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ABSTRACT 

 

Endothelial cell (EC) junctions are critical for angiogenesis, the sprouting and 

growth of new blood vessels from existing vessels. Sphingosine 1-phosphate (S1P) is a 

proangiogenic factor that potently stimulates sprouting, fortifies EC junctions, and work 

by others has shown it stimulates VE-cadherin, α-catenin, focal adhesion kinase (FAK) 

and paxillin junction localization among others. Annexin A2 (ANXA2), a calcium-

regulated membrane-binding and adapter protein, has a known role in angiogenesis. 

Previously, we showed that ANXA2 is required for barrier integrity by binding to 

vascular endothelial (VE)-Cadherin and preventing its phosphorylation. Thus, we tested 

whether ANXA2 silencing in human endothelial cells alters localization of junctional 

and focal adhesion proteins with immunofluorescence staining.  

Removal of the ANXA2 protein in ECs resulted in the formation of wide 

reticular junctions in 2D, affecting localization of adherens junction proteins such as VE-

cadherin, platelet endothelial cell adhesion molecule-1 (PECAM-1), filamin A, and α- 

and β-catenin. Additionally, when ANXA2 was silenced, neither FAK, paxillin, nor 

vinculin formed large focal adhesions near the cell-cell junctions, particularly, near the 

reticular cell-cell junctions. Reticular junctions were reported in the literature in non-

transduced cells seeded on fibronectin coated glass coverslips. We showed that these 

reticular junctions were present in ECs seeded on collagen I-, collagen IV-, and 

Matrigel-coated glass coverslips in addition to fibronectin. We characterized these 

reticular junctions temporally, showing the number of reticular junctions increased over 
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time, particularly after 8 hours in low serum culture medium. Levels of VE-cadherin and 

zonula occludens-1 (ZO-1) were also regulated over time in cells forming reticular 

junctions, upregulated at 4 hours and 12 hours, respectively.   

Most striking was the affect S1P had on reticular junction formation. The 

addition of S1P to ECs abrogated the formation of reticular junctions in 2D. Upon 

comparison of the proteins involved, the shANXA2 reticular junctions and the non-

transduced EC reticular junctions appeared similar. In both groups only adherens 

junctions proteins participated in reticular localization while focal adhesion proteins and 

tight junction proteins did not localize in a reticular pattern. The junctions differed, 

however, in that the shANXA2 reticular junctions formed in the presence of S1P while 

the non-transduced reticular junctions did not, indicating ANXA2 is required for proper 

junctional response to S1P. Finally, we show the presence of reticular junctions in EC 

monolayers on 3D collagen matrices, reticular junctions contributing to EC sprout 

initiation, and reticular junctions present in mouse uterine tissue from pregnant mice 7.5 

days after implantation. The discoveries detailed in this thesis illustrate the importance 

of ANXA2 in EC junctional response to S1P as well as the potential for future 

discoveries concerning the role of reticular junctions in sprouting angiogenesis. 
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NOMENCLATURE 

 

EC Endothelial Cell 

S1P Sphingosine 1-phosphate 

FAK Focal Adhesion Kinase 

VE-Cadherin Vascular Endothelial-Cadherin 

ANXA2 Annexin A2 

PECAM-1 Platelet Endothelial Cell Adhesion Molecule-1 

ZO-1 Zonula Occludens-1 

MMP Matrix Metalloproteinases 

VEGF Vascular Endothelial Growth Factor 

bFGF Basic Fibroblast Growth Factor 

GPCR G-protein Coupled Receptors 

AJ Adherens Junction 

TJ Tight Junction 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction to Angiogenesis 

Blood vessel growth and maintenance is a rapid and dynamic process. There are 

several known modes of blood vessel growth. Vasculogenesis is the assembly of 

neovessels from precursor cells that differentiate into endothelial cells (ECs) and is 

required for early vascular development (1; 2); intussusception is a type of vessel 

splitting potentially important during skeletal muscle growth (3), pregnancy (4), and 

tumor growth (5); and sprouting angiogenesis is the outgrowth of a new vessel from an 

existing vessel during development, wound healing, and pathological events (6; 7). Each 

of these processes is dependent on physiological signals that work together to activate 

endothelial cells.  

Angiogenesis is a multi-step process directed by growth factors, lipids, and 

mechanical stimuli in the bloodstream and surrounding tissues (8; 9). Angiogenesis is 

initiated when proangiogenic stimuli activate endothelial receptors, such as G-protein 

coupled receptors and tyrosine kinase receptors, and mechanosensors, such as integrins 

and junctional complexes, on the EC surface (10; 11). In response to the signal, ECs are 

activated resulting in a change in gene expression known as the “angiogenic switch” 

(12). Additionally, the vascular permeability of the EC barrier is altered (13; 14). Sprout 

formation occurs following tip and stalk cell determination by the Dll4 and Notch 

pathway (15). As the sprout forms, matrix metalloproteinases (MMPs) anchored to the 
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EC membrane (16; 17), begin to degrade the surrounding basement membrane and 

surrounding extracellular matrix to provide a tunnel for EC migration (18-20). Following 

outgrowth, the neovessel matures by creating an inner lumen for blood flow (21), and 

the ECs begin to remodel the surrounding extracellular matrix by recruiting pericytes 

and other supportive cells to generate and deposit collagen IV-rich basement membrane 

(22).  

In healthy, quiescent or non-activated vessels, levels of factors that stimulate EC 

sprouting are typically very low, and as a result, ECs attach to each other via cell-cell 

junctions and form a single, continuous, and thin monolayer. These junctions are key to 

blood vessel health and vital during angiogenesis, creating a selectively permeable 

barrier between the lumen of the vessel and the tissues surrounding the vessel (23). 

Vessel permeability is often altered during angiogenesis by a variety of factors, the 

balance of which determines the propensity of the vessel to begin branching (24-26). 

Growth factors increase vascular permeability of blood vessels by acting on junctional 

proteins, compromising the integrity of the barrier created by adjoining ECs (27; 28). 

Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), 

are also known as vascular permeability factor (29) and tumor angiogenesis factor (30), 

respectively. VEGF and bFGF are upregulated during pregnancy and produced by tumor 

cells to increase vascular permeability and initiate directional blood vessel growth; both 

VEGF and bFGF are currently used in angiogenesis assays to stimulate EC sprouting 

(31; 32). Conversely, ~5 dynes/cm2 fluid shear stress, which has been observed in post 

capillary venules, and sphingosine 1-phosphate (S1P), a platelet-derived bioactive lipid 



 

3 

 

found in the bloodstream reinforce cell-cell junctions (33-36). Because angiogenic cues 

modify EC junctions and sprout initiation depends so heavily on the presence of 

junctional molecules, in this study we explore in more detail the key signals that may 

regulate localization of various proteins to the EC junction in response to stimuli that 

trigger angiogenic sprouting, including S1P, growth factors, and shear stress.  

 

Sphingosine 1-phosphate 

 S1P is generated by hydrolysis of membrane lipids in platelets activated during 

wound healing or other pathological events (32). It was first discovered as the primary 

barrier-protective product of platelets by Dudek and Garcia (37; 38). S1P binds to and 

activates the S1P1, S1P2, and S1P3 G protein-coupled receptors (GPCRs). Primary 

human umbilical vein ECs express S1P1 (EDG1) and S1P3 (EDG3) on their surface, but 

do not express S1P2 (EDG5) (39). The proangiogenic effects of S1P occur through S1P1 

and S1P3, stimulating EC proliferation and survival, migration, and tube formation, (36; 

40; 41). In particular, upon ligand binding to S1P1 or S1P3 the receptors transduce 

signals through the PI3K/Akt/Rac small GTPase pathway inducing changes in the 

cytoskeleton such as stress fiber and cortical actin formation (42; 43). 

S1P also initiates angiogenesis by activating MMPs. In ECs, expression of 

MMP2 or gelatinase A, once thought to be the primary contributor to cell invasion due 

to its ability to degrade type I and type IV collagens (44; 45), is upregulated following 

S1P treatment (46). More recent studies have shown that the membrane bound MMPs, 

particularly MT1-MMP, are the primary MMPs required for EC invasion (47-49). MT1-
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MMP is activated by S1P via phosphorylation of tyrosine 573 on its cytoplasmic tail and 

translocation of the protein to the plasma membrane (16; 17; 50; 51). This activation 

initiates 3D cell invasion via matrix degradation as well as the activation of other MMPs, 

such as MMP2, downstream of MT1-MMP (48; 52; 53).  

Finally, and most importantly for this study, S1P stimulates angiogenesis through 

barrier enhancement. S1P induces a rise in intracellular calcium that promotes cell 

spreading and barrier stability through Rac activation and adherens junction assembly 

(54-56). While VEGF causes barrier destabilization to initiate angiogenesis (28), S1P is 

required during angiogenesis to stabilize focal adhesions (57), cell-cell junctions (36), 

the interactions between cell junctions and focal adhesions via the cortical actin ring 

(58), and initiate restabilization of the neovessel through EC recruitment of pericytes and 

smooth muscle cells that support the new vasculature (59). The following sections 

illustrate specific types of junctions observed in ECs. 

 

Cell Junctions: Adherens Junctions 

 ECs bind to each other via several types of junctions – adherens junctions, tight 

junctions, and gap junctions – that each provides different functions to the monolayer. In 

ECs the three types of junctions are intermingled between the apical  and basal (facing 

the extracellular matrix) side of the cell (60; 61). The adherens junctions provide 

mechanical strength to the endothelial barrier and allow the transmittance of mechanical 

signals to neighboring cells; the tight junctions prevent the flow of fluid or solutes 

between the cells by tightly binding the cells together; and the gap junctions provide a 
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continuous signaling linkage between cells to transfer chemical or electrical signals 

almost instantaneously (62; 63). Each junction contains specialized proteins that respond 

differently to angiogenic signals.  

 In this study we will focus mainly on the adherens and tight junctions (AJs and 

TJs respectively). The main components of the endothelial AJs, vascular endothelial 

(VE)-cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) are 

stabilized by intracellular catenins and other junctional proteins (62; 64). VE-cadherin 

and PECAM-1 are cell adhesion molecules or CAMs exhibiting single-pass 

transmembrane glycoproteins that promote homophilic binding and adhesion between 

cells under quiescent conditions (65-67). While the removal of either VE-cadherin (68) 

or PECAM-1 (unpublished data) from ECs inhibits EC sprouting, the functions of the 

individual proteins and responses to angiogenic stimuli are unique and are detailed in the 

following paragraphs. 

VE-cadherin readily associates with intracellular junction-stabilizing proteins 

such as p120 catenin, β-catenin, and plakoglobin (γ-catenin) among others to comprise 

the AJ (69). The p120 catenin promotes strong cell-cell adhesion by stabilizing VE-

cadherin to the plasma membrane and controlling VE-cadherin clustering (70). VE-

cadherin is often assumed to connect to the actin cytoskeleton through the interaction of 

α-catenin (which can bind to β-catenin and plakoglobin) with actin; however, this has 

been disputed by Nelson and colleagues, who showed that α-catenin does not interact 

with actin filaments and the β-catenin/VE-cadherin complex simultaneously (71). 

Another possible interaction of the AJ and the cell cytoskeleton is the association 
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between VE-cadherin, plakoglobin, desmoplakin, and vimentin (72). The 

phosphorylation status of each of these proteins and cadherins changes the strength of 

adhesion between the neighboring cells. In general, an increase in phosphorylation of 

VE-cadherin and the catenins decreases the adhesive strength of the junction (73). 

During angiogenesis, the adhesion between cells is manipulated via the phosphorylation 

and relocation of VE-cadherin to promote migration and cell sprouting. VEGF has been 

shown to increase the tyrosine phosphorylation of VE-cadherin, p120 catenin, and β-

catenin in HUVECs (74). VEGF-A (an isoform of VEGF) phosphorylates VEGFR2 (a 

VEGF receptor present on ECs) and stimulates VEGFR2 association with a Src family 

protein, which then phosphorylates VE-cadherin. This triggers endocytosis of the entire 

complex disrupting the adherens junction (70; 75; 76). This disruption is part of the 

angiogenic switch that causes the cells to give up a quiescent state in favor of a leaky 

and sprouting vasculature (70).  

S1P has the opposite effect of VEGF on VE-cadherin. Hla and colleagues 

showed that S1P treatment induces AJ assembly in HUVECs (36). When HUVECs were 

treated with S1P, localization of VE-cadherin, α-, β-, and γ-catenin at cell-cell junctions 

was significantly increased within one hour in cultured ECs (36). Further, in vivo 

experiments illustrated that S1P is necessary for vessel maturation in growth factor 

induced angiogenesis, congruent with the hypothesis that, although VEGF and S1P have 

opposing effects on VE-cadherin, both are necessary for stable neovascularization (36).  

Different from VE-cadherin, PECAM-1 is required to establish cell-cell contacts, 

but is not necessary to maintain them (77). Additionally, anti-huPECAM-1 antibody 
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treatments inhibited HUVEC tube formation and migration on Matrigel, an interaction 

that was independent of VE-cadherin but potentially could be compensated for with VE-

cadherin (78). To illustrate the importance of PECAM-1 in endothelium establishment 

and maintenance, several studies addressed the responses of PECAM-1 to angiogenic 

stimuli, including phosphorylation and relocation. 

PECAM-1 has several motifs in its cytoplasmic tail such as immunoreceptor 

tyrosine-based activation motif (ITAM) and immunoreceptor tyrosine-based inhibitory 

motif (ITIM). These motifs allow PECAM-1 to recruit and interact with adaptor 

molecules, such as those containing SH2 domains, to transmit extracellular signals into 

intracellular signals (79). In response to WSS, PECAM-1 acts as a mechanotransducer; 

the tyrosine sites of PECAM-1’s cytoplasmic tail become phosphorylated, and recruit 

SHP-2, which induces cell survival and proliferation via extracellular-signal-related 

kinase ERK activation (80; 81). Fluid shear stress also initiates the complexing of 

PECAM-1, VE-cadherin, and VEGFR2 (81; 82). This complex activates the downstream 

PI3K and Akt pathways to promote angiogenesis. The effects of WSS on PECAM-1 

show a function of PECAM-1 distinct from VE-cadherin, as only PECAM-1 can directly 

transmit mechanical force via phosphorylation of its cytoplasmic tail.  

S1P also induces a migration-promoting response in ECs via PECAM-1 

signaling. Madri and colleagues demonstrated that PECAM-1 was required for ECs to 

move as a group in a coordinated manner (i.e. wound healing migration) (83).  

Immortalized knock out mouse ECs lacking PECAM-1 exhibited single cell migration 

that was rescued using reconstituted full-length PECAM-1 (83). This mechanism was 
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Rho-mediated and inhibited by pertussis toxin, suggesting that it was Gαi-mediated. The 

knockout cells were not affected by S1P treatment, while HUVEC migration increased 

in response to S1P, indicating that PECAM-1 is required for the migratory response to 

S1P (83). Madri’s group, among others, suggested that the interaction takes place 

between the cytoplasmic tail of PECAM-1 and the small G protein, Gαi2, which is 

important for signal transduction functions of the S1P receptors (79; 83).  

 

Cell Junctions: Tight Junctions 

While AJs proteins are required for vessel sprouting, TJ proteins are 

downregulated, suggesting that these junctions provide unique roles during angiogenesis 

(84). AJs provide structural integrity and the intertwined TJs ensure there is no leakage 

of fluid or molecules between the cells of the endothelium. The function of TJs is 

twofold: the barrier function creates a “seal” between adjacent ECs to prevent the flow 

of unwanted molecules into and out of the vasculature, and the fence function separates 

the apical and basolateral plasma membrane restricting the diffusion of lipids and 

proteins (85).  

TJs are composed of three types of membrane proteins, and several associated 

peripheral membrane structural and regulatory proteins. Occludin, claudins, and 

junctional adhesion molecules (JAMs) are the main transmembrane components (86). 

Zonula occludens-1 (ZO-1) was the first of the main TJ-associated intracellular proteins 

identified that stabilized the EC junction (87), quickly followed by the discovery of  

claudins and occludin, the binding of which creates a seal between the cells (88). While 
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occludin is important for TJ regulation, claudins, specifically claudin-5, are the most 

critical proteins for TJ assembly in ECs (89; 90). As each of these proteins has different 

functions in TJs, they are each affected differently by angiogenic stimuli. 

 S1P has been shown to activate ZO-1 in HUVECs, causing it to translocate to 

lamellipodia and cell-cell junctions through an S1P1/Gi/Akt/Rac pathway, suggesting 

ZO-1 has a dual role in response to S1P, promoting migration and stabilizing TJs (91). 

ZO-1 interacts with cortactin, an actin-binding protein that redistributes to the leading 

edges of migratory cells and plays a role in S1P mediated chemotaxis (92). S1P induces 

cortactin and ZO-1 colocalization at lamellipodia, an effect attenuated by cortactin 

knockdown, suggesting that ZO-1/cortactin complexes regulate the EC’s chemotactic 

response (91). Independent of cortactin, ZO-1 and α-catenin interact directly at cell-cell 

junctions suggesting the complex regulates endothelial barrier integrity (91; 93). Similar 

to its effect on VE-cadherin, S1P causes stabilization of tight junctions; however, it also 

affects the tendency of the cell to migrate by rearranging some of the tight junction 

proteins to migratory fronts and potentiating angiogenesis. 

It is also shown that there is crosstalk between different types of junctions (94; 

95). For example, VE-cadherin clustering at AJs, such as during S1P stimulation, 

upregulates the gene encoding Claudin-5, a tight junctional protein, by sequestering β-

catenin. β-catenin, when not bound to VE-cadherin at the plasma membrane, is 

translocated to the nucleus where it prevents the phosphorylation (and inactivation) of 

the transcriptional Claudin-5 gene repressor, FoxO1 (96). Additionally, VE-cadherin 

clustering activates the PI3K-Akt pathway that initiates the phosphorylation of FoxO1 
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(95; 97) resulting in an increase of Claudin-5 production (95). These results demonstrate 

that S1P not only stabilizes AJs by securing VE-cadherin at cell-cell contacts, but also 

may strengthen TJs by upregulating the expression of Claudin-5. 

 

Annexin Family of Proteins 

The annexin family of proteins is comprised of calcium-regulated membrane 

binding proteins found in ECs among other cells types and named for “annex” because 

of their ability to aggregate proteins (98). Each of the annexin proteins contains four 

homologous domains of 5 alpha helices each. One or more of the domains contains the 

signature of the protein – the endonexin fold, calcium-binding motif (99). This study 

focuses primarily on Annexin A2 (ANXA2). ANXA2 is found in ECs, monocytes, 

macrophages, and most cancer cells, and can exist as a monomer or in a heterotetrameric 

complex with S100A10 (p11), a complex important for plasmin regulation (99). ANXA2 

is unique among the annexins because it contains cysteine residues that are sensitive to 

reactive oxygen species (100). Surprisingly, ANXA2 null mice have a relatively benign 

phenotype considering the 61 genes that were found to be dysregulated in type-II 

alveolar cells depleted by short hairpin RNA targeting ANXA2 (99; 101).  

ANXA2 is dysregulated in many cancers; invasive cancers such as ductal 

mammary carcinoma and pancreatic ductal adenocarcinoma, exhibit high levels of 

ANXA2 (99). One theory explaining this phenomenon suggests the increased amount of 

ANXA2 promotes the interaction of ANXA2 with p11 at the cell membrane causing a 

downstream increase of plasmin which is known to cleave MMPs from the pro form to 
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the active form (99). Additionally, ANXA1 and ANXA2 have been implicated in wound 

repair in epithelial cells. ANXA1 cleavage product, Ac2-26, was shown to initiate focal 

adhesion protein activation and cell migration via increased ROS production (102) and 

ANXA2 loss in epithelial cells resulted in inhibited migration and increased cell-matrix 

attachment via an increase in β1 integrin (103).   

ANXA2 can function as a link between junctional proteins and the actin 

cytoskeleton, making it an ideal protein for monitoring the effects of S1P on interactions 

between cell-cell junctions and focal adhesions. Actin-rich AJs and TJs are mainly 

responsible for intercellular adhesion via the formation of actin filament associated  

protein complexes along transmembrane adhesion sites (60) and both require ANXA2 

(104-106).  ANXA2 was found to bind to F-actin and spectrin, recruit filamins A and B, 

and contribute to the reorganization of actin into cortical actin supporting barrier 

reinforcement (105-107). In response to S1P, our lab has shown that S1P stimulates 

ANXA2 translocation from the cell cytosol to the plasma membrane, where it complexes 

with VE-cadherin (108). When ANXA2 was depleted in ECs, Akt activation was 

attenuated resulting in increased phosphorylation of VE-cadherin, endothelial barrier 

leakage, and decreased EC invasion in 3D collagen matrices (108). These data indicate a 

key role for ANXA2 in regulating barrier function in ECs in response to S1P.  One main 

goal of the studies described here is to better understand the role of ANXA2 in 

maintaining EC junctions and promoting successful endothelial sprouting. 
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Cell Junctions: Reticular Junctions 

 While much is known about the individual junctional proteins, their interactions 

with each other are constantly under investigation. Particularly, the most recent of these 

interactions coined “reticular junctions,” is the least well known (109). Reticular 

junctions are found in quiescent EC monolayers where two ECs overlap (109). They are 

comprised of the junction surrounding PECAM-1 containing compartments collectively 

deemed the “subjunctional reticulum” (110). PECAM-1 is recycled to these 

compartments and can be rapidly accessed by the plasma membrane during leukocyte 

transendothelial migration (110). While PECAM-1 is found in the subjunctional 

compartments and the surrounding reticular region, VE-cadherin, α-, β-, and p120-

catenin, only localize to the reticular region creating voids in a “honeycomb” staining 

pattern. ZO-1 and actin did not localize to the reticular region suggesting these may be 

regions of low tension (109). Importantly, these reticular junctions are seen in two 

distinct experiments performed in our laboratory. ANXA2 silencing results in increased 

formation of reticular junctions, and reticular junctions are observed in EC monolayers 

stimulated to invade 3D collagen matrices in response to S1P. 

The long-term goal of our laboratory is to better understand the localization of 

junctional proteins in sprouting ECs that are stimulated to invade 3D collagen matrices 

in response to S1P and growth factors. Initially, we employed a 2D immunofluorescent 

model to better understand shANXA2 junctions, as well as, reticular junctions in a 

simple environment. Because ANXA2 binds to F-actin (105), it is required for the 

formation of actin-rich tight junctions (106), and reticular junctions lack actin 
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localization (109), we explored how the EC junctional proteins are localized when 

ANXA2 is silenced using shRNA. Interestingly, the silencing of ANXA2 in ECs 

resulted in a significant increase in the number of reticular junctions even at early time 

points. We characterize the reticular junctions in these cells as well as in non-transduced 

ECs with immunofluorescence illustrating a honeycomb distribution of VE-cadherin and 

catenins, and a disruption in focal adhesion stability. Following the observation of 

reticular junctions in shANXA2 cells and in non-transduced ECs, we explored the 

distribution of junctional proteins in reticular junctions temporally and following 

stimulation with the proangiogenic sphingolipid, S1P. The results show the presence of 

reticular junctions after at least 12 hours on several extracellular matrices. We also see a 

decrease in the number of reticular junctions in the presence of S1P on non-transduced 

ECs despite the formation of reticular junctions on shANXA2 cells in the presence of 

S1P. Finally, we observed the presence of reticular junctions in non-transduced ECs on 

3D collagen matrices as well as sprout formation initiating from these junctions. We 

propose a novel model of how ECs invade from reticular junctions. 
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CHAPTER II  

MATERIALS AND METHODS 

 

Cell Culture 

Human umbilical vein endothelial cells (ECs; Lonza; Cambridge, MA) were 

passaged weekly, and media were changed every four days. ECs were cultured on 

gelatin-coated (1mg/mL) T75 tissue culture flasks (Corning; Corning, NY) in growth 

medium containing Medium 199 (M199; Gibco; Carlsbad, CA), heparin (100µg/mL; 

Sigma-Aldrich; St. Louis, MO), 0.034% lyophilized endothelial growth supplement (Pel-

Freeze Biologicals; Rogers, AR) prepared as described (111), 13% fetal bovine serum 

(FBS; Gibco; Carlsbad, CA), gentamycin (10µg/mL; Gibco; Carlsbad, CA), and 

antibiotics (Gibco; Carlsbad, CA) as described (112). All ECs were grown at 37oC and 

5% CO2 and ECs used in all experiments were passage 3-6.  

293FT cells (Invitrogen; Carlsbad, CA) were passaged every four days and 

cultured on collagen I-coated (20µg/mL) 100mm×20mm round tissue culture dishes 

(Corning; Corning, NY) in growth medium containing Dulbecco’s Modified Eagle 

Medium (DMEM; Gibco; Carlsbad, CA), 10% fetal bovine serum (Gibco; Carlsbad, 

CA), 500 µg /mL G418 ( Enzo Life Sciences; Farmingdale, NY), gentamycin (10µg/mL; 

Gibco; Carlsbad, CA), and antibiotics (Gibco; Carlsbad, CA) as described (112). 293FTs 

were grown at 37oC and 5% CO2 and were used in all experiments at passage 3-10.  
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Generation of Knockdown Cell Lines using shRNA 

shRNA constructs were purchased from Sigma-Aldrich and prepared from 

glycerol stocks for annexin A2 (#SHCLNG-NM001002857; clones TRCN056144, 

shANXA2-1 and TRCN056145, shANXA2-2) and β2-microglobulin (β2M; #SHCLNG-

NM006098; clones TRCN057254, shβ2M-1 and TRCN057255, shβ2M-2). Lentiviral 

plasmid mixtures, containing 1.25μg of backbone shRNA lentiviral plasmid and 3.75μg 

of VIRAPOWER packaging mix (Invitrogen; Carlsbad, CA) were diluted separately in 

500μL of Opti-MEM (Invitrogen; Carlsbad, CA) and combined with 12μL 

Lipofectamine 2000 (Invitrogen; Carlsbad, CA) in 500μL Opti-MEM after 5 minutes of 

incubation at room temperature. Lipofectamine mixtures were added to diluted DNA for 

20 minutes. Meanwhile, 3×106 293FT cells (Invitrogen; Carlsbad, CA) were trypsinized, 

pelleted, and resuspended in 3mL of DMEM with 10% FBS. 1.5mL of cells and 1mL of 

transfection mixture were added to each T25. The media was changed 16 hours after 

transfection and viral supernatants were collected at 60 hours after transfection, 

centrifuged at 1000×g for 10 minutes and either frozen at -80oC or used immediately to 

infect ECs.  

For EC infection, 3×105 cells in 1mL of growth medium (to yield a confluency of 

25-30%), 2mL viral supernatant, 2mL endothelial growth medium, and 12μg/mL 

Polybrene (Sigma-Aldrich; St. Louis, MO) were added to a gelatin coated T25 flask and 

allowed to incubate. Viral supernatants were removed and ECs were given fresh growth 

medium after 6 hours. Cells were allowed to grow for 4 days prior to use in experiments. 

ECs imaged under phase were rinsed with growth medium on day 4 and images were 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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taken at 4× magnification using an Olympus CKX41 microscope and a Q-Color 3 

camera. Cells used in experiments were counted using a Nexcelom Cellometer Auto 

1000 following trypsinization. Cell concentration and average cell diameter in microns 

were measured. Successful protein silencing was confirmed by Western blot analyses.  

  

mRNA Extraction and RT-PCR Analysis 

 ECs were treated with shRNAs to annexin A2 and β2M. RNA was extracted 

from ECs expressing shRNA as well as an untreated control, using an RNeasy MiniKit 

(Qiagen; Valencia, CA).  Eluted RNA was treated with RNase-free DNase (Qiagen; 

Valencia, CA) for 10 minutes at room temperature and inactivated at 65°C for 15 

minutes. RNA quality was assessed by electrophoresis. cDNA was generated with the 

SuperScript III First-Strand Synthesis System (Invitrogen; Carlsbad, CA) using 1μg of 

RNA and Oligo(dT)20 following the manufacturer’s instructions.  The primers used for 

this study were: ANXA2 (NM_001002858.2; 262bp 5’-

CAGAGGATGCTCTGTCATTG-3’ and 5’-GGCTTGTTCTGAATGCACTG-3’); 

PECAM-1 (NM_000442.4; 172bp 5’-ATGATGCCCAGTTTGAGGTC-3’ and 5’-

ACGTCTTCAGTGGGGTTGTC-3’); FAK (NM_153831.3; 217bp 5’-

CTGGCTACCCTGGTTCACAT-3’ and 5’-TGTTGCTGTCGGATTAGACG-3’); 

Vimentin (NM_003380.3; 177bp 5’-GGGACCTCTACGAGGAGGAG-3’ and 5’-

AAGATTGCAGGGTGTTTTCG-3’); RACK1 (NM_006098.4, 226bp 5’-

CTGAGTGTGGCCTTCTCCTC-3’ and 5’-GCTTGCAGTTAGCCAGGTTC-3’); VE-

Cadherin (NM_001795.3, 182bp 5’-CCAGGTATGAGATCGTGGTG-3’ and 5’-
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AAACAGAGAGCCCACAGAGG-3’); β2M (NM_004048.2, 158bp 5’-

TTTCATCCATCCGACATTGAAG-3’ and 5’-ACACGGCAGGCATACTCATC-3’); 

Clec14A (NM_175060.2, 198bp 5’-GACTTCCTCTGCCACTCCTC-3’ and 5’-

GGCTCAGGATCACTCTCCAG-3’); GAPDH (NM_002046.4, 228bp 5’-

CGACCACTTTGTCAAGCTCA-3’ and 5’-AGGGGTCTACATGGCAACTG-3’); α-

tubulin (NM_006000.2, 207bp 5’-GACAGCTCTTCCACCCAGAG-3’ and 5’-

GGAGTGAGGTGAAGCCAGAG-3’); Rab11a (CR536493.1, 182bp 5’-

CATGCTTGTGGGCAATAAGA-3’ and 5’-TGTTTTCAGTGGTTGGTGGAAC-3’); 

Rab5c (CR541901.1, 250bp 5’-GAGTCTGCGGTAGGCAAATC-3’ and 5’-

CCCGTGCAAATGTATCTGTG-3’); and β-actin (NM_001101.3, 491bp 5’-

CATCACCATTGGCAATGAGC-3’ and 5’-CGATCCACACGGAGTACTTG-3’). RT-

PCR was performed using an annealing temperature of 58oC and an extension time of 30 

seconds for 25 cycles. Amplicons were run on 2% agarose gels stained with GelRed 

(Phenix Research Products; Candler, NC). 

 

EC Invasion Assay on 3D Collagen Gels 

24 hours prior to use in a three dimensional invasion assay, ECs were fed with 

fresh growth medium, and M199 was equilibrated in a 10cm petri dish (5mL per T25 of 

ECs and 10mL per T75 of ECs) in an incubator at 37°C and 5% CO2 overnight. On the 

day of the experiment, 1× HEPES buffered saline (20mM HEPES from Sigma-Aldrich; 

St. Louis, MO; and 150mM NaCl from J.T. Baker; Center Valley, PA; in sterile water), 

M199, and FBS were warmed in a water bath at 37°C for trypsinizing cells. Meanwhile, 
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three dimensional collagen I gels were prepared at 1mg/mL, 2.5mg/mL, and 5mg/mL as 

indicated with 1μM S1P (125μM stock solution suspended with 4mg/mL fatty acid-free 

BSA in sterile PBS; Sigma-Aldrich; St. Louis, MO) as reported previously (112).  

20μg/mL of fibronectin (Sigma-Aldrich; St. Louis, MO) was added directly to the gels 

where indicated following the addition of S1P. The cold gel solution was added to wells 

of a half area 96-well plate (28μL each) and allowed to polymerize and equilibrate at 

37°C and 5% CO2 for 45 minutes. ECs were rinsed with 1× HEPES buffered saline and 

trypsinized as described (112).  An aliquot of cells was counted and cell size was 

measured using a Cellometer® Auto 1000 cell counter (Nexcelom Bioscience LLC; 

Lawrence, MA). The cell pellet resulting from centrifugation following trypsinization 

was resuspended in equilibrated M199 containing RSII (1:250) as reported previously 

(84) at a density of 6×105cells/mL. 50µL of the cell suspension (30,000 cells) were 

added to each gel, and the cells were allowed to attach to the gels for 30 minutes at 37°C 

and 5% CO2. Meanwhile cell feeding medium was prepared with 50µL of equilibrated 

M199 (per gel) containing RSII (1:250), 100µg/mL of sterile ascorbic acid (Sigma-

Aldrich; St. Louis, MO), and 80ng/mL of VEGF and bFGF (R&D Systems; 

Minneapolis, MN). After 30 minutes, the cells were fed, the empty spaces surrounding 

the wells were filled with 165µL of sterile water to prevent evaporation, and the plate 

was placed in an incubator (37°C and 5% CO2) for indicated amount of time. The cells 

were fixed in 200μL 3% glutaraldehyde (Sigma-Aldrich; St. Louis, MO) overnight or 

200μL 4% paraformaldehyde (10mL 10% paraformaldehyde Electron Microscopy 
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Sciences; Hatfield, PA; and 2.5mL PBS in 12.5mL sterile water) for 20 minutes for 

immunofluorescent staining. 

 

Immunoblotting 

 Total cell lysates of invading cultures were prepared by removing conditioned 

media and solubilizing gels containing invading ECs in boiling 1.5× Laemmli sample 

buffer at 100oC for 10 minutes. Samples were separated using 8.5%-14% SDS-PAGE 

gels under reducing conditions (2% 2-mercaptoethanol, Sigma-Aldrich; St. Louis, MO) 

except when probing for β2M. The separated proteins were then transferred to 

Immobilon polyvinylidene fluoride membranes (Millipore; Billerica, MA), blocked with 

5% nonfat dry milk at room temperature for 1 hour, and incubated with primary 

antibodies for 2 hours at room temperature (β2M) or overnight at 4oC. Antibodies against 

the following proteins were used for detection: β2M (C7082, Sigma-Aldrich; St. Louis, 

MO) at 1:1500, annexin A2 (61008, BD Biosciences; San Jose, CA) at 1:1000, α-tubulin 

(T6199, Sigma-Aldrich; St. Louis, MO) at 1:10,000, GAPDH (ab8245, Abcam, 

Cambridge, UK) at 1:10,000, RACK1 (17754, Santa Cruz Biotechnology; Dallas, TX) at 

1:3,000, VE-cadherin (sc52751, Santa Cruz Biotechnology; Dallas, TX) at 1:4,000, FAK 

(05-537, Millipore; Billerica, MA) at 1:4,000, PECAM-1 (3528s, Cell Signaling 

Technology; Danvers, MA) at 1,000, vimentin (sc-5565, Santa Cruz Biotechnology; 

Dallas, TX) at 1,2000, and actin (CP01, Calbiochem; Billerica, MA) at 1:1000. The 

membranes were then washed three times for 5 minutes in Tris-Tween 20 saline 

(150mM sodium chloride, 2.5mM Tris, 0.001% Tween® 20) before incubation with HRP 
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conjugated rabbit anti-mouse secondary antibody or goat anti-rabbit secondary antibody 

(1:5,000; Dako; Carpinteria, CA) in Tris-Tween 20 saline containing 5% milk for 1 

hour. After three additional 5 minute washes, protein bands were visualized by adding 

Immobilon Western Chemiluminescent HRP Substrate (Millipore; Billerica, MA) for 5 

minutes and exposing the membranes to HyBlot CL autoradiography film (Denville 

Scientific; South Plainfield, NJ). Films were developed with a FluorChem 8900 digital 

imaging system (Alpha Innotech; San Leandro, CA). For image quantification, band 

intensities were measured using NIH ImageJ image analysis software.  

 

Immunofluorescence in 2D 

Autoclaved glass coverslips (12mm round, #1.5; VWR; Radnor, PA) were placed 

in a 24-well plate and coated with 50µL of 20µg/mL collagen I prepared as in (112), 

fibronectin (Sigma-Aldrich; St. Louis, MO), Matrigel (Sigma-Aldrich; St. Louis, MO), 

or collagen IV (Sigma-Aldrich; St. Louis, MO) at 20µg/mL or 100µg/mL where 

indicated. After 20 minutes excess matrix solution was aspirated, and 50µL of ECs were 

seeded at 6×105cells/mL onto the coverslips (30,000 cells per coverslip). After a 30 

minute incubation at 37oC and 5% CO2, the cells were fed with 1mL of growth medium 

overnight (37oC and 5% CO2). In the serum optimization study (Figure 2), the cells were 

wounded using a pipette tip attached to a vacuum and scratched in two directions 

creating an “X” pattern. The media was aspirated and the coverslips were rinsed twice 

with 500µL M199. Following wounding, the coverslips were serum-starved (placed in 

250µL M199 for 2 hours) or placed in 250µL low serum media (2%) as indicated and 
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treated with 1µM S1P for indicated durations. Following treatment, the conditioned 

media was aspirated and replaced with 250µL 4% paraformaldehyde (10mL 10% 

paraformaldehyde Electron Microscopy Sciences; Hatfield, PA; and 2.5mL PBS in 

12.5mL sterile water) for 20 minutes. The coverslips were washed twice with 500µL 

Tris-Glycine buffer (0.3% Tris and 1.5% Glycine) for 15 minutes each with gentle 

agitation, permeabilized with 500µL 0.5% Triton® X-100 in PBS for 20 minutes with 

gentle agitation, and blocked in 250µL goat-serum blocking buffer (0.1% Triton® X-100, 

1% BSA, 1% goat serum, 0.2% Na Azide, and 1X TBS in sterile water) overnight at 

4oC.  

To stain the coverslips, primary antibodies were diluted in blocking buffer (25µL 

per coverslip), mixed by hand, and spun at 16,000×g for 1 minute. Antibodies used for 

2D immunofluorescent staining include: VE-cadherin (sc-9989, Santa Cruz 

Biotechnology; Dallas, TX) at 1:200, VE-cadherin (ALX-210-232-C100, Enzo Life 

Sciences; Farmingdale, NY) at 1:200, ZO-1 (HPA001636, Sigma-Aldrich; St. Louis, 

MO) at 1:200, PECAM-1 (sc-1505, Santa Cruz Biotechnology; Dallas, TX) at 1:200, 

filamin A (1678, Millipore; Billerica, MA) at 1:300, paxillin (sc-365059, Santa Cruz 

Biotechnology; Dallas, TX) at 1:100, vinculin (V9131, Sigma-Aldrich; St. Louis, MO) 

at 1:100, phosphorylated focal adhesion kinase (FAK) at Y397 (ab4803, Abcam; 

Cambridge, UK) at 1:100, β-catenin (C7082, Sigma-Aldrich; St. Louis, MO) at 1:100, 

and α-catenin (C2081, Sigma-Aldrich; St. Louis, MO) diluted to 10mg/mL and used at 

1:300.  Meanwhile, a piece of Parafilm (American Can Company; Greenwich, CT) was 

stretched over the lid of a 24-well plate and labeled for treatment administered and 
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antibodies used. Following centrifugation, forming a dot without bubbles, 25µL per 

coverslip of the antibody dilutions were placed onto the Parafilm (one at a time). The 

coverslips were removed from the blocking buffer and the backside of the coverslip was 

dried before the coverslip was placed cell-side down onto the antibody dilution solution. 

The lid containing the coverslips was placed in a humidity chamber for 3 hours at room 

temperature. The coverslips were then washed with 500µL 0.1% Triton® X-100 in PBS 

for 10 minutes three times on an orbital shaker. In the dark, Alexa-488- or 594-

conjugated secondary antibodies raised in goat (Molecular Probes; Grand Island, NY) 

were prepared (1:300) and placed on a new piece of Parafilm. From this point forward 

the coverslips were kept in the dark. Again the bottom surface of the coverslips were 

dried, placed cell-side down onto the antibody dilution dots, returned to a humidity 

chamber for 1 hour, and washed with 0.1% Triton® X-100 in PBS for 10 minutes three 

times. 50µL of 10µM 4',6-diamidino-2-phenylindole (DAPI) dye was added to the final 

wash for nuclear staining. During the washes, new FisherFinest Premium Frosted glass 

slides (Fisher Scientific; Waltham, MA) were cleaned with 70% ethanol using lint free 

tissue paper and labeled with a chemical resistant pen (VWR; Radnor, PA). When the 

coverslips were ready for mounting onto slides, one 15µL drop of Fluorogel with Tris 

Buffer mounting media (Electron Microscopy Sciences; Hatfield, PA) per coverslip was 

placed at a time onto each slide (up to four per slide). Following the last wash, the 

coverslips were rinsed three times in distilled deionized water. The backside of the each 

coverslip was dried before it was placed cell-side down onto a Fluoro-gel dot. The slides 

were kept in the dark at room temperature overnight. The next morning the coverslips 
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were sealed for long term preservation by tracing the outline of each coverslip with clear 

nail polish. After drying, the coverslips were imaged using a Nikon TI A1R inverted 

confocal microscope and stored in dark at 4oC until further use. All images were taken as 

Z-stacks with a step size of 0.4µm at 60× magnification and are displayed as extended 

depth of focus (EDF) images. 

 

Immunofluorescence in 3D 

Conditioned media was removed from collagen gels in a half area 96-well plate 

containing invading cells and replaced with 200µL 4% paraformaldehyde for 20 

minutes. Following fixation, the gels were washed twice with 200µL Tris-Glycine buffer 

for 15 minutes each with gentle agitation, removed from the 96-well plate, sliced using a 

razor blade and placed in a 24-well plate with 1mL 0.5% Triton® X-100 in PBS to 

permeabilize for 20 minutes with gentle agitation. The gels were then blocked in 1mL 

goat-serum blocking buffer overnight at 4oC.  

To stain the gels, primary antibodies were diluted in goat-serum blocking buffer 

(100µL per gel), mixed by hand, and spun at 16,000g for 1 minute. Antibodies used for 

3D immunofluorescent staining include: VE-cadherin (sc-9989, Santa Cruz 

Biotechnology; Dallas, TX) at 1:200 and ZO-1 (HPA001636, Sigma-Aldrich; St. Louis, 

MO) at 1:200. Either whole gels or gel slices were then placed in a 96-well plate with 

the primary antibody dilution on a shaker for 3 hours. For washing, the gels were 

transferred to a 24-well plate containing 1mL 0.1% Triton® X-100 in PBS and placed on 

a shaker for two 30 minute washes.  In the dark, goat Alexa-488- or 594-conjugated 
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secondary antibodies (Molecular Probes; Grand Island, NY) were prepared in goat-

serum blocking buffer (1:300), placed in a 96-well plate with the gels, and set on a 

shaker for 1 hour. Again, for washing, the gels were transferred to a 24-well plate 

containing 1mL 0.1% Triton® X-100 in PBS and placed on a shaker for two 30 minute 

washes and an overnight wash. The next day the wash buffer was changed again and 

100µL of 10µM DAPI was added for 30 minutes on the shaker. Meanwhile, FisherFinest 

Premium Frosted glass slides (Fisher Scientific; Waltham, MA) and coverglasses 

(24×50mm, #1.5; VWR; Radnor, PA) were cleaned with 70% ethanol using lint free 

tissue paper and labeled with a chemical resistant pen (VWR; Radnor, PA). Additionally, 

silicone 0.04” thick (Specialty Manufacturing Incorporated; Pineville, NC) was cut to 

the same size as the coverglass, and a hole punch was used to create wells for the gels. 

Fluorogel with Tris Buffer mounting media (Fluorogel; Electron Microscopy Sciences; 

Hatfield, PA) was then used to adhere the silicone to the slide and allowed to dry briefly 

(about 30-60 minutes). The wells were then filled with Fluorogel and the gels were 

oriented so that the monolayer or invading structures could be imaged by confocal 

microscopy. Finally, to minimize bubbles formed in the wells with the gels, a layer of 

Fluorogel was spread across the top of the silicone and the coverglass was gently placed 

on top. The slides were allowed to dry overnight in the dark before imaging with a 

Nikon TI A1R inverted confocal microscope. All images were taken as Z-stacks with a 

step size of 0.4µm or 1µm as indicated at 40× magnification and are displayed as EDF 

focused images. 
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Junctional Width Quantification 

 Utilizing NIS-Elements AR 4.0 (Nikon), confocal EDF focused images of two 

dimensional EC monolayers stained with VE-cadherin were analyzed to determine 

average junctional width. At least six images per treatment group (shβ2M-1, shANXA2-

2) each containing 20 cells were analyzed for three independent experiments. A blinded 

volunteer chose a representative cell for each image and collected five measurements 

equally across each junction of the representative cell for a total of at least 150 

measurements per treatment group per experiment. The lengths of these lines in microns 

were exported to Microsoft Excel for analysis. 

 

Focal Adhesion Quantification 

 Confocal EDF focused images of two dimensional EC monolayers stained with 

paxillin and converted to .tif files were read by a MATLAB program written generously 

by Dr. Po Feng Lee for the quantification of focal adhesions. The program amplified the 

signal in the images, set a threshold, and created a mask to eliminate all background 

information that did not meet the threshold. Output data consisted of total focal adhesion 

number and size in pixels per image. At least two images containing 20 cells each per 

treatment group were analyzed for three independent experiments.  

 

Reticular Junction and Mean Fluorescence Intensity Quantification 

 Confocal EDF focused images of two dimensional EC monolayers stained with 

VE-cadherin and ZO-1 were analyzed to determine average number of reticular 
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junctions and relative amounts of VE-cadherin and ZO-1 protein expression over time. 

All junctions containing a “honeycomb” pattern of VE-cadherin staining were counted 

manually for at least two images per cell type (shβ2M-1 and shANXA2-1) or timepoint 

(0.25 hours, 4 hours, 8 hours, 12 hours) for two-three independent experiments. Average 

fluorescence intensity was quantified using the Histogram function in NIS-Elements AR 

4.0 (Nikon). The mean intensity of either the red (VE-Cadherin) signal or the green (ZO-

1) signal was quantified from snapshots of confocal EDF focused images for at least two 

images per timepoint for two independent experiments. 

 

Mouse Tissue Analysis 

 Uterine decidual tissue was harvested from Sv/129 Pas mice at day 7.5 of 

pregnancy and imbedded in optimal cutting temperature compound (OCT, Sakura; 

Torrance, CA) and frozen at -80oC until needed. Sections 30µm thick were incubated for 

10 minutes in methanol at -20oC.  The OCT was removed from the sections using 

forceps, and each section was outlined with a hydrophobic slide marker (Research 

Products International Corporation; Mt Prospect, IL). The slides were rinsed briefly in 

0.3% Tween in PBS, dried, and blocked in goat-serum blocking buffer for 1 hour at 

room temperature. Meanwhile, primary antibodies were diluted in goat-serum blocking 

buffer, mixed by hand, and spun at 16,000g for 1 minute. Again the slides were rinsed 

briefly in 0.3% Tween in PBS, and 30µL of primary antibody dilutions were added to 

each section. Antibodies used for mouse tissue immunofluorescent staining include: 

PECAM-1 (553371, BD Pharmingen; San Jose, CA) at 1:200 and α-catenin (C2081, 
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Sigma-Aldrich; St. Louis, MO) diluted to 10mg/mL and used at 1:200. The slides were 

then placed in a humidity chamber and incubated overnight at 4oC. The slides were 

washed three times in 0.3% Tween in PBS for 10 minutes each and in the dark, goat 

Alexa-488- or 594-conjugated secondary antibodies (Molecular Probes; Grand Island, 

NY) were prepared in goat-serum blocking buffer (1:250), 30µL per section. The slides 

were incubated for 1 hour at room temperature in a humidity chamber. Finally, the 

sections were washed four times for 10 minutes each in 0.3% Tween in PBS. The 

sections were rinsed briefly with water and a glass coverslip was added with DAPI-

countaining mounting media (P36935; Invitrogen; Carlsbad, CA). The next morning the 

coverslips were sealed for long term preservation by tracing the outline of each coverslip 

with clear nail polish. After drying, the coverslips were imaged using a Nikon TI A1R 

inverted confocal microscope and stored in dark at 4oC until further use. 

 

Statistical Analysis 

Data are presented as the mean ± S.D. for each group of samples. Statistical 

analyses were performed using Microsoft Excel. Comparisons were performed using 

Student’s t-tests. P<0.05 was considered statistically significant. 
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CHAPTER III  

RESULTS 

 

Previously our lab demonstrated a decrease in the invasive capacity and an 

increase in the permeability of cells lacking the ANXA2 protein (108). Throughout this 

study, we explore the effect ANXA2 silencing has on EC junctions. First, we 

characterized changes in RNA and protein expression in ECs transduced with 

lentiviruses delivering short hairpin RNA (shRNA) directed to control (β2M) or 

ANXA2. We tested two shRNA clones for each protein. Figure 1A illustrates the relative 

mRNA levels of over a dozen proteins supporting there are no off target effects of the 

short hairpin RNAs on many junctional and cytoskeletal proteins we and others have 

shown to been important in EC sprouting. While 2M and ANXA2 were silenced, levels 

of GAPDH, α-tubulin, actin, RACK1, VE-cadherin, Vimentin, PECAM-1, FAK, 

RAB11a, RAB5c, and Clec14A were not affected. Appropriate silencing was also 

observed for 2M and ANXA2 at the protein level, while expression of many junctional 

and cytoskeletal proteins GAPDH, α-tubulin, actin, RACK1, VE-cadherin, Vimentin, 

PECAM-1, and FAK remained constant (Figure 1B). These data support that shRNA-

mediated silencing of 2M and ANXA2 is specific. Clone 1 for both the control or β2M 

group (shβ2M-1) and the ANXA2 group (shANXA2-1) exhibited the most complete 

silencing of the desired proteins and were used for subsequent experiments where 

indicated.  
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Figure 1. Transduction of endothelial cells with shRNA specifically reduced mRNA 

and protein levels for shβ2M and shANXA2.  

(A) Non-transduced ECs (HUVEC), or ECs transduced with lentiviruses delivering 
shRNA directed to β2-microglobulin (shβ2M-1 and -2) or annexin A2 (shANXA2-1, and 
-2) were utilized to make RNA for cDNA synthesis and amplified via RT-PCR using 
ANXA2-, β2M-, GAPDH-, α-tubulin-, actin-, RACK1-, VE-cadherin-, Vimentin-, 
PECAM-1-, FAK-, RAB11a-, RAB5c-, and Clec14A-specific primers. (B) Cell lysates 
from treatment groups as in A were analyzed by western blotting using ANXA2-, β2M-, 
GAPDH-, α-tubulin-, actin-, RACK1-, VE-cadherin-, Vimentin-, PECAM-1-, and FAK-
specific antisera. 
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Next, we observed the morphology of the knockdown cells at confluence. As 

shown in Figure 2A, similar to non-trasnduced ECs (HUVEC), the ECs lacking control, 

β2M, or ANXA2 proteins exhibit a “cobblestone” morphology. Additionally, following 

trypsinization of the ECs, the average cell diameter in microns was quantified by a 

Nexcelom Cellometer Auto 1000 cell counter. Data in Figure 2B show the average cell 

diameter is not different between HUVEC, shβ2M-1, or shANXA2-1 expressing cells. 

 
 

 
 
Figure 2. Lentiviral transduction with shRNA directed to β2M and ANXA2 does 

not significantly alter EC morphology.  

(A) Representative phase images illustrating the cobblestone morphology of confluent 
endothelial cells. Cells were seeded in gelatin coated tissue cultured flasks and imaged 4 
days after transduction. From left to right; Non-transduced ECs (HUVEC), shβ2M-1, 
shβ2M-2 (upper panels), and shANXA2-1, shANXA2-2 (lower panels). Scale bar = 
100μm. (B) Average cell diameter following cell trypsinization in microns was 
quantified for three independent experiments using Nexcelom Cellometer Auto 1000 
software. Data represent average of averages ± S.D. of over 150 total cells/group. There 
was no significant difference in size between groups.  
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Because VE-cadherin is critical for ensuring endothelial integrity, we 

hypothesized ANXA2 silencing may affect localization of VE-cadherin. To visualize 

protein localization, ECs were seeded onto collagen-I coated glass coverslips and 

analyzed by immunofluorescent staining. The cells were seeded at confluence and were 

allowed to attach overnight. In subconfluent monolayers ECs were elongated, highly 

motile, proliferative, and sensitive to growth factor stimulation (113). ECs were seeded 

at confluence to achieve a resting or quiescent morphology where contact with 

neighboring cells inhibits cell activation (114). At confluence the junctions are 

stabilized, and junctional proteins are able to transduce signals, such as that from S1P, 

across the monolayer contributing to gene expression changes (115-117). After 18 hours, 

the cells were serum starved for two hours to ensure cell quiescence and treated for one 

hour with 1µM S1P, known to fortify junctional proteins including VE-cadherin (36). 

Following treatment, the cells were fixed, rinsed, permeabilized, blocked, stained with 

primary antibodies directed to desired proteins and secondary antibodies conjugated to 

Alexa 488 or 594, and analyzed with confocal microscopy. Figure 3 illustrates relative 

VE-cadherin localization in non-transduced ECs (HUVEC) and ECs expressing shRNA 

directed to 2M (sh2M-1 and -2) and ANXA2 (shANXA2-1 and -2). The HUVEC and 

sh2M groups showed a thin, linear distribution of VE-cadherin at the cell-cell 

junctions, while the ANXA2 knockdown cells exhibited a wider and less linear 

distribution. Additionally, the shANXA2-1 cells exhibited a more consistent wide VE-

cadherin localization than the shANXA2-2 cells suggesting that there is a correlation 

between the amount of ANXA2 present in the cells and the localization of VE-cadherin. 
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For the following experiments, we examine the localization of other junctional proteins 

in ECs expressing shβ2M-1 and shANXA2-1 to determine if the localization of other 

proteins is altered.  

Figure 4 displays representative photos for shβ2M-1 and shANXA2-1 cells 

stained for several protein members of adherens junctions, specifically, VE-cadherin, 

PECAM-1, and filamin A. The trend of a wider junctional protein distribution in the 

shANXA2-1 group appears consistent for each of the junctional proteins, VE-cadherin, 

PECAM-1, and filamin A, suggesting ANXA2 is required for the formation and/or 

maintenance of linear adherens junctions in response to S1P.  
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Figure 3. VE-cadherin distribution changes with ANXA2 silencing. 

Representative confocal extended depth of focus (EDF) images (2 images per group are 
shown) illustrating the localization of VE-cadherin. Left two panels from top to bottom, 
Non-transduced ECs (HUVEC), shβ2M-1, and shβ2M-2, Right two panels from top to 
bottom; shANXA2-1 and shANXA2-2. ECs expressing shβ2M or shANXA2 were 
seeded on collagen I-coated glass coverslips overnight. After 18 hours cells were serum 
starved for 2 hours, treated with 1μM S1P for 1 hour, fixed, and stained for VE-
cadherin-specific antisera and corresponding secondary antibodies conjugated to Alexa 
594. Western blots showing appropriate knockdown of β2M or ANXA2 are from a 
separate independent experiment. Scale bar = 10μm.  
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Figure 4. Knockdown of ANXA2 alters junctional protein localization. 
Representative confocal EDF images illustrating from left to right the localization of 
VE-cadherin, PECAM-1, and filamin A with ANXA2 knockdown. shβ2M-1, upper 
panels; shANXA2-1, lower panels. ECs expressing shβ2M or shANXA2 were seeded on 
collagen I-coated glass coverslips overnight. After 18 hours cells were serum starved for 
2 hours, treated with 1μM S1P for 1 hour, fixed, and stained with primary antibodies 
directed to VE-cadherin, PECAM, or filamin A. Secondar antibodies used were 
conjugated to Alexa 594 (VE-cadherin and filamin A) or Alexa 488 (PECAM-1). Nuclei 
were stained with 1μM DAPI (blue). Scale bar = 10μm.  
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Following the observation of wider cell-cell junctions, we characterized the 

change by quantifying the junctional width using the NIS Elements software by Nikon. 

At least three confocal EDF images were taken for each group, shβ2M-1 and shANXA2-

1, for each of three independent experiments. After the number of cells per image was 

quantified to ensure equal confluency across the groups (Figure 5B), a blinded volunteer 

viewed the series of randomized confocal images. After choosing a representative cell 

for each image, five measurements of junctional width equidistant along each junction of 

the representative cell were recorded (Figure 5A). The average junctional width was 

quantified in microns for over 60 total junctions per group and plotted as mean 

junctional width (Figure 5C) and median junctional width (Figure 5D). The data 

revealed that the average junctional width for shANXA2-1 cell-cell junctions was almost 

twice that of the shβ2M-1 cell-cell junctions. 



 

36 

 

 

 
 
Figure 5. Knockdown of ANXA2 increases EC junction width. 

 (A) Confocal EDF images illustrating how the junction width was quantified using 
digital images of ECs stained for VE-cadherin as shown in Figure 3. ECs expressing 
shβ2M or shANXA2 were seeded on collagen I-coated glass coverslips overnight. After 
18 hours cells were serum starved for 2 hours, treated with 1μM S1P for 1 hour, fixed, 
and stained for VE-cadherin. In a blind study, five measurements of junctional width 
were taken equidistant apart along each edge of a representative cell. Scale bar = 5μm. 
(B) To ensure equal cell density, the average number of cells per field was quantified 
from images captured using a 60X objective. Data represent average number of cells per 
field ± S.E. of at least 7 fields per group for three independent experiments. There was 
no significant difference between the shβ2M-1 and shANXA2-1 groups. (C, D) Data 
represent average junction width in microns ± S.E. and median junctional width 
displaying the minimum and maximum junctional width quantified for three independent 
experiments using NIS Elements software. Data represent analyses of more than 60 total 
junctions/group. (Student’s t-test, ＊＊＊ p<0.0001).  
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The adherens junction is fortified by catenins, specifically, α-, β-, and p120-

catenin, which bind to adherens junction proteins and protect them from endocytosis 

(73). S1P enhances the interaction between VE-cadherin and both α- and β-catenin (57), 

further solidifying the adherens junction complex at the EC membrane. To determine if 

ANXA2 is required for the interaction of catenins with the adherens junction, we tested 

for VE-cadherin and α-catenin colocalization in ECs expressing shβ2M-1 and 

shANXA2-1 (Figure 6). VE-cadherin and α-catenin colocalized similarly in both groups 

of cells, suggesting that ANXA2 is not required for S1P-induced association of α-catenin 

and VE-cadherin, and the effect of ANXA2 knockdown on junctional widening is 

independent of catenin association with VE-cadherin. 

 



 

38 

 

 

Figure 6. Knockdown of ANXA2 does not affect α-catenin association with VE-

cadherin. 

Representative confocal EDF images illustrating from left to right the localization of 
VE-cadherin and α-catenin. The far right panel is an overlay of the images. shβ2M-1, 
upper panels; shANXA2-1, lower panels. HUVECs expressing shβ2M or shANXA2 
were seeded on collagen I-coated glass coverslips overnight. After 18 hours cells were 
serum starved for 2 hours, treated with 1μM S1P for 1 hour, fixed, and stained with 
primary antibodies directed to VE-cadherin and α-catenin and corresponding secondary 
antibodies conjugated to Alexa 594 and Alexa 488, respectively. Nuclei were stained 
with 1μM DAPI (blue).  Scale bar = 10μm.  
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After discovering the effects ANXA2 silencing had on the distribution of 

junctional proteins, we hypothesized similar effects may be seen with focal adhesion 

proteins, because Garcia and colleagues reported that S1P stimulated the association of 

focal adhesion proteins, including focal adhesion kinase (FAK) and paxillin, with EC 

junctions (57). To confirm this, we characterized focal adhesion protein responses to 

S1P by seeding confluent EC monolayers overnight onto collagen I coated glass 

coverslips. Following brief (2 hour) serum starvation, ECs were treated with 1µM S1P 

for 1 hour. In addition to FAK and paxillin, we tested the effect of S1P on vinculin 

localization. Vinculin is another focal adhesion protein that has also been shown to 

associate with cell-cell junctions (118). Figure 7 displays an increase in focal adhesion 

protein localization to cell-cell junctions following the addition of S1P. While 

phosphorylated FAK(Y397) and paxillin staining are consistent with the literature (57), 

an increase in vinculin localization to the cell-cell junctions with S1P has not been 

shown previously. Interestingly, vinculin appears to localize to punctate focal adhesion 

structures as well as linear junctional structures.  

Once we defined the effects of S1P on focal adhesion protein localization to EC 

junctions, we tested whether silencing of ANXA2 would alter the localization focal 

adhesion proteins to EC junctions in response to S1P. ECs expressing shβ2M-1 and 

shANXA2-1 were seeded at confluence, serum starved, treated with S1P, and analyzed 

by immunofluorescent staining as in Figure 3. As shown in Figure 8, vinculin, 

pFAK(Y397), and paxillin were localized in large focal adhesion structures near the cell-

cell junctions in the control (shβ2M-1). Vinculin localization did not change overtly in 
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the absence of ANXA2, although the presence of a wide junctional localization of 

vinculin in the shANXA2-1 cells is noteworthy, confirming the dual role of vinculin as 

both a focal adhesion and junctional protein that interacted with VE-cadherin (118). In 

contrast to vinculin, paxillin- and pFAK-positive focal adhesions appeared smaller in the 

shANXA2-1 cells. 

 

 

Figure 7. S1P stimulates focal adhesion protein localization to junctions. 

Representative confocal EDF images from one of three independent experiments 
illustrating that S1P causes vinculin, phosphorylated FAK (Y397), and paxillin to move 
to cell-cell junctions. HUVECs were seeded onto collagen I-coated glass coverslips 
overnight. After 18 hours cells were serum starved for 2 hours, and either left untreated 
(upper panels) or treated with 1µM S1P (lower panels) for 1 hour, fixed, and stained 
with primary (and corresponding secondary) antibodies directed to, from left to right,  
vinculin (119), pFAK (Alexa 488), and paxillin (119). Nuclei were stained with 1μM 
DAPI (blue). Scale bar = 10μm.  



 

41 

 

 
 
Figure 8. Knockdown of ANXA2 alters S1P-induced focal adhesion protein 

localization to cell-cell junctions. 

Representative confocal EDF images illustrating from left to right the localization of 
vinculin, FAK phosphorylated at Y397, and paxillin with ANXA2 knockdown. shβ2M-
1, upper panels; shANXA2-1, lower panels. ECs expressing shβ2M or shANXA2 were 
seeded on collagen I-coated glass coverslips overnight. After 18 hours cells were serum 
starved for 2 hours, treated with 1μM S1P for 1 hour, fixed, and stained as shown in 
Figure 7. Scale bar = 10μm.  
 

To confirm the punctate structures near the junctions were focal adhesions, we 

costained ECs expressing shβ2M-1 and shANXA2-1 with paxillin and pFAK. Figure 9 

shows a magnified image of the focal adhesions near the junctions. Both proteins 

localized to large focal adhesions in the shβ2M-1 cells. In the shANXA2-1 cells, 

however, the focal adhesions were much smaller and appear to have much less paxillin 

and pFAK.  
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Figure 9. ANXA2 knockdown reduces focal adhesion size near endothelial 

junctions. 

Representative confocal EDF images from one of three independent experiments 
illustrating that focal adhesions indicated by pFAK (Y397) and paxillin, appear smaller 
near EC junctions when ANXA2 expression is knocked down. ECs expressing shβ2M-1 
or shANXA2-1 were seeded on collagen I-coated glass coverslips overnight. After 18 
hours cells were serum starved for 2 hours, treated with 1μM S1P for 1 hour, fixed, and 
stained with primary antibodies directed to pFAK and paxillin and corresponding 
secondary antibodies conjugated to Alexa 488 and 594, respectively. Nuclei are stained 
with 1μM DAPI (blue). Arrowhead indicates focal adhesions near endothelial junctions. 
Scale bar = 5μm.  
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To confirm this we quantified focal adhesion size using MATLAB. Confocal EDF 

images were input into a MATLAB program generously written by Dr. Po Feng Lee for 

the quantification of focal adhesion size. Figure 10A displays the steps the program 

takes to prepare the images for quantification. The image is read by the program; the 

detected signal is amplified; a mask is applied to eliminate the background signal; and 

the focal adhesion sizes are measured and quantified. Focal adhesion sizes were 

measured for both shβ2M-1 and shANXA2-1 cells stained for paxillin. A twelve percent 

reduction in size was detected from focal adhesions in the control group compared to the 

shANXA2-1 group (Figure 10B). This indicates that ANXA2 is required for the S1P-

induced localization of focal adhesion proteins, specifically paxillin, to large focal 

adhesions near cell-cell junctions. 
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Figure 10. Knockdown of ANXA2 reduces focal adhesion size. 

(A) Representative images and original confocal EDF image illustrating how the focal 
adhesion size was quantified using MATLAB software. ECs expressing shβ2M or 
shANXA2 were seeded on glass coverslips overnight. After 18 hours cells were serum 
starved for 2 hours, treated with 1μM S1P for 1 hour, fixed, and stained for paxillin. 
Confocal EDF images were analyzed by MATLAB. Scale bar = 10μm. From left to 
right, the raw image, the image after amplification (upper panels), the amplified image 
after application of a mask eliminating background, and the original image for 
comparison (lower panels). (B) Relative average focal adhesion size for three 
independent experiments. Data represent analyses of more than 11,000 total focal 
adhesions/group. (Student’s t-test, ＊＊＊ p<0.0001).  
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After testing the effects ANXA2 silencing on the localization of various 

junctional and focal adhesion proteins, we performed additional co-stains to further 

examine which proteins might colocalize at the junction. These studies, shown in Figure 

11, revealed that the wide portions of the shANXA2-1 cell-cell junctions showed a 

“honeycomb” pattern when stained for VE-cadherin, β-catenin, or PECAM-1. This 

pattern of VE-cadherin and PECAM-1 staining in ECs has been reported as a “reticular 

junction” in unstimulated HUVECs cultured on fibronectin coated coverslips for more 

than 48 hours (109). While PECAM-1, VE-cadherin and β-catenin localized to reticular 

areas, ZO-1 and paxillin did not. Reticular junctions are indicated by arrowheads. 

Following identification of the shANXA2-1 EC junctions as “reticular,” we had a 

blinded volunteer quantify the number of reticular junctions in shβ2M-1 and shANXA2-

1 groups as indicated by the “honeycomb” pattern of VE-cadherin staining. At least 7 

images were quantified for each cell type in each of three independent experiments. 

Figure 12 displays representative photos from the two groups and the quantification of 

the reticular junctions illustrating the shANXA2-1 cells had almost six times the number 

of reticular junctions as the shβ2M-1 cells. 

 



 

46 

 

 
 

Figure 11. Close up of co-stains of shANXA2-1 cells to illustrate reticular junctions. 

Representative confocal EDF images showing co-stains of the indicated proteins in 
shANXA2-1 cells following a two hour serum starve and 1 hour 1μM S1P treatment as 
detailed in Figure 3. VE-cadherin, PECAM-1, and β-catenin stains exhibit a 
"honeycomb" or reticular pattern at the EC junctions. ZO-1, a tight junction protein, did 
not colocalize with VE-cadherin (top panels). The middle panels show colocalization of 
PECAM-1 and β-catenin at the EC junctions; however, as expected, paxillin did not 
colocalize with PECAM-1 (lower panels). Arrowheads indicate reticular junctions. Scale 
bar = 10μm.  
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Figure 12. shANXA2-1 cells have more reticular junctions than shβ2M-1 cells. 

(A) Confocal EDF images illustrating how the reticular junctions were quantified using 
digital images of ECs stained for VE-cadherin as shown in Figure 3. ECs expressing 
shβ2M-1 or shANXA2-1 were seeded on collagen I-coated glass coverslips overnight. 
After 18 hours cells were serum starved for 2 hours, treated with 1μM S1P for 1 hour, 
fixed, and stained. Arrowheads indicate reticular junctions. Scale bar = 10μm. (B) Data 
represent average number of reticular junctions per field ± S.E. of at least 7 fields per 
group for three blinded independent experiments. The number of reticular junctions per 
field was significantly higher in shANXA2-1 cells (Student’s t-test, ＊＊＊ p<0.0001).  
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To determine if we could recapitulate the formation of reticular junctions in ECs 

on coverslips, we first tested for optimal conditions for 48 hours of culture. ECs in 

culture were predicted to require serum to provide them with growth and survival 

signals; however, to determine the effects of S1P or other proangiogenic stimuli, placing 

ECs in low-serum medium would ensure cell quiescence. Therefore, to establish a low 

serum environment that maintains cell viability, confluent EC monolayers were seeded 

on collagen I-coated glass coverslips for 18 hours in growth medium  (13% FBS). After 

18 hours, the full serum medium was removed, the cells were rinsed three times with 

M199 and low serum medium ranging from 0.65% serum to 6.5% serum was added to 

the cells. After 48 hours in less than 2.6% serum, ECs detached from coverslips, 

indicating they were no longer healthy (Figure 13). Serum levels ranging from 6.5 to 

2.6% serum promoted EC attachment and maintained a continuous monolayer.  

Therefore, all subsequent experiments used medium containing 2.6% serum to culture 

ECs on coverslips for longer than 24 hours.  

The original report of reticular junctions by Millan and colleagues utilized 

fibronectin as a substrate (109).  To test whether fibronectin is required for reticular 

junction formation, we seeded HUVECs onto glass coverslips coated with fibronectin, 

collagen type I, collagen IV, and Matrigel for 48 hours under quiescent, low serum 

(2.6%) conditions.  Interestingly, we discovered the presence of reticular junctions on all 

matrix proteins tested (Figure 14). This observation led us to characterize the formation 

of these reticular junctions temporally. 
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Figure 13. Establishing quiescent EC monolayers on 2D coverslips. 

Representative phase images illustrating the cobblestone morphology and relative 
confluence of ECs when cultured under low serum conditions. HUVECs were seeded 
onto collagen I-coated glass coverslips and allowed to attach in media containing 13% 
fetal bovine serum overnight. After 18 hours the media was replaced with reduced-serum 
media; upper panels from left to right, cells in medium containing 6.5% serum, 5.2% 
serum, 3.9% serum; lower panels from left to right cells in medium containing 2.6% 
serum, 1.3% serum, and 0.65% serum. Cells were imaged after incubation for 48 hours. 
Scale bar = 100μm.  
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Figure 14. Reticular junctions form in ECs seeded on multiple matrix proteins 

under quiescent conditions. 

Representative confocal EDF images illustrating the presence of reticular junctions in 
ECs seeded onto several matrix proteins under low serum conditions. ECs were seeded 
onto glass coverslips coated with 20µg/mL collagen I, collagen IV, fibronectin, and 
Matrigel. The cells were allowed to attach in media containing full serum (13%) 
overnight. After 18 hours the media was replaced with reduced-serum media (2.6%) for 
an additional 20 hours. The cells were then fixed and stained with VE-cadherin and 
imaged as shown in Figure 3. Nuclei are stained with 1μM DAPI (blue). Arrowheads 
indicate reticular junctions. Scale bar = 10μm.  
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HUVECs were seeded onto collagen I-coated coverslips and allowed to attach 

overnight in growth medium. After 18 hours the cells were placed in low serum (2.6% 

FBS) medium for indicated time ranging from 15 minutes to 12 hours before fixation, 

permeabilization, blocking, and staining. Figure 14A shows representative images of 

ECs stained with VE-cadherin and appropriate secondary antibodies conjugated to Alexa 

594 from one of two independent experiments. After 15 minutes almost no reticular 

junctions are seen; however the number of reticular junctions identified per image 

increased with time (Figure 15A, B). There was a significant increase in the number of 

reticular junctions after 8 hours in culture on coverslips. Serum contains ~600nM S1P 

(120); as the cells are cultured in low serum, we suspect over time they undergo S1P 

withdrawal. This raises the possibility that the ECs create reticular junctions in response 

to S1P withdrawal. We also observed an increase in the relative amount of VE-cadherin 

after 4 hours (Figure 15C).  

In addition to VE-cadherin expression, ZO-1 expression levels also changed over 

time. Figure 16A shows representative images of cells on coverslips prepared at time 

points ranging from 15 minutes to 12 hours as in Figure 15. The cells were stained with 

antibodies directed to ZO-1 and appropriate secondary antibodies conjugated to Alexa 

488. The relative intensity levels of ZO-1 increased over time, Figure 16B. Compared to 

all earlier time points, the relative intensity of ZO-1 was significantly higher 12 hours 

after culture in low serum. If we compare this timeline to EC sprouting in 3D collagen 

matrices, sprout formation begins at approximately 3 hours and progresses to full cell 

invasion after 12 hours (112). It is tempting to speculate that VE-cadherin, ZO-1, and 
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reticular junctions may promote EC sprouting and invasion after 4 hours. Time course 

studies are underway to determine whether the formation of reticular junctions coincides 

with initiation of EC invasion into 3D collagen matrices.  

 

Figure 15. Reticular junction formation is time dependent. 

(A) Representative confocal EDF images illustrating the presence of reticular junctions 
in ECs seeded onto glass coverslips coated with 20µg/mL of collagen I. The cells were 
allowed to attach in media containing full serum (13%) overnight. After 18 hours the 
media was replaced with reduced-serum media (2.6%) for an additional 0.25, 4, 8 or 12 
hours. The cells were then fixed, and stained with VE-cadherin and imaged as shown in 
Figure 3. Nuclei were stained with 1µM DAPI (blue).  Arrowheads indicate reticular 
junctions. Scale bar = 10μm. (B) Quantification of the number of reticular junctions 
observed with time. Two images were analyzed at each time point for two independent 
experiments. Data are presented as average number of reticular junctions per field ± S.E. 
using a 60× objective.  There were significantly more reticular junctions after 8 hours in 
culture than after 0.25 hours. (Student’s t-test, ＊ p<0.05). (C) Data are presented as the 
mean fluorescence intensity per field ± S.E. using a 60× objective and measured from 
EDF confocal images (2 images per group per experiment) using NIS Elements software 
and normalized to 0.25 hour time point. There was significantly more VE-cadherin after 
4 hours in culture than after 0.25 hours. (Student’s t-test, ＊ p<0.05). 
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Figure 16. ZO-1 expression increases with time in reduced-serum medium. 

(A) Representative confocal images from one of two independent experiments 
illustrating that ZO-1 expression increased with time. ECs were seeded on collagen I-
coated glass coverslips overnight. After 18 hours cells were placed in low serum (2.6%) 
medium for 0.25, 4, 8, and 12 hours. Cells were then fixed and stained with primary 
antibodies directed to ZO-1 and secondary antibodies conjugated to Alexa 488. Nuclei 
were stained with 1µM DAPI (blue). Scale bar = 10μm. (B) Data are presented as the 
mean fluorescence intensity per field ± S.E. using a 60× objective and measured from 
EDF confocal images (2 images per group per experiment) using NIS Elements software 
and normalized to 0.25 hour time point. There was a significant increase in the relative 
intensity of ZO-1 after 12 hours in low serum culture when compared to the intensity 
after 15 minutes in low serum culture. (Student’s t-test, ＊ p<0.05).  
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One interesting question raised by these results is whether a similar mechanism is 

responsible for formation of reticular junctions in response to both serum withdrawal, 

which is potentially due to lowering S1P levels, and the silencing of ANXA2 in ECs. 

These two types of reticular junctions are formed under different conditions; in 

particular, shANXA2-1 cells form reticular structures in the presence of S1P, while non-

transduced ECs form reticular structures after 8 or more hours in low (2.6%) serum 

culture. In Figure 16, we tested whether non-transduced ECs would form reticular 

structures in the presence of S1P.  Experiments were conducted as in Figures 15 and 16 

with a single addition of 1µM S1P at time 0. The addition of S1P inhibited reticular 

junction formation throughout the 12 hours in culture (Figure 17A, B) suggesting S1P 

somehow prevented or opposed reticular junction formation. These data also raise the 

interesting possibility that serum withdrawal and loss of S1P signaling allows reticular 

junction formation. There were no significant differences in reticular junction formation 

between any of time points collected in the S1P treatment group (Figure 17B). However, 

there was a significant difference in the average number of reticular junctions at 8 hours 

between the No Treatment and S1P treatment groups. We are currently conducting 

experiments exploring the effect of FTY720 treatment, an S1P1 inhibitor (121), on the 

formation of reticular junctions. We expect these data will confirm whether antagonizing 

S1P signaling leads to the formation of reticular junctions. 
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Figure 17. Reticular junction formation is inhibited by S1P. 

(A) Representative confocal EDF images illustrating the presence of reticular junctions 
in ECs seeded onto glass coverslips coated with 20µg/mL of collagen I. The cells were 
allowed to attach in media containing full serum (13%) overnight. After 18 hours the 
media was replaced with reduced-serum media (2.6%) with either no treatment (control) 
or 1µM S1P for an additional 12 hours. The cells were then fixed, and stained with VE-
cadherin primary antibodies and secondary antibodies conjugated to Alexa 488. Nuclei 
were stained with 1µM DAPI (blue).  Arrowheads indicate reticular junctions. Scale bar 
= 10μm. (B) Quantification of the number of reticular junctions observed per field with 
time when ECs were placed in low serum for 12 hours with and without S1P treatment. 
Two images were collected and analyzed at each time point for each of two independent 
experiments. Data are presented as average number of reticular junctions per field using 
a 60× objective ± S.E.  There were significantly less reticular junctions after 8 hours in 
culture with S1P treatment than in control group. Additionally, there was no significant 
increase in number of reticular junctions between timepoints with the addition of S1P as 
there was after 8 hours without S1P. (Student’s t-test, ＊ p<0.05). 
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S1P appears to be a key factor in suppressing the formation of reticular junctions 

in non-transduced ECs; however, shANXA2 cells form reticular junctions despite the 

addition of S1P (Figure 11). To determine if the non-transduced reticular junctions have 

a similar protein distribution as the shANXA2 reticular junctions, we conducting co-

staining experiments. Non-transduced HUVECs were seeded onto collagen I-coated 

coverslips and allowed to attach overnight in full serum. After 18 hours the cells were 

placed in low serum (2.6%) media for 12 hours with no treatment or with 1µM S1P 

before fixation, permeabilization, blocking and staining. ECs were co-stained with VE-

cadherin and ZO-1 (Figure 18A), as well as VE-cadherin and paxillin (Figure 18B), and 

appropriate secondary antibodies conjugated to Alexa 488 and 594 from one of two 

independent experiments.  

Ultimately, similar to the shANXA2 reticular junctions, the non-transduced EC 

reticular junctions exhibit no colocalization of VE-cadherin and ZO-1 or paxillin 

denoted by dotted circles, while the linear regions denoted by arrows show 

colocalization of VE-cadherin with either ZO-1 or paxillin. Also noteworthy is the 

relative size of the reticular junctions. 1µM S1P was added to stimulate paxillin 

movement to the linear junctions; however, reticular junction formation is opposed by 

S1P explaining the relatively small reticular junction in the S1P images compared to the 

cells not treated with S1P. Overall, despite the size difference with the addition of S1P, 

the protein localization in the non-transduced EC reticular junctions and the shANXA2 

reticular junctions is similar. 
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Figure 18. Reticular junctions in non-transduced ECs have some similar attributes 

to reticular junctions formed in shANXA2 cells. 

Representative confocal EDF images illustrating co-stains of non-transduced ECs that 
create reticular junctions similar to shANXA2 cells as seen in Figure 11. ECs were 
seeded on collagen I-coated glass coverslips overnight in growth medium containing 
13% FBS. After 18 hours cells were placed in low serum (2.6%) medium for 12 hours 
either with no treatment or 1µM S1P, fixed, and stained with primary antibodies directed 
to (A) ZO-1 and VE-cadherin and corresponding secondary antibodies conjugated to 
Alexa 488 and 594, respectively or (B) VE-cadherin and paxillin and corresponding 
secondary antibodies conjugated to Alexa 488 and 594, respectively. ZO-1 does not 
colocalize with VE-cadherin at the reticular junction as in the No Treatment group, 
dotted circle; however, at linear junctions as seen with S1P treatment, ZO-1 and VE-
cadherin colocalize. VE-cadherin and paxillin overlap with addition of S1P at linear 
junctions, arrow; however, as in the shANXA2 cells, paxillin did not localize with VE-
cadherin at reticular junctions, dotted circle. Nuclei were stained with 1µM DAPI (blue). 
Scale bar = 5μm. 
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 Because shANXA2 cells displayed an increase in the amount of reticular 

junctions and ANXA2 was required for EC sprouting in 3D collagen matrices (108), we 

tested whether reticular junctions were present in non-transduced EC monolayers during 

sprouting. HUVECs were seeded onto 3D collagen matrices (1mg/mL) containing 1µM 

S1P and 40ng/mL of VEGF and bFGF as previously described (112). After 24 hours 

samples containing invading cells were probed for ZO-1 and VE-cadherin using 

confocal microscopy. Analysis of the EC monolayer on the surface of the collagen 

matrices revealed the presence of numerous reticular junctions, as well as the presence 

of sprouts initiating from reticular junctions (Figure 19). The orientation of the images in 

the upper panels is a top down view where the arrow points to the open lumen of a 

newly formed sprout. The middle panels and lower panels display the same field in a 3D 

view at a 45o angle and a side view, respectively. Noteworthy, are the number of cells 

and junctions involved in the sprout initiation shown confirming the importance of 

junctions during sprouting angiogenesis. These data suggest that reticular junctions may 

have a direct role in promoting EC sprouting.  
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Figure 19. Invading sprouts initiate from reticular junctions in 3D. 

Representative confocal EDF and 3D images illustrating sprout initiation from reticular 
junctions. Non-transduced ECs were seeded on 3D 1mg/mL collagen I matrices 
containing 1µM S1P and fed with low serum media containing 40ng/mL of VEGF and 
bFGF overnight. After 24 hours cells were fixed and stained with primary antibodies 
directed to ZO-1 and VE-cadherin and corresponding secondary antibodies conjugated 
to Alexa 488 and 594, respectively. Nuclei were stained with 1µM DAPI (blue). Upper 
panels display EDF images at a top down view. The middle panels display a view at a 
45o angle and the lower panels display a side view. Arrowheads indicate reticular 
junctions. Arrow indicates sprout initiation from reticular junctions. Scale bar = 10µm.  
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For all experiments shown, prior to this 3D experiment, ECs were cultured on 

glass coverslips coated with a thin layer of matrix proteins. Notably, 3D invasion 

experiments are conducted on collagen matrices, which are much more pliable. We 

suspect that changing the matrix stiffness or changing the concentration of the matrix 

proteins will affect the size or number of reticular junctions. Figure 20 shows 

representative images from a pilot study in which we compare the number of reticular 

junctions in non-transduced ECs seeded onto either 1mg/mL or 5mg/mL 3D collagen 

matrices. The experiment was conducted for 24 hours as in Figure 19 with S1P and 

growth factor treatment. This experiment will need to be repeated prior to quantification; 

however, at present it appears that ECs seeded on 5mg/mL gels form more reticular 

junctions than on 1mg/mL gels. Cells on 5mg/mL gels have an increased number of 

invading cells than cells on 1mg/mL gels (data not shown). Thus, the increased 

formation of reticular junctions on 5mg/mL gels, appears to correlate with a higher 

number of invading structures when compared to 1mg/mL gels. The location of the 

reticular junctions is also interesting. There are areas of natural alignment of the ECs. 

These areas contain many linear junctions and few reticular junctions; however, in the 

areas where the cells are not aligned, we notice more reticular junctions and fewer linear 

junctions suggesting cell misalignment may also contribute to reticular junction 

formation. 

Finally, we used a mouse decidua model to determine the prevalence of reticular 

junctions in vivo. Following implantation, the maternal mouse uterine tissue undergoes a 

rapid transformation characterized by a robust angiogenic response. In Figure 21, we 
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observed blood vessels in the decidua surrounding the implantation site. In larger and 

more stabilized vessels, we observed EC alignment and linear EC junctions. In 

somewhat smaller and more tortuous vessels, presumably, vessels undergoing 

angiogenesis, the EC junctions, as illustrated by PECAM-1 staining, contain reticular 

regions. These data support the role of alignment in reticular junction formation and the 

presence of reticular junctions in vivo in tissue regions experiencing vascularization. 

 
 
 

 
 

Figure 20. Increased collagen density increases number of reticular junctions in 3D. 

Representative confocal EDF images illustrating reticular junctions on 3D in 1 and 
5mg/mL collagen I gels. Non-transduced ECs were seeded on 3D 1mg/mL or 5mg/mL 
collagen I matrices containing 1µM S1P and fed with low serum media containing 
40ng/mL of VEGF and bFGF overnight. After 24 hours cells were fixed and stained with 
primary antibodies directed to ZO-1 and VE-cadherin and corresponding secondary 
antibodies conjugated to Alexa 488 and 594, respectively. Nuclei were stained with 1µM 
DAPI (blue). Data presented are representative of one independent experiment. 
Arrowheads indicate reticular junctions. Scale bar = 10µm. 
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Figure 21. Reticular junctions present in tortuous vessels of mouse deciduas. 

Representative confocal EDF images illustrating reticular junctions in tortuous vessels, 
but not linear vessels in mouse decidua. 7.5 days after implantation mouse decidua tissue 
was harvested, fixed, and stained with primary antibodies directed to PECAM-1 and α-
catenin, and corresponding secondary antibodies conjugated to Alexa 488 and 594, 
respectively. The left panel displays a stabilized vessel containing aligned ECs and linear 
junctions. The right panel displays a tortuous vessel containing reticular junctions. 
Nuclei were stained with 1µM DAPI (blue). Data presented are representative of one 
independent experiment. Dotted circle indicates reticular junctions. Scale bar = 5µm. 
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CHAPTER IV  

DISCUSSION 

 

We report here the importance of ANXA2 in EC junctional integrity, and in 

particular as a required protein for transducing S1P stimulation into barrier 

enchancement. To determine the importance of ANXA2 in junctional stability, we first 

generated and characterized ECs with the ANXA2 protein silenced by directed shRNA. 

Protein and mRNA silencing was successful for each of the clones in both the ANXA2 

groups and control (β2M) groups as determined by qtPCR and Western Blot. 

Additionally, the morphology and cell size of the knockdown cells was not significantly 

different from the non-transduced ECs.  

Upon analysis of the cell-cell junctions a wide reticular pattern was discovered in 

the ANXA2 knockdown cells following S1P treatment, while the control cells had linear 

cell-cell junctions as displayed by VE-cadherin staining. This reticular staining pattern 

was true for many adherens junction proteins including VE-cadherin, PECAM-1, 

Filamin A, and α- and β-catenin. Following analysis of the adherens junctions proteins, 

we detailed the affect ANXA2 removal has on focal adhesion proteins.  Garcia and 

colleagues have shown that in addition to stimulating adherens junctions protein 

localization to the cell-cell junctions, S1P also stimulates focal adhesion proteins, such 

as paxillin and FAK to localize to cell-cell junctions (57). We show that localization of 

vinculin, a protein with roles both as a focal adhesion protein and a junctional protein 

(118), to cell-cell junctions is also enhanced by S1P treatment; however, when ANXA2 
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is silenced, neither FAK, paxillin, nor vinculin form large focal adhesions near the cell-

cell junctions, particularly, near the reticular cell-cell junctions. Finally, we discovered 

that a tight junction protein, ZO-1 was not a member of the reticular junctions. ZO-1, 

stimulated by S1P to bind to α-catenin and enhance tight junction formation (91), did not 

localize in the same reticular pattern as α-catenin in cells lacking ANXA2. These data 

spur further questions about the association of reticular junctions lacking ANXA2 with 

the actin cytoskeleton under the influence of S1P. ANXA2 is required for the formation 

of actin-rich tight junctions (106) and reticular junctions formed in non-transduced cells 

lack significant actin localization (109), so we expect that reticular junctions lacking 

ANXA2 will be deficient in actin even in the presence of S1P, which stimulates the 

formation of actin-rich tight junctions (92). Ongoing experiments include reconstitution 

of Akt in shANXA2 cells. Akt is downstream of ANXA2 in the S1P signaling pathway, 

and reconstitution of Akt in shANXA2 cells has been shown to recover the invasive 

capacity of the ECs on 3D collagen matrices (108). Once generated, the cells will be 

assessed via immunofluorescence in both 2D and 3D experiments. We will be looking 

specifically for the recovered presence of linear adherens junctions, as well as the 

localization of focal adhesion proteins and actin at the EC junctions. 

The discovery of reticular junctions in shANXA2 cells stimulated our interest in 

reticular junctions found in non-transduced and non-stimulated ECs. After defining a 

protocol for culturing cells on coverslips under quiescent conditions for over 48 hours, 

we repeated and expanded on the experiment that first discovered reticular junctions 

(109). We found reticular junctions forming on several matrix protein substrates and an 
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increase in the number of reticular junctions over time. A potential cause in the change 

in number of reticular junctions over time could be due to the relative changes in 

adherens junction and tight junction proteins, specifically VE-cadherin and ZO-1 (Figure 

22). Between 4 hours and 12 hours on coverslips in low serum, the cells exhibit a loss of 

VE-cadherin fluorescence intensity and an increase in ZO-1 intensity that correlates with 

an increase in reticular junctions. Ultimately, we plan on looking at VE-cadherin and 

ZO-1 expression levels over time in cells lacking shANXA2 to determine if the removal 

of ANXA2 alters the regulation of these proteins over time. 

 

 

Figure 22. Schematic of trends in protein fluorescence and reticular junction 

prevalence. 

 

The reticular junctions formed over time in non-transduced ECs resembled those 

formed in shANXA2 cells due to the consistent reticular localization of VE-cadherin, 

linear localization of ZO-1, and lack of paxillin at the reticular junctions in both groups. 

The primary difference between the two types of reticular junctions is their ability to 

respond to S1P treatment. shANXA2 cell junctions are reticular with the addition of S1P 
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and at early time points, where as non-transduced ECs do not form reticular junctions 

either at early time points or under the influence of S1P. In addition, qualitatively, the 

shANXA2 cell reticular junctions appear larger and much more developed than the non-

transduced EC reticular junctions. Taken together, these data suggest that ANXA2 is 

required for a proper junctional response to S1P.  

Interestingly, in 3D we discovered the presence of reticular junctions in non-

transduced cells despite the presence of S1P. These data were unexpected due to our 

results in 2D illustrating a suppressive role of S1P in reticular junction formation. We 

speculate that the response to S1P is dependent on matrix stiffness and cell alignment. In 

2D, on stiff glass, as the cells undergo S1P withdrawal, the ECs begin migrating onto 

each other in response to the stiff matrix to lessen the tension they sense causing 

reticular junctions to form. The addition of S1P fortifies the EC junctions in 2D as 

shown by (36) and enforces cell contact inhibition.  

We also observed reticular junctions contributing to sprout initiation. The EC 

junctions are dynamic and able to change rapidly in response to proangiogenic stimuli. 

In Figure 23, we propose a model for the rapid reaction of ECs to S1P on 3D collagen 

matrices. Upon initial signaling, S1P causes an increase in the tight junction and 

adherens junction protein localization to the EC junctions in a linear pattern. Over time 

the activated cells begin to migrate on the soft substrate causing a reticular junction to 

form. We propose a tight junction remains intact on the apical side of the reticular 

junction. The cell will then begin to invade the soft matrix increasing its contact with the 

integrin binding sites in the matrix.  
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Figure 23. Proposed model for orientation of tight and reticular adherens junctions 

in sprouting ECs. 

 

To confirm these speculations future studies will include the use of an S1P 

inhibitor in 2D to determine if reticular junctions increase over time. In addition, non-

transduced ECs will be placed on 3D collagen gels to determine if reticular junction 

formation changes with time on 3D matrices in the presence of S1P. Another interesting 

experiment includes testing non-transduced ECs on collagen matrices without S1P to 

determine if S1P affects the ability of cells to create reticular junctions in 3D. To 

confirm data in Figure 20, cells will be seeded onto collagen matrices of differing 

collagen concentrations and reticular junctions will be quantified to determine if the 

matrix protein concentration affects reticular junction formation. Finally, we will 

continue to look in mouse uterine tissue samples at various stages of pregnancy when 

angiogenesis is abundant and characterize reticular junctions in vivo. 

In summary, ANXA2 is required for EC junctional response to S1P, and is 

therefore required for EC sprout initiation as seen in our lab previously. Furthermore, 

this study provided insight into the dynamic nature of the endothelium and the EC 

junctions following activation by S1P, supporting a role for reticular junctions in 

sprouting angiogenesis. 
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CHAPTER V  

CONLUSIONS 

  

Removal of the ANXA2 protein in ECs results in the formation of wide reticular 

junctions in 2D, affecting localization of adherens junction proteins such as VE-

cadherin, PECAM-1, filamin A, and α- and β-catenin. Focal adhesion proteins, such as 

paxillin and FAK, are stimulated to localize to adherens junctions by S1P (57). We show 

that vinculin localization to cell-cell junctions is also enhanced by S1P treatment; 

however, when ANXA2 is silenced, neither FAK, paxillin, nor vinculin form large focal 

adhesions near the cell-cell junctions, particularly, near the reticular cell-cell junctions.  

Reticular junctions are reported in the literature in non-transduced cells seeded 

on fibronectin coated glass coverslips (109). We show that these reticular junctions are 

present in ECs seeded on collagen I-, collagen IV-, and Matrigel-coated glass coverslips 

in addition to fibronectin. We characterize these reticular junctions temporally, showing 

the number of reticular junctions increases over time, particularly after 8 hours in low 

serum culture medium. Levels of VE-cadherin and ZO-1 are also regulated over time in 

cells forming reticular junctions, upregulated at 4 hours and 12 hours, respectively.  

Most striking is the affect S1P has on reticular junction formation. The addition of S1P 

to ECs abrogates the formation of reticular junctions in 2D. 

Upon comparison of the proteins involved, the shANXA2 reticular junctions and 

the non-transduced EC reticular junctions appear similar. In both groups only adherens 

junctions proteins participate in reticular localization while focal adhesion proteins and 
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tight junction proteins do not localize in a reticular pattern. The junctions differ, 

however, in that the shANXA2 reticular junctions form in the presence of S1P while the 

non-transduced reticular junctions do not, indicating ANXA2 is required for proper 

junctional response to S1P.  

Finally, we show the presence of reticular junctions in EC monolayers on 3D 

collagen matrices, reticular junctions contributing to EC sprout initiation, and reticular 

junctions present in tortuous vessels in vivo. The discoveries detailed in this thesis 

illustrate the importance of ANXA2 in EC junctional response to S1P as well as the 

potential for future discoveries concerning the role of reticular junctions in sprouting 

angiogenesis. 
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