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ABSTRACT  

Three experiments were conducted to not only further the understanding of previously 

seen enhancements to goal directed movements following sine wave tracking, but also to 

investigate if this effect is present following training in an active elderly population.  

The purpose of the first experiment was to investigate if a template constructed from 

recorded Fitts target task limb displacement would provide performance enhancements 

previously seen following sine wave tracking. Participants (master) where either asked to 

complete 45 acquisition trials of a Fitts target task or track a sine wave template. The 

recorded displacement of their performance made up the acquisition templates for two other 

participant (yoked) groups. Following acquisition, all participants were asked to complete 9 

trials of a Fitts target task. The results of this study concluded that participants in both the 

sine tracking groups showed enhanced performance compared to the Fitts groups.  

Movement time, time to peak velocity, and endpoint variability were similar for the two sine 

groups indicating not only faster but more harmonic motion than for the Fitts groups that 

practiced under the Fitts conditions. 

The purpose of the second experiment was to determine if sine wave tracking with 

amplitude different from that used on the test will result in equally effective transfer to a Fitts 

task. Participants were assigned to tracking a sine wave template with amplitudes of 16o or 

24o or a Fitts task condition with amplitudes of 16o or 24o. Following 45 acquisition trials, all 

participants were tested under Fitts task conditions with amplitude=16o. Results 

demonstrated that participants who tracked the sine wave templates of 16o and 24o showed 

enhanced performance and were equally effective in performing the 16o Fitts task.  
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The purpose of the third experiment was to determine if sine wave tracking in an active 

elderly population would result in decreased movement time without an increase in error 

when later transferred to a Fitts target task. Participants (elderly, young) where either asked 

to complete 45 acquisition trials of a Fitts target task or track a sine wave template. 

Following acquisition, all participants were asked to complete 9 trials of a Fitts target task. 

The results of this study concluded that participants in both the sine tracking groups (elderly, 

young) showed enhanced performance compared to the Fitts groups with respect to their age. 

Taken together the present experiments not only adds to the extensive literature related to 

speed-accuracy trade-offs, but presents a novel approach to re-thinking the way typical motor 

behavior is enhanced at tasks of higher difficulty now and throughout the lifespan. 
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CHAPTER I 

INTRODUCTION 

In many daily activities, movement of the limbs, for example extending an arm to grasp a 

cup, requires a trade-off of speed for accuracy depending on the difficulty of the task (for 

review see Elliot et al., 2010). In the late 1800’s it was well documented (Woodworth, 1899) 

that increased speed of the limb resulted in decreased accuracy, but it wasn’t until over 50 

years later that this idea would be most notably advanced (Fitts, 1954). Today, one of the 

most highly cited accounts of this speed-accuracy trade-off comes from a series of 

experiments performed by Fitts (1954). In his seminal work, Fitts noted that when 

participants attempted to move back and forth between targets, increases in movement 

amplitude (A) and/or in target width (W) resulted in increased average movement time (MT) 

due to increased attentional demands. Following Shannon’s information theory (1949), Fitts 

developed an index of difficulty (ID) which he theorized was a result of the number of bits of 

information needed to be processed to efficiently generate the desired level of precision 

required to successfully move between the targets. Although there are many variations 

present today (Crossman, 1956; Guiard, 2009; Meyer et al., 1988), one of the most widely 

used calculations of ID can determined by the equation Log2 (2A/W), where A represents the 

amplitude of the movement measured from one target center to the other and W represents 

the corresponding width of the target area in the direction of the movement. Therefore, MT 

across a range of IDs can be characterized by the equation MT = a + b (ID).   

Target directed movement of the limbs, whether discrete (Fitts & Peterson, 1964; Meyer 

et al., 1988) or reciprocal (Adam & Paas, 1996; Boyle & Shea, 2011; Guiard, 1997; Kovacs, 

Buchanan, & Shea, 2008; Mottet & Bootsma, 1999) traditionally exhibit a speed-accuracy 



2 
 

trade-off of motor control as difficulty increases (Fitts, 1954; Woodworth, 1899). Namely, as 

the difficulty of the task increases, performers must adjust movement time in order to 

accurately strike the target area. In relation to the control processes and kinematic variables 

related to this motor output, studies have consistently revealed that as movement time 

decreases, the proportion of time utilized in the acceleration stage of the movement 

diminishes. This unequal shift in movement components indicates that as difficulty increases, 

movement control shifts from preplanned, more cyclical control to online, more discrete 

control (e.g., Buchanan, Park, & Shea, 2006).  

In a recent experiment by Boyle, Kennedy, and Shea (2012a), a Fitts’ group were asked 

to practice an elbow extension/flexion reciprocal Fitts’ task. Participants were instructed to 

move as fast yet accurately as possible between two displayed targets. Conversely, a Sine 

group during acquisition was instructed to track a sign wave template in the projected visual 

display. The template was constructed with a period that resulted in total times comparable to 

that used by participants in the Fitts’ group. Similar to the Fitts group, participants were 

instructed to track the path presented by the template by extending and flexing the lever 

about their elbow. If participants were successful they would execute a harmonic (smooth, 

symmetrical acceleration and deceleration phases) that would also reverse in the target area, 

even though the target lines were not present in the display. Because of the cyclical nature of 

tracking the template the authors termed the sine wave as an “optimized” movement path. 

Following Test 1 in which the respective groups were tested under the conditions they 

experience during acquisition, both groups were then asked to perform Test 2 under the Fitts’ 

conditions. The results revealed that the Sine group not only produced lowered movement 

times on Test 2 compared to the participants who trained under the Fitts conditions during 



3 
 

acquisition, but kinematic components of accuracy (i.e. endpoint variability and hit rates) 

were upheld. In other words, while movement time was reduced, accuracy (hits, endpoint 

variability) remained high and % time to peak velocity increased leading the authors to 

conclude the Sine participants adopted a more harmonic/cyclical movement control strategy. 

Although fascinating, the sine wave protocol is still not fully understood. It is important 

to note that the period of the sine wave was set to match the total time observed in the Fitts’ 

group (Boyle et al., 2012a).  However, when the Sine group was transferred to the self-paced 

Fitts’ task the participants moved significantly faster than they were required to move given 

the sign wave template and the movement time under this condition was strikingly faster than 

that achieved by the participants in the Fitts’ group that trained under the test conditions. The 

fact that the Sine group altered their movement time suggests that they did not learn a time 

dependent control strategy but could rescale their movements when provided the opportunity. 

However, what was it about the sine wave training that promoted this flexible form of 

control? A basic question that could be asked is was it the specific sine wave used in the 

study that promoted the enhancement, or rather could simply tracking a variation of the 

previous sine wave promote the same form of control? Indeed future experiments allowing 

the exposure to different forms of sine wave training would further the understanding of this 

movement enhancement. One potential way to investigate this enhancement would be a 

presentation of traditional Fitts movement traces to high ID targets (e.g. low % time to peak 

velocity, large dwell times) in a similar template format. Movement enhancements following 

what we would describe as an “un-optimized” template would lead to the conclusion that 

simply following a template enhances movement and the previous results were not due to the 

specific “optimized” design sign wave template.  Also, the fact that the movement amplitude 



4 
 

in Boyle et al., 2012a remained constant across practice/tests does raise the possibility that 

the learned movement strategy was specific to the amplitude experienced while following the 

sign wave template. Alternatively, participants in the Sine group may learn a more 

generalizable control strategy that would allow them to not only scale movement time but 

also amplitude. If the sine wave protocol does result in a generalizable movement 

representation it would greatly increase the utility of this training protocol not only for speed-

accuracy trade-off studies, but research investigating goal directed movement throughout 

specific populations. Finally, participants in the Boyle et al., (2012a) study ages only ranged 

from 18 to 25. Research has repeatedly shown (for review see Ketcham et al., 2002) that 

elderly performance on goal directed target tasks (i.e. Fitts tasks) show decreases in 

kinematic variables that could potentially be specifically enhanced in this design (e.g. faster 

movement time, less dwell time, higher % time to peak velocity). Further research of the sine 

wave protocol could investigate if different populations in age produce the same motor 

enhancement previously seen, or if the results are specific to an age range.  

Experimental Hypothesis 

Three experiments are proposed, which were designed in an attempt to not only further 

the understanding of previously seen enhancements to goal directed target movement 

following sine wave training, but also investigate whether sine wave training results in lower 

movement times without increasing error in an active elderly population. 

Experiment I was designed to replicate the findings seen in Boyle et al., 2012a and to 

determine if training with a template constructed from typical Fitts performance results in 

lower movement time without increasing error upon transfer to a Fitts target task. The benefit 

of this design allows participants to physically interact with the same motion Fitts performers 
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undergo and empirically examine if presenting this task as a template and not dual targets, 

results in lower movement time on the transfer test, or if the template used to guide the 

movement requires deliberate design to influence control strategies. 

Experiment II was designed to determine if sine wave tracking with an amplitude 

different from that used on the test will result in equally effective transfer to a Fitts task. The 

specificity of learning hypothesis proposes that during practice, participants select the source 

or sources of feedback that they feel ensure optimal performance (Blandin, Toussaint, & 

Shea, 2008; Proteau, 1995). Thereafter, participants selectively process this information 

while refining their performance and ignore other sources of information provided in the 

display.  Showing effective transfer with lowered movement time after tracking a sine wave 

of differing amplitude would further the original conclusions that tracking the sine wave 

promotes a generalizable flexible form of cyclical control. 

Experiment III was designed to investigate if sine wave training results in lowered 

movement time without increasing error in an active elderly population. Research has 

repeatedly shown that elderly participants compared to young participants display not only 

slower movement times (high values of movement time) in Fitts tasks, but also exhibit 

distinct differences in select kinematic components of the movement structure (Ketcham et 

al., 2002). These kinematic components (e.g., peak velocity, percent time to peak velocity, 

dwell time, endpoint variability) are directly influenced following sine wave training in 

young participants and could possibly enhance select components in an elderly population, 

leading to a change in motor performance. 
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CHAPTER II 

LITERATURE REVIEW  

Motor Behavior Question 

Humans utilize and coordinate the limbs in a variety of manners related to specific goal 

outcomes. The way we interpret, plan, integrate and execute goal directed movements are a 

few of the key areas of study in the field of motor neuroscience. For well over 100 years, 

research examining goal directed movements of the limbs has well documented that 

reciprocal and/or discrete aiming movements to a target are constrained by what has come to 

be known as a speed-accuracy trade-off. This tradeoff essentially means that target endpoint 

accuracy decreases and/or endpoint variability increases with faster movement speed; 

requiring the performer to slow down when greater target endpoint accuracy is required. 

Kinematic components of these movements (e.g., velocity, acceleration, dwell time) provide 

a window into the way our neuromuscular system organizes from the simplest to the most 

complex limb movements. Although a great deal of research has examined speed-accuracy 

trade-offs from multiple perspectives, recently studies (Boyle et al., 2012a; Boyle et al., in 

press; Boyle et al., in revision) have shown that the way we train or present information may 

have an impact on what we consider typical speed-accuracy trade-off motor behavior. 

Speed-Accuracy Trade-off 

Initially, Woodworth (1899) proposed a two component model of goal directed 

movement with the first component involving an initial “ballistic” phase driving the 

movement toward the target followed by a second component involving a slower closed-loop 

“homing-in” phase governing the approach to the target. This idea proposes that the initial 

“ballistic” impulse directs the limb toward a target and current control initiates small 
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submovements to maintain accuracy about the target area. In Woodworth’s seminal work, 

participants performed a repetitive line drawing task between two targets, with the speed of 

their movements paced by a metronome. In this study, metronome speed, distance between 

targets, eyes open/closed and right/left hand control were examined. Participants were 

instructed to repeatedly trace a line of constant and variable distance while the metronome 

systematically became faster or slower. Following its completion, Woodworth’s results 

pointed to one of the first documented relationships regarding a loss in accuracy as speed of 

the effector is increased.   

Over fifty years following Woodworth’s seminal work, one of the most well documented 

quantifications of the speed-accuracy trade-off relationship has come to be known as Fitts 

Law (Fitts, 1954). In Fitts seminal study, participants’ were asked to rapidly alternate tapping 

the tip of a stylus on two defined target areas continuously. The two target areas had a width 

of correct response (W) separated by a defined amplitude (A) measured from the center of 

each target center. Participants were instructed to continuously tap the tip of the stylus in the 

target areas as rapidly as they could, while making sure they accurately struck within the 

target. Following the completion of his work, mathematical analysis of the effect of 

movement A and W on movement time was used to form an index that Fitts explained 

encompasses the difficulty of goal directed target movement. This index, although it has been 

questioned recently as to its appropriate description (Boyle & Shea, 2013; Guiard & 

Olafsdottir, 2011), has come to be most commonly referred to as the index of difficulty (ID). 

The index is calculated by the equation ID= Log2 (2A/W) and both A and W, which 

explained previously, are independent variables that when manipulated decrease or increase  

the value of ID, which in turn influences MT as represented in the equation MT = a + b (ID) 
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(for alternate calculations see Crossman, 1956; Mackenzie, 1989; Meyer et al., 1988). The a 

and b represent empirical constants of intercept (a) and slope (b). The comparison of MT to 

ID reveals what many consider the relationship that captures the essence of the speed-

accuracy trade-off, the linear slope of movement time as related to difficulty adjustments. 

According to Fitts’ (1954) original formulation of the speed-accuracy trade-off, movement 

time changes as a function of the additional bits of information that have to be processed to 

achieve the task demands (Shannon & Weaver, 1949). In other words, if the rate at which 

information can be processed is stable then a participant must compensate for increases in 

difficulty by increasing and/or decreasing movement time so that the information processing 

required to achieve the amplitude/target can be completed.  

Following extensive reformulations of the speed-accuracy trade-off (for reviews see 

Elliot et al., 2010; Guiard & Olafsdottir, 2011) one of the most highly respected and noted 

accounts of the underlying kinematic structures of this relationship was developed by Meyer 

et al., (1988). Taking into account not only the forward motor command, but also the online 

perceptual components of goal directed movements, Meyer et al., furthered Woodworth’s 

original model by developing an explanation involving a pre-planned initial impulse 

movement followed by visual/proprioceptive driven discrete corrective submovements as the 

effector approached the target (Meyer et al., 1988). Elliot et al., (2010) advanced this model 

to incorporate the formation of a pre-movement motor plan paralleled with the online 

comparison between the anticipated and actual efferent and afferent motor/sensory 

information (also see Davidson & Wolpert, 2005; Harris & Wolpert, 1998; Miall & Wolpert, 

1996). Indeed, cortical differences have been shown in tasks where movements are primarily 

externally driven by the feedback during performance compared to internally driven 
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movements that can operate in the absence of feedback (Debaere et al., 2003). To further 

explain, in a condition of high accuracy demand (e.g., large A to small W) slowing of 

participant movement is essential to provide the opportunity for afferent-based error 

reduction, particularly in the visually driven online component of the movement 

(approaching the target). However, to completely understand the kinematic components of 

goal directed movement, one must first recognize that motor strategies and control processes 

greatly differ based upon the demands the task imposes in parallel with perceptual feedback 

provided.  

Discrete Vs. Cyclical Control  

Over the past 60 years, target directed movement investigations have traditionally been 

explained through two diverse theoretical perspectives: Dynamic models which characterize 

movements as cyclical in nature (Crossman, 1960; Fitts, 1954; Welford, 1960; Langolf et al., 

1976; Turvey, 1990; Kelso, 1995; Buchanan et al., 2003, 2004, 2006) and information 

processing models which characterize movements as composed of discrete segments (Fitts, 

1964; Schmidt et al., 1979, 1998;  Meyer et al., 1982, 1988; Plamondon & Alimi, 1997). 

Regardless of the theory related to the composition of the movement structure, what has been 

repeatedly shown in speed-accuracy trade-off studies is a shift in control strategy related to 

the demand of the task (e.g., Buchanan et al., 2003, 2004, 2006; Mottet & Bootsma, 1999; 

Guiard, 1993, 1997). Utilizing a target width scaling model where ID was shifted during a 

trial, Buchanan and colleagues (Buchanan et al., 2004, 2006) noticed that participants 

transitioned from discrete to cyclical or vice versa between ID=4.0 and ID=4.9.The range 

between these IDs led the authors to propose IDc≈4.5 as a critical boundary where movement 

variability is increased prior to transition to an alternative mode of control. Easier movements 
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(lower IDs) in continuous Fitts’ tasks are often characterized as harmonic.  Kinematic 

analysis of these movements traditionally reveals a lack of corrections in the initial 

movement trajectory profile, equal proportion of time dedicated to accelerating and 

decelerating the limb, and minimal if any dwell time seen at target reversal. This form of 

control is commonly referred to as cyclical and in most cases seen at lower ID tasks. 

Conversely, difficult tasks (higher IDs) are typically characterized as in-harmonic. Kinematic 

analysis of these movements traditionally reveals adjustment to the initial movement 

trajectory, greater movement time utilized in the deceleration phase than acceleration phase, 

and increased dwell times present at target reversal. This form of control is commonly 

referred to as discrete in nature and in most cases seen at higher ID tasks (Buchanan et al., 

2004, 2006). 

 For many years, studies examining speed-accuracy trade-offs have utilized traditional 

methods (e.g., tapping a finger, moving a peg, dragging a computer mouse, manipulating a 

stylus pen, etc.) without enhanced visual displays. Previous experiments have investigated 

the role that instruction (e.g. strategies and extended practice) play in enhancing motor 

performance (e.g., Boyle et al., 2012b; Guiard, 2009; Kovacs et al., 2008), with minimal to 

no success. (It is important to note here that for the purpose of this dissertation, improved 

performance will be defined as a production of faster movement time while maintaining high 

endpoint accuracy about the target area). In other words, many researchers have replicated 

the idea that speed-accuracy trade-off movements are typically not improved without some 

form of visual/physical manipulation (for review see Casiez et al., 2008). However, 

investigators today have become progressively more interested in enhancing movement 
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performance by enhancing the visual feedback provided in virtual displays (e.g., Boyle & 

Shea, 2013; Boyle et al., 2012a; Fernandez & Bootsma, 2008; Kovacs et al., 2008)  

For a number of years studies investigating the impact of visual displays/feedback 

manipulations have been predominantly seen in the human computer interfaces literature 

(Bohan & Scarlet, 2003; Casiez et al., 2003; Guiard, Beaudouin-Lafon, & Mottet, 1999). 

Researchers now are interested in looking more closely at how these manipulations change 

the control processes involved in producing high difficulty aiming responses. Following a 

two component model of control, (Davidson & Wolpert, 2005; Harris & Wolpert, 1998; 

Miall & Wolpert, 1996; Meyer et al., 1988; Woodworth, 1899) motor performance 

manipulations to movements of high difficulty are predominantly seen in one of two ways. 

First, visual/perceptual information can improve discrete control processes especially in 

terms of augmenting the performer’s ability to decrease the time dedicated to making 

corrections. To further explain, these manipulations allow participants to produce initial 

ballistic movements with higher success as far as projected trajectory, which also allow 

participants to make fewer adjustments approaching the target area (Guiard et al., 1999). 

Secondly, shifts from discrete control to more cyclical control are present if perceptual 

manipulations are successful at alleviating task difficulty constraints (Guiard et al., 1999; 

Kovacs et al., 2008). Previously mentioned studies (Boyle & Shea, 2011; Buchanan et al., 

2006; Guiard, 1993) have shown that lower ID movements are typically controlled using 

cyclical control processes while high ID movements rewire more discrete error detection and 

correction processes (e.g., Buchanan et al., 2004, 2006; Kovacs et al., 2008). Elements that 

allow performers to successfully produce high ID movements with more cyclical control 

could result in more proficient control.  
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Enhancing Goal Directed Movement 

Through technological advancements it is possible to transform the information provided 

the performer by enlarging a virtual display of task constraints and/or performance. In 

traditional speed-accuracy trade-off studies, the visual and spatial coordinates of the target 

are isomorphic with the task constraints. In other words, the visual angle of the 

amplitude/width assembly scales with the movement restrictions defined by the ID. Although 

Fitts’ (1954) original work and many experiments that followed have utilized modest 

movement tasks (e.g. physically tapping a stylus back and forth on a table) with only the 

natural visual information available, currently research has seen a resurgence in enhancing 

motor performance by manipulations to the perceptual information available (e.g., Bohan & 

Scarlet, 2003; Boyle & Shea, 2013; Casiez et al., 2008, Fernandez & Bootsma, 2008; Guiard 

et al., 1999, Kovacs et al., 2008).  

Displaying a two-point scale of feedback information (micro and macro), Guiard et al., 

(1999) was successfully able to show that the motor system is extremely adaptable at making 

movements to targets at difficulties as high as ID=12. These small targets were reached by 

reducing target widths to minimal levels of presentation (in pixels) by presenting them to 

participants in a custom designed dual cursor feedback task. The task consisted of a cursor 

representing the initial projected trajectory (macro) while a second cursor represented the 

“homing in” on the small target (micro). The results of this study show that the 

perceptual/motor system is more than proficient at executing movements to high 

difficulty/small targets if provided the appropriate level of augmented feedback. In this study, 

Guiard concludes that it is not the motor command, but vision that is the limiting factor 

related to motor control in complex goal directed movements. 
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 Along the same vein, a study by Kovacs et al., (2008), examined what function visual 

angle had in the control and execution of reciprocal movement between two high ID targets. 

In this experiment, physical constraints of target width and movement amplitude where kept 

constant, while visual depiction of the task parameters were systematically enlarged to 

augment visual information. Results from this study revealed that participants moved faster 

at an ID of 6 when the visual display of the task was enhanced (2.5x) than when the visual 

display was not. Although the enlarged display provided enhancement at an ID=6, the 2.5x 

visual display did not however, change movement performance at the lower IDs (3 and 4.5). 

Further analysis revealed harmonicity values surpassed scores traditionally present at high ID 

movements which are typically seen very low  (H>.5)  (Guiard, 1997; Buchanan et al., 2006). 

Furthermore, the amount of time devoted to the deceleration phase under the 2.5x visual 

presentation at ID=6 was markedly decreased compared to performance seen in the 1x visual 

display at ID=6. Significant decrease in dwell time and increase in percent time to peak 

velocity under the 2.5x visual presentation were consistent with a shift in control strategies 

from discrete to more cyclical. Concluding remarks from this study point to two potential 

reasons these enhancements were present. First, the neuromuscular system was capable of 

utilizing stored mechanical energy during limb reversal, leading to a more cyclical form of 

motion. Second, the period spent decelerating the limb was decreased considerably from the 

small to large display with ID = 6, with an associated increase in the percent time to peak 

velocity for the 2.5x display, again suggesting a shift in performance consistent with 

movement toward a more cyclical form of control (Buchanan et al., 2006).  

In another example, a recent experiment utilizing a reciprocal Fitts task, manipulated the 

association between physical movement information and visual movement presentation of 
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the cursor on the screen (non-linear gain) where the targets were presented (Fernandez & 

Bootsma, 2008).  The manipulation provided what the authors termed a “softening-spring” 

effect that altered phases of the movement where large visual bursts and cursor slowing were 

most beneficial. The results of this study found advantages of applying a non-linear gain to 

the movement feedback as the difficulty of the task increased (i.e. faster movement times). 

Thus, altering the visual gain of the task display has the potential to influence the degree to 

which feedback is used to adjust the progress of the movements and ultimately enhance 

movement times at higher difficulty tasks.   

The use of enlarged feedback presentations has not only provided some remarkable 

results in goal directed target movements, they have also recently been a leading issue of 

discussion in the study of bimanual coordination. A string of recent studies (e.g., Boyle et al., 

2012c; Kovacs et al., 2010a, b) revealed that a variety of multifrequency and phase shifted, 

bimanual coordination tasks, traditionally thought to be extremely difficult or even 

impossible to efficiently produce without prolonged practice, could be successfully generated 

with only a few minutes of practice when Lissajous displays and templates defining the target 

movement pattern were provided. To further explain, Lissajous presentations allow the 

performance of separate effectors to be presented as a solitary point (e.g., cursor) in the 

display with left limb movement, for example, resulting in vertical movement of the cursor 

and right limb movement resulting in the horizontal movement of the cursor. When a 

Lissajous template is utilized, participants find it quite simple to track the outline designated 

by the template which results in the production of the goal bimanual coordination pattern.  

 It has been noted, however, with concurrent feedback displays that performers are 

susceptible to becoming dependent on the display information provided and are unable to 
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effectively produce the goal movements when the display is removed. Indeed a study 

recently replicated that applying a non-linear gain as previously discussed (Fernandez & 

Bootsma, 2008) does result in enhanced motor performance compared to untransformed 

target movement, however, these enhancements were shown to be absent immediately 

following the removal of the manipulation (Boyle et al., in press). Furthermore, one cannot 

help but question whether the motor system is learning a new strategy in the manipulation or 

the enhanced movement is simply related to performing under the influence of the feedback? 

Debaere et al., (2003) offered validation that neuroanatomical substrate is changed when 

participants are performing in the absence or presence of influenced visual feedback. But 

again, does this change in neural activity relate to the encoding of a flexible motor program? 

Since there are abundant examples of participants developing a degree of dependency when 

simultaneous enhanced feedback is provided during acquisition (e.g., Schmidt and Wulf 

1997; also see Salmoni et al., 1984), researchers have investigated methods of minimizing 

this dependency (e.g., Winstein et al., 1994; Winstein & Schmidt, 1990; Wulf & Schmidt, 

1989).  

 A study by Kovacs and Shea (2011) revealed, in a bimanual coordination experiment 

when participants were attempting to learn a 90 phase shift with augmented Lissajous 

feedback, that participants were able to effectively produce the desired coordination pattern 

with little practice. Following the withdrawal of the feedback on the retention test; 

performance vastly deteriorated leading to the conclusion of a strong dependency on the 

augmented feedback. However, when the augmented feedback was systematically reduced, 

the authors found that participants could be “weaned” from their dependency on the 

feedback. Their results showed that participants were able to produce the complex bimanual 
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coordination pattern with and without the augmented display if the presentation enhanced the 

learner’s motor representation.  

Studies investigating motor performance and perceptual feedback have also found that 

the removal of sensory information from practice to test generally results in performance 

detriments relative to when information is unchanged. This information could potentially be 

a reference used to determine when errors are made (visual feedback), vision of the limbs, or 

task specific parameters (i.e. difficulty, frequency, and amplitude). This perspective 

maintains that participants develop specific feedback processing procedures which are 

disrupted if the feedback is withdrawn or changed. Proteau (1995) showed that even after 

200 trials of performing a specific goal directed movement, absence of the visual information 

representing the specific requirements of the task resulted in deteriorated performance.  

In research examining goal directed movement enhancements, it is possible for 

movement displays to not only present targets and/or obstacles but to provide the performer 

with a predefined movement template. Recently, an experiment was designed that involved 

participants making reciprocal movements in order to follow a sine wave template (Boyle et 

al., 2012a). If participants were successful in tracking the sine wave template they would 

execute a smooth acceleration followed by a smooth deceleration approach to the target with 

the trajectory of the acceleration and deceleration profiles defined by amplitude and 

movement time dictated by the period of the sine wave. Not surprisingly, while tracking the 

sine wave template kinematic component analysis revealed that the participants utilized a 

smaller proportion of the total movement time in the deceleration phase of the movement and 

achieved smaller degree of variability in the movement endpoint than participants provided a 

typical Fitts’ display. It is important to note that although movement performance was 
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enhanced, it was not at the cost of sacrificing accuracy (hits, end point variability). 

Furthermore, what was even more unexpected was that when the sine wave tracking 

participants were transferred to a traditional Fitts target task, the participants performed the 

task at a level of performance that far exceeded a control group who had practiced the Fitts 

task throughout the entire study. The finding that the performance of the Sine group on the 

Fitts transfer test did not result in a performance decrease was also intriguing from a 

specificity of learning standpoint (e.g., Coull et al., 2001; Elliott et al., 1997; Proteau, 1995). 

As previously mentioned, research on this subject has found that when sensory information 

available during practice is removed or altered on the test trials, performance commonly 

declines in relation to when information presentation is unchanged. This viewpoint argues 

that participants acquire specific feedback processing procedures which are disturbed if the 

feedback is removed or altered.  In the Sine condition the participants obviously utilized the 

sine wave template to direct their performance; however, what is unique is the level of 

performance they display when this source of information was removed on the Fitts transfer 

test. Although these findings are inconsistent with the specificity of learning hypothesis, the 

authors rationalized that the participants were not using the template to constantly guide their 

movements, but rather the template prompted them to adopt a more cyclical control. The 

participants utilized the sine wave template only to tune-in the correct parameters (amplitude 

and period) to match the wave form in the acquisition phase of the study. Therefore, 

removing the sine wave template did not disrupt performance because the amplitude could 

now be rescaled to the targets presented in the Fitts condition leaving the temporal parameter 

(period) open to be re-scaled.  
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As interesting as the findings from the sine wave enhancement were, recent reviews in 

current pending literature (Boyle et al., in revision) have raised questions. For example, is the 

“optimized” design of the sine wave a necessary feature to elicit the enhancement, or does 

simply tracking a sine wave template promote a flexible form of motor performance? In other 

words, would the same effect be expected if participants were instructed to track a sine wave 

that does not guide the performer through an acquisition period of harmonic/cyclical control? 

One potential way to investigate this question is by having participants track kinematic 

patterns traditionally seen in Fitts target tasks (ID = 6), but in the form of a sine wave 

template. This design could be made by recording the performance of a participant on a Fitts 

target task and displaying that displacement data as a trial-by-trial template for another 

participant to track during training. Yoking a participants experience to another participant 

(Master) stimulus exposure/response is a common technique used in Instrumental learning 

(Skinner, 1937; for review see Rescorla & Solomon, 1967). The benefit of this design allows 

the investigator to examine whether the motor response seen is a direct effect of the stimulus-

response relationship. Examinations that further the understanding of the sine wave effect not 

only provide greater insight in to the flexible nature of the neuromuscular system, they also 

provide future opportunities to re-examine previous notions of natural declines in goal 

directed limb movement. 

Aging Motor Behavior 

A wealth of literature has examined the control processes associated with goal directed 

movement, as well as how these movement characteristics can be enhanced through 

augmented perceptual manipulations. Furthermore, an abundance of research has described 

the kinematic variables associated with aging unimanual, bimanual, fine, gross, simple and 
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complex movements of the limbs and hands (for review see Voelcker-Rehage, 2008).  In her 

review of aging motor performance, Voelcker-Rehage points out that as abundant as these 

examinations have been at explaining performance differences between specific age groups, 

little research has examined elderly limb movement from a motor learning enhancement 

perspective.  

It has been shown that with advanced aging almost all human neural (cognitive and 

motor) events become reduced (Birren, 1974). A result of this decrease is that elderly people 

lose the ability to generate task-relevant and/or specific levels of muscle force in the context 

of action. This decrease has been attributed to a loss of overall muscle function and has been 

associated with changes in a number of mechanisms involving factors intrinsic to the muscles 

neural connections (Thompson, 2009). Specific muscle changes found in the elderly include 

reduced sensitivity (Kinoshita & Francis, 1996),  increased average muscle force (Galganski 

et al., 1993), increased firing rate of motor units (Enoka et al., 2003), and disrupted 

recruitment and firing rate synchronization (Erim, 1999). Structural changes in muscle 

properties include atrophy of fast twitch motor units and/or switching to slow twitch units 

and also a decrease in the number of spinal cord alpha motor neurons (Lexell, 1993, Enoka et 

al., 2003). Consequences of these changes over time include an overall decline in strength 

due to loss of muscle cross-sectional area and muscle mass (Thompson, 2009). 

In regard to learning and performance (cognitive/behavioral), elderly show decreased 

performance in cognitive tasks involving spatial and working memory and detriments in 

motor and sensorimotor control of actions (for review see Ketcham, 2002).  In examining 

goal directed movement, elderly adults typically produce up to 70% slower movements than 

younger adults, and this effect is even more pronounced as task difficulty is increased 
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(Seidler-Dobrin & Stelmach, 1996; Ketcham, 2002).  Even though elderly adults show 

decreased movement time, they typically do not differ statistically with younger participants 

on accuracy scores (Goggin & Meeuwsen, 1992). This is not surprising because kinematic 

analysis of elderly goal directed movement has revealed that they tend to produce 

movements with low peak velocity (Cooke et al., 1989) paired with longer deceleration 

profiles (Bellgrove et al., 1998). By definition of the speed-accuracy trade-off: if speed is 

decreased, accuracy will increase. Furthermore, elderly participants show increased 

corrective submovements as they approach a target (Ketcham, 2002). When placing 

emphasis on accuracy (decreasing width with constant amplitude), elderly participants show 

decreased movement times relative to younger participants. These decreases in movement 

times are heavily related to a substantial increase in secondary corrective submovements. In 

other words, the elderly have to make more afferent based corrections around the target 

compared to young participants. When placing emphasis on distance (Increasing amplitude 

with constant target width), elderly participants show a decrease in peak velocity profiles 

compared to young (Ketcham, 2002).  

A study by Pratt et al., (1994) showed that although differences in goal directed 

corrective submovements to a target were present between elderly and young participants, 

both groups improved substantially related to their respective groups after extended practice. 

Again, younger participants outperformed the elderly, however, it is important to note that 

improvements over extended practice shed light on the functional plasticity of the 

neuromuscular system, or potentially a decrease in cortical noise. Imaging studies have 

shown that although motor performance decreases as we age (especially at difficult tasks), 

cortical activation increases with goal directed movement (Heuninckx et al., 2005). It has 
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been hypothesized that this increase in activation represents the plasticity of the brain in the 

face of neurodegenerative changes related to motor control (Grady, 1994; Cabeza, 1997; 

Buckner, 2004). In one of his many noted works regarding motor behavior, Swinnen (2002) 

said, “it is not sufficient to ask how new patterns of neural excitation can be built up — we 

also need to ask how the pre-existing patterns can be suppressed”.  

Imaging research has shown that imagined and executed movements show nearly the 

same cortical activation areas (Skoura et al., 2005). Neural imaging studies have shown that 

these include the parietal and prefrontal cortices, pre-motor and primary motor cortices, 

supplementary motor area, cerebellum and basil ganglia, and spinal cord. This relationship 

between imagined and executed pattern of activation has been shown in experiments 

examining movements of the hands, fingers, toes, tongue and even walking. Recently a study 

by Skoura et al., (2005) concluded that elderly participants did not differ from younger 

participants in imagined movements of the limbs in a pointing task. This result suggests that 

deficits seen in elderly performance may not necessarily be related to a planning issue, but 

rather an execution or monitoring issue.  

Examining encoding strength, a study by Shea et al., (2006) tested young and elderly 

participants on a random and blocked multi-element sequence learning task. Results from 

this study concluded no difference between retention and transfer tests in young and elderly 

in the random sequence, leading the authors to conclude that both groups are capable of 

processing information similarly. However, further results concluded that young 

outperformed the elderly significantly in blocked acquisition and retention, leading the 

authors to further confirm the notion that elderly participants, although did not struggle in 

random, failed to recognize or develop a strategy in the blocked sequence learning. 



22 
 

Due to its practical applicability, it is no surprise that most studies investigating improved 

elderly motor performance are found in the field of human-computer interaction. Based from 

this field of research, traditionally investigating mouse movements, solutions have been 

suggested which make use of a dynamic control-display gain (Keyson, 1997), or a larger 

cursor activation area (Kabbash & Buxton, 1995) to promote faster performance without 

increasing target size. These interaction techniques have been shown to be successful in 

improving the performance of elderly adults in basic goal directed object-selection tasks 

(Worden et al., 1997). Another successful interaction technique involves dynamically 

expanding target size on the screen as the cursor approaches (McGuffin & Balakrishnan, 

2002). This technique was found to significantly improve target selection time in younger 

adults (McGuffin & Balakrishnan, 2002) and in elderly adults (Bohan & Scarlett, 2003), 

suggesting that subjects were able to modify their initial motor response (i.e., to a small 

initial target) to take advantage of the final expanded target size.  An investigation utilizing 

“sticky” icons also shows that elderly adults can produce fast and accurate movements to 

difficult targets (Worden et al., 1997). This process works by creating a dynamic gain that 

adjusts the cursor based upon the velocity of the operated tool as it approaches the target.  

As beneficial as these tasks have been for improving elderly performance, as discussed 

previously, the manipulations listed enhance discrete forms of control which may be 

susceptible to feedback dependency. In other words these manipulations do not teach a new 

strategy of motor control, they simply support motor responses to difficult tasks by 

increasing speed of the initial ballistic phase of the primary movement while simultaneously 

alleviating problems of monitoring afferent information by increasing functional target width 

(also see Kovacs et al., 2008).  
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Finally, plasticity and functionality changes have been shown in research examining 

movement through a sinusoidal wave pattern smoothly with a paretic effector (finger). Carey 

and colleagues (2002) showed that after substantial training at index finger flexion and 

extension tracking a sine wave, participants with moderate motor impairment show increased 

cortical activation and functional movement accuracy when later tested on a transfer target 

task. Importantly for this manuscript, what was not as pronounced was how the comparative 

group (healthy elderly) performed over time on the task. Carey concluded that cortical 

activation and functionality did increase over time (in the healthy subjects); however, this 

was not as substantial as the stroke participant enhancement (which was the purpose of the 

study).  

In summary, goal directed limb movement has repeatedly been shown to follow a speed-

accuracy trade-off in relation to the constraints (A & W) of the task (Fitts, 1954; Elliot et al., 

2010). A large number of studies have investigated the basic kinematic components that 

make up goal directed movements (Guiard, 1996) along with differences in movement 

structure associated with shifts in task difficulty (ID) (Buchanan et al., 2006). A variety of 

visual/perceptual feedback tasks have shown unique motor enhancements related to the 

design of the manipulation (Casiez et al., 2008) however, enhancements are most likely seen 

at the cost of a feedback dependency (Kovacs & Shea, 2011). Recently a study showed that 

tracking a template that directed the movement through a cyclical yet smooth path resulted in 

decreased movement time without increasing error when later tested on a speed-accuracy 

trade-off target task (Boyle et al., 2012a). What is still not clear, however, is the nature to the 

learned enhancement along with the applicability of the sine wave training effect to other 

populations.  
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CHAPTER III 

EXPERIMENT I 

Introduction 

In many goal directed movement activities, speed is typically traded off for accuracy as 

the difficulty of the task is increased. For almost sixty years, discrete and reciprocal aiming 

tasks, often referred to as Fitts’ tasks (Fitts, 1954; Fitts & Peterson, 1964), have been used to 

investigate the control processes governing the speed-accuracy trade-off in rapidly aimed 

movements. Following Shannon’s information theory (1949), Fitts developed an index of 

difficulty (ID=log2 (2A/W)) to depict the interactive effect of target width (W) and 

movement amplitude (A) on movement time (MT). In Fitts’ (1954) original work and in a 

large number of replications, one consistent finding has been that MT scales linearly with 

increasing ID, an ever-present relationship which has come to be respectfully known as 

‘‘Fitts’ Law.’’ With consideration to movement across a range of IDs, studies over the past 

thirty years have focused on identifying kinematic markers in the aiming trajectory in an 

attempt to develop more sophisticated models of the MT-ID relationship. For example, 

aiming tasks have been used to develop models whereby corrective submovements of the 

limbs trajectory are linked together to insure accuracy (Crossman & Goodeve 1963; Meyer et 

al., 1988; Plamondon & Alimi, 1997); models in which the non-linear kinematics of the 

aiming trajectory change as a function of ID, with emphasis placed on clarifying differences 

in cyclical and discrete forms of  action (Adam et al.,1996; Buchanan et al., 2003, 2004, 

2006, Guiard, 1993,1997; Mottet & Bootsma, 1999; van Mourik & Beek, 2004) and 

performance enhancements given select feedback presentations. (Boyle & Shea, 2011; Boyle 

et al., 2012a; Guiard et al., 2009; Kovacs et al., 2008).  
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In a recent experiment using a reciprocal aiming task, Boyle et al., (2012a) provided 

participants a movement path which they described as “optimized” in comparison to typical 

trajectories seen when observed participants at movements between targets at similar 

movement amplitude (e.g. A=16o) and target widths (e.g. W=.5o). Participants were asked to 

follow the path, indicated by a sine wave template, by flexing and extending a lever in order 

to move a cursor in a manner that would track the template. If participants were successful in 

tracking the sine wave template they would execute a harmonic/smooth acceleration phase 

followed by a smooth deceleration phase.  It is important to note that the period of the sine 

wave participants were asked to track was set to match typical movement times seen at this 

level of difficulty (ID = 6). Following a retention test in the respective condition (test 1), all 

participants were asked to perform a transfer test in which they were asked to rapidly flex 

and extend the cursor in and out of two defined target areas as rapidly and accurately as they 

could (test 2). The results from this study revealed that participants in the Sine condition not 

only made faster movements (decreased movement time) on the transfer (Fitts) test (Test 2) 

compared to participants who practiced the Fitts task during acquisition, but these 

movements were not acheived at the cost of kinematic variables that might have shifted to 

account for the speed increase. In other words, while movement time and dwell time 

decreased, accuracy (hits, endpoint variability) remained high and % time to peak velocity 

increased leading to an overall form of control characterized as more cyclical in nature.  

As unique as these findings were, the sine wave tracking protocol still warrants further 

investigations. For example, what constitutes appropriate training in the sine wave condition? 

Is tracking the sine wave presented in the Boyle et al., (2012a) experiment specifically 

constructed to enhance movement on the transfer test, or would participants experience the 
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same performance enhancement by simply following a modified presentation of the sign 

wave template? In other words, was the enhanced performance of the sine group on test 2 

directly related to the stimulus-response relationship present during sine wave training? One 

possible way to further investigate the sine wave enhancement is to design an experiment 

where a new set of participants are yoked to performance seen in the original experimental 

design. In the study of goal directed movement or movement optimization, this technique has 

widely been underserved (Slifkin & Brener, 1998). From a human motor learning 

perspective, yoked designs have been utilized in studies investigating self-regulating 

knowledge of performance (KP)  in sequence learning tasks (Chiviacowsky & Wulf, 2002; 

Hansen, Pfeifer & Patterson, 2011;  Patterson & Carter, 2010) balance tasks (Hartman, 2007; 

Wulf & Toole, 1999) and throwing tasks (Chiviacowsky et al., 2008; Janelle et al., 1997). To 

further explain, a fixed control group yoked to a group that self-regulates the delivery of 

feedback receives feedback in the same relative and conclusive manner. The control group is 

yoked to the decisions the “Master” has decided without prior knowledge that this situation is 

even predetermined. Research has shown that traditional yoked-control groups typically do 

not learn the task as well as the self-regulated groups (for review see Wulf, Shea & 

Lewthwaite, 2010). This finding is thought to occur because individuals potentially may not 

receive feedback on trials for which it would be a beneficial learning experience. From this 

perspective with regard to movement optimization through sine wave training, participants 

were aware of their current performance on all trials due to the online presentation of limb 

displacement (i.e. the moving cursor used to track the sine wave). However, what is not clear 

was the nature of learning involved by experiencing the sine wave template. In other words, 

is it the visual experience of tracking the sine wave what elicited the movement enhancement 
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or does the enhancement require a combination of both the optimized visual template paired 

with the physical representation of acting on it? Yoking one performer to the displacement 

profile of another performer (Master) ensures that the yoked participant physically interacts 

with the same kinematic patterns the “Master” experienced during their training condition 

(Sine or Fitts). However, this yoking design only answers half of the sine wave enhancement 

question. Providing a visual template of the displacement profile of the “Master” in the form 

of a template presentation could be used to investigate the role that visual templates play in 

the movement enhancement seen in Boyle et al., 2012a. If enhancements were observed for a 

yoked participant, who tracked the template constructed from typical Fitts task performance, 

which at this level of difficulty is typically characterized is in-harmonic visually driven 

discrete control, then previously shown enhancements following an “optimized” sine wave 

template would be due to the experience of tracking per se rather than the harmonic motion 

produced by tracking the sine template.  

 Therefore the purpose of Experiment I was to not only replicate the sine wave 

enhancement findings observed in Boyle et al., (2012a), but further investigate this 

enhancement by yoking a new set of participants to displacement performance seen in the 

Sine training and Fitts target task conditions.  

Method 

Participants  

Participants (N=32) between the ages on 18 and 25 received class credit for participating 

in the experiment. The experimental protocol was approved by the IRB for human subjects’ 

research at Texas A&M University. Before participation, all participants read and signed 
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Figure 1. Dimensions and specifications of the projected image display (A). Position of 

the participant and manipulated apparatus (B). 

 

approved informed consent documents.  Participants were not aware of the specific purpose 

of the study and had no prior experience with the experimental task.  

Apparatus 

The apparatus consisted of a 40.64 cm lever. The lever was attached to the right side of 

the table and pivoted on a near frictionless rotating axis. The lever freely moved in the 

horizontal plane. An adjustable handle was affixed to the distal end of the lever. Adjustable 

positioning of the handle ensured that the elbow (arm flexion/extension) was positioned 

directly over the axis of rotation (Figure 1B).  

 

 

 

 



29 
 

Figure 2. Illustrations of the acquisition displays for the Fitts-Master, Fitts-Yoked, Sine-

Master and Sine-Yoked. Template/Target display (black) and participant performance 

(red). 

 

A potentiometer sampling at 200 Hz was attached to the bottom of the lever. A board was 

placed over the limb to occlude vision of the moving effector. A mounted video projector 

was used to display the task (targets, sine wave and cursor). The image of the task and cursor 

were displayed on a wall 2m in front of the participants (Figure 1A). The dimensions of the 

displayed target measured 1.64 x 1.23 m. A height adjustable chair allowed the participants 

to comfortably rest their arm on the manipulated lever. The cursor and targets were generated 

with custom software.  

Procedure 

Before entering the testing area participants were randomly assigned to one of four 

groups (N=8 per group) that differed in terms of the practice conditions (Fitts-Master, Fitts-

Yoked, Sine-Master, Sine-Yoked) (Figure 2 A-D).  
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Participants grasped the handle at the distal end of the lever. Motion of the lever was 

restricted to horizontal flexion/extension about the elbow. Flexion moved the lever towards 

the body and extension moved the lever away from the body. Movement of the lever was 

projected as a white cursor.  

The goal of each trial in the Fitts-Master condition was to move the cursor in and out of 

two defined target areas by rapidly flexing and extending the lever. The projected cursor 

represented online knowledge of the limbs displacement and the targets were defined by two 

red rectangular shaped areas enhanced by a black background. Participants were told to move 

the cursor between the targets as fast as they could, while maintaining perfect accuracy. A 

constant ID = 6 (A=16o, W=.5o), was used in all Fitts conditions. Participants in the Fitts-

Master condition performed 45 trials of acquisition at the Fitts target task, with the final trial 

of the acquisition period analyzed for performance (Test 1). The displacement data during 

each individual trial of acquisition for the Fitts-Master participants was recorded and 

displayed as a template for participants in the Fitts-Yoked condition to track. This custom 

generated template was directly linked for only a single Master-Yoked pairing and was 

presented during acquisition to the Fitts-Yoked participants for the same amount of trials 

experienced by participants in the Fitts-Master condition. Fitts-Yoked participants were 

simply told to track the template to the best of their ability. No other mentions of speed or 

accuracy were given in the instructions. Following 45 trials tracking the template created 

from the Fitts-Master performance, the final trial was subjected to analysis and represented 

the performance of Test 1 for the Fitts-Yoked participants.   

The goal of each trial in the Sine-Master condition was to move the cursor up and down 

in order to track a displayed sine wave template. The amplitudes of the Sine wave matched 
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that of the Fitts task (16o). Following 45 trials of acquisition, the final trial was subjected to 

analysis and represented the participant’s performance for Test 1. Similar to the Master-

Yoked pairings previously discussed, the unique displacement profile of each Sine-Masters 

movement was recorded and displayed as the template for each yoked pairing in the Sine-

Yoked condition. Following 45 trials of acquisition tracking the template created from the 

Sine-Masters displacement, the final trial was subjected to analysis and represented the 

performance values for Test 1.   

Shortly after acquisition, all participants in all conditions were then asked to perform 9 

trials at a Fitts target task (Test 2). All participants on Test 2 were asked to move between the 

targets rapidly and accurately as they could. The last trial on Test 2 was subject to analysis 

for all participants. 

Measures and Data Analysis  

Data from the potentiometer signal was used to calculate total time, movement time, 

dwell time, endpoint variability, peak velocity and percent time to peak velocity. Limb 

displacement time series was dual-passed filtered (Butterworth, 10 Hz) with data reduction 

performed using MATLAB. A three-point central difference algorithm was used to calculate 

of velocity. All dependent measures of limb movement were analyzed on a half-cycle basis. 

To calculate movement onset, peak velocity of a half cycle was identified and traced 

backwards to a value 2.5% of that peak velocity value. Movement offset was calculated by 

tracing forward to a value 2.5% of that movement’s peak velocity before reversal to the next 

movement. Total time (TT), or movement time that includes dwell time was calculated by, 

TT = movement offseti – movement onseti + dwell timei.  Movement time (MT) was 

calculated by MT = movement offseti – movement onseti. Dwell time (DT) was calculated by 
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the equation DT = movement onseti+1 – movement offseti. Percent time to peak velocity 

(%TPV) was determined by the equation, %TPV= (PVi - onseti)/ (onseti –offseti) where PVi 

is the time at which peak velocity occurs in the half cycle. To examine the continuous and 

discrete nature of the limb trajectory as examined by Guiard (1993) (also see Buchanan et al., 

2003, 2004, 2006) an index of harmonicity (HM) was calculated centered on inflection points 

in the acceleration time-series. The value of HM was computed as the ratio of minimum to 

maximum acceleration within each half-cycle motion of the limb. Whenever the value of HM 

was <0 (one positive and negative inflection point), the value of HM corresponded to a value 

of zero. A value of HM=1 represents cyclical or complete harmonicity in the limb 

displacement trace, while a value of HM=0 represents the construction of discrete movement 

sections in the displacement trace. A value of HM=0.5 was defined here as the demarcation 

point between a shift from discrete to cyclical motion (Guiard 1997).  Movement end-point 

variability (EPV) was calculated as the standard deviation of movement endpoints about their 

own mean.  

TT, MT, DT, %TPV,  PVEL, HM and EPV were analyzed in separate Condition (Sine, 

Fitts) x Control (Master, Yoked) x Test (Test 1, Test 2) analyses of variance (ANOVAs) with 

repeated measure on Test. Simple main effects analyses were utilized when appropriate as 

post-hoc procedures to follow up on significant main effect and interactions, respectively.  

An α=.05 was used for all tests.  
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Figure 3.  Mean total time (A), movement time (B) and dwell time (C) for all conditions 
(FM, FY, SM, SY) at Test 1 and Test 2. 

Results 

 

 

 

 

 

 Total time (TT) 

 The analysis indicated main effects for Condition, F(1,28)=84.67, p<.0001 and Test, 

F(1,28)=31.01, p<.0001. In addition the Condition x Test, F(1,28)=39.36, p<.0001 

interaction was significant. Simple main effects analysis of the Condition x Test interaction 

indicated that TT was significantly lower for the Sine conditions (Master and Yoked) at both 

Test 1and Test 2 compared to the Fitts conditions. Also, the Sine conditions (Master and 

Yoked) produced lower TT on Test 2 compared to Test 1. No differences were seen across 

tests for the Fitts conditions and all other main effects and interactions failed significance.  
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 Movement time (MT)  

 The analysis indicated main effects for Condition, F(1, 28)= 16.04, p<001, Control, 

F(1,28)= 4.80, p<.05 and Test, F(1,28)= 5.92, p<.05. In addition the Condition x Test, 

F(1,28)= 57.92, p<.0001 interaction was significant. Simple main effects analysis of the 

Condition x Test interaction indicated that MT was significantly lower for both Fitts 

conditions (Master and Yoked) at Test 1 compared to the Sine conditions. However, Test 2 

revealed lower MT for the Sine conditions compared to the Fitts conditions. Within 

conditions, the Fitts condition had significantly higher MT on Test 2 compared to Test 1, 

while the Sine conditions had lower MT on Test 2 compared to Test 1. All other main    

effects and interactions failed significance. 

 Dwell time (DT) 

 The analysis indicated main effects for Condition, F(1,28)=60.66, p<.0001 and Test, 

F(1,28)=7.55, p<.05. In addition the Condition x Control, F(1,28)=5.24, p<.05 and Condition 

x Test, F(1,28)= p<.0001 were significant. Simple main effects analysis of the Condition x 

Test interaction indicated that DT was significantly lower for the Sine conditions on Test 

1and 2 compared to the Fitts conditions. Within the Fitts condition, lower values of DT were 

seen on Test 2 compared to Test 1. No differences in DT were seen across tests for the Sine 

conditions. Simple main effects analysis of the Condition x Control interaction indicated that 

DT was significantly lower for both the Master and Yoked control in the Sine condition 

compared to Fitts. Also, within the Fitts condition, the Yoked control had significantly lower 

DT compared to the Master control. All other main effects and interactions failed 

significance 
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Figure 4. Mean peak velocity (A), % time to peak velocity (B), harmonicity (C) and end-
point variability (D) for all conditions (FM, FY, SM, SY) at Test 1 and Test 2. 
 

 

 

 

 

 

       Peak velocity (PVEL) 

 The analysis indicated a main effect for Test, F(1,28)=26.66, p<.0001. In addition the 

Condition x Test, F(1,28)=52.19, p<.0001 interaction was significant. Simple main effects 

analysis across conditions for Test 1 indicated lower PVEL in the Sine condition compared to 

the Fitts condition. The analysis for Test 2 indicated lower PVEL in the Fitts condition 

compared to the Sine condition. Simple Main effects analysis across test determined that the 
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Sine condition had significantly higher PVEL on Test 2 compared to Test 1. No differences 

in PVEL were seen across test for the Fitts conditions. All other main effects and interactions 

failed significance. 

Percent time to peak velocity (% TPV) 

 The analysis indicated main effects for Condition, F(1,28)=61.39, p<.0001 and Test 

(1,28)= 5.68, p<.05. In addition the Condition x Test, F(1,28)= 7.79, p<.01 interaction was 

significant. Simple main effects analysis of the Condition x Test interaction indicated that the 

Sine conditions had significantly longer %TPV compared to the Fitts conditions on both Test 

1 and Test 2. The analysis also indicated longer %TPV on Test 1 for the Sine condition 

compared to Test 2. No differences in %TPV across test were seen in the Fitts conditions. All 

other main effects and interactions failed significance 

 Harmonicity (HM) 

 The analysis indicated main effects for Condition, F(1, 28)=108.96, p<.0001 and Test, 

F(1,28)=5.74, p<.05. In addition the Control x Condition, F(1,28)=15.27, p<.001 and 

Condition x Test, F(1,28)=29.39, p<.0001 interactions were significant.  Simple main effects 

analysis of the Control x Condition indicated that the Sine Master and Yoked produced 

higher values of HM compared to the Fitts. Higher values of HM were also seen at Tests 1 

and 2 in the Sine conditions compared to Fitts. 

 End-point variability (EPV) 

 The analysis indicated main effects for Control, F(1,28)=7.61, p<.01 and Test, F(1,28)= 

6.81, p<.05. In addition the Test x Control, F(1,28)=5.2, p<.05 interaction was significant. 

Simple main effects analysis across control for Test 1 indicated smaller EPV in the Master 

than the Yoked controls. The analysis for Test 2 indicated no differences between Master and 
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Yoked controls. Simple Main effects analysis across test determined that the Yoked control 

had significantly smaller EPV on Test 2 compared to Test 1. All other main effects and 

interactions failed significance. 

Discussion 

 The purpose of Experiment I was twofold. First, the experiment wanted to replicate the 

recent performance enhancements following sine wave tracking seen in Boyle et al., (2012a).  

Secondly, the experiment was designed to investigate whether tracking a template 

presentation of typical Fitts performance was sufficient in producing enhanced motor 

performance on a Fitts transfer test. Determining the degree to which the representation or 

control strategy developed through sine wave/template tracking practice results in a 

generalizable or task specific effects is important because of the potential transfer effects and 

training implications it provides. If tracking a template presentation of typical Fitts 

displacement kinematics, for example, slow movement time, long dwell time and small % 

time to peak velocity, results in enhanced motor performance when transferred to the Fitts 

target test, then the results of this study would conclude that simply tracking a non-optimized 

variation of the original sine wave template elicits similar enhancements. We would conclude 

that the mere depiction of smooth target reversal minus the visual demands of target 

constraints, regardless of harmonic nature, could produce motor enhancements. This would 

also discredit the previous claims made by Boyle et al., (2012a), that the presentation of the 

sine wave template used resulted in enhanced motor performance because it “optimized” the 

motor path the participants were asked to interact with. Statistical analysis of Experiment I 

replicated findings previously seen in Boyle et al., (2012a) and also leads to conclude that the 
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sine wave enhancements observed are a direct product of the “optimized” nature of the sine 

waves template and not just its mere presence.    

 Upon completion of acquisition training (Test 1), kinematic components of sine wave 

tracking in both the Master and Yoked conditions revealed lower total time values compared 

to the Fitts conditions (Master and Yoked) (Figure 3A). This difference was most likely due 

to the increased amount of dwell time seen in both of the Fitts conditions (Figure 3C). It is 

important to note that the period of the sine wave was set to match average total times of Fitts 

performance previously seen in studies (e.g. Boyle et al., 2012a). Upon removal of dwell 

time, it is clear that the difference in total time measure was largely due to the amount of 

time spent slowing and reversing about the target area in the Fitts conditions. Components of 

movements that describe the control strategy employed revealed quite different approaches 

on Test 1 with regard to the condition tested. Dwell time was significantly lower in both sine 

wave tasks as well as a longer percent of movement time was spent accelerating the limb in 

comparison to the Fitts conditions. These components indicate movements were made under 

more cyclical or preplanned control in the sine conditions than in the Fitts (Buchanan et al., 

2006).  As previously seen in Boyle et al., 2012a, peak velocity values were significantly 

higher in the Fitts conditions compared to sine condition (Figure 4A). Since the target area 

was represented by .5 o, endpoint variability was only seen at what the author would consider 

an acceptable level of variability in the Fitts-Master condition. It is important to mention that 

out of all of the Condition x Control combinations; this was the only condition on Test 1 that 

presented traditional Fitts target areas. In all other conditions on Test 1 (Fitts-Yoked, Sine-

Master, Sine-Yoked) participants were simply instructed to track the displayed template to 

the best of their ability. No mentions of accuracy constraints were ever discussed.   
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 The analysis of performance on Test 2 suggests that participants given practice with 

either the sine wave conditions (Master or Yoked) developed the ability not only to 

effectively perform the high ID aiming task with the same movement parameters as practiced 

but that they also developed a strategy to rescale their movements to accommodate for faster 

performance. The movements produced on Test 2 for the sine groups were not only faster but 

also moving more towards harmonic/cyclical control (as seen in %TPV values). Even more 

notable was that the lower movement time for the sine groups on Test 2 was accomplished 

without increases in measures of accuracy (endpoint variability).  

 The performance of the Fitts’ groups did not change from Test 1 to Test 2 with regard to 

total time, however; a higher value of movement time in the Fitts-Yoked group was seen 

from Test 1 to Test 2. This higher MT is explained by the low value of dwell time seen on 

Test 2 for the Fitts-Yoked participants. One possible explanation for this finding is explained 

by further examining the nature of the Fitts-Yoked condition. In this condition, participants 

(during acquisition) are still practicing tracking a template. Although the presentation does 

not maximize the benefit seen in the “optimized” sine training, it does still however, promote 

a smooth reversal through the target. This finding is interesting because in reality the Fitts-

Yoked participants are not really executing a smooth reversal as seen in the longer dwell 

times on Test 1. They are, however, visually practicing what appears to be a smooth target 

reversal simply prompted by following the path of the template (even if it is Fitts 

displacement). This finding points to the idea that the participants are extracting some form 

of information from the Fitts-Yoked template, they just simply were not afforded the ideal 

visual/motor representation they needed to produce the desired level of performance seen in 

the Sine (Master and Yoked) conditions. Another interesting finding seen with the Fitts-
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Yoked participants is the fact that they produce what would be considered discrete motion in 

the Fitts target task (Test 2). These results would appear to suggest that tracking this template 

actually harms motor performance even more when transferred to a self-paced Fitts target 

task in Test 2. It is clear that the presentation of the (Fitts) template does allow participants to 

extract some information from the training period. This information, although leading to 

lower dwell time was not sufficient in promoting a flexible form of control that allowed the 

performer to produce lower movement time. 

 Beginning with the early theories of Woodworth (1899), goal directed movements are 

often described as including two well-defined components; a preprogrammed initial ballistic 

projection of the effector toward the target followed by a second visually driven feedback 

stage used to make corrections to accomplish the target position (e.g., Harris & Wolpert, 

1998; Keele, 1968; Meyer et al., 1982, 1988; Woodworth, 1899). Research has shown 

through kinematic analysis, larger engagement on the initial stage in low ID movements and 

greater dependency on the second stage in higher ID movements (Buchanan et al., 2003, 

2004, 2006). One of the most widely cited accounts of this relationship today was developed 

by Meyer and colleagues (1988). Meyer’s stochastic optimized submovement model 

describes the homing in phase, or secondary phase of the movement, as being visually guided 

by corrective submovements.  These submovements are thought to optimally correct any 

deviation the initial projected limb may have encountered by making slight adjustments to 

the speed and trajectory, specifically around the target. However, recent studies have shown 

that variability in velocity during deceleration is in part related to corrective submovements; 

but also related to the biomechanical properties of slowing the movement in anticipation for 

movement reversal (e.g., Dounskaia et al., 2005; Fradet et al., 2008; Wisleder & Dounskaia 
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2007). By asking participants to continuously move through the target area, these 

submovement corrections were reduced. Similar to these findings, performance in 

Experiment I in both Sine conditions resulted in diminished instabilities typically observed 

when participants make an effort to stop in the target area. The decrease in what is typically 

thought of as visually driven corrective submovements was seen because tracking the 

template promotes cyclical/harmonic movements about the movement reversal point. This 

reduces some proportion of the variability typically resulting from initiating corrective 

movement and/or braking the movement. This idea also helps to explain the low dwell time 

present on Test 2 for the Fitts-Yoked participants.  During their training, although they 

tracked movement that is considered in-harmonic, they were encouraged to move 

continuously through a template that guided movement reversal. It is interesting to note no 

differences were seen at Test 1 between the two Fitts conditions however, Test 2 results 

clearly show that the Fitts-Yoked participants developed a strategy that at least promoted less 

time spent reversing in the target. The longer %TPV for the Sine groups relative to values for 

the Fitts’ groups is also consistent with this argument. This increase in performance for both 

Sine conditions on Test 2 indicated that performers did not develop a dependency on the 

presentation of the template, but rather tracking these “optimized” features promoted a 

flexible form of control that easily transferred to a goal directed target task. 

 In relation to the literature regarding Master-Yoked design, this experiment potentially 

adds a new perspective. Within motor learning, this design has traditionally been used to 

investigate feedback schedules related to knowledge of performance (KP) and or results (KR) 

(for review see Wulf, Shea & Lewthwaite, 2010). The main reason to design experiments 

with this construction is to further investigate the stimulus-response relationship related to a 
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specific desired outcome and further the conclusion on if the stimulus in fact elicited the 

motor learning/response. This design was notably different however, than traditional designs 

because participants in the Master control where not instructed nor given control on any 

stimulus-response presentation schedule. In other words they are simply termed the Master 

because their displacement provides the template for the Yoked participants. Also in relation 

to a traditional instrumental learning perspective (Skinner, 1937), the Master participants are 

making a response (flex/extend the lever) to the presented stimulus (sine template/Fitts 

targets) however, no outcome determines any more-or-less stimulus exposure for the Yoked 

participants; they simply are presented with a different visual presentation of a stimulus 

(compared to the Fitts task).  

 Agreeing with previous studies, (Chiviacowsky & Wulf, 2002; Chiviacowsky et al., 

2008; Hansen, Pfeifer & Patterson, 2011; Hartman, 2007; Janelle et al., 1997; Patterson & 

Carter, 2010; Wulf & Toole, 1999) it would appear that yoking a participant to tracking a 

template presentation of typical Fitts kinematics not only did not result in enhanced 

movement performance (lower movement time), but the values for movement time at Test 2 

were actually higher than at Test 1 (acquisition training). What is unique however, is the 

finding that tracking the Fitts displacement templates in the Fitts-Yoked control did result in 

some form of movement strategy change. Although the template of Fitts performance 

resulted in higher movement time, this is most likely an effect seen because of the lower 

amount of time spent in dwell time. This low dwell time value encompasses half of the 

original findings presented in Boyle et al., 2012a and points to the idea that visually tracking 

this template is not fully understood.  
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CHAPTER IV 

EXPERIMENT II 

Introduction  

Goal directed limb movement, whether discrete (Fitts & Peterson, 1964; Meyer et al., 

1988) or reciprocal (Adam & Paas, 1996; Boyle & Shea, 2011; Boyle et al., 2012a; Guiard, 

1997; Kovacs et al., 2008; Mottet & Bootsma, 1999) is characterized by a speed-accuracy 

trade-off as difficulty increases (Woodworth, 1899; Fitts, 1954). That is, as the index of 

difficulty (ID) increases participants must increase movement time in order to consistently 

“hit” the target. In terms of the kinematic variables and control processes associated with this 

relationship research has consistently demonstrated that as movement time decreases, percent 

time utilized in the acceleration phase of the movement decreases. This indicates that as 

difficulty increases movement control shifts from preplanned, more cyclical control to 

online, more discrete control (e.g., Buchanan et al., 2006).  

In a recent experiment by Boyle et al., (2012a), a Fitts’ group was asked to practice a 

typical elbow flexion/extension reciprocal Fitts’ task with an amplitude (A) of 16o and target 

width (W) of 0.5o (ID=6).  Participants were encouraged to move as fast and accurately as 

possible while maintaining a minimum of 90% hit rate. A Sine group during acquisition was 

asked to follow a sign wave template in the display. The template was constructed with an 

amplitude of 16o and a period that resulted in total times comparable to that used by 

participants in the Fitts’ group. Participants were asked to follow the path indicated by the 

template by flexing and extending their elbow/lever. If participants were successful at 

tracking the sine wave template they would execute a harmonic (smooth, symmetrical 

acceleration and deceleration phases) that would also reverse in the target area, even though 



44 
 

the target lines were not present in the display. Following Test 1 in which the respective 

groups were tested under the conditions they experience during acquisition, both groups were 

asked to perform Test 2 under the Fitts’ conditions. The results revealed that the Sine group 

not only had lowered movement times on Test 2 compared to the participants who practiced 

under the Fitts conditions during acquisition, but movement time was substantially reduced 

from Test 1 and similar to that found for the Fitts group on Test 2. In other words, while 

movement time and dwell time were lowered, accuracy (hits, endpoint variability) remained 

high and % time to peak velocity became higher leading to more harmonic motion.  

As interesting as these findings were, the sine wave protocol is still not fully understood. 

Note that the period of the cursors movement across the sine template was set to match the 

total time observed in the Fitts’ group. However, when the Sine group was transferred to the 

self-paced Fitts’ task the participants moved significantly faster than they were required to 

move given the sine wave template and the movement time under this condition was 

strikingly faster than that achieved on Test 1 or Test 2 by the participants in the Fitts’ group 

that trained under the test conditions. The fact that the Sine group altered their movement 

time suggests that they did not learn a time dependent control strategy but could rescale their 

movements when provided the opportunity. Also, the previous chapter examined if following 

a custom template constructed from Fitts performance would enhance movement 

performance. The results from that chapter concluded that following a template considered 

“un-optimized” does result in lower dwell time, however, no enhancements related to 

reduced movement time were seen. These results agree with the previous notion formed from 

Boyle et al., 2012a that concludes that training at an “optimized” sine template promotes a 

flexible form of cyclical control. The fact that the movement amplitude in Boyle et al., 2012a 
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remained constant across tests, however, does raise the possibility that participants learn a 

movement strategy that is specific to that amplitude experienced. Alternatively, participants 

in the Sine group may learn a more generalizable control strategy that would allow them to 

not only scale movement time but also amplitude. If the sine wave protocol does result in a 

generalizable movement representation it would greatly increase the utility of this training 

protocol.  

Therefore, the purpose of Experiment II is to determine whether enhancements related to 

sine wave template tracking are specific to the amplitude experienced during the exposure or 

more generalizable allowing amplitude to be rescaled when Fitts task conditions are required. 

We predict that participants who experience moving in a sine wave pattern adopt a more 

cyclical control strategy whereby they “tune-in” the specific amplitude/period requirements 

when faced with the typical Fitts task requirements. 

Method 

Participants  

Participants (N=36) between the ages on 18 and 25 received class credit for participating 

in the experiment. The experimental protocol was approved by the IRB for human subjects’ 

research at Texas A&M University. Before participation, all participants read and signed 

approved informed consent documents.  Participants were not aware of the specific purpose 

of the study and had no prior experience with the experimental task.  

Apparatus 

The apparatus used in Experiment II was identical to that used in Experiment I.  
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Procedure 

Before entering the testing area participants were randomly assigned to one of four 

groups that differed in terms of the practice/training conditions (16o Sine Wave, 16o Fitts 

Task, 24o Sine Wave, 24o Fitts Task) (Figure 5), with the restriction that each group is 

comprised of 9 participants. 

A constant ID = 6 was used in all Fitts conditions. Movements at amplitude of 16o had a 

corresponding target width of (.50o), while movements at amplitude of 24o had a target width 

of (.75 o). The goal of each trial in the Sine condition was to move the cursor up and down in 

order to track the sine wave template. The amplitudes of the Sine condition matched that of 

the Fitts tasks (16o and 24o). During acquisition, the participants would only perform the task 

at their given amplitude and condition (Fitts or Sine). Each participant performed 4 blocks 

consisting of 9 consecutive 15 second practice trials. To prevent fatigue, each trial was 

separated by a 10 second rest interval. Upon completion of the initial practice trials a 

retention test of 9 trials of the practiced condition were administered (Test 1). Following 

completion of the retention test, a transfer test (Test 2) involved all groups performing 9 trials 

of a 16 o Fitts target task. All participants in Test 2 were asked to move between the targets 

rapidly and accurately. The last trial on Test 1 and Test 2 were subject to analysis. 
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Figure 5. Illustrations of the acquisition displays for the Fitts 16o, Fitts 24o, Sine 16o and 

Sine 24o. Sine template / Fitts target display (black). Participant performance (red). 

 

 

 

 

 

 

 

Measures and Data Analysis  

Data Measures in Experiment II follow the same calculations as in Experiment I. TT, 

MT, DT, %TPV, PVEL, HM and EPV were analyzed in separate Condition (Sine, Fitts) x 

Amplitude (16o, 24o) x Test (Test 1, Test 2) analyses of variance (ANOVAs) with repeated 

measure on Test. Duncan’s multiple range tests and simple main effects analyses were 

utilized when appropriate as post-hoc procedures to follow up on significant main effects and 

interactions, respectively.  An α=.05 was used for all tests.  

 

 

 

 

 



48 
 

Figure 6. Mean total time (A), movement time (B) and dwell time (C) for both amplitudes 

(16o, 24o) and conditions (Fitts, Sine) at Test 1 and Test 2. 

Results 

 

 

  

 

 

 Total time (TT) 

 The analysis indicated main effects for Condition, F(1,32)=37.46, p<.0001 and Test, 

F(1,32)=29.13, p<.0001. In addition the Condition x Test F(1,32)=27.82, p<.0001 interaction 

was significant. Simple main effects analysis of the Condition x Test interaction indicated 

that TT was significantly lower for the Sine Wave group compared to the Fitts group in both 

Tests 1 and 2. Similarly, TT was significantly lower at Test 2 than Test 1 for the Sine Wave 

conditions. No differences were seen across tests for the Fitts conditions. All other main 

effects and interactions failed significance.  

 Movement time (MT)  

 The analysis indicated main effects for Condition, F(1,32)=23.58, p<.0001 and Test, 

F(1,32)=52.10, p<.0001. In addition the Condition x Test F(1,32)=38.40, p<.0001interaction 
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was significant. Simple main effects analysis of the Condition x Test interaction indicated no 

difference in MT at Test 1 between conditions, however, MT was significantly lower for the 

Sine Wave group compared to the Fitts group at Test 2. Similarly, MT was significantly 

lower at Test 2 than Test 1 for the Sine Wave group. No differences were detected on Test 1 

for either condition or amplitude. All other main effects and interactions failed significance.  

Dwell time (DT)  

 The analysis indicated main effects for Condition F(1,32)=26.55, p<.0001 and Test, 

F(1,32)=16.83, p<.001. In addition the Condition x Amplitude F(1,32)=4.68, p<.05 

interaction was significant. Simple main effects analysis of the Condition x Amplitude 

interaction indicated that DT was significantly lower for the Sine Wave group compared to 

the Fitts group at both Amplitudes (16o and 24o). DT was also significantly lower for the 16o 

Fitts condition compared to the 24o. No differences in DT were seen across amplitudes for 

the Sine conditions. All other main effects and interactions failed significance. 
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Figure 7. Peak velocity (A), % time to peak velocity (B), harmonicity (C) and end-point 

variability (D) for both amplitudes (16o, 24o) and conditions (Fitts, Sine) on Test 1 and 

Test 2. 

 

 

 

 

 

 

Peak velocity (PVEL) 

 The analysis indicated main effects for Amplitude F(1,32)=113.83, p<.0001 and Test, 

F(1,32)=11.94, p<.01. In addition the Condition x Test F(1,32)=106.73, and Amplitude x 

Test F(1,32)=130.11 p<.0001 interactions were significant. Simple main effects analysis of 

the Condition x Test interaction indicated that PK VEL was significantly higher for the Fitts 

group compared to the Sine group at Test 1. However, PK VEL was significantly higher for 
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the Sine group compared to the Fitts group at Test 2. Further condition analysis revealed that 

the Fitts condition significantly decreased in PK VEL from Test 1 to Test 2, while the Sine 

condition significantly increased in PK VEL from Test 1 to Test 2. The Amplitude x Test 

interaction indicated higher PK VEL values for 24o amplitude compared to 16o at Test 1 but 

no differences were detected at Test 2. The analysis also indicated PK VEL decreased 

significantly from Test 1 to Test 2 for 24 o and increased from Test 1 to Test 2 for 16 o. All 

other main effects and interactions failed significance 

 Percent time to peak velocity (% TPV) 

 The analysis indicated a main effect for Condition F(1,32)=22.16, p<.0001 and a 

Condition x Test F(1,32)=7.19, p<.05 interaction. Simple main effects analysis of the 

Condition x Test interaction indicated that % TPV in the Sine Wave conditions was 

significantly longer in both Test 1 and Test 2 compared to the Fitts. Further analysis also 

revealed that %TPV was longer on Test 1 compared to Test 2 for the Sine wave condition. 

No differences were seen across Tests for the Fitts conditions. All other main effects and 

interactions failed significance 

Harmonicity (HM) 

The analysis indicated only a main effect of Condition, F(1,32)=21.39, p<.01, with 

higher HM values for the Sine groups than for the Fitts groups.  

End-point variability (EPV) 

 The analysis indicated a main effect for Condition F(1,32)=26.42, p<.001 Test, 

F(1,32)=41.32, p<.0001, and Condition x Test F(1,32)=36.13, p<.0001. Simple main effects 

analysis of the Condition x Test interaction indicated that EPV was significantly larger for 

the Sine Wave conditions compared to the Fitts at Test 1 and no differences seen between 
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either conditions at Test 2. EPV was also significantly larger for the Sine group on Test 1 

compared to Test 2. No differences across Test were seen in the Fitts conditions. All other 

main effects and interactions failed significance 

Discussion  

 The purpose of the following experiment was to determine if enhancements related to 

tracking an optimized sine template are amplitude specific. Results from Test 1 show lower 

values for TT movements in both Sine conditions relative to the Fitts conditions, however, 

upon removal of DT no differences are present at MT between the two conditions at Test 1 

(Figure 6). Peak velocity (PVEL) was significantly higher in both 24o conditions compared 

to 16o at Test 1. According to the speed-accuracy trade-off, this finding was expected. %TPV 

and EPV were both longer in the Sine conditions compared to the Fitts at Test 1. These 

findings are also not surprising due to the smooth nature of tracking the sine template 

(%TPV) paired with verbal instructions that make no reference to accuracy (EPV).  

Following acquisition (Test 1), analysis of performance on Test 2 suggest that participants 

given practice with the 16o and 24o sign wave templates developed the ability not only to 

effectively perform the high ID aiming task with the same movement parameters as practiced 

but that they can rescale their movements to accommodate changes in amplitude. The 

movements produced on Test 2 for the sine groups were not only faster (lower total time and 

movement time) but also more cyclical (as seen in %TPV values). Furthermore, the lowered 

movement time for the sine groups on Test 2 was paired with a reduction in EPV from Test 1 

to Test 2 (Figure 7).  

 These findings are surprising from a “specificity of learning” standpoint (Proteau, 1995). 

The specificity of learning hypothesis proposed that during practice the participant selects the 
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source or sources of feedback that they feel ensure optimal performance. Thereafter, 

participants selectively process this information while refining their performance and ignore 

other sources of information provided in the display. Support for the specificity of learning 

can be found in experiments using a large variety of tasks (e.g. Blandin et al., 2008; Khan et 

al., 2002; Proteau 1995). However, this did not seem to be the case for the Sine groups. 

When the sine wave template was removed on Test 2 participants’  total time and movement 

times were significantly lowered while maintaining an acceptable rate of end point 

variability. This suggests that they were not selectively utilizing the sine wave template to 

produce their movement during practice but rather it appears that the practice with the sine 

template resulted in them adopting a more harmonic movement control strategy whereby 

they learned to “tune-in” the specific amplitude and period requirements specified by the sine 

wave template. Thus, they did not become dependent on the template appearing in the 

display. This is particularly important characteristic of the protocol because participants were 

able to easily adapt to changes in amplitude and still exhibit the positive characteristics 

related to more harmonic motion.  

 Control theories related to aiming movements often describes movements as involving 

two distinct stages; an initial ballistic preprogrammed stage that projects the limb toward a 

target and a second “homing in” stage where visual and proprioceptive feedback are used to 

make adaptive corrections to achieve the target position (e.g., Harris & Wolpert 1998; Keele 

1968; Meyer et al., 1982, 1988; Woodworth 1899) with greater reliance on the initial stage in 

low ID movements and greater reliance on the second stage in higher ID movements. Given 

the constraints of the task, researchers have assumed that participants optimize their control 

by finding a compromise between movement time and accuracy. One widely noted 
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representation of this relationship is explained in a stochastic optimized submovement model 

developed by Meyer et al., (1988). Meyer and colleagues proposed that aimed movements 

are comprised of a primary submovement followed by optimized corrective submovements. 

These submovements are thought to optimally correct any deviation the initial projected limb 

may have encountered by making slight adjustments to the speed and trajectory, specifically 

around the target. Dounskaia and colleagues (e.g., Dounskaia et al., 2005; Fradet et al., 2008; 

Wisleder & Dounskaia 2007), however, investigated similar velocity profiles that are 

traditionally observed in the online deceleration phase of high ID movements. They conclude 

that variability in velocity during deceleration is in part related to corrective submovements; 

however, non-corrective submovements the movement are also present during deceleration 

phase of the movement. Dounskaia et al., (2005) proposed that these submovements are more 

associated with stopping the movement than actually making corrections. The authors 

demonstrated this by asking participants to move through the target instead of stopping on 

the target. This resulted in a reduction in the submovements typically observed. Similarly, in 

the present experiment performance in the Sine condition resulted in reduced fluctuations 

often observed when participants attempt to stop in the target because the sine protocol 

promoted cyclical movements around the reversal point. In other words, by asking 

participants to practice moving in a cyclical way (by following the sine wave) the practices 

promotes smooth movement through the target. This reduces some proportion of the 

variability typically resulting from initiating corrective movement and/or braking the 

movement. The longer %TPV for the Sine groups relative to the values for the Fitts’ groups 

is consistent with this argument. The increase from discrete to a more cyclical form of 

control for the Sine condition on Test 2, where the sine template was removed, indicated that 
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participants were not dependent on the template but rather these features promoted a strategy 

that was effective even when they were removed. 

 Early work in motor learning describes the basic motor program as program that can be 

used to govern the production of a wide range of actions from within specific movement 

classes (Schmidt, 1975; Schmidt, 1988). According to Schmidt, the motor program is an 

abstract representation of movement output that centrally organizes and controls the various 

degrees of freedom involved in performing a movement (Schmidt and Lee, 2005). It has been 

suggested that efferent and afferent signal pathways allow the central nervous system to 

anticipate, plan or guide these movements (Schmidt and Lee, 2005). Necessary to this 

program is the need for relative timing, force and sequence elements. In the case of the 

present experiment, the training during acquisition is set to match the time traditionally 

present at a Fitts target task of ID = 6, while the forces and sequencing of the movement 

production do not change drastically from trial to trial. Evidence of a flexible form in control 

is seen when the participants begin to move faster when they are transferred to a target task 

(Test 2) that affords them the opportunity to self-pace their movements between the targets. 

From this perspective it is not that surprising that the sine wave training, no matter the 

amplitude trained at, is more than capable of producing fast yet accurate cyclical movements 

to target difficulty that traditionally results in slower more discrete control.   
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CHAPTER V 

EXPERIMENT III 

Introduction  

Goal directed limb movement between targets has repeatedly been shown to follow a 

linear speed-accuracy trade-off as difficulty of the task increases (Woodworth, 1899; Fitts, 

1954). This relationship has been shown in experiments involving continuous (Adam & Paas, 

1996; Boyle & Shea, 2011; Boyle et al., 2012a; Guiard, 1997; Kovacs et al., 2008; Mottet & 

Bootsma, 1999) and discrete movements of the limbs (Fitts & Peterson, 1964; Meyer et al., 

1988). In terms of the kinematic variables and control processes associated with this 

relationship, research has reliably demonstrated that as movement time decreases, the 

percentage of time utilized in the acceleration phase of the limb projection toward the target 

decreases. This decrease in acceleration indicates that as the task becomes more difficult, 

movement control shifts from preplanned cyclical control to more online or discrete visually 

driven control (e.g., Buchanan et al., 2006).  Due to technological advancements, recently 

studies have investigated potential ways to manipulate these shifts in control based on 

augmented feedback provided during difficult tasks (for review see Casiez et al., 2008) 

 Performance manipulations to movements of high difficulty are mainly investigated in 

one of two ways. First, augmented visual/perceptual displays can enhance control processes 

thought of as discrete in nature, particularly in terms of increasing the performer’s ability to 

reduce the time devoted in the correction phase of the movement. Enhancements like these 

have typically been seen in experiments that enhance the visual information about the target 

area, allowing performers to spend less time monitoring accuracy in the target (Boyle & 

Shea, 2013; Casiez et al., 2008, Fernandez & Bootsma, 2008; Guiard et al., 1999, Kovacs et 
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al., 2008). Secondly, shifts from discrete control to more cyclical control are present if 

perceptual manipulations are successful at alleviating task difficulty constraints (Fernandez 

& Bootsma, 2008; Kovacs et al., 2009). As previously mentioned, lower difficulty 

movements are typically guided by cyclical control processes while high difficulty 

movements are regulated by more discrete visual error detection and correction processes 

(Buchanan et al., 2004, 2006;). Conditions that allow performers to successfully produce 

high ID movements with more cyclical control could result in more efficient and skillful 

control.  

 As successful as these methods have been at enhancing motor performance, it has been 

shown that performers under the influence of concurrent feedback displays are susceptible to 

becoming dependent on the manipulation provided. To further explain, removal of the 

feedback results in immediate deterioration of enhanced performance previously seen. For 

example, a recent study by Boyle et al., (in press) replicated the performance improvements 

recently shown in Fernandez & Bootsma’s 2008 study by applying a non-linear gain in a 

Fitts target task. Although it was not the main focus of the study, the authors noticed that 

upon removing the feedback, performance enhancements observed while under the influence 

of the non-linear gain immediately deteriorated (Boyle et al., in press). Understanding issues 

related to perceptual enhancements are not only important from a practical standpoint, 

especially as we age, but questioning how they impact the motor systems ability to re-learn 

or develop new forms of movement strategy are equally as important of an investigation. 

 According to US news world reports, there are now more Americans age 65 and older 

than at any other time in U.S. history (65 million in 2010 census). With this rise in a growing 

demographic, research has focused on a number of ways to alleviate issues of daily activity 

http://money.usnews.com/money/retirement/articles/2011/12/12/tips-for-baby-boomers-reaching-retirement-age-in-2012
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related to aging. Theories related to information-processing capacities is presently thought as 

the source of slowing of cognitive and motor behaviors throughout aging (Bashore et al., 

1997; Birren, 1974; Cerella, 1985; Salthouse, 1985, 1988; Welford et al., 1969). With regard 

to movement of the limbs, studies have frequently shown that increasing the difficulty of a 

goal directed target task results in a greater increase in movement time in elderly adults 

compared to young (Welford et al., 1969; Seidler & Stelmach, 1998; Ketcham et al., 2002; 

Rey-Robert et al., 2012). Following a two component model of goal directed movement, 

these deficits in performance have been shown in initial limb projections (i.e. low values of 

peak velocity) (Bellgrove et al., 1998; Brown, 1996; Cooke et al., 1989; Goggin & 

Meeuwsen, 1992; Pratt et al., 1994) and also in secondary correction phases (i.e. limb 

deceleration profiles) (Darling, Cooke, & Brown, 1989; Ketcham et al., 2002). With regard 

to secondary phase corrections, elderly adult performers show a significantly larger number 

of corrective submovements near the target area compared to young adult (Darling et al., 

1989; Seidler-Dobrin & Stelmach, 1998; Walker et al., 1997).  From a kinematic analysis 

perspective, it would be safe to suggest that elderly people tend to operate more from a 

discrete or visually driven form of control compared to young. Although natural shifts in this 

form of control have been repeatedly shown to change based on the ID (Buchanan et al., 

2003, 2004, 2006), it would appear from the literature that elderly participants potentially 

would have an even greater time making a shift from visually driven discrete control to 

preplanned cyclical control. Procedures allowing improvements from this slower form of 

error monitoring control to faster preprogramed control could potentially provide a new 

platform to further the understanding of the our motor systems capabilities as we age. 
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Although previously described age differences are present in natural environments, 

improvements in motor performance with regard to aging have been shown in human-

computer interaction studies. Goal directed elderly motor performance enhancements have 

been seen when researchers make use of larger cursor activation areas (Kabbash & Buxton, 

1995; Keyson, 1997; Worden et al., 1997). Alleviating visual monitoring corrective 

submovements, this form of manipulation increases the saliency of the visual information 

about the target allowing the elderly performer to spend less time monitoring the secondary 

phase of the movement. Similarly, another effective technique involves a dynamically 

expanding target as the cursor approaches (McGuffin & Balakrishnan, 2002). This technique 

was found to significantly enhance target performance not only in younger adults (McGuffin 

& Balakrishnan, 2002) but also in elderly adults as well (Bohan & Scarlett, 2003).  

With the previously mentioned studies it is clear that manipulations do exist to alleviate 

the highly replicated issues of motor control related to goal directed limb movement. 

However, as previously noted goal directed movement enhancements have also been shown 

to present a level of dependency to the augmented feedback provided during the task. The 

question then becomes, do the few listed manipulations truly improve goal directed 

movement of the limbs in the elderly, or are they a product of the manipulation exposure? 

Another way to look at this is to question whether the motor system has developed a new 

strategy based upon this training.  As helpful as these tasks have been for improving elderly 

performance, all manipulations listed enhance discrete forms of control which may be highly 

susceptible to feedback dependency. As mentioned previously, these manipulations do not 

lead to a new control strategy of motor control, they simply support motor responses to 

difficult tasks by increasing speed of the initial ballistic phase of the primary movement 
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while simultaneously alleviating problems of monitoring afferent information by increasing 

functional target width (also see Kovacs et al., 2008).  

As repeatedly shown throughout this manuscript, tracking an optimized sine wave 

template leads to enhanced goal directed limb movement in college age participants. This 

manipulation has been shown to lower movement times while also preserving kinematic 

variables associated with accuracy and control (i.e. % time to peak velocity, dwell time, end 

point variability, etc.). Furthermore is the finding that these participants develop this 

movement strategy while practicing at varying levels of amplitude and at a template that 

produces a slower frequency than when asked to perform on self-paced test trials.  

 Based on the previous hypothesized findings, Experiment III investigates the sine wave 

tracking effect using elderly adults. A wealth of literature has shown that elderly people are 

much slower (higher movement times) at goal directed limb movements compared to young, 

and this deficit in movement patterns are typically seen in a slower initial ballistic phase 

projection of the limb followed by an increase in corrective submovements as they approach 

the target. Results from the previously mentioned experiments (Boyle et al., 2012a, Boyle & 

Shea, in press) optimized goal (sine wave) condition; we see enhancements in both of these 

kinematic variables. Therefore, the purpose of Experiment III is to examine if training at an 

optimized sine wave template aids goal directed motor behavior in the elderly. If so, what 

kinematic markers are most enhanced in this learning effect? 

Method 

Participants  

Participants (N=14) between the ages of 18 - 25 received class credit for participating in 

the experiment (7 participants per condition). Participants (N=14) between the ages of 65 - 



61 
 

90 (mean age =74) received a gift card valued at $10.00 US dollars for their participation (7 

participants per condition).  The experimental protocol was approved by the IRB for human 

subjects’ research at Texas A&M University. All participants in the 65 – 90 age range were 

screened for any neurological impairments that might hinder the study (mini-mental state 

exam and health questionnaire). Participants were not aware of the specific purpose of the 

study and had no prior experience with the experimental task.  

Apparatus 

The apparatus used in Experiment III was identical to that used in Experiments I and II. 

Procedure 

Before entering the testing area participants were assigned to one of two groups that 

differed in terms of age (Young: 18-30, Elderly: 65 - 90). The two age groups were then 

randomly split into two more groups that represented the condition they would train under 

(Fitts, Sine Wave).  

Since this study aim is to investigate if sine wave training enhances movement 

performance in the elderly it is important to have a reference point as to where performance 

variables are, without inferring based on previous research findings. To design this scenario, 

all participants were first tested on a 9 trial Fitts task (pre-test). The final trial was analyzed 

and used as performance data representing Test 1. Following the pre-test, participants (all 

ages) were trained in their respective conditions (Sine, Fitts) for 45 trials. The final trial 

during acquisition was recorded and used for Test 2 values. Upon completion of acquisition, 

all participants were then tested on a 9 trial Fitts task post-test, Test 3. The last trial of Test 3 

was recorded and analyzed as performance data. 
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Figure 8. Mean total time (A), movement time (B) and dwell time (C) for both ages Elderly 

(E) and Young (Y) and conditions (Fitts, Sine) at Test 1, Test 2 and Test 3. 

Measures and Data Analysis  

Data measures in Experiment III use the same calculations as in Experiment I and II. TT, 

MT, DT, %TPV, PVEL, HM and EPV were analyzed in separate Condition (Sine, Fitts) x 

Age (Elderly, Young) x Test (Test 1, Test 2, Test 3) analyses of variance (ANOVAs) with 

repeated measure on Test. Simple main effects analyses were utilized when appropriate as 

post-hoc procedures to follow up on significant main effect and interactions, respectively.  

An α=.05 was used for all tests.  

Results 

 

 

 

 

 

 

Total time (TT)  

The analysis indicated main effects for Condition, F(1,25)=17.09, p<.001, Age, F(1, 25)= 

35.47, p< .0001, and Test, F(2,47)=47.15, p<.0001. In addition the Condition x Test, F(2, 

47)=22.63, p<.0001, Age x Test, F(2, 47)=7.61, p<.01 and Age x Condition x Test, F(2, 
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47)=5.43, p<.01, interactions were significant. Simple main effects analysis for the Age x 

Condition x Test interaction indicated lower TT in both Sine and Fitts conditions in young 

compared to elderly at Test 1. No differences in TT were seen between conditions (Fitts, 

Sine) in their respective age group (elderly, young) at Test 1. Lower TT was seen in both 

Sine age groups (elderly, young) followed by Fitts (young) and lastly Fitts (elderly) at Test 2. 

No differences were seen between the sine groups (elderly, young) at Test 2, however, 

significantly lower TT was seen in the Fitts condition for the young compared to the elderly. 

At Test 3, TT was significantly lower in the Sine young condition followed by Sine elderly 

and Fitts young together and lastly Fitts elderly.  No differences were seen in the comparison 

sine elderly and Fitts young at Test 3.  All other main effects and interactions failed 

significance.  

 Movement time (MT)  

 The analysis indicated a main effect for Test, F(2,47)=6.31, p<.01. In addition the 

Condition x Test, F(2,47)=3.91, p<.05, interaction was significant. Simple main effects 

analysis across Condition x Test revealed no difference between conditions at Test 1, 

however, lower MT values were seen at Test 2 and Test 3 for the Sine condition compared to 

the Fitts. Analysis within condition revealed a significant decrease in MT from Test 2 to Test 

3 for the Sine wave condition. No differences were seen in the Fitts conditions across all 

tests. All other main effects and interactions failed significance. 

Dwell time (DT)  

 The analysis indicated  main effects for Condition F(1,25)=5.22, p<.05, Age, F(1,25)= 

20, p<.0001 and Test, F(2,47)=14.27, p<.0001. In addition the Condition x Test, 

F(2,47)=5.17, p<.01, and Age x Test, F(2,47)=4.88, p<.05 interactions were significant. 
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Figure 9. Peak velocity (A), % time to peak velocity (B), harmonicity (C) and end-point 
variability (D) for both ages (Elderly, Young) and conditions (Fitts, Sine) at Test 1, Test 2 
and Test 3. 

Simple main effects analysis across Condition x Test indicated no difference between 

conditions Fitts or Sine at Test 1 however, lower DT values were seen in the Sine condition 

at Test 2 and Test 3 compared to Fitts condition. Analysis within condition revealed no 

differences between Fitts across tests. Lowest values of DT seen at Test 2 followed by Test 3, 

then Test 1, were seen in the Sine condition. Simple main effects analysis across Age x Test 

indicated no difference between ages at Test 1 however, lower DT was seen at Test 2 and 

Test 3 for young compared to elderly participants. Analysis within age revealed lowest DT at 

Test 2, followed by Test 3 and then Test 1 for both ages (Elderly, Young). All other main 

effects and interactions failed significance. 
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 Peak velocity (PVEL) 

 The analysis indicated main effects for Age F(1,25)=10.06, p<.01 and Test, F(2, 

47)=10.87, p<.0001. In addition the Condition x Test F(2,47)=11.51, p<.0001interaction was 

significant. Simple main effects analysis of the Condition x Test interaction indicated no 

differences in condition at Test 1, higher PK VEL values in the Fitts condition compared to 

Sine at Test 2 and higher PK VEL values for the Sine condition compared to Fitts were seen 

in Test 3. Analysis within condition revealed significantly higher PK VEL values at Test 3 

compared to Test 1 and Test 2 in the Sine condition. No differences were seen across tests for 

the Fitts conditions. All other main effects and interactions failed significance. 

Percent time to peak velocity (% TPV) 

 The analysis indicated main effects for Condition F(1,25)=15.04, p<.001 and Test, 

F(2,47)=11.28, p<.0001. In addition the Condition x Test F(2,47)=5.56, p<.01 interaction. 

Simple main effects analysis of the Condition x Test interaction indicated only a significant 

difference between conditions at Test 2, with the Sine condition having longer % TPV. 

Analysis within condition indicated the longest %TPV at Test 2, followed by Test 3, then 

Test 1 in the Sine condition.  All other main effects and interactions failed significance. 

Harmonicity (HM) 

 The analysis indicated main effects for Condition, F(1, 24)=38.22, p<.0001, Age, 

F(1,24)=37.04, p<.0001 and Test, F(2,48)=21.14, p<.0001. In addition the Condition x Test, 

F(2,48)=12.44, p<.0001 and Age x Test, F(2,48)=29.39, p<.05 interactions were significant. 

Simple main effects analysis of the Condition x Test interaction indicated higher values of 

HM in the Sine conditions compared to Fitts at Tests 2 and 3. No differences were seen 
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between conditions at Test 1. Simple main effects analysis across the Age X Test interaction 

indicated higher values of HM for young compared to elderly at all Tests.  

 End-point variability (EPV) 

 The analysis indicated main effect for Conditions F(1,25)=5.10, p<.05 and Test, 

F(2,47)=15.31, p<.0001. In addition the Condition x Test, F(2,47)=9.78, p<.001 and 

Condition x Test x Age, F(2,47)=4.88, p<.05 interactions were significant. Simple main 

effects analysis of the Condition x Test x Age interaction indicated the largest EPV values 

for age elderly in the Sine condition at Test 2, with age young in condition Sine having larger 

EPV values compared to both age groups in condition Fitts on Test 2.  All other main effects 

and interactions failed significance. 

Discussion  

The purpose of the following experiment was to determine if training with an 

“optimized” sine wave template would result in enhanced motor performance previously 

seen in Boyle et al., (2012a) in an active aging population. Research regarding the 

neuromuscular processes related to aging and motor control has traditionally pointed to 

elderly participants displaying longer movement times compared to young, with these 

movement kinematics displaying highly predictable patters (Ketcham et al., 2002). The 

results of this study are unique in that they conclude that not only are elderly participants able 

to enhance motor performance after sine wave training in relation to a within age comparison 

but these participants also show no statistical difference as far as movement time or accuracy 

when compared to college aged participants who have trained at the Fitts task for over 60 

trials (Figure 8). It is also important to note here that the sine tracking participants in the 
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elderly age group have only been exposed to the Fitts task for 18 trials (in comparison to the 

60+ seen in the young Fitts group).    

Results from Experiment III show that not only do elderly participants show enhanced 

motor performance on a Fitts target task following sine wave training with respect to a 

comparison across age, they also show that the neuromuscular capabilities throughout aging 

potentially have the ability to perform a goal directed target task relative to the performance 

seen by college aged participants. Interestingly, although the results from this study show 

enhanced motor performance in the elderly group following sine wave training, with levels 

comparable to young, the control or motor strategy that brings them to those kinematic 

values is not necessarily the same. For example, sine wave trained elderly participants on 

Test 3 perform the task with low values for %TPV (Figure 9), leading to the conclusion that 

they were unable to develop a smooth form of cyclical control strategy hypothesized in the 

previous 2 experiments as well as others regarding optimized transfer following sine wave 

training (Boyle et al., 2012a). 

Research has shown that elderly participants react to fluctuations in task difficulty by 

making different modifications in response to amplitude and accuracy constraints. In the 

following experiment an unusual combination of kinematic markers are present in the elderly 

participant’s performance following sine wave tracking on Test 3 (Fitts post-test).  Although 

a large reduction in movement time from Test 1 to Test 3 is present in the sine wave elderly 

group, typical control strategies pointing to a new form of adopted control are not quite as 

clear as seen in the young participants. For example, in the beginning stages of the 

movement, the performance (elderly sine wave) suggests a more preplanned mode of control 

is adopted by higher values of peak velocity. In other words, the initial projection of the limb 
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has significantly increased in relation to values present on Test 1 (Fitts pre-test). However, 

peak velocity was reached significantly sooner than would normally be expected following 

sine training, indicating the elderly participants are slowing in anticipation of movement 

reversal. Although the elderly participants did spend a longer amount of time slowing in 

anticipation of movement reversal, the actual amount of time spent in the target was not 

significantly different compared to young participants. These findings suggest that elderly 

adults, although responding to the sine wave training with significant motor enhancements, 

are still unable to effectively propel their limb to the target in a harmonic manner. The 

precise cause for having a diminished ability to project the limb to a target in a fast yet 

harmonic manner are still not fully understood.  

One potential explanation of this performance deficit could be suggested through a study 

that concluded that elderly adults show considerably more muscle cocontraction during goal 

directed target movements compared to young adults (Seidler-Dobrin & Stelmach, 1998). 

Research has shown that elderly adults produce normal agonist muscle bursts during 

movement initiation (hence the enhancement to peak velocity following sine wave training), 

but irregular phasic antagonist muscle activation is present throughout the deceleration phase 

of the movement (Darling et al., 1989). Interestingly however, this irregular muscle 

activation would also suggest a large amount of time spent in corrective submovements 

around the target as well, which was not the case in the current study.  

Studies have also suggested that aging motor control involves a central planning deficit 

(Amrhein et al., 1991; Goggin & Meeuwsen, 1992; Haaland, Harrington, & Grice, 1993; 

Seidler-Dobrin & Stelmach, 1998; Stelmach et al., 1988; Welford, 1984). If this were the 

case however, one might expect that all task conditions would show similar deficiencies, 
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which was not collectively the circumstance in this study. A large improvement was seen in 

movement times followed by lower dwell times through target reversal. A study by Walker 

and colleagues (1997) concluded that when accuracy constraints are removed, elderly 

participants exhibit peak movement velocities similar to those of the young adults. Similar to 

this study, when participants track the sine wave template, no mention of accuracy is given. 

Repeated exposure to smooth reversals about a small target area not only allows the 

participants to visually become comfortable with the task constraints, it allows the motor 

system to tune in a flexible form of control that is not normally present in a Fitts target task. 

In other words, tracking the sine wave allows participants to preplan the limbs projection 

while less attention is devoted to the accuracy constraints of the target allowing the 

participants to exhibit a smooth reversal (in both age groups). 
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CHAPTER VI 

GENERAL DISCUSSION AND CONCLUSION 

The purpose of Experiment I was to replicate the results seen in Boyle et al., (2012a) and 

determine if tracking a template of Fitts target task performance kinematics would enhance 

motor performance when transferred to a traditional Fitts target task (Test 2). Participants 

were trained in one of four acquisition conditions (Fitts-Master, Fitts-Yoked, Sine-Master, 

and Sine-Yoked). In the Fitts-Master condition, participants were asked to move a cursor in 

and out of two defined target areas as fast yet accurately as possible. Upon completion of 45 

acquisition trials in the Fitts target condition (Test 1) a template for all Fitts-Master 

participants was generated from the recorded limb displacement data on each trial. These 

custom 45 trials made up the templates for all participants in the Fitts-Yoked condition. In 

the Sine-Master condition, participants were instructed to track a sine wave template. 

Following the same presentation for the Fitts-Yoked participants, the Sine-Master 

displacement during acquisition was recorded to custom create the template for the Sine-

Yoked participants. Following acquisition trials (Test 1), all participants were asked to 

perform 9 trials of the Fitts target task (Test 2). Results of Experiment I replicated the results 

seen in Boyle et al., (2012a) by showing lower movement times in both Sine Wave groups 

(Master and Yoked) on Test 2 compared to both Fitts groups (Master and Yoked). That is, 

movement time, time to peak velocity, and endpoint variability were similar for the two sine 

groups indicating not only faster but more cyclical motion than for the Fitts group that 

practiced under the Fitts conditions the entire time and the yoked group that tracked the 

performance of participants in the in the Master Fitts group. 
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The purpose of Experiment II was to determine if sine wave tracking with a different 

amplitude from that used on the test will result in equally effective transfer to a Fitts target 

task previously seen in Boyle et al., 2012a. Participants were trained in one of four 

acquisition conditions where they either tracked a sine wave template with an amplitude of 

16o or 24o (ID=6) or practiced under Fitts target task conditions with an amplitude of 16o or 

24o (ID=6). Following 45 acquisition trials and Test 1 under the same condition as 

experience during practice, all participants were tested under a Fitts target task conditions 

with ID=6 and amplitude=16o (Test 2). Results demonstrated that participants who practice 

with sine wave templates of 16o and 24o were equally effective in performing the 16o Fitts 

task (Test 2). Movement time, time to peak velocity, and endpoint variability were similar for 

the two sine groups (16o and 24o) indicating not only faster but more cyclical motion than for 

the Fitts groups that practiced under the Fitts conditions the entire time. 

The purpose of Experiment III was to investigate if sine wave tracking in an active 

elderly population would result in enhanced motor performance when later transferred to a 

Fitts target task. Elderly and young participants (Elderly, Young) were assigned to one of two 

acquisition conditions where they either practiced tracking a sine wave template or a Fitts 

target condition with ID=6. To establish a baseline of performance, all participants first 

completed 9 trials at a Fitts target task pre-test (Test1). Following 45 acquisition trials in their 

respective training conditions (Sine or Fitts, Test 2), all participants were tested on a Fitts 

target task post-test for 9 trials (Test 3). The findings of Test 1 demonstrated no differences 

in measure of movement time and accuracy between conditions (Sine, Fitts) for their 

respective age (Elderly, Young). However, Young participants displayed superior scores on 

all measures compared to Elderly. Results of Test 2, where participants were tested in their 
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respective training conditions, demonstrated faster movement times for both Young groups 

and Elderly sine wave training compared to Elderly Fitts performance. Finally, Test 3 

revealed enhanced motor performance in the Young and Elderly participants who tracked the 

sine wave with the Young Sine wave training displaying the fastest movement times on the 

Fitts target test, followed by the Elderly Sine wave and Young Fitts participants having no 

difference in movement time between the two and the Elderly Fitts participants resulting in 

the slowest times of performance.  

Theoretical Considerations 

Established and recent models of speed-accuracy trade-offs demonstrate goal directed 

movements including two distinct stages; an initial ballistic preprogrammed stage that 

projects the limb toward a target followed by a second “homing in” stage where visual and 

proprioceptive feedback are used to make subtle corrections to achieve the target location 

(e.g., Beggs & Howarth, 1970; Buchanan et al., 2003, 2004, 2006, Crossman & Goodeve, 

1963; Guiard, 1993, 1997, Harris & Wolpert, 1998; Keele, 1968; Meyer et al., 1982, 1988; 

Woodworth, 1899). A highly noted account of this relationship is depicted in a model 

developed by Meyer et al., (1988) which refers to a stochastic optimized sub-movement. 

Advancing the seminal work of Woodworth (1899), Meyer et al., suggests that goal directed 

movements are comprised of a ballistic phase (primary sub movement) followed by homing 

in on target (optimized corrective sub-movements). These sub-movements are thought to 

optimally correct any divergence the initial projected effector may have faced by making 

minor adjustments to the speed and trajectory, specifically about the target area.  

Further examining corrective submovements, Dounskaia and colleagues (e.g., Dounskaia 

et al., 2005; Fradet et al., 2008; Wisleder & Dounskaia, 2007) recently examined similar 
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velocity profiles that are usually present in the visually driven deceleration phase of high ID 

movements. They suggest that variability in velocity during deceleration is indeed related to 

corrective submovements; however, they point out that it is important to note that non-

corrective submovements are also present during movement termination. Dounskaia et al., 

suggests that these submovements are more coupled with stopping the movement than 

actually making corrections. In other words, the corrective submovements can be thought of 

as ‘‘fluctuations emerging from mechanical and neural sources of motion variability’’.  The 

authors showed this by having participants instead of stopping on a target, they were asked to 

move through the target, ultimately minimizing the submovements typically seen. Similarly, 

in Experiments 1-3, performance in the optimized Sine conditions (Master and Yoked Sine 

from Experiment I, 16o and 24o Sine in Experiment II, Sine tracking for both ages in 

Experiment III) resulted in decreased fluctuations often present when performers attempt to 

stop/or in the case of reciprocal studies reverse in the target, because movements through this 

presentation promote cyclical/harmonic movements around the reversal point. In other 

words, the display characteristics promoted smooth movement through the target area. This 

decreases a proportion of the variability typically resulting from initiating corrective sub-

movements and/or stopping the movement. 

Manipulations designed to alleviate common movement tendencies have been widely 

investigated in unimanual and bimanual settings. Recently Boyle et al., 2012c (also see 

Kovacs et al., 2010a,b) demonstrated that a variety of multi-frequency and phase shifted 

coordination tasks could be effectively produced with limited exposure of practice when 

Lissajous displays and template illustrating the goal movement pattern were provided. These 

movement patterns were recently thought to be extremely difficult or even impossible to 
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produce without extensive training; however, participants in this study were able to 

effectively produce the required bimanual coordination pattern in a matter of minutes. 

Lissajous displays allow the movement of two limbs to be depicted as a single point (e.g., 

cursor) in the display with right limb movement, for example, resulting in the horizontal 

movement of the cursor and left limb movement resulting in vertical movement of the cursor. 

Research examining bimanual coordination has shown that when exposed to lissajous 

display, participants find it quite easy to follow the pattern indicated by the template, which 

results in the production of the goal bimanual coordination pattern.  

When salient concurrent feedback is provided, especially at high ID movements, 

participants are better able to effectively manage both the initial preprogrammed control and 

the adaptive corrective processes. An experiment by Kovacs et al., (2008) demonstrated a 

decrease in movement time and endpoint variability at ID = 6 when the size of the projected 

visual display was increased. This manipulation can be thought of as facilitating the 

secondary “homing in” phase, ultimately leaving the participants more space to tune in the 

correct trajectory and reversal point with lower attentional resources utilized. Alternatively, 

when feedback is withheld or minimized, the corrective phase of aimed movements at high 

IDs are often less effective due to the increase in attentional resources operators use to 

process visual and proprioceptive demands (e.g., Kovacs et al., 2008). It is also important to 

note that when the feedback manipulation is present, this enhancement was only seen at an 

ID = 6. By utilizing a nonlinear transformation of the task space in the display, which 

allowed the target area to be enlarged relative to the amplitude, Fernandez and Bootsma 

(2008) also found enhanced movement time for IDs between 4 and 6.   
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Debaere et al., (2003) provided evidence that the neuroanatomical substrate differs when 

participants perform with and without the presence of augmented visual feedback. This is 

consistent with the dependency on augmented feedback that has been shown in a number of 

experiments (e.g., Schmidt & Wulf, 1997; also see Salmoni et al., 1984), and also examined 

in ways of alleviating it (Winstein et al., 1994; Winstein & Schmidt, 1990; Wulf & Schmidt, 

1989). Kovacs and Shea (2011), for example, found that participants were able to effectively 

perform a 1:1 with 90o phase bimanual coordination task with augmented Lissajous feedback 

following only 4 min of practice. However, when feedback was withdrawn on a retention 

test, performance greatly declined indicating a nearly complete dependency on the feedback 

(Kovacs & Shea, 2011). Clearly the participants were dependent on the display to perform 

this difficult coordination pattern.  

In the literature dependencies on concurrent feedback appear particularly strong although 

there are numerous examples of dependency on terminal information. The specificity of 

practice hypothesis proposed that during practice the participant determines the source or 

sources of feedback that will ensure optimal performance. Thereafter, participants selectively 

process this information while refining their performance and begin to ignore other sources 

of information provided in the display or learning environment. Support for the specificity of 

learning can be found in experiments using a large variety of tasks (e.g., Blandin et al., 2008; 

Khan et al., 2002, Proteau, 2005). Many of these experiments demonstrate the beneficial 

effects of information in the display while it is available, but also the detrimental effect when 

the information is withdrawn. 

Do to the relatively new way the sine wave tracking is utilized in this experiment, a large 

number of future investigations are available. With relation to Experiment I, the results 
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showed that although no improvements related to movement speed (lower movement time) 

were seen after tracking a sine wave template of Fitts performance, a change in the kinematic 

structure was present. The significant decrease in dwell time from Test 1 to Test 2 for the 

Fitts-Yoked participants concludes that tracking a sine wave, even if not “optimized” as 

previously mentioned in Boyle et al., 2012a, still provides a template that allows the 

participant to extract some form of information that promotes a faster target reversal. In this 

condition, the participant visually witnesses a template, while simultaneously moving 

through the physical space of movement kinematics that would be classified as discrete in 

nature. Making a comparison of the physical and visual nature of this condition, a logical 

investigation to further this idea would then allow a participant to visually witness the 

“optimized” template tracking procedure without the act of physically interacting with the 

template. So far we have seen that visual/physical exposure to an “optimized” design of the 

sine wave template enhances motor performance when later transferred to a Fitts target task. 

Visual/physical exposure to an “un-optimized” sine wave template does not promote 

movement speed enhancement however, does result in decreased dwell time. The question 

then becomes, would the visual observation of an “optimized” sine wave template bridge this 

gap, or does the participant need the combination of visual along with physical interaction of 

cyclical movement in order to develop the flexible form of cyclical control seen at Test 2? 

With relation to Experiment II, future investigations should examine differing forms of 

sine wave templates in order to investigate the key elements of the structure of the movement 

related to Test 2 movement enhancement. One potential way to investigate this idea would be 

to provide a segmented sine wave display that matches either the initial ballistic phase of the 

movement (a linearly increasing line) or the smooth target reversal (a U shape at target 
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reversal). Studies have shown that motor enhancements can potentially be related to the 

specific feedback manipulation present (Bohan et al., 2010). The movement enhancements, 

although usually concluded in movement time values, can be constructed from specific 

changes in distinct areas related to the composition of the movement structure. A design of 

this nature would highlight if a particular area of the sine wave template (initial limb 

projection or movement reversal) provided more necessary information related to the motor 

enhancement seen at Test 2.  

With relation to Experiment III, future investigations should examine not only developing 

sine wave templates that result in lower movement time, yet harmonic motor performance in 

the elderly, but investigate how motor performance following sine wave training correlates 

with active lifestyle differences. The sine wave template in Experiment III was set to match 

the same period of Fitts target task performance times seen in the young participants. One 

possible explanation for the improved speed in the elderly participants following tracking the 

sine wave is the speed at which the participants were trained. In other words, would we 

expect the elderly participants to show lower movement time on Test 2 following training at 

a sine wave template that matched typical period (time) values seen for elderly Fitts 

performance? Also, if young participants are trained at this time would the benefit be 

removed on them as well?  In relation to the elderly participants recruited, the participants 

recruited for Experiment III had self-reports of aerobic physical activity for at least three 

days weekly. Studies have shown that physical activity levels are directly related to 

neuromuscular control throughout aging (Lord & Castell, 1994) and the benefits of physical 

activity have been seen in balance, strength, reaction time, and flexibility to name a few 

(Lord & Castell, 1994, Rikli & Edwards, 1991, Spirduso, 1975, 1980, Spirduso & Clifford, 
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1978).  Studies providing a direct comparison to the flexibility of the neuromuscular system 

throughout aging related to physical activity level add to the large amount of literature 

describing exercise as medicine throughout the lifespan.  

In conclusion, tracking an “optimized” sine wave template has been shown to enhance 

motor performance when transferred to a self-paced Fitts target task. The benefits have been 

seen through a variety of presentations and age ranges. It is clear that much more work needs 

to be done to fully understand the training effect, but furthering the understanding of this 

protocol not only has the potential to provide new recommendations to the way interfaces 

guide and/or train motor commands, it also provides an alternative way to re-examine the 

flexibility of a once thought constrained motor system. 

Summary 

Three experiments were conducted, aimed at providing further understanding of how 

previously identified perceptual factors interact in influencing performance on a goal directed 

target task.  In summary; providing participants with a sine wave tracking task does alter 

motor behavior when later transferred to a Fitts target task. What is interesting though is the 

relationship of the transfer performance seen on the Fitts task with the nature of the sine 

wave trained at. The results of Experiment I replicate the findings seen in Boyle et al., 

(2012a) by suggesting that tracking an optimized sine wave not only promotes enhanced 

motor performance following training, but these enhancements are also not seen at the cost of 

measures of accuracy. A new finding presented from this study suggests that transfer 

performance seen following training of a stereotypical Fitts displacement depiction in sine 

wave form does surprisingly promote lower dwell time about the target reversal, but this 

single enhancement was seen at the cost of higher MT and lower %TPV, indicating a slower 
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more in-harmonic strategy had been formed on Test 2. To further this experiment, future 

studies could investigate the role observation plays in extracting important information 

regarding sine wave training versus Fitts target task performance. Experiment II was 

intended to determine whether enhancements related to the sine wave practice are specific to 

the amplitude experienced during the sine wave practice or more generalizable allowing 

amplitude to be rescaled. Results from Experiment II conclude, again, that training at an 

optimized sine wave, even if the amplitude differs, promotes fast yet accurate motor 

performance when transferred to a Fitts target task. The purpose of Experiment III was to 

extend the sine wave training experiment in to an aging perspective and examine if training 

at an optimized sine wave task promotes enhanced motor performance in an active aging 

population. Results from this study interestingly conclude that not only can elderly 

participants enhance their motor performance drastically compared to parallel age 

participants in a Fitts only group, but they perform the Fitts transfer test with similar 

movement time seen in college aged Fitts acquisition participants. 
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