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ABSTRACT

The new generations of mobile devices have high processing power and storage,

but they lag behind in terms of software systems for big data storage and processing.

Hadoop is a scalable platform that provides distributed storage and computational

capabilities on clusters of commodity hardware. Building Hadoop on a mobile net-

work enables the devices to run data intensive computing applications without direct

knowledge of underlying distributed systems complexities. However, these applica-

tions have severe energy and reliability constraints (e.g., caused by unexpected device

failures or topology changes in a dynamic network). As mobile devices are more sus-

ceptible to unauthorized access when compared to traditional servers, security is also

a concern for sensitive data. Hence, it is paramount to consider reliability, energy ef-

ficiency and security for such applications. The goal of this thesis is to bring Hadoop

MapReduce framework to a mobile cloud environment such that it solves these bot-

tlenecks involved in big data processing. The Mobile Distributed File System(MDFS)

addresses these issues for big data processing in mobile clouds. We have developed

the Hadoop MapReduce framework over MDFS and have evaluated its performance

by varying input workloads in a real heterogeneous mobile cluster. Our evaluation

shows that the implementation addresses all constraints in processing large amounts

of data in mobile clouds. Thus, our system is a viable solution to meet the growing

demands of data processing in a mobile environment.
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1. INTRODUCTION

1.1 Motivation

With advances in technology, mobile devices are slowly replacing traditional per-

sonal computers. The new generations of mobile devices are powerful with gigabytes

of memory and multi-core processors. These devices have high end computing hard-

ware and complex software applications that generate large amounts of data on the

order of hundreds of megabytes. This data can range from application raw data to

images, audio, video or text files. With the rapid increase in the number of mobile

devices, big data processing on mobile devices has become a key emerging necessity

for providing capabilities similar to those provided by traditional servers [13].

Current mobile applications that perform massive computing tasks (big data

processing) offload data and tasks to data centers or powerful servers in the cloud [15].

There are several cloud service offerings of computing infrastructure to end users for

processing large datasets. Hadoop MapReduce is a popular open source programming

framework for cloud computing [1]. The framework splits the user job into smaller

tasks and runs these tasks in parallel on different nodes, thus reducing the overall

execution time when compared with a sequential execution on a single node. This

architecture however, fails in the absence of external network connectivity, as it is the

case in military or disaster response operations. This architecture is also avoided in

emergency response scenarios where there is limited connectivity to cloud, leading to

expensive data upload and download operations. In such situations, wireless mobile

ad-hoc networks are typically deployed [9].

There are many challenges in bringing big data capabilities to the mobile envi-

ronment: a) mobile devices are resource constrained in terms of memory, processing
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power and energy. Since most mobile devices are battery powered, energy consump-

tion during job execution must be minimized. Overall energy consumption depends

on the nodes selected for the job execution. The nodes have to be selected based on

each node’s remaining energy, job retrieval time, and energy profile. As the jobs are

retrieved wirelessly, shorter job retrieval time indicates lower transmission energy

and shorter job completion time. Compared to the traditional cloud computing,

transmission time is the bottleneck for the job makespan and wireless transmission

is the major source of the energy consumption; b) Reliability of data is a major

challenge in dynamic networks with unpredictable topology changes. Connection

failures could cause mobile devices to go out of the network reach after limited par-

ticipation. Device failures may also happen due to energy depletion or application

specific failures. Hence, a reliability model stronger than those used by traditional

static networks is essential; c) Security is also a major concern as the stored data

often contains sensitive user information [11] [20]. Traditional security mechanisms

tailored for static networks are inadequate for dynamic networks. Devices can be

captured by unauthorized users and data can be compromised easily if necessary

security measures are not provided. To address the aforementioned issues of energy

efficiency, reliability and security of dynamic network topologies, the k-out-of-n com-

puting framework was introduced [6]. What remains as an open research challenge

is to bring the cloud computing framework to a k-out-of-n environment such that

it solves the bottlenecks involved in processing and storage of big data in a mobile

cloud.

The Hadoop MapReduce cloud computing framework meets our processing re-

quirements for several reasons: 1) in the MapReduce framework, as the tasks are run

in parallel, no single mobile device becomes a bottleneck for overall system perfor-

mance; 2) the MapReduce framework handles resource management, task scheduling
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and task execution in an efficient fault tolerant manner. It also considers the avail-

able disk space and memory of each node before tasks are assigned to any node;

3) Hadoop MapReduce has been extensively tested and used by large number of

organizations for big data processing over many years. However, the default file

system of Hadoop, HDFS (Hadoop Distributed File System) [18] is tuned for static

networks and is unsuitable for mobile environments. HDFS is not suitable for dy-

namic network topologies because: 1) it ignores energy efficiency. Mobile devices

have limited battery power and can easily fail due to energy depletion; 2) HDFS

needs better reliability schemes for data in the mobile environment. In HDFS, each

file block is replicated to multiple devices considering heavy I/O bound jobs with

strong requirements on backend network connections. Instead, we need lightweight

processes which react well to slow and varying network connections. Consequently,

we considered k-out-of-n based MDFS [6], instead of HDFS, as our underlying file

system for the MapReduce framework.

In this work, we implement Hadoop MapReduce framework over MDFS and eval-

uate its performance on a general heterogeneous cluster of devices. We implement

the generic file system interface of Hadoop for MDFS which makes our system inter-

operable with other Hadoop frameworks like HBase. There are no changes required

for existing HDFS applications to be deployed over MDFS. To the best of our knowl-

edge, this is the first work to bring Hadoop MapReduce framework for mobile cloud

that truly addresses the challenges of the dynamic network environment. Our system

provides a distributed computing model for processing of large datasets in mobile

environment while ensuring strong guarantees for energy efficiency, data reliability

and security.
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1.2 Related work & background

There have been several research studies that attempted to bring MapReduce

framework to the heterogeneous cluster of devices, due to its simplicity and powerful

abstractions [7].

Marinelli [16] introduced the Hadoop based platform Hyrax for cloud comput-

ing on smartphones. Hadoop TaskTracker and DataNode processes were ported on

Android mobile phones, while a single instance of NameNode and JobTracker were

run in a traditional server. Porting Hadoop processes directly onto mobile devices

doesn’t mitigate the problems faced in the mobile environment. As presented ear-

lier, HDFS is not well suited for dynamic network scenarios. There is a need for a

more lightweight file system which can adequately address dynamic network topol-

ogy concerns. Another MapReduce framework based on Python, Misco [14] was

implemented on Nokia mobile phones. It has a similar server-client model where the

server keeps track of various user jobs and assigns them to workers on demand. Yet

another server-client model based MapReduce system was proposed over a cluster of

mobile devices [8] where the mobile client implements MapReduce logic to retrieve

work and produce results from the master node. The above solutions, however, do

not solve the issues involved in data storage and processing of large datasets in the

dynamic network.

P2P-MapReduce [17] describes a prototype implementation of a MapReduce

framework which uses a peer-to-peer model for parallel data processing in dynamic

cloud topologies. It describes mechanisms for managing node and job failures in a

decentralized manner.

The previous research focused only on the parallel processing of tasks on mobile

devices using the MapReduce framework without addressing the real challenges that

4



MapReduce 

Program

Job Client

Submit Job

Hadoop JobTracker

HDFS Client

Name Node

File.txt

Block A

Block B

Hadoop TaskTracker

HDFS Client

   Data Node

A

M R

Client Node

Metadata 

Operations
Data Read/Write

Network

M

R

A B

Map Task

Reduce Task

File Blocks

Block A Datanodes 1,2

Block B Datanodes 1,2

Hadoop TaskTracker

HDFS Client

   Data Node

M R

B A B

Data Read/Write

Assign Task 2Assign 

Task 1

Figure 1.1: Hadoop architecture

occur when these devices are deployed in the mobile environment. Huchton et al. [12]

proposed a k-Resilient Mobile Distributed File System (MDFS) for mobile devices

targeted primarily for military operations. Chen et al. [5] proposed a new resource

allocation scheme based on k-out-of-n framework and implemented a more reliable

and energy efficient Mobile Distributed File System for Mobile Ad Hoc Networks

(MANETs) with significant improvements in energy consumption over the traditional

MDFS architecture.

1.2.1 Hadoop overview

The two primary components of Apache Hadoop are the MapReduce framework

and HDFS, as shown in Figure 1.1. MapReduce is a scalable parallel processing

framework that runs on HDFS. It refers to two distinct tasks that Hadoop jobs
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perform- the Map Task and the Reduce Task. The Map Task takes the input data

set and produces a set of intermediate <key,value> pairs which are sorted and parti-

tioned per reducer. The map output is then passed to Reducers to produce the final

output. The user applications implement mapper and reducer interfaces to provide

the map and reduce functions. In the MapReduce framework, computation is always

moved closer to nodes where data is located, instead of moving data to the compute

node. In the ideal case, the compute node is also the storage node minimizing the

network congestion and thereby maximizing the overall throughput.

Two important modules in MapReduce are the JobTracker and the TaskTracker.

JobTracker is the MapReduce master daemon that accepts the user jobs and splits

them into multiple tasks. It then assigns these tasks to MapReduce slave nodes

in the cluster called the TaskTrackers. TaskTrackers are the processing nodes in

the cluster that run the tasks- Map and Reduce. The JobTracker is responsible for

scheduling tasks on the TaskTrackers and re-executing the failed tasks. TaskTrackers

report to JobTracker at regular intervals through heartbeat messages which carry the

information regarding the status of running tasks and the number of available slots.

HDFS is a reliable, fault tolerant distributed file system designed to store very

large datasets. Its key features include load balancing for maximum efficiency, con-

figurable block replication strategies for data protection, recovery mechanisms for

fault tolerance and auto scalability. In HDFS, each file is split into blocks and each

block is replicated to several devices across the cluster.

The two modules in HDFS layer are NameNode and DataNode. NameNode is the

file system master daemon that holds the metadata information about the stored files.

It stores the inode records of files and directories which contain various attributes

like name, size, permissions and last modified time. DataNodes are the file system

slave nodes which are the storage nodes in the cluster. They store the file blocks

6



and serve read/write requests from the client. The NameNode maps a file to the list

of its blocks and the blocks to the list of DataNodes that store them. DataNodes

report to NameNode at regular intervals through heartbeat messages which contain

the information regarding their stored blocks. NameNode builds its metadata from

these block reports and always stays in sync with the DataNodes in the cluster.

When the HDFS client initiates the file read operation, it fetches the list of

blocks and their corresponding DataNode locations from NameNode. The locations

are ordered by their distance from the reader. It then tries to read the content of the

block directly from the first location. If this read operation fails, it chooses the next

location in the sequence. As the client retrieves data directly from the DataNodes,

the network traffic is distributed across all the DataNodes in the HDFS cluster.

When the HDFS client is writing data to a file, it initiates a pipelined write

to a list of DataNodes which are retrieved from the NameNode. The NameNode

chooses the list of DataNodes based on the pluggable block placement strategy. Each

DataNode receives data from its predecessor in the pipeline and forwards it to its

successor. The DataNodes report to the NameNode once the block is received.

1.2.2 MDFS overview

The traditional MDFS was primarily targeted for military operations where front

line troops are provided with mobile devices. A collection of mobile devices form a

mobile ad-hoc network where each node can enter or move out of the network freely.

MDFS is built on a k-out-of-n framework which provides strong guarantees for data

security and reliability. k-out-of-n enabled MDFS finds n storage nodes such that

total expected transmission cost to k closest storage nodes is minimal.

As shown in Figure 1.2, every file is encrypted using a secret key and partitioned

into n1 file fragments using erasure encoding (Reed Solomon algorithm). Unlike
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conventional schemes, the secret key is not stored locally. The key is split into

n2 fragments using Shamir’s secret key sharing algorithm. File creation is complete

when all the key and file fragments are distributed across the cluster. For file retrieval,

a node has to retrieve at least k1 (<n1) file fragments and k2 (<n2) key fragments

to reconstruct the original file.

MDFS architecture provides high security by ensuring that data cannot be de-

crypted unless an authorized user obtains k2 distinct key fragments. It also ensures

resiliency by allowing the authorized users to reconstruct the data even after losing

n1-k1 fragments of data. Reliability of the file increases when the ratio k1/n1 de-

creases, but it also incurs higher data redundancy. This scheme optimally distributes

key and file fragments to the selected storage nodes such that each node contains at

most one key fragment and one file fragment for each file, thereby ensuring higher

reliability and security.
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MDFS has a fully distributed directory service in which each device maintains

information regarding the list of available files and their corresponding key and file

fragments. Each node in the network periodically synchronizes the directory with

other nodes ensuring that the directories of all devices are always updated.

1.3 Research challenges

This section describes the challenges involved in the implementation of MapRe-

duce framework over MDFS.

1. Traditional MDFS architecture only supports a flat hierarchy. All files are

stored at the same level in the file system without the use of folders or directories.

But the MapReduce framework relies on fully qualified path names for all operations.

2. The capabilities of traditional MDFS are very limited. It supports only a few

functionalities such as read(), write() and list(). A user calls the write() function

to store a file across the nodes in the network and the read() function to read the

contents of a file from the network. The list() function provides the full listing of the

available files in the network.

However, MapReduce framework needs a fairly generic file system that imple-

ments wide range of functions. It has to be compatible with available HDFS appli-

cations without any code modification or extra configuration.

3. MapReduce framework needs streaming access to their data but, MDFS reads

and writes are not streaming operations.

4. During the job initialization phase of Hadoop, JobTracker queries the Na-

meNode to retrieve the information of all the blocks of the input file (blocks and

list of DataNodes that store them) for selecting the best nodes for task execution.

JobTracker prioritizes data locality for TaskTracker selection. It first looks for an

empty slot on any node that contains the block. If no slots are available, it looks for

9



an empty slot on a different node but in the same rack. In MDFS, as no node in the

network has a complete block for processing, the challenge is to determine the best

locations for each task execution.

5. The MapReduce and HDFS components are rack aware. They use network

topology for obtaining the rack awareness knowledge. As discussed, if the node that

contains the block is not available for task execution, the default task scheduling

algorithm selects a different node in the same rack using the rack awareness knowl-

edge. This scheme leverages the single hop and high bandwidth of in-rack switching.

The challenge is to define rack awareness in context of mobile ad-hoc network as the

topology is likely to change at any time during the job execution.
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2. SYSTEM DESIGN

In this section, we present the details of our proposed architectures, system com-

ponents and the interactions among the components that occur during file system

operations.

2.1 Assumptions

For the design of our system, the following requirements had to be met:

• Since the Hadoop JobTracker is a single entity common to all nodes across the

cluster, there should be at least one node in the cluster which always operates

within the network range and remains alive throughout the job execution phase.

The system must tolerate node failures.

• Data stored across the cluster may be sensitive. Unauthorized access to sensi-

tive information must be prohibited.

• The system is tuned and designed for handling large amounts of data in the

order of hundreds of megabytes, but it must also support small files.

• Though we primarily focus on mobile devices, the system must support hetero-

geneous cluster of devices which can be a combination of traditional personal

computers, servers, laptops, mobile phones and tablets depending on the work-

ing environment of the user.

• Like HDFS, the system must support sequential writes. Bytes written by a

client may not be visible immediately to other clients in the network unless the

file is closed or flush operation is called. Append mode must be supported to

append the data to an already existing file.
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• Like HDFS, the system must support streaming reads. It must also support

random reads where a user reads bytes starting from an arbitrary offset in the

file.

2.2 System components

In the traditional MDFS architecture, a file to be stored is encrypted and split

into n fragments such that any k (<n) fragments are sufficient to reconstruct the

original file. In this architecture, parallel file processing is not possible as even a

single byte of the file cannot be read without retrieving the required number of

fragments. Moreover, MapReduce framework assumes that the input file is split into

blocks which are distributed across the cluster. Hence, we propose the notion of

blocks, which was missing in the traditional MDFS architecture. In our approach,

the files are split into blocks based on the block size. These blocks are then split

into fragments that are stored across the cluster. Each block is a normal Unix file

with default block size of 4 MB. Block size has a direct impact on performance as it

affects the read and write sizes.

The file system functionality of each cluster node is split across three layers MDFS

Client, Data processing layer and Network communication layer.

2.2.1 MDFS client

User applications invoke file system operations using the MDFS client, a built-in

library that implements the MDFS file system interface. The MDFS client provides

file system abstraction to upper layers. The user does not need to be aware of file

metadata or the storage locations of file fragments. Instead, the user references

each file by paths in the namespace using the MDFS client. Files and directories

can be created, deleted, moved and renamed like in traditional file systems. All file

system commands take path arguments in URI format (scheme://authority/path).

12



The scheme decides the file system to be instantiated. For MDFS, the scheme is

mdfs and the authority is the Name Server address.

2.2.2 Data processing layer

Data Processing layer manages the data and control flow of file system operations.

The functionality of this layer is split across two daemons- Name Server and Data

Server.

2.2.2.1 Name Server

MDFS Name Server is a lightweight MDFS daemon that stores the hierarchical file

organization or the namespace of the file system. All file system metadata including

the mapping of a file to its list of blocks is also stored in the MDFS Name Server.

The Name Server has the same functionality as Hadoop NameNode. The Name

Server is always updated with any change in the file system namespace. On startup,

it starts a global RPC server at a port defined by mdfs.nameservice.rpc-port in the

configuration file. The client connects to the RPC server and talks to it using the

MDFS Name Protocol. The MDFS client and MDFS Name Server are completely

unaware of the fragment distribution which is handled by the Data Server. We kept

the namespace management and data management totally independent for better

scalability and design simplicity.

2.2.2.2 Data Server

The MDFS Data Server is a lightweight MDFS daemon instantiated on each

node in the cluster. It coordinates with other MDFS Data Server daemons to handle

MDFS communication tasks like neighbor discovery, file creation, file retrieval and

file deletion. On startup, it starts a local RPC server listening on the port defined

by mdfs.dataservice.rpc-port in the configuration file. When the user invokes any file

13



system operation, the MDFS client connects to the local Data Server at the specified

port and talks to it using the MDFS Data Protocol. Unlike Hadoop DataNode,

the Data Server has to be instantiated on all nodes in the network where data flow

operations (reads and writes) are invoked. This is because the Data Server prepares

the data for these operations and they are always executed in the local file system

of the client. The architecture is explained in detail in the subsequent sections.

2.2.3 Network communication layer

This layer handles the communication between the nodes in the network. It

exchanges control and data packets for various file operations. This layer abstracts

the network interactions and hides the complexities involved in routing packets to

various nodes in case of dynamic topologies like in MANETs.

2.2.3.1 Fragment Mapper

The Fragment Mapper stores information related to file and key fragments which

include the fragment identifiers and location of fragments in the network. It stores

the mapping of a block to its list of key and file fragments. The number of fragments

stored for each block depends on the value of n configured.

2.2.3.2 Communication Server

The Communication Server interacts with every other node and is responsible

for routing packets to their proper destinations in minimal number of hops. It sup-

ports broadcast and unicast messages. Minimizing communication cost in dynamic

topologies is one of the key challenges and an active research topic. Hence, we de-

signed to keep the communication module as a separate entity, specifically for future

research. It is implemented as a pluggable component which can be extended to

support multiple routing protocols based on the user environment.
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2.2.3.3 Topology Discovery & Maintenance Framework

This component stores the network topology information and the failure proba-

bilities of participating nodes. When the network topology changes, this framework

detects the change through a distributed topology monitoring algorithm and updates

the Fragment Mapper. All the nodes in the network are thus promptly updated about

network topology changes.

There are two types of system metadata. The file system namespace which in-

cludes the mapping of file to blocks is stored in the Name Server while mapping of

block to fragments is stored in the Fragment Mapper. It was our design decision

to separate Fragment Mapper functionality from the Name Server. There are two

reasons 1) The memory usage of Fragment Mapper can grow tremendously based

on the configured value of n for each file. Higher the value of n, more number of

fragments are generated leading to higher memory usage in Fragment Mapper. For

example, consider a system with n set to 10. For a 1 MB file with default block

size, only one block is required for the complete file but 10 fragments are created by

k-out-of-n framework. Hence, there are 10 fragment entries in the Fragment Map-

per and 1 block entry in the Name Server for that particular file. Since memory

requirements of Name Server and Fragment Mapper are different, this design gives

flexibility to run them in different modes independent from each other. See next

section for more details. 2) Fragment Mapper is invoked only during network opera-

tions (read/writes) while the Name Server is accessed for every file system operation.

Since the Name Server is a light weight daemon that handles only the file system

namespace, the directory operations are very fast.
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2.3 System architecture

We propose two approaches for our MDFS architecture- a Distributed architecture

where there is no central entity to manage the cluster and a Master-slave architec-

ture, as in HDFS. The user can configure the architecture during the cluster startup

based on the working environment.The user can choose the architecture based on the

working environment. It has to be configured during the cluster startup and cannot

be changed later.

2.3.1 Distributed architecture

In this architecture, depicted in Figure 2.1, every participating node runs a Name

Server and a Fragment Mapper. After every file system operation, the update is

broadcasted in the network so that the local caches of all nodes are all synchronized.

Moreover, each node periodically syncs with other nodes by sending broadcast mes-

sages. Any new node entering the network receives these broadcast messages and

creates a local cache for further operations. This architecture has no single point

of failure and no constraint is imposed on the network topology. Each node can

operate independently, as each node stores a separate copy of the namespace and

fragment mapping. The load is evenly distributed across the cluster in terms of

metadata storage when compared to the centralized architecture. However, network

bandwidth is wasted due to the messages broadcast by each node for updating the

local cache of every other node in the network. As the number of nodes involved in

processing increases, this problem becomes more severe, leading to higher response

time for each user operation.
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2.3.2 Master-Slave architecture

In this architecture depicted in Figure 2.2, the Name Server and the Fragment

Mapper are singleton instances across the complete cluster. These daemons can be

run in any of the nodes in the cluster. The node that runs these daemons is called the

master node. MDFS stores metadata on the master node similar to other distributed

systems like HDFS, GFS [10] and PVFS [4].

The centralized architecture has many advantages. 1) Since a single node in the

cluster stores the complete metadata, there is no wastage of the device memory by

storing same metadata in all nodes when compared to the distributed approach.

2) When a file is created, modified or deleted, there is no need to broadcast any

message across the network to inform other nodes for updating their metadata. This

saves overall network bandwidth and reduces transmission cost. Lesser transmission

cost leads to higher energy efficiency of the system. 3) Since our system is assumed

to have at least one node that always operates within the network range, the Name

Server and the Fragment Mapper can be run in the same node that hosts the Hadoop

JobTracker. It can be a static server or any participating mobile device. Thus this

approach doesn’t violate any of our initial assumptions.

The major disadvantage of the centralized approach is that the master node is a

single point of failure. However, this problem can be solved by configuring a standby

node in the configuration file. The standby node is updated by the master node

whenever there is a change in the file system metadata. The master node signals

success to client operations only when metadata change is reflected in both master

and standby nodes. Hence, data structures of the master and standby node always

remain in sync ensuring smooth failover.

The master node can be loaded when large number of mobile devices are involved
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in processing. There are several distributed systems like Ceph [19] and Lustre [3]

that support more than one instance of metadata server for managing the file system

metadata evenly. Multiple metadata servers are deployed to avoid scalability bot-

tlenecks of a single metadata server. MDFS can now efficiently handle hundreds of

megabytes with a single metadata server and there is no need for multiple metadata

servers in our environment. For rest of the discussion, we use centralized approach

for simplicity.

2.4 System operations

In this section, we discuss the control flow of various operations that are supported

in MDFS.

2.4.1 File read operation

HDFS read design is not applicable in MDFS. For any block read operation, the

required number of fragments has to be retrieved and then combined and decrypted

to get the original block. Unlike HDFS, an MDFS block read operation is always

local to the reader as the block to be read is first reconstructed locally.

However, the overall transmission cost during the read operation varies across

nodes based on the location of fragments and the reader location. As the read

operation is handled locally, random reads are supported in MDFS where the user

can seek to any position in the file. Figure 2.3 illustrates the control flow of a read

operation through these numbered steps.

• Step 1: The user issues a read request for file blocks of length L at a byte offset

O.

• Steps 2-3: As in HDFS, the MDFS client queries the Name Server to return

all blocks of the file that span the byte offset range from O to O + L. The
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Name Server searches the local cache for the mapping from the file to the list

of blocks. It returns the list of blocks that contain the requested bytes.

• Step 4: For each block in the list returned by the Name Server, the client issues

a retrieval request to the Data Server. Each file system operation is identified

by a specific opcode in the request.

• Step 5: The Data Server identifies the opcode and instantiates the File Re-

triever module to handle the block retrieval.

• Steps 6-7: The Data Server requests the Fragment Mapper to provide infor-

mation regarding the key and file fragments of the file. The Fragment Mapper

replies with the identity of the fragments and the locations of the fragments in

the networks.

• Steps 8-15: The Data Server requests the Communication Server to fetch the

required number of fragments from the locations which are previously returned

by the Fragment Mapper. Fragments are fetched in parallel and stored in

the local file system of the requesting client. After fetching each request, the

Communication Server acknowledges the Data Server with the location where

the fragments are stored in the local file system.

• Step 16: The above operations are repeated for fetching the key fragments.

These details are not included in the diagram for brevity. The secret key is

constructed from the key fragments.

• Step 17: Once the required file fragments are downloaded into the local file

system, they are decoded and then decrypted using the secret key to get the

original block.
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• Step 18: The key and file fragments which were downloaded into the local file

system during the retrieval process are deleted for security reasons.

• Step 19: The Data Server acknowledges the client with the location of the block

in the local file system.

• Step 20: The MDFS client reads the requested number of bytes of the block.

Steps 4-19 are repeated if there are multiple blocks to be read. Once the read

operation is completed, the block is deleted for security reasons to restore the

original state of the cluster.

If many clients are accessing the same file, the mobile nodes that store the frag-

ments may become the hot spots. This problem can be fixed by enabling file caching.

Caching is disabled by default and each node deletes the file fragments after the file

retrieval. If caching is enabled, the reader node caches the file fragments in its local

file system so that it does not fetch the fragments from the network again during the

subsequent read operations.

If the file fragments are available locally, the reader client verifies the length of

cached file with the actual length stored in Name Server. This avoids the problem of

reading the outdated version of the file. If some data has been appended to the file

after caching, file fragments are re-fetched from the network overwriting the existing

ones. Fragment availability increases due to caching which leads to fair distribution

of load in the cluster without consuming extra energy. However, caching affects

system security due to higher availability of file fragments in the network.

2.4.2 File write operation

HDFS write design is not applicable for MDFS as data cannot be written unless

the block is decrypted after retrieving the required number of fragments. Hence in
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the MDFS architecture, when write operation is called, bytes are appended to the

current block till the block boundary is reached or the file is closed. The block is

then encrypted, split into fragments and redistributed across the cluster.

Our MDFS architecture does not support random writes. Random writes make

the design more complicated when writes span across multiple blocks. This feature

is not considered in the present design as it is not required for the MapReduce

framework.

Figure 2.4 illustrates the control flow of a write operation through these numbered

steps

• Step 1. The user issues a write request for a file of length L. The file is split

into blocks of size [L/B] where B is the user configured block size. The last

block might not be complete depending on the file length. The user request

can also be a streaming write where the user writes to the file system byte by

byte. Once the block boundary is reached or when the file is closed, the block

is written to the network. In both scenarios, the data to be written is assumed

to be present in the local file system.

• Step 2. For each block to be written, the MDFS client requests the Name

Server to allocate a new block Id which is a unique identifier for each block.

In a centralized architecture, we would not need to worry about the allocation

scheme as the Name Server is a single entity. It is similar to HDFS block

allocation scheme. However in the distributed architecture, an appropriate

hashing function needs to be used to generate the unique global identifier. The

absolute path of each file is a good key for hashing as it is unique for each file

in the file system.

• Step 3. The Name Server returns a new block id based on the allocation
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algorithm and adds the block identifier in its local cache. The mapping of file

to list of blocks is stored in the Name Server.

• Steps 4-5. The MDFS client issues a creation request to the Data Server

which contains a specific opcode in the request message. The Data Server

identifies the opcode and instantiates the File Creator module to handle the

block creation.

• Step 6. The block stored in the local file system is encrypted using the se-

cret key. The encrypted block is partitioned into n fragments using erasure

encoding.

• Step 7. The key is also split into fragments using Shamir’s secret key sharing

algorithm.

• Steps 8-9. The Data Server requests the k-out-of-n framework to provide n

storage nodes such that total expected transmission cost from any node to k

closest storage nodes is minimal.

• Step 10. The Data Server requests the Fragment Mapper to add the frag-

ment information of each file which includes the fragment identifier with the

new locations returned by the k-out-of-n framework. If the network topology

changes after the initial computation, k-out-of-n framework recomputes the

storage nodes for every file stored in the network and updates the Fragment

Mapper. This is particularly needed for future data retrievals and Fragment

Mapper is always in sync with the current network topology.

• Steps 11-18. The file fragments are distributed in parallel across the cluster.

The key fragments are also stored in the same manner. These details are not

included in the diagram for brevity.
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• Steps 19-20. Once the file and key fragments are distributed across the cluster,

the Data Server informs the client that the file has been successfully written

to the nodes. For security purposes, the original block stored in the local

file system of the writer is deleted after the write operation as it is no longer

needed.

2.4.3 File append operation

MDFS supports Append operation which was introduced in Hadoop 0.19. If a

user needs to write to an existing file, the file has to be opened in append mode. If

the user appends data to the file, bytes are added to the last block of the file. Hence

for block append mode, the last block is read into the local file system of the writer

and the file pointer is updated appropriately to the last written byte. Then, writes

are executed in a similar way as described in the previous section.

2.4.4 File delete operation

For a file to be deleted, all file fragments of every block of the file have to be

deleted. When the user issues a file delete request, the MDFS client queries the

Name Server to return all the blocks of the file. It then requests the Data Server to

delete these blocks from the network. The Data Server gathers information about the

file fragments from the Fragment Mapper and requests the Communication Server

to send delete requests to all the locations returned by the Fragment Mapper. Once

the delete request has been successfully executed, the corresponding entry in the

Fragment Mapper is removed. In case of distributed architecture, update has to be

broadcasted to the network so that the entry is deleted from all nodes in the network.
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2.4.5 File rename operation

The File Rename operation requires only an update in the namespace where the

file is referenced with the new path name instead of the old path. When the user

issues a file rename request, the MDFS client requests the Name Server to update its

namespace. The Name Server updates the current inode structure of the file based

on the renamed path.

2.4.6 Directory create/delete/rename operations

When the user issues the file commands to create, delete or rename any directory,

the MDFS client requests the Name Server to update the namespace. The namespace

keeps a mapping of each file to its parent directory where the topmost level is the root

directory (’/’). All paths from the root node to the leaf nodes are unique. Recursive

operations are also allowed for delete and rename operations. For example, the user

can issue delete requests for non-empty directories. In that case, the MDFS client

queries the Name Server for all files that are contained in the directory and then

issues separate delete requests to the Data Server.

2.5 Consistency model

Like HDFS, MDFS also follows single writer and multiple reader model. An

application can add data to MDFS by creating a new file and writing data to it

(Create Mode). The data once written cannot be modified or removed except when

the file is reopened for append (Append Mode). In both write modes, data is always

added to the end of the file. MDFS provides the support for overwriting the entire

file but not from any arbitrary offset in the file.

If an MDFS client opens a file in Create or Append mode, the Name Server

acquires a write lock on the corresponding file path so that no other client can
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open the same file for write. The writer client periodically notifies the Name Server

through heartbeat messages to renew the lock. To prevent the starvation of other

writer clients, the Name Server releases the lock after a user configured time limit if

the client fails to renew the lock. The lock is also released when the file is closed by

the client. Preventing concurrent writer clients on the same file ensures atomicity.

The final contents of the file depend on the order in which the writer clients are

served by the Name Server.

A file can have concurrent reader clients even if it is locked for a write. When a file

is opened for a read, the Name Server acquires a read lock on the corresponding file

path to protect it from deletion from other clients. As the writes are always executed

in the local file system, the data is not written to the network unless the file is closed

or the block boundary is reached. So, the changes made to the last block of the file

by the writer node may not visible to the reader clients while the write operation

is being executed. Once the write has been successfully completed, the new data is

visible across the cluster immediately. In all circumstances, MDFS provides strong

consistency guarantee for reads such that all concurrent reader clients in the cluster

will read the same data irrespective of their locations.

2.6 Failure tolerance

The system is designed to be robust and it must provide quick recovery from

failures. There is always a risk in losing data or system state due to unexpected

failures that occur in dynamic network. In this section, we discuss various methods

that ensure data reliability in our system.

2.6.1 K-out-of-N reliability

In HDFS, each block is replicated a specific number of times for fault tolerance

which is determined by the replication factor configured by the user. In MDFS,
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k-out-of-n framework ensures data reliability where k and n parameters determine

the level of fault tolerance. These parameters are per file configurable which are

specified at the file creation time. Only k nodes are required to retrieve the complete

file, ensuring data reliability.

2.6.2 Snapshot operation

A snapshot operation creates a backup image of current state which includes in-

memory data structures. It creates a serialized object dump which can be used as

a restore point in case of failures. During safe shutdown of the Name Server and

Fragment Mapper, snapshot operation is automatically called to save the state on

the disk. On restart, the saved object dump is used to rebuild the system state.

Snapshot operations are particularly useful when user is experimenting new changes

that need to be rolled back easily in the future. When client requests for a snapshot

operation, the Name Server enters a special maintenance state called safe mode. No

client operations are allowed when the Name Server is in safe mode. The Name

Server leaves safe mode automatically once backup is created. The user can also

manually turn on/off safe mode for debugging purposes.

2.7 Diagnostic tools

MDFS Shell is a handy and powerful debugging tool to execute all available file

system commands. It is invoked by hadoop mdfs <command><command args>.

Each command takes file path URI and other command specific arguments. MDFS

shell is not limited to the capabilities of Hadoop FS shell. It has added advantage

of simulating complex cluster operations like concurrent reads and writes, device

failures, device reboots etc. All MDFS specific parameters can be changed at run

time using MDFS shell. MDFS shell is particularly useful in testing new features

and analyzing its impact on overall performance of the system.
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All file system operations are logged in a user specific folder for debugging pur-

poses and performance analysis. If any issue is encountered, the operation logs can

be used to reproduce the issue and diagnose it.
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3. SYSTEM IMPLEMENTATION

We have used Apache Hadoop stable release 1.2.1 [2] for our implementation. Our

MDFS framework consists of 18,365 lines of Java code, exported as a single jar file.

The MDFS code does not have any dependency with the Hadoop code base. Similar

to DistributedFileSystem class of HDFS, MDFS provides MobileDistributedFS class

that implements FileSystem, the abstract base class of Hadoop for backwards com-

patibility of all present HDFS applications. The user invokes this object to interact

with the file system. In order to switch from HDFS to MDFS, the Hadoop user only

needs to add the location of jar file to the HADOOP CLASSPATH variable and

change the file system scheme to ‘mdfs’. The parameter ‘mdfs.standAloneConf’(set

to false by default) determines the MDFS architecture to be instantiated. If it is set to

false, all the servers are started locally as in the distributed architecture. If it is set to

true, the user needs to additionally configure the parameter ‘mdfs.nameservice.rpc-

address’in the configuration file. It specifies the location of Name Server in the

cluster. In the present implementation, the Fragment Mapper is started in the same

node as the Name Server. Since no changes are required in the existing code base

for MDFS integration, the user can upgrade to a different Hadoop release without

any conflicts.
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4. PERFORMANCE EVALUATION

In this section, we present performance results and identify bottlenecks involved

in processing large input datasets. For measuring the performance of MDFS on mo-

bile devices, we ran Hadoop benchmarks on a heterogeneous 10 node mobile wireless

cluster consisting of 1 personal desktop computer (Intel Core 2 Duo 3 GHz processor,

4 GB memory), 10 netbooks (Intel Atom 1.60 GHz processor, 1 GB memory, Wi-Fi

802.11 b/g interface) and 3 HTC Evo 4G smartphones running Android 2.3 OS (Scor-

pion 1Ghz processor, 512 MB RAM, Wi-Fi 802.11 b/g interface). As TaskTracker

daemons are not ported to the Android environment yet, smartphones are used only

for data storage, and not for data processing. We used TeraSort, a well-known bench-

marking tool that is included in the Apache Hadoop distribution. Our benchmark

run consists of generating a random input data set using TeraGen and then sorting

the generated data using TeraSort. We considered the following metrics: 1) Job

completion time of TeraSort; 2) MDFS Read/Writes Throughput; and 3) Network

bandwidth overhead. We are interested in the following parameters: 1) Size of input

dataset; 2) Block Size; and 3) Cluster Size. Each experiment was repeated 15 times

and average values were computed. The parameters k and n are set to 3 and 10, re-

spectively for all runs. Each node is configured to run 1 Map task and 1 Reduce task

per job, controlled by the parameters ‘mapred.tasktracker.map.tasks.maximum’and

‘mapred.tasktracker.reduce.tasks.maximum’respectively. As this work is the first one

that addresses the challenges in processing of large datasets in mobile environment,

we do not have any solutions to compare against.

33



 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 0  2  4  6  8  10

H
ad

oo
p 

Jo
b 

Ti
m

e 
(s

ec
)

Block Size (MB)

TeraSort of 50 MB DataSet

Figure 4.1: Job time vs block size.
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4.1 Effect of block size on job completion time

The parameter ‘dfs.block.size’in the configuration file determines the default value

of block size. It can be overridden by the client during file creation if needed. Fig-

ure 4.1 shows the effect of block size on job completion time. For our test cluster

setup, we found that the optimal value of block size for a 50MB dataset is 4 MB.

The results show that the performance degrades when the block size is reduced or

increased further.

A larger block size will reduce the number of blocks and thereby limit the amount

of possible parallelism in the cluster. By default, each Map task processes one block

of data at a time. There has to be sufficient number of tasks in the system such

that they can be run in parallel for maximum throughput. If the block size is

small, there will be more Map tasks processing lesser amount of data. This would

lead to more read and write requests across the network proving to be costly in a

mobile environment. Figure 4.2 shows that processing time is 70% lesser than when

compared to network transmission time for TeraSort benchmark. So, tasks have to be

sufficiently long enough to compensate the overhead in task setup and data transfer

for maximum throughput. For real world clusters, the optimal value of block size is

an experimental result based on the cluster parameters and input data.

4.2 Effect of cluster size on job completion time

The cluster size determines the level of possible parallelization in the cluster.

As the cluster size increases, more tasks can be run in parallel, thus reducing the

job completion time. Figure 4.3 shows the effect of cluster size on job completion

time. For larger files, there are several map tasks that can be operated in parallel

depending on the configured block size. So the performance is improved significantly

with increase in cluster size as in the figure. For smaller files, the performance is
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Figure 4.3: Job time vs cluster size.

not affected much by the cluster size, as the performance gain obtained as part of

parallelism is comparable to the additional cost incurred in the task setup.

4.3 Effects of node failure rate on job completion time

Our system is designed to tolerate failures. Figure 4.4 shows the reliability of our

system in case of node failures. The benchmark is run for 10 iterations for 100 MB

data. Node failures are induced by turning off the wireless interface during the pro-

cessing stage. This emulates real world situations wherein devices get disconnected

from the network due to hardware or connection failures. In Figure 4.4, one, two

and three simultaneous node failures are induced in iterations 3, 5 and 8 respectively

and original state is restored in the succeeding iteration. The job completion time

is increased by 10% for each failure but the system successfully recovered from these

failures.
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In the MDFS layer, the k-out-of-n framework provides data reliability. If a node

containing fragments is not available, the k-out-of-n framework chooses another node

for the data retrieval. Since the k and n parameters are set to 3 and 10 respectively,

the system can tolerate up to 7 node failures before the data becomes unavailable.

If any task fails due to unexpected conditions, TaskTrackers notify the JobTracker

about the task status. JobTracker is responsible for re-executing the failed tasks on

some other machine. JobTracker also considers a task to be failed if the assigned

TaskTracker does not report the failure in configured timeout interval.

4.4 Effect of input size on job completion time

Figure 4.5 and Figure 4.6 show the effect of input dataset size on MDFS through-

put. The experiment measures the average read and write throughput for different

file sizes. The block size is set to 4 MB. The result shows that the system is less
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Figure 4.6: MDFS read/write throughput of small files
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efficient with small files due to the overhead in setup of creation and retrieval tasks.

Maximum throughput is observed for file sizes that are multiples of block size. This

will reduce the total number of subtasks needed to read/write the whole file, de-

creasing the overall overhead. In Figure 4.6, the throughput gradually increases

when the input dataset size is increased from 1 MB to 4 MB because more data can

be transferred in a single block read/write request. However, when input dataset

size is increased further, one additional request is required for extra data and thus

throughput drops suddenly. The results show that maximum MDFS throughput is

around 2.83 MB/s for reads and 2.12 MB/s for writes for file sizes that are multiples

of block size.

Figure 4.7 shows the effect of input dataset size on job completion time. The

experiment measures the job completion time for different file sizes ranging from 5
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Figure 4.8: Number of broadcast messages vs cluster size.

MB to 100MB. Files generated in mobile devices are unlikely to exceed 100 MB.

However, MDFS does not have any hard limit on input dataset size and it can take

any input size allowed in the standard Hadoop release. The result shows that the

job completion time varies in less than linear time with input dataset size. For larger

datasets, there is a sufficient number of tasks that can be executed in parallel across

the cluster resulting in better node utilization and improved performance.

4.5 Centralized versus distributed architecture

Figure 4.8 compares the number of broadcast messages sent during file creation

for varying cluster sizes. Figure 4.9 compares the number of broadcast messages sent

during file creation for different input dataset sizes. The block size is set to 4 MB. As

input dataset size increases, the number of file blocks also increase. In a distributed

architecture, each block allocation in Name Server and subsequent fragment infor-
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Figure 4.9: Number of broadcast messages vs input dataset size.

mation update in Fragment Mapper need to broadcasted to all other nodes in the

cluster so that their individual caches remain in sync with each other. Large usage

of bandwidth makes broadcasting a costly operation in wireless networks. This ef-

fect is much worse when the cluster size grows. The updates are not broadcasted

in a centralized approach as the Name Server and Fragment Mappers are singleton

instances.

The results prove that the distributed architecture is ideal for medium sized clus-

ters with independent devices and no central server. The overhead due to broadcast-

ing is minimal if the cluster is not large. For large clusters, the communication cost

required to keep the metadata synchronized across all nodes in the cluster becomes

significant. Hence, a centralized approach is preferred in large clusters. However,

data reliability is guaranteed by k-out-of-n framework in both architectures.
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5. CONCLUSIONS

The Hadoop MapReduce framework over MDFS demonstrates the capabilities of

mobile devices to capitalize on the steady growth of big data in the mobile environ-

ment. Our system addresses all the constraints of data processing in mobile cloud -

energy efficiency, data reliability and security. The evaluation results show that our

system is capable for big data analytics of unstructured data like media files, text

and sensor data.

Porting TaskTracker daemon to the Android environment is ongoing work. In

future, we plan to prioritize between various devices based on the device specifica-

tions. The present k-out-of-n framework assumes that the network is homogeneous

and each node consumes the same amount of energy for data processing. For exam-

ple, if static devices are available in the network, they can be prioritized over other

mobile nodes in the cluster for data storage as they are less likely to fail. Another

research problem is to override the default task scheduling algorithm of JobTracker

with a new scheme that is aware of the k-out-of-n framework. We plan to integrate

k-out-of-n processing in the MapReduce framework which can provide better per-

formance, when compared to the default processing model. We also plan to develop

a hybrid model where the Name Server and Fragment Mapper run on two different

architectures, based on the user environment.
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