occurs when observations are strongly affected by

flow features that are not resolved in the model. Because representativeness error

depends on both the atmospheric state and its model representation, it is difficult

to categorically quantify it for a given observation type. A second source of large

innovations for TCs is not necessarily a result of large errors in the observation or

background representation of the locations of the storms: a small displacement in

the background location of the TC from the observed location can result in large

innovations for observations of fields with large gradients and/or spatial variability.

Consider the scenarios illustrated in Fig. A.16. A wind observation taken in the

northeast quadrant of the TC is combined with a relatively accurate background

estimate of the storm such that the resulting analysis would reflect the true atmo-

spheric state that is being sampled. In scenario B, the background estimate of the

TC is displaced slightly from the observed location, leading to a large observation

innovation for the same observation. In Scenario B, the observation would either be

rejected as a bad observation, or it would affect the analyzed fields in an unrealistic

way.

In this Section, we search for efficient methods for the assimilation of observations
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associated with potentially large observation innovations. In particular, we seek

an efficient combination of the quality control procedures and the definition of the

observation errors. We focus on three types of observations: QuikSCAT 10 m wind

retrievals, Tropical Cyclone Vitals (TCVitals) minimum sea level pressure (SLP),

and dropsonde vertical profiles from TC reconnaissance programs. The system that

will be implemented is identical to the analysis/forecast system implemented for the

experiments in the previous Section. One beneficial aspect of the ensemble-based

approach for the aforementioned types of experiments is that the EnKF is thought

to be an efficient filter of imbalances that could be introduced by the assimilation of

observations.

Experiments testing assimilation methods of the special observations will be

carried out in three stages. First, we will investigate several approaches for each ob-

servation type in a series of single-update experiments. Second, we will implement the

methods that have been found the most promising in the single-update experiments

to carry out cycled experiments over the lifetime of Typhoon Sinlaku (2008). Because

Sinlaku is among the most intensely observed storms on record, it provides a unique

opportunity for applying experimental data assimilation techniques. Sinlaku was

one of the strongest typhoons to occur during a highly organized, multi-organization

field campaign targeting all stages of the life cycle of a tropical cyclone from orig-

ination as a tropical wave through extra-tropical transition: the THORPEX (The

Observing System Research and Predictability Experiment) Pacific-Asian Regional

Campaign (T-PARC) and Tropical Cyclone Structure 2008 (TCS-08) field campaigns

covered much of the Northwestern Pacific basin and included observations from

diverse platforms, many of which were operationally available in real time. Typhoon

Sinlaku was meteorologically interesting in that the operational centers had difficulty

forecasting several important periods during the lifetime of the cyclone: first, a rapid
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intensification over a period of two days from 45 kts to 120 kts, then the re-curvature

to the northeast, and finally a second rapid intensification from 20 to 70 kts over

18 hours, which was not captured by the model forecasts or satellite observations,

but was recorded by the dropsonde observations (Cooper et al. 2008). Because

of the analysis and forecast challenges posed by the storm and the abundance of

observations, Sinklaku provides an ideal setting for the cycled experiments. Lastly,

we will consider the impact of the special observations for a sample of 21 TCs from

two separate seasons in the Northwest Pacific basin.

3.1 Special Observations

3.1.a QuikSCAT Observations

QuikSCAT 10 m wind observations are thought to be potentially highly useful

for tropical cyclone analysis and forecasting because the near surface winds play

an important role in the transfer of heat, moisture, and momentum in the TC

environment (Leidner et al. 2003). While investigating the potential impact of

QuikSCAT observations may seem irrelevant considering that the instrument is no

longer active, understanding the potential benefits of having similar observations

in the future is important for the planning of the next generation of observing

systems. Several studies have discussed the impact of the assimilation of scatterometer

observations on TC analyses. Kunii et al. (2012) used an ensemble-based technique for

the estimation of the analysis impact of scatterometer observations, while others used

3D- and 4D-VAR data assimilation systems to assimilate scatterometer observations

(Isaksen and Janssen 2004; Chen and Snyder 2007; Leidner et al. 2003) and found

positive impacts on both track and intensity forecasts.

The challenges associated with assimilating QuikSCAT retrieval observations

make it one of the most complicated data sets to assimilate. Not only must we
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address the causes of large observation innovation, but the observations have an

inherent representativeness error associated with their gridding process, and finding

a proper definition of the observation function is highly challenging.

The Level2B processing of the QuikSCAT observations starts by separating single

backscatter pulse measurements into 8 − 12 slices, each approximately 6 x 25 km.

Since pulses overlap, there are multiple slices of measurements for the same physical

area. The satellite measurement swath is divided into a square grid of Wind Vector

Cells (WVCs), which are 25 x 25 km for the 25 km dataset. The slices of each

pulse are assigned to the grid of WVCs based on the location of the centroid of the

slice. Because of the overlap of pulses, many slices fall into each WVC (Lungu 2006).

The wind speed and direction are chosen by an inversion process that calculates

the maximum likelihood estimates of the polarized measurements within each WVC.

In essence, each wind observation on the grid is the weighted average of the winds

within a 12.5 km radius of the grid point location and is done over a sufficiently short

amount of time that the observation may be considered to be instantaneous for our

purposes. The spatial averaging, however, may introduce a significant amount of

representativeness error in the presence of the strong winds (≥ 30 ms−1) associated

with TCs.

The observation function maps the background estimate of the observation to

the time and location of the observation. The observation function as we define it

for the QuikSCAT retrievals, assumes that the boundary layer is well-mixed and

neutrally stable. The virtual potential temperature remains constant with height

in a well-mixed boundary layer. Since QuikSCAT winds are derived from satellite

measurements as neutral-stability winds, and given the amount of vertical mixing

associated with a TC, both assumptions are appropriate.

The extrapolation of the 10 m model-equivalent background wind is performed
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using a basic hydrostatic approximation,

dp

dz
= −ρ̄g, (3.1)

to determine the height difference, dz, and pressure difference, dp, between the first

sigma level and 10 m, where ρ̄ is the average density of the air in the layer, and g is

acceleration due to gravity. The log-wind relation,

V10 = V
log10

(
10.0
z0

)
log10

(
z1
z0

) (3.2)

makes it possible to reduce the model wind, V , at the first sigma level to a wind at a

height of 10 m, V10, where z1 is the height of the first sigma level in meters, and z0 is

the surface roughness length defined through empirical methods in Hoffman (2011).

These equations are underdetermined without an estimate for the average density

of the layer, which can be addressed with the following relationships. The virtual

potential temperature, Θv, is

Θv = Θ(1 + 0.61w), (3.3)

where w is the mixing ratio, and the potential temperature, Θ, is defined as

Θ = T

(
po
p

)χ
(3.4)

where T is temperature, p is pressure, p0 is the pressure at a reference level of

1000 mb, and χ = R/cp is a constant. Since Θv remains constant with height under

our assumptions about the layer, we may remove the pressure and the temperature

height dependence from Eqn. 3.4. The average layer pressure p̄ = (psfc + p1)/2,
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and average temperature, T̄ = p̄/(ρ̄R), between the surface and first sigma level are

substituted into Eq. 3.4. With these substitutions, Eqn. 3.3 then becomes

Θv =
p̄

ρ̄R

(
po
p̄

)χ
(1 + 0.61w). (3.5)

The resulting average density then, is

ρ̄ =
p̄

ΘvR

(
p0

p̄

)χ
(1 + 0.61w). (3.6)

which determines a solution for Equations 3.1 and 3.2.

3.1.b Tropical Cyclone Vitals

Tropical Cyclone Vitals (TCVitals) are a database of real-time estimates of

TC parameters, which can include the minimum SLP, position, maximum wind

speed, shape, and size just to name a few (Trahan and Sparling 2012). Because

the main purpose of using the TCVitals observations in this study is to deepen and

reposition the cyclone through the regular data assimilation process, we will use only

the information about the value and the location of the minimum SLP. (Since our

analysis system does not employ TC relocation or cyclone bogusing techniques, the

analyzed position and intensity of the cyclone is entirely due to the assimilation of

observations.) The smoothing that occurs as a result of using an ensemble mean to

estimate the most likely background and analysis state can be detrimental to the

analysis of both the intensity and position of the TC if there is measurable uncertainty

in the position of the TC. Chen and Snyder (2007) assimilated only the position of the

vortex in an idealized ensemble Kalman filter (EnKF) experiment with limited success

and found that when the difference between the background location and the observed

location of the TC was larger than the vortex size, the EnKF performed poorly. They
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also showed that assimilating intensity reduces the ensemble spread of the vortex

positions, leading to quicker convergence of the ensemble tracks, and minimizing the

negative effects of assimilating positions with large innovations. This is a promising

result for the simultaneous assimilation of position and intensity. Torn and Hakim

(2009) chose not to assimilate minimum SLP in their low-resolution (30 km) outer

limited-area domain, because they believed it would lead to degraded track and

intensity forecasts since the resolution could not accurately simulate TC structure. In

a later study, Torn (2010) showed that there was an increase in acoustic and gravity

waves by as much as 30 % when intensity observations with large innovations were

forced into the analysis, which essentially resulted in the rejection of the observation

as the model quickly returned to a state that could be resolved at the given grid

spacing. They did, however, assimilate the TC advisory position in another study

(Torn and Hakim 2009), and found similar results as Chen and Snyder (2007): the

position observations had a negative affect when they were more than a few grid

points from the background estimate of the location. The results of these studies

suggest that assimilating both the intensity and location of the vortex could be

promising for a moderate resolution system, as long as the background estimate of

location is not too far from the observed position.

The TCVitals serve as an excellent set of observations to test the effect of

observation error definition on the analysis. The single SLP is estimated only at the

synoptic analysis times, and surface pressure is already among the types of observations

assimilated in the LETKF, so errors are minimal compared to other observation

types. Because the observations of SLP tend to have a large representativeness error

component, especially for strong TCs, the experiments assimilating TCVitals will

address whether it is beneficial to account for representativeness error within the

definition of the observation error.
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Several studies suggest that the observation error for the TCVitals position is

between 10 and 20 km (Trahan and Sparling 2012; Torn and Hakim 2009; Chen

and Snyder 2007). Because the current implementation of our data assimilation

system does not allow for an explicit definition of the errors in the position of the

observations, the TCVitals position errors enter the data assimilation process as

errors in the TCVitals surface pressure observations. We test multiple options for the

definition of observation standard error for the TCVitals surface pressure observations.

The first option employs the same climatological departure of 3 hPa as was used

by Torn (2010). A second, sliding scale for error is defined by linearly fitting the

intensity error in the NCEP operational analysis and scaling it to 10% to limit the

maximum value of error to a reasonable estimate less than about 10 hPa. The

NCEP operational analysis has a similar grid spacing as our limited-area analyses,

therefore it is expected to be a reasonable proxy for the representativeness error in

a state-of-the-art analysis system with moderate resolution. A more sophisticated

method, which could be used is to define a sliding scale TCVital SLP error as a

function of grid spacing, observed central pressure, and ambient pressure following

an exponential function (Holland 1980), but for the initial testing of the potential

benefits of a sliding scale approach, our simpler approach should be sufficient.

A third option is to uniformly apply a very low observation error (≤ 1 hPa,

comparable with background standard deviation in the ensemble) to all minimum SLP

observations. The potential drawback of this approach is that when the observations

have weights nearly equal to the background estimate in the analysis, the likelihood

of introducing gross imbalances into the analyzed state significantly increases.

3.1.c Reconnaissance Dropsondes

Weissmann et al. (2011) found that assimilating reconnaissance dropsondes in

32



3D-Var systems with lower resolution can improve track forecasts by as much as 40%,

while other studies found that forecasts from global 3D-Var systems were improved

by 10− 30% (Aberson 2003, 2008; Wu et al. 2007a,b; Pu et al. 2008; Chou and Wu

2008). Findings of both Weissmann et al. (2011) and Chou et al. (2011) indicated

that the assimilation of the same observations by 4D-Var operational systems was

less beneficial, because these systems already exhibited lower errors due to more

efficient assimilation of the other observations, including satellite radiances. This

result indicates that the improvement of the analysis due to the assimilation of

dropsonde observations strongly depends on the quality of the background and the

data assimilation system. Torn and Hakim (2009) and Torn (2010) used an EnKF

system with the Weather Research and Forecasting (WRF) model to study TCs, but

they refrained from assimilating reconnaissance dropsondes in the outer domains with

resolutions of 30− 36 km because of the degraded forecast skill shown by Aberson

(2008) at similar resolutions.

In this study, we will use dropsondes to address observations that result in large

innovations at multiple levels. Because the estimates of the observation errors and

observation function are well-defined for these types of observations, this is by far the

least challenging type of observation of those considered in this study from a data

assimilation point of view. The main challenge is with the large innovation, so we can

investigate different quality control techniques associated with direct measurements

of TCs.

3.2 Experiment Design

3.2.a Analysis/Forecast Experiments

The analysis experiments discussed here include both single-update and cycled

experiments. The control experiment, from which most other experiments will be
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started initially, assimilates all the conventional observations assimilated at NCEP

in real time excluding satellite radiances and TCVitals.

All experiments in this Section are carried out with the same T62L28 resolution

for the GFS, while the RSM horizontal resolution remains fixed at 48 km. Any in

situ observations from the TPARC/TCS-08 campaign that made it into the NCEP

operational system are assimilated for the control, including dropsondes. The data

assimilation process was cycled for a sufficient amount of time to eliminate transient

effects before the TC observations experiments were started.

3.2.b Quality Control by Huberization

Our implementation of the LETKF performs two main quality control (QC)

checks of the observations. An offline QC is done first by rejecting observations that

have an NCEP quality control flag of 4 or greater. Then, in an online QC procedure,

the LETKF compares the remaining observations to the background mean estimate of

the state. If the observation innovation exceeds a prescribed threshold value, c, then

the observation is discarded. In past studies, c was set to at least five times either

the background ensemble standard deviation, or the observation error, whichever is

greater.

For this choice of the threshold, however, the QC algorithm discards most direct

observations of TCs because the observation innovation is often large due to large

errors in the background and/or a large representativeness error in the observations

that are not accounted for by the standard estimates of the observation error variance

in the data assimilation system. This experience motivates us to consider alternative

approaches for online quality control.
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3.2.c Huberization for Special Observations

The European Center for Medium-range Weather Forecasting (ECMWF) has

implemented a QC method that reduces the weight of the observations associated

with large innovations instead of rejecting them (Tavolato and Isaksen 2010). The

procedure is called the Huber norm QC because it is formally based on a robustification

of the 4D-Var cost function to statistical outlier observation errors. Roh et al. (2013)

defined a similar robustification method for an EnKF. In practical terms, the approach

clips the unusually large innovations to a prescribed maximum. The Huberized EnKF

analysis, x̂a, is

x̂a = x̄b + KG(δy), (3.7)

where the Huber function, G(δy), is defined by

G(δy) =


δy if |δy| < c,

c if δy ≥ c,

−c if δy ≤ −c,

(3.8)

where c is a prescribed clipping height. While Roh et al. (2013) described several

methods for the selection of the clipping height, they all involve calculations with

clean data. In the present study, we find a proper value of the clipping height

by numerical experimentation using the real observations rather than clean data

experiments, which would require the generation of simulated observations with

prescribed error statistics.
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3.3 Results

3.3.a Single Update Experiments

First, a series of single update experiments was performed in order to assess the

appropriate treatment of each of the observation types. A summary of the naming

convention for the experiments is provided in Table B.3. These experiments explore

the effects of a single observation type on the analysis, as well as the interactions of

combinations of observation types. The single-update experiments that produce the

most promising results are tested more rigorously in cycled experiments over many

analysis cycles. Although many tests were performed, the single-update experiments

with sub-optimal, or insignificant results are not discussed.

We first assess the assimilation of the TCVital SLP. We find that in the single

update experiments the SLP observation can generate the largest analysis impact of

any of the special observation types assimilated in this study, yet it is the most likely

to be rejected by the original online QC procedure. Figure A.17 shows the results

of various approaches of TCVital SLP assimilation. The Kept+Slide experiment, in

which the SLP observation is kept with no QC with a standard error of 0.44 hPa --

the result of using the Sliding method described in Section 3.13.1.b -- leads to the

greatest SLP impact, deepening the cyclone by as much as 2 hPa compared to the

original QC experiment. This is the deepest storm achieved in any of our single

update experiments, which is expected given that the observation error is very similar

to the background standard deviation and the full observation innovation affects

the analysis solution. In the Constant experiments (3 hPa error), there is minimal

impact by the TCVital observation since its error is much larger than the background

standard deviation of SLP at that location, rendering it essentially ineffective at

updating the intensity of the cyclone in the analysis, even though it is not discarded
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by QC. At this analysis time, the observed cyclone is not so deep that we would expect

serious problems to arise by assimilating the TCVital SLP with a very low error

value, however a stronger storm might generate unwanted imbalances when keeping

an observation with a very large representativeness error component. Huberizing the

TCVital SLP innovation when the observation error is low (Clip+Slide) provides a

compromise between the two extremes, resulting in a deeper storm than the Kept

+ Constant (large observation error) experiment, yet not as strong as the Kept +

Slide (small observation error) experiment. The SLP observation not only acts to

correct the intensity analysis, but also acts to update the position analysis, even in

the absence of a significant pressure analysis increment. This is likely a result of

reducing the ensemble spread in the background position estimate of the TC during

the update step, and is especially important in the analysis of weak storms where the

signal-to-noise ratio can be much higher than that of stronger storms.

Even though the storm position shifts as a result of TCVital SLP assimilation,

there are still some concerns associated with the analyzed wind field, and is not

necessarily the fix-all observation that, at first sight, it seems to be. Chen and Snyder

(2007) and Torn and Hakim (2009) both show that a location observation can have

negative impacts on the analysis by generating a secondary circulation instead of

moving the vortex to the correct location. Evidence of a similar phenomenon is

seen in the wind field of our TCVital only experiments whenever there is a major

intensity change compared to the background. Figure A.18 shows a north-south

elongation in the flow for experiments that only assimilate TCVitals SLP, a feature

that is seen in neither the background nor the NCEP analysis. Neither the QC

method, nor the observation error has, any affect on the shape of the flow when only

TCVitals SLP is assimilated: a problem that may be eliminated only by improving

the background estimate of location when this is the only available observation. In
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the presence of other observations, however, the pattern of the circulation could see

gainful improvements, too.

Experiments that assimilate only dropsonde or QuikSCAT observations show

marked improvement in the pattern of circulation over the TCVital-only experiments

as long as the observations are not subjected to the original QC method. The low-

level winds in these single-observation-type experiments (Fig. A.19) show that the

wind field is more consistent with what we would expect to see in an analysis at a

moderate resolution: a tighter inner core of relatively high-speed winds around a more

accurately defined center of circulation. The speed of the winds in the circulation is

also increased when a QC method other than the traditional QC is used, but not to

the degree seen in TCVitals-only experiments. The dropsonde observations play a

more significant role in increasing the wind speed than the QuikSCAT observations,

likely because their impact is through a deeper layer, but both types of observations

are valuable in relocating the TC circulation.

For both QuikSCAT and dropsonde observations, as with any observing platform,

there are occasionally truly erroneous observations that make it past the offline

QC. While there is evidence that these observations should be trusted more than

in our original QC method, keeping the observations without performing an online

QC would likely introduce other problems into the analysis. The results hitherto

described suggest that Huberization may offer the needed compromise for an online

QC method for the QuikSCAT and the dropsonde observations, while the results are

less clear for the TCVitals.

Experiments that utilize all three special observation types support the findings of

the single-observation type experiments (Fig. A.20). When the special observations

are either Huberized or Kept, the TCVital SLP observation serves the main purpose

of intensifying the TC, while the QuikSCAT and dropsonde observations act to
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update the circulation pattern and constrain the impact of the TCVital observation

on maximum analysis intensity; all of the observation types play a role in the position

update. With these results, it becomes obvious that the original QC method impedes

the potential accuracy in the analysis of TCs in our analysis system.

Based on the experience of the single update experiments, we devised a combined

experiment with the following parameters:

• dropsonde and QuikSCAT observations are assimilated by using Huberization

with a clipping height which is three times the original threshold;

• TCVitals SLP is kept with no QC;

• the error in TCVitals SLP is set to 0.5 hPa for all observations.

Since the QuikSCAT observations seem to impose a constraint on the potential

intensity of the TC, the TCVital observation can be assimilated without QC when

QuikSCAT observations are also assimilated. When QuikSCAT observations are not

available, however, the TCVitals should be also be Huberized in order to reduce the

potential distortion of the wind field, and limit the impact of observations of strong

storms.

The results of deterministic forecasts initialized from each of the single-update

analysis experiments suggest that both the experiment that Kept all observations with

no QC and the Combined experiment provide reasonable initial conditions suitable

for improving TC forecasts. Track and intensity forecasts from both of these analyses

perform better than the forecasts started from the control (original QC) experiment

and the All Obs Clipped experiment for the first 60 hours. The Combined experiment

shows a slight track improvement over the others from 60 - 84 hours, (Fig. A.21),

but the intensity forecast is degraded over the same time period. After 60 hours, the

initial conditions are no longer affecting the forecasts.

39



3.3.b Cycled Experiments

3.3.3.1 Sinlaku Analyses

Because the effects of using only a TCVital SLP observation were not immediately

obvious in a single update analysis, the discussion in this section will briefly touch on

two TCVital only experiments , as well as the superiority of the Combined experiment

over the other methods discussed in teh previous section.

Each of these experiments was started on September 8, 2008 at 1200 UTC from

the background ensemble of the control experiment, and cycled over 35 6-hour time

cycles terminatng the experiment on September 17 at 0000 UTC. This time period

was chosen to cover the first rapid intensification and the subsequent recurvature

of Typhoon Sinlaku. Naming conventions for the experiments in this section are

the same as in the Single Update experiments (see Table B.3) with one exception:

combined is altered so that TCVitals SLP is kept with no QC only when QuikSCAT

observations are present within a 5 degree radius, otherwise, the SLP is Huberized,

along with the other TC observations, at a clipping height of 3c.

The statistics presented here are based on the analyzed position and intensity

at each analysis time. The method for determining these metrics is the same as

in Holt et al. (2013): identify the location of the storm as the grid point with the

maximum positive vorticity at the 850 hPa level in the model, then determine the

storm intensity as the lowest SLP found within 1◦ of the vorticity maximum.

Figure A.22a shows the time evolution of the minimum SLP in the analyses of

the different experiments. The RSM Control experiment with conventional QC and

no special TC observations performs poorly and even degrades the global LETKF

analysis at times. While the LETKF experiments somewhat capture the same trend as

the NCEP Operational analysis, none of them, including the NCEP analysis, captures

40



the Best Track trend or intensity. The average track analysis for the LETKF global

and RSM Control experiments also show the poorest results.

The TCVonly Kept + Slide experiment improves the simulated TC intensity

early on, and then again at the end of the cycling period, but does poorly during the

most intense period of the TC development - a direct reflection of the observation

error as we have defined it. When the observation error is low (storm is weak), the

analysis is more accurate, and vice versa, which is the same result we observed in the

single update experiments for an analysis time when the storm was of relatively low

intensity. Although the position error is drastically improved over the LETKF control

experiments, the experiment is still not the best choice among the top contenders.

The Slide experiment shows that defining representativeness error as a component

of the observation error is not the most effective assimilation method, especially for

strong storms, for either intensity or position analysis. The results at the beginning

and the end of the cycle, however, support the choice to define a consistently small

TCVital observation error during the duration of the cycle.

Keeping the TCVital as the only observation type while also definining a very

low observation error (Keep TCVonly 0.5) shows an example of why the TCVital

observation can be detrimental to the analysis when used alone. While this experiment

most accurately captures the rapid intensification of Sinlaku, the maximum intensity

is unrealistically over-estimated and the average analysis position error over the

cycling time-period reflects a sub-optimal use of the single SLP observation.

The Combined experiment has the overall best performance: it captures both

a rapid intensification and the general trend in the intensity analysis, as well as

provides the most accurate average position analysis. On average, the Combined

experiment improves the control intensity analyis by nearly 40% for Sinlaku over

these cycling times, and outperforms the NCEP analysis by 25%. In addition, the
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position analysis is improved by an outstanding 62% over the Control, and is 34%

better than the NCEP operational analysis with its advanced methods.

In theory, a better analysis should lead to a more accurate forecast, but because

many factors affect a TC forecast, an accurate analysis of position and intensity is

never a guarantee of a better position or intensity forecast. The next section addresses

the impact of observation use on the forecasts.

3.3.3.2 Sinlaku Cycled Forecasts

Five-day deterministic forecasts were started every six hours from the cycled

analysis experiments discussed in the previous section. At each analysis time, the

time-averaged forecast error is calculated and compared for the different analyses.

The statistical significance of the difference between the forecasts from the different

experiments is tested using the autocorrelation method discussed in detail in (Holt

et al. 2013) at a 95% confidence level.

A major concern reiterated throughout this paper is the possibility of exciting

strong imbalances between the wind and the mass state variables. A rapid decrease of

the gain in accuracy achieved at analysis time in the forecasts would be an indication

of the presence of strong imbalances.

Figures A.23 and A.24 show that the Combined 0.5 experiment performs much

better than the control forecast at most analysis times through 3 days for both

track and intensity forecasts, as was the result for a few of the other experiments

that assimilated multiple observation types with the experimental approaches (not

shown). At 4 and 5 day lead times, the forecasts of both intensity and position are

still improved over the control by a large magnitude, but the difference is not as

often statistically significant.

The results of cycled forecasts suggest that the improvements in the initial
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conditions provided by carefully assimilating TC observations are a key factor in

improving the forecasts in our analysis/forecast system. Many of the forecasts

improvements were of similar magnitude, but as was already mentioned, the best

overall analysis was provided by the Combined experiment, therefore, it will be the

focus of a seasonal analysis/forecast experiment.

3.3.c Seasonal Experiments

For a more statistically significant analysis of the Combined 0.5 method for the

QC of direct observations of TCs, statistics from 21 combined storms from 2004 and

2008 seasons are considered. For these experiments, the TCs are binned by Best

Track wind speed into bins containing 371 weak, 84 moderate, and 45 strong TCs.

The Combined 0.5 experiment is compared to the control analysis, the global LETKF

analysis, and the NCEP operational analysis.

The Combined 0.5 experiment makes statistically significant improvements to the

regional LETKF analysis in both the position analysis (Fig. A.25) and the intensity

analysis (Fig. A.26) of strong storms, and is systematically consistent with the NCEP

operational position analysis for all storm strengths. The Combined method even

performs better than the NCEP operational analyses on the intensity of the moderate

and strong storms. The systematic improvement over the traditional QC method

suggests that the Huberization method of QC for observational data sets known to

have large innovation errors is an effective alternative for QC within the framework

of an EnKF to improve the analysis of TCs.

Five-day forecasts were started every 12 hours from the global and regional

LETKF analyses. The results from these experiments were also binned according

to Best Track intensity estimates at verification time. The Combined experiment

improves intensity forecasts for strong storms (Fig. A.27) through the first five
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forecast days and moderate intensity storms through the first 3 forecast days. The

Combined analysis improves the long lead time regional track forecasts of moderate

and strong storms, as well (Fig. A.28). There is neither degradation nor improvement

in the track and intensity forecasts of weak storms, most likely due to the higher

signal-to-noise ratio - a problem exacerbated by the fact that weak TCs do not

always warrant the issuance of a TCVital observation. The results for the strong and

moderate storms, however, are encouraging.
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4. CONCLUSIONS

First, we investigated the benefits of employing a limited-area data assimilation

system to enhance the lower-resolution global analyses in the Northwest Pacific TC

basin. While several authors used ensemble-based data assimilation systems in the

past to downscale information about the background uncertainty in limited-area

systems employing multiple nests in the TC regions (Torn and Hakim 2009 and Zhang

et al. 2011), to the best of our knowledge, ours is the first study to use the approach

in a setting where the outermost nest is a global model. The resolutions considered

here were much lower than what would be necessary to resolve the inner core of the

TCs and observations of the inner core were not assimilated. Since studies by others

have shown that such capabilities are necessary to achieve significant reductions in

the analyses and the ensuing forecasts of the intensity (e.g., Zhang et al. 2011), we

did not expect to find significant differences between the quality of the limited-area

and the global intensity analyses.

We found that the limited-area data assimilation system enhanced the accuracy of

the analysis of the position of the storms, but the benefits of increasing the resolution

beyond 100 km were limited. (The particular value of the critical resolution would

most likely change with the resolution of the global model and the observational data

sets assimilated.) Two factors contributed to the higher accuracy of the limited-area

analysis:

• in the case of strong (Category 3-5) storms, the assimilation of observations in

the global system often degrades the accuracy of the analysis, while the effect

of the assimilation of observations in the limited-area system is closer to neutral

(last column of Fig. A.8);
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• in the case of the moderate (Category 1-2) and weak (Tropical storms and

depressions) storms, the use of the limited-area system greatly reduces the

number of unusually large (statistical outlier) errors (Fig. A.6), because the

assimilation of the observations can efficiently correct the large background

errors in the limited-area systems (bottom three rows in the first and middle

columns of Fig. A.8).

We also found that the limited-area system improved the prediction of the

storm tracks for the first five forecast days. Our analysis shows that the forecast

improvement is due to the more accurate analysis of the position of the storms and

the better representation of the interactions between the storm and their immediate

environment.

Can we expect, based on the results of the present study, that the global analysis

would benefit from feeding back information from the limited-area system using the

joint states approach of Yoon et al. (2012)? First, the higher accuracy of the analysis

of the steering flow in the limited-area analyses suggests that the higher resolution of

the limited-area analysis leads to a better interpretation of the observations in the

case of moderate and weak storms. This result suggests that the information provided

by the limited-area system about the position for the global system is potentially

of lower value for the strong storms, for which the analysis error is closer to the

discretization error than for the weaker storms.

In Section two, our focus turned toward the treatment and assimilation of direct

observations of TCs. Several approaches for assimilating TCVitals SLP, QuikSCAT 10

m wind components, and reconnaissance dropsondes were studied within our coupled

ensemble-based global-limited-area analysis/forecast system. These observations have

an inherently large representativeness error. Experiments were conducted to determine

46



how best to address these errors, exploring options in which the representativeness

error is defined as a component of the observation error, or through the QC of the

observations. Findings indicate that the best analysis is achieved when all observations

are assimilated with an online QC method that does not discard valuable observations,

and not necessarily by defining observation error with a representativeness error

component.

To the best of our knowledge this is the first application of Huberization method

of Roh et al. (2013) to a real-world EnKF analysis. Huberization clips observation

innovations to a prescribed maximum so that observations that are deemed outliers

may still contribute to the update step of the assimilation process, but not with

their full potential impact. While the optimal clipping height may be estimated

by simulated observation experiments, as outlined in Roh et al. (2013), we found a

reasonable value by numerical experimentation with real observations.

Implementing a Combined method that clips the special TC observations via

Huberization when multiple observation types are unavailable, and keeping the

TCVital observation when other special observations are present, showed drastic

systematic improvements for strong and moderate storm analyses and forecasts.

Intensity analyses and forecasts saw large improvements relative to our control

experiment, which assimilated no special TC observations, and even outperformed

the NCEP analysis benchmark in some cases. While the track improvements were

more modest, there were definite improvements for position error in both the analyses

and forecasts. There was also evidence that the Combined experiment utilized the

observation in such a way that the pattern of circulation around the center of the TC

was improved, which could have a secondary impact on improving the TC forecasts.

The systematic improvements seen in the analyses and forecasts of moderate and

strong TCs are encouraging for the application of the Huberization method within an
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EnKF system for observations with large observation innovations, such as those that

directly sample tropical cyclones.
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APPENDIX

FIGURES
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Fig. 1. Illustration of the observation coverage in the vicinity of the TC basin from
June 26, 2004 at 1200 UTC. The surface and sounding observations are much more
dense over land and were not included in this figure for clarity. The Best Track
locations of Typhoon Mindulle (10) and Typhoon Tingting (11) are indicated by TC
symbols.
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Fig. 2. Limited-area domain used for the limited-area analyses.
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Fig. 3. Position and intensity root mean square error (RMSE) for the global LETKF
analysis (a and b, respectively) and the differences between the position (panel c)
and intensity (panel d) errors in the truncated operational analysis and the LETKF
analysis. Each bar shows the RMSE error or the difference between the RMSE for
a particular storm (numbered), where the mean is computed over the life cycle of
the TC or the RMSE error difference averaged over all times for all storms (AVG
in panels c and d). Shaded bars in panels c and d indicate storms for which the
difference is statistically significant. For the numbering of the storms, see Table
B.1. A positive value indicates that the LETKF analysis is more accurate than the
reanalysis or the truncated operational analysis.
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Fig. 4. Comparison between the errors in the coarse resolution limited-area LETKF
analyses and the global LETKF analysis. The format of the figure is the same as
that of Fig. A.3. A positive value indicates that the limited-area analysis is more
accurate.
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Fig. 5. Comparison between the errors for the limited-area analyses of different
resolutions using the format of Fig. A.3. A positive value indicates that the higher
resolution analysis is more accurate. The resolution increases from top to bottom.
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Fig. 9. Difference between the root mean square steering flow errors for the global
analysis and the limited-area analyses at horizontal resolutions of a) 200 km, b)
100 km, c) 48 km, and d) 36 km. The mean in the computation of the root-mean-
square error is taken over all verification times. Positive values indicate a superior
regional analysis performance. The typhoon tracks have been marked. Note the
difference in the shading interval between panel a) and the rest of the panels. Shading
is only plotted for those values that indicate a significant difference between the
mean of the time series at each grid point.
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Fig. 10. Difference between the root mean square steering flow background errors
for the global and limited-area backgrounds at horizontal resolutions of a) 200 km,
b) 100 km, c) 48 km, and d) 36 km. Computation is the same as in Fig. A.9
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Fig. 11. The difference between the magnitudes of the background error reduction by
the assimilation of observations in the global and the limited-area analyses. Results
are shown for the limited-area analyses of a) 200 km, b) 100 km, c) 48 km, and d)
36 km resolution. Positive values indicate that the limited-area system reduced the
background error more than the global system.

66



0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
0

200

400

600

800

D
is

ta
nc

e 
(k

m
)

Strong Storm Forecast Position Error

 

 

Global
Regional

0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
0

500

1000

1500
Moderate Storm Forecast Position Error

D
is

ta
nc

e 
(k

m
)

0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
0

200

400

600

800

D
is

ta
nc

e 
(k

m
)

Forecast Hour

Weak Storm Forecast Position Error

a)

b)

c)

Fig. 12. Comparison between the evolution of the root-mean-square error in the
global (black) and limited-area (gray) forecast position. Results are shown for the
initially a) strong, b) moderate, and c) weak storms.

67



0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Forecast Time (h)

R
M

SE
 E

rro
r D

iff
er

en
ce

 (m
/s

)

Domain Averaged Difference in Steering Flow Errors
 Between Global and Regional Forecasts

Fig. 13. Domain-averaged difference between the RMS errors in the global and
limited-area forecasts of the steering flow. Positive values indicate a superior regional
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Fig. 14. Difference between the root mean square errors in the global and the
limited-area forecasts of the steering flow at forecast times a) 0 hr, b) 24 hr, c) 48 hr,
d) 72 hr, e) 96 hr, and f)120 hr. The mean in the computation of root-mean-square
error is taken over all verification times. Positive values indicate a superior regional
analysis performance. The typhoon tracks have been marked.
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Fig. 16. Schematic of scenarios for background estimates of the wind field (black
vectors) and a single wind observation (red vector).
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Fig. 17. Mean SLP for experiments assimilating TCVitals MSLP estimates. Shading
is SLP observation impact (hPa), defined as experiment analysis minus control
analysis. Contours represent the SLP analysis (black) and the background (gray).
The tropical cyclone centers indicate the Best Track (black) and experiment (gray)
positions.
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Fig. 18. First sigma level wind field (vectors) and speed (contoured; red is exper-
iment, black is NCEP operational analysis). The top row is the traditional online
quality control (QC), while the second row is the result of forcing the observations
into the analysis with no QC (Kept), and finally the last row is the Huberized
(Clipped) analysis. The left column assimilates TCVitals observations with Slide
error (0.44 hPa), while the right column assimilates TCVitals observations with
3 hPa error. The tropical cyclone symbol indicates Best Track location.
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Fig. 19. First sigma level wind field (vectors) and speed (contoured; red is experiment,
black is NCEP operational analysis). The top row is the traditional online quality
control (QC), while the second row is the result of forcing the observations into
the analysis with no QC (Kept), and finally the last row is the Huberized (Clipped)
analysis. The left column assimilates only QuikSCAT special observations, while the
right column assimilates only DOTSTAR special observations. The tropical cyclone
symbol indicates Best Track location.
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Fig. 20. MSLP and wind field for experiments assimilating all three types of TC
observations. The top and bottom panels assimilate all observations with either
Huberization (Clipped) or no QC (Kept) applied to each observation and Slide
TCVital SLP error (0.44 hPa), while the middle panel applies the Combined method
of QC for the observations. The countours, shading, and vectors are the same as in
Fig. A.17.
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Fig. 21. Forecast track error (top), minimum SLP (middle), and minimum SLP
error (bottom) for single update experiments.

76



08/12Z 09/12Z 10/12Z 11/12Z 12/12Z 13/12Z 14/12Z 15/12Z 16/12Z
900

920

940

960

980

1000

1020
Limited−area Analyses Minimum SLP for Sinlaku

Time (dd/hhZ)

S
LP

 (
hP

a)

 

 

NCEP Oper ANL
GFS LETKF
RSM Control
Kept + Slide TCVonly
Combined 0.5
Keep TCVonly 0.5
Best Track

0

50

100

150

200

250

300

350

NCEP O
pe

r A
NL

GFS L
ETKF

RSM
 C

on
tro

l

Kep
t +

 S
lid

e 
TCVon

ly

Com
bin

ed
 0

.5

Kee
p 

TCVon
ly 

0.
5

Average Position Error

155

265 271

135

103
129
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Fig. 23. Difference between daily forecast intensity error averages of the Control and
Combined 0.5 experiments. Gray shading indicates that the difference is statistically
significant at the 95% confidence level.
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Fig. 24. Difference between daily forecast track error averages of the Control and
Combined 0.5 experiments. Gray shading indicates that the difference is statistically
significant at the 95% confidence level.
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Fig. 25. Distributions of analysis position errors binned by TC intensity. GLETKF
is the global LETKF analysis. NCEPHI is the NCEP operational analysis at 1◦

resolution. Orig QC is the control experiment. Comb 0.5 is the Combined experiment
with TCVitals SLP error defined as a constant 0.5hPa.
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Fig. 26. Distributions of analysis intensity errors binned by TC intensity.
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Fig. 27. Time series of average intensity error binned according to Best Track
intensity at verification (corresponding to right y-axis). Bars represent the number of
observations used to calculate the average at each verification time, and correspond
to the left y-axis.
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Fig. 28. Time series of average track error binned according to Best Track intensity at
verification (corresponding to right y-axis). Bars represent the number of observations
used to calculate the average at each verification time, and correspond to the left
y-axis.
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Table 1. 2004 Typhoons and Tropical Storms included in this study. Storm number
indicates the order in which the storm was named in the 2004 season. Data is taken
from Atangan et al. (2004). (TS = Tropical Storm).

Name
Storm
Number

Minimum
SLP at
Max In-
tensity
(hPa)

Maximum
Saffir-
Simpson
Category

Time
Period
Included
(mm/dd/hh)

Mindulle 10 916 Cat. 4
06/22/00Z -
07/04/06Z

Tingting 11 963 Cat. 1
06/24/18Z -
07/04/00Z

Kompasu 12 991 TS
07/12/12Z -
07/16/12Z

Namtheun 13 927 Cat. 4
07/24/06Z
08/01/06Z

Malou 14 954 Cat. 2
08/02/18Z -
08/09/06Z

Meranti 15 997 TS
08/02/00Z -
08/05/06Z

Rananim 16 954 Cat. 2
08/07/00Z -
08/13/00Z

Malakas 17 997 TS
08/10/06Z -
08/13/06Z

Table 2. Number of time steps, T , autocorrelation coefficient, r, effective sample
size, T ′, and p value of the test statistic for each of the storms from the comparison
of the global LETKF and RSM 100 km experiments for TC intensity.

Storm T r T ′ p

10 50 0.82 4.73 0.23
11 38 0.47 13.27 0.19
12 18 0.62 4.04 0.36
13 33 0.00 32.00 0.00
14 27 0.00 26.00 0.01
15 14 0.00 13.00 0.27
16 25 0.75 3.41 0.10
17 13 0.72 2.0 0.30
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Table 3. Naming conventions and descriptions of experiments.

Descriptor Definition

QC Discard over threshold, c (Traditional)
Clipped Huberized at clipping height, c
Kept No QC. Observation is kept.

Slide

TCVital Error is on a sliding scale as de-
scribed in Section 3.13.1.b. For single up-
date experiments, error is 0.44 hPa.

Const
TCVital Error is fixed at 3hPa for single
update experiments.

Combined ##

Combines QC methods as described in Sec-
tion 3.33.3.a. ## indicates the value of
the TCVital SLP error used.
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