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ABSTRACT 

 

Hypoxic stress is a consequence of the decrease in the oxygen reaching the 

tissues of the body. The coupling of energy with oxygen makes low tension oxygen 

sensing and adaptation very essential for survival. The intracellular partial pressure of 

oxygen is regularly measured by a family of hydroxylase enzymes named as prolyl 

hydroxylase domain containing proteins (PHD). Hypoxia Inducible Factor (HIF) is the 

transcription factor that controls the ability of the cell to balance between adaptation and 

cell death during hypoxia.  

During normoxia, HIF1α undergoes non-reversible hydroxylation in the presence 

of PHD2. The hydroxylated HIF1α interacts with von Hippel-Lindua tumor suppressor 

protein (pVHL) and is degraded by ubiquitination. During hypoxia, PHD2 is inhibited 

which results in HIF-1α stabilization. Stabilized HIF-1α enters the nucleus and 

heterodimerizes with Hypoxia Inducible Factor-1β and the dimeric transcription factor 

HIF-1 is formed which binds to the response elements of the target genes. HIF-regulated 

target genes enable cells to induce an adaptive response by increasing glycolysis; 

angiogenesis etc. or undergo cell death by promoting apoptosis or necrosis.  

In this work, a Boolean network is generated whose state transitions realize the 

hypoxic stress response pathway. The simulated behavior of the Boolean network 

obtained is consistent with the experimental results from the already published pathway 

literatures.  
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NOMENCLATURE 

 

HIF Hypoxia Inducible Factor 

VHL Von Hippel Lindau tumor suppressor protein 

VEGF Vascular Endothelial Growth Factor 

ETC Electron Transport Chain 

HRE Hypoxia Response Element 

PHD Prolyl Hydroxylase Domain containing proteins 

ARNT Aryl Hydrocarbon Nuclear Trans locator 

mRNA messenger Ribo Nucleic Acid 

NADH Nicotine Amide Dinucleotide (reduced form) 

FAD Flavin Adenine Dinucleotide 

GAPDH Glyceraldehyde Phosphate Dehydrogenase 

LDHA Lactate Dehydrogenase A 

PDH Pyruvate Dehydrogenase 

PDK Pyruvate Dehydrogenase Kinase 

ETC Electron Transport Chain 

ATP Adenosine Tri Phosphate 

ADP Adenosine Di Phosphate 

NAD+ Nicotine Amide Dinucleotide 
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1. INTRODUCTION 

 

1.1 Introduction 

Hypoxia is a condition in which there is an inadequate supply of oxygen to the 

tissues of the body. If the oxygen entering inside a cell is not matching the oxygen 

demand of the same cell, a hypoxic condition is created. [1] Hypoxic stress is caused 

when the amount of oxygen available in a cell is insufficient to meet the energy demands 

of that cell. In a living cell, this imbalance between oxygen supply and energy demand 

arises due to physiological and pathophysiological processes. [2]. A cell faces hypoxic 

stress due to normal physiological variations during fetal development, wound healing, 

adapting to a high altitude, inflammation etc. [2] In a developing embryo, hypoxic stress 

is due to reduced oxygen supply, whereas while doing vigorous exercise, a hypoxic 

condition is created in the exercising muscles due to an increased demand of energy. [3] 

The optimum oxygen tension for tubulogenesis, vasculogenesis and angiogenesis in an 

embryo of a mammal is about 23-38 mm Hg. [2]  

1.2 Partial pressure of oxygen and hypoxia 

Different cells in the body have different partial pressures of oxygen that are 

considered to be normal and dropping of the partial pressure of oxygen these normal 

levels, create a hypoxic condition.  The difference of the partial pressures of oxygen 

between the blood and the mitochondria of the cells is responsible for the transfer of 

oxygen between blood and all the cells in the body. [2] Hypoxia detection in human 

beings is carried out by the most vascular tissue in the human body, the carotid body, 
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which is located near the bifurcation of the carotid artery. [4] The partial pressures of 

inhaled air, arterial blood and venous blood are 150 mm Hg, 100 mm Hg and 40 mm Hg 

respectively. [2] The carotid body detects the gradient of the partial pressure of oxygen 

of the arterial blood that flows through the carotid body. [5] The intracellular PO2 is 

regularly measured by three hydroxylases. These hydroxylases are named as prolyl 

hydroxylase domain containing proteins (PHD), namely PHD1, PHD2, and PHD3. [2] 

1.3 Metabolic reactions and hypoxia 

Almost 95% of the oxygen that we breathe in is used up by the reactions of the 

Electron Transport Chain (ETC), catalyzed by cytochrome oxidase, to produce energy. 

[2] A gradient of protons is created across the innermost membrane of mitochondria as a 

result of some redox reactions taking place in the mitochondrial ETC, due to the transfer 

of electrons from an electron donor to the terminal electron acceptor, oxygen. This 

proton gradient is used to phosphorylate ADP to form ATP in the presence of ATP 

synthase.  The inhaled air, which has a partial pressure of 150 mm Hg, passes into the 

alveoli which are the small air sacs located inside the lungs. Oxygen mixes with the 

water vapor and carbon dioxide (external respiration) and then enters into the arterial 

blood with a partial pressure of 13.3 KPa.  Arterial blood carries oxygen to the 

mitochondria in each and every cell of the body, where it extracts hydrogen from the 

food to react with oxygen to produce water vapor. Carbon dioxide produced in the 

mitochondria enters into the venous blood and is expelled from the lungs. The normal 

partial pressure of oxygen in the arterial blood is 100 mm Hg, and when it falls to 40 mm 

Hg, it is very dangerous. [6] Hence, low oxygen tension should be identified and proper 
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adaptation measures should be taken by the cell for survival, because oxygen 

consumption is coupled to release of energy in the form of ATP, which is essential for 

the proper functioning of the cell.   

1.4 Hypoxia and cancer 

Hypoxia can also occur due to pathophysiological processes, especially cancer.  

Hypoxia is a prominent condition observed in solid tumors, stroke, atherosclerosis, 

asthma, chronic bronchitis, emphysema, neuronal cell death and disability.  Myocardial 

hypoxia, cerebral hypoxia, alveolar hypoxia etc. are very detrimental to the human body. 

[2] Hypoxia is a very prominent character displayed by almost all solid tumors, since 

rapid cell growth demands a lot of energy, and hence oxygen becomes a limiting factor. 

As the tumor grows to about 2-3mm in diameter, the normal oxygen supply falls short to 

satisfy the increase in energy requirement of cancer tissues. The cells adapt to this 

scarcity by creating new blood vessels from the already existing blood vessels 

(angiogenesis) and also by increasing the glycolytic rate for easy and faster energy 

production. [7]  

1.5 Adaptation to hypoxic stress 

To maintain the proper tissue function, an adaptive response must be 

incorporated to overcome the scarcity of oxygen in order to harvest energy from food. 

The transcription factor HIF (Hypoxia Inducible Factor) has a prominent role in the gene 

expression regulation by oxygen. HIF achieves this response by regulating the 

transcription of thousands of hypoxia responsive genes. The interaction of HIF was 
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identified for the first time in erythropoietin (EPO) gene which is involved in 

angiogenesis. [2] EPO gene was up regulated almost 100 fold by hypoxia. [8] 

1.6 Hypoxia Inducible Factor (HIF) and its regulation 

Hypoxia Inducible Factor (HIF) is a heterodimer comprising of α and β subunits.  

HIFα consists of 3 subunits, HIF1α, HIF2α and HIF3α.The HIFβ subunit consists of 

ARNT which is the aryl hydrocarbon nuclear translocator and ARNT2. HIF1 

transcription factor consists of HIF1α and HIF1β (ARNT). [9] The concentration of 

oxygen in the cells regulate the HIF1α subunit, but the HIF1β subunit is unaffected by 

the concentration of oxygen. HIF1α quickly stabilizes and is accumulated on hypoxic 

conditions by the inhibition of PHD2, but on re oxygenation, it is suddenly destroyed 

and its half-life is less than 5 minutes. [10] This short half –life shows that HIF1α 

accumulation is not good for the body. In fact, prolonged hypoxia is observed in most of 

the tumors.   

HIF1 α undergoes hydroxylation of the amino acid proline located in its oxygen 

dependent degradation (ODD) domain by PHD2. [2]   HIF1 α undergoes hydroxylation 

of the asparagine 803 residues located in the C terminal activation domain (CTAD) by 

FIH (factor inhibiting HIF). [11] The hydroxylation of HIF1α by PHD2 increases its 

interaction with the tumor suppressor protein, pVHL, the von-Hippel Lindau tumor 

suppressor protein which marks HIF1α for degradation with the help of E3 ubiquitin –

ligase. [2] PHD2 hydroxylates HIF1α and that create a binding site for pVHL [12] 

Again, the hydroxylation of HIF1α by FIH reduces the transcriptional activity of HIF1α 

by preventing the binding of coactivators p300/CBP to HIF1α. [13] The hydroxylation 
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of HIF1α by FIH results in p300/CBP independent transcription of HIF1α.  PHD and 

FIH require oxygen, iron, α Keto Glutarate (αKG) and ascorbate as substrates to function 

properly. Oxygen and αKG are the co-substrates required for PHD2 functioning 

whereas, ascorbate and Fe2+ (iron) are the cofactors required for PHD2 functioning. 

PHD2 hydroxylates HIF1α and simultaneously PHD2 decarboxylates αKG to succinate. 

[2] αKG is an anion of α keto- glutaric acid which is produced by the deamination of 

glutamate, an intermediate of the citric acid cycle. [14] During hypoxia, the substrate 

oxygen required for PHD functioning is not available and hence PHD is inhibited. This 

results in the activation and stabilization of HIFα subunit which enters into the nucleus 

and binds with HIFβ subunit to form HIF heterodimer. [12], [13] HIF transcription factor 

binds to the Hypoxia Responsive Elements (HRE) of the target genes and this interaction 

drives the transcription in a hypoxia responsive manner up regulating the genes involved 

in angiogenesis (EPO), vasculogenesis (VEGF), glycolysis (GLUT1, PDK1, LDHA) etc.  

Electron Transport Chain (ETC) directs the electron transport between the electron 

donors NADH (Nicotinamide Adenine Dinucleotide) and FADH2 (Flavin Adenine 

Dinucleotide) to the terminal electron acceptor oxygen. ETC takes place inside the 

mitochondria where O2 is reduced to H2O, NADH is oxidized to NAD+ and succinate in 

the presence of Succinate Dehydrogenase (SDH) enzyme is converted to fumarate. [15] 

The gradient of proton generated across the membrane of mitochondria, pumps protons 

inside the mitochondrial space which converts Adenosine Di Phosphate to Adenosine Tri 

Phosphate with the enzyme ATP synthase. This whole process is what is termed as 

oxidative phosphorylation. [16] Some of the electrons will not be transferred from the 
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electron donor through the complexes I-IV to the terminal electron acceptor, but there 

may be premature electron leakage through complexes I and III forming reactive oxygen 

species (ROS) such as superoxide that creates oxidative stress. [17] During hypoxia ETC 

is inhibited since, there is not enough oxygen available, which generates more ROS 

creating an oxidative stress. [18] This oxidative stress does not allow iron to cycle 

between the oxidation states which results in PHD inhibition since, iron is one of the 

cofactors required for PHD to function properly. PHD inhibition results in the 

accumulation and stabilization of HIF1α which results in the induction of anti-apoptotic 

as well as apoptotic genes depending on the extent of hypoxia. [19] 

1.7 Switch from aerobic metabolism to anaerobic metabolism 

Activation of the transcription factor HIF1 results in a shift from aerobic 

metabolism to anaerobic metabolism.  Pyruvate kinase is an enzyme that converts 

Phospho Enol Pyruvate (PEP) to pyruvate. Pyruvate Kinase Muscle Isozyme 2(PK-M2) 

is one of the isozymes of the glycolytic enzyme Pyruvate Kinase [20]. PHD3 hydrolyzes 

PK-M2 on proline-403/408, and the hydrolyzed PK-M2 interacts directly with HIF1α 

subunit which enhances the binding of HIF1 to the HRE of the target genes. But, PKM2 

itself is a hypoxia target gene since, a hypoxia responsive element (HRE) was observed 

in the intron 1 of PK-M2. [21] PK-M2 promotes the Warburg effect. [22], [23] PK-M2 is 

identified in almost all the cancer cells and is essential for rapidly dividing cells since 

quicker energy harvesting is possible by shifting from aerobic to anaerobic metabolism. 

[24] Pyruvate Dehydrogenase Kinase 1(PDK1) is a HIF1 target gene.  PDK1, which is a 

hypoxia target gene, inhibits the action of the enzyme PDH, (Pyruvate Dehydrogenase) 
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which converts pyruvate to acetyl-co enzyme A. Hence, pyruvate is unable to enter into 

the citric acid cycle and is trapped in the cytosol and the rate of glycolysis is increased.  

This explains the Warburg effect and the relation between prolonged glycolysis and 

HIF1 activation.  

So, in effect PK-M2 catalyzes the conversion of PEP to pyruvate and PHD3 

hydrolyzes PK-M2 and the hydrolyzed PK-M2 enters the nucleus and interacts with 

HIF1α subunit and enhances the binding of HIF1 to the hypoxia responsive elements of 

the target genes. But, PK-M2 and PHD3 are hypoxia target genes. Moreover, PDK does 

not allow pyruvate to enter into citric acid cycle and traps pyruvate in the cytosol. 

Pyruvate inhibits PHD which stabilizes HIF1α, but PDK1 itself is a HIF target gene. 

Most of the glycolytic enzymes like GLUT1, LDHA, ALDA etc. are the hypoxia target 

genes and this explains the feed forward mechanism for HIF 1α activation and increased 

rate of glycolysis.  

1.8 Feedback inhibition 

PHD2 hydrolyzes HIF1α and the hydrolyzed HIF1α is degraded by the VHL 

tumor suppressor protein. But, PHD2 itself is a hypoxia target gene. [25], [26], [27] This 

feed-back inhibition acts a regulative control for hypoxic response when normoxia is re-

established. [2] Thus, HIF1:PHD2 linked transcription sets up the appropriate HIF1 

signaling to face the hypoxic stress effectively. [2]  

1.9 Hypoxic response based on the extent of hypoxia 

Hypoxic response can be either adaptive or apoptotic depending on the level of 

hypoxia. During normoxia, both catalytic enzymes PHD and FIH are active, which 
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results in the hydroxylation of proline and asparagine residues of HIF1α, resulting in the 

complete degradation of HIF1α by interacting with VHL.  During moderate hypoxia, 

PHD is inactive, whereas FIH is active since FIH requires only less oxygen 

concentration than PHD to function properly. [28] Here the transcription of HIF1 is 

limited, it occurs in a p300 independent manner. P300 is a coactivator which helps in 

rapid transcription.  In this condition, the cell tries to adapt to the hypoxic stress by up 

regulating the anti-apoptotic genes involved in angiogenesis (EPO), vasculogenesis 

(VEGF) and glycolysis (GLUT1, LDHA, ALDA etc.).  During, severe hypoxia, both the 

catalytic enzymes PHD and FIH are inactive and thus, there is a strong HIF1 

transcription resulting in a full- blown apoptotic response by up regulating the apoptotic 

genes p53, BNIP3, NIX etc. [25], [29], [30] There is an increased level of pro-apoptotic 

and apoptotic factors and p53 facilitated cellular injury in such a situation. Inhibiting the 

adaptive response could decrease the chance of survival of a cell when faced by hypoxic 

stress. [2]  
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2. METABOLIC SWITCH AND HYPOXIA 

 

2.1 Introduction 

Activation of the transcription factor HIF1 results in a switch from oxidative 

metabolism to glycolytic metabolism.  Hypoxia prevents the switch from glycolysis to 

citric acid cycle and glycolysis continues indefinitely so that the increasing energy 

demand during hypoxia can be met rapidly. The analysis of the mRNA of the HIF-1α 

deficient cells indicated that most of the enzymes involved in glycolysis is regulated by 

HIF-1 [2].  

2.2 Glycolysis 

Glycolysis is the central pathway of the glucose catabolism. It is a process by 

which glucose, which is a 6 carbon compound, is degraded to yield 2 molecules of 

pyruvate, which is a 3 carbon compound, in a sequence of ten enzyme catalyzed 

reactions. [15] The end product of glycolysis stores a lot of free energy and releases only 

a small fraction of the overall energy available inside the glucose molecule. The free 

energy released during glycolysis is preserved as ATP (Adenosine Tri Phosphate). The 

remaining free energy can be released only when the glycolytic products are completely 

oxidized into carbon dioxide and water with oxygen being the terminal electron 

acceptor. Glycolysis takes place in the cytoplasm and ten intermediate compounds are 

formed as a result of ten intermediate reactions catalyzed by glycolytic enzymes.   

There are two phases of glycolysis, the preparatory phase during which the ATP 

is consumed and the payoff phase during which ATP is generated.  There are total ten 
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reactions in glycolysis, out of which the first five are preparatory phase and the last five 

are payoff phase. In the preparatory phase, phosphorylation of glucose by ATP occurs in 

the presence of enzymes and finally 2 molecules of glyceraldehyde 3-phosphate is 

formed.  During the pay-off phase of glycolysis, NAD+ oxidizes glyceraldehyde 3-

phosphate with the help of glyceraldehyde phosphate dehydrogenase enzyme forming 1, 

3-diphosphoglycerate and simultaneously NAD+ is reduced to NADH. [15] The 1, 3-

diphosphoglycerate releases its phosphate group rich in energy to ADP to generate ATP 

and forms 3-phosphoglycerate. [15] This is the first ATP forming reaction. It then 

isomerizes into 2-phosphoglycerate in the presence of phosphor glycerate mutase 

enzyme and the latter undergoes dehydration with the help of enolase and forms 

Phospho Enol Pyruvate (PEP). [15] Then PEP releases its phosphate group rich in 

energy to ADP to form ATP in the presence of Pyruvate Kinase and pyruvate is formed 

simultaneously. [15] The reaction involving Pyruvate Kinase enzyme is the second point 

of regulation for glycolysis.  

Thus, two molecules are used in the preparatory phase whereas; four molecules 

of ATP are formed in the pay-off phase, resulting in a net yield of two ATP molecules 

for every glucose molecule undergoing glycolysis. During conversion of 

glyceraldehyde- 3-phosphate to 1, 3-diphosphoglycerate in the presence of the enzyme 

glyceraldehyde phosphate dehydrogenase (GAPDH), NAD+ is reduced to NADH. This 

NADH is transferred from cytosol to mitochondria by GAPDH which is activated by 

calcium ions (Ca2+). NAD is the product of cytosolic GAPDH activity. The pictorial 

representation of glycolysis is shown in figure 1. 
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Figure 1: Anaerobic glycolysis 
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2.3 Hypoxia and glycolysis 

Hypoxia and glycolysis is very much related since almost all the glycolytic 

enzymes are up regulated during hypoxia.  The analysis of m-RNA expression of HIF-1α 

deficient cells showed that the enzymes hexokinase (HK), glucose phosphate isomerase 

(GPI), phospho fructo kinase (PFK), aldolase, (TPI) triose phosphate isomerase, 

(GAPDH) glyceraldehyde phosphate dehydrogenase, (PGK) phospho glycerate kinase, 

phospho gluco mutase (PGM), enolase, (PK) pyruvate kinase and lactate dehydrogenase 

A (LDHA) are regulated by HIF-1. [31] Thus, the rate of glycolysis increases when cells 

undergo hypoxic stress. The end product of glycolysis, pyruvate inhibits PHD2 which 

results in the activation of HIF-1α and it enters into the nucleus and binds with HIF-1β to 

form the transcription factor HIF-1. Hypoxia Inducible Factor-1 which binds to the HRE 

of the hypoxia target genes which include almost all the glycolytic enzymes, thus 

increasing the rate of glycolysis. Moreover, Pyruvate dehydrogenase Kinase (PDK) is a 

hypoxia target gene which inhibits pyruvate dehydrogenase (PDH). PDH is the enzyme 

that converts pyruvate to Acetyl- coenzyme A. Hence, hypoxia inhibits the formation of 

acetyl coenzyme A and thereby prevents pyruvate from entering into the citric acid cycle 

and glycolysis continues indefinitely.   

Pyruvate kinase is the glycolytic enzyme that converts Phospho Enol Pyruvate 

(PEP) to pyruvate. Pyruvate Kinase Muscle Isozyme 2(PK-M2) is one of the isozymes 

of the glycolytic enzyme Pyruvate Kinase. [21] PHD3 hydrolyzes PK-M2 on proline-

403/408, and the hydrolyzed PK-M2 interacts directly with HIF1α subunit which 

enhances the binding HIF1 to the HRE of the target genes. But, PKM2 itself is a hypoxia 
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target gene since, a hypoxia responsive element (HRE) was observed in the intron 1 of 

PK-M2. PK-M2 promotes Warburg effect.  Warburg effect postulates that cancer cells 

produces a lot of energy rapidly by an increased rate of glycolysis which is followed by 

lactic acid fermentation rather than the decreased rate of glycolysis subsequently 

followed by oxidizing pyruvate inside the mitochondria by citric acid cycle and 

oxidative phosphorylation. [32] PK-M2 is identified in almost all the cancer cells and is 

essential for rapidly dividing cells since quicker energy harvesting is possible by 

switching from oxidative to glycolytic metabolism. 

  If glycolysis continues indeterminately, all NAD+ will be used up and glycolysis 

would come to a stop.  So, NADH must be oxidized back to NAD+ for the glycolysis to 

continue. There are three different mechanisms by which NADH can be oxidized back to 

NAD+. They are listed below. 

2.4 Lactic acid fermentation 

Pyruvate is reduced to lactate by Lactate Dehydrogenase A (LDHA) enzyme 

anaerobically. During this reaction, NADH is oxidized back to NAD+. This process is an 

important source of ATP during hypoxic conditions, for instance in infarcted heart 

muscle cells and while doing strenuous exercise. In many tissues, anaerobic lactic acid 

fermentation is a cellular last option for energy. The lactic acid fermentation by lactic 

acid bacteria causes milk to curdle (souring of milk) while making yogurt. [33] 
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2.5 Alcoholic fermentation 

Fermentation is defined as the anaerobic degradation of glucose into various 

products which are different for different organisms, solely for obtaining energy in the 

form of ATP [15].  The pyruvate formed from glucose is converted to ethanol and 

carbon dioxide, simultaneously oxidizing NADH to NAD+. 

2.6 Aerobic respiration 

In aerobic organisms, glucose is completely oxidized to CO2 as well as water and 

glycolysis is only the first stage of this aerobic oxidation. Then, pyruvate is 

decarboxylated in the presence of Pyruvate Dehydrogenase (PDH) enzyme to form the 

acetyl group of Acetyl-coenzyme A. This acetyl-coenzyme A then enters into the citric 

acid cycle where it is oxidized into CO2 and water and reduces NAD+ to NADH.   

This reduced NADH is oxidized back to NAD+ by passing through the Electron 

Transport Chain (ETC). The electron is transferred through the Electron Transport Chain 

to oxygen and is finally reduced to water.  

This generates a proton gradient which is used to produce 2.5 moles of ATP for 

every NADH oxidized which is termed as Oxidative Phosphorylation. The three 

different mechanisms by which NADH is oxidized back to NAD+ is illustrated in figure 

2. 
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Figure 2: Mechanisms by which NADH is oxidized to NAD+ 
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2.7 Citric acid cycle 

Citric Acid Cycle or Tri Carboxylic Acid cycle (TCA cycle) or Krebs cycle is the 

final common pathway by which almost all the energy producing nutrients are finally 

oxidized to a CO2 and water. [15] Majority of living cells is normally aerobic and the 

organic fuels are completely oxidized to a CO2 and water with the help of oxygen.” 

Citric Acid Cycle” name is derived from the tricarboxylic acid, citric acid which is first 

used up at the beginning of the cycle and later regenerated to complete the cycle. In 

eukaryotes, citric acid cycle takes place inside the mitochondria, whereas in prokaryotes, 

TCA cycle takes place inside the cytoplasm.  The product of glycolysis, pyruvate is 

decarboxylated to acetyl coenzyme A in the presence of Pyruvate Dehydrogenase (PDH) 

and enters into the citric acid cycle. Pyruvate is directly converted into Oxalo Acetic 

Acid (OAA) in the presence of the enzyme, pyruvate carboxylase and ATP is consumed 

during this process.  This cycle consumes acetate obtained from fuels (carbohydrates, 

fats and proteins) and water and oxidizes it to carbon dioxide. During this process, 

NAD+ is reduced to NADH. The energy released by the oxidation of glucose to CO2 and 

water is more than energy released by the anaerobic oxidation of glucose to pyruvate.    

The end product of glycolysis, pyruvate undergoes oxidative decarboxylation 

with the help of PDH, pyruvate dehydrogenase to form acetyl-coenzyme A. [15] Acetyl-

coenzyme A is converted to citrate by donating its acetyl group to oxaloacetate. Then 

isocitrate is formed from citrate and isocitrate undergoes dehydrogenation with the loss 

of carbon dioxide to form α-Keto Glutarate (α-KG). [15] α-KG is decarboxylated to 

form succinate. Succinate is converted to fumarate by Succinate Dehydrogenase (SDH) 
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and malonate is a competitive inhibitor of SDH and results in the accumulation of 

citrate, α-KG and succinate in the mitochondria. Fumarate is converted to malate by 

Fumarate Hydratase (FH). Malate to oxaloacetate (OAA) dehydrogenation is done in the 

presence of Malate Dehydrogenase and oxalo acetate intakes the acetyl group of acetyl 

co-A to form citrate again and the cycle continues.  Pyruvate is directly converted to 

oxaloacetate (OAA) in the presence of the enzyme Pyruvate Carboxylase.  After each 

and every turn of the citric acid cycle, oxaloacetate (OAA) is regenerated and it reacts 

with Acetyl-co A to start the next turn of the cycle. During this cycle, one molecule of 

Acetyl-co A is taken in and two molecules of carbon dioxide are produced and at the end 

of the cycle, one molecule of oxaloacetate was regenerated.  One pair of hydrogen atom 

were removed from isocitrate, α-KG, succinate and malate respectively and out of this 

four pairs of hydrogen atoms, three pairs reduced three molecules of NAD+ to three 

molecules of NADH and remaining one pair of hydrogen atom reduced Flavin Adenine 

Dinucleotide (FAD) of succinate dehydrogenase to FADH2. Citric acid cycle yields one 

molecule of ATP during each turn of the cycle. The citric acid cycle figure is shown in 

figure 3.  
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Figure 3: Citric acid cycle  
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2.8 Citric acid cycle and hypoxia 

Hypoxia prevents acetyl co-A from entering into the citric acid cycle and hence 

inhibits citric acid cycle and promotes glycolysis. PHD2 is the enzyme which 

hydroxylates HIF1α at the proline residue, but simultaneously PHD2 decarboxylates 

αKG to succinate. One of the intermediates of citric acid cycle, α-KG acts as a co-

substrate for PHD2 to function properly. Succinate Dehydrogenase (SDH) is the enzyme 

that converts succinate to fumarate. SDH mutation increases the concentration of 

succinate in the mitochondria, and diffuses through the inner and outer mitochondrial 

membrane into the cytoplasm.  Once inside the cytoplasm, succinate inhibits α-KG 

decarboxylation to succinate by product inhibition. This decarboxylation step is 

mandatory for PHD2 catalytic functioning and the inhibition of the same leads to PHD2 

dysfunction. This causes stabilization of HIF-1α and up regulation of hypoxia target 

genes which further inhibits citric acid cycle. People with mutations in SDH gene has 

been identified with pseudo hypoxic response nature.  Similarly, Fumarate Hydratase 

(FH) mutation results in the accumulation of fumarate inside the mitochondria, and this 

acts as a competitive inhibitor to α-KG binding site in PHD2, thereby inhibiting PHD2.  

2.9 Electron transport chain 

The four pair of electrons from the citric acid cycle is transferred through the 

ETC to the terminal electron acceptor oxygen located in the complex IV of ETC, 

reducing two molecules oxygen to four molecules of water. ETC couples the transfer of 

electrons from the electron donors NADH and FADH2 released by the citric acid cycle 

and to the terminal electron acceptor oxygen. ATP is generated by creating a 
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transmembrane proton gradient across the inner membrane of mitochondria by pumping 

protons. [15] The electron acceptor is more electronegative than the electron donor and 

the electrons passes from the donor to the acceptor until it reaches oxygen.  

There are four complexes in the ETC, namely complex I, complex II, complex III 

and complex IV. [15] Complexes I, II and IV are proton pumps and these complexes are 

connected by lipid-soluble and water -soluble electron carriers.  Complex-I accepts two 

electrons from NADH released by the citric acid cycle and passes these electrons to a 

lipid-soluble carrier ubiquinone (coenzyme Q). FAD is reduced to FADH2, during the 

conversion of succinate to fumarate. [15] Complex II accepts electrons from FADH2 and 

transfers it to ubiquinone. SDH catalyzes the oxidation of succinate to fumarate and 

during this process, ubiquinone (Q) is converted into ubiquinol (QH2).  

SDHA subunit functions as a part of citric acid cycle and converts succinate to 

fumarate and FAD to FADH2.  SDHB subunit functions as a part of respiratory chain. 

The iron clusters [2Fe-2S], [4Fe-4S], [3Fe-4S] receives the electrons from FADH2. [15] 

SDHB protein is encoded by SDHB gene, which is a tumor suppressor gene. SDHC 

cytochrome b560 subunit and SDHD cytochrome b small subunit are located at the inner 

mitochondrial membrane and functions as a part of respiratory chain. Q gets reduced to 

QH2 as a result of electron transfer from SDHB to Q (ubiquinone). 

Complex III of ETC is also known as the Q cycle.  Q cycle lists a series of 

reactions that explains how the redox reactions of coenzyme Q can pump protons across 

membrane of mitochondria to produce ATP. There are two different sites in complex III, 

the Q0 site and the Qi site. At the Q0 site, quinol is oxidized and two electrons from 
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quinone are transferred to cytochrome c. At the Qi site, quinone is reduced to quinol.  

Hence, there is a total transfer of six protons across the membrane; two protons reduce 

quinone to quinol and two quinol molecules releases two protons each.  

Complex IV is also known as cytochrome AB or cytochrome c oxidase. The 

electrons from complex III are transferred to oxygen to produce two molecules of water. 

Oxygen is the terminal electron acceptor. Simultaneously, four protons are removed 

from the mitochondria resulting in a proton gradient across the membrane.   

2.10 Electron transport chain and hypoxia 

Hypoxia inhibits ETC and results in the formation of Reactive Oxygen Species 

(ROS) from complexes I and ubisemiquinone sites of complex III. ROS accumulates in 

the cytoplasm and inhibits PHD2 by inhibiting the ability of iron (a co-factor for PHD2 

catalytic activity) to cycle between the oxidation states. This again leads to the HIF-1α 

stabilization.  HIF-1α combines with HIF-1β and HIF -1 heterodimer is formed which up 

regulates a lot of anti-apoptotic genes. During hypoxia, cells lacking mitochondria 

cannot induce HIF-1α stabilization. [17] Usually electrons from NADH and FADH2 

transfer through complexes I to IV of ETC into oxygen and reduce oxygen to water. But, 

during hypoxia, there is not much energy to transfer electrons and instead of moving 

from SDHA subunit to SDHB subunit, some electrons may directly leak into oxygen and 

generate ROS such as superoxides or peroxide anions which are dangerously reactive, 

resulting in oxidative stress.  ROS oxidizes proteins and cause DNA a mutation which is 

the main reason for premature aging and causes a lot of diseases.  High mitochondrial 

membrane potential is one of the main reasons for ROS production. So, mitochondria 
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always try to maintain the membrane potential at a narrow range to reduce ROS 

production. To lessen the aging effects of ROS cells contain many antioxidants like 

vitamin C and vitamin E.  

2.11 Oxidative phosphorylation 

The transfer of electrons between electron donor and electron acceptor through 

ETC releases a lot of energy which pumps protons (H+) from the matrix of the 

mitochondria into the inner mitochondrial membrane (IMM) space. This creates a 

transmembrane electro chemical proton gradient called ψ. This electrochemical proton 

gradient allows ATP- synthase enzyme to phosphorylate ADP to ATP and this process is 

termed as oxidative phosphorylation.  

2.12 Metabolic switch 

Figure 4 shows how hypoxia causes switch from aerobic metabolism to 

anaerobic metabolism.  Glycolysis takes place inside the cytoplasm where glucose is 

converted to pyruvate. Pyruvate is then converted to acetyl-coenzyme A with the help of 

PDH which the get into the TCA cycle inside the mitochondria. [15] Citric acid cycle 

converts acetyl-coA finally into CO2 and water and releases reduced from of Nicotine 

Amide Dinucleotide (NADH) and Flavin Adenine Dinucleotide (FADH2) which are 

electron donors. The electrons from these electron donors pass through the ETC to O2 

and water is formed as a result of the reduction of oxygen. The transmembrane gradient 

of proton produced as a result of proton pumping from the mitochondrial matrix to the 

inner mitochondrial membrane results in the phosphorylation of ATP to ADP.  
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PHD2 is the enzyme that catalyzes the non-reversible hydroxylation of the 

proline residues of HIF-1α and marks it for ubiquitination and degradation by pVHL. 

Once the PHD2 enzyme is inhibited, HIF-1α gets stabilized and enter into the nucleus 

where it heterodimerizes with Hypoxia Inducible Factor -1β and the dimeric 

transcription factor HIF-1 is formed. [2] PDH converts pyruvate to acetyl-coA, but one 

of the hypoxia target genes Pyruvate Dehydrogenase Kinase (PDK) inhibits PDH. So, 

acetyl-co A is unable to enter into the citric acid cycle and glycolysis continues 

indefinitely. Almost all the glycolytic enzymes are hypoxia target genes.  This, hypoxia 

promotes glycolysis for a rapid and easy energy harvesting.  The intermediate 

metabolites of citric acid cycle, fumarate and succinate inhibit PHD2 thereby stabilizing 

HIF-1α.  Hypoxia inhibits ETC and generates ROS which in turn inhibits PHD2.   

PHD3 hydrolyzes the proline-403/408 residues of PKM2 and this increases the 

coactivator function of PKM2. The hydrolyzed PKM2 enters into the nucleus and 

enhances the rate of HIF-1 binding to the responsive element of the target genes of 

hypoxia. PKM2 also stimulates the recruitment of p300 and CBP to the HRE of the 

target genes thereby increasing hypoxic response. Moreover, a new HRE was identified 

in the intron1 of PKM2 which shows that PKM2 itself is a hypoxia target gene. Also, 

PHD3 is also a hypoxia target gene.  Thus, PKM2 increases the transcriptional activity 

of HIF-1α. The relationship between different metabolic reactions and hypoxia is shown 

in figure 4. 
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Figure 4: Metabolic switch and hypoxia        
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3. P300 AND CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN-

BINDING PROTEIN (CBP) TRANSCRIPTIONAL CO-ACTIVATORS AND 

HYPOXIA 

 

3.1 Introduction 

HIF-1 heterodimer is formed once the stabilized HIF-1α gets into the nucleus and 

binds with the HIF-1β. [2] The so formed HIF-1 transcription factor binds to the 

response elements of the target genes and then recruits the transcriptional co-activating 

proteins p300 (E1A (Adenovirus early region A) binding protein p300 or EP300) and 

CBP (cyclic AMP responsive element-binding protein-binding protein). [34] P300 is a 

protein that regulates cell growth, cell division and cell differentiation and carries out 

these functions by activating transcription. P300/CBP is considered as a single entity 

because these two proteins are structurally and functionally similar and are considered as 

structural homologs and functional homologs. [35] In contrast, there are some functional 

differences between CBP and p300. For instance, the kinase cyclin E/cyclin Cdk2 

negatively regulates p300 whereas; cyclin E/cyclin Cdk2 increases the Histone Acetyl 

Transferase (HAT) activity of CBP. [36] P300 and CBP connect with transcription 

factors and these interactions are managed by their 5 protein interaction domains. [37] 

CH1, CH2 and CH3 are the 3 zinc finger domains and also has histone acetyltransferase 

(HAT) domain and a bromo domain which binds to the lysine amino acid of the histone 

that is acetylated.  The organization of p300/CBP is shown in figure 5. 
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Figure 5: Organization of p300/CBP 

 

3.2 Histone acetyl transferase  

Histone acetyl transferases (HAT) are the enzymes which can acetylate lysine 

amino acids on the histones that surround the DNA. [35] Acetylation of histone 

enhances the gene expression because, DNA is wrapped around the histone proteins and 

hence by the acetylation of histone, more binding sites are created for specific protein-

protein interaction domains such as the bromo domain which binds to the acetylated 

lysine. Both CBP and p300 function as HAT and plays a major role in cellular 

differentiation and cellular proliferation.  HATs can even acetylate the transcription 

factors. CBP/p300 acts as the transcriptional coactivators of the transcription factor 

HIF1α and enhance the gene expression of hypoxia target genes. Both CBP and p300 are 

type A HATs which are found inside the nucleus and they directly regulate gene 

expression by acetylating the lysine amino acids of the histones surrounding the DNA 

which is located within the chromatin of the nucleus. [35] One of the protein-protein 

interaction domains, the bromo domain binds to the acetylated lysine on the histones. 

[36] 
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3.3 P300/CBP as transcriptional coactivators 

P300 and CBP are the transcriptional coactivators that can increase the rate of 

gene transcription. For instance, CREB (cyclic AMP response element- binding protein) 

is one of the transcription factors. [38] It binds to a sequence of DNA within the target 

genes called CRE (cAMP response elements) and can increase or decrease the 

transcription rate of the target genes. CREB binds to CRE and CREB is phosphorylated. 

This increases the interaction of CBP and CREB and enhances the transcription of the 

target genes of CREB. [38] 

3.4 Hyper phosphorylation of P300/CBP during hypoxia 

When a cell is under hypoxic stress, the transcriptional coactivators p300 and 

CBP is hyper phosphorylated. PC12 cell lines are obtained from the pheochromocytoma 

of the medulla of the adrenal gland of rats.  Pheochromocytoma is a disease caused by 

the mutation of pVHL and the loss of VHL activity results in a drastic increase in the 

amount of HIF-1α which results in tumor.  Pheochromocytoma results in the tumor of 

the medulla of the adrenal gland. [39] The reason for hyper phosphorylation of p300 is 

due to the calcium release from IP3 (inositol 1, 4, 5-triphosphate) sensitive stores and 

this hyper phosphorylation can be inhibited by inhibiting the glucose metabolic pathway. 

[40] During glycolysis, NADH is released into the cytoplasm by the formation of 1,3-

biphosphoglycerate from glyceraldehyde 3- phosphate  with the help of glyceraldehyde 

3- phosphate dehydrogenase (G3PDH/GAPDH). [15] This NADH is transferred from 

the cytoplasm to the mitochondria by GAPDH. This transfer is activated by Ca2+. 

Glycerate phosphate shuttle transfers NADH from cytoplasm to ubiquinone (Q) and 
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complex III of the electron transport chain (ETC). [15] This NADH transfer releases a 

pool of ATP that enhances the activity of the kinases responsible for the phosphorylation 

of p300 and p300 is hyper phosphorylated. [40]  

3.5 P300/CBP and tumor suppression 

P300 and CBP are involved in several tumor suppressor pathways and is 

demonstrated by its interaction with the tumor suppressor gene p53. [41] P53 interacts 

with the carboxyl terminal region of CBP/p300 and thus the rate of transcription of the 

p53 response genes MDM-2, p21 were increased. [42] Adenovirus E1-A interacts with 

p300/CBP at the zinc finger region and block its activity.  P300/CBP can regulate p53 

degradation. During DNA damage, p53 activates its target gene MDM-2, but MDM-2 

inhibits p53 and this is a negative feedback. E1-A does not allow p53 to induce MDM-2 

and hence p53 is stabilized by suppressing the feedback loop. MDM2 and p53 binds to 

the first zinc finger domain of p300. MDM-2 can inhibit p53 by competing for 

p300/CBP binding site. For instance, MDM-2 competes with p73, which is a homolog of 

p53 for binding with the first zinc finger domain of p300 and prevent its interaction with 

p300. [43]  

The knowledge that p300/CBP can act as tumor suppressors are further 

strengthened by the interaction of p300/CBP with the tumor suppressor gene BRCA1 

(breast cancer type 1), by acting as a transcriptional regulator of BRCA1. [44] Moreover, 

CBP negatively regulates Wnt pathway in drosophila. If the Wnt pathway is up regulated 

or activated, then the gene cyclin D1 and the proto oncogene c-myc will be induced and 
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this can cause tumor. [45] The negative regulation of wnt pathway by CBP is shown in 

figure 6. 
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Figure 6: Negative regulation of wnt pathway by CBP 

 

3.6 P300/CBP and E1A 

CBP/p300 interacts with a lot of viral onco- proteins such as v-myb. C-myb is a 

proto oncogene and v-myb is an oncogene which is carried by the avian myeloblastosis 

virus (AMV). C-myb binds to the CREB binding domain (KIX domain) of CBP and thus 

enhances its transcription.  But, at the same time, there are other viral onco-proteins such 

as adenovirus E1-A, human papilloma virus E6 etc. which can block the complete 

functioning of CBP/p300. These viral onco-proteins do not bind to the DNA but, the 

amino terminus of E1A bind to CH3 of CBP/p300. So, E1A functions by blocking the 

interaction of p300/CBP with these positive effectors of these coactivators.  But, the 

carboxyl terminus (C-terminus) of E1-A inhibits the histone acetyl transferase activity of 

CBP/p300 directly, even without having to displace the positive effectors. But, a very 
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high level of E1-A is required to inhibit the HAT activity of CBP/p300 directly. [44] The 

interaction of E1-A with CBP/p300 is shown in figure 7. 
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Figure 7: E1A and CBP/p300 

 

The E6 protein of human papilloma virus (HPV) degrades the tumor suppressor 

gene p53, by recruiting p53 into a complex that contains the ubiquitin ligase E6AP. E6 

proteins from the invasive cervical carcinoma bind to the third zinc finger domain, 

displacing p53 from its transcriptional coactivator because p53 also binds to the third 

zinc finger domain (CH3). This results in p53 degradation by ubiquitination. [46] 

Both CBP and p300 are regulated by phosphorylation. Cyclin Cdc2/Cyclin Cdk2 

are the kinases that phosphorylate CBP/p300 and enhances their transcriptional 

coactivator functioning. But, adenovirus E1A has the ability to block the 

phosphorylation of CBP/p300 by these kinases.  These coactivators are also negatively 

regulated by the kinase cyclin E/cyclin Cdk2. But, the cyclin-dependent kinase inhibitor, 
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p21 blocks this negative regulation of p300 by cyclin E/cyclin Cdk2. P21 enhances the 

efficiency of p300 as a transcriptional coactivator. Thus, p21 participates in a positive 

feedback loop as follows:  p53 which depends upon CBP/p300 induces p21 which 

removes the block on CBP/p300 by the kinase cyclin E/cyclin Cdk2 and enhances the 

transcriptional coactivator function of CBP/p300. [47] 

3.7 P300/CBP mutations 

The mutations in CBP/p300 results in a variety of developmental disorders like 

RTS (Rubinstein-Taybi Syndrome).  People with mutations in CBP/p300 possess an 

increased risk of developing cancerous and non-cancerous tumors, leukemia and 

lymphoma.  Most of these tumors develop during childhood. RTS occurs because of the 

mutation that happens in only one copy of CBP which reduces the production of CREB 

binding protein by half. This protein is very much essential for growth and development 

before and after birth. RTS is a developmental disorder and is characterized by mental 

retardation, broad thumb, unusual facial appearance and broad and big toes. One out of 

every 1, 00,000 newborns are affected by RTS due to deletions, point mutations, or 

translocations in the CBP gene. [48] The thyroid hormone receptors depend on the 

transcriptional coactivators CBP/p300 for their function. Even though RTS patients have 

mutant CBP, the thyroid functions of these patients appear to be normal.  This is 

probably because, the affinity of CBP towards the activated thyroid hormone receptors 

are so high that a reduction in the amount of CBP cannot disrupt the interaction between 

CBP and thyroid hormone receptors or may be some other hormone receptor 

coactivators are masking the consequences of CBP deficiency. [44]   
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3.8 P300/CBP associated factor  

P/CAF or PCAF (CBP/p300 associated factor) is a transcriptional coactivator 

associated with the tumor suppressor gene p53. [49] The protein encoded by PCAF and 

adenovirus E1A binds to the third zinc finger domain (CH3) of CBP/p300 and hence 

both compete for the same binding site within CBP/p300.  PCAF inhibits the cell cycle 

progression and adenovirus E1A functions by blocking the interaction between 

CBP/p300 and PCAF. [35]   

3.9 Interaction with transcription factors 

Both CBP and p300 play a major role in regulating transcription by its interaction 

with hundreds of transcription factors. CBP/p300 is called transcription coactivators 

because they bind to the transcription factor and enhances the rate of transcription by 

positioning histone acetyl transferase (HATs) near precise nucleosomes. [35] There are  

three zinc finger domains for CBP/p300, CH1, CH2 and CH3 and they are the binding 

site for numerous transcription factors which indeed makes CBP/p300 an important 

regulator of transcription mechanism. [40] P300 contains a Protein Kinase A (PKA) site 

near to the third zinc finger domain (CH3) and new studies suggest that phosphorylation 

by PKA regulates p300/CBP. [36] 

HAT activity links chromatin remodeling and transcriptional activity. [40] HAT 

activity is not required for the transcription of naked DNA templates, but histone acetyl 

transferase activity is required for releasing the chromatin structure of the histones 

surrounding the DNA. This weakens the DNA –histone bond and hence protein 

translation increases because more binding sites are available for the transcription factors 
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to associate with the DNA. [36] P300/CBP contributes to transcriptional synergy by 

interacting with several transcription factors simultaneously. Even though they bind to 

hundreds of transcription factors, the concentration of CBP/p300 in the cells is very 

limited and hence a small decrease in the amount of these coactivators is very much 

damaging to the cell.  

Both p300 and CBP are targeted by the adenovirus E1A. The transcription factor 

HIF-1α binds to the first zinc finger domain (CH1) of p300. [50] P300 upregulates the 

EPO gene in response to hypoxia. When a cell was induced with hypoxic conditions, a 

DNA binding complex was formed which contained the transcription factor HIF1α as 

well as the transcriptional co-activators p300 and CBP. [50] When enough energy is not 

available, cAMP (the energy sensor), is upregulated and then the transcription factor 

CREB bound to the CRE recruits CBP which functions as a transcriptional coactivator  

and binds to the transcription factor CREB and upregulates the cAMP responsive genes. 

The adenovirus ze1A can transform normal cells to malignant cells only when it is 

associated with p300/CBP. So, p300/CBP plays a major role in suppressing neoplastic 

transformation. [50]   

E1A targets CBP/p300 and inhibits hypoxic induction of the target genes EPO 

and VEGF.  P300/CBP is involved in the upregulation of a variety of hypoxia target 

genes.  [50] E1A has the ability to bind to a number of transcription factors and thus act 

as scaffolds binding to different transcription factors directly and integrating genetic 

information from various transcription factors. Thus, they contribute to transcriptional 

synergy. [51] So, even though p300/CBP is known for its tumor suppressor 
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characteristics, it can also support tumor progression by associating with oncoproteins 

such as E1A. Hence, p300/CBP –HIF complex can be a target for cancer therapy. [50]      

3.10 P300/CBP and p35srj protein 

p35srj protein, a 35KDa cellular protein was identified, cloned and named as 

p35srj for its serine – glycine rich junction by Bhattacharya in the year 1999 and is a 

novel protein. The p35srj protein which binds to CH1 (the same binding site for HIF1α), 

inhibits the HIF1α-CBP/p300 association.  

But, p35srj protein itself is a hypoxia inducible protein. So, this is a negative 

feedback regulation for hypoxia. [52] The p35srj protein is very unstable and is 

completely bound to p300/CBP through the carboxy terminus. P35srj blocks the 

association of HIF1α –CTAD (C terminal activation domain) with p300/CBP and that is 

how it inhibits HIF1 activity. [40] Thus, p35srj regulated HIF1 transcription in a 

negative feedback mechanism which is shown in the figure 8.     
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Figure 8: Negative feedback regulation of HIF1 by the protein p35srj 
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3.11 Hypoxia induces hyper phosphorylation of P300/CBP 

P300 and CBP both being phospho proteins, hyper phosphorylation of p300/CBP 

is caused due to the release of Ca2+ ions from the IP3 sensitive stores. [40] In the paper 

Adriana et al. the inhibitors of IP3 receptors 2APB and Xestospongin C were used in the 

cells exposed to 1% hypoxia for 3 hours and that inhibited the hyper phosphorylation of 

p300/CBP. [40] Specific glucose metabolic pathways need to be activated for the hyper 

phosphorylation of p300. Calcium ions (Ca2+) activate the enzyme G3PDH. [40] NADH 

passes through the mitochondrial membrane with the help of glycerol phosphate shuttle. 

[40] G3PDH reduces dihydroxyacetone to glycerol- 3- phosphate inside the cytoplasm 

with the help of NADH and oxidizes glycerol-3-phosphate back to dihydroxyacetone 

inside the mitochondria with the help of  FAD and during this process, FADH2 is 

generated which is produce reducing equivalents to ubiquinone (Q) and to complex III of  

the mitochondria. [40] Glycolysis is inhibited by 2-deoxyglucose, which prevents the 

hyper phosphorylation of p300 and iodoacetate an inhibitor of GAPDH prevented the 

accumulation of HIF1α during hypoxia. [40] Moreover, the cells treated with substrates 

hydroxybutarate, pyruvate and α-keto Glutarate (α-KG) which activates the Krebs’s 

cycle and generate NADH at complex I was not able to induce hyperphosphorylation of 

p300 in hypoxia induced cells which indicates that, for the hyperphosphorylation of 

p300 to occur, glycolysis is very much essential. [40] Palmitoyl coenzyme A, an 

inhibitor of G3PDH and DPI (diphenyliodonium) which is an inhibitor of FADH2 

decreased the p300 hyperphosphorylation. [40] The pathways responsible for the hyper 

phosphorylation of p300 during hypoxia is shown in the figure 9.  
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Figure 9: Pathways responsible for the hyper phosphorylation of p300 during hypoxia 
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4. TRANSLATIONAL CONTROL OF GENE EXPRESION DURING HYPOXIA 

 

4.1 Introduction 

Translation is the process by which messenger RNA (mRNA) is decoded by the 

ribosome complex to produce amino acid chain which folds to produce proteins. [53] 

During hypoxia, the gene expression of the target genes is controlled by regulating the 

process of translation and this is done by controlling the initiation steps of mRNA 

translation. [54] This is also the strategy adapted by solid tumors for growth and 

development, as it faces severe oxygen crisis since, the normal supply of oxygen falls 

short to satisfy the increasing demand of oxygen. [2] The phenomenon of protein 

synthesis requires a lot of energy. In order to save energy, protein synthesis is 

suppressed during hypoxia by regulating the initiation steps of mRNA translation by two 

different pathways, either by the phosphorylating eIF2 which is the eukaryotic initiation 

factor 2α or by inhibiting eIF4F, which is another eukaryotic initiation factor. [54] 

During hypoxia, even though there is a decrease in translation, there is not much 

translation inhibition at the individual gene level because of the presence of 3’ and 5’ 

untranslated regions of messenger RNA. [54] 

4.2 PI3K/AKT/mTOR pathway 

The growth factors like IGF1 (Insulin Growth Factor 1), IGF2 (Insulin Growth 

Factor 2) etc. sustains oxygen homeostasis in growing cells by activating the signaling 

pathways that includes phosphoinositide 3-kinase (PI3K), Protein Kinase B (PKB aka 

AKT) and mTOR (mammalian Target of Rapamycin). [2] EIF-4E (eukaryotic translation 
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initiation factor -4E) is increased due to this activity, which increases the translation of 

HIF-1α messenger RNA. [2] MTOR (Mammalian Target of Rapamycin) is a protein 

encoded by FRAP1 (FK506 binding protein 12-Rapamycin associated Protein 1) gene in 

humans. [55] Rapamycin is a product of bacteria which can inhibit mTOR activity. 

MTOR has FK506 binding protein 12 – Rapamycin (FBR) binding domain. [56] Once 

this rapamycin binds to mTOR, it impedes the mTOR activity.  The main function of 

mTOR is to collect the inputs from the growth factor pathways. The activities of mTOR 

include regulation of synthesis of proteins, transcription of various genes, cell 

movement, growth, proliferation and survival of cells. [56] PI3K (phosphoinositide -3 

kinase) are a family of intracellular enzymes which can phosphorylate 

phosphatidylinositol at its 3 position hydroxyl group of inositol ring.  The main 

functions of PI3K are cell differentiation, cell motility, cellular growth, survival, 

proliferation and trafficking. [57] AKT is a protein kinase which is threonine/serine 

specific protein kinase that can activate mTOR. [58] AKT is involved in several 

important cellular processes such as metabolism of glucose, migration and proliferation 

of cells etc. and is able to induce protein synthesis pathways necessary for growth and 

development. [58] AKT binds to PIP3 (Phosphatidylinositol (3, 4, 5)-triphosphate) or 

PIP2 (Phosphatidylinositol (4, 5)-biphosphate) with high affinity. Once PI3K is activated 

by the signals from the upstream growth factors like IGF1, IGF2 etc. PI3K 

phosphorylates PIP2 to PIP3. Then, AKT binds to PIP3 and AKT is phosphorylated by its 

kinases mTORC2 (Mammalian Target of Rapamycin Complex 2) and PDPK1 

(phosphoinositide dependent kinase 1) Phosphorylation of mTORC2 results in the 
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phosphorylation of AKT by PDPK1. Once AKT is phosphorylated, it results in mTOR 

activation by its kinase activity. [59] PI3K/AKT/mTOR pathway is very important in the 

context of cancer because, they integrate signals from the upstream growth factors like 

IGF1, IGF2 etc. and reduces apoptosis and increases proliferation which contributes to 

cancer. PI3K activation leads to AKT activation which finally leads to mTOR activation. 

[60] PI3K/AKT/mTOR pathway is over reactive in cancer cells due to the faults or 

deficiencies in the tumor suppressor gene, Phosphatase and Tensin homolog (PTEN). 

The action of the phosphatase protein product of PTEN is responsible for its tumor 

suppression characteristic. It inhibits PI3K/AKT/mTOR pathway by converting PIP3 to 

PIP2. This tumor suppressor gene is involved in cell cycle regulation, and prevention of 

rapid cell division. [59] PTEN is one of the most mutated or lost tumor suppressor gene 

in almost all types of human cancers and approximately 70% of men with prostate 

cancer have already lost one copy of tumor suppressor PTEN gene by the time this 

disease is diagnosed. [61] Defect in the tumor suppressor genes PTEN and p53 results in 

a decrease in the neuronal energy production which leads to abnormal energy level 

production in hippocampus as well as cerebellum of the brain leading to autism. [62] To 

sum up, PI3K/AKT/mTOR pathway is inhibited by PTEN that works antagonistically to 

PI3K. The drastic reduction in AKT activation is because of the membrane localization 

factor from AKT. [61] 
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4.3 Unfolded protein response  

Hypoxia results in suppression of protein synthesis by regulating the initial steps 

of mRNA translation and is linked to the activation of Unfolded Protein (UPR) due to 

Endoplasmic Reticulum stress.  In this case, the process of translation is inhibited 

because the Eukaryotic Initiation Factor (eIF2α) is phosphorylated in a PERK dependent 

manner. [54] The stress in the organelle endoplasmic reticulum results in a cellular state 

response called Unfolded Protein Response (UPR).  Due to this stress many proteins that 

are not folded properly accumulates inside the endoplasmic reticulum lumen. In this 

scenario, the UPR has two aims. First, it will stop the protein synthesis for some time 

and activate those signaling pathways that could increase the synthesis of molecular 

chaperones that are involved in proper folding of the proteins.  This has to be done 

within a certain time limit. If they are unable to correct the misfolding with a certain 

time frame, unfolded protein response results in apoptosis of the cells facing ER stress. 

[63] EIF2α is the α subunit of eIF2 dimer and is involved in the initiation of translation. 

Ribosomes are the basic building blocks of proteins and they build proteins based on the 

messenger RNA information. EIF2 is a eukaryotic initiation factor that facilitates the 

binding of transfer RNA (tRNA) to ribosomes. A ternary complex (TC) is formed by the 

combination of eIF2, GTP (Guanosine Tri Phosphate) and the initiator methionine-tRNA 

(met-tRNA).Methionine is an amino acid that is coded by the initiation factor AUG 

codon which is the most common eukaryotic start codon. 

The GDP has to be exchanged with another GTP and only the GTP-bound eIF2 

can participate in another translation initiation. [64] After the formation of the ternary 
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complex, 43S Pre Initiation Complex (PIC) is formed once it binds with the small 

ribosomal subunit. Then, eIF4S unwinds the mRNA, to which the 43SPIC will later 

bind.  Then the initiation factor eIF4S and 43S PIC forms the complex 48S on the 

mRNA and runs along the mRNA in search of the start codon AUG. [64] Now, once the 

start codon AUG is located, then the met-tRNA base pairs with the AUG codon and a 

protein that activates the GTP-ase, eIF5 recruits to the 48S complex and GTP is 

hydrolyzed to GDP by eIF2. [65] This results in the release of eIF2-GDP from the 48S 

complex and recruits the large ribosomal subunit, and forms the 80S initiation complex 

and finally the process of translation begins. [64] The Guanine Nucleotide Exchange 

Factor, eIf2B helps eIF2 to exchange its GDP for a GTP and a new round of translation 

initiation begins. [65]  

The translation inhibition during the initial phase of mRNA translation is 

achieved by the phosphorylation of eIF2α. [54] The kinases act as a result of 

Endoplasmic Reticulum stress (PERK). The affinity of eIf2α for eIF2B increases due to 

the phosphorylation of eIF2α. But, eIF2B exchanges GDP (Guanosine Di Phosphate) to 

GTP (Guanosine Tri Phosphate) only with the unphosphorylated eIF2. EIF2B is 

inhibited by phosphorylated eIF2. The cellular concentration of eIF2B is very low when 

compared to the cellular concentration of eIF2. [66] 

PERK or Eukaryotic Translation Initiation Factor2- Alpha Kinase -3 (EIF2AK3) 

is related to the Unfolded Protein Response (UPR). If there is an increase in the amount 

of proteins not folded properly  in the endoplasmic reticulum lumen, BiP/GRP78 

chaperones bind to these proteins and so BiP/GRP78 dissociates from their from their 
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corresponding receptors to bind to these proteins. [67] PERK oligomerizes with BiP in 

the ER stressed cells. [67] The activated PERK attenuates transcription by 

phosphorylating the α subunit of translation machinery, eIF2. PERK also can induce 

apoptosis by activating the pro apoptotic protein, CHOP (CCAA1/ enhancer binding 

protein homologous protein). [67] CHOP down regulates anti apoptotic protein BCL2. 

[68]  

4.4 Regulation of translation during hypoxia through eIF2 

Both severe and moderate hypoxia can cause the phosphorylation of eIF2α. [54] 

The difference is that during severe hypoxia, the phosphorylation of eIF2 occurs very 

rapidly within just 30 minutes when compared to the eIF2α phosphorylation by moderate 

hypoxia. [69] Moreover, this raid phosphorylation process is totally reversible due to 

ATP depletion during hypoxia.  Due to the negative feedback loop in the hypoxic stress 

response pathway, even though the rapid phosphorylation occurs within half an hour, 

within a time span of about 4-8 hours, it partially recovers. By analyzing the levels of 

ribosomal association with mRNA, it is validated experimentally in ref. 54 that hypoxia 

reduces the number of ribosomes required per translation and shift to lower ribosomal 

density. [54] Thus, the translation inhibition by the phosphorylation of eIF2α impairs the 

ternary complex (TC) and decreases the ribosomal recruitment to transcripts of 

messenger RNA. [54] The pictorial representation of the regulation of the inhibition of 

translation is shown in the figure 10.  
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Figure 10: Translation inhibition by phosphorylation of eIF2α 
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5. RESULTS AND CONCLUSIONS 

 

5.1 Introduction 

 In Biology, almost all the knowledge and information is available as signaling 

pathways. They are unable to represent the multivariate interaction between the genes, 

even though they can give a pictorial representation of the univariate interactions. [70] 

There are also possibilities that two or more pathways can share the same genes or the 

same node. Thus, a biological pathway gives a clear cut idea of the relationship between 

different genes in that pathway, but fails to provide the information about how these 

genes interact globally when they are present in different pathways. [71] The main aim 

of this work is to generate a Boolean network whose state transitions realize the hypoxic 

stress response pathway. The resulting Boolean network obtained shows dynamic 

behavior which is consistent with the experimental results and observations from the 

already published literatures.  

 By incorporating the expert knowledge obtained from the biological pathways, 

the cardinality of the search space of the network can be reduced. The main drawback of 

the pathway knowledge is that it provides only partial information and that too restricted 

to a specific context [71]. By mathematically modeling the multivariate interaction 

between the genes in a pathway, these networks can be used to differentiate between 

normal cell behavior and diseased cell behavior [70]. By working with the genetic 

regulatory networks instead of the biological pathways, the holistic behavior of the genes 

can be captured and the appropriate therapeutic interventions can be developed. The 
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main aim of the biological pathways is to demonstrate the complex interactions taking 

place inside a cell when a stimulus or stress is applied. [71] 

5.2 Stress response pathways 

 The main aim of adaptive stress response pathways is to activate the 

transcription of cytoprotective genes [34]. Metazoans respond to the stress via growth 

factors to promote the growth of the organisms. [34] But, if a stress is applied to a cell 

exogenously such as xenobiotic, radiation, heat etc. these cells respond via several 

highly conserved adaptive stress response pathways that will try to attenuate the 

consequences of these stress and re-establish the homeostasis. [34]  

 The rapid response of these stress response pathways can be attributed to the 

architecture of the stress response pathways. [70]. Basic components of this architecture 

include a transcription factor, a sensor and a transducer. A schematic diagram of the 

architecture of the stress response pathways is shown in figure 11. 
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Figure 11: Architecture of the stress response pathways 

 

 A transcription factor is a protein which binds to the DNA through the 

response elements within its promoter region and thus activates or upregulates the 

expression of the target genes. [34] During the absence of stress, the transcription factor 

is prevented from entering into the nucleus with the help of a protein known as a sensor. 

It interacts with the transcription factor in such a way that the transcription factor is 

sequestered in the cytoplasm. [34] When a cell is faced by a stress, an enzymatic protein, 

transducer, transfers a cue from a pathway which lies upstream of the 

sensor/transcription factor complex. [34] The transducer either modifies the transcription 

factor or modifies the sensor which destabilizes the sensor/transcription factor complex. 

The activated transcription factor then enters to the nucleus and upregulates the target 

genes. [72]     

5.3 Network modeling  

 Given two genes/proteins A & B and their binary values a, b є {0, 1}, a 

pathway segment,  means that, if gene A assumes the value a then, gene B 

transitions to the value b in no more than t subsequent time steps. [71] Similarly, a 
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pathway is defined as a sequence of pathway segments of the form, . [71] 

A Boolean network (BN), γ = (V, F), on n genes is defined by a set of nodes/genes 

V={x1, …, xn }, xi є {0,1}, i =1,…., n, and a list F= (f1 ,….., fn), of Boolean functions, fi : 

{0, 1}n à{0, 1}, i=1, …., n . [73] The gene expression of each gene is quantized to two 

levels, 0 and 1. The node xi represents the gene expression of the gene i, where xi= 0 

means that, gene i is off and xi = 1, means that gene i is ON. [70] The predictor function 

fi updates the states of all the genes in γ at every time step. The network state also called 

the Gene activity Profile (GAP) of the network at time t is given by, x (t) = (x1(t), 

x2(t),….., xn (t)). [71] The prior biological knowledge of the hypoxia stress response 

pathway is used to model the Boolean networks of hypoxia stress response pathway. In 

order to get an update equation, for each and every gene in the Boolean network 

obtained, the Karnaugh map reduction technique is applied to it. [71] The hypoxia stress 

response pathway is shown in figure 12.  
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Figure 12: Hypoxia stress response pathway 
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 The pathway segments from the pathways in the above figure are given below: 

       (5.1)    

        (5.2)  

        (5.3) 

        (5.4) 

        (5.5) 

        (5.6) 

        (5.7) 

      (5.8) 

        (5.9) 

        (5.10) 

From the above described pathway segments and applying the techniques of K 

map reduction explained in [71], the update equation of each and every gene is obtained. 

The state space is defined as [PHD2 HIF HRE ROS PDK PYRUVATE]. A set of 

possible Boolean networks were obtained, out of which the one that matched most to the 

prior literature knowledge were chosen. The update equations are given below: 

O2next = Hypoxia       (5.11) 

PHD2= (PYRUVATE + ROS)*(O2+ HRE)    (5.12) 

HIFnext = PHD2        (5.13) 

HREnext = HIF        (5.14) 
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ROSnext = HRE        (5.15) 

PDKnext = HRE        (5.16) 

PYRUVATEnext = PDK      (5.17) 

 This Boolean network will have two different contexts based on the value of 

the hypoxic stress, i.e., when Hypoxia =0 and when Hypoxia =1. Figure 13 shows the 

diagram of state transition when hypoxia=0. In this diagrams showing the state transition 

the order of the genes in the binary state representation are as such: [PHD2 HIF HRE 

ROS PDK PYRUVATE]. For the ease of demonstration, the decimal equivalents are 

used to represent their binary states. For example, the decimal equivalent 31 is used to 

represent its binary state (011111). The attractors give rise to the steady state properties 

of the network obtained.  

 There are two singleton attractors 32(100000) and 31(011111) in the diagram 

showing the state transition during normoxia. This is shown in figure 3. Actually, the 

singleton attractor, 31(011111) is present in both cases of Hypoxia=0 and Hypoxia =1, 

which is not biologically possible.  When hypoxic stress is not applied, that is during 

normoxia, PHD2 is active and HIF1α is hydroxylated by PHD2, which results in the 

degradation of HIF1 and the genes/proteins ROS, PDK and Pyruvate are OFF. Thus, 

when hypoxia is 0, the presence of the singleton attractor 31(011111) does not make any 

sense because PHD2 will be ON and the rest of the genes will be OFF in this case. From 

the previous biological knowledge from ref.2, it is clear that during the absence of 

hypoxic stress all other genes except PHD2 is inactive. Thus, the presence of singleton 
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attractor 32(100000) when Hypoxia=0 is consistent with the biological literature. The 

state transition diagram when hypoxia = 0 is shown in figure 13. 

 

 

Figure 13: State transition diagram when hypoxia = 0 
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 Next, when Hypoxia=1, the state transition diagram in figure 14 is obtained 

and in this case, the state space is partitioned. There are two steady state cyclic attractors 

involving cyclic variation in the experimental patterns of all the 6 genes/proteins. The 

final attractor cycle will depend on the starting state, one of them cycling through the 

states 47 (101111)à 3 (000011)à17 (010001)à28 (011100)à62 (111110)à 

47(101111) and the other attractor cycle cycling through the states, 63 (111111)à15 

(001111)à19 (010011)à29 (011101)à30 (011110)à63 (111111). So, the time 

domain response during hypoxia exhibit cyclic oscillations. Hence, during normoxia, the 

system rests in one state only, whereas during hypoxia, the genes or nodes oscillate in a 

cyclic manner. The state transition diagram when hypoxia =1 is shown in figure 14. 

 

 

Figure 14: State transition diagram when hypoxia = 1 
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5.4 Time domain simulation results  

 To understand the functionality of the Boolean network described by equations 

from (5.11) to (5.17), an external stress input signal was given for a duration of 100 time 

steps to simulate the Boolean network obtained using MATLAB. The simulated time 

course behavior of the expression pattern of the nodes, PHD2, HIF, HRE, ROS, PDK, 

and Pyruvate are shown in figure 15 below for the case when hypoxia = 0. 

 

 

Figure 15: Time response behavior when hypoxia = 0 

 

 When O2 = 1, it implies that hypoxic stress = 0 and when O2 = 0, it implies that 

hypoxic stress = 1. From the simulations obtained in figure 15, it is clear that PHD2 is 

activated and the rest of the genes are deactivated when the cell is not subjected to 

hypoxic stress.  From the time response behavior in figure 15 it is clear that there is an 

out of phase relationship between PHD2 and the rest of the genes. The time response 

behavior of the system when hypoxia =1 is shown in figure 16. 
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Figure 16: Time response behavior of the system when hypoxia = 1 

 

5.5 Literature validation 
 

 Reference 74 shows that the optimal HIF1α transcriptional activity requires 

sequential inhibition of PHD2. [74] Here, they used the pharmacological inhibitor JNJ-

42041935which  inhibits the hydroxylation of HIF1α by PHD2, via displacing the 

endogenous 2-oxalogluatarte co-substrate required for the proper functioning of PHD2. 

[75] The figure 2 of that paper shows the densitometric analysis of the western blot 

which demonstrates the stabilization of HIF1α at 3% of oxygen and more amount of 

HIF1α stabilization at 1% of oxygen in Human Embryonic Kidney cells transfected with 

pGluc-HRE At 21% of oxygen concentration that is during normoxia, there was no 

HIF1α stabilization (figure 2(C)), which shows that HIF1α stabilizes during low oxygen 

tension. Figures 3(B) to 3(D) and 3(G) and 3(H) experimentally validate the HIF1α 

stabilization when PHD/FIH is inhibited. 
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 Reference 76 presents an experimental based computational method that shows 

the in phase relationship between ROS and HIF1α. Therapeutic agents target five 

compounds that is involved in HIF1α hydroxylation, i.e. iron (Fe), ascorbate (Asc), 

hydrogen peroxide (H2O2) 2-oxaloglutarate (2-OG) and succinate. H2O2 oxidizes ferrous 

iron (Fe2+) to ferric iron (Fe3+) and prevents the binding of ferrous iron to PHD2. [76] 

Thus, the PHD2 action is inhibited and HIF1α is stabilized. Moreover, H2O2 recruits 

ascorbate as a free radical scavenger not allowing to reduce ferric iron to ferrous iron 

and also prevents ascorbate from binding to PHD2 which inhibits the PHD2 action. [76] 

Free radicals and mitochondrial dysfunction alter the concentration of 2-OG and 

succinate which is involved in HIF1α hydroxylation. ROS affects HIF hydroxylation by 

changing H2O2, Fe2+, ascorbate, 2-OG and succinate. [76] The figure 2(A) in that paper 

shows the effect of ROS on HIF1α by changing the ascorbate and Fe2+ levels. In the 

normal conditions, when Fe2+ and ascorbate were upregulated, HIF1α reached its peak 

value within an hour. Next, when ROS production was increased by 10 fold by 

decreasing Fe2+ and ascorbate concentrations, it led to 5 fold increase in the maximum 

HIF1α expression. This clearly explains that ROS and HIF1α are in phase. Figure 2(B) 

in this paper shows the experimental result that a 10 fold decrease in Fe2+ and 2-OG 

concentration results in increased ROS and HIF1 activity, whereas a 10 fold increase in 

Fe2+ and 2-OG concentration results in decreased HIF1 concentration. [76] Thus, this 

paper experimentally validates the in phase relationship between HIF1α and ROS. 

 Reference 17 experimentally validates that hypoxia activates the transcription 

of several hypoxia target genes by increasing ROS concentration. [17] In this paper, they 
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selected ρ0 cells by exposing Hep3B cell culture to mitochondrial inhibitors rotenone 

and antimycin A. [17] The measurement of ROS was done using 2’, 7’-dichloroflurescin 

(DCFH) diacetate. ROS oxidizes DCFH to 2’, 7’-dichloroflurescin DCF).  Experimental 

results in figure 1(A) of that paper shows that the cellular oxygen uptake by ρ0 cells was 

approximately only 10% of the total cellular uptake of oxygen by wild type Hep3B cells 

which indicates that almost all the oxygen is used up in the mitochondria. [17] Figure 

1(C) of that paper shows that there is no EPO secretion in ρ0 cells during hypoxia (1.5% 

of oxygen), which means that the organelle mitochondria is very much essential for the 

induction of hypoxia target genes, whereas in wild type Hep3B cells, there is a high 

amount of EPO secretion during hypoxia (1.5% of oxygen). 

 When ρ0-Hep3B cells were exposed to hypoxia, it did not display any HIF-1 

DNA binding activity [17]. This paper experimentally validates that mitochondria is 

very much essential for transcriptional activity of hypoxia. DCFH diacetate was used to 

assess the ROS production in the Hep3B wild type cells. H2O2 oxidizes DCFH to DCF. 

[17] Figure 2(A) of that paper shows the fluorescence of DCF at various levels of 

oxygen. During normoxia, (8% of oxygen), there was no DCF fluorescence (ROS 

generation) at all. To strengthen the fact that the complex III of mitochondria is the 

major site of ROS production, inhibitor of complex I of mitochondria, rotenone and 

inhibitor of complex III of mitochondria, myxothiazol were administered during 

hypoxia. [17] Both these inhibitors resulted in a decrease in DCF fluorescence (ROS 

generation) during hypoxia indicating that complex III is the major site of ROS 
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production during hypoxia. Figures 3(B) to 3(C) and 3(D) of that paper shows the same 

results.  

 Reference 77 experimentally validated that the glycolytic enzymes which are 

the hypoxia target genes are very much important for the metabolic adaptation to 

hypoxia by increasing the conversion of glucose to pyruvate and finally the 

accumulation of lactate. [77] They observed that, HIF1α null mouse embryo fibroblasts 

(MEFs) failed to upregulate PDK1. This shows that PDK1 is a direct hypoxia target gene 

i.e. an in phase relationship between HRE and PDK1. The immunobolt assay in figure 1 

in that paper shows the increased expression of PDK1 in hypoxic cells by HIF1. [77] 

Moreover, HIF1α null MEFs did not express PDK1, whereas the wild type MEFs 

showed a drastic increase in PDK1 gene expression clearly depicted in figure 1(C) of 

that paper.  

5.6 Conclusion and future work 

 Thus, the Boolean network was developed that could generate trajectories 

consistent with the hypoxia stress response pathway. The resulting network exhibited 

dynamic behavior consistent with the published literature where ever applicable. 

The literature validations considered only 2 genes/proteins at a time. They did not 

experimentally validate the simultaneous expression of these 6 genes i.e, PHD2, HIF, 

HRE, ROS, PDK and Pyruvate during hypoxia. There is need for more experiments 

validating the multivariate relationship between these genes rather than focusing on the 

univariate relationships. 
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 Since hypoxia is related to almost all the pathological conditions, especially 

cancer, stroke, atherosclerosis and asthma, proper drug interventions can be hopefully 

developed by targeting to control the simultaneous oscillations of these six genes during 

hypoxia. 
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