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ABSTRACT 

 

Analyzing the characteristics of higher order nonlinear dynamic systems is really 

difficult. This can involve giving solutions with respect to time. Motion constants are 

another way of studying the behavior of the dynamic system. If the motion constant is 

known, solving the system is no longer needed to analyze the characteristics of the 

system. Motion constants are time independent integrals that are hard to find for 

nonlinear dynamic systems. We chose the Duffing Oscillator as a higher order nonlinear 

dynamic system to have its motion constants investigated. The Duffing Oscillator was 

chosen because studying it gives a better view of how rigid bodies act. It forms a clear 

dynamic analog of the general torque-free motion of an arbitrary rigid body, meaning it 

covers most of the arbitrary rigid body dynamics. 

Investigating the motion constants for a finite dimensional nonlinear system, 

such as the Duffing Oscillator (can be quite difficult) but finding the motion constants 

for a linear autonomous system, regardless of its dimension, is easier and has recently 

been found. In this study we propose finding the motion constants of the Duffing 

Oscillator through the motion constant of a linear representation. A linear representation 

is found through Carleman Linearization. This is a technique used to linearize a finite 

dimensional nonlinear system of differential equations to an infinite dimensional, linear, 

autonomous system of differential equations. Using Carleman Linearization, the Duffing 

equation is linearized; the motion constant was found, and compared to the true known 

value of the real system. 
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1. INTRODUCTION 

 

1.1 Motion Constants 

 

In mechanics, a motion constant, or constant of motion, is a quantity that is 

conserved throughout the motion. It forces a constraint on the motion, which is a time 

independent algebraic or transcendental equation involving the system states. Motion 

constants give us information about the system and properties of the motion without 

solving equations of motion. Known examples include energy, linear momentum, 

and angular momentum.  

Motion constants solve the dynamic system; they give a description of the shape 

of the space-state, and provide a big picture of the motion irrespective of time. In some 

cases, the trajectory of the motion can be derived as the intersection of surfaces 

corresponding to the constants of motion. 

For finite dimensional nonlinear systems, independent motion constants are 

generally hard to find, yet they have been found by linearizing the nonlinear system to a 

number of linear systems. This process includes a state transformation to form a 

canonical, uncoupled real system. After that, internal integrals for each subsystem are 

found, and comparison integrals that connect subsystems to each other are computed. 

For n linear systems, a complete set of n-1 motion constants, or time independent 

integrals, can be found with a single exception—when a system is composed of 

http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Conservation_of_energy
http://en.wikipedia.org/wiki/Momentum#Conservation_of_linear_momentum
http://en.wikipedia.org/wiki/Angular_momentum#Conservation_of_angular_momentum
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undamped oscillators whose frequency ratio is irrational when two subsystems are 

compared. Such systems lack a number of analytical time-independent integrals. 

Usually, the solutions of dynamical systems are solved in terms of collections of 

integrals. The integrals can be time independent or dependent. Here, the method 

presented by Drs. Sinclair and  Hurtado, in their paper written in 2013 [1], specifically 

deals with time independent integrals, which are referred to as motion constants . 

Classical reviews and solutions for the time independent integrals of nth order linear 

autonomous systems are presented. 

 

1.2 Integrals of Linear Autonomous Dynamical Systems 

 

As discussed earlier, Sinclair and Hurtado (2013) [1] proposes a method for 

evaluating a complete set of time independent integrals for arbitrary linear autonomous 

systems. An nth order autonomous system gives a description of the evolution of the 

state vector x (t): 

 ̇   ( )                                            (1) 

                                                                                                      

If possible, the system can be solved by finding n functions of state and time, which are 

constant over the trajectory associated with an initial condition    . These are called 

integrals [1] : 

 ( ( )  )    (    )                    (2)           

Evaluating these integrals might require knowledge of both current states and 

times, but here we are only interested in evaluating the time independent integrals. The 
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methods presented involve time independent integrals for linear autonomous systems, 

which depend on the order of the system. The focus here is on finding the time 

independent integrals: 

 ̇     (3) 

where an nth order autonomous system can have up to n-1 time independent integrals 

[1]: 

 ( ( ))    (  )                      (4) 

 

 

1.2.1 Second Order Systems 

Time independent integrals of second order systems have a solution that has been 

found by Burns and Palmore.[1, 2]  

General Second order systems can be written in first order form:  

  [
  

  
] ;  ̇         (  )  [

    

    
] (5) 

There are three possibilities that exist for the A matrix:  

1. Diagonalizable with real eigenvalues λ1  and λ2 . 

2. Diagonalizable with complex eigenvalues λ1 , λ2 =a    . 

3. Non-Diagonalizable with real eigenvalues λ1 , λ2 =λ. 

 

1.2.1.1 Diagonalizable With Real Eigenvalues 

A is Diagonalizable using its eigenvalues and eigenvectors: 
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            Λ=[
   
   

] (6) 

Where  Λ and W are matrices of eigenvalues and eigenvectors of A respectively. Using a 

coordinate transformation using W a canonical form of independent subsystems can be 

defined: 

       ̇     (7) 

A time independent integral for new states y was presented by Burns & Palmore [2] : 

       (
  

  
  

  
  
  

 ) 
           (8) 

 For simplicity an alternative expression is suggested: 

          |  |         |  | (9) 

For the specific case that λ1 or λ2 equals zero, the time independent integral is the 

associated canonical state.  The y1 and y2 states are individual first order systems; 

separately they don’t have any time independent integrals. 

 

1.2.1.2 Complex Conjugate Eigenvalues 

If A contains two complex eigenvalues λ1 , λ2 =a    and eigenvectors w1 ,w2= 

u   , to avoid dealing with complex an alternate transformation is done [3]: 

A= P R P
-1  

; R = [
   
  

];    P=[ v u ] 
(10) 

X=P Y ;    ̇     (11)               

A simple time independent integral for this case is presented below:  
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      (  

    
 )        

  

  
  

      (12)                 

For the special case of imaginary eigenvalues, a=0, the time independent integral or the 

motion constant is:        
    

                      

 

1.2.1.3 Non-Diagonalizable With Real Eigenvalues 

The case with one eigenvalue that has only one unique eigenvector can be put in 

Jordan form: (where J and M are matrices of eigenvalues and eigenvectors of A 

respectively): 

A= M J M
-1

 ; J=[
  
  

]                   (13) 

 Using a coordinate transformation using M and J, a canonical form of independent 

subsystems can be defined: 

       ̇     (14)              

This system is similar to the two cascaded first order systems: y1 is an independent first 

order system, and y2 is driven by y1. A simple form of the time independent integral is:  

        
  

  
      |  |       

(15) 

In the special case that  =0, the time independent integral (motion constant) equals   

 = y1. 

  

1.2.2 Higher Order Systems 

For an nth order system, an n-1 time independent integrals can be found. The 

process has three steps: step one is to transform the systems in to a canonical block-
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diagonal form, then to find the internal integrals of each block, and finally to find the 

comparison integral of two neighboring blocks. 

 

1.2.2.1 Motion-Constant Canonical Form 

The first step in finding the motion constants is to transform the system into a 

canonical form, in order to get the first order independent subsystems that form the 

dynamics of the system. In         ̇      , J and M are matrices of eigenvalues and 

eigenvectors of A respectively. Using a coordinate transformation using M and J, a 

canonical form of independent subsystems can be defined, and A is taken to a block 

diagonal form: 

A= M J M
-1

;   

[
 
 
 
 
 
 
   

 
  

  

 
   ]

 
 
 
 
 
 

 

(  ) 

 

The canonical form is similar to Jordan form, but we have ones in the sub-diagonal. 

Each Jk  for k=1,..,p, has one real eigenvalue, one real eigenvector and ones on the sub-

diagonal if the eigenvalue is repeated as shown below:  

   

[
 
 
 
 
   

  
   

    

]
 
 
 
 

 

(  ) 
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The columns of M associated with the repeated are the generalized eigenvectors (they 

will be discussed later on). For the case of non-repeated eigenvectors Jk=λ , and the 

columns of M are the eigenvectors. The dimension of Jk can go from one to n. 

Hk  deals with the complex eigenvalues, each Hk  for k=1,..,q, has a pair of complex-

conjugate eigenvectors, and one pair of complex-conjugate eigenvalues λ1 , λ2 =a    , a 

and b are real numbers, b  . Also, each Hk  is made up of R (2x2 block) on the diagonal 

, and 2x2 I identity matrix on the sub-diagonal as shown below: 

   

[
 
 
 
 
  
  

  
   

]
 
 
 
 

       ; R =[
   
  

];     =[ 
  
  

] 

(18) 

                                            

The dimension of Hk is even and could be two or greater. The columns of M associated 

with it are the imaginary and the real parts of the generalized eigenvectors associated 

with λ1 = a   , P = [ v u ]   .    

  

1.2.2.2 Internal Integrals 

Each Hk , or Jk block gives a representation of an independent subsystem, and the 

time independent of these subsystems can be evaluated. Each subsystem will have a one 

less time independent integral than the dimension of the subsystem. These time 

independent integrals include the states related to a single independent subsystem, and 

they are called internal integrals. 

Any Jk nonzero block that has a dimension of 1x1 has no internal integral. 

For the independent subsystem in Jk, the state equations are written below: 
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  ̇      

  ̇         

  

   ̇           

(19) 

All states are driven by the previous state except for the first state. After solving for y in 

the above equations and rearranging to eliminate time, the first motion constant (time 

independent integral) associated with Jk is        
  

  
      |  |   which is eq. (15). 

In the same manner, the time independent integrals are calculated for the 

subsystem by solving the equations then eliminating time. As for Hk , the states also 

form an independent subsystem , and the state equations for it is below: 

  ̇          

  ̇          

  ̇                       

 ̇                     

(20) 

As shown above, the first two states are an independent subsystem; the other pairs are 

driven by the previous pair. After solving for y in the above equations and rearranging to 

eliminate time, the first motion constant (time independent integral) associated with Hk  

or of a second order system with complex-conjugate eigenvalues is: 

           
 

  
      (  

    
 )          

  
   ]   which is eq. (12) as discussed earlier. 

For the special case of imaginary eigenvalues , a=0, the time independent integral 

or the motion constant is        
    

     Since Hk has even dimensions (for 
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dimensions greater than two)  additional pairs of integrals are found by investigating the 

solutions of eq. (20), then rearranging  and eliminating time. 

 

1.2.2.3 Comparison Integrals 

An nth order linear independent system is represented with p+q independent 

subsystems; the number of these motion constants is one less than the order of the 

subsystem, so this leaves p+q-1 additional time independent integrals to be found to 

complete the n-1 integrals for the system [1]. The comparison integral is formed from 

comparing the motion constants of two independent subsystems, so the comparison 

integrals can be found from comparing neighboring blocks. 

For higher order systems, there are a greater number of subsystems that have to 

be used in forming comparison integrals, a method for finding comparison integrals is 

described and discussed in the following paragraphs. After examining the behavior of 

each subsystem with respect to time, time can be written as a function of the states. 

Subsystems with nonzero real part as an eigenvalue have a representation of an 

exponential behavior in time. The first state of the subsystem is an independent first 

order system as shown in eq. (19):                              

   ̇      ;            

  
 

 
(  |  |    |    |) 

(21) 

 

                                                                    

Subsystems with zero eigenvalue have a linear behavior in time, so they have a 

time dependent integral. If the dimension of the subsystem is one, then it doesn’t need to 
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be used in forming comparison integrals. When the subsystem has a dimension greater 

than one, the permanence of the first state will be found by finding the internal integrals 

as shown in eq. (19): [1] 

            

   
  

  
  

    

    
 

(22) 

 

 

Subsystems with imaginary eigenvalues have a periodic behavior in time. The 

first two states of the subsystem make an independent second order system as shown 

below:      

    ̇        ;     ̇      (23) 

The motion is periodic: 

                       

                       

(24) 

  
 

 
(      

  

  
       

    

    
   ) (25) 

The integer k in the above equations is the number of complete oscillations since the 

initial time. 

If the eigenvalues are complex a    with a, b  , then the subsystem shows 

both exponential and periodic behaviors. In eq. (21) Exponential behavior is associated 

with the magnitude of the states y1 and y2: 
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  √  
    

  

 ̇      ;        

  
 

 
(  | |    |  |) 

(26) 

The periodic behavior is associated with the phase solution in the y1, y2 plane: 

      (                   ) 

      (                    ) 

      
 

 
(      

  

  
       

    

    
   ) 

(27) 

Again the integer k is the number of complete oscillations since the initial time. Both 

equations (26) and (27) are applicable, but to avoid integer ambiguity, it’s easier to use 

eq. (26). 

Comparison integrals can be constructed for pairs of subsystems. With 

appropriate selection of the equations (22), (23), and (26), the comparison integral can 

be found by setting them equal to each other depending on the sub-systems. That can be 

done by separating the current and initial values of the states. As an example, take a third 

order system that has a nonzero real eigenvalue and a pair of imaginary eigenvalues: 

[

     ̇
     ̇
     ̇

]  [
   
    
   

] [

  

  

  

] 

(28) 

 

Equations (22) and (24) reveal the following: 

 

 
(  |  |    |    |)      =   

 

 
(      

  

  
       

    

    
   ) (29) 

 

 
     |  |        

  

  
  

 

 
  |    |        

    

    
    

(30) 
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So the comparison integral is: 

          
 

 
     |  |        

  

  
  ] (31) 

 

1.2.3 Incommensurate Oscillators  

Dealing with two blocks; two pairs of imaginary eigenvalues      and      

depends on the value of the ratio 
  

  
⁄ . If the value of the ratio is rational there is a 

comparison integral, but if the value of the ratio is irrational there is no comparison 

integral and it can’t be formed. As an example, consider a fourth order system of two 

pairs of imaginary eigenvalues      and     : 

[

     ̇
     ̇
     

     ̇
̇
]  [

      
     
      

     

] [

  

  
   

  

] 

(32) 

Eq. (26) shows the following: 

  
 

  
(      

  

  
       

    

    
    )   =  

 

  
(      

  

  
       

    

    
    ) (33)          

 

        
  

  
         

  

  
      

   
    

    
      

   
    

    
  (         ) (34)           

 The right hand side of eq. (34) is not constant since    and     increase in integer 

values.  By applying a doubly-periodic function to both sides of eq. (34) using periods of 

    and    , a time independent integral can be created. If the ratio   
  

  
⁄  is rational, 
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then the frequencies can be written as          and     = a   , where     ,    are 

integers, and the comparison integral can be formed :            

        (       
   

  

  
      

   
  

  
 )           (35) 

  If the ratio   
  

  
⁄  is irrational, global comparison integral can’t be formed [1]. 
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2. CARLEMAN LINEARIZATION AND EMBEDDING 

 

The systems that we are dealing with are nonlinear dynamic systems, but the 

methods presented earlier for getting the motion constants are for linear autonomous 

systems. This is why we need to linearize the nonlinear system to a linear system using a 

method called Carleman Linearization. 

The idea of Carleman is carried out by taking any nonlinear dynamic system and 

linearizing it. This is done by defining new linear states. Then by taking the derivative of 

each one, the system ends up being  ̇    . New states are introduced each time, 

resulting in an infinite number of states [4]. To summarize, Carleman is a technique used 

to transform a finite dimensional nonlinear system to an infinite set of linear equations. 

An example is presented below: 

 ̇        (36) 

Here we introduce the new states:      ;         ̇   ̇ : 

 (  )     
   

 
    i,j = 1 ,     

 ̇(  )      (        )     (        )      (        ) 

 ̇     ̇         

 ̇  = ̇                 
  

 ̇    ̇                      
  

(37) 

This process continues and will result in an infinite linear system of this form:  
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 ̇    . 

[

     ̇
     ̇
     

 
̇
]  [

     
    
     
    

] [

  

  

  

 

] 

(38) 

 

                       

 

2.1 Carleman Embedding 

 

As discussed earlier, motion constants can give a great deal of information about 

the states of the dynamic system. For a dynamic nonlinear system, Carleman 

Linearization will result in an infinite number of linear autonomous equations. Finding 

the motion constants of the linear representation is easier and known as discussed earlier.  

In this case, an nth order system will produce an infinite order system that will result in 

infinity-1 motion constants, instead of n-1 real motion constants, which are the result of 

the true system. The nonlinear system was transferred to an infinite collection of linear 

autonomous systems by mapping. 

We hope to find the motion constants of the real nonlinear systems through 

motion constants of the Carleman representation, since we don’t know where the real 

motion constant of the real nonlinear system is in our new representation  ̇    . 

Truncating the A matrix into a certain square matrix value would be a useful way to see 

if the n-1 motion constants of the true system can be found up to a certain level of 

truncation of matrix A . Depending on the nonlinearity of the original system, the 

truncation of the A matrix could go higher or lower. The  characteristics of the new 
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infinite dimension linear system and the original finite dimension nonlinear system 

should be the same .[5]  

Studies were done on some sample problems  to evaluate the motion constants of 

the real nonlinear system using Carleman representation. The method was done similarly 

to the steps discussed above, the motion constants of the true system were found. Of 

course, the real motion constants are already known and have been found in 

experiments. But we are using Carleman representation to compare them with the known 

value and find them using a new technique. Work has been done on using Carleman 

Linearization which includes a study done by Drs. Hurtado and Sinclair in 2012 [5] on a 

tumbling rigid body with quadratic nonlinear terms. 



 

17 

 

3. PREVIOUS WORK 

 

3.1 Tumbling Rigid Body With Quadratic Nonlinear Terms 

. 

The torque-free rotational dynamics of a rigid body is used as an example. 

Here, for a rigid body of a third order system that has quadratic nonlinear terms, motion 

constants were derived and found using Carleman embedding. [5]  

It’s a classic nonlinear autonomous system with the equation: 

 ̇ = f(ω) →     ̇  =        ;   ̇  =        ;  ̇  =        (39) 

 Where, ω is the body-fixed components of the angular velocity vector and    is the rigid 

body inertia parameters: 

   = (  −   )/   ;    = (   −   ;)/    ;   = (    −   )/    (40) 

 

The system above has two time-independent integrals (motion constants), which 

are the rotational kinetic energy and the magnitude of the angular momentum: 

T =
 

 
    

  
 

 
    

  
 

 
    

  ;       
   

    
   

    
   

  (41) 

To transfer the three-dimensional nonlinear system to an infinite dimensional, over 

parameterized, the definition of new coordinates is introduced. 

Here to linearize using Carleman representation, a pattern is found in which each 

nonlinear coordinate is mapped into a linear coordinate: 

 (   )     
   

 
  

     i,j,k = 1 ,     (42) 
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  Based on the definition above, there are three x coordinates that have linear ω states; 

and six x coordinates that have quadratic ω states in them, and ten coordinates that are 

cubic ω states. So we have (p + 1)(p + 2)/2 coordinates of x that have the order p in the 

ω states. 

Below is the system of linear autonomous equations for the new coordinates: 

 ̇(   )       (           )        (           )       (           ) (43) 

The steps for finding and discovering the two motion constants for the original 

nonlinear system are: [5] 

1. Truncate the length of the new coordinates at some number, for example n. The 

truncated states are given as   . 

2. Take the upper n × n block of A and call the truncated state matrix   . 

3. Jordan canonical form can be created using   = MJM
-1

 where M and J are the 

eigenvectors and eigenvalues of    respectively. J has eigenvalues on the diagonal 

and sometimes it has ones on the sub-diagonal. 

4. Jordan coordinates are defined by Y = M
-1 

x  which are governed by   ̇      . 

5. Determine the motion constants using the methods discussed earlier in (integrals 

of linear autonomous dynamic systems section) ψ = ψ(y).  

6. After getting the motion constants (which will be in terms of Y coordinates) use           

Y = M
-1 

x  to get the motion constants in terms of the truncated linear states x . 

7. Then use x = x (ω) ≈ x  write the motion constants in terms of the original 

coordinates ω using the original relationship x = x(ω) ≈ x  . 



 

19 

 

 To facilitate the computations, certain inertia values are used; in the work done 

in the paper a tri-inertial case was selected I1 = 1, I2 = 2, and I3 = 3. Whatever is the 

truncation limit, an eigen analysis of the matrix A  reveals that all of its eigenvalues 

equal zero. Some of the zero eigenvalues create an independent unique eigenvectors, 

however others generate an eigenvector that is linearly dependent on the others. 

 Sinclair and Hurtado (2013) [1] has shown that a 1 × 1 Jordan block with a zero 

eigenvalue creates a motion constant which is equal to the Jordan coordinate (state). 

After that using Y = M
-1 

x  for each of these special Jordan coordinates expresses the 

motion constant in terms of the truncated coordinates x . 

 In the example being discussed, using these special Jordan coordinates, the true 

motion constants of the original nonlinear system are what we are aiming for. So in this 

example, to get the nonlinearity up to the quadratic terms in the ω states a truncation is 

done to the linear representation to the coordinates of x. This results in a nine element 

vector x :                                                          

A 9 × 9 matrix A  results from the truncation above. Noticing that it has three 

1 × 1 Jordan blocks; each one of them has a zero eigenvalue. The Jordan form is 

arranged (J and M) such that y1, y2, and y3 are the special Jordan coordinates that remain 

constant at all times. These three Jordan coordinates are called motion constants, and 

using M as discussed earlier these special coordinates or motion constants can be 

mapped back to be in terms of x . After that, using eq.(42), which is the Carleman 

coordinate definitions, the motion constants are transferred to be in terms of ω: 
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  (44)   

                           
     

  (45) 

                           
     

  (46) 

                                                                                                                    

Usually computing the derivative of a constant results with a zero, but here after 

computing the derivatives of the above equations, the answers aren’t zeros. So this 

means that these expressions in   are not the motion constants for the true nonlinear 

system; this truncation level doesn’t capture the real motion constant, and taking the 

truncation into a higher level is needed. Also at this truncation level none of the motion 

constants that we calculated have the constraints that are in the over parameterized 

Carleman coordinate definition in eq. (42), that can be read such as:                            

 (   )        
     

 
     

 . 

Truncating the linear representation of the coordinates x until the fifth order 

(quintic) in the ω states results in a 55 × 55 matrix A  that has a total of fifty-five 

elements for x . The A  consists of fourteen 1 × 1 Jordan blocks that each have a zero 

eigenvalue. y1 through y14 are the special Jordan coordinates that remain constant at all 

times. These fourteen Jordan coordinates are called motion constants, and using M as 

discussed earlier these special coordinates or motion constants can be mapped back to be 

in terms of x . After that, using eq. (42) which is the Carleman coordinate definitions, 

the motion constants are transferred to be in terms of ω. Two of them are expressed 

below: 
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(47) 

                                                   

    
      

    
     

    
    

  

 

(48) 

The derivatives of the motion constants above equal zero, which confirms that the 

expressions that are in ω are the true motion constants of the real nonlinear system. Also, 

the rotational kinetic energy, T, and magnitude of angular momentum,  , are related to 

  and    and not independent from them. The real exact motion constants of the true 

nonlinear system have been found, but still  at this truncation level none of the motion 

constants that we calculated have the constraints that are in the over parameterized 

Carleman coordinate definitions.  This is because this truncation level neglects the effect 

of higher order states in the governing differential equations. 
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4. A COMPARISON 

 

The Duffing Oscillator’s motion constants are investigated using two 

linearization techniques. Motion constants are obtained using Taylor Series 

Linearization (the traditional way of linearizing) and Carleman Linearization. Later the 

results are compared to each other and to the true value of the motion constant (which is 

well known and has been found before). This allows us to see which method provides a 

closer, more accurate value to the true motion constant.         

                                                                                                                           

                                          4.1 Duffing Oscillator  

 

Duffing oscillator, named after Georg Duffing, is a second order non-linear 

differential equation, it is considered a periodically forced damped oscillator with a 

nonlinear elasticity, which can be written as [6] : 

  ̈    ̇                 (49) 

The Duffing equation is an example of a dynamic system that shows chaotic behavior. 

Where the parameters are: 
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    is the damping coefficient. 

   is the stiffness coefficient. 

   is the non-linearity coefficient . If     , the Duffing equation becomes a 

damped and driven simple harmonic oscillator. 

   is the amplitude of the periodic driving force. If     we have an unforced 

system (system driven without force). 

   is the frequency of the periodic driving force. [6, 7] 

The Duffing equation doesn’t have a symbolic exact solution, but there are other 

approximate solutions that can help solve it like: using Fourier series expansion, or using 

some numeric methods such as Euler's method and Runge-Kutta. In our study and 

investigation of the Duffing problem, we will study the case with no driving force and 

no damping where     and    . Taking k=1, the Duffing equation becomes: 

 ̈           (50) 

where A and  B  are the stiffness coefficient and the non-linearity coefficient 

respectively.[8] 

This equation has three uncoupled nonlinear representations depending on the 

value of A and B, because studying it gives a better view of how rigid bodies act. The 

three uncoupled nonlinear oscillators form a clear dynamic analog of the general torque-

free motion of an arbitrary rigid body. So, the analysis of the nonlinear Duffing 

Oscillator can lead to the analysis of rigid body dynamics.  

http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/Stiffness
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Euler%27s_method
http://en.wikipedia.org/wiki/Runge-Kutta
http://en.wikipedia.org/wiki/Stiffness
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The uncoupled nonlinear oscillators are three represented below:  

 ̈         
             i= 1, 2, 3 (51) 

Values for    and   are determined by the values of the moment of Inertia, I, kinetic 

energy, T, and the magnitude of the angular momentum, h
2
. This results with three 

uncoupled nonlinear equations. Values for     and    for the three equations are usually 

between:   

  
 
 

           

             

  
 
 

           

(52) 

From the above, we conclude that    and   can produce a negative spring effect, 

destabilizing force.    and    are always positive, so they produce a spring restoring 

force. Since    and    are the cubic coefficients, they will override the effect of the 

linear coefficients. So, the equations 1 and 3 will produce a closed phase trajectory. As 

for   , which is negative and produces a negative force, destabilizing force will also 

override the positive linear spring , so the phase trajectories will be open [8]. 

We will consider cases for equations 1 and 3 which mean      that gives 

closed phase trajectories. Since the solutions for this equation, for velocities and 

accelerations are periodic, and these values are only possible with closed phase 

trajectories, that’s why we depict that closed trajectories are physically possible [8]. 
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4.1.1 Generalized Eigenvectors 

While analyzing the Duffing problem, I noticed that some repeated eigenvalues 

don’t have unique eigenvectors; they have the same eigenvectors. In this case, we have 

to generate for each repeated eigenvalue, an eigenvector. This eigenvector is called a 

generalized eigenvector which is independent from other eigenvectors. [9] 

The process of finding the generalized eigenvector starts with knowing the 

repeated eigenvalue that has a repeated eigenvector. Let’s call the eigenvalue    and the 

eigenvector   . The generalized eigenvector should satisfy the equation: 

(      )
      (53) 

 k is a positive integer, which refers to the order of the eigenvector, which is also how 

many times the eigenvector is repeated. If the order of the eigenvector is one, this means 

it is the real eigenvector. Numbers larger than one would be generalized eigenvectors. 

Calculating the generalized eigenvectors using another generalized eigenvector 

would be using this equation: 

     (     )   (54) 

   is an eigenvector with index or order k associated to the eigenvalue  . And k is the 

order of the eigenvector starts from 1 and ends at k.  

Claiming that      is a generalized eigenvector of index k-1associated to the eigenvalue 

 . [10] 

Finding the generalized eigenvectors will change the J for the repeated 

eigenvalues. There will be a one in the super-diagonal between the repeated eigenvalues. 
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A= M J M
-1

, M are the eigenvectors , J are the eigenvalues on the diagonal, so for 

repeated eigenvalues after finding the generalized eigenvectors, the J matrix would be a 

little different. For an example for a 2x2 matrix the J matrix would look: 

J=[
   
   

] (55) 

M would be the generalized eigenvectors as columns. 

In our case while studying the motion constants, the J that we are using would be slightly 

different as mentioned earlier in the time independent integrals section. Thus, the J that 

is used in calculating the motion constant will have the ones for the repeated eigenvalues 

in the sub-diagonal. For a 2x2 matrix example the J matrix would be: 

J=[
   
   

]                                                                                                               (56) 

M stays the same as before; M would be the generalized eigenvectors as columns. 

 

4.2 Linearizing Using Carleman Linearization 

  

Our Duffing Equation that is being considered is the one that is associated with 

the closed phase trajectories. Using Carleman embedding, motion constants are 

calculated. Let’s start by taking a look at the main form of the Duffing Oscillator 

equations that we are considering: 

 ̈         
       Where        

 
 

                                                    (57) 

The system above has one time-independent integral, which involves kinetic and 

potential energy, and it’s well known: 
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      ;         ̇   ̇ 

(58)      

Here to linearize using Carleman representation, a pattern is found, in which each 

nonlinear coordinate is mapped into a linear coordinate. Taking the case A=1 and B=   ; 

our Duffing equation becomes: 

 ̈          

      ;         ̇   ̇ 

(59) 

 

 (  )     
   

 
    i,j = 1 ,                                                                                          (60) 

Based on the definition above, there are two  (  ) coordinates that have linear x states, 

and three  (  ) coordinates that have quadratic x states in them, and four  (  )  

coordinates that are cubic x states. This indicates that we have (p + 1) coordinates of 

 (  )  that have the order p in the x states. The table below elaborates on how many 

coordinates are needed: 

Order of x Number of new   (  ) Total Coordinates 

1 2 2 

2 3 5 

3 4 9 

4 5 14 

5 6 20 

6 7 27 

7 8 35 

 

Table 1: Total coordinates needed. 
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Linear in x           

Quadratic in x               

Cubic in x                    

Quart in x                        

Below is the system of linear autonomous equations for the new coordinates: 

 ̇(  )      (        )     (        )       (        )                                                                                      (61) 

The steps for finding and discovering the motion constant for the original nonlinear 

system are: 

1. Truncate the length of the new coordinates at some number, for example n. The 

truncated states are given as   . 

2. Take the upper n × n block of A and call the truncated state matrix   . 

3. Create Jordan canonical form using   = MJM
-1

 where M and J are the 

eigenvectors and eigenvalues of    respectively. J has eigenvalues on the 

diagonal and sometimes it has ones on the sub-diagonal. 

4. Define Jordan coordinates by Y= M
-1 

x  which are governed by  ̇ = JY. 

5. Determine the motion constants using the methods discussed earlier (in integrals 

of linear autonomous dynamic systems section)  ψ = ψ(y).  

6. After getting the motion constants, which will be in terms of Y coordinates, use           

Y = M
-1  

x  to get the motion constants in terms of the truncated linear states x . 

7. Then use  (  )     
   

 
 to write the motion constants in terms of the original 

coordinates x. 
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 When any truncation is done, an eigen analysis of the matrix A  reveals that 

some of its eigenvalues equal zero, and others are complex conjugate eigenvalues. Some 

of the zero eigenvalues create independent, unique eigenvectors; however, others 

generate an eigenvector that is linearly dependent on the others. 

Using different truncation levels (starting from linear up to the third order) didn’t 

capture the real known motion constant of the system. Taking the truncation level up to 

the fourth order, which produces 14 coordinates, the A  matrix becomes a 14x14 matrix. 

At this level the real motion constant was captured. 

The eigen analysis for 14x14 A  matrix, as mentioned before, reveals that some 

of its eigenvalues are zeros. We get two unique zero eigenvalues. Afterwards, using Y = 

M
-1 

x  for each of these special Jordan coordinates expresses the motion constant in 

terms of the truncated coordinates x . 

Using these special Jordan coordinates, we are seeking the true motion constant of 

the original nonlinear system. In this example, to get the nonlinearity up to the 4
th

 order 

terms in the x states, a truncation is done to the linear representation to the coordinates of 

x, also taking      .  This results in a fourteen element vector x :  

                                                            

A 14 × 14 matrix A  results from the truncation above, noticing that it has two 1 × 1 

Jordan blocks that each have a zero eigenvalue. Considering the 1 × 1 Jordan blocks; the 

Jordan form is arranged (J and M) such that y7 and y14 are the  motion constants. Using 

M as discussed earlier, these special coordinates or motion constants can be mapped 
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back in terms of x , and afterwards, using eq. (60) which is the Carleman coordinate 

definitions, the motion constants are transferred in terms of x: 

                                                       

            

                          
            

          
   

          
          

  

(62) 

                                                         

                        
           

      
   

          
     

  

(63) 

Usually computing the derivative of a constant results with a zero, computing the 

derivatives of the above equations, the answers are not zeros. But noticing that adding a 

ratio of    to   , which will make some states cancel out, and the result of this addition 

would be a ratio of the true motion constant. This means that we can find the true motion 

constant, not only by taking the derivative of Carleman motion constant, but also by 

adding Carleman motion constants: 

                 (64) 

 Then taking the derivative of   , which results with a zero. So, the true motion constant 

of the real nonlinear system can be found also by taking the derivative of a combination 

of two Carleman motion constants or more: 

  ̇      ̇      ̇            (65) 

Consequently, there are an   and a   that will make   ̇ and   ̇ when added together 

zero.   Here in the Duffing Oscillator problem the above method was used. If we take the 

derivatives     and    that we get from the 14x14 A matrix eq. (62) and eq.(63), then 

the result is: 
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   ̇            ̇             ̇            ̇            ̇   

        ̇     

     (66) 

Use eq.(60) then take the derivative in terms of     and     : 

  ̇          (     )        (   (       
 ))        (     

 )

          
   (       

 )       (   
   )

      (    
 (       

 ))   

     (67) 

Taking        for this case, gathering terms, and taking each state by itself: 

  ̇   (                )     (                     )  
   

 (              )    
           

   

         
   

 
  

 

     (68) 

All terms cancel except: 

  ̇           
            

   
 
      (69) 

Doing the same procedure for   : 

  ̇           ̇             ̇       ̇             ̇      ̇         (70) 

All terms cancel except: 

  ̇        
         

   
 
      (71) 

Here adding   ̇and   ̇together, we notice that there are an   and a   that makes: 

  ̇      ̇      ̇       

Noticing the relationship between   ̇and   ̇   
  

      
        

Multiply   ̇ by           and   ̇ by     so we have: 
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  ̇      ̇      ̇=(      )  
    (     )   

   
 
= zero.        (72) 

To see what the motion constant is, eq. (62) and eq. (63) are examined: 

                                                                    

                                                         

Noticing that  
 

     
 

 

     
          

Multiply    by        so we have: 

          =   =                                            

    

     (73) 

Adding           

                                          

                
             

           
  

 

     (74) 

Looking at    here, we find out that it is a ratio of the true motion constant of the real 

nonlinear system. 

Simplifying eq. (74) further we end up with: 

      
 

 
  

   
 

 
  

  
  

 
  

  
     (75) 

Comparing this result to the true motion constant, we find out that they are 

exactly the same when ε=B=.1. Same results, meaning that the exact motion constant 

was found, even if we change the values of  ε=   and    in the main Duffing oscillator 

that we are studying,  ̈         
    , where    

 
 

          . These calculations 

and equations prove that the true motion constant can be found, also here we notice that 

a combination of   and    would result in the same exact true motion constant in them.  
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A code was developed for any form of the Duffing Oscillator   ̈         
  

  , where    
 
 

           , in which M
-1

 is calculated, so Y= M
-1 

x  is easily known. 

After that the motion constant is derived by hand. In all of the cases of the Duffing 

Oscillator, the motion constant is at first captured at the 14th level coordinates; A  

is 14 x 14.    

Truncating the A matrix to some coordinates, which is just before or just after the 

14x14 A matrix also captures the motion constants. Looking at Table 1, we notice that 

14 coordinates capture nonlinearities up to the 4
th

 order, and 20 coordinates capture the 

nonlinearities up to the 5
th

 order. So, to see if the motion constant can be found when we 

have 13 coordinates or 15 coordinates, which are not the full coordinates at those levels, 

as an example, calculations were done after truncating the A matrix into 13 and 15 

coordinates. In these two trials, motion constants were captured, results and calculations 

for these two approaches are below: 

For the13x13 A matrix, when ε=B=.1, which has only one zero eigenvalue, we 

have a 1x1 Jordan block at y7: 

        
 
                                     

               
            

          
  

     (76) 

Since we already know what the true motion constant is, we notice that    has the same 

states as the true motion constant, doing calculations and simplifying   , so the result is:  
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     (77) 

The result above is exactly the same as the true motion constant of the real nonlinear 

system. 

 For the15x15 A matrix, when ε=B=.1, which has only three zero eigenvalues, 

we have three 1x1 Jordan block at y7, y14 and y15. Since we already know what the true 

motion constant is, the approach using            is used to see if   is a ratio of 

the true motion constant like the 14x14 case, but here we have an extra        =    , 

so this forces us to add   , and take it into consideration so eq. (64) changes to: 

                     (78) 

                                                                    

                                                         

Noticing that  
 

     
 

 

     
          

      =     

Multiply    by          and     so we have: 

         =   =                                

                

     (79) 

Noticing that the real motion constant does not have     , so   must be equal to zero. 

Adding them together:                   
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     (80) 

Simplifying eq. (80) further we end up with   equals the exact value of the true motion 

constant of the nonlinear system when ε=      and      . 

     
 

 
  

   
 

 
  

  
  

 
  

  
     (81) 

 

4.3 Linearizing Using Taylor Series 

 

Taylor series expansion is the most general known way of linearizing, where an 

equilibrium point is calculated and then the linearization is done around the equilibrium 

point. For a function f(x) and equilibrium point a, the Taylor series would be : 

∑
 ( ) ( )

  

 

   

 (   )  
(82) 

where n! is the factorial of n and ƒ
 (n)

(a) is the nth derivative of ƒ evaluated at the 

point a. This power series is also called a Maclaurin series. 

So f(x) at point a would be: 

 ( )  ∑
 ( ) ( )

  

 

   

 (   )  
(83) 

 

For an example let’s take the taylor expansion for   : 
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(84) 

For our Duffing equation , Taylor Linearization for the case    =1 using only first order 

terms for simplicity would be as discussed below: 

 ̈          

      ;         ̇   ̇ 

 ̇         
  

[
  ̇

  ̇]  [
  

       
 ] 

(85) 

 ̇   ( ) (86) 

Finding the equilibrium point: 

 ( )       ̇                                    ̇   ̇    

       
      (     )    

(87) 

So     
  

 
  not a real number    ;  so        

Since          the equilibrium point is (0,0). 

           ;         = 0 equilibrium point ;    is a small 

perturbation.         

(88) 

  

 ̇   ̇ ;   ̈   ̈                                                                                                              (89) 

 

 

Taylor series 
  

  
          

 : 
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 ̈  (     )    (    )⏞    
   

=0 

 ̈     = 0 

(90) 

                                                  ̇     

 ̇   ̇                                         ̇      

 ̇   ̈      

(91) 

So this results in:  ̇    . 

[
     ̇
     ̇ ]  [

  
   

] [
  

  
]  

A=[
   
    

]                                                                                                                                                          

(92) 

Characteristic equation:                                                                         (93) 

Using the results above; attempting to find the motion constant for the linear system that 

has a complex eigenvalue as discussed earlier: 

R=[
   
  

] ;                        P=[
  
  

]    

A= P R P
-1                          

                                                                                                          

(94) 

     
    

  (95) 

Using                                                                                                                      (96) 

     ;         (97) 

     
    

     (98)                                                                                              

From the above, we notice that the motion constant obtained from Taylor 

Linearization, does not capture the nonlinearities up to the fourth order that appear in the 
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true motion constant for the real system. However, the motion constant obtained from 

Carleman had the higher order nonlinear terms that appear in the real motion constant. 

Below are plots of the motion constants for the cases obtained from Carleman 

Linearization, Taylor Linearization, and the true motion constant: 

 

 

Figure 1: Motion Constants When ε=.1 and   =1. 
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Figure 2: Motion Constants When ε=1 and  =2. 

 

 

Figure 3: 3D Plot For Motion Constants When ε=.1 and   =1. 
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Figure 4: 3D Plot For Motion Constants When ε=1 and   =2. 

 

In the previous figures, all of the motion constants are plotted in the same figure 

for certain conditions. In Figure 1 the true motion constant is plotted  along with the 

motion constant   obtained from Carleman linearization and motion constant   

obtained from Taylor Linearization when         and    . Where in Figure 2 the 

true motion constants are plotted when        and    . Figure 3 shows a 3D plot 

for all motion constants when         and    . Figure 4 is a 3D plot for motion 

constants when        and    . These two figures show that Carleman’s motion 

constant is exactly the same as the true motion constant, where Taylor’s motion constant 

is not exactly constant and it is not close to the true motion constant.  
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Figure 5: Comparing x1 State For The 3 Methods. 

 

 

Figure 6: Comparing x2 State For The 3 Methods. 
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Figures 5 and 6 compare the states x1 and x2 obtained from integrating three 

differential equations:  

1) The real differential equation. 

2) Carleman’s differential equation. 

3)  Taylor’s differential equation. 

 We notice that the states x1 and x2  are different for the three differential 

equations, that is because these are three different differential equations. Here Carleman 

finds the exact motion constant as the one found in the real system, even though they are 

two different differential equations. 
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5. CONCLUSIONS AND FUTURE WORK 

 

Motion constants are time independent equations involving the system states that 

solve the dynamic system. They provide information about the system and properties of 

the motion without solving equations of motion, that’s why they are useful. 

For an nth order linear autonomous system, motion constants can be found. 

Motion constants for nth order nonlinear systems are hard to find. That’s why we need to 

linearize the nonlinear system. If we have an nth order linear autonomous system, we 

can obtain up to n-1 time independent integrals (or motion constants). 

Carleman Linearization is a technique that transforms a finite dimensional 

nonlinear system to an infinite set of linear equations. Carleman Linearization results 

with an infinite differential equations in the form of  ̇    .  The A matrix resulting 

from Carleman can be truncated up to a certain level as discussed in Table 1, where the 

real motion constants of the true nonlinear system can be found. 

The Duffing Oscillator was taken as an example, because it forms a clear 

dynamic analog of the general torque-free motion of an arbitrary rigid body. For the 

Duffing Oscillator the exact motion constant was found at the 14x14  A   matrix 4
th

 

order level , but it was first found at the 13 x13 A   matrix . 

The true motion constant of the real nonlinear system can be found,  not only by 

taking the derivative of Carleman motion constant, but also by taking the derivative of a 

combination of two Carleman motion constants or more: 
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  ̇      ̇      ̇            (99) 

Consequently, there are an   and a   that will make   ̇ and   ̇ when added together 

zero. 

Based on work done earlier, and the study that was done on the Duffing 

Oscillator, I believe that any arbitrary nonlinear dynamic system can be linearized using 

Carleman Linearization. From there, the real motion constants can be derived. Moreover, 

after Carleman Linearization is done, a MATLAB function can be developed, in which 

the truncated A   matrix resulting from that linearization can be taken, and the function 

would calculate the derivative of the motion constants. If the answer is zero that means 

that the true motion constant was found. If the answer is a number, then the A   matrix 

needed to be truncated to a higher level in order to find the motion constant. 
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