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ABSTRACT 

 

The building envelope is one of the most important design parameters for 

determining how the indoor physical environment relates to thermal comfort, visual 

comfort, and even occupants’ working productivity. Thus, the building envelope 

significantly affects the energy usage of a building. In an effort to simultaneously 

consider and satisfy all of the various indoor comfort requirements, changing climatic 

conditions can generate conflicting conditions. Acclimated Kinetic Envelope (AKE) is a 

notion proposed in this research to address these types of situations. 

There have been a number of experimental designs and practices dealing with the 

potential benefits of AKE. However, there has yet to be a detailed comparison in terms 

of the various impacts on building energy, indoor comfort, and other human factors, 

especially in different climates. The general objective of this research was to evaluate 

AKE’s performance on energy usage and human factors, and compare that information 

to CEE's in office buildings in four different climatic zones. The research methodology 

had two key elements: energy simulations and mockup surveys. With respect to energy 

use, the research employed a parametric simulation to assess building heating and 

cooling loads, the effects of envelope assemblies, and the overall building energy use 

related to the two types of envelopes (AKE and CEE). With respect to human factors, the 

research adopted mockup tests and surveys to evaluate the visual qualities and human 

responses of the two types of blind systems strategies (AKE and CEE). 

This research determined the following: 1) Compared to the other referenced 
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models, AKE technologies significantly reduced the heating and cooling loads and peak 

demands of buildings, even with regards to designs using highly-insulated glazing and 

walls, in the representative climates. 2) Kinetic windows played a more significant role 

in energy saving than other kinetic elements existing in the four representative climates; 

the savings were approximately twice as large as the savings from highly-insulated 

glazing. 3) Only cooling-dominated climate installations were able to obtain energy 

savings by setting up external movable blinds. 4) Mockup survey results showed that 

overall satisfaction with the visual quality created by external movable blinds was 

statistically higher than the satisfaction related to external static blinds. Similar trends 

were also found in the subjective responses to “Lighting Levels, Lighting Distributions, 

and Glare Sensation.” 
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1. CHAPTER I 

INTRODUCTION 

 

1.1 Background 

The use of mechanical devices may make highly conditioned buildings 

insensitive to the environment, uncoupling the building envelope from its role as an 

environmental moderator. However, this ignores the nature of sustainable buildings to 

acclimate (or climatically respond) to the environment and take full advantage of the 

positive influences found in nature. The building envelope is one of the most important 

design parameters for determining the indoor physical environment as it relates to 

thermal comfort, visual comfort, and even occupants’ productivity; as a result, it 

radically affects a building's energy usage (Berkoz & Yilmaz, 1987; Lee et al., 2006; 

Oral & Yilmaz, 2003). In particular, the thermophysical and optical properties of 

building envelopes are the key factors defined by the material and geometry of building 

envelope components. As interest increases in net-zero energy buildings, even the 

current high performance envelopes fall short. Most available building envelopes are 

static, whereas climatological boundary conditions and user preferences are constantly 

changing. Some requirements, especially in response to changing climatic circumstances, 

can even create conflicting conditions (e.g., negative solar heat gains vs. desired sunlight, 

lower wall insulation vs. appropriate air temperature, etc., as shown in Table 1.1). As a 

result, envelope designs often provide less than optimal building performance within 

certain climatic situations. 
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Table 1.1. Conflicting conditions on climate and indoor requirements 

 
Note: T  is the comfortable range of temperature; Tout is the outside temperature; Tin is 
the inside temperature. “+” refers to positive effects to indoor physical conditions, “-” 
refers to negative effects to indoor physical conditions, and “/” refers to neutral effects. 
Here, the symbols “+”, “-” and “/” are for general situations of buildings rather than all 
circumstances.  

 

 

Over the last two decades, architectural solutions incorporating technology and 

material science have been explored to deal with some of these conflicting situations. 

Another way of improving building energy efficiency would be to develop kinetic 

building envelope systems that could alter their thermal and optical properties according 

to seasonal/daily climatic variations. These Acclimated Kinetic Envelopes (AKE) 

systems or modules range from a simple, automated blind for facilitating daylighting, to 

smart glazing, variable wall insulation, sliding walls, movable roofs, solar tracking 

building-integrated photovoltaics (BIPVs), and other active components. These kinetic 

properties are designed to resolve conflictive performance objectives in real time, as can 
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be seen in Table 1.1. For example, solar heat gains are positive when the indoor 

environment is under heating conditions, but negative under cooling conditions. Some 

days may have both heating and cooling requirements, depending upon the indoor 

activities and other requirements. Integrating kinetic sunscreen systems or smart glazing 

technology may resolve such conflictive situations. 

If we scan the literature related to the kinetic characteristics of buildings, it is 

easy to notice a number of closely associated terms such as dynamic, climate responsive, 

active, intelligent, climatic adaptive, smart, interactive, high performance, and so on. In 

order to avoid ambiguity, this research has adopted two terms: “acclimate” and “kinetic.” 

The  term  “acclimate”  is  from  the  field  of  biology  and  refers  to  a  process  whereby  an  

individual organism adjusts to a gradual change in its environment (such as a change in 

temperature, humidity, etc.) through morphological, behavioral, and physical changes 

(Gatten, Echternautch, & Wilson, 1988). The term "kinetic," on the other hand, finds its 

origin in the Greek word  (kinesis), pertaining to or associated with motion; it 

indicates an organism’s response to a particular kind of stimulus in biology (Kendeigh, 

1961). In 1970, Professor William Zuk (1970) described kinetic architecture as referring 

to building components or whole buildings with the capacity to adapt to changes through 

a use of kinetics in reversible, deformable, incremental, and/or mobile modes.   

The Acclimated Kinetic Envelopes (AKE) discussed in this research are defined 

as envelopes responding to variable climatic environments and changing indoor 

performance requirements by means of their visible physical behaviors.  Through these 

behaviors, building envelopes may affect the use of building energy and the experiences 
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of the indoor occupants. Accordingly, the scope of this research was developed from the 

convergence of two key boundaries:  

 The properties of building envelopes should be kinetic rather than static. 

 Kinetic features should be related to climatic conditions and indoor 

environmental requirements rather than pure interactive aesthetics. 

1.2 Problem Statement and Research Objectives 

1.2.1 Problem Statement 

There have been a considerable number of experimental designs and practices 

focused on the potential (e.g., possible energy savings, reduction of peak demands, 

indoor comfort levels, etc.) of AKE. However, AKE also introduces a new complexity in 

understanding and evaluating the impact of building envelopes on building energy and 

building occupants.  

Researchers of Lawrence Berkeley National Laboratory (LBNL) Building 

Technologies Division have undertaken extensive efforts in studying two projects 

involving electrochromic glazing and automated blinds (e.g., Lee, et al., 1994; Lee & 

Selkowitz, 1998; Lee, et al., 2005; Lee et al., 2006; Lee & Tavil, 2007). On one hand, 

LBNL’s  simulation  work  for  these  projects  did  not  deal  specifically  with  any  of  the  

kinetic features of the opaque parts of building envelopes, but rather only window 

systems. On the other hand, LBNL’s mockup surveys were mainly used to generate 

visual comfort mathematical models for different window systems, rather than 

comparisons between different kinetic and static window systems. Therefore, there are 

currently no comprehensive studies (including those on energy and/or human responses) 
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that focus on comparative studies between AKE and CEE on building models across 

different climates. 

Because of this lack of fundamental comparisons of AKE and CEE, some 

challenges, barriers, and even failures regarding design, technology, cost, and 

maintenance exist in the current applications of AKE (Hoffman & Henn, 2008; Moloney, 

2009; Sullivan, 2006; Zerkin, 2006). All of these barriers can be traced back to the 

central issue of whether or not the bottom line incremental inputs (initial costs, operating 

and maintenance support, etc.) for AKE solutions can be justified on the basis of energy 

savings, increased occupant indoor comfort and performance, and the possible 

enhancement of amenities for a given building's application and climate. In other words, 

as compared to the Conventional Energy-Efficient Envelope (CEE) (defined as a 

conventional, energy-efficient design solution with static properties), the question is 

whether kinetic strategies of building envelopes can lead to better building performance 

across all climates, especially with regards to energy use and occupant experience.  

The lack of comparative studies has led to a significant level of uncertainty 

regarding the benefits of such new building envelope technologies. Therefore, there is a 

real demand for a clearer and more fundamental understanding of AKE, as well as a 

comparative evaluation with regards to building performance (in terms of both the 

energy and non-energy aspects) for AKE and CEE solutions across different climatic 

conditions. However, few studies have attempted a detailed comparative study in terms 

of the impacts on building energy, indoor comfort, and other human factors, especially in 

different climates. 
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1.2.1 Research Objectives 

The general purpose of this study was to evaluate AKE’s performance with 

regards to energy usage and human factors, as compared to CEE in office buildings in 

four climatic zones. To achieve this general objective, the research aimed at addressing 

the following specific issues: 

 Describing the typologies, features, and mechanisms of kinetic building 

envelopes responding to climates; 

 Identifying the methods of modeling and simulating AKE’s energy 

performance; 

 Exploring  the  energy  savings  of  kinetic  envelope  assemblies  of  AKE  in  

different climates relative to CEE; and 

 Analyzing the benefits of human factors beyond energy-centric 

performances of AKE, relative to CEE. 

1.3 Conceptual Framework 

More variables exist in AKE systems than CEE systems. Linked to the problem 

statement, a conceptual framework must be laid out to demonstrate all research variables 

and the relationships among these variables. All of the significant factors were 

considered and assembled according to the independent variables, mediate variables, 

moderator variables, and dependent variables, and in turn were organized into a 

conceptual framework (see Figure 1.1). As shown in Figure 1.1, the independent 

variables deal with building envelope characteristics (which may include both kinetic 

and static characteristics) and the dependent variables are the envelope-related 
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performance variables, including energy consumption, occupant comfort, satisfaction, 

and acceptance. Building envelopes act as a mediator, which accounts for the 

relationships among the properties of building envelopes and the envelope-related 

performance. Thus, an analysis on the functions of AKE was central to this research. Site 

and climate variables play the role of moderator, affecting the relationships among the 

properties and functions of building envelopes.  

By mapping the variables, we also were able to categorize them into three types 

of parameters regarding design, context, and performance (Rittel, 1973), as seen in 

Figure 1.2. This simpler categorization contributed to the case study, simulation, and 

evaluation process. 

 

 

Figure 1.1. The conceptual framework for this study with dependent, independent, 
moderator, and mediator variables 
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Figure 1.2. Rittel’s variable categorization applied to AKE 

 

 

The conceptual framework set the stage for our presentation of the specific 

variables and relationships related to this research. It also drove the research hypothesis, 

which was: under certain site and climate conditions, appropriated acclimated kinetic 

building skin solutions may enhance the building performance in terms of both building 

energy and indoor environmental comfort. 

1.4 Research Methodology 

In order to evaluate the above effects, the research methodology was divided into 

two aspects: an energy simulation and surveys. The entire procedure of the research plan 

is presented in Figure 1.3. 
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In terms of energy uses, this research utilized a parametric simulation to assess a 

building's heating and cooling loads, the effects of envelope assemblies, and the entire 

building's energy uses as they related to the two types (AKE and CEE) of envelopes’ 

properties.    

 With regards to human factors, this research adopted mockup tests and surveys to 

assess  the  visual  qualities  and  human  responses  to  the  two  types  (AKE  and  CEE)  of  

blind systems. 

 

 

 

Figure 1.3. The two aspects of this research and the corresponding methods 
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1.4.1 Building Energy Simulation 

In order to evaluate the potential energy savings of kinetic building envelopes, it 

was necessary to conduct a comparative simulation study. This study utilized a small 

office prototype model of 5,500 ft2 developed by the Pacific Northwest National 

Laboratory (PNNL) in four selected cities. These cities represented a range of climates: 

Houston, TX (Climatic zone number 2A), San Francisco, CA (Climatic zone number 

3C), Baltimore, MD (Climatic zone number 4B), and Chicago, IL (Climatic zone 

number 5A). The climatic zone numbers referred to the ASHRAE climatic zones 

(ASHRE, 2011). 

The energy savings evaluation used the following energy simulation programs: 

EnergyPlus (DOE, 2013), Energy Management System (EMS) (Ellis, 2007) and jEPlus 

(Zhang, 2009). The particular methods used to produce the energy simulation and the 

modeling of the kinetic envelopes are shown in Table1.2. 

 

 

Table 1.2. Programs used in simulation study 
Models Components Programs 

Reference 

Models 

Building envelopes jEPlus and EnergyPlus 

 

Kinetic 

Models 

Walls and roofs Variable Thermal Conductivity of EnergyPlus and 

jEPlus 

Fenestration EMS of EnergyPlus 

External Movable blinds Built-in features of blinds 
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These modeling and simulation methods were adopted to evaluate the potential 

benefits  of  the  Kinetic  Models  with  kinetic  envelope  systems;  additionally  they  were  

used to compare hypothetical future systems to the following three models: 1) Baseline 

Models with minimal compliance -- ASHRAE Standard 90.1-2010; 2) Advanced Models 

that use the recommendations in ASHRAE’s Advanced Energy Design Guideline 

(AEDG) for small to medium office buildings, and Technical Support Documents (TSD) 

created by PNNL with 50% energy saving goals as compared to ASHRAE Standard 

90.1-2010; and 3) Ultra1 Models that may be the next generation of energy efficient 

technologies with “ultra” insulation, but with static properties rather than dynamic 

characteristics. In this comparative study, neither the kinetic envelope assemblies of the 

Kinetic Models nor the envelope properties of the Ultra Models were currently available, 

but they represented technologies that might realistically be developed in the next 

decade. The detailed research plan included the following steps: 

1) Select Prototypical Small Office Models 

The prototypical small office models examined in this study belonged to sixteen 

reference models developed by the U.S. Department of Energy (DOE) in conjunction 

with three of its national laboratories -- Pacific Northwest National Laboratory (PNNL), 

National Renewable Energy Laboratory (NREL), and Lawrence Berkeley National 

Laboratory (LBNL); the models formerly were known as commercial building 

benchmark models. This study selected the prototypical models specifically developed 

according to ASHRAE Standard 90.1-2010, which should have resulted in a 30% energy 

                                                
1 “Ultra” here means much higher levels of insulation of opaque materials and glazing than normal.  
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savings relative to 90.1-2004.  

2) Create Baseline Models and Simulated Energy Performance 

The baseline energy level was simulated in accordance with the standards 

provided by ASHRAE 90.1-2010.  

3) Create Advanced Models and Simulated Energy Performance 

Based on ASHRAE’s AEDG and PNNL’s TSD for 50% energy saving goals 

relative to ASHRAE Standard 90.1-2004, the envelope components of the advanced 

models were improved. Other parts (e.g., HVAC, internal loads, and schedules) kept the 

settings of the Baseline Models.  

4) Create Ultra Models and Simulated Energy Performance 

The third referenced model represented further improvements in envelope 

technologies, which likely are superior to most existing efficient envelopes. In particular, 

these models were defined to have super-insulated walls, roofs, and windows. Also, the 

windows' SHGC had two levels, according to different climates; one had high solar heat 

gains, and the other had low solar heat gains. However, all envelope properties in these 

models were static.  

5) Create Kinetic Models and Simulated Energy Performance 

We proposed kinetic envelope models that took certain characteristics of Ultra 

Models, and then added dynamic properties. The kinetic envelope components included: 

“Variable Insulation for Opaque Assemblies (walls and roofs),” “Dynamic Windows and 

Glazing,” and “Movable Blinds.” These simulation techniques for these models were 

combined built-in EnergyPlus functions and EMS which was used to set up the 
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relationships among the dynamic properties and the external or internal environmental 

conditions. Also, jEplus was employed to identify the boundaries of the changes. 

6) Evaluate Energy Savings in Four Climatic Conditions 

This step compared the energy performance of the above four models in four 

selected cities; the cities were located in a heating-dominated climate, a 

cooling-dominated climate, and a mixed-climate. 

7) Determine the Effects of the Kinetic Envelope Assemblies 

In order to understand the energy benefits from each kinetic envelope element, a 

comparative energy performance analysis was conducted for each envelope component 

including walls, roofs, windows, and blinds in four selected cities. 

1.4.2 Workspace Mock-up Tests and Surveys 

In order to take non-energy benefits into account in the comparisons, this study 

selected a typical workspace of the aforementioned prototypical office model and 

focused on the study of human responses and indoor visual quality. The main methods 

utilized are described below: 

1) Set up a Mockup with Two Workspaces  

This study took place at the new TAMU Daylighting Laboratory which is a full 

scale mockup 360 degrees-rotating workspace structure built at the Riverside campus of 

Texas A&M University in Bryan, Texas (30°39 56 N 96°22 W). The daylighting lab 

was funded by a grant from the Environmental Protection Agency (EPA P3 program) 

(EPA, 2010).  The structure is an elevated room over four casters that measured 30 ft. 

deep by 20 ft. wide and 10 ft. high. The space was designed to be divided into two 
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identical rooms (10 ft. ×16 ft.), representing small open-plan offices. The two identical 

rooms had same-sized windows, glazing materials, and the same indoor setup of 

materials, desks, and chairs. The only difference between the two spaces was the 

windows' external blinds; one room was used external movable blinds, and the other was 

used external static blinds. Ideally, the movable blinds could be adjusted to fit the angles 

in order to accommodate various external lighting conditions and offer glare protection, 

while at the same time maintaining a limited view through the space between the blinds. 

Figure 1.4 shows the three desks (24 in. width, 48 in. length, and 29 in. height) that were 

placed in each room. One desk faced the window, and the other two desks faced the 

walls. The room had an air conditioning unit to maintain comfortable temperatures 

(70-75ºF) in the two rooms so that thermal conditions would not affect the subjects’ 

responses to questions regarding visual quality.  

Furthermore, the entire mockup structure could be rotated to satisfy the 

requirements of different orientations for measurements and surveys. The rotation 

enabled the mockup structure to be exposed to different solar positions and external 

lighting conditions.  
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Figure 1.4. Rotatable daylighting lab 
 

 

2) Set up Measurement Tools 

The measurement tools in this study included 28 lighting sensors and one 

luminance meter. Regarding the illuminance data, 24 lighting sensors were horizontally 

placed on the desks, and connected to a CR1000 Campbell Scientific datalogger which 

was located in between the two workspaces. Also, there were two vertical illuminance 

sensors located at eye level (48 in.). In order to record the external lighting conditions, 

we installed two sensors on the roof of the lab to measure horizontal and vertical global 

illuminance.  

3) Surveys on Occupants’ Comfort, Satisfaction, and Acceptance 

A subjective survey was carried out to assess the visual environment created by 

the external movable blinds (kinetic system). This survey study was of a two group, 
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posttest-only, randomized experimental design. The study was carried out between the 

end of September and early October of 2013. Sixty subjects were selected for this 

mockup study (30 people were in the experimental group (RM2) and another 30 were in 

the control group (RM1)). Subjects were asked to fill out a 7-point rating scale 

questionnaire (see Appendix A) after spending about 30 minutes in one of the 

workspaces.  

Subjects in the experimental group’s room (RM2) were offered motorized 

external blinds which operated according to lighting sensors, an embedded 

computational system, and user preferences. Except for the operation mode of the blinds, 

all settings related to windows, glazing, blind geometry, furniture, room color, and other 

factors were identical to the control group’s room (RM1). Subjects in the experimental 

group were not offered any controls for the blinds. People assigned to the control group, 

on the other hand, had external static blinds. No other aspects of the procedure for either 

group were controlled by the study protocol. Subjects were not told about the difference 

in blind types between the two rooms.  

The data collected from questionnaires were used for conducting statistical 

analysis via SAS JMP 10.0. An independently paired sample t-test and a Chi-square test 

were used to compare the measures of the control and experimental groups. The 

confidence interval was 95%. A p < 0.05 was considered to be statistically significant. 

1.4.3 Connection of Energy Simulations and Mockup Tests 

On the one hand, the parametric energy simulation for kinetic properties aimed at 

an evaluation of the kinetic envelopes including opaque assemblies, windows, and blinds. 
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Thus, this aspect of the study explored the energy savings of kinetic envelopes. On the 

other hand, the mockup tests and surveys were only employed in one part of the kinetic 

envelopes, the element dealing with external movable blinds for visual quality. This was 

because the benefits with regards to human factors stemming from the kinetic envelopes 

had more to do with visual comfort and thermal comfort. However, thermal comfort 

studies of kinetic envelopes were not conducted in this research because integrating 

kinetic insulated envelopes (e.g., smart materials) into the mockup structure would have 

posed a significant challenge. Most existing kinetic insulated envelopes are expensive 

and/or  difficult  to  maintain,  and  they  only  work  with  a  limited  range  of  changes  for  

kinetic properties. For example, the visible transmittance (VT) and solar heat gain 

coefficient (SHGC) of existing thermochromic glazing materials were ranged 0.05~0.60 

and 0.09~0.42, respectively (Lee et al., 2006). These two parameters were strongly 

correlated to each other. For mockup tests and surveys, therefore, it was difficult to find 

appropriate kinetic products with dynamic features similar to those proposed in this 

study. Movable blinds were adopted as a typical kinetic system in our human factor 

studies. The following four points show the links between the two key aspects (energy 

simulation and mockup surveys) in this study. 

Firstly, each workspace in the mockup structure made up one unit of the building, 

and the geometry related to the space's width, depth, height, window size and other 

factors was in accordance with the energy simulation prototypical model. Also, the 

indoor visual characteristics related to the reflection of the walls, ceiling, and floors were 

identical for the energy models and the mockup workspaces.  
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Secondly, the reference point for using daylight and dimming lights in the energy 

simulation model was located at the same point (height and distance to the windows) in 

the real world mockup of the workspace.  

Thirdly, regarding the blinds, the dimensions (slat width, spacing, and distance to 

the glazing) and properties (materials, rotation mechanisms, and controls) in the mockup 

structure were consistent with the energy simulation model. 

Lastly, the entire mockup structure was rotatable a full 360 degrees. By using this 

rotation and selecting a particular time, we generally could obtain the solar conditions in 

different locations, including the four cities that were selected for conducting the energy 

simulations of the kinetic envelopes. Therefore, the results of the surveys in the mockup 

structure were able to reveal the features and the benefits of the kinetic envelopes in 

these selected locations. 

1.5 Significance 

By exploiting the comparison between AKE and CEE solutions, this research 

provides an understanding of the relationship among climatic variables and AKE’s 

kinetic properties. Accordingly, this dissertation provides a detailed technical 

demonstration for use in future discussions regarding the applicability of AKE 

technologies in particular climates. Moreover, by clarifying the comprehensive 

evaluation approach, this study seeks to take non-energy benefits into account with 

regards to AKE’s performance. Consequently, given the impacts of building envelopes 

on a building’s energy consumption and indoor physical environment, this research 

demonstrates that both energy efficiency and human wellbeing benefits can be achieved 
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in particular buildings and certain climates. 

1.6 Organization of the Dissertation 

Figure 1.5 presents a summary of each chapter, including the topics covered in 

each. This dissertation has five chapters that are organized in the following way: 

 

 

 

Figure 1.5. The research structure and organization 
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Chapter 1 – Introduction: This chapter defines the goals and purpose of this study, 

and presents the research objectives and methodology used to accomplish these 

objectives. Chapter 1 also explains the potential contributions of this study.  

Chapter 2 – Literature Review: This chapter gives a general review of the 

fundamental knowledge currently available on kinetic architecture, current 

implementations and categorizations of acclimated kinetic envelopes, and identification 

of the critical issues with regards to surveys on indoor environmental comfort. 

Chapter 3 – Parametric Energy Simulation for Kinetic Building Envelopes: This 

chapter is one of the two research topics central to this study. It describes and illustrates 

the modeling and simulation process for AKE and the associated reference models. This 

chapter also compares the effects of AKE and CEE in terms of heating and cooling loads, 

and the overall set of building energy uses. In addition, this section explores the different 

modeling and simulation approaches for kinetic properties.  

Chapter 4 – Mockup Tests and Surveys for External Movable Blinds: This 

chapter discusses the other research topic central to this study, and illustrates an 

experimental design for assessing and comparing external movable and static blinds. 

This chapter also describes the mockup measurements of the visual environment by a set 

of instruments including lighting sensors, the datalogger, etc.  

Chapter  5  –  Conclusions:  This  chapter  summarizes  the  main  results  from  the  

energy simulations and the findings from the mockup tests and surveys, and draws 

conclusions based on these results. Chapter 5 also explains the limitations of this study. 

Lastly, this chapter proposes future research on the basis of the findings of this study.  
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The final part of this dissertation is a set of appendices that provide supporting 

materials for this study. The appendices include the questionnaires used in the mockup 

surveys, datalogger programming, and the lighting sensors’ calibrations, as well as a list 

of the design and implementation cases of AKE. 
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2. CHAPTER II 

LITERATURE REVIEW 

 

A review of the existing literature is critical to understand several important 

aspects of acclimated kinetic buildings, as well as to locating the gaps in the current 

established body of knowledge. This chapter begins with some background on kinetic 

architecture and then reviews the primary literature in this realm, concluding with a 

synthesis of the surveyed literature. The research was grouped into three sub-categories: 

Design and Implementation, Analysis of AKE’s Performance, and Methodology and 

Tools. 

The fundamental concept of kinetic architecture can be traced back to the 1970s 

work Kinetic Architecture, by Zuk and Clark. They (1970) defined this genre of 

architecture as being adaptable to changing environmental conditions (not only solely to 

climate) and pragmatic needs. With the recent advances in embedded computation, and 

due to the technical development of smart materials, sensors, and actuators, there are 

now very few technological obstacles to making buildings and buildings’ envelopes 

kinetic. These kinetic components can be as simple as automated blinds, or as complex 

as the façade system of the Institute du Monde Arab in Paris. Also, in the area of kinetic 

architecture, aesthetics and technology are beginning to converge. Nonetheless, the 

mainstream drivers behind kinetic architecture are sustainability, energy conservation, 

and occupant satisfaction (Sullivan, 2006).  
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2.1 Design and Implementation 

As the development of building materials, environmental sensors and actuators, 

and construction technologies progresses, in recent years there have been an increasing 

number of examples of kinetic architecture in the real world. However, among the 

existing cases of kinetic architecture or envelopes, only a few can be classified as being 

climatically responsive. Thus, in order to clarify what AKE really is, an extensive review 

of AKE design and implementation cases had to be conducted. The cases of AKE 

discussed in this review either have already been built, or are in the experimental, 

research, design, or development stage.  

Since AKEs are shaped strongly by climate, it makes sense to categorize them 

into distinct climate-responsive characteristics related to solar radiation, daylight, air 

flow, air temperature, and other climatic influences. These traits may exist separately in 

one single AKE module or be combined in some AKE systems and building design cases. 

Technically, an AKE can be analyzed at the system level and the building level. At the 

module level, the AKE mostly is designed to respond to a central climatic source, which 

generally  refers  to  solar  energy  and  air  flow.  Figure  2.1  shows  the  relationship  among  

different modules relating to climatic sources. At the building level, there are few design 

cases suited to our focus on the building's environmental performance. 
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Figure 2.1. Relationships of the AKE types 
 

 

2.1.1 Solar-responsive AKE 

The  solar  conditions,  including  solar  radiation  and  sunlight,  form  the  

solar-responsive AKE’s kinetic behaviors; as a result, these modules fall into three basic 

types.   

1) Solar Heat 

The  first  type  of  solar-responsive  AKE  deals  only  with  solar  heat;  it  aims  to  

maximize the acceptation of solar heat in winter and minimize solar gain in summer. The 

nature  of  this  type  of  AKE  is  to  alter  the  thermophysical  properties  of  the  module.  A  

simple example is the Solar Barrel Wall (see Figure 2.2) designed in 1973 by Baer 

(2009). Functionally, the water-filled oil barrels are able to store solar heat during the 

day because the covered wall opens, thus subjecting the barrels to the sun. The barrels 
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stop receiving heat when the covered wall is closed, which also diffuses the heat in the 

room (Knaack, Klein, Bilow, & Auer, 2007). Similarly, Jonathan Hommond’s house (see 

Figure 2.3) uses water storage bags on the roof, and operable lids that can be opened or 

closed according to the needs presented by the level of external solar radiation 

(Anderson & Michal, 1978). On the visible scale, besides any movable components, this 

type of AKE also uses some smart materials. For example, thermochromic materials can 

change color due to temperature changes and can be designed for specific temperature 

ranges (Seeboth & Lotzsch, 2008). Some designs (see Figure 2.4) produced by Juergen 

H. Mayer use thermochromic materials to imprint the color shapes formed by human 

body temperature. One solution for climate design could be using the right materials on a 

building's surfaces to achieve the appropriate color and reflectance for responding to the 

outside temperature (Addington & Schtxiek, 2005). However, current available 

thermochromic paints for building exteriors may lose their color-changing features 

because of exposure to ultraviolet light (Addington & Schtxiek, 2005). 

 

 
Figure 2.2. Solar barrel wall for solar heat absorption (Baer, 2009)  
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Figure 2.3. Water storage roof created by Jonathan Hommond (Anderson & Michal, 
1978) 

 

 

 

Figure 2.4. Thermochromic materials (Addington & Schtxiek, 2005) 
 

 

In addition, some recent conceptual designs have combined solar-responsive 

AKE with bio-inspired designs. For instance, the Kinetic Honeycombed Canopy (see 

Figure 2.5) was designed by a BIM parametric method and was able to achieve certain 

kinetic features. The kinetic movements inspired by butterfly wings’ honeycombed 

structure may maximize the acceptance of solar heat or minimize the same, based on the 

different seasons and solar radiation levels (Wang, 2011). Another example concerns 
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designs inspired by the hair of mammals (see Figure 2.6), which translates the hair 

systems’ behaviors related to temperature changes into the building surface. The 

adjustable system consists of water and porous materials that are able to inflate for 

thermal comfort (Lee, 2008). 

 

 

   

Figure 2.5. Bio-inspired kinetic honeycombed canopy (Wang, 2011) 
 

 

 

 

Figure 2.6. Porous inflatable water pillow (Lee, 2008) 
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2) Solar Light and Heat 

The second type of solar-responsive AKE has more to do with daylight. These 

AKE systems control indoor illuminance levels, distributions, window views, and glare, 

particularly in museums and galleries; meanwhile, considerations concerning the control 

of heat from solar gain often must be taken into account (Laar & Grimme, 2002). Both 

the optical and the thermal properties of the AKE module are able to respond to outside 

lighting conditions to obtain appropriate daylighting and solar heat, and in turn may 

improve visual comfort, satisfaction, and productivity for occupants while minimizing 

their  energy  consumption  for  lighting  and  cooling.  Currently,  there  is  a  wide  array  of  

AKE fenestration systems which are generally based on two kinetic mechanisms: 

mechanically driven devices and smart glazing (or translucent materials). 

 Traditional Mechanical AKE 

The characteristic example of traditional mechanical AKE is the venetian blind; 

this is a well-established technology used to control daylight and heat gain in front of, 

behind, or between windows (Lee & Selkowitz, 1998). Similar to motorized blinds, large 

scale horizontal shades were used in the Devonshire Building at the University of 

Newcastle. These external shades were able to rotate in a range of angles to track the 

amount of sunlight entering the windows, taking into account the time of day and the 

season.  

Another representative design of kinetic shading is the double-skinned façade.  

It is difficult to categorize double skin envelopes because they have obvious integrated 

features dealing with solar radiation, daylight, and ventilation. However, most of the 
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kinetic movement of double-skinned façades is incorporated into the shading and natural 

ventilation mechanisms (natural ventilation will be discussed in the next section). 

Motorized shades or blinds can work between double-skinned façades, as they do in the 

Eurotheum Building in Frankfurt (see Figure 2.7) (Hertzsch, 1998), or outside of the 

double-skinned façades as they do at GSW headquarters (Russell, 2000).  

 

 

  

Figure 2.7. Eurotheum and the motorized blinds between the double skins (Hertzsch, 
1998) 

 

 

 Innovative Mechanical AKE 

Recently, there have been many aesthetically pleasing design cases which 

incorporate more visible or dynamic mechanical fenestration systems and have more to 

do with making a visual impact on visitors and occupants. Although there have been 

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=R_x8Q03wzL-78M&tbnid=fANTTSNL1-3a6M:&ved=0CAgQjRwwAA&url=http://www.hotel.info/en/innside-by-melia-frankfurt-eurotheum/hotel-52661/&ei=2kNLUtjaIJClqwGe4IDgAg&psig=AFQjCNFF6iiPNDNek8y1GH68aQwHrzKzNQ&ust=1380750682598834
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problems with overly-involved maintenance needs and problems with functionality with 

Jean Nouvel’s design, it has continued to arouse the interests of architects because of its 

cultural symbolism and aesthetic expression. In recent years, more projects and 

experimental designs have incorporated visible and aesthetic AKE. The associated 

mechanical movements are rotational, retractable, sliding, and/or self-adjusting (Miao, 

Li, & Wang, 2011).  

A recently completed project, Al Bahar Towers (see Figure 2.8), located in Abu 

Dhabi, presents an incredibly dynamic façade. The geometric patterns of the façade 

come from traditional Arabian culture and comprise a gigantic screen including over 

1,000  movable  elements.  Each  element  can  contract  and  expand  to  control  glare  and  

optimize natural light internally, depending upon the solar conditions (Cilento, 2013). 

Engineers on this project have stated that this kinetic sunscreen could potentially reduce 

the cooling load by over 20 percent, with commensurate savings in energy consumption 

and carbon emissions (Cilento, 2013). 

 

 

  

Figure 2.8. Al Bahar Towers and the kinetic sunscreen (Cilento, 2013) 
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Figure 2.9. Al Bahar Towers and the kinetic sunscreen (Cilento, 2013) 
 

 

Regarding sliding cases, the Sliding House project (see Figure 2.9) designed by 

dRMM architects, offers a creative kinetic design concept. The entire enclosure, 

including walls, windows, and roofs, can slide on two tracks; as a result, the house is 

able to adjust its thermal and visual properties according to the seasons, weather 

conditions, or for other aesthetic reasons (Basulto, 2009). Another sliding case is the 

Showroom project in Kiefer. This is a promising design and a typical case of sliding 

movement in that it integrates external sliding shades to form a dynamic façade sculpture 

for each day and hour (Vinnitskaya, 2010). An example of a retractable design is 

Madrid’s City of Justice (see Figure 2.10) designed by Foster + Partners. The design 

creates a 2-D retractable hexagonal shading unit which occupies the central circular 



 

32 

 

atrium and atria, and can extend to cover the roof or disappear into the structural profiles 

of the roof (Foster + Partners, 2012). On balance, these creative buildings and design 

concepts work in close conjunction with the climate and take full advantage of positive 

natural factors. However, currently there is little documentation of their energy 

performance and physical environmental comfort. 

 

 

 

Figure 2.10. Sliding movements of the Sliding House envelope (Basulto, 2009) 
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Figure 2.11. Retractable roof of the High Court of Justice and Supreme Court 
(Foster+Partners, 2012) 

 

 

 Smart Glazing or Translucent Materials 

There has been extensive study of many of the switchable smart glazing or 

translucent materials; these materials have been developed around the world for several 

decades, and have had a dramatic effect on AKE and overall architectural design. As 

seen in Figure 2.11, these exciting optical materials (e.g., thermochromic, photochromic, 

electrochromic materials, etc.), used in windows, are able to change the windows' optical 

properties (absorptivity, reflectivity, and transmission within various wavelength ranges), 

lighting direction (diffraction, reflection, and refraction), visual appearance (opacity, 

color, and transparency) and thermophysical properties (thermal conductivity and 

SHGC). Among these smart materials, electrically-activated glazing for building façades 

has gained commercial viability and remains the most visible indicator for smart 
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materials in a building (Addington & Schtxiek, 2005).    

 

 

  

Figure 2.12. Examples of electrochromic glazing by LBNL (Lee, DiBartolomeo, & 
Selkowitz, 2000) 

 

 

3) Solar Electricity 

A third type of solar-responsive AKE is involved with solar electricity, which 

often is deemed a kind of active solar energy technique. According to this research’s 

boundaries, this review focused on Building Integrated Photovoltaics (BIPVs) with the 

ability to be kinetic, rather than separated movable PV panels on buildings. The most 

typical type of kinetic movement is sliding or rotation, enabling panels to track a 

maximum amount of solar energy; this is often also called a heliotropic sun-tracking 

system. For instance, with the EWE Arena (see Figure 2.12) (Byabato & Müller, 2007) 

in Oldenburg and the Gemini Haus in Weiz, the floating shading or curtain walls are 

mounted PV modules that can rotate on their tracks around the building to capture a 
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maximum amount of solar energy and, hence, maximize the electrical output. Another 

advantage is that PV walls also can provide shading and better daylighting performances 

for the interior. Similar technologies are combined with building roofs in the Sündreyer 

project in Treia, Germany and the B&W House.  

At the module level, the Photovoltaic Leave (see Figure 2.12) offers an 

impressive design case. Designed by SMIT (Sustainably Minded Interactive 

Technology), the Photovoltaic Leave consists of a layer of thin film material on top of 

polyethylene, with a piezoelectric generator attached to each leaf. The light-sourcing 

leaves can move around and catch the solar energy to generate electrical power via both 

the  sun  and  the  wind.  A  4×7  foot  strip  of  this  material  can  generate  85  Watts  of  solar  

power (SMIT, 2012). 

 

 

 

Figure 2.13. Kinetic solar electricity design cases (Byabato & Müller, 2007; SMIT, 
2012) 
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2.1.2 Air-flow-responsive AKE 

The modules that interact with air flow are termed airflow-responsive AKE and 

incorporate two types: natural ventilation and wind electricity. For the former, the kinetic 

behavior is influenced by the air exchange and circulation for indoor thermal comfort 

and air quality. The latter refers to the envelopes’ kinetic process that can convert wind 

energy into electricity. Consequently, the airflow-responsive AKE may have the ability 

to impact the lighting environment and the overall aesthetic sense of the space.   

1) Natural Ventilation 

The kinetic process correlated to natural ventilation is used to introduce proper 

outside air while controlling for temperature, moisture, dust, odor, and other variables in 

indoor rooms. In contrast with mechanical fans or ventilation systems, these AKE 

systems are still considered to be natural ventilation (though some systems are 

motorized). This type of system serves to improve thermal comfort and the acceptable 

level of indoor air quality, and in some cases promote better daylighting performance.  

The Kinetic Roof House (see Figure 2.13) (Kawi, 2001) was first proposed in a 

design competition in 2001. The kinetic roof structure of this design can be opened to 

the sun, allowing direct sunlight into a room during daytime in the winter; it can then be 

closed to keep the heat inside at night. In summer, the roof can move to a particular 

degree to allow natural ventilation, but at the same time block out direct sunlight; at 

night it can be fully opened to allow for a cooler air temperature.  
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Figure 2.14. Kinetic roofs promoting natural ventilation (Kawi, 2001) 
 

 

From the above analysis of double-skinned façades, it can be seen that certain 

kinetic movements can work toward natural ventilation, promoting air circulation within 

the building envelope and/or indoor rooms, and hence achieving better indoor comfort 

(Kolokotroni, 2011; Martin & Fletcher, 1996). A typical project of this type is the new 

San Francisco Federal Building (see Figure 2.14). The local climate provided architects 

an opportunity to take advantage of the area's natural air flow. On the building’s 

southeast side, external panels of double-skinned façades flip up to a 90-degree angle, 

allowing fresh air directly into the building (based on wind speed and direction) 

(Morphosis, 2011).    
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Figure 2.15. The double skins of the San Francisco Federal Building (Morphosis, 2011) 
 

 

2) Wind Electricity 

Similar to BIPVs, small scale wind turbines integrated into buildings can also be 

defined as forms of micro-energy generation (AS & PAB, 2006). This research focused 

on integrated wind turbines rather than standalone wind energy systems such as rooftop 

wind turbines. One of the most interesting kinetic building designs that involve wind 

turbines is the Dynamic Tower planned by David Fisher. Wind turbines were fitted 

horizontally between each floor and then used to produce electricity (Fisher, 2012).  

Other well-integrated AKE cases with wind electricity include the COR Building 

in Miami and the Greenway Self-park Garage in Chicago (see Figure 2.15). Economic 

and regulatory issues aside (Bussel & Mertens, 2005), the use of existing wind turbine 

technologies may be problematic due to severe noise issues and difficulties in matching 

the structural and aesthetical integrity of existing buildings (Ayhana & Sa lamb, 2012).   
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Figure 2.16. Examples of the kinetic envelopes for generating wind electricity (Cilento, 
2010; Minner, 2010) 

 
 

2.1.3 Trends and Challenges  

Current energy-efficient design strategies and technologies of building envelopes 

have led to significant building energy savings. However, for most climates, 

conventional building envelopes with static properties may not offer an optimal solution. 

The aforementioned representative cases and studies have manifested a growing interest 

in kinetic envelope technologies proposed for improving energy performance, indoor 

comfort (especially visual quality), and occupancy interactions with buildings. Appendix 

C includes a comprehensive table that shows a number of application cases and their 

characteristics. 

Based on the review of the representative examples, the following conclusions 

were made: (i) because solar energy (solar radiation and daylight) tends to be climate 
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specific and has certain conflicting circumstances for buildings, most design cases are of 

the solar-responsive AKE type; and (ii) as seen in the most recent examples, in order to 

maximize the benefits of kinetic properties, AKE systems tend to be more complex and 

integrate solar heat, daylight, airflow features, and other potential kinetic features. 

There  also  are  certain  challenges  to  AKE  technology  development.  Most  AKE  

systems consume energy, due to the use of mechanical devices. The question, then, is 

whether there are still significant energy benefits that can be gained from these 

technologies, as compared with the conventional energy-efficient envelope design in the 

four climates studied here. Furthermore, similar to other new high tech systems, 

expensive initial costs and maintenance inputs for AKE systems may cause failures even 

though there are some energy savings. Actually, AKE systems are usually designed not 

only for energy performance but also for visual comfort and human factors. However, 

researchers are still undecided about how to evaluate the benefits of these new 

technologies from multiple dimensions, beyond the current energy-centric evaluation 

approaches. Future studies should establish a comprehensive evaluation approach which 

could assess the AKE’s contributions to occupancy satisfaction including indoor comfort, 

acoustical performance, and access to fresh air.  

2.2 Analysis on AKE’s Performance 

2.2.1 Evaluate Smart Windows and Affiliated Units  

      1) Mockup Studies on Electrochromic Glazing 

LBNL’s Building Technologies researchers have undertaken extensive efforts to 

study two projects - electrochromic glazing and automated blinds windows (e.g., Lee et 
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al., 1994; Lee & Selkowitz, 1998; Lee & Selkowitz, 2006; Lee et al., 2006; Lee & Tavil, 

2007) - which are typical commercialized technologies in the area of AKE. They utilized 

simulation, mockup tests, and field facility tests to analyze the performances of these 

particular products in integrated whole buildings.  

In  order  to  identify  and  quantify  the  overall  benefits,  costs,  and  risks  of  certain  

advanced facade and window systems, LBNL research groups focused on 

electrochromic (EC) windows under realistic building operating conditions in a full scale 

Windows Testbed Facility (see Figure 2.16) in Berkeley, California, for two and a half 

years. The tested EC products had a VT range of 0.60–0.05 and SHGC range of 0.42–

0.09 (Lee et al., 2006). The outcomes of this research included information regarding 

energy performance, peak demand performance, occupant comfort, satisfaction, and 

acceptance. Compared to the reference model which was defined by ASHRAE 

90.1-2005 and which used matte-white Venetian blinds, well-tuned daylighting control 

systems and low-e windows, EC windows were shown to achieve a 10+15% savings of 

energy use for daily lighting (Lee et al., 2006). Additionally, EC windows reduced the 

average daily cooling loads related to solar heat gain (Lee et al., 2006). The maximum 

cooling peak demand reduction due to reduced solar heat gain was 19% (Lee et al., 

2006). Also, complaints regarding problems with glare were reduced over 12.3% when 

utilizing the EC windows (Lee et al., 2006). The researchers found that EC windows 

were able to deliver adequate control of window glare and keep the luminance ratios 

within the recommended limits; however, the reference model’s luminance ratio of 6.4 

exceeded the requirements (Lee et al., 2006). 
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Figure 2.17. Test facility for EC windows by LBNL (Lee et al., 2006) 

 

 

With respect to price, according to LBNL’s study (Lee et al., 2006) the cost of 

producing EC windows is expected to be reduced significantly in the next few years. 

From 2000 to 2010, the price of EC windows decreased approximately 56.7% per square 

foot. However, given the final product cost (adding the necessary wiring, sensors, 

controls, connections to the building's energy management system, and maintenance 

design and engineering services), the costs related to EC windows are still much higher 

than for regular low-e windows. In order to analyze the economic justification, LBNL 

conducted a study in the 1990s and found that EC windows would pay for themselves in 

as little as four years in a medium sized office building (100,000 square feet with 60% 

windows on building surfaces) (Warner, Reilly, Selkowitz, Arasteh, & Ander, 1992).  

Furthermore, the adoption of this type of dynamic glazing solution should not only be 

motivated by energy savings; these technologies also offer impressive benefits for 
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occupants' comfort and satisfaction.  

The outcomes of this research were primarily centered on the products’ 

performances as they related to energy and peak demand performance, as well as 

occupant comfort and satisfaction. One significant contribution was that the study 

compared AKE products to available energy-efficient technologies (low-e windows, 

passive blinds, etc.) on the same building case and in the same climate condition, and 

demonstrated that the EC windows or automated blind windows could provide energy 

and visual comfort benefits year round.  

2) Automated Venetian Blinds 

Substantial research, especially from LBNL, has been devoted to this area.  

Simulations, laboratory tests, and scale field tests have all been performed to 

demonstrate that advancements in visual comfort and energy efficiency can be 

associated with these kinetic systems (e.g., interior automated venetian blind full-scale 

tests (Lee & Selkowitz, 1998), automated venetian blinds between panes controlled by 

temperature and solar positions, etc. (Rheault & Bilgen, 1990).  

Full-scale tests and monitored records showed, as compared to static blind 

systems with daylighting controls, that similar automated venetian blind/lighting systems 

obtained an average of 35% daily lighting energy savings on average in winter, and 

ranged from 40% to 75% savings in summer in Oakland (Lee & Selkowitz, 1998).  

Also, DOE-2 simulations showed that kinetic blind systems offered a 16% to 26% 

annual energy savings in Los Angeles for all directions except north, as compared to an 

advanced spectrally-selective window system (Lee & Selkowitz, 1998). Similarly, LBNL 
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set up a mockup and conducted field tests for an automated roller shading system 

planned for use at the New York Times headquarters (see Figure 2.17). They found that 

the automated roller shading system provided better uniform lighting distribution, sun 

penetration depth, and glare control while simultaneously offering a lower cost (Lee et 

al., 2005). Another significant effect was on human factor issues. Kinetic window 

systems often are reported to increase occupant satisfaction, and they have the potential 

to promote work efficiency (Lee, DiBartolomeo, Vine, & Selkowitz, 1998). However, 

efficient mechanical daylighting systems are more closely related to automatic one-axis 

tracking systems. 

 

 

 

Figure 2.18. New York Times headquarters mockup (Lee et al., 2005) 
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Similarly, there are considerable simulation studies with or without experimental 

tests on windows’ kinetic features including automated window shades, blinds or 

sunscreens, and smart glazing, mostly through simulation methods (e.g., Jonsson & Roos, 

2010; Karlsson, 2001; Koo, Yeo, & Kim, 2010; Tenner & Zonneveldt, 2002). These 

simulation studies also noted that the use of dynamic features dramatically improved the 

quality of daylight available compared to the xed solar shading, as well as generated 

total and peak energy savings, and lighting energy reductions as well. Additionally, most 

of analyzed cases are from available market products.  

2.2.2 Evaluate Opaque Parts of Envelopes 

Regarding the kinetic envelopes’ other parts such as operable roofs, switchable 

walls, and variable insulation walls, there are only a few studies. The representative 

project was conducted by Zupan , Škrjanc et al. (2006), and the simulator was 

developed in a MATLAB-Simulink environment rather than in any of the current 

computational programs in architecture. Focusing on total energy under different 

conditions, the research evaluated kinetic solutions using variable wall insulations, 

window insulations, movable shading systems and rotating objects, but some solutions 

did not exist in practical implementation forms.  

2.2.3 Relevant Research to Other Kinetic Features  

Building envelopes have been an important area of study for energy efficiency 

and indoor comfort for several decades. There are also many technical tests and 

simulation studies, such as double-skinned envelopes (e.g., Charron & Athienitis, 2006, 

Goia, Perino, Serra, & Zanghirella, 2010; Zanghirella, Perino, & Serra, 2011), high 



 

46 

 

performance façades with operable nature ventilation (e.g., Conahey, Haves, & Christ, 

2002; Wang, 2008), solar-tracking BIPVs (e.g., Tan, Green, & Hernandez-Aramburo, 

2007), and smart materials (Ritter, 2007; Addington & Schodek, 2005). Nevertheless, the 

above studies focused on one or two particular elements of building envelopes, and as a 

result the findings cannot offer sufficient evaluation of the impacts of the entire kinetic 

building envelope. 

2.3 Methodology and Tools 

2.3.1 Simulation Approaches 

Historically, it has not been easy to explore the possible kinetic compositions and 

shapes by using regular computational modeling methods. However, in recent years this 

design process has been substantially transformed by the introduction of parametric 

design. There have been many studies using computational tools such as Maya, Rhino 

and Grasshopper, Processing, CATIA, and Solid Works for the parametric control of 

model geometry. Parametric design allows for quick responses to design rules or 

constraints without having to recreate the entire model for each design iteration. The 

rules and constraints usually consist of mathematical formulas, physical equations, and 

values or data for exploring, representing, or optimizing geometry, forms, or size.  

However, most existing programs have more to do with geometry and basic 

building information. Users can connect some popular parametric design programs to a 

certain range of environmental analysis: for example, DIVA for Rhino. Also, the 

accuracy of the analysis is another controversial issue. In recent years, Building 

Information Modeling (BIM), which has 3D knowledge-rich parameters including 
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construction, materials, cost, and user-defined parameters, has been developed for 

parametric modeling and simulation (Lee, Sacks, & Eastman, 2006). Consider, for 

instance, Autodesk Revit API combined with C# programming that can be used to define 

the kinetic modes and regulations, as well as the user interfaces of new plug-ins. Some 

researchers (Welle, Haymaker, & Rogers, 2011; Azhar, Brown, & Farooqui, 2009) have 

further developed specific environmental analysis (e.g., thermal analysis, acoustic 

analysis, lighting analysis, etc.) connections to the BIM models. Although the 

BIM-based design approach can offer a way of exploring the kinetic building 

components and conducting some energy analyses, the complexity of kinetic envelopes 

and the overall evaluation accuracy are still limited in these programs.  

In addition, EnergyPlus offers some options for users hoping to conduct studies 

of the dynamic properties of building envelopes, such as those involving phase change 

materials, variable thermal conductivity, thermochromic glazing, etc. However, the 

controls for the built-in functions in EnergyPlus are for specific materials, which may 

react in response to only one or two types of parameters. 

2.3.2 Surveys on User Experiences in Sustainable Buildings 

In the field of sustainable buildings, design strategies, HVAC systems, and other 

sustainable solutions have been proposed to offer comfortable indoor environments; 

meanwhile, they also manifest some energy-efficient features such as daylighting, green 

roofs, and others. Therefore, indoor physical environmental quality is the most important 

aspect for sustainable buildings. Moreover, the level of indoor environmental quality 

greatly impacts the occupants of these buildings. The indoor building physical 
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environment relates to air quality, thermal comfort, visual quality, and acoustic quality. 

The LEED rating system also names these aspects collectively as Indoor Environmental 

Quality (IEQ) (USGBC, 2012). In order to understand how sustainable buildings 

perform from the perspective of their occupants, survey instruments should be developed 

and implemented.  

Surveys of occupant experiences in buildings allow designers, developers, 

owners, operators, and tenants to objectively gauge how well sustainable design features 

are working and whether employee productivity, effectiveness and well-being can be 

improved (Abbaszadeh, Zagreus, Lehrer, & Huizenga, 2006). There are a considerable 

number of survey studies on building physical environmental quality in terms of 

sustainable design. According to the stated purposes of these surveys, the studies can be 

categorized by specific environmental quality and comprehensive environmental 

performance. 

1) Surveys on Specific Environmental Quality  

In order to understand the relationships among occupants’ experiences and 

sustainable buildings’ environmental performances, many survey studies have been 

conducted on individual environmental factors, especially with regards to thermal 

comfort and visual comfort.  

Regarding thermal comfort, Rijal (2007) proposed a detailed survey method that 

combined a cross-sectional model (using transverse surveys) and a longitudinal model. 

On the one hand, the cross-sectional survey included objective information regarding 

building information, space features, occupants’ clothing, activity, and other details, and 
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included subjective responses to the thermal environment at the time of the survey. The 

longitudinal  survey,  on  the  other  hand,  was  conducted  at  the  same  time  as  the  

cross-sectional questionnaires and recorded data for periods of up to three months. 

During this period of time, users were asked to fill out a questionnaire four times a day 

(early morning, late morning, early afternoon and late afternoon) to record their thermal 

satisfaction,  clothing,  activity  and  their  uses  of  the  building  controls.  Simple  Temptrak  

dataloggers were placed in the working environment close to the respondents during the 

examined period of time. In addition to this integrated survey method, most studies 

utilized mail-out or web-based questionnaires based on a cross-sectional type of survey 

(e.g., Nasrollahi, Knight, & Jones, 2008)..  

Regarding visual comfort, the most detailed survey was conducted by LBNL’s 

Window and Daylighting Group. In order to understand the differences between new 

windows technologies and conventional types, the survey (Lee et al., 2006) started from 

an initial pilot test. The pilot test was designed to test the survey process and the 

questionnaires. There were forty-three subjects who experienced the lighting 

environment in the different room lighting configurations. For the analysis, the one-way 

analysis of variance (ANOVA) test and the “Tukey test” were utilized to analyze the 

significant differences and multiple comparisons, respectively (Zar, 1984). 

2) Surveys on Comprehensive Environmental Performance 

Although there has been considerable survey research on specific environmental 

quality, there is far less survey data on comprehensive environmental performance for 

occupants. To address this problem, there have been several survey methods adopted for 
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overall access to environmental performance, or IEQ. A popular survey method was 

proposed by the Center for the Built Environment (CBE) at the University of California, 

Berkeley. The survey was an invite-style web-based mode with anonymous self-reported 

information in nine IEQ categories, based on questionnaires (Zagreus, Huizenga, Arens, 

& Lehrer, 2004). This online survey measured two types of variables (objective and 

subjective). Objective variables include gender, age, office type and other descriptive 

building environmental information like window blinds. Subjective variables are about 

occupant satisfaction and self-reported productivity, according to IEQ categories such as 

office layout, office furnishings, thermal comfort, air quality, lighting, acoustics, 

cleaning and maintenance, overall satisfaction with the building, and overall satisfaction 

with the workspace. Regarding these users’ subjective data, the survey method utilized a 

7-point semantic differential scale with endpoints of “very dissatisfied” and “very 

satisfied” (Abbaszadeh, Zagreus, Lehrer, & Huizenga, 2006). The respondents were then 

taken to a follow up page with questions on detailed information regarding 

dissatisfaction and any open ended comments. In a given building, the overall 

satisfaction value was derived from the mean of all of the respondents’ answers to the 

satisfaction questionnaires. Moreover, the CBE survey database had some information 

and data from certain LEED-rated buildings. Thus, these data offered a comparative 

analysis between users’ buildings and LEED buildings. 

Similarly, researchers conducted surveys and field studies on IEQ issues in terms 

of occupant acceptability (e.g., Wong, Mui, & Hui, 2008), accuracy in task performance 

(Shaughnessy, Haverinen-Shaughnessy, Nevalainen, & Moschandreas, 2006), and users’ 
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perceptions of indoor quality (Wargocki, Wyon, Baik, Clausen, & Fanger, 1999). The 

survey method generally was in the form of self-administered questionnaires that were 

either mailed out or transferred the user to a website. The satisfaction of the users in the 

questionnaires was measured at both the overall level and the level of individual 

environmental factors such as noise, sunlight, and air ventilation (Zagreus, Huizenga, 

Arens, & Lehrer, 2004). To avoid confusion in the questions, some surveys were 

incorporated  with  certain  answer  examples  (e.g.,  Wong,  Lai,  Ho,  Chau,  Lam,  &  Ng,  

2009). 

2.3.3 Summary 

As more studies related to AKE performance have emerged, AKE has become 

increasingly  likely  as  a  means  of  defining  the  optimal  climatic  responses  and  

heightening indoor comfort. Research has examined certain particular commercial 

products, especially with regards to glazing and blinds or sunscreens, in terms of their 

impacts on energy and occupants. The existing modeling and simulation programs 

(Autodesk Revit, COMFEN, etc.) have also been able to offer some means of evaluating 

AKE performance. However, a specific comparative study between AKE and CEE in 

different climatic conditions has not been conducted.  

In addition, existing survey studies on environmental performance may provide 

appropriate methods and test procedures, especially with regards to mockup tests, for 

AKE performance survey research. 
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3. CHAPTER III 

PARAMETRIC ENERGY SIMULATION FOR KINETIC ENVELOPES 

 
3.1 Objective of Parametric Simulation 

In order to evaluate the potential energy savings of kinetic building envelopes, it 

is important to conduct a comparative simulation study. This study utilized a small office 

prototype model developed by the Pacific Northwest National Laboratory (PNNL). The 

energy savings’ evaluation used the energy simulation program, EnergyPlus, to evaluate 

the potential benefits of Kinetic Models with kinetic envelope systems and compared 

these hypothetical future systems to three models: 1) Baseline Models with minimally 

code compliant -- ASHRAE Standard 90.1-2010 (ANSI/ASHRAE/IES, 2010); 2) 

Advanced Models that used the recommendations in AEDG developed by ASHRAE 

and TSD created by PNNL with 50% energy saving goals compared to ASHRAE 

Standard 90.1-2010; and 3) Ultra Models that might be the next generation of 

energy-efficient technologies with “ultra” insulation but “static” properties rather than 

dynamic features.  

In this comparative analysis, neither the kinetic envelope assemblies of Kinetic 

Models nor the envelope properties in Ultra Models are currently available, but they 

represent technologies that can be realistically developed in a real world in the next 

decade.  

 

 



 

53 

 

3.2 Simulation Design and Energy Analysis Methodology  

3.2.1 Evaluation Approach 

For this study, the energy performance was simulated by using EnergyPlus v8.0 

(released in Apr. 2013) and utilized the small office prototype model with 5,500 ft2 

developed by PNNL for the study on 30% AEDG for Small Office Buildings (Jarnagin et. 

al. 2006). The selected four cities (see Table 3.1) represented a range of climates: 

Houston, TX (Climatic zone number 2A), San Francisco, CA (Climatic zone number 3C), 

Baltimore, MD (Climatic zone number 4B), and Chicago, IL (Climatic zone number 5A). 

Although Baltimore was categorized into the mixed-climate in Figure 3.1, our energy 

simulation results based on ASHRAE Standard 90.1-2010 showed that the annual 

heating loads were 50.5% higher than annual cooling loads. Thus, in this study, I 

grouped Baltimore and Chicago into the heating-dominated climate. Houston was in the 

cooling-dominated climate, and San Francisco was related to the mixed-climate. The 

purpose of this simulation was to explore energy saving potentials of kinetic envelopes 

for different climatic zones relative to Baseline Models and the other two models with 

enhanced envelope characteristics. A series of steps were taken to reach this aim, and the 

whole process is illustrated in the following section. 
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*CDD = cooling degree-day, HDD = heating degree-day. 

Figure 3.1. US climatic zones and their characteristics (ASHRAE, 2011) 
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Table 3.1. The selected cities and climatic zones 
A: Moist B: Dry C: Marine 

2A: Houston, TX 4B: Baltimore, MD 3C: San Francisco, CA 

5A: Chicago, IL    

 

 

1) Selected Prototypical Small Office Models 

Prototypical small office models in this study belonged to sixteen reference 

models developed by the U.S. Department of Energy (DOE), in conjunction with three 

of its national laboratories, formerly known as commercial building benchmark models 

(Thorton et al., 2011). As DOE claimed, these prototypical buildings represent 80% 

(Thorton  et  al.,  2011)  of  the  U.S.  commercial  building  floor  area  and  over  70% of  the  

energy consumed in U.S. commercial buildings (Thorton et al., 2011). This study 

selected the prototypical models specifically developed according to ASHRAE Standard 

90.1-2010 (ANSI/ASHRAE/IES, 2010), which should result in 30% energy savings 

relative to 90.1-2004.  

2) Created Baseline Models and Simulated Energy Performance 

The baseline energy level was simulated in accordance with the standard of 

ASHRAE 90.1-2010. The baseline model inputs for the four climates are described in 

Section 3.2.  

3) Created Advanced Models and Simulated Energy Performance 

Based on the PNNL’s final recommendations of TSD for 50% energy saving 

goals relative to ASHRAE Standard 90.1-2004, this study adopted the recommended 
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properties for the envelope components and kept the same settings of Baseline Models 

on the other parts, e.g., HVAC, internal loads, schedules, etc. Section 3.3 documented 

these model inputs and assumptions for Advanced Models. 

4) Created Ultra Models and Simulated Energy Performance 

The third referenced model represented further improvements in envelope 

technologies, which may be superior than most existing efficient envelopes. In particular, 

these models were defined to have super insulated walls, roofs, and windows. Also, the 

window’s SHGC had two levels according to different climates: one had high-gain 

ultra-windows, and another one had low-gain ultra-window. However, all envelope 

properties in these models were static.  

5) Created Kinetic Models and Simulated Energy Performance 

We proposed kinetic envelope models that took the characteristics of Ultra 

Models and added dynamic properties. The kinetic envelope components referred to 

“Variable Insulation for Opaque Assemblies (walls and roofs)”, “Dynamic Windows and 

Glazing”, and “Movable Blinds”. The simulation methods for these models were unique 

to the others since some dynamic properties of envelopes were not typical to energy 

simulation. Section 4.1 documented the process of modeling and simulation by using 

some specific functions and EMS of EnergyPlus. 

6) Evaluate Energy Savings for Four Climatic Conditions 

This step was to compare the energy performance of above four models in four 

selected cities. The summary of energy simulation results was described in Section 5. 

7) Effects of the Kinetic Envelope Assemblies 
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In order to understand the energy benefits from each kinetic envelope component, 

we conducted a comparative energy performance analysis for each envelope component 

in the four selected cities. 

3.2.2 Simulation Tool Description 

This simulation study adopted the EnergyPlus version 8.0 to assess energy 

performances for the four selected cities. EnergyPlus has been developed by DOE based 

on the most popular features and capabilities of BLAST and DOE-2 since 1996 (DOE, 

2013). It is a complex building energy simulation program for modeling building heating, 

cooling, lighting, ventilation, and the other energy flows in buildings.  

Furthermore, jEPlus version 1.4 (released in Jul 2013) was used to create and 

manage parametric simulation jobs while conducting simulation of the three reference 

models for the four cities. jEPlus works  with  the  EnergyPlus engine (the relations are 

shown in Figure 3.2) and was developed by Prof. Zhang, De Montfort University, United 

Kingdom. The program aims to explore multiple design options simultaneously. This 

program may save repeated simulation workloads, particularly with similar building 

models. On one hand, this program was used to conduct modeling and simulation for the 

reference models that had similar basecase models but with different envelopes’ 

properties (see Section 3.3.5). On the other hand, since the changes of the dynamic 

properties in Kinetic Models were related to the boundaries of temperature, it was 

necessary to find the best relations for minimizing the building energy. Therefore, jEPlus 

was used to input a few temperature boundaries and then provide the energy results of 

each input. All results could be automatically sent to one excel table and the “best” 
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solution was selected after comparisons. As seen in Figure 3.3, basically, the process of 

simulation by jEplus is parametric. 

 

 
Figure 3.2. How jEPlus works (Zhang, 2009) 

 

 

 

Figure 3.3. Parameter tree of jEPlus parametric simulation (Zhang, 2009)  



 

59 

 

3.3 Modeling and Simulation of Reference Models 

3.3.1 Building Shape and Basic Information of Prototype 

This one-floor prototypical small office building (see Figure 3.4) was developed 

by DOE. The building model was a rectangular form (90.8 ft.  60.5 ft.  10 ft.) with an 

attic roof. The gross floor area is 5,500 sq. ft. The windows were evenly distributed over 

the four façades of the model. Table 3.2 presents more information of the models. 

 

 

 

Figure 3.4. The prototypical office model based on DOE models (Thorton et al., 2011) 
 

 

 
Table 3.2. The basic geometric information of the prototypical models 

Total Floor Area (sq. ft.) 5500 (90.8 ft. x 60.5ft) 

Aspect Ratio 1.5 

Number of Floors 1 
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Table 3.2. Continued 
Window Fraction 

(Window-to-Wall Ratio) 

24.4% for South and 19.8% for the other three 

orientations  (Window Dimensions: 9.0 ft. x 5.0 ft. 

punch windows for all façades) 

Data source: 2003 CBECS Data and PNNL's 

CBECS Study 2007 

Azimuth non-directional 

Floor to floor height (feet) 10 

Floor to ceiling height (feet) 10 

Glazing sill height (feet) 3 (top of the window is 8 ft. high with 5 ft. high 

glass) 

 

 

3.3.2 Baseline Models 

1) Schedule 

In the simulation of EnergyPlus, how to operate buildings is defined as schedules. 

They greatly affect the building energy usage. The schedule part in EnergyPlus includes 

the fraction of lights that are on, whether HVAC systems are on or off, thermostat 

settings, etc. Moreover, these values vary by day of the week and time of year based on 

users’ plan. Figures 3.5 and 3.6 show the heating and cooling setpoints in weekdays and 

weekends. 
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Figure 3.5. The heating and cooling setpoints in weekdays (Thorton et al., 2011) 
 

 

 

 

Figure 3.6. The heating and cooling setpoints in weekends (Thorton et al., 2011) 
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2) Thermal Zoning  

As seen in Figure 3.7, the building model has five thermal zones including four 

perimeter zones (depth 16.4 ft.) and one core zone (there was an attic zone in this model). 

Tables 3.3 and 3.4 show a summary of areas, lighting power density, people density, etc. 

used in this model. The perimeter zones were 70% of floor area and the core zone was 

30%. 

 

 

 

Figure 3.7. Thermal zones of the prototypical small office model (Thorton et al., 2011) 
 

 

Table 3.3. The zone summary I 

Zone 

Area 

[ft²] 

Conditioned 

[Y/N] 

Volume 

[ft³] 

Gross Wall 

Area [ft²] 

CORE_ZN 1,611 Yes 16,122 0 

PERIMETER_ZN_1 1,221 Yes 12,221 909 
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Table 3.3. Continued 

Zone 

Area 

[ft²] 

Conditioned 

[Y/N] 

Volume 

[ft³] 

Gross Wall 

Area [ft²] 

PERIMETER_ZN_2 724 Yes 7,250 606 

PERIMETER_ZN_3 1,221 Yes 12,221 909 

PERIMETER_ZN_4 724 Yes 7,250 606 

ATTIC 6,114 No 25,437 0 

TOTAL1 5,503  80,502 3,030 

 

 

 

Table 3.4. The zone summary II 

Zone 

Window 

Glass 

Area [ft²] 

Lighting 

[W/ft²] 

People  

[ft²/person

] 

Numbe

r of 

People 

Plug and 

Process 

[W/ft²] 

CORE_ZN 0 1.00 179 9 0.63 

PERIMETER_ZN_1 222 1.00 179 7 0.63 

PERIMETER_ZN_2 120 1.00 179 4 0.63 

PERIMETER_ZN_3 180 1.00 179 7 0.63 

PERIMETER_ZN_4 120 1.00 179 4 0.63 

ATTIC 0 0.00 - 0 0.00 

TOTAL1 643   31  

 

 

3) Building Envelopes 

Thermal and optical properties of building envelopes play a very important role 

in building energy performance. Further, in this research, the specific differences among 
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Baseline Models, Advanced Models, Ultra Models, and Kinetic Models were related to 

the envelope properties. This baseline model was created in accordance with ASHRAE 

Standard 90.1-2010, which provided prescriptive requirements for building envelopes’ 

thermal performance and other characteristics. The requirement values vary with 

different climatic zones. The following describes the requirements of the key envelope 

assemblies for the selected cities. 

 Exterior Walls 

The exterior walls of the small office prototype were a type of wood-frame. The 

exterior walls included the following layers: 1 in. stucco, 5/8 in. gypsum board, wall 

insulation, and 5/8 in. gypsum board.  

The Baseline Model’s wall R-values were created according to ASHRAE 

Standard 90.1-2010 and met the maximum U-factors for the selected cities. The 

assembly U-factors (IP and metric units) and equivalent R-values of the baseline models 

are shown in Table 3.5. 

 
 

Table 3.5. Thermal properties of walls in Baseline Models 
Climate Zone Assembly U-factor Equivalent R-value in 

ASHRAE Standard 2010 

 Btu/h·ft²·ºF W/m2·K h·ft²·ºF/Btu 

Houston, TX 2A 0.089 0.505 R-13 

San Francisco, CA 3C 0.089 0.505 R-13 

Baltimore, MD 4B 0.089 0.505 R-13 

Chicago, IL 5A 0.064 0.363 R-13 + R-3.8c.i. 
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 Roof 

The  small  office  prototype  had  an  attic  roof  with  wooden  joists.  It  consisted  of  

roof insulation and 5/8 in. gypsum board. The insulation R-values were set to match the 

maximum roof U-factor requirements for different climate zones in accordance with 

ASHRAE Standard 90.1-2010. The assembly U-factors in the baseline models and the 

equivalent R-values of ASHRAE Standard 90.1-2010 are shown in Table 3.6. 

 

 

Table 3.6. Thermal properties of roofs in Baseline Models 
Climate Zone Assembly U-factor Equivalent R-value in 

ASHRAE Standard 2010 

- Btu/h·ft²·ºF W/m2·K h·ft²·ºF/Btu 

Houston, TX 2A 0.027 0.153 R-38 

San Francisco, CA 3C 0.027 0.153 R-38 

Baltimore, MD 4B 0.027 0.153 R-38 

Chicago, IL 5A 0.027 0.153 R-38 

 

 

 Fenestration 

The prototypical model generally had 24.4% window-to-wall ratios for South 

façade and window-to-wall ratios 19.8% for the other three orientations, which was 

according to the CBECS 2003 data (CBECS, 2003). Eight windows with the same 
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dimension  -  5  ft.  by  9  ft.  wide  -  were  distributed  evenly  on  each  wall  of  the  building  

model. Except for these windows, the model did not have any other type of daylighting 

systems. 

In order to match the requirements of U-factors and solar heat gain coefficient 

(SHGC) of ASHRAE Standard 90.1-2010, NREL developed a series of hypothetical 

glazing materials for EnergyPlus. Baseline Models also had lighting controls for daylight 

harvesting, so visible transmittance of glazing directly impacted lightings, which also 

brought internal heat gains and then affected space heating and cooling loads. The 

baseline U-factors, SHGC, and VT are shown in Table 3.7. 

 

 

Table 3.7. Thermal properties of windows in Baseline Models 
Climate Zone Assembly U-factor Assembly SHGC VT 

- Btu/h·ft²·ºF W/m2·K - - 

Houston, TX 2A 0.81 4.60 0.29 0.13 

San Francisco, 

CA 

3C 0.50 2.84 0.29 0.20 

Baltimore, MD 4B 0.47 2.67 0.43 0.31 

Chicago, IL 5A 0.47 2.67 0.43 0.31 
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4) Building HVAC  

In the Baseline Models, the HVAC settings followed ASHRAE Standard 

90.1-2010. Most elements of HVAC requirements were dependent on the fundamental 

choice  of  HVAC  system  types.  The  baseline  models’  HVAC  used  constant  air  volume  

(CAV) air distribution systems because the CBECS survey (Winiarski et al. 2007) noted 

that  only  20%  of  the  small  office  buildings  had  variable  air  volume  (VAV)  HVAC  

systems in the U.S. In our comparative simulation of the other models including 

Advanced  Models,  Ultra  Models,  and  Kinetic  Models,  I  kept  the  same  type  of  HVAC  

system and the same characteristics of the other settings (e.g., efficiency, schedule, fans) 

so  that  the  comparison  could  reveal  the  effects  of  building  envelopes.  The  HVAC  

information is shown in the following Table 3.8. 

 

 

Table 3.8. HVAC system settings of Baseline Models 
System Type     

Heating type Air-source heat pump with gas furnace as back up 

Cooling type Air-source heat pump 

Distribution and terminal 

units 

Single zone, constant air volume air distribution, one unit 

per occupied thermal zone 

HVAC Sizing     

Air Conditioning Auto sized to design day 

Heating Auto sized to design day 

HVAC Efficiency     
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Table 3.8. Continued 
Air Conditioning Various by climate location and design cooling capacity 

ASHRAE 90.1-2010 Requirements; 

Minimum equipment efficiency for Packaged Heat Pumps 

Heating Varies by climate location and design heating capacity 

ASHRAE 90.1-2010 Requirements 

Minimum equipment efficiency for Packaged Heat Pumps 

and Warm Air Furnaces 

HVAC Control    

Thermostat Setpoint 75ºF Cooling/70ºF Heating 

Thermostat Setback 85ºF Cooling/60ºF Heating 

Supply air temperature Maximum 104F, Minimum 55F 

Chilled water supply 

temperatures 

NA 

Hot water supply 

temperatures 

NA 

Economizers Various by climate location and cooling capacity 

Control type: differential dry bulb 

Ventilation ASHRAE Ventilation Standard 62.1 

Demand Control Ventilation ASHRAE 90.1 Requirements 

Energy Recovery ASHRAE 90.1 Requirements 

Supply Fan     

Fan schedules See under Schedules 

Supply Fan Total Efficiency 

(%) 

Depending on the fan motor size 

Supply Fan Pressure Drop Various depending on the fan supply air cfm 

Pump     

Pump Type NA 
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Table 3.8. Continued 

Rated Pump Head NA 

Pump Power Auto sized 

Cooling Tower     

Cooling Tower Type NA 

Cooling Tower Efficiency NA 

Service Water Heating     

SWH type Storage Tank 

Fuel type Natural Gas 

Thermal efficiency (%) ASHRAE 90.1 Requirements 

Water Heating Equipment, Gas storage water 

heaters, >75,000 Btu/h input 

Tank Volume (gal) 40 

Water temperature setpoint 120F 
 

 

5) Lighting 

The lighting sections had two parts including interior lighting and exterior 

lighting. With respect to interior lighting, the lights of Baseline Models were operated by 

the lighting schedule (e.g., 15% of lights energized during unoccupied in weekdays). The 

lighting power density (LPD) in Baseline Model was also applied 1.0 W/ft2 (10.8 W/m2) 

(ANSI/ASHRAE/IES, 2010). This value was used in all zones of the building models to 

control the lighting energy.   

The models also had lighting control models to calculate the interior daylighting 

illuminance at specified reference points and then dim electric lighting to meet the 
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illuminance target. Therefore, these automatic dimming controls took advantage of the 

daylight to reduce lighting energy and affected heating and cooling loads as well. 

 The daylight zone extends 16.6 ft., which was the depth of the perimeter 

zones.  

 In the daylight zones, lighting controls dimmed the lighting systems 

responding to the conditions of daylight. 85% of each perimeter zone was set 

up in EnergyPlus with  the  dimming  controls.  This  value  was  assumed  to  

account for internal obstructions and limited areas without daylight access 

(Thornton, Wang, Huang, Lane, & Liu, 2010). 

 Two  lighting  sensors  were  used  in  four  perimeter  zones.  Both  sensors  are  

located at 30 in. above the floor and 5.25 ft. inward from the exterior wall. 

 The setpoint of illuminance was set to 300 lux in this simulation (DiLaura, 

Houser, Mistrick, & Steffy, 2011). 

 The method of lighting controls was continuous/off mode. 

In addition, the energy performance of Baseline Models was simulated with 

exterior lighting for parking lots, walkways, building façades, etc. These settings about 

the exterior lighting were kept for Advanced Models, Ultra Models, and Kinetic Models. 

3.3.3 Advanced Models 

The second reference model in this simulation was named Advanced Models, and 

these models were improved by changing building envelope systems related to enhanced 

insulation of the opaque assemblies and high performance windows. Except for these 

changes, the other settings of Advanced Models including HVAC systems, plug loads, 
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and lighting systems were identical with the settings of Baseline Models. Therefore, the 

following descriptions focus on the modified sections relative to Baseline Models.  

In Advanced Models, the building envelope properties were selected from AEDG 

for  Small  to  Medium  Office  Buildings  (ASHRAE,  2011).  This  latest  version  of  the  

AEDG report was conducted to provide design recommendations for achieving a 50% 

energy savings compared to buildings that meet the minimum requirements of 

ANSI/ASHRAE/IESNA Standard 90.1-2004. As this report noted (ASHRAE, 2011), 

these  values  combined  with  the  other  improvements  of  HVAC  systems  achieved  

approximately 46% energy savings in relation to ASHRAE Standard 90.1-2007 and 31% 

savings in relation to ASHRAE Standard 90.1-2010.   

1) Enhanced Insulation for Opaque Assemblies 

The AEDG report of small to medium office buildings recommended thermal 

properties of walls and roofs for different zones. Tables 3.9 and 3.10 show the assembly 

U-factors and the equivalent insulation R-values for walls and roofs in Advanced 

Models. 

 
 

Table 3.9. Thermal properties of walls in Advanced Models 
Climate Zone Assembly U-factor Equivalent R-value in 

ASHRAE AEDG 
- Btu/h·ft²·ºF W/m2·K h·ft²·ºF/Btu 

Houston, TX 2A 0.074 0.420 R-13.0 + R-3.8 c.i. 
San Francisco, 

CA 
3C 0.074 0.420 R-13.0 + R-3.8 c.i. 

Baltimore, MD 4B 0.066 0.374 R-13.0 + R-7.5 c.i. 
Chicago, IL 5A 0.046 0.261 R-13.0 + R-10.0 c.i. 
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Table 3.10. Thermal properties of roofs in Advanced Models 
Climate Zone Assembly U-factor Equivalent R-value in 

ASHRAE AEDG 

- Btu/h·ft²·ºF W/m2·K h·ft²·ºF/Btu 

Houston, TX 2A 0.025 0.142 R-38 

San Francisco, CA 3C 0.025 0.142 R-38 

Baltimore, MD 4B 0.020 0.113 R-49 

Chicago, IL 5A 0.020 0.113 R-49 

 

 

2) Enhanced Performance for Fenestration  

The windows in Advanced Models were improved by upgrading U-factors, 

SHGC, and VT but maintained the other settings including window area, locations, and 

all system settings as the input information of the Baseline Model. U-factors, SHGC, and 

VT values are shown in Table 3.11. 

 

 

Table 3.11. Thermal properties of windows in Advanced Models 
Climate Zone Assembly U-factor Assembly SHGC VT 

- Btu/h·ft²·ºF W/m2·K - - 

Houston, TX 2A 0.45 2.56 0.25 0.25 

San Francisco, CA 3C 0.41 2.33 0.25 0.25 

Baltimore, MD 4B 0.38 2.16 0.26 0.25 

Chicago, IL 5A 0.35 1.99 0.26 0.25 
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3.3.4 Ultra Models 

Ultra Models were the third reference case in this comparative study. Compared 

with Advanced Models, the thermal and optical properties of envelopes in Ultra Models 

were further improved. In these models, U-factors of the opaque assemblies and 

properties of fenestrations might be not available for several years, but they represent 

products that could realistically result from research in the next few decades. 

Furthermore, in order to analyze the potential advantages of kinetic building envelopes, 

it was necessary to compare the kinetic envelopes of Kinetic Models with the 

highly-insulated envelopes of Ultra Models.  

In these models, therefore, only the properties of building envelopes were 

updated. The other settings of the Advanced Models were kept these Ultra Models.  

1) Enhanced Insulation for Opaque Assemblies 

To achieve the goal of net-zero buildings, many researchers have been exploring 

the highest possible thermal insulation resistance. The existing traditional insulation 

materials can theoretically meet the goals of net-zero, but the thickness of the insulation 

has to be greatly increased. Because this thickness applies to all the external walls on all 

floors, the useable floor areas are considerably reduced. Also, windows could be less 

effective in very thick walls in terms of light and window views. Jelle (2011) conducted 

a state-of-the-art review of building insulation materials and pointed out that the most 

promising insulation solutions are vacuum insulation panels (VIP) and aerogels. VIP can 

have around 0.004W/m·K (0.028Btu·in/h·ft2·º F) in the pristine non-aged condition 
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but will substantially increase to 0.02W/m·K (0.139 Btu·in/h·ft2·º F) with time due 

to  moisture  and  air  penetration  by  diffusion.  The  typical  low  value  for  aerogel  is  

0.013W/m·K (0.09 Btu·in/h·ft2·º F) and not considered to be dramatically increased 

with time. Therefore, 0.004W/m·K (0.028Btu·in/h·ft2·º F) can be seen as the future 

thermal insulation target. This value was adopted in the Ultra Models. Based on these 

assumption values of the thermal conductivity, Tables 3.12 and 3.13 shows the assembly 

U-factors and equivalent insulation R-values for walls and roofs in Ultra Models.  

 

 

Table 3.12. Thermal properties of walls in Ultra Models 

Climate Zone Assembly U-factor Equivalent R-value  

- Btu/h·ft²·ºF W/m2·K h·ft²·ºF/Btu 

Houston, TX 2A 0.016 0.091 R-75 

San Francisco, CA 3C 0.016 0.091 R-75 

Baltimore, MD 4B 0.013 0.074 R-90 

Chicago, IL 5A 0.013 0.074 R-90 
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Table 3.13. Thermal properties of roofs in Ultra Models 
Climate Zone Assembly U-factor Equivalent R-value 

- Btu/h·ft²·ºF W/m2·K h·ft²·ºF/Btu K·m2/W 

Houston, TX 2A 0.016 0.091 R-75 

San Francisco, CA 3C 0.016 0.091 R-75 

Baltimore, MD 4B 0.013 0.074 R-90 

Chicago, IL 5A 0.013 0.074 R-90 

 

 

2) Enhanced Performance for Fenestration  

U-factors of windows were selected from studies on Highly Insulating Glazing 

Systems by LBNL’s Windows and Daylighting Group. They reported a 0.57 W/m2-K 

(0.10 Btu/h-ft2-°F) window that had triple layer insulating glass units with two low-e 

coatings and an effective gas filled layer (Kohler, Arasteh, & Goudey, 2008). Thus, Ultra 

Models used these U-factors in windows for the energy simulation.  

There  were  two  levels  of  SHGC  for  different  climates,  but  the  values  did  not  

change for each climate: one was a relatively high SHGC of 0.35, while the other one 

had  a  low SHGC of  0.1.  According  to  the  simulation  study  of  LBNL,  we selected  the  

high value (SHGC = 0.35) for the heating-dominated climate (Chicago, IL), the low 

value (SHGC = 0.10) for the cooling-dominated climate (Houston, TX), and the 

mixed-climate (San Francisco, CA). With respect to the value of SHGC for the models 

in Baltimore, MD, I conducted specific comparative studies on SHGC by energy 



 

76 

 

simulation and found the value of 0.10 saved more energy than 0.35). In addition, the 

properties of VT of Advanced Models and Ultra Models were same. 

Currently, the products with the aforementioned values are still not commercially 

available, but many studies are setting the values as the targets for future net-zero 

buildings. Table 3.14 shows the values used in this simulation. 

 

 

Table 3.14. Thermal properties of windows in Ultra Models 
Climate Zone Assembly U-factor Assembly SHGC VT 

- Btu/h·ft²·ºF W/m2·K - - 

Houston, TX 2A 0.10 0.57 0.10 0.25 

San Francisco, CA 3C 0.10 0.57 0.10 0.25 

Baltimore, MD 4B 0.10 0.57 0.10 0.25 

Chicago, IL 5A 0.10 0.57 0.35 0.25 

 

 

3.3.5 Energy Simulation Approach 

The goal of this simulation study was not only to evaluate the whole energy uses, 

but also to analyze the effects for envelope assemblies, which included the relationships 

of  walls  vs.  roofs  vs.  windows,  and  opaque  vs.  fenestration.  Therefore,  at  least  60  

EnergyPlus simulations required for these three reference models of the four climates, 

which was very time-consuming. The reference models developed by PNNL were used 
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as the template IDF input, and then utilized jEPlus to run a batch of jobs.  

As illustrated in Figure 3.8, a complete jEPlus simulation involved multiple steps. 

The first step was to select the IDF file and the climate data for that IDF file. The second 

step was to set up parameters related to values of walls’ insulation, roofs’ insulation, 

windows’ U-factor, SHGC, and text strings for the input of weather files. The third step 

was to manage parameter trees and input their alternative values that could be inserted in 

to the IDF file. The last step was to identify the results information what was useful for 

the next analysis. Thus, by using jEPlus, we could compile a single output table 

containing the useful information from the batch. End-use (heating, cooling, fans, and 

interior lighting), peak cooling loads, and peak heating loads were selected for the 

further comparison with kinetic building envelopes. 

3.4 Modeling and Simulation for Kinetic Models 

3.4.1 Modeling and Simulation Approach 

Kinetic building envelopes had different properties responding to the other 

stimuli, e.g., outside temperature, indoor temperature, air-conditioning status, etc. These 

variables were considered as independent variables. With regard to dependent variables, 

there were four variables in the Kinetic Models: U-factors of opaque components (walls 

and roofs), U-factors of windows, SHGC of windows, and external blinds.  
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Figure 3.8. Parametric simulation of using jEPlus and EnergyPlus for reference models 
 

 
The challenge was to conduct complex controls and modeling routines for how 

we want building envelopes to behave. On one hand, parametric design methods are 

widely used for exploring building morph and building components’ behaviors. However, 
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most existing programs deal with building geometry and basic information. On the other 

hand, EnergyPlus offers  some  options  for  users  to  conduct  dynamic  properties  of  

building envelopes, such as phase change materials, variable thermal conductivity, 

thermochromic glazing, etc. However, the controls on these built-in functions in 

EnergyPlus are for specific materials, which may behave in response to only one or two 

types of parameters. 

Therefore, the Energy Management System (EMS) features in EnergyPlus were 

explored and utilized in modeling and simulation. EMS is an advanced application for 

users who need to write EnergyPlus Runtime Language (Erl) for the high-level and 

supervisory control to override selected aspects of EnergyPlus modeling. The essential 

steps of using EMS are related to three issues: EMS sensors, EMS Actuators, and EMS 

calling points.  

1) EMS Sensors 

The input object “Energy Management System – Sensor” uses the normal 

EnergyPlus output  variables,  which  can  be  obtained  by  looking  at  the  RDD  file  

generated  by  similar  models  with  the  same  types  of  components  and  systems  (DOE,  

2013). In our simulation study, the input objects of the EMS sensors were "Site Outdoor 

Air Dry Bulb Temperature", "Surface Outside Face Incident Solar Radiation Rate Per 

Area", and "Zone/Sys Sensible Cooling Rate."  

2) EMS Actuators 

EMS  actuators  are  defined  to  select  features  or  components  of  EnergyPlus 

models and then override them by a series of new settings. EnergyPlus EMS developers 
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have added some built-in actuators (e.g., HVAC systems, thermal envelopes, internal 

gains, air movement, etc.), which can be customized by users, but users are not able to 

create new actuators (DOE, 2013). In these simulations, I only manipulated the actuators 

of thermal envelopes, especially the “Construction State” of envelope components. 

3) EMS Program Calling Manger 

This input object requires users to confirm the timing for when and where Erl 

programs are initiated for custom controlling (DOE, 2013). This simulation analysis only 

used "Begin Time Step Before Predictor." 

In addition, there are currently no optimization methods for dynamic properties 

of building envelopes. So, jEPlus was used in this research to assess the settings of 

kinetic envelope components for identifying the “optimal” properties.  

3.4.2 Variable Insulation for Opaque Assemblies 

1) Selection of Modeling Methods 

Dynamic U-factors for the insulation of walls and roofs can be set up through 

several built-in methods in EnergyPlus including “Surface Control: Movable Insulation”, 

“Material Property: Phase Change”, and “Material Property: Variable Thermal 

Conductivity.”  Moreover,  beyond  these  built-in  functions,  a  test  by  using  EMS  was  

conducted to model the behaviors of wall insulation.  

Firstly,  the  actuators  of  thermal  envelope  in  EMS (EnergyPlus 8.0 version) had 

only  one  option  available  to  conduct  dynamic  wall  insulation,  which  was  the  control  

type “Construction State.” This simulation used “CTF (Conduction Transfer Functions)” 

and “CondFD (Conduction Finite Difference)” to conduct assignments of different wall 
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and roof constructions with the dynamic insulation properties. However, it was found 

that EMS did not simulate the models accordingly to our design due to “thermal history 

data” that evolved while using the previous configurations of wall and roof constructions. 

From the EMS Application Guide (DOE, 2013) “If this actuator is used inappropriately, 

for example to assign different constructions, to a single surface, that have radically 

different heat storage capacities, then the heat transfer modeling results may not be 

physically accurate.” In general, this EMS method was risky for any type of construction 

with  thermal  mass,  whereas  it  worked  well  for  windows  because  they  do  not  have  a  

thermal history.  

Secondly, the method of using “Surface Control: Movable Insulation” is basically 

for using an extra amount of movable insulation on either the inside or outside surface of 

a wall, roof, etc. However, the proposed dynamic models in this study were theoretically 

working on one layer of building materials, so this method was also not appropriate. 

Thirdly, “Material Property: Phase Change” specifically describes the temperature 

dependent material properties and phase change materials (PCM) in EnergyPlus,  so  it  

was not effective to our models, either.  

Lastly, the function of "Material Property: Variable Thermal Conductivity" was 

successfully used in our proposal, which was about temperature dependent insulation 

materials of walls and roofs. This method was only working with the regular "mass" 

materials rather than the no-mass insulation, thus it was required to clarify the thickness 

and thermal conductivity of the materials. Also, the dynamic process was described by a 

two column tabular temperature – conductivity function. This was a piece-wise linear 
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relationship was between the outside temperature of the material surface and thermal 

conductivity of this insulation material. Up to ten pairs can be specified in EnergyPlus, 

and temperature values are required to be strictly increased according to the EMS 

Application Guide (DOE, 2013). The example is shown in Figure 3.9. 

 

 

 

Figure 3.9. Input example of variable thermal properties in EnergyPlus 
 

 

The other two points were worth mentioning: 1) this function could only be used 

in the CondFD solution algorithm; 2) thermal conductivity value in regular material 

properties section in EnergyPlus was replaced by the values of "Material Property: 

Variable Thermal Conductivity" if this function was initiated. 

2) Variable Thermal Conductivity 

In order to compare with the other reference models, U-factor 0.013 Btu/h•ft²•ºF 

(0.074 W/m2•K) of Ultra Models was used as the low value setpoint, and U-factor 0.089 
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Btu/h•ft²•ºF (0.505 W/m2•K) of Baseline Models was adopted as the high value setpoint. 

To achieve the aforementioned U-factor range, a new insulation material with mass was 

added in EnergyPlus, and its thermal conductivity and layer thickness were calculated. 

The thickness was input by 0.1m, and the values of thermal conductivity of "Material 

Property: Variable Thermal Conductivity" were ranging from 0.047 Btu·in/h·ft2·º F 

(0.007 W/m • K) to 0.324 Btu·in/h·ft2·º F (0.051 W/m •  K).   

The idea of the thermal insulation variation was that walls with higher R-values 

when the outside temperature was too high or too low but with lower R-values when 

outside temperature was within the comfort zone. Thus, walls and roofs ideally enabled 

indoor heat gains to be transferred to outside during the summer cooling period, and they 

maintained the indoor temperature during the winter heating period. One pseudo code 

example related to Houston is shown as follows: 

    IF outdoor temperature <= 63 F or >= 77 F 
         Set Low U-value to the exterior walls 
    ELSE  
        Set High U-value to the exterior walls 
    ENDIF  
 
Furthermore, because U-factors were varied depending on temperature, I 

generated 10 pairs of temperature – conductivity settings for the four cities. The values 

of the temperature were set up as “search strings” in jEPlus, and energy simulation 

results of a batch of simulation jobs could be compared and in turn the “optimal” pairs 

for each climate were identified. Table 3.15 shows the final values of "Material Property: 

Variable Thermal Conductivity" in Kinetic Models for the four cities. 
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Table 3.15. Thermal properties of the opaque materials in Kinetic Models 

Climate zone Condition 1 Condition 2 

 

- 

 

Temperature U-factor Temperature U-factor 

Fº (Cº) Btu/h·ft²·ºF 

(W/m2·K) 

Fº (Cº) Btu/h·ft²·ºF 

(W/m2·K) 

Houston, TX 2A <= 63 (17) or >= 77 (25) 0.016 (0.091) > 63 (17) && < 77 (25) 0.089 (0.051) 

San Francisco, CA 3C <= 63 (17) or >= 79 (26) 0.016 (0.091) > 63 (17) && < 79 (26) 0.089 (0.051) 

Baltimore, MD 4B <= 66 (19) or >= 79 (26) 0.016 (0.091) > 66 (19) && < 79 (26) 0.089 (0.051) 

Chicago, IL 5A <= 66 (19) or >= 77 (25) 0.016 (0.091) > 66(19) && < 77(25) 0.89 0.051) 
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3.4.3 Dynamic Windows 

The EMS method of EnergyPlus was used in modeling and simulation of 

dynamic windows. In particular, the actuator called “Surface” with the control type of 

“Construction State” was used for the dynamic U-factors and SHGC. Here, I used the 

site air temperature and the zone sensible cooling or heating load rate as the stimuli.  

At first, the four pairs of U-factor and SHGC were established for suiting 

different climatic conditions, as shown in Table 3.16. The high U-factors were from the 

Baseline  Models  and  the  low  values  were  from  Ultra  Models.  Thus,  the  range  of  

U-factors was 0.1Btu/h•ft²•°F (0.57W/m2•K) ~ 0.81Btu/h•ft²•°F (4.6W/m2•K), and the 

range of SHGC was 0.10~0.35, which was according to the input of Ultra Models in 

different cities. 

 

 

Table 3.16. Thermal properties of windows in Kinetic Models 

Window01 Window02 Window03 Window04 

Low_U_High_SHGC 

Btu/h·ft²·ºF 

Low_U_Low_SHGC 

Btu/h·ft²·ºF 

High_U_Low_SHGC 

Btu/h·ft²·ºF 

High_U_High_SHGC 

Btu/h·ft²·ºF 

U = 0.10  U = 0.10 U = 0.81 U = 0.81 

SHGC = 0.35 SHGC = 0.10 SHGC = 0.10 SHGC = 0.35 
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The control scheme related to four types of windows: 

 Switch to Window01, whenever outside temperature was lower than the 

comfort zone and there was heating loads. It was assumed that the building 

model could get the benefits of the external solar radiation but prevent the 

heat transfer between indoor environment and outdoor environment.  

 Switch to Window02, whenever outside temperature was higher than the 

comfort zone and there was cooling loads. Similarly, this behavior 

contributed to reduce heat gains from outside because indoor HVAC system 

was producing cooling loads. 

 Switch to Window03, whenever outside temperature was appropriate but 

there was cooling loads. Because the transmitted solar heat was a problem 

when there was a cooling load but the outside temperature was good to the 

indoor environment, the high U-factor and low SHGC window of the models 

was selected. 

 Switch to Window04, whenever outside temperature was appropriate but 

there was heating loads. Once the EMS sensor noticed heating loads in zones, 

solar heat gains and heat exchange with outside appropriate temperature 

were advantages to energy savings. Thus, high U-factor and high SHGC was 

utilized in these scenarios.  

According to this scheme, by using the Erl programming language, 

IFELSEIF-ELSE-ENDIF blocks could be set up for all windows of the building models. 

One pseudo code example related to the dynamic windows in Houston is shown in 



 

87 

 

Figure 3.10. 

 

 

 

Figure 3.10. Pseudo code example of dynamic windows in Houston 
 

 

The EMS actuator could override the “Fenestration Detailed” input object and 

achieved dynamic window systems. However, each climatic condition might have 

different temperature boundaries for achieving the minimum energy results. Thus, I 

conducted a series of simulations by using jEPlus and identified the “best” boundaries of 

temperature for each climate. The values of the temperature boundaries were set up as 

“search strings” in jEPlus, and a few options of the temperature variables were inserted 

into the simulation process. After a batch of simulation jobs, all energy simulation results 
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could be compared and the “best” solution was selected. Table 3.17 shows the settings 

for each climate. 

3.5 Energy Savings Analysis and Results 

This section contains a summary of the four comparative small office models, 

and the energy savings results that are achieved by kinetic building envelopes. The 

annual energy consumption in this study was related to the sum of heating, cooling, and 

interior lighting, which did not include end use energy from inside equipment and 

exterior  lighting.  Also,  energy  savings  of  each  envelope  assembly  in  the  four  models  

were analyzed.  

3.5.1 Summary of Key Parameters in the Four Models 

Aside from movable blinds, the differences of the four models were linked to two 

parts of envelopes: opaque assemblies and fenestrations. It included three variables: 

U-factors of walls and roofs, U-factors of windows, and SHGC of windows. In Table 

3.18, the principal simulation parameters of Baseline Models, Advanced Models, and 

Ultra Models are offered along with the dynamic envelope characteristics of Kinetic 

Models to facilitate comparison.  
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Table 3.17. Window options for different situations for each climate in Kinetic Models 

Climate zone Condition 1 

Heating Loads 

Condition 2 

Cooling Loads 

Condition 3 

Cooling Loads 

Condition 4 

Heating Loads 

Houston, 

TX 

 

2A 

Outside temperature 

< 59 (15) 

Outside temperature 

> 72(22) 

Outside temperature 

59 (15) ~72(22) 

Outside temperature 

59 (15) ~72(22) 

Window01 

Low_U_High_SHGC 

Window02 

Low_U_Low_SHGC 

Window03 

High_U_Low_SHGC 

Window04 

High_U_High_SHGC 

San 

Francisco

, CA 

 

3C 

Outside temperature 

< 59 (15) 

Outside temperature 

> 77(25) 

Outside temperature 

59 (15) ~77(25) 

Outside temperature 

59 (15) ~77(25) 

Window01 

Low_U_High_SHGC 

Window02 

Low_U_Low_SHGC 

Window03 

High_U_Low_SHGC 

Window04 

High_U_High_SHGC 

Baltimor

e, MD 

 

4B 

Outside temperature 

< 59 (15) 

Outside temperature 

> 77(25) 

Outside temperature 

59 (15) ~77(25) 

Outside temperature 

59 (15) ~77(25) 

Window01 

Low_U_High_SHGC 

Window02 

Low_U_Low_SHGC 

Window03 

High_U_Low_SHGC 

Window04 

High_U_High_SHGC 

Chicago, 

IL 

 

5A 

Outside temperature 

< 59 (15) 

Outside temperature 

>68 (20) 

Outside temperature 

59 (15) ~ 68 (20) 

Outside temperature 

59 (15) ~ 68 (20) 

Window01 

Low_U_High_SHGC 

Window02 

Low_U_Low_SHGC 

Window03 

High_U_Low_SHGC 

Window04 

High_U_High_SHGC 
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Table 3.18. Summary information for all models 

Btu/h·ft²·°F W/m2
·K h·ft²·°F/Btu Btu/h·ft²·°F W/m2

·K h·ft²·°F/Btu Btu/h·ft²·°F W/m2
·K —— ——

Houston, TX 2A 0.09 0.51 R-13 0.03 0.16 R-38 0.81 4.60 0.29 0.13
San Francisco, CA 3C 0.09 0.51 R-13 0.03 0.16 R-38 0.50 2.85 0.29 0.20

Baltimore, MD 4B 0.09 0.51 R-13 0.03 0.16 R-38 0.47 2.65 0.43 0.31
Chicago, IL 5A 0.06 0.36 R-13 + R-3.8 c.i. 0.03 0.16 R-38 0.47 2.65 0.43 0.31

Houston, TX 2A 0.07 0.42 R-13.0 + R-3.8 c.i. 0.03 0.14 R-38 0.45 2.56 0.25 0.25
San Francisco, CA 3C 0.07 0.42 R-13.0 + R-3.8 c.i. 0.03 0.14 R-38 0.41 2.33 0.25 0.25

Baltimore, MD 4B 0.07 0.37 R-13.0 + R-7.5 c.i. 0.02 0.11 R-49 0.38 2.16 0.26 0.25
Chicago, IL 5A 0.05 0.26 R-13.0 + R-10.0 c.i. 0.02 0.11 R-49 0.35 1.99 0.26 0.25

Houston, TX 2A 0.02 0.09 R-75 0.02 0.09 R-75 0.10 0.57 0.10 0.25
San Francisco, CA 3C 0.02 0.09 R-75 0.02 0.09 R-75 0.10 0.57 0.10 0.25

Baltimore, MD 4B 0.01 0.07 R-90 0.01 0.07 R-90 0.10 0.57 0.10 0.25
Chicago, IL 5A 0.01 0.07 R-90 0.01 0.07 R-90 0.10 0.57 0.35 0.25

Houston, TX 2A 0.01~0.09 0.07~0.5 R-13~R-90 0.01~0.09 0.07~0.5 R-13~R-90 0.10~0.81 0.57~4.60 0.10~0.35 0.25
San Francisco, CA 3C 0.01~0.09 0.07~0.5 R-13~R-90 0.01~0.09 0.07~0.5 R-13~R-90 0.10~0.81 0.57~4.60 0.10~0.35 0.25

Baltimore, MD 4B 0.01~0.09 0.07~0.5 R-13~R-90 0.01~0.09 0.07~0.5 R-13~R-90 0.10~0.81 0.57~4.60 0.10~0.35 0.25
Chicago, IL 5A 0.01~0.09 0.07~0.5 R-13~R-90 0.01~0.09 0.07~0.5 R-13~R-90 0.10~0.81 0.57~4.60 0.10~0.35 0.25

Advanced Models

Ultra Models

Kinetic Models

Wall Roof Fenestration

Assembly U-factor Assembly U-factor Assembly SHGC VTAssembly U-factor

——

Climate Zone Equivalent R-value Equivalent R-value

Baseline Models
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3.5.2 Annual Heating and Cooling Loads 

Table 3.19 presents the annual heating and cooling loads of four models in four 

locations, which also include energy consumption of fans. Thus, these energy analyses 

are HVAC related. Compared to Baseline Models, Figure 3.11 presents the savings 

percentages of heating loads in all models. It shows the energy savings percentages of 

Advanced Models were 32.5%, 26.6%, 30.0%, and 23.0% for the four cities, which is 

approximately consistent with results (28%) of the AEDG study by ASHRAE (ASHRAE, 

2011) comparing recommended energy efficient strategies to ASHRAE Standard 

90.1-2010. Regarding Kinetic Models, Figure 3.11 shows high energy savings for the 

four cities compared to Baseline Models, which were 47.2% for Houston, 47.9% for San 

Francisco, 47.7% for Baltimore, and 42.6% for Chicago in relation to the baseline 

energy usages.  

 

 

Table 3.19. Summary of annual heating and cooling loads for the four climates 
 Houston San Francisco Baltimore Chicago 

 MMBtu GJ MMBtu GJ MMBtu GJ MMBtu GJ 

Baseline Model 

Heating 6.32 6.67 7.51 7.92 22.20 23.41 33.09 34.90 

Cooling 28.31 29.86 7.52 7.93 14.74 15.55 12.28 12.95 

Fans 21.28 22.44 16.15 17.03 19.25 20.30 19.17 20.22 

Advanced Model 

Heating 5.64 5.95 7.27 7.67 20.47 21.59 30.05 31.69 

Cooling 26.09 27.51 7.53 7.94 13.74 14.49 11.24 11.85 
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Table 3.19. Continued 
 Houston San Francisco Baltimore Chicago 

Fans 18.44 19.45 15.63 16.48 17.08 18.01 16.34 17.23 

Ultra Model 

Heating 4.88 5.15 6.61 6.97 16.73 17.64 21.44 22.61 

Cooling 20.99 22.14 5.84 6.16 11.25 11.86 12.61 13.30 

Fans 11.87 12.52 10.44 11.01 11.37 11.99 15.65 16.50 

Kinetic Model 

Heating 4.86 5.13 6.75 7.12 11.98 12.63 18.81 19.84 

Cooling 14.09 14.86 3.54 3.73 10.02 10.57 11.36 11.98 

Fans 10.55 11.13 6.18 6.52 7.42 7.82 6.88 7.26 

 

 

 

 

Figure 3.11. Savings percentages of the annual heating and cooling loads on a basis of 
Baseline Models 



 

93 

 

 
Figure 3.12. Savings percentages of heating loads on a basis of Baseline Models 

 
 

In the perspective of annual heating loads, in relation to Baseline Models, Figure 

3.12 shows that Kinetic Models of Baltimore and Chicago achieved similar energy 

savings percentages (46.0% for Baltimore and 43.2% for Chicago). This is because the 

heating loads of these two cities occupied more percentages of total energy consumption. 

As above figure shows, in the cooling-dominated climate of Houston and the 

mixed-climate of San Francisco, the highly-insulated building envelopes (in Ultra 

Models) performed slightly better than dynamic envelopes (in Kinetic Models). This 

corresponded to the settings of dynamic properties of envelopes, particularly with the 

variable thermal insulation of the opaque materials. This situation was explained in 

Section 5.4 – envelope assemblies. 
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At the level of annual cooling loads (Figure 3.13), savings in the 

cooling-dominated climate of Houston and San Francisco were about 50.2% and 53.0% 

respectively compared to their Baseline Models. Kinetic Models of Baltimore also 

achieved 32.0% energy savings. Although the overall heating and cooling loads were 

reduced for Chicago’s Ultra Model compared to its Baseline Model, the annual cooling 

loads of Chicago’s Ultra Model increased relative to Baseline Models. After analysis of 

detailed zone cooling loads, it was found the highly-insulated envelopes (glazing 

U-value 0.1 Btu/h•ft²•°F and the opaque U-value 0.016 Btu/h•ft²•°F) made the building 

so tight that indoor heat gains from equipment and people could not be transferred to 

outside when there were proper external temperature conditions.  

 

 

 
Figure 3.13. Savings percentages of cooling loads on a basis of Baseline Models 
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The comparison of annual heating and cooling loads reveals great HVAC load 

savings from kinetic building envelopes that for each climate zone ranged from 42.6% to 

47.7%. With respect to separate heating and cooling loads, Ultra Models with highly 

insulated envelopes produced a small degree of savings (around 2%) compared to 

Kinetic Models with dynamic properties, but, at the level of total HVAC loads, Kinetic 

Models obviously reduced the loads (18.5% for Houston, 19.3% for San Francisco, 18.1% 

for Baltimore, and 20.9% for Chicago) in relation to Ultra Models.  

3.5.3 Peak Demands Comparisons 

Obtaining the information of peak heating and cooling loads is the necessary step 

to determine the adequate size of HVAC equipment. An undersized HVAC system 

cannot provide desired indoor temperatures, while inefficiency and possible 

uncomfortable conditions (particularly humidity control during summer months) can 

result from oversized HVAC equipment. This section presents peak demands of heating 

and cooling for four models in each climatic zone. The simulation results were only 

related to the changes of envelope properties in each model. Table 3.20 shows the 

summary of peak demands for the four climates. 

 

 

Table 3.20. Summary of peak heating and cooling loads for the four climates 

 Houston San Francisco Baltimore Chicago 

 Btu/hr W Btu/hr W Btu/hr W Btu/hr W 

Baseline Model 

Heating 20.5 6.0 14.4 4.2 21.2 6.2 19.3 5.6 
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Table 3.20. Continued 
 Houston San Francisco Baltimore Chicago 

Cooling 25.2 7.4 15.8 4.6 23.2 6.8 21.3 6.2 

Advanced Model 

Heating 21.3 6.2 12.8 3.8 18.5 5.4 16.8 4.9 

Cooling 23.1 6.8 15.3 4.5 21.4 6.3 19.4 5.7 

Ultra Model 

Heating 20.2 5.9 3.5 1.0 11.5 3.4 9.2 2.7 

Cooling 16.9 5.0 11.1 3.3 16.1 4.7 18.8 5.5 

Kinetic Model 

Heating 17.4 5.1 6.3 1.8 3.4 1.0 5.4 1.6 

Cooling 12.5 3.7 3.2 0.9 10.7 3.1 9.8 2.9 

 

 

On one hand, Figures 3.14 presents peak heating loads of these four models in 

each climate and savings percentages in relation to Baseline Models. Basically, except 

for Houston, the other climates provided obvious savings percentages by Ultra Models 

and Kinetic Models. The greatest savings percentage, 83.9%, occurred in Baltimore. 

56.4% and 71.9% savings were related to San Francisco and Chicago respectively. As 

discussed previously in the annual heating loads comparisons, Ultra Models with the 

highly-insulated envelopes in San Francisco performed better than Kinetic Models. 

Similarly, the saving percentage (76.0%) of the peak heating demand from Ultra Models 

in San Francisco was still greater than the savings (56.4%) in Kinetic Models. This is the 

only exception of the comparison of peak heating demands between Kinetic Models and 

Ultra Models. This trend was linked to the inputs of variable insulation for walls and 
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roofs in EnergyPlus, which is explained below in Section 3.5.4. 

 

 

 

Figure 3.14. Savings percentages of peak heating loads on a basis of Baseline Models 
 

 

On the other hand, as seen from Figures 3.15, Kinetic Models and Ultra Models 

in the four climates offered high impacts on reducing the peak cooling demands. The 

highest 79.7% saving percentage was from Kinetic Models in San Francisco, and the 

other three climates showed similar saving percentages at over 50% in Kinetic Models. 

Also, Ultra Models of the four climates achieved 11.5~32.8% savings of peak heating 

demands in relation to Baseline Models. 
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Figure 3.15. Savings percentages of peak cooling loads on a basis of Baseline Models 
 

 

3.5.4 Effects of Kinetic Envelope Assemblies 

In order to know the detailed reasons why Kinetic Models offered great impacts 

on energy performance, I explored the performance of each assembly of building 

envelopes of Kinetic Models and the other three models as well in the four cities. 

Besides, it is important to recognize the contributions to energy savings from single 

envelope component with kinetic properties, and in turn it can be known which parts of 

building envelopes are worthy being dynamic in selected climates. By using EnergyPlus 

and jEPlus as discussed previously, the simulation results for separated components 

including Roofs Only, Walls Only, Roofs and Walls, and Windows Only could be 

obtained. 

1) Roofs Only 

Thermal properties of roofs considerably impact heating and cooling loads, 
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particularly for one-floor buildings. Figure 3.16 shows the comparison of HVAC loads 

related to heating, cooling and fans of four EnergyPlus models with different thermal 

properties of roofs in four different climates. Firstly, compared to Baseline Models, 

Advanced Models with enhanced roof insulation only achieved a very light level of 

saving percentages. Secondly, Ultra Models with super insulated roofs offered more 

savings (2.9~5.0%) of heating and cooling loads than the loads in Baseline Models. 

Thirdly, Kinetic Models with dynamic properties of roofs as shown from Table 3.21 

greatly reduced heating and cooling loads, which was 8.9% for Houston, 10.2% for San 

Francisco, 8.5% for Baltimore, and 8.1% for Chicago compared to Baseline Models.  

 

 

 

Figure 3.16. Savings percentages of the annual heating and cooling loads by roofs on a 
basis of Baseline Models 
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Table 3.21. Summary of the annual heating and cooling loads by roofs for the four 
climates 

 Houston San Francisco Baltimore Chicago 

 MMBtu GJ MMBtu GJ MMBtu GJ MMBtu GJ 

Baseline Model 

Heating 6.3 6.7 7.5 7.9 22.2 23.4 33.1 34.9 

Cooling 28.3 29.9 7.5 7.9 14.7 15.6 12.3 13.0 

Advanced Model 

Heating 6.3 6.6 7.5 7.9 21.5 22.7 31.6 33.4 

Cooling 28.2 29.8 7.5 7.9 14.5 15.3 12.2 12.9 

Ultra Model 

Heating 6.1 6.5 7.3 7.8 21.1 22.3 31.1 32.8 

Cooling 27.7 29.3 7.4 7.8 14.4 15.2 12.1 12.7 

Kinetic Model 

Heating 6.2 6.5 7.4 7.8 21.5 22.7 31.5 33.2 

Cooling 25.5 27.0 6.0 6.4 12.9 13.6 10.9 11.5 

 

 

Figure 3.17 separates heating loads and cooling loads for each model in the four 

cities. It was cooling loads generated by dynamic roof’s insulation that played the 

significant role in saving whole HVAC loads, as discussed above. In relation to Baseline 

Models, the savings percentages of the cooling loads in Kinetic Models with the 

dynamic insulation ranged from 9.7~19.8% for each climate. Ultra Models performed 
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almost as well as Advanced Models on annual cooling loads. However, with respect to 

the annual heating loads, Ultra Models showed better performance than Kinetic Models 

in all climatic zones. This is because of the input settings of Variable Thermal Insulation 

in Kinetic Models in EnergyPlus, which was described in Table 3.15. U-factors of 

insulation of roofs were replaced according to external surface temperature of roofs. 

Based on jEPlus, I compared and identified the best pairs of temperature and U-factors 

for total energy usages, so the setpoints of temperature may not be optimal to save 

heating loads but rather to the sum of heating and cooling loads. Consider, for instance, 

the optimal input settings of Houston in which the high U-factor 0.089 Btu/h•ft²•°F 

(0.507 W/m2•K) of roofs was set when the outside temperature was within the range of 

63 F° (17 C°) and 77 F° (25 C°). However, the temperature situation with 63 F° (17 C°) 

may cause heating loads and enhance peak heating demands. This resulted in the heating 

loads of kinetic envelopes were higher than the highly-insulated envelopes.  

 
 

 
Figure 3.17. Separated savings percentages of heating / cooling loads by roofs on a basis 

of Baseline Models 
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Regarding the peak demands of the four models, Figure 3.18 shows the peak 

heating loads for each climate, and Figure 3.19 presents the peak cooling loads. On one 

hand, the reductions of the peak cooling loads from Kinetic Models for all cities were 

from  7.4%  to  11.8%  compared  to  Baseline  Models.  This  trend  of  Roof  Only  was  

consistent with the peak cooling demands in the previous discussion related to the entire 

kinetic building envelopes. But, on the other hand, the peak heating demands of each 

climate showed different trend. Ultra Models achieved more reductions on the peak 

heating loads among the four simulation models. The reductions percentages of 

Advanced Models were also greater (except for Baltimore) than the results of Kinetic 

Models. The reason of this result was also the modeling methods of variable insulation 

of roofs in EnergyPlus. Nevertheless, if compared the peak heating loads and the peak 

cooling loads for the four cities, it was find that the peak cooling loads were always 

greater than the peak heating loads in all models, even the models in the 

heating-dominated climate. So, the amount (around 1.9MMBtu or 2.0GJ for the four 

cities) of cooling loads savings was apparently larger than the amount (less than 

0.9MMBtu or 1GJ for the four cities) of heating loads savings. This might explain why 

these input settings were selected by comparing the results from jEPlus batch simulation. 
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Figure 3.18. Savings percentages of peak heating loads by roofs on a basis of Baseline 
Models 

 

 

 

 

Figure 3.19. Savings percentages of peak cooling loads by roofs on a basis of Baseline 
Models 
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2) Walls Only 

This section illustrates the contributions from walls in each model because only 

thermal properties of walls were changed according to different models and climates, 

which were same input settings with previous comparative models (Baseline Models, 

Advanced Models, Ultra Models, and Kinetic Models).  

The  results  from  the  comparisons  of  HVAC  loads  related  to  walls  in  the  four  

models in the four cities were similar to the features of the comparisons of roofs. As seen 

from Figure 3.20, compared to Baseline Models, the dynamic insulation settings of walls 

in Kinetic Models achieved more savings of heating and cooling loads in the four 

climates,  which were 8.1% for Houston, 7.4% for San Francisco,  11.3% for Baltimore,  

and 9.6% for Chicago. The highly-insulated walls of Ultra Models also saved 4.2~9.3% 

heating  and  cooling  loads  on  the  basis  of  Baseline  Models.  In  addition,  Table  3.22  

displays the detailed values of heating and cooling resulted from only changing walls in 

the different models for each climate. 
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Figure 3.20. Savings percentages of the annual heating and cooling loads by walls on a 
basis of Baseline Models 

 

 

Table 3.22. Summary of the annual heating and cooling loads by walls 

 Houston San Francisco Baltimore   Chicago 

 MMBtu GJ MMBtu GJ MMBtu GJ MMBtu GJ 

Baseline Model 

Heating 6.3 6.7 7.5 7.9 22.2 23.4 33.1 34.9 

Cooling 28.3 29.9 7.5 7.9 14.7 15.6 12.3 13.0 

Advanced Model 

Heating 6.2 6.5 7.4 7.8 21.2 22.4 31.6 33.4 

Cooling 28.1 29.7 7.5 8.0 14.6 15.4 12.2 12.9 

Ultra Model 

Heating 5.8 6.1 7.0 7.4 19.1 20.2 29.2 30.8 

Cooling 27.4 28.9 7.7 8.1 14.4 15.2 12.1 12.8 

Kinetic Model 

Heating 5.9 6.2 7.1 7.5 19.5 20.5 29.5 31.1 

Cooling 26.2 27.7 7.0 7.4 13.5 14.3 11.5 12.2 
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When it comes to the separate heating and cooling loads (Figure 3.21), the 

savings percentages related to walls showed almost same trends with roofs; that is, Ultra 

Models with super insulation performed with more savings percentages of heating loads 

in the four climates than the dynamic insulation of walls in Kinetic Models. The highest 

value 13.8% of heating loads savings from occurred in Ultra Models of Baltimore, but 

the total number (33.5MMBtu or 35.4GJ) of heating and cooling loads of Ultra Models 

was still higher than the loads (33.0MMBtu or 34.8GJ) of Kinetic Models. 

 

 

 
Figure 3.21. Separated savings percentages of heating / cooling loads by walls on a basis 

of Baseline Models 
 

 
Regarding the peak demands related to walls’ properties of four models, Figure 

3.22 shows the peak heating loads for each climate, and Figure 3.23 presents the peak 

cooling loads. Compared to Baseline Models, Ultra Models with super insulated walls 

achieved more percentages on reduction of peak heating demands. However, dynamic 
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insulated walls in Kinetic Models reduced more peak cooling demands.  

 

 

 

Figure 3.22. Savings percentages of peak heating loads by walls on a basis of Baseline 
Models 

 

 

 
Figure 3.23. Savings percentages of peak cooling loads by walls on a basis of Baseline 

Models 
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3) Roofs and Walls 

Basically, Figure 3.24, Figure 3.25 and Table 3.23 of simulation results from 

different  thermal  properties  of  walls  and  roofs  combined  the  aforementioned  trends  of  

Walls  Only  and  Roofs  Only.  The  dynamic  properties  of  walls  and  roofs  were  identical  

and described in Table 3.15. The dynamic insulation of the opaque assemblies of 

building envelopes presented more savings and higher percentages on heating and 

cooling loads in relation to the other three levels’ models. As Figure 3.25 shows, the 

savings of cooling loads were the most significant parts to explain why Kinetic Models 

with dynamic insulated walls and roofs had the biggest savings among four models in 

each climate. However, Figure 3.25 also describes that the highest percentages of 

heating loads savings were from Ultra Models rather than Kinetic Models. This 

corresponded to the similar trends from the simulation results of Walls Only and Roofs 

Only. 

 
 

 
Figure 3.24. Savings percentages of the annual heating and cooling loads by roofs and 

walls on a basis of Baseline Models 
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Figure 3.25. Separated savings percentages of heating / cooling loads by roofs and walls 
on a basis of Baseline Models 

 
 

 

Table 3.23. Summary of the annual heating and cooling loads by walls and roofs for the 
four climates 

 Houston San Francisco Baltimore Chicago 
 MMBtu GJ MMBtu GJ MMBtu GJ MMBtu GJ 

Baseline Model 
Heating 6.3 6.7 7.5 7.9 22.2 23.4 33.1 34.9 
Cooling 28.3 29.9 7.5 7.9 14.7 15.6 12.3 13.0 

Advanced Model 
Heating 6.2 6.5 7.4 7.8 20.5 21.7 30.4 32.0 
Cooling 28.0 29.5 7.5 7.9 14.4 15.2 12.1 12.8 

Ultra Model 
Heating 5.6 6.0 6.9 7.3 18.2 19.2 27.4 28.9 
Cooling 26.8 28.3 7.6 8.0 14.1 14.9 12.0 12.6 

Kinetic Model 
Heating 5.9 6.2 7.3 7.7 18.6 19.6 28.0 29.5 
Cooling 24.1 25.4 5.4 5.7 12.2 12.9 10.4 11.0 
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Regarding the peak heating / cooling demands related to the opaque’ properties 

of four models, Figure 3.26 shows the peak heating loads for each climate, and Figure 

3.27 presents the peak cooling loads. The combination of walls and roofs revealed the 

similar trends of the results from the simulation of Walls Only and Roofs Only but it had 

more apparent differences. The greatest value of reduction percentages of peak heating 

loads  was  33.0% in  Ultra  Models  of  San  Francisco,  and  the  other  cities’  Ultra  Models  

also had over 22.0% reduction percentages on peak heating demands. With respect to 

peak cooling loads, dynamic insulated walls and roofs showed the highest reduction 

percentages compared to the other models on the basis of Baseline Models.  

 

 

 

 

Figure 3.26. Savings percentages of peak heating loads by walls and roofs on a basis of 
Baseline Models 

 



 

111 

 

 

Figure 3.27. Savings percentages of peak cooling loads by walls and roofs on a basis of 
Baseline Models 

 

 

 

4) Windows Only 

The dynamic features of windows in these simulations were similar to the 

previous windows input of Kinetic Models and described in Table 3.16 and Table 3.17. 

Super insulated windows of Ultra Models were explained in Table 3.14. Except for the 

windows’ settings, the other settings were identical in all four models for each climate. 

As shown in Figure 3.28 (see below), dynamic U-factors and SHGC of windows in 

Kinetic Models achieved more savings of heating and cooling loads than the other 

models. The savings percentages based on the basis of Baseline Models were 49.9% for 

Houston, 30.2% for San Francisco, 38.5% for Baltimore, and 40.6% for Chicago. In 

addition, Table 3.24 displays the detailed values of heating and cooling resulted from 
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only changing thermal properties of windows in the different models for each climate. 

Also, in these climates (with two exceptions of Houston’s cooling loads and 

Baltimore’s heating loads), Figure 3.29 presents dynamic properties of windows in 

Kinetic Models offered higher saving percentages in relation to the other types of models 

on the basis of Baseline Models. One exception was the heating loads of Houston; that is, 

the  heating  loads  of  Ultra  Models  were  slightly  higher  (0.1  MMBtu)  than  the  ones  of  

Kinetic Models. Another exception was related to the cooling loads of Baltimore. The 

highly-insulated windows with the static SHGC value (0.10) performed almost as well 

as the dynamic insulation windows with kinetic SHGC (0.10 to 0.35) on an annual 

cooling load basis. Figure 3.29 presents an interesting issue about the annual cooling 

loads in Chicago. Ultra Model’s windows with 0.10 Btu/h•ft²•°F (0.57 W/m2•K) 

U-factor and 0.35 SHGC did not save the cooling load but rather increased around 4.2% 

loads compared to Baseline Models that had 0.47 Btu/h•ft²•°F (2.65 W/m2•K) U-factor 

and 0.43 SHGC. Since the extreme lower U-factor of windows may prevent the heat 

exchange from indoor spaces to outdoor environment, the heat gains from interior 

equipment and people were hard to be moved to outside during some summer cooling 

periods with appropriate outside temperature. After reviewing the weather data of 

Chicago and the simulation results, it was found that this climate during the summer 

season has comfortable outdoor temperatures. Nevertheless, dynamic windows with 

changeable U-factors and SHGC can identify exterior and interior conditions and then 

provide optimal thermal performance.  
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Figure 3.28. Savings percentages of the annual heating and cooling loads by windows on 
a basis of Baseline Models 

 

 

 

 

Figure 3.29. Separated savings percentages of heating / cooling loads by windows on a 
basis of Baseline Models 
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Table 3.24. Summary of the annual heating and cooling loads by windows on a basis of 
Baseline Models 

 Houston San Francisco Baltimore Chicago 

 MMBtu GJ MMBtu GJ MMBtu GJ MMBtu GJ 

Baseline Model 

Heating 6.3 6.7 7.5 7.9 22.2 23.4 33.1 34.9 

Cooling 28.3 29.9 7.5 7.9 14.7 15.6 12.3 13.0 

Advanced Model 

Heating 5.8 6.1 7.4 7.8 21.6 22.77 30.9 32.55 

Cooling 26.4 27.8 7.5 7.9 14.0 14.81 11.4 12.05 

Heating-savings 0.5 0.6 0.1 0.1 0.6 0.63 2.2 2.4 

Cooling-savings 1.9 2.1 0 0 0.7 0.79 0.9 0.9 

Ultra Model 

Heating 5.4 5.7 7.1 7.5 20.3 21.4 25.8 27.2 

Cooling 22.5 23.8 5.7 6.0 11.9 12.6 12.8 13.5 

Heating-savings 0.9 1 0.4 0.4 1.9 2 7.3 7.7 

Cooling-savings 5.8 6.1 1.8 1.9 2.8 3 -0.5 -0.5 

Kinetic Model 

Heating 5.5 5.8 6.7 7.1 14.3 15.1 20.7 21.9 

Cooling 16.3 17.2 5.2 5.5 11.9 12.6 11.6 12.2 

Heating-savings 0.8 0.9 0.8 0.8 7.9 8.3 12.4 13 

Cooling-savings 12 12.7 2.3 2.4 2.8 3 0.7 0.8 
 

 

Figures 3.30 and 3.31 show peak heating demands and peak cooling demands 

respectively. Compared to the previous discussed contents of the opaque assemblies, the 

trend of windows in the peak heating loads is different. Dynamic windows, in the four 
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climates, significantly reduced the peak heating demands in relation to the other types of 

windows. Except for Houston, the savings percentages in the other three climates were 

around 70% on the basis of Baseline Models. Regarding the peak cooling loads, kinetic 

windows of Kinetic Models also performed better than Ultra Models and Advanced 

Models for all cities, especially in Chicago (54%).  

 

 

 

Figure 3.30. Savings percentages of peak heating loads by windows on a basis of 
Baseline Models 
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Figure 3.31. Savings percentages of peak cooling loads by windows on a basis of 
Baseline Models 

 

 

5) Comparison on Envelope Assemblies 

Because the savings of the four models with each envelope assembly were based 

on the same baseline for each climate, we can compare the contributions of each 

assembly to the savings of the heating and cooling loads. In general, Figure 3.32 

illustrates that kinetic envelope assemblies achieved more savings percentages for the 

four climates on the basis of Baseline Models.  

 Windows played more significant roles of saving energy than the other 

envelope components, and the highest value from windows was 49.9% from 

Kinetic Models of Houston. The lowest value, 30.2%, occurred in Kinetic 

Models of the mixed-climate of San Francisco. When it comes to the amount 

of loads savings, dynamic windows saved loads 56.01GJ for Houston, 

21.56GJ for San Francisco, 44.1GJ for Baltimore, and 52.65GJ for Chicago.  
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Figure 3.32. Summary of savings percentages of heating and cooling loads by each 
envelope assembly on a basis of Baseline Models 
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 In Ultra Models of the four climates, windows also contributed more savings 

than the other opaque assemblies. However, in the Advanced Models, the 

opaque parts of envelopes achieved more savings than the windows in these 

climates except for Houston.  

 The opaque parts (combination of walls and roofs) of Kinetic Models 

produced the second highest percentages in heating and cooling loads for 

each climate, which ranged from 15.6% to 18.4%.  

 The values related to Walls Only and Roofs Only from Kinetic Models 

displayed a clear trend. In Houston and San Francisco, dynamic insulated 

roofs offered more savings of heating and cooling loads than walls. However, 

walls in the climates of Baltimore and Chicago achieved more savings than 

the roofs. Thus, in the heating-dominated climate, dynamic properties of 

walls performed better than the same settings of roofs. In the 

cooling-dominated climate, the trend was reversed.  

 In Ultra Models and Advanced Models, walls with enhanced U-factors 

consistently offered more savings percentages than the percentages by roofs 

with same enhanced U-factors for each climate. 

Figures 3.33 and 3.34 depict the savings of the annual heating loads and the 

savings of the annual cooling loads respectively.  

 As previously discussed, the savings of the annual heating loads from 

dynamic windows in the heating-dominated climate (8.1GJ for Baltimore and 

13.3GJ for Chicago) were over twice as large as the savings of the opaque 
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assemblies, and the savings of the annual cooling loads in the 

cooling-dominated climate (12.64GJ for Houston) were nearly three times as 

large as the savings of the opaque assemblies. For the mixed-climate in San 

Francisco, the dynamic insulated opaque parts performed nearly as well as 

dynamic windows. 

 In Ultra Models, windows with super insulation and static SHGC did not 

perform better than opaque parts in saving heating loads and saving cooling 

loads in the four climates. In Advanced Models, windows with enhanced 

thermal properties offered fewer savings in cooling loads than the savings of 

the opaque parts in most climates. However, opaque parts performed with 

smaller reductions for cooling loads than windows in the four climates. 

 With respect to heating loads, the dynamic insulation of walls produced more 

savings than dynamic characteristics of roofs in the four climates. On the 

contrary, in the annual cooling loads, the savings from kinetic roofs were 

larger than the savings from kinetic walls in the four climates. These detailed 

comparisons can describe the aforementioned trends of savings percentages 

of walls and roofs. However, these trends in Ultra Models and Advanced 

Models were different; that is, walls with enhanced thermal properties 

consistently saved more heating and cooling loads than roofs with same 

enhanced thermal properties.  

The possible reasons for these trends are related to the input settings of Baseline 

Models. Table 3.5 and Table 3.6 shows that roofs in Baseline Models in accordance with 
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ASHRAE Standard 2010 have higher insulation materials than walls. Therefore, the 

improvements of R-values of roofs in Ultra Models and Advanced Models were lower 

than the enhancements of walls, which may result in more energy savings occurred in 

changing walls rather than changing roofs in Ultra Models and Advanced Models.  

Regarding Kinetic Models, it was demonstrated that the highly-insulated walls 

and roofs performed better than the dynamic insulation of walls and roofs in terms of the 

annual heating loads. Since the insulation’s U-factors were changed to the high values 

when the outside temperature was within certain appropriate ranges, the dynamic 

insulation of the opaque assemblies was more to do with heat exchanges between indoor 

and outdoor. Especially, these high values of U-factors facilitate moving heat gains out 

which are from equipment and people during summer cooling periods. Therefore, 

compared to the highly-insulated opaque assemblies, variable thermal properties were 

more suitable to the cooling-dominated climate because the highly-insulated opaque 

assemblies performed better in saving heating loads, which were illustrated by the 

previous detailed comparisons (e.g., Figure 3.17, 3.21, and 3.25). Moreover, there are 

two reasons to explain why roofs contributed more cooling savings than walls. On one 

hand, the input of R-value of roofs in Baseline Models was already higher than the 

values of walls. The same range of variation of U-factors provided more influences on 

roofs than walls. On the other hand, these simulation results were based on one-floor 

prototypical small office. The area of roofs (5,500 sq. ft.) was larger than the area of 

perimeter walls (3,026 sq. ft.). This may have created more potential heat transfer 

through the roofs during summer cooling periods under appropriate external temperature 
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conditions. So, the dynamic insulation of roofs played a more significant role in the 

reductions  of  the  annual  cooling  loads  and  the  entire  energy  consumption  than  the  

variable insulation of walls. 

Figure 3.35 shows that dynamic windows reduced the largest number of the peak 

demands for the four climates compared to the other envelope assemblies. In particular, 

in the Kinetic Model of Chicago and Houston, the reduction of peak demands was nearly 

four times larger than the opaque parts. Between walls and roofs, the dynamic insulation 

of roofs obtained more reductions of peak demands than walls. This corresponded to the 

similar reasons that were discussed above. In Ultra Models of these climates, with the 

exception of Chicago, the peak demand savings for the highly-insulated windows were 

also higher than the other assemblies.  

The previous analysis on peak heating and cooling loads demonstrated that peak 

demands were related to cooling loads for almost all models for each climate. Thus, I 

only compared the peak cooling demands for the four cities in this section.  
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Figure 3.33. Summary of savings percentages of heating loads by each envelope 
assembly on a basis of Baseline Models 
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Figure 3.34. Summary of savings percentages of cooling loads by each envelope 
assembly on a basis of Baseline Models 
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Figure 3.35. Summary of reductions of peak demands by each envelope assembly on a 
basis of Baseline Models 
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3.5.5 Effects of External Movable Blinds 

The original prototypical models from PNNL had no exterior shadings. The 

mockup test of this research employed external movable blinds, so I conducted some 

EnergyPlus simulations with specific shading strategies (external Venetian blinds) for 

south, east, and west façade windows for the four climates. In order to meet the basic 

requirement of glare comfort, I used discomfort glare index (DGI) in EnergyPlus 

simulation.  

The simulation calculated the DGI at the zone’s first daylighting reference point 

from all of the exterior windows and compared the numbers with the maximum glare 

index. In EnergyPlus,  the  maximum  allowable  DGI  was  set  at  22.  In  the  EnergyPlus 

models, the reference points were set to the locations with 5.25 ft. to the side windows. 

 

 

 

Figure 3.36. Reference points in perimeter zones 
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In addition, external blinds can also be used for blocking solar radiation during 

the  summer  cooling  period.  Therefore,  I  chose  “On If  High  Zone  Cooling”  and  “On If  

High Glare” input objects in EnergyPlus for the blinds, thus the blinds were activated in 

terms  of  two conditions:  1)  The  DGI  at  the  zone’s  reference  point  was  higher  than  the  

maximum allowable of 22 (DOE, 2013). The slat angles were changeable according to 

thedirect solar beams. The “block beam solar” option enabled the blinds to block direct 

sunlight.  2)  If  there  was  no  solar  beam on  the  window,  the  blind’s  movement  was  still  

activated by the cooling loads. When the blinds were deactivated, the slat angles 

remained horizontal. The following Figure 3.37 describes the settings in EnergyPlus. 

 

 

 
Figure 3.37. Input information of external movable blinds in EnergyPlus 
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Figure 3.38 shows the savings and the percentages of external movable blinds for 

each climate. Cooling energy savings were largely the result of the incorporation of the 

blinds, and the highest value occurred in the cooling-dominated climate of Houston. 

However, integrating blinds into models increased winter heating loads particularly in 

the heating-dominated climate. The HVAC loads savings of Chicago demonstrated that 

cooling savings by blinds were generally offset by heating energy increases. Thus, the 

annual HVAC loads of Baseline Models in Chicago and Baltimore were only slightly 

greater (0.6% to 1.6%) than that of the Models with external blinds.  

 

 

 

Figure 3.38. Savings and percentages of heating and cooling loads by movable blinds 
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Furthermore, movements of blinds in these models increased indoor lighting 

energy for the four climates. So, considering the increases of lighting loads, the effects 

on total energy of blinds is shown in Figure 3.39. The lighting loads for each climate 

were increased from 2.3GJ to 3.2GJ. These increased lighting loads offset of the HVAC 

loads savings by blinds so that the final loads with interior lighting energy were higher 

than the values in Baseline Models. The only exception is Houston in which the energy 

still had 2.9% savings since the cooling loads were significantly reduced by blinds.  

External movable blinds can reduce cooling loads, but they increase the heating 

and the interior lighting loads. Therefore, only the installations of the moveable blinds in 

cooling-dominated climates can obtain the energy savings. In the mixed-climate and 

heating-dominated climate, the movable blinds did not save energy because of the 

resulting increased winter energy and the lighting energy outweighed the summer 

cooling energy savings. However, movable blinds were proposed for glare protection, so 

the indoor visual comfort should be enhanced (This was demonstrated by the surveys at 

the mockup workspaces in Chapter IV).  
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Figure 3.39. Savings and percentages of energy uses with lighting loads by movable 
blinds 

 

 

3.5.6 Building Site Energy Usage  

In  this  section,  the  building  site  energy  generated  by  EnergyPlus of Advanced 

Models, Ultra Models, and Kinetic Models in four climatic zones was compared to 

Baseline Models. The site energy referred to utility, electricity, and natural gas delivered 

and used at the building site, thus it included plug and process loads. This work aimed to 

investigate the potential energy savings of the entire building with kinetic envelopes. 

Since the plug and process loads occupied a large percentage of the total site energy uses, 

I compiled some recommended energy saving strategies for indoor and outdoor lights, 

water systems, interior equipment, HVAC systems, etc. from multiple sources including 

Technical Support Document: 50% Energy Savings for Small Office Buildings (Thornton, 

Wang, Huang, Lane, & Liu, 2010), and AEDG for Small to Medium Office Buildings 
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(ASHRAE, 2011). Table 3.25 presents the input information related to these parameters 

of the simulation models for four climatic zones. The other input information of 

simulation models was the same with above Kinetic Models, e.g., dynamic insulation of 

opaque materials, variable U-factors, and SHGC of windows, etc.  

 

 

Table 3.25. Summary of input parameters related to HVAC, lighting, and envelopes 

En
ve

lo
pe

s 

 Houston, 

TX 

San Francisco, 

CA 

Baltimore, 

MD 

Chicago, 

IL 

Floors R-4.2 R-10.4 R-12.5 R-14.6 

Doors U-0.70 U-0.70 U-0.50 U-0.50 

Shading External movable blinds (except for north façade) 

Li
gh

tin
g 

/ d
ay

lig
ht

in
g 

Setpoint Illuminance setpoint of 300 lux  

Glare protection DGI < 22 

Interior lighting LPD= 0.68 W/ft²  

Interior finishes Ceilings = 80%; wall surfaces = 70% 

Lighting controls This continuous dimming control can dim down to 10% 

of maximum light output with a corresponding 10% of 

maximum power input. 

Lighting control areas Dim all fixtures in daylight zones 

Exterior lighting 750 watts 
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 Table 3.25. Continued 
Pl

ug
  

Equipment options 

 

0.45 W/ft2 (4.8 W/m2) 

H
VA

C
 

System type Ground source heat pump with a DOAS for ventilation 

GSHP cooling 

efficiency 

GSHP cooling efficiency 15 SEER 

GSHP heating 

efficiency 

3.55 COP 

Boiler efficiency 90% Ec 

Maximum fan power 0.4 W/cfm 

Fa
n 

System type Fan-coil system with DOAS 

Boiler efficiency 90% Ec 

Maximum fan power 0.4 W/cfm 

SW
H

 

Thermal efficiency 90% 

 

 

 

 Figure 3.40 shows the percentage savings of kinetic-integrated models (kinetic 

envelopes and above recommendations in Table 3.25) and 90.1-2010 base cases. The 

savings ranged from 38.8% to 42.0% for each climate.  
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Figure 3.40. Savings percentages of energy uses by kinetic envelopes on a basis of 
Baseline Models 

 

 

Also, Table 3.26 presents the final energy loads for these kinetic-integrated 

models.  The  values  of  site  energy  use  intensity  (EUI)  were  18.9  KBtu/ft2·yr 

(214.5MJ/m2·yr) for Houston, 17.2 KBtu/ft2·yr (195.6 MJ/m2·yr) for San Francisco, 19.1 

KBtu/ft2·yr (216.8 MJ/m2·yr) for Baltimore, and 20.8 KBtu/ft2·yr (236.1 MJ/m2·yr) for 

Chicago. To achieve zero-energy building (ZEB), National Renewable Energy 

Laboratory (NREL) (NREL, 2007) assessed the energy performance for a large set of 

commercial buildings based on technologies that are projected to be available in 20 years. 

They noted the average EUI value could be as little as 40.3 kBtu/ft2·yr (458 MJ/m2·yr). 

One characteristic example is the new Research Support Facility at DOE’s NREL in 

Golden, Colorado, which was considered as one of the world’s most energy-efficient 

office buildings. Also, rooftop PV systems led the building energy to the net-zero level 
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during certain days (NREL, 2011). The real EUI value was 35.4 kBtu/ft2 ·yr (402.3 

MJ/m2·yr).  Therefore, compared with these EUI remarks, the kinetic-integrated models 

with proposed dynamic features performed much better. 

 

 

Table 3.26. Summary of building site energy  
Category Heating Cooling Interior 

Lighting 

Exterior 

Lighting 

Interior 

Equipment 

Fans Water 

Systems 

Houston, TX, Zone 2 

KBtu/ft2 1.4 1.5 5.5 1.1 6.7 1.2 1.5 

MJ/m2 15.7 17.2 62.0 12.3 76.1 13.8 17.4 

San Francisco, CA, Zone 3 

KBtu/ft2 1.2 0.6 5.4 1.1 6.7 0.7 1.5 

MJ/m2 14.0 7.3 61.1 12.3 76.1 7.4 17.4 

Baltimore, MD, Zone 4 

KBtu/ft2 2.5 1.4 5.1 1.1 6.7 0.8 1.5 

MJ/m2 28.0 16.2 57.7 12.3 76.1 9.0 17.4 

Chicago, IL, Zone 5 

KBtu/ft2 3.4 2.1 5.1 1.1 6.7 0.9 1.5 

MJ/m2 38.8 23.4 57.7 12.6 76.1 10.0 17.4 

 

 

 

In addition, Figure 3.41~3.44 show the proportions of each part of energy end 

uses in these future kinetic models with the recommended energy efficient strategies on 

the other parts including HVAC, water system, plug and process. Over 35% of the 
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energy usage was interior equipment loads, which was mainly because of office 

requirements, and the remaining proportion around 30% was from interior lighting. As 

discussed in the NREL’s study (Long, Torcellini, Judkoff, Crawley, & Ryan, 2007), 

office buildings have a below-average chance to achieve zero energy due to plug and 

process loads. HVAC (heating, cooling, and fans) occupies approximately 20% for 

Houston, San Francisco, and Chicago. Baltimore’s HVAC shared 32.4% of energy uses. 

The HVAC load savings were largely the result of the kinetic envelope properties. 

Therefore, if these kinetic envelopes will be available in future, a further step to save 

overall building energy is related to the plug loads and the interior lighting loads, which 

occupied around 60~70% of energy consumption for the four cities. 

 

 

 
Figure 3.41. Proportions of each category of energy uses for Houston 
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Figure 3.42. Proportions of each category of energy uses for San Francisco 
 

 

 

 

Figure 3.43. Proportions of each category of energy uses for Baltimore 
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Figure 3.44. Proportions of each category of energy uses for Chicago 

 

 

3.6 Chapter Summary  

This chapter shows the energy simulation techniques for kinetic building 

envelopes. Based on EnergyPlus, some specific built-in features related to “Variable 

Thermal Properties”, the Energy Management Simulation (EMS), and jEPlus were 

utilized for this study. Especially, EMS of EnergyPlus offered an effective approach to 

model and simulated kinetic envelopes with variable properties. Table 3.27 presents the 

detailed approaches for kinetic modeling and this whole simulation study.  
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Table 3.27 Programs for this simulation study 
Models Components Programs 

Reference Models Building envelopes jEPlus and EnergyPlus 

 

Kinetic Models 

Walls and roofs Variable Thermal Conductivity of 

EnergyPlus and jEPlus 

Fenestration EMS of EnergyPlus 

Movable blinds Built-in features of blinds 

 

 

Afterwards, a series of energy simulation were carried out to evaluate the effects 

of the kinetic envelope assemblies including variable insulation of opaque parts, 

dynamic windows and glazing, and movable blinds. The baseline model was set up in 

compliance with ASHRAE 90.1-2010 Energy Standard’s requirements. Also, the other 

two advanced models with the enhanced envelope properties were compared to kinetic 

envelope models.  

Finally, it described the simulation results in four different climates and 

compared Kinetic Models with other three referenced models: Baseline Models, 

Advanced Models, and Ultra Models. Kinetic Models in this study were considered with 

variable insulation of opaque parts, dynamic windows and glazing, and movable blinds: 

 Variable insulation of opaque assemblies – The high U-factor 0.089 

Btu/h•ft²•°F (0.507 W/m2•K)  was  used  in  walls  and  roofs  when the  outside  

temperature was within the comfort zone, and the low U-factor 0.016 
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Btu/h•ft²•°F (0.091 W/m2•K) was used when the outside temperature was too 

high or too low. The high value and the low value of changeable U-factors 

were from the Baseline Models and Ultra Models respectively.Dynamic 

windows and glazing – The windows had two seasonally-changeable 

parameters: U-factors and SHGC. The U-factors were changed from 

0.1Btu/h•ft²•°F (0.57W/m2•K) to 0.81Btu/h•ft²•°F (4.6W/m2•K), and the 

values of SHGC ranged from 0.10 to 0.35. These values were grouped into 

the four window types (window01 referring to Low_U_High_SHGC, 

window02 referring to Low_U_Low_SHGC, window03 referring to 

High_U_Low_SHGC, and window04 referring to High_U_High_SHGC). These 

windows were switched according to the outside temperature, the indoor 

heating rates, and the indoor cooling rates. Basically, during the winter 

heating period, these windows had the low U-factor and the high SHGC, 

which was window01 to maximize solar heat gains and minimize heat loss. 

During the summer cooling period, these windows had the low U-factor and 

the low SHGC, which was window02. Window03 and window04 had higher 

U-factors but different SHGC values that responded to the indoor heating 

and cooling rates. 

 Movable blinds – These blinds were activated in terms of two conditions: 1) 

the daylight glare index at the zone’s reference point was higher than 

maximum allowable DGI 22. The slat angles were changeable according to 

direct solar beams. The “block beam solar” option enabled blinds to block 
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direct  sunlight.  2)  If  there  was  no  solar  beam  on  windows,  the  blinds’  

movement  was  still  activated  by  the  indoor  cooling  rates.  When  the  blinds  

were deactivated, the slat angles stayed at the horizontal level. 

These dynamic characteristics of building envelopes may not be available 

currently or recently in the real world. Also, this process did not explicitly consider the 

factors including costs, durability, installation, and maintenance in this study. However, 

the comparisons based strictly on energy performance of these hypothetic circumstances 

can offer the potentials of energy benefits generated by kinetic building envelopes. The 

central conclusion from the simulation results is that kinetic envelope properties can 

significantly reduce heating and cooling loads and peak demands of buildings under 

certain climatic conditions. Specific conclusions are presented below according to the 

categories discussed in this chapter: 

1) Annual Heating and Cooling Loads 

 Kinetic envelope properties offered significant savings on the annual heating 

and cooling loads in the four climates, which were 47.2% for the 

cooling-dominated climate in Houston, 47.9% for mixed-climate in San 

Francisco, 47.7% and 42.6% for the heating-dominated climate in Baltimore 

and Chicago respectively in relation to the baseline energy usages. Even 

compared to the highly-insulated envelopes, the dynamic features produced 

relatively large savings. 

 In respect of the annual cooling loads, the kinetic properties performed 

obviously better than the future high-insulated envelopes (in Ultra Models), 
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and the reduction percentages of the loads ranged from 32.0% to 53.0% (7.5% 

for Chicago) in relation to the baseline energy uses. Regarding the heating 

loads, the kinetic envelopes achieved significant savings percentages in the 

heating-dominated climate (46.0% for Baltimore and 43.2% for Chicago 

compared to the baselines) and even saved more energy than the future 

highly-insulated envelopes (in Ultra Models). However, in the 

cooling-dominated climate of Houston and the mixed-climate of San 

Francisco, the highly-insulated envelopes (in Ultra Models) performed 

slightly better than the dynamic envelopes (in Kinetic Models).  

2) Peak Demands 

 The kinetic envelopes dramatically reduced the peak heating loads and the 

peak cooling loads in the four climates. Compared to the other models, the 

kinetic envelopes in Kinetic Models reduced the peak cooling loads around 

50.4% (Houston) ~79.7% (San Francisco) relative to Baseline Models. The 

savings percentages of the peak heating loads relative to Baseline Models 

ranged from 15.3% (Houston) to 83.9% (Baltimore).  

3) Effects of Kinetic Envelope Assemblies 

 In  the  four  climates,  the  kinetic  windows  played  more  significant  roles  of  

saving energy than the other kinetic elements, and the savings were around 

two to three times as large as the savings produced by the opaque assemblies. 

Also, relative to the future highly-insulated glazing (in Ultra Models), the 

energy savings of the kinetic windows were around two times greater. 
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 The opaque parts (walls and roofs) of Kinetic Models produced the second 

higher percentages in the heating and cooling loads for each climate, which 

ranged from 15.6% to 18.4% relative to the baselines. However, compared to 

the future highly-insulated opaque assemblies (in Ultra Models), the variable 

thermal properties were more suitable to the cooling-dominated climate 

because the highly-insulated opaque assemblies performed better in saving 

the heating loads. 

 The energy savings generated by kinetic properties were obviously were 

larger than the effects by highly-insulated opaque parts. Between walls and 

roofs, in the heating-dominated climate, the dynamic characteristics of the 

walls performed better than the same settings of the roofs. In the 

cooling-dominated climate, the trend was reversed.  

4) Effects of External Movable Blinds 

 The external movable blinds in this study as one of shading strategies saved 

the cooling energy but increased the heating energy and the interior lighting 

loads. Thus, only the cooling-dominated climate installations could obtain 

the energy savings by setting up the movable blinds. In the mixed-climate 

and the heating-dominated climate, incorporation of blinds failed to save 

energy because the resulting increased the winter energy, and the lighting 

energy outweighed the summer cooling energy savings. However, the 

external movable blinds were proposed for glare protection, so the indoor 

visual comfort could be guaranteed. 
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5) Site Energy Use  

 Besides the application of the kinetic envelopes, some recommended energy 

saving strategies for indoor and outdoor lights, water systems, interior 

equipment, and HVAC systems were compiled. The savings percentages 

related to the baselines of ASHRAE 90.1-2010 Energy Standard ranged from 

38.8% to 42.0% for each climate.  

 The values of site energy use intensity (EUI) of kinetic-integrated models for 

the four cities ranged from 17.2 KBtu/ft2·yr to 20.8 KBtu/ft2·yr. Compared 

with the NREL’s projection (40.3 kBtu/ft2·yr) of ZEB and some typical ZEB 

examples (e.g., 35.4 kBtu/ft2 ·yr for Research Support Facility in Golden, 

Colorado), the kinetic-integrated models with proposed dynamic features 

performed much better. 

 Regarding the proportions of each part of energy end uses, the HVAC load 

savings are largely the result of the kinetic characteristics. However, there 

was still around 60~70% of the energy usage related to the interior 

equipment loads and the interior lighting. Therefore, if these kinetic 

envelopes in this study will be available in future, a further step to save 

overall building energy is related to plug loads and interior lighting loads, 

which occupied around 60~70% of the energy consumption for the selected 

four cities. 
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4. CHAPTER IV 

MOCKUP TESTS AND SURVEYS 

 

4.1 Mock-up Structure  

For this research, we adapted the Daylight Laboratory that was built for the EPA 

P3 solar light pipe project at the Riverside Campus of Texas A&M University (TAMU) 

in Bryan, TX (30°39 56 N 96°22 W). Figures 4.1 and 4.2 show the exterior and 

interior views of this mockup test structure. 

 

 

 

Figure 4.1. Exterior view of the mockup test structure 
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Figure 4.2. Interior views of the two workspaces 
 

 

The mock upstructure was divided into two identical rooms (10 ft.×16 ft.) 

representing two small open plan workspaces (see Figures 4.3 and 4.4 for the layout and 

section). Three grey desks with 24 in. width, 48 in. length, and 29 in. height were placed 

in each room. One desk faced the windows, and other two desks faced the walls. Also, 

two identical window exterior blinds were installed in the two rooms. The window 

blinds had upper and lower sections with different angles of rotation. The slat width was 

0.033in. (0.085cm), and the spacing was 0.028in. (0.07cm). 

Furthermore, the entire mock-up structure could be rotated to satisfy the 

requirements of different orientations for measurements and surveys. By rotating the 

mockup structure, we could simulate more possibilities with different solar positions and 

conditions. 
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Figure 4.3. Layout of the mockup rooms 
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Figure 4.4. Section of the mockup rooms 

 

 

4.2 Set-up of Measurement Tools 

We  set  up  four  lighting  sensors  with  1  ft.  interval  distance  for  each  desk,  as  

shown in Figure 4.5. These sensors can record lighting levels and reflect the contrast 

ratio of horizontal illuminance on the desks. A total of 24 sensors were connected to the 



 

147 

 

CR1000 Campbell Scientific datalogger, which was placed in the center of the two 

workspaces. Figure 4.6 shows the datalogger and the wiring connections of the 

photometric sensors. 

While conducting the surveys, a photographic camera and a vertical photometric 

sensor  (at  48  in.)  were  used  to  document  the  lighting  conditions  at  each  desk.  Two  

external photometric sensors were placed on the roof to record the external global 

horizontal and vertical illuminances. 

 
 

 
Figure 4.5. Sensor layout in mockup rooms 
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Figure 4.6. The CR1000 datalogger and wirings of lighting sensors 
 

 

4.3 Scenarios for Different Window Configurations 

One room was considered the reference model (RM1) with CEE solutions 

referring to external static Venetian blinds for the surveys. Comparatively, the other 

room was equipped with motorized movable blind systems (RM2). Both blinds in each 

room were identical, but the one in RM1 was left with fixed slat angles (36.5 º view 

angle for the lower section and 0 º view angle for the upper section), while the other one 

in RM2 was simulating an automated blind. The automated blinds were manufactured by 

the German company WAREMA, and the blinds were controlled by a system prepared 

by the Austrian company Loytec.  
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In order to identify the optimal slat angles for the RM1, a parametric simulation 

study through jEPlus and EnergyPlus was conducted. Because the surveys were 

designed to simulate the visual environment under low solar positions in winter, the 

simulation only analyzed the impacts on building energy use with slat angles for winter 

(December, January, and February). All geometric information and system settings were 

identical to the prototypical small office building model in Chapter III, including the 

blinds’ geometry. The reflections of the slats were set at 90%; other information can be 

found in Figure 3.37.  

The simulation runs were conducted with the weather file of College Station by 

varying the slat angle in 5° intervals to investigate variations in building energy uses. 

The  range  of  the  slat  angles  was  from  0°  to  50°,  so  there  were  totally  11  runs  of  

simulation in this comparison. As shown in Table 4.1, the final results are as follows: the 

optimal slat angle to minimize the total loads including heating, cooling, and lighting 

were around 5° (slat towards the ground) during the winter season (December, January, 

and February).  

 
 

Table 4.1. Energy use variations by different blind angles  
 MMBtu MMBtu MMBtu MMBtu MMBtu MMBtu MMBtu MMBtu MMBtu MMBtu MMBtu 

Angles 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 

Cooling 1.61  1.51 1.46 1.31 1.23 1.11 1.02 0.94 0.88 0.85 0.82 

Heating 4.49  4.52 4.55 4.67 4.76 4.85 5.05 5.12 5.35 5.41 5.44 

Lighting 6.92  6.93 7.56 7.89 8.32 8.85 9.11 9.51 9.72 9.87 9.92 

Total 13.02  12.96 13.57 13.87 14.31 14.81 15.18 15.57 15.95 16.13 16.18 
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The operation for RM2 was a semi-automatic mode that enabled the blinds to 

move automatically according to an embedded computation. This operation could adjust 

the angles of the blinds to provide glare protection. Because our mockup structure  can 

rotate at any angle, we set up an interface for inputting different orientations, which we 

named “scenes.” Six scenes according to six window orientations represented a range of 

solar positions in winter time in College Station and some other months in different 

locations. Section 4.3.3 contains the reasons that this survey study selected six 

orientations. In each scene, two types of variables were used: solar positions and window 

orientations.  

 Solar positions —— The solar positions include solar azimuth and solar 

altitude which could be entered by a series of equations about the sun paths 

for the selected locations. The solar elevation azimuth could be derived by 

using surface elevation azimuth (orientations). 

 Window orientations —— The window orientations in this research had six 

options: 90º, 115º, and 145º (0 = NORTH, 90 = EAST, 180 = SOUTH, 270 = 

WEST) for morning and 225º, 240º , and 255º for afternoon. 

Figure 4.7 shows the framework of blind operation modes for the six scenes used 

in this survey.   
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Figure 4.7. Framework of blind operation modes 
 

 

4.3.1 Solar Positions 

 

 

Figure 4.8. Basic geometric variables related to solar positions (DiLaura, Houser, 
Mistrick, & Steffy, 2011) 
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The solar azimuth, s, and altitude, t,  define  the  solar  position,  as  shown  in  

Figure 4.8. In the selected location, the solar azimuth, s, and altitude, t, can be 

obtained through a series of equations (IESNA, 2011).  

= arcsin(sin sin cos cos cos )          (1)  

= 0.4093 sin( ))                  (2) 

=  arctan(         )                (3) 

 

Where: 

t = solar altitude in radians 

s = solar azimuth in radians 

 = site latitude in radians 

 = solar declination in radians 

t = solar time in decimal hours 

 = Julian date 
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Figure 4.9. Basic geometric variables related to solar azimuth (DiLaura, Houser, 
Mistrick, & Steffy, 2011) 

 

 

In analyzing the blind systems and utilizing vertical and horizontal illuminance 

for sky conditions, it is necessary to determine the incident angle, i, the solar elevation 

azimuth, z , which is the sun’s azimuth relative to the façade. Figure 4.9 describes these 

three variables. 

i = cos (cos cos  [1]            (4)  

z = s e  [1]                    (5)  

Where: 

s = solar azimuth in radians 

t = solar altitude in radians 

i = incident angle in radians 

z = solar elevation azimuth in radians (the sun’s azimuth relative to the façade) 
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e = window orientations in radians 

Note: Positive angles are measured in a clockwise direction referenced from 

north. 

 

 

 

Figure 4.10. Geometric relations related to building surface and solar positions (DiLaura, 
Houser, Mistrick, & Steffy, 2011) 

 

 

Furthermore, for determining the blind angle, b, the solar profile angle, p, 

should be used to evaluate the relations between sunlight penetration and blind angles. 

Figure 4.10 explains the geometric relations of p and i (DiLaura, Houser, Mistrick, & 

Steffy, 2011). 

p= tan = tan           (6)  

Where: 
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p = solar profile angle in radians 

t = solar altitude in radians 

i = incident angle in radians 

z = solar elevation azimuth in radians 

The overlap for the blinds in this research is on the order of around 17.6%. The 

following diagram (Figure 4.11) shows that the geometric relations between blind angles 

and solar profile angles that can be blocked. 

 

 

 

Figure 4.11. Blind angles and solar profile angles 
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Figure 4.12. Profile angles of solar (DiLaura, Houser, Mistrick, & Steffy, 2011) 
 

 

As shown from Figure 4.12, we can find: 

tan = ) = )              (7)  

Where: 

H = 0.82L 

p = solar profile angle in radians 

b = blind angle in radians (positive refers to the angle above the horizontal 

position) 

Therefore, the blind’s blocking angles can be then expressed by as a function of 
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the solar profile angles,  =  sin (0.82 cos )       (8)  

Where: 

p = solar profile angle in radians 

b = blind angle in radians (positive refers to the angle above the horizontal 

position) 

According to this equation, we generated the following Table 4.2 about the 

relationship between blind angles and solar profile angles. Therefore, the RM1’s optimal 

angle (-5º) of the blinds could block the direct sunlight with 36.5º solar profile angles.  

 

 

Table 4.2. Relation between blind angles and solar profile angles 
Blind Angles (Degrees) Solar Profile Angles Blocked (Degrees) 

0 39.4 

-10 33.3 

-20 27.0 

-30 20.3 

-40 13.0 

-50 4.8 

 

 

4.3.2 Window Orientations 

The LBNL subjective surveys (that we discussed in the literature review) were 

issued during the worst-case solar condition with low solar altitude (35±9º), and subjects 
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were exposed to both clear sky and cloudy conditions (Lee et al., 2006). In order to 

present the abilities of the movable blinds for indoor visual comfort, low solar altitudes 

and sunny or partially sunny conditions were selected. The following steps present how 

and why this mockup survey study selected six particular orientations.  

 First, the sunlight penetration in this mockup was evaluated as shown in the 

Figure 4.13 so that we could identify the ranges of the solar azimuth angles 

and the solar altitude angles.  

 

 

 

Figure 4.13. Evaluations of sun penetration 
 

 

 

 Second, in order to meet our requirements of low solar altitude degrees, a 

web-based solar position calculator (http://aa.usno.navy.mil/data/docs 
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/AltAz.php) was used to identify the appropriate periods. Table 4.3 shows 

the time slots selected for conducting surveys and changing windows 

orientations. It presents the solar altitude and azimuth data for the dates from 

September 23rd to October 4th obtained by using the web-based solar position 

calculator. Thus, the range of the solar altitude angles was 31.1º - 40.3º. 

According to this range of solar altitudes, the surveys would be conducted 

between 9:50 - 10:20 or 16:00 ~ 16:30 from September 23rd to September 

28th.  Since  different  dates  had  small  changes  in  solar  positions,  the  time  

periods of 10:00 - 10:30 and 15:50 - 16:20 were chosen for the days from 

September 29th to October 4th.   

 Third, according to the survey times selected, the solar azimuth moved 

within 112 º - 124º (0 = NORTH, 90 = EAST, 180 = SOUTH, 270 = WEST) 

in the morning and 238 º - 245 º in the afternoon for these days. In order to 

simulate the worst solar conditions during the year (winter time in College 

Station or early morning or late afternoon in some months in College 

Station), three windows orientations for morning and three orientations for 

afternoon were selected on these specific days. In addition, the window 

views of these six orientations were studied. It was important to keep the 

view the same as much as possible, as research shows that views impact 

spatial experience (Ulrich, 1984). Therefore, the following tables were 

generated for the scenes related to the six orientation options (see Tables 4.4, 

4.5, 4.6, and 4.7). 



 

160 

 

Table 4.3. Solar positions of College Station on the dates for surveys 

 

 

 

 

09/24/2013 Tue 09/25/2013 Wed
  Local time    Altitude    Azimuth (E of N)   Local time    Altitude    Azimuth (E of N)

Afternoon Morning
16:00       40.2       238.6 09:50       31.6       112.9
16:10       38.3       240.8 10:00       33.6       114.7
16:20       36.4       242.8 10:10       35.5       116.7
16:30       34.5       244.8 10:20       37.4       118.7

09/25/2013 Wed 09/26/2013 Thu
  Local time    Altitude    Azimuth (E of N)   Local time    Altitude    Azimuth (E of N)

Afternoon Morning
16:00       39.9       238.3 09:50       31.4       113.3
16:10       38.0       240.5 10:00       33.4       115.2
16:20       36.1       242.5 10:10       35.3       117.1
16:30       34.2       244.5 10:20       37.2       119.1

09/26/2013 Thu 09/30/2013 Mon
  Local time    Altitude    Azimuth (E of N)   Local time    Altitude    Azimuth (E of N)

Afternoon Morning
16:00       39.5       238.0 10:00       32.7       116.9
16:10       37.7       240.2 10:10       34.6       118.8
16:20       35.8       242.2 10:20       36.4       120.8
16:30       33.9       244.2 10:30       38.2       123.0

09/30/2013 Mon 10/01/2013 Tue
  Local time    Altitude    Azimuth (E of N)   Local time    Altitude    Azimuth (E of N)

Afternoon Morning
15:50       40.0       234.6 10:00       32.5       117.3
16:00       38.2       236.9 10:10       34.4       119.2
16:10       36.4       239.0 10:20       36.2       121.3
16:20       34.5       241.1 10:30       38.0       123.4

10/02/2013 Wed 10/04/2013 Fri
  Local time    Altitude    Azimuth (E of N)   Local time    Altitude    Azimuth (E of N)

Afternoon Morning
15:50       39.4       234.1 10:00       31.9       118.5
16:00       37.6       236.3 10:10       33.8       120.4
16:10       35.8       238.4 10:20       35.6       122.5
16:20       33.9       240.5 10:30       37.4       124.7
16:20       35.8       242.2 16:20       35.5       241.9
16:30       33.9       244.2 16:30       33.6       243.9
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Table 4.4. Orientation selections part I 

 Scene 1 Scene 2 Scene 3 

Date Sep.23 ~ Sep. 28 

Time 9:50~10:00 10:00~10:10 10:10~10:20 

Solar altitude at 31.1º~33.9º 33.0º~35.9º 34.9º~37.8º 

Solar azimuth as 112.1 º ~116.0 º 113.9 º~117.9 º 115.8 º~120.0 º 

Selected orientation ae 90º 115º 135º 

Solar elevation azimuth az 22.1 º ~26.0º -1.1 º~2.9 º -20.0º~-24.2 º 

 

 

 

 

Table 4.5. Orientation selections part II 

 Scene 1 Scene 2 Scene 3 

Date Sep.29 ~ Oct. 04 

Time 10:00~10:10 10:10~10:20 10:20~10:30 

Solar altitude at 31.9º~34.7º 33.8º~36.6º 35.6º~38.5º 

Solar azimuth as 116.4 º ~120.4 º 118.4 º~122.5 º 120.4 º~124.7 º 

Selected orientation ae 90º 115º 135º 

Solar elevation azimuth az 26.4 º ~30.4º 3.4 º~7.5 º -20.3º ~ -24.6º 
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Table 4.6. Orientation selections part III 

 Scene 4 Scene 5 Scene6 

Date Sep.23 ~ Sep. 28 

Time 16:00~16:10 16:10~16:20 16:20~16:30 

Solar altitude at 37.1º~40.5º 35.2º~38.7º 33.3º~36.8º 

Solar azimuth as 237.5º ~241.1º 239.6º~243.1º 241.6º~245.1º 

Selected orientation ae 225º 240º 255º 

Solar elevation azimuth az 12.5º ~16.1º -0.4º~2.9º -9.9º~-13.4º 

 

 

Table 4.7. Orientation selections part IV 
 Scene 4 Scene 5 Scene 6 

Date Sep.29 ~ Oct. 04 

Time 15:50~16:00 16:00~16:10 16:10~16:20 

Solar altitude at 36.9º~40.3º 35.1º~38.6º 33.3º~36.7º 

Solar azimuth as 233.5º ~237.2º 235.8º~239.3º 237.9º~241.3º 

Selected orientation ae 225º 240º 255º 

Solar elevation azimuth az 8.5º ~12.2º 0.7 º ~4.2º -14.3º ~-17.1º 

z = solar elevation azimuth (which is related to the window orientations);  
as = solar azimuth in radians 
ae = window orientations in radians;  
Note: Positive angles of az are measured in a clockwise direction referenced from 

the window orientations, with as and ae referenced from north. 
 

 

Based on the above solar positions and equations (6) and (8), the blinds’ slat 

angles were calculated for blocking direct sunlight. The final results are shown in Table 

4.8. 
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 Sep.23th ~ Sep. 28th Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Time 9:50~10:00 10:00~10:10 10:10~10:20 16:00~16:10 16:10~16:20 16:20~16:30 

Selected orientation 90º 115º 145º 225º 240º 255º 

Solar altitude at 31.1º~33.9º 33.0º~35.9º 34.9º~37.8º 37.1º~40.5º 35.2º~38.7º 33.3º~36.8º 

Solar elevation 

azimuth az 

22.1 º ~26.0º -1.1 º~2.9 º -20.0º~-24.2 º 12.5º ~16.1º -0.4º~2.9º -9.9º~-13.4º 

Solar profile angles ap 32.8º~33.8º 33.0º~35.9º 37.4º~39.5º 37.8º~41.2º 35.2º~38.7º 33.7º~37.2º 

Slats angles ab -11º~-10º -11º~-6º -4º~-1º -3º~0 -7º~-2º -10º~-4º 

Sep.29th ~ Oct. 04th Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Time 10:00~10:10 10:10~10:20 10:20~10:30 15:50~16:00 16:00~16:10 16:10~16:20 

Selected orientation 90º 115º 145º 225º 240º 255º 

Solar altitude at 31.9º~34.7º 33.8º~36.6º 35.6º~38.5º 36.9º~40.3º 35.1º~38.6º 33.3º~36.7º 

Solar elevation 

azimuth az 

26.4 º ~30.4º 3.4 º~7.5 º -20.3º ~ -24.6º 8.5º ~12.2º 0.7 º ~4.2º  -14.3º ~-17.1º 

Solar profile angles ap 34.8º~38.4º 33.8º~36.7º 37.4º~40.3º 37.2º~40.9º 35.1º~38.6º 33.7º~37.2º 

Slats angles ab -8º~-2º -10º~-5º -4º~0º -3º~0 -7º~-2º -10º~-4º 

Table 4.8. Solar positions and corresponding blinds angles 
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4.4 Surveys on Occupant Comfort, Satisfaction and Acceptance 

4.4.1 Study Design 

A survey was carried out to assess and compare the visual environments created 

by two different window blinds. The two-group posttest-only randomized experiment 

was adopted as the research type. In the beginning, two groups were randomly assigned. 

After randomized assignments, one group was in a room with the automated blinds, and 

the comparison group was in a room with typical external static Venetian blinds. 

Random  assignments  were  used  so  we  can  assume  that  the  two  groups  were  

probabilistically equivalent, thereby eliminating the need for a pretest. In this mockup 

experiment, we were most interested in determining whether the two groups differed in 

response to the automation blinds. The data were related to multiple measures (overall 

satisfaction, glare sensation, blind controls, and light controls) and compared by using a 

t-test. 

This study was carried out between the end of September and the beginning of 

October in 2013 with an experimental design. Sixty subjects were selected for this 

mockup study (30 in the experimental group, 30 in the control group). Subjects were 

asked to fill out questionnaires after having spent about 30 minutes exposed to one of the 

workspaces.   

4.4.2 Setting and Subjects 

Based on the LBNL’s research on the visual comfort of daylighting environments 

of Electrochomic windows, a power analysis was used to decide the number of subjects 

for sampling. In the case of 30 participants in each group, to achieve a medium effect 
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size with 95% confidence interval and .05 margin of error, it was calculated the 

investigation  would  be  at  least  .80  for  a  one  tail  two samples  t-test. Figure 4.14 shows 

the information of calculating sample size in this study by using the web-based 

calculator: http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html. 

 

 

Figure 4.14. Power analysis of the survey study 
 

 

Subjects were 60 students from Texas A&M University 18 years or over. I visited 

four undergraduate classes in the College of Architecture to introduce the research and 

invite students to participate. I also sent an email to graduate students in Architecture. I 

explained that this study was voluntary. During the recruitment, no personal 

identification information was gathered. Furthermore, no subjects were directly 

associated with the research team. By using MS Excel random number generator 

function, the 60 subjects were randomly assigned to either the experimental group or the 

http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
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control group. 

In  addition,  an  initial  pilot  test  was  run  with  six  subjects,  but  the  results  of  the  

pilot were not included in the final analysis.  

4.4.3 Intervention  

Subjects in the experimental group’s room (RM2) were offered motorized 

external blinds according to the lighting sensors and the embedded computational 

control. Except for the operation mode (automation) of the blinds, all settings related to 

windows, glazing, blind geometry, furniture, room color, and others were identical to the 

control group’s room (RM1). Subjects in the experimental group used a web interface to 

control the blinds. People assigned to the control group had external static venetian 

blinds with optimal slat angles; they could not control the blinds. No other aspects of the 

procedure for either group were controlled by the study protocol. Subjects were not told 

about the blind type difference in the two workspaces. 

4.4.4 Data Collection Tools 

A questionnaire was developed by the LBNL for measuring visual comfort and 

window technology acceptance and used multiple-choice questions (for subject 

background information). Based on this instrument, our instrument retained around 40 of 

the questions (for each group); some were modified to fit into the two window systems 

focus  of  this  study.  Regarding  the  rating  scale,  7-point  rating  scales  have  been  widely  

used in numerous indoor environmental comfort studies on subjective responses (e.g., 

the ASHRAE 7-point scale for indoor comfort  levels [ASHRAE, 2004]),  lighting color 

impacts visual comfort (Shamsul, Sia, Ng, & Karmegan, 2013), discomfort glare from 
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non-uniform luminance (Eble-Hankin, 2008), overhead glare on visual comfort (Ngai & 

Boyce, 2000), on the basis that a 7-point scale offers a distinguishable number of 

judgments between levels of sensation without confusion (Miller, 1956). Therefore, 

7-point scales have been widely used to measure subjective responses of occupants in 

comfort studies. The two groups were administered identical questionnaires that were 

divided into three parts: I, II, and III. 

Part I and Part II were conducted based on the study results related to what kinds 

of attributes of human factors might affect the subjective responses to visual 

environment (Lee et al., 2006). In Part I, Background Information, subjects self-reported 

information on their age, gender, eyesight (whether or not they wore glasses), and other 

characteristics. Part II was an Attitudinal Survey on subject attitudes toward the 

importance of certain items in making a comfortable visual office environment. The 

items included good lighting, window views, attractive environment, no noise, privacy, 

and others. The rating scale ranged from 1 (unimportant) to 7 (very important). In 

addition to rating the importance of items for making a comfortable visual space, 

subjects also rated their own sensitivity to a number of environmental factors. The 

factors included sunlight, glare, noise, visual distraction, and gloominess. Ratings ranged 

from 1 (least sensitive), through 4 (moderately sensitive), to 7 (very sensitive). The main 

purposes for collecting information on the attributes and attitudes of the study population 

were to characterize the population and to test for possible correlations to the appraisals 

of the different test modes.  

Based on LBNL visual comfort questionnaire, Part III focused on human 
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responses to the visual environment and window blinds. It contained multiple choice 

questions on subject view directions, work tasks, etc. It also used a 7-point rating scale 

on questions about window views, glare control, visual distraction, overall satisfaction, 

etc. In Part III, two questions related to light control and blind control were created. For 

the control group, the questions concerned their intent to control the electrical lights and 

blinds during a 30 minutes study period in the room. For the experimental group, the 

questions were related to their actual control behaviors regarding the blinds during a 30 

minute studying period in the room. At the end of Part III, subjects could offer additional 

comments (e.g., window operation, lighting, visibility, comfort, etc.). 

Besides the questionnaires, when the subjects adjusted the blinds, the researchers 

observed their behaviors, recorded the time, frequency, and visual conditions with a 

camera with a fisheye lens and photometric sensors (LI-COR), as well. Data regarding 

reasons to control the blinds was used to analyze particular stimuli and the potential 

benefits of blind movements. Also, the frequency of control behaviors in each room was 

recorded in order to study the correlations among blind control behaviors, overall 

environmental comfort levels, lighting distribution comfort level, and occupants’ 

acceptance of blind types. 

4.4.5 Data Collection  

 Depending on the sky conditions, the dates and the specific time for 

conducting surveys were selected according to the solar positions (see 

Section 4.3.3).  

 From the random assignment list, six subjects were selected each time: three 
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for the control group and three for the experimental group. Before starting 

the survey, the procedures and surroundings were introduced to each group 

individually. Especially, the subjects in the experimental group were taught 

how to use the web interface to adjust the window blinds.  

 At the beginning of the survey, the windows faced 90°in the morning or 

225°in  the  afternoon by  rotating  the  mockup room.  The  six  subjects  were  

allowed to bring their own work including basic study or office work tasks 

(e.g., reading, writing), or basic computer work, to the mock-up rooms. The 

control  group’s  room  window  blinds  were  set  at  an  angle  of  -5°(minus 

means the angle is below the horizontal level). The experimental group’s 

room window blinds were set to “Scene 1” or “Scene 4.” The six subjects in 

the experimental group were allowed to adjust the blind angles. The time 

was recorded as well.  

 After 10 minutes, the windows were rotated to face 115°in the morning or 

240°in the afternoon. The control group’s room window blinds were still at 

-5°. The experimental group’s room window blinds were set to “Scene 2” 

or  “Scene  5.”  The  six  subjects  in  the  experimental  group  were  allowed  to  

adjust the blind angles. This session also lasted 10 minutes. 

 At the beginning of the last 10 minutes, the orientation was changed to 145°

in the morning or 255°in the afternoon. The control group’s room window 

blinds  were  still  the  same  as  with  previous  conditions.  The  experimental  
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group’s room window blinds were set to “Scene 3” or “Scene 6.” The six 

subjects in the experimental group were allowed to adjust the blind angles. 

The time was recorded as well. This session also lasted 10 minutes. 

 The subjects filled out the questionnaire after spending 30 minutes in the 

space. 

4.4.6 Data Analysis 

Part I’s background information about the subjects and details of the procedure 

were compared across the two study groups using means and proportions. The data from 

other parts of questionnaire were conducted using SAS JMP 10.0 statistical analyses. An 

independent paired sample t-test and Chi-square test were used to compare the measures 

of the control and experimental groups. The confidence interval was 95%. A p < .05 was 

considered statistically significant. 

4.4.7 Ethical Considerations 

The protocol was approved by the Institutional Review Board (IRB) of TAMU. 

Informed consent was obtained from each participant in written format. The subjects 

were also informed of the purpose of the research prior to the beginning of the study and 

were assured of their right to refuse to participate or to withdraw from the study at any 

stage. 

4.5 Results 

4.5.1 External Conditions During the Surveys 

This mockup study had ten tests, and each test was around 30 minutes for three 

subjects in the experimental group and three subjects in the control group. Thus, the 
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external conditions of each test for the two groups were identical. During these time 

periods, the external lighting conditions, including horizontal illuminance and vertical 

illuminance, were recorded. Figures 4.15 and 4.16 show the illuminance values in these 

periods during the surveys. Except for the last two tests with partially cloudy conditions, 

other tests were conducted with clear sky conditions. Thus, in general, around 90% of 

the time the sky was clear and the remaining time, it was partially cloudy. The exterior 

horizontal global illuminance ranged from 18,258.5 lux to 87,763.3 lux, and the exterior 

vertical global illuminance ranged from 17,661.6 lux to 89,518.5 lux. In all the 

30-minute periods, external lighting levels were high enough to activate the control of 

the blinds. 

 

 

 
Figure 4.15. External horizontal illuminance during 30 minutes of each test 



 

172 

 

 
Figure 4.16. External vertical illuminance during 30 minutes of each test 

 

 

4.5.2 Subject Characteristics and Attitudes 

During the study period, 60 subjects underwent mockup surveys on the Riverside 

Campus. Of the 60 respondents, 30 were in the control group and 30 were in the 

experimental group. Most subjects were students or university employees of TAMU. An 

initial  pilot  test  was  run  with  seven  subjects.  The  pilot  was  designed  to  test  the  

procedures, questionnaires, and lab monitoring equipment. Changes were made to the 

questionnaires and control modes in response to lessons learned during the pilot phase. 

Results from the pilot phase are not included in the results of the main study. 

Subjects self-reported information on their age, gender, race, eyesight, color 
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vision deficiency, normal work/study environment, and eyes’ color which we 

hypothesized might affect their responses to the kinetic window systems. The incidence 

of colorblindness was consistent with the general population and provided no other 

information. The remaining responses in the two groups are summarized in Table 4.8. 

Also, correlations between demographic variables were examined by contingency 

analysis, and the results are also shown in Table 4.8. As seen in Table 4.9, no statistically 

significant difference was found between the control group and the experimental group 

(p > 0.05). In both the experimental group and the control group, 46.7% of the subjects 

were female, and 53.3% were male. In the experimental group, 90.0% of the subjects 

were aged 20-29 years, 66.7% were Asian, 53.3% usually did not wear glasses, 53.3% 

normally worked or studied in rooms with a window view, and 50% had brown eyes (see 

Table 4.9).  

 

 

Table 4.9. Comparison of demographic and normal study / work conditions of 
experimental and control groups 

Characteristics Experimental Group 

n          %  

Control Group 

n         %  

Total 

 n      %  

2 / p 

Gender        

Female 14 46.7 14 46.7 28 46.7 2=0 

Male 16 53.3 16 53.3 32 53.3 p=1.0 

Age group (yr)        

20-29 27 90.0 25 83.3 52 86.7 2=0.96 
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Table 4.9. Continued 
Characteristics Experimental Group 

n         % 

Control Group 

n         % 

Total 

 n      % 2 / p 

30-39 3 10.0 5 16.7 8 13.3 p=0.327 

Ethnicity        

White 10 33.3 11 36.7 21 35.0 2=0.14 

Asian 20 66.7 19 63.3 39 65.0 p=0.705 

Wear glasses        

No 14 46.7 16 53.3 30 50.0 2=0.54 

Yes 16 53.3 14 46.7 30 50.0 p=0.464 

Windows view        

No 14 46.7 10 33.3 24 40.0 2=2.40 

Yes 16 53.3 20 66.7 36 60.0 p=0.121 

Eyes color        

Brown 15 50.0 16 53.3 31 51.7 2=1.92 

Black 10 33.3 7 23.3 17 28.3 p=0.383 

Blues and others 5 16.7 7 23.3 12 20.0  

 

 

Similar to the demographic data collection, Part II of questionnaires were 

conducted because we hypothesized that attitudes and sensitivity to visual factors, like 

glare, gloominess, etc., might affect responses to the mockup visual environment. The 

comparison of the subjective attitudes of the experimental and control groups is 

presented in Table 4.10. As seen in Table 4.10, there were no significant differences in 

subjects’ attitudes and sensitivities on the factors related to the visual environment. 
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Table 4.10. Comparison of attitudes of the experimental and control groups 

 Experimental group 
Mean       Std  Dev 

Control group 
Mean     Std  Dev 

 
Mean dif 

 
Std Err dif 

 
p 

Importance of the factors in making a comfortable visual work / study environment 
(1 being the least important, 4 being moderately important, and 7 being the most important) 

Good lighting 6.19 0.78 6.20 1.00 -0.01 0.23 0.951 
Lighting control 5.48 1.06 5.04 1.26 0.45 0.30 0.150 

Windows 5.17 1.34 5.14 1.69 0.03 0.39 0.943 
Windows view 4.91 1.28 5.14 1.72 -0.22 0.39 0.571 
Visual privacy 5.19 1.44 4.82 1.56 0.37 0.39 0.342 

Controllable shadings, 
blinds or sunscreens 

5.17 1.15 4.89 1.60 0.28 0.36 0.443 

Good room color rendering 4.86 0.98 4.30 1.62 0.56 0.35 0.111 

Sensitivity to visual conditions 
(1 being not sensitive, 4 being moderately sensitive, and 7 being very sensitive) 

a) Glare 5.64 1.04 5.30 1.51 0.35 0.33 0.305 
b) Gloominess 4.64 1.40 4.46 1.51 0.17 0.38 0.645 

c) Noise 5.21 1.46 5.04 1.32 0.18 0.36 0.627 
d) Visual distraction 4.95 1.26 5.03 1.36 -0.08 0.34 0.806 

Preferred light levels 
(1 being very low, 4 being moderate, and 7 being very bright) 

 4.96 0.88 5.04 0.70 -0.08 0.21 0.708 
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In  terms  of  mean  values  of  the  factors  creating  a  visual  environment,  for  all  

subjects in both groups, good lighting (6.20±0.89) was the most highly ranked 

characteristic, and lighting control (5.26±1.18) was ranked as the second most 

important factor, as shown in Figure 4.17. The following important factors included 

windows (5.15 ± 1.51), window view (5.03 ± 1.51), controllability of 

shades/blinds/sunscreens (5.03 ± 1.50), visual privacy (5.00 ± 1.39), and good room 

color rendering (4.57 ± 1.36). 

 

 

Figure 4.17. Importance of factors to create a comfortable work / study space 
 
 
 

4.5.3 Responses to Visual Qualities 

The types of tasks undertaken by the subjects in the mockup rooms are 
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summarized in Table 4.11. Regarding the types of tasks, the largest percentage of time 

(46.3%) was spent on reading papers. Using a laptop was the second most frequent task 

(35.1%), while writing by hand (7.6%) and drawing by hand (8.0%) had similar 

percentages. Other specified activities were minor. 

 
 

Table 4.11. Type and percentages of tasks during the study 
Tasks Mean (%) Std Dev(%) Max(%) Min(%) 

Reading on paper 46.3 42.8 100 0 

Laptop (reading, drawing, typing) 35.1 44.6 100 0 

Writing (by hand) 7.6 14.6 50 0 

Drawing (by hand) 8.0 21.1 100 0 

Other (please specify) 1.3 4.3 25.0 0 

Note: The "other" category consisted of 6 answers: 2 talking, 2 using cellphone, 1 
looking around, and 1 thinking. 

 

 

In the aforementioned analysis, the subjects in each group were comparable in 

demographic traits, attitudes, and sensitivity, which meant the two distributions had the 

same variance. We utilized an independent two-sample t-test (one-tailed) to analyze each 

question responding to visual qualities and window systems. Table 4.12 shows the 

intergroup comparison related to the responses to visual qualities. The only 

non-significant difference was associated with the responses regarding visual 

distractions.  
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Table 4.12. Comparison of subjective responses to visual qualities for both experimental and control groups 
 Experimental group 

Mean      Std  Dev  
Control group 

Mean      Std  Dev  
 

Mean 
dif 

 
Std Err 

dif 

 
t 

ratio 

 
p 

Overall satisfaction 
(1 Very dissatisfied / 4 Just 
satisfied / 7 Very satisfied ) 

 

 
5.65 

 
1.14 

 
4.48 

 
1.62 

 
1.17 

 
0.36 

 
3.26 

 
0.001* 

Light level (1 Too dark / 4 
Just right / 7 Too bright) 

4.19 0.75 4.89 1.27 -0.71 0.27 -2.63 0.006* 

Lighting distribution (1 
Poorly distributed / 4 Just 

right / 7 Nicely distributed) 
 

5.21 1.22 4.04 1.65 1.17 0.38 3.13 0.001* 

Windows view (1 No view / 
7 Clear view) 

 

3.40 2.03 4.70 1.96 -1.30 0.51 -2.53 0.007* 

Visual distraction (1 Not 
affected  / 7 affected) 

 

2.70 1.64 3.45 2.24 -0.74 0.51 -1.47 0.148 

Glare sensation (1 Not 
perceptible / 4 acceptable / 7 

Intolerable) 

3.07 1.39 4.39 1.60 -1.32 0.39 -3.41 0.001* 
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As shown in Figure 4.18, overall satisfaction with the visual qualities in the 

experimental group with movable blinds (5.65±1.14  on  a  scale  of  1-7,  with  1  =  very  

dissatisfied, 4 = satisfied, and 7 = very satisfied) was higher than the mean value of the 

control group (4.48±1.62). The difference between the groups was found to be 

statistically significant (mean value difference is 1.17 on a scale of 1 to 7, t ratio is 3.26, 

and p=0.001).  

Figure 4.18 shows the subjects’ responses to the lighting levels at their desks. 

Due to the control of blinds, certain work areas (especially the table furthest from the 

windows) showed lower levels of lighting in the experimental group relative to the levels 

in the control group. The difference between the two groups was significant (p=0.006). 

However, as seen in Figure 4.18, the mean value (4.19±0.75) for lighting levels in the 

experimental group was closer to the value of “Just Right” compared to the mean value 

(4.89±1.27) in the control group. This means the experimental group with movable 

blinds offered more appropriate lighting, according to the subjects. 
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Note: RM1 was the control group, and RM2 was the experimental group 

Figure 4.18. Overall satisfaction with visual qualities by the two groups 

 

 
 

 
Note: RM1 was the control group, and RM2 was the experimental group 

Figure 4.19. Responses to lighting levels in the two groups 
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Furthermore, there was a significant difference (p = 0.001) in the responses to the 

lighting distribution between two rooms, as seen in Figure 4.20. Relative to the 

responses in the control group, the subjects in the experimental group reported better 

distributed lighting environment (mean difference is 1.17 on a scale of 1-7). The average 

response for window views in the experimental group was 3.40±2.03 that was 

significantly lower than the value in the other group (4.70±1.96). This significant 

difference (-1.30 on a scale of 1-7 with p-value 0.007) largely stemmed from the use of 

movable blinds. In order to avoid glare problems, users in the experimental groups 

usually closed blinds and in turn the window views were reduced.  

 

 

 

Note: RM1 was the control group, and RM2 was the experimental group 

Figure 4.20. Responses to lighting distribution in the two groups 
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Lastly, it was found that the use of movable blinds in the experimental group 

achieved significantly lower values (mean difference = -1.32, p = 0.001) in responding 

to glare sensations compared to the values collected from the control group. Regarding 

the  mean  values  of  each  group,  they  ranged  from  3.07  to  4.39  on  a  scale  of  1  =  “not  

perceptible” to 7 = “intolerable”. Thus, the mean values of the two rooms were around or 

under the “acceptable” glare level. However, this comparison of differences may not 

reveal differences in the data distribution of the two groups. So, I grouped the responses 

into three levels according to the Likert scales: Low-level Glare (1 = Non perceptible to 

2.4 = Perceptible), Medium-level Glare (2.5 to 5.4 referring to Acceptable), and 

High-level Glare (5.5 = Uncomfortable to 7 = Intolerable). As seen in Figure 4.21, 30% 

of control group subjects (RM1) reported high-level values with uncomfortable or 

intolerable glare conditions, and only 6.7% of subjects in this group were within 

low-level glare range. Comparably, in the experimental group of RM2, there were no 

responses of uncomfortable or intolerable glare issues. Clearly, the controllable movable 

blinds offered glare protection to the subjects in RM2. 
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Note: RM1 was the control group, and RM2 was the experimental group 

Figure 4.21. Mosaic plot of glare sensation at the three levels of glare for both groups 

 

 

In terms of glare sensation, subjects also identified the sources of glare, if the 

glare problems were perceptible to them. Figure 4.22 shows the selections of the two 

groups. “Light from windows” was the most frequent source for glare problems in both 

rooms,  but  the  number  of  selections  in  the  control  group  was  higher  than  other  source  

choices. The sources of “Wall surfaces” and “Desk surfaces” in RM1 comprised the 

second highest selection rate. We also found that the experimental group with movable 

blinds showed a high selection rate for “Reflected glare of blinds.” This might be 

because that movement of the blinds created glare problems for the subjects. Also, 

highly reflective blind materials were used in this mockup study, which may have 

increased the glare problems. 
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Figure 4.22. Sources of glare in the two rooms 
 

 

4.5.4 Responses to Window Blind Systems 

In Part III of the questionnaire, I measured subjective satisfaction with the 

attributes of the window blinds, including appearance, glare control, noise control, 

overall satisfaction, and other. Subjects were also asked to indicate their reasons for 

adjusting the blinds (in the experimental group) or planning to adjust the blinds (in the 

control group). Table 4.13 shows the intergroup comparison related to the satisfaction 

with window blinds and the results of the t-tests of the samples in the two groups. There 

were no significant differences (p=0.139)  in  terms  of  the  rating  on  the  appearance  of  

windows and blinds in the two groups, but the experimental group obtained higher 
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values  in  this  item (mean difference  was  0.62  on  a  scale  of  1  to  7).  Similarly,  another  

non-significant factor was related to the responses to “Noise control.” We hypothesized 

that the movable blinds might have generated some noise because of their movement, 

but the results did not reveal statistically significant differences (p=0.301) in the two 

rooms.       

 

 

Table 4.13. Comparison between groups of subjective satisfaction with blinds 
 Experimental group 

Mean      Std  Dev  

Control group 

Mean  Std Dev 

Mean 

dif 

Std Err 

dif 

t 

ratio 

 

p 

Appearance 4.61 1.38 3.99 1.79 0.62 0.41 1.50 0.139 

Glare control 5.42 1.19 3.11 1.52 2.31 0.35 6.56 <0.0001* 

Noise control 5.10 1.33 4.88 1.83 0.21 0.41 0.53 0.301 

Overall 

satisfaction 

5.62 1.03 3.74 1.66 1.89 0.36 5.28 <0.0001* 

Note: the scale of each question is 1-7, with 1 = very dissatisfied, 4 = just satisfied, and 7 
= very satisfied. 
 

 

As seen in Figures 4.23 and 4.24, the responses to “Glare control” and “Overall 

satisfaction” of the blinds in RM2 (the experimental group) were significantly different 

(p < 0.0001) relative to RM1 (the control group). This was due to the different types of 

window blinds between the two rooms. I preset optimal angles (related to heating loads, 
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cooling loads, lighting loads, and window views) of the blinds in RM1 with static 

conditions, but the subjects in this control group provided dissatisfied responses to the 

glare control (3.11±1.52, 4 is “just satisfied” on the Likert scale) and the overall 

satisfaction (3.74±1.66) with the blinds. On the contrary, the controllability of the 

blinds in RM2 offered greater effects to the experimental group. The mean values of the 

glare control and the overall satisfaction were 5.42±1.19 and 5.62±1.03 respectively. 

 

 

 

Note: RM1 was the control group, and RM2 was the experimental group 

 Figure 4.23. Satisfaction with glare control of the blinds in the two rooms 
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Note: RM1 was the control group, and RM2 was the experimental group 

Figure 4.24. Overall satisfaction with the blinds in the two rooms 
 

 

In addition, the questionnaire had one question related to the electric lights, 

which was “Did you want to turn on the electrical lights during last 30 minutes?” Due to 

the clear or partial cloudy weather conditions that I chose for the mockup surveys, 

during the whole study, only two subjects in the experimental group and one subject in 

the control group reported that they wanted to turn on the lights. All three subjects were 

sitting at Desk 3, which was furthest from the windows.  

Regarding the blind control behaviors, the responses differed between the two 

groups. In the control group, the subjects were unable to adjust the blinds, so the 

question was whether they wanted to control the blinds. In the experimental group, the 

subjects were able to control the blinds. So, the question was whether they adjusted the 
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blinds.  The  optimal  angles  were  present  to  RM1  in  the  beginning  of  the  surveys,  and  

RM2 had automatic settings for different orientations and time. On the basis of these two 

settings of blind systems, it was found that 22 subjects in the control group wanted to 

adjust the blinds, and 16 subjects in the experimental group adjusted the blinds during 

the surveys.   

Figure 4.25 shows the percentage distribution of the reasons why they wanted to 

adjust or did adjust the blinds in each group. The reasons included “Reduce sunlight 

glare from windows,” “Reduce lighting contrast on the desk,” “Reduce the overall 

brightness,” “Increase visual privacy,” “Reduce solar heat,” “Reduce outside visual 

stimulus,” and “Other.” Regarding the specific reasons of “Other,” four items referred to 

“Increase the brightness” and three items to “Reduce the reflective glare from the blinds.” 

In general, around 60.6% of the reasons to adjust the blinds in the control group were to 

reduce sunlight glare from windows. Similarly, in the experimental group, the selection 

of “Reduce sunlight glare from windows” was also the most frequently identified factor 

(33.3%). Therefore, the real-time automatic settings of slat angles dramatically reduced 

glare problems from windows. However, as subjects manually adjusted the blinds, the 

positions of the slats in RM2 were often nearly closed, which resulted in lessening the 

lighting levels in Desk 3 (the furthest location from the windows). 
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Figure 4.25. Reasons to adjust blinds in the two rooms 
 

 

4.6 Chapter Summary  

In this chapter, a series of subjective surveys were conducted to obtain appraisals 

of the kinetic window technology, and satisfaction with the visual work/study 

environment. Basically, this chapter examined the effects on human factors of AKE. 

Sixty subjects were randomly assigned into RM1 (the control group) or RM2 (the 

experimental group). Then, each survey had three subjects in each room, and the six 

subjects studied or worked with different blind systems: external static blinds with 

optimal angles or kinetic external Venetian blinds, under identical external 

environmental conditions. With regard to the types of tasks the participants undertook, 

the main percentage of time (46.3%) was spent reading papers. Using laptops was the 

second most common task (35.1%), and writing by hand (7.6%) and drawing by hand 
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(8.0%) had similar percentages. Subjects were asked to fill out questionnaires after 

having spent 30 minutes exposed to the scenarios.  

The entire mockup survey was conducted between the end of September and 

early October 2013. By rotating the room, the time periods selected in this study had low 

solar positions ranging from 31.1º to 40.3º. These low solar altitude angles created 

uncomfortable visual conditions with high probabilities of glare. Around 90% of the time 

the sky was clear, and the remaining time the sky was partially cloudy. The horizontal 

illuminance ranged from 18,258.5 lux to 87,763.3 lux, and the vertical illuminance 

ranged from 17,661.6 lux to 89,518.5 lux. During these chosen 30-minute periods, the 

external lighting levels were high enough to be able to activate automatic movements of 

the blinds of RM2. The main findings are as follows: 

1) A contingency analysis was conducted on the subjects’ characteristics, 

attitudes, and sensitivities to visual factors. No statistically significant 

differences (p > 0.05) were found between the control group and the 

experimental group. In addition, good lighting was the most highly ranked 

characteristic for making a comfortable visual work/study environment, and 

lighting control was ranked as the second most important factor. 

2) With respect to the visual qualities of the two groups, I utilized an 

independent two-sample t-test (one-tailed) to analyze each question. The 

overall satisfaction of the visual qualities in the experimental group (5.65±

1.14) with movable blinds (RM2) was statistically higher than the mean value 
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of the control group (4.48±1.62), and the difference between the groups was 

found to be statistically significant (p=0.001). On particular questions, the 

subjects’ responses to the lighting levels at their desks (p=0.006) and lighting 

distributions (p=0.007) in the two groups had significant differences. The 

mean values of these answers in the experimental group were closer to the 

lighting conditions “Just right” and “Nicely distributed.” The use of movable 

blinds in the experimental group achieved significantly lower values 

(p=0.001) in responding to glare sensations compared to the values collected 

from the control group. In terms of the sources of glare, “Light from windows” 

was most frequently selected for creating glare problems in both rooms. In 

this part, the only non-significant difference concerned visual distractions. 

3) With respect to the satisfaction with blind systems, the responses to “Glare 

control” and “Overall satisfaction” of the blinds in RM2 (the experimental 

group) were found to be significant (p < 0.0001) relative to RM1 (the control 

group). There was no significant difference (p= 0.139) in terms of the rating 

of the appearance of windows and blinds in the two groups. In addition, we 

hypothesized that the movable blinds might generate some noise because of 

their movements, but the results did not reveal statistically significant 

differences (p=0.301) in the two rooms. Regarding the reasons why they 

wanted to adjust or did adjust the blinds in each group, the selection of 

“Reduce sunlight glare from windows” was most commonly chosen in two 

groups. Therefore, the real-time automatic settings of slat angles dramatically 
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offered good glare protection related to windows. However, as subjects 

manually  adjusted  the  blinds,  the  positions  of  the  slats  in  RM2  were  often  

nearly closed, which resulted in lessening the lighting levels at Desk 3 (the 

furthest location from the windows). 

Lastly, the solar locations ranged from 31.1º to 40.3º and the solar elevation 

altitudes ranged from -25º to 30º in this study (see Table 4.24). Although the surveys and 

the tests were conducted in Bryan, TX the survey results are applicable to other locations 

with similar solar positions.  Table 4.25 presents similar solar positions in Houston, San 

Francisco, Baltimore, and Chicago. Figure 4.26 shows the solar paths of these four 

locations where is highlighted the periods with similar sun positions.  

 

 

Table 4.14 Basic information about solar positions in this study 

 

Location College Station 

Solar altitude at 31.1º~40.5º 

Solar elevation azimuth az -25º ~ 30 º 

Solar profile angles ap 32.8º~41.2º 

Selected orientation 115º (Southeast) 240º (Southwest) 

Time 9:50~10:30 15:50~16:30 

Date September 23rd to October 4th 2013 
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Table 4.15. Basic information about solar positions in this study 
  Houston San Francisco Baltimore Chicago 

Month Nov.21st ~ Jan.21st  Oct.21st ~Sep.21st  Oct.21st ~Nov.21st &   
Jan. 21st ~ Feb. 21st 

Oct.15th ~Nov.15th & 
Feb.5th~ Mar.5th 

Solar Time 10:30~13:30 10:30~13:30 10:45~13:45 10:45~13:45 
 

 
Figure 4.26. Solar path for the four cities with similar solar positions to this study 
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5. CHAPTER V 

CONCLUSION 

Current energy efficient design strategies and technologies of building envelopes 

have led to significant building energy savings. However, for some climatic conditions, 

the conventional building envelopes with static properties may not be an optimal 

solution. In Chapter I, we hypothesized that AKE with dynamic properties responding to 

the climatic environment and occupants’ needs may enhance the building performance 

related to energy and indoor environmental comfort under certain climatic conditions. 

Through parametric energy simulation and mockup surveys and tests, Chapter III and IV 

demonstrated the applicability range and features of AKE technologies and their 

beneficial effects on energy and indoor comfort as well. In this final chapter, the main 

findings are summarized, and some potential contributions and challenges of AKE 

applications are discussed. Also, the limitations of this study and the remaining future 

works are addressed.  

5.1 Concluding Remarks 

To achieve the aforementioned research objectives in section 1.2, the following 

main achievements were obtained: 

1) Categorization and Characteristics of AKE Implementation: In recent 

years an increasing number of kinetic architecture examples have been built. 

However, among these cases, only few of them can be classified as being 

climatic responsive. Based on the climate-responsive characteristics of these 

AKE technologies, we grouped the design cases (built, or experimental) into 
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three categories: Solar-responsive, Air-flow-responsive, and others 

(Appendix  C).  It  was  found  that  because  solar  energy  (solar  radiation  and  

daylight) tends to be climate specific and has certain conflicting 

circumstances for buildings, most design cases are about solar-responsive 

AKE.  

2) Parametric Energy Simulation Methods: Combined with the parametric 

simulation approach of jEPlus, Energy Management System (EMS) of 

EnergyPlus offered an effective approach to model and simulate kinetic 

envelopes with variable properties. Some particular built-in features of 

EnergyPlus, like “Variable Thermal Conductivity” and “Movable Blinds,” 

were also effective to create an AKE model. 

3) Energy Savings of AKE: Compared to Baseline Models, Advanced Models, 

and Ultra Models, Kinetic Models with AKE technologies significantly 

reduced heating and cooling loads and peak demands of buildings, even 

relative to future highly-insulated glazing and walls, in the heating-dominated 

climate, the cooling-dominated climate, and the mixed-climate. On the 

baseline of ASHRAE 90.1-2010 Energy Standard, the PNNL prototypical 

office building with proposed AKE properties can significantly reduce 

building site energy uses for the four climates. Also, the site energy use 

intensity of kinetic-integrated models for the four climates demonstrated 

those proposed dynamic characteristics can produce high potentials to 

achieve net-zero energy. 
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4) Effects on Energy Savings of AKE Assemblies: In  the  four  cities,  kinetic  

windows played a more significant role in saving energy than the other 

kinetic components, and the savings were around two times as large as the 

savings of the highly-insulated glazing. However, compared to the 

highly-insulated opaque assemblies, variable thermal properties of AKE were 

more appropriate to the cooling-dominated climate because the 

highly-insulated opaque assemblies performed better in saving heating loads. 

Lastly, with respect to the effects of movable blinds, it was found that only 

cooling-dominated climate installations could obtain the energy savings by 

setting up movable blinds. In the mixed-climate and the heating-dominated 

climate, incorporation of blinds failed to save energy because the resulting 

winter energy and lighting loads outweighed the summer cooling energy 

savings.  

5) Impacts on Human Factors: movable external Venetian blinds were used as 

a test case to illustrate how kinetic envelopes affect indoor comfort levels to 

occupants. Mockup survey results showed that overall satisfaction with the 

visual qualities associated with movable blinds was statistically higher 

(p=0.001) than the levels related to optimal static blinds. Similar trends were 

also  found  in  the  subjective  responses  to  “Lighting  Levels  (p=0.006), 

Lighting Distributions (p=0.001), and Glare Sensation (p=0.001). Meanwhile, 

compared to static blinds, the movement of the blinds in RM2 reduced the 

satisfaction level on window views (p=0.007). With respect to the subjective 
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acceptance of external movable blinds, subjects reported higher levels 

(p<0.0001) on Overall Satisfaction and Glare Protections than the subjects in 

rooms with static blinds. 

5.2 Potential Contributions 

5.2.1 Net-zero Energy Buildings 

As mentioned in the first chapter, the optical and thermal properties of the 

building façade act as an important climate-moderating function. This study 

demonstrated that kinetic building envelopes may provide the appropriate thermal, 

lighting, and air exchanges, necessary for improving the indoor conditions, even 

compared to the optimal static settings or future highly-insulated building envelopes. To 

achieve zero-energy building (ZEB), the National Renewable Energy Laboratory (NREL) 

(Long, Torcellini, Judkoff, Crawley, & Ryan, 2007) assessed the energy performance for 

commercial buildings based on technologies that were projected to be available in 20 

years.  NREL noted that  the EUI could be as little as 40.3 kBtu/ft2·yr. Figure 5.1 shows 

the EUI values of different standards or current “net-zero energy” buildings. Compared 

to these EUI values, Kinetic Models in this study achieved lower levels (ranging from 

17.2 KBtu/ft2·yr to 20.8 KBtu/ft2·yr). In the coming decades, the kinetic building 

envelopes can be dramatically reshaped by combining the results of research 

building-integrated renewable energy technologies, efficient mechanical systems, 

advanced sensors and controls. Therefore, these kinetic properties of AKE in this study 

may not be available currently, it still shows a promising potential for future net-zero 

energy buildings.  
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Figure 5.1. Comparisons of average EUI at the various levels based on the NREL’s 
report 

 
 
 

5.2.2 Renewable Energy Generation by Kinetic Technology  

According to the definitions of Net-Zero Energy by the U.S. Department of 

Energy, zero energy buildings should generate as much energy on-site through 

renewable sources as it uses. NREL (Long, Torcellini, Judkoff, Crawley, & Ryan, 2007) 

predicted that the widespread installation of rooftop PV could produce an average 28.1 

kBtu/ft2•yr for commercial buildings. However, as discussed in Chapter II, there are 

currently some examples related to movable BIPVs, and these kinetic properties may 

improve the energy generation in most climates relative to the static BIPVs. So, if 
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certain kinetic renewable energy systems (e.g., PV, wind turbines) can be integrated into 

buildings, buildings with kinetic envelopes and energy generating systems could not 

only achieve net-zero energy but also produce more energy than they consume. 

5.2.3 Environmental Satisfaction and Productivity 

Many studies (e.g., Gensler, 2006; Uzee, 1999; Leaman and Bordass, 1993; 

Williams et al. 1985) have noted that the environmental satisfaction is playing a major 

role in boosting human productivities (ranging from 0.5% to 10%) and improving 

organizational performance. Clements-Croome (2000) stated that staff costs are 100 to 

200 times as much as the cost of operating building environmental systems, so, 0.5 to 1% 

increases in productivities can off-set the costs on installation and running these 

environmental systems. This study demonstrated that the integration of AKE 

technologies may dramatically improve the satisfaction on visual qualities (around 26% 

rises of the overall satisfaction level on visual qualities in this mockup surveys). Thus, 

spending money on improving working environment by utilizing AKE technologies 

could still be cost effective, because a small rise in productivities can contribute a great 

deal to the overall profitability.  

5.2.4 Smart Buildings and Occupant Controls 

Our surveys revealed that the controllability of kinetic building envelope systems 

was desirable. As the development of indoor environment system operation and 

management, sensor- and data-processing for smart buildings and mobile network 

controls, AKE will be not only a net-zero energy function of its original climatic 

responsiveness but an interactive interface between users and buildings. Therefore, the 
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study on AKE may revolutionize visions and approaches of architects and engineers 

toward future smart buildings, interactive architectural aesthetics, and occupant 

responsive controls.  

5.3 Limitations of the Study  

5.3.1 Limitations in Energy Simulation 

Firstly, the following kinetic parameters were selected in this study: variable 

insulation of walls, variable insulation of roofs, dynamic glazing U-factors, dynamic 

SHGC of windows, and movable blinds. The dynamic properties of the envelope 

assemblies were theoretically proposed and analyzed. So, the values for the relative 

energy reduction were based on artificial boundary conditions and may not be achieved 

currently.  

Secondly, the study is limited in terms of its generalizability to all kinetic 

building envelopes. Except for the aforementioned kinetic functions, there are currently 

also other kinetic features related to AKE, for example, sliding walls and retractable 

roofs. There kinetic properties may have different impacts on energy use. Thus, the 

results of this energy simulation study cannot be generalized to other types of kinetic 

envelopes. 

Thirdly, the building typology in this study is limited to one-floor office building. 

The NREL’s report (Long, Torcellini, Judkoff, Crawley, & Ryan, 2007) stated that 

single-story buildings are the most likely to achieve net zero energy consumption 

relative to multi-story buildings. Also, compared to hospitals, office buildings, and food 

service establishments, non-refrigerated warehouses, vacant, religious worship, and 
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educational buildings may get a better chance of achieving zero energy because they do 

not have high plug and process loads. So, kinetic properties in different functions and 

forms of buildings may have different impacts on energy uses. Consider, for instance, 

residential buildings that may have lower heat gains from inside equipment and people 

relative to office buildings. Thus, the variable insulation of opaque assemblies in 

residential buildings may not reduce cooling loads as many as these kinetic properties in 

office buildings.  

5.3.2 Limitations in Mockup Surveys 

Firstly,  most  of  these  kinetic  properties  in  the  simulation  study  are  still  in  

experimental stages. Current kinetic insulated envelopes in the real world do not meet 

our proposed kinetic properties of envelopes during the simulation study. Only external 

movable Vernation blinds were adopted as a representative kinetic technology in our 

mockup surveys. The findings of the surveys, therefore, don’t address the comparisons 

with other building components of kinetic envelopes.  

Secondly, the results of the mockup tests and surveys were limited to the blinds 

used in the mockup structure. For example, the blinds used in this study had specular 

reflection that might affect the human responses related to glare sensation and controls.  

Thirdly, the distribution analysis of subjects’ age shows nearly all participants in 

this study were under 30 years old. Similarly, the subjects in this study were White and 

Asian. Therefore, the human responses of this study were limited to subjects of these 

two ethnicities and backgrounds.  
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5.4 Future Work 

In this study, only some characteristics of kinetic envelopes were tested and 

evaluated with energy simulations and mockup surveys. Based on the findings and the 

methods of this study, future research might include: 

1) Other building types and forms: One-floor prototypical office building was 

selected as a case in this study, so the environmental systems, equipment, 

schedule, and other settings of the office typology affected the final results. 

Other building types, such as healthcare, commercial and residential 

buildings may have different input parameters in evaluating energy uses. Also, 

the building size and forms were constrained at this stage, which may be 

crucial to the results. So, integrating the dynamic geometric settings into the 

evaluations of AKE would be of another interest.  

2) Comprehensive and integrated simulation approach:  In  this  study,  the  

techniques of EnergyPlus and jEPlus were utilized and expanded to allow the 

evaluations on the specific kinetic properties. However, the process of using 

these approaches for this study was still complex and isolated. Some built-in 

functions worked for the dynamic properties, but they were not specifically 

designed for AKE. Some errors and limitations were often met during the 

modeling and simulating process. One of the future works is to experiment 

and integrate all functions for other dynamic materials and systems into one 

platform or one simplified workflow.  

3) Optimization approach of AKE parameters: During the course of the 
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energy simulation study, I proposed variations for each envelope parameter 

and then conducted the comparison with other referenced models. Although 

jEPlus was  used  for  a  series  of  parametric  simulation  runs  to  find  out  the  

“optimal settings” for the kinetic envelopes, real optimization for a broader 

range of parameter variations is still needed. Some existing research explored 

different algorithms (e.g., Genetic Algorithm) for optimization of building 

forms, shadings, and physical properties. Most of these studies are to finalize 

the optimal properties for the static situation rather than kinetic states in 

different seasons or days. Therefore, the optimization method and tests of 

AKE are another category for the future research. 

4) Lifecycle analysis: It  is  critical  to  consider  its  entire  life  cycle  before  

utilizing these emerging technologies. This includes upstream impacts (e.g., 

raw smart materials acquisition, manufacturing, and shipping), using impacts 

(e.g., installations, energy performance, effects on human factors, and 

maintenance), and downstream impacts (e.g., removal and waste 

management). Especially, regarding the impacts of the use of AKE, attention 

to gains and costs are required for well-balanced trade-offs. At this time, the 

inherent economic challenges may hamper the application of AKE. On one 

hand, these emerging technologies require more initial costs than CEE. On 

the  other  hand,  AKE  still  consumes  some  energy  to  adjust  itself  from  one  

state to another one. The amount of energy needed and associated operational 

and maintenance costs might be larger than the gains on energy savings and 



 

204 

 

human factors. Therefore, the impacts of operating AKE are the significant 

part to the lifecycle assessment. The future work may embrace aspects 

spanning from economics through design to functionality. 

5.5 Closing 

Integrating kinetic properties into building envelopes may lead to innovative 

design approaches in how architects and engineers create buildings to respond to 

climatic conditions and occupant needs. This research demonstrated the benefits of AKE 

on energy and occupant satisfaction under certain conditions relative to CEE with “best” 

or even “future” envelope properties. With the advent of new AKE technologies, the 

techniques and the results in this study can serve as a reference point for future research 

on applicability and optimization of kinetic building envelopes toward net-zero energy 

buildings and indoor comfort. 

 



 

205 

 

REFERENCES  

Abbaszadeh, S., Zagreus, L., Lehrer, D., & Huizenga, C. (2006). Occupant satisfaction 

with indoor environmental quality in green buildings. Paper presented at the 

Conference of Healthy Buildings 2006, Lisbon, Portugal, June 4-8, 2006. 

Abdel Kawi, A. (2001). Medina third annual design competition: Youth ideas 

competition, Smart village, Egypt. Medina, 19, 50-63.  

Acclimatization. (n.d.). The unabridged hutchinson encyclopedia. Retrieved January 25, 

2014, from http://encyclopedia.farlex.com/acclimatization 

Addington, M. & Schodek, D. (2005). Smart materials and new technologies: For the 

architecture and design professions. Boston, MA: Architectural Press. 

Adler, R. (2002). The age wave meets the technology wave: Broadband and older 

Americans. Retrieved February 15, 2013, from http://www.seniornet.org 

Aksamija, A., Guttman, M., Rangarajan, H., & Meador, T. (2010). Parametric control of 

BIM elements for sustainable design in Revit: Linking design and analytical 

software applications through customization, Perkins+Will Research Journal, 3(1), 

32-45. 

Anderson, B., & Michal, C. (1978). Passive solar design. Annual Review of Energy. 3(1), 

57-100. 

ANSI/ASHRAE/IES. (2010). ANSI/ASHRAE/IESNA 90.1-2010, Energy standard for 

buildings except low-rise residential buildings. Atlanta, GA: ASHRAE Press. 

ASHRAE. (2011). Advanced energy design guide for small to medium office buildings. 

Atlanta, GA: ASHRAE Press. 

http://encyclopedia.farlex.com/acclimatization


 

206 

 

ASHRAE. (2004). Thermal environmental conditions for human cccupancy. Atlanta, GA: 

ASHRAE Press. 

Ayhana, D., & Sa lamb, . (2012). A technical review of building-mounted wind power 

systems and a sample simulation model. Renewable and Sustainable Energy 

Reviews, 16(1), 1040-1049. 

Azhar, S., & Brown, J. (2009). BIM for sustainability analyses. International Journal of 

Construction Education and Research, 5(4), 276-292.  

Baer, S. (2009). Some passive solar buildings with a focus on projects in New Mexico. 

Paper presented at the Albuquerque chapter of AIA, Albuquerque, NM, January 15, 

2009. 

Bahaj,  A.  S.,  &  James,  P.  A.  B.  (2007).  Urban  energy  generation:  the  added  value  of  

photovoltaics in social housing. Renewable and Sustainable Energy Reviews, 11(9), 

2121-2136. 

Basulto, D. (2009). Sliding house by dRMM in action. Retrieved March 22, 2013, from 

http://www.archdaily.com/16082 

Berkoz, E., & Yilmaz, Z. (1987). Determination of the overall heat transfer coefficient of 

the building envelope from the bioclimatic comfort point of view. Architectural 

Science Review, 30(4), 117-121. 

Bordass, B., & Leaman, A. (2004). Beyond probe: Making feedback routine. Paper 

presented at the Conference of Post-Occupancy Evaluation: The Next Steps, 

Windsor, UK, April 29-May 2, 2004. 

Boyce, P. R. (2003). Human factors in lighting. Boca Raton, FL: CRC Press.  

http://www.archdaily.com/16082


 

207 

 

Byabato, K., & Müller, H. (2007). Building integrated photovoltaics. Paper presented at 

the PREA Workshops, Dar es Salaam, Tanzania, October 15-16, 2007. 

CBECS. (2003). Commercial Buildings Energy Consumption Survey 2003. Washington, 

D.C.: National Academy Press. 

DesignBuilder Software Ltd. (2012). DesignBuilder features. Retrieved April 30, 2013, 

from http://www.designbuilder.co.uk 

Charron,  R.,  &  Athienitis,  A.  K.  (2006).  Optimization  of  the  performance  of  

double-facades with integrated photovoltaic panels and motorized blinds. Solar 

Energy, 80(5), 482-491.  

DiLaura,  D.  L.,  Houser,  K.  W.,  Mistrick,  R.  G.,  &  Steffy,  G.  R.  (2011).  The lighting 

handbook. New York, NY: IESNA Press. 

Cilento, K. (2013). Al Bahar Towers responsive façade / Aedas. Retrieved January 13, 

2014, from http://www.archdaily.com/270592 

Cilento, K. (2010). Greenway Self-Park / HOK. Retrieved January 13, 2014, from 

http://www.archdaily.com/74468 

Conahey,  E.M.,  Haves,  P.,  &  Christ,  T.  (2002).  The integration of engineering and 

architecture: A perspective on natural ventilation for the New San Francisco 

Federal Building. Retrieved January 3, 2014, from 

http://buildings.lbl.gov/sites/all/files/lbnl-51134_0.pdf  

DOE. (2013). EnergyPlus documentation. Retrieved May 30, 2013, from 

http://apps1.eere.energy.gov/buildings/energyplus/energyplus_documentation.cfm 

Eble-Hankin, M., (2008). Subjective impression of discomfort glare from sources of 

http://www.designbuilder.co.uk/
http://www.archdaily.com/270592
http://www.archdaily.com/74468
http://buildings.lbl.gov/sites/all/files/lbnl-51134_0.pdf
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_documentation.cfm


 

208 

 

non-uniform luminance (Unpublished doctoral dissertation). University of Nebraska 

– Lincoln, Lincoln, NE. 

Ellis, P. G., Torcellini, P. A., & Crawley, D. B. (2007). Simulation of energy management 

systems in EnergyPlus. Paper presented at the Building Simulation 2007 

Conference, Beijing, China, September 3-6, 2007. 

EPA. (2010). 2010 P3 award winners. Retrieved April 30, 2013, from 

http://www.epa.gov/p3/project_websites/2010/2010awardwinners.html 

Fisher, D. (2012). Dynamic architecture. Retrieved April 30, 2013, from 

http://www.dynamicarchitecture.net 

Foster+Partners. (2012). Projects / High Court of Justice and Supreme Court, City of 

Justice Madrid. Retrieved April 30, 2013, from 

http://www.fosterandpartners.com/Projects/1453/Default.aspx 

Gatten  Jr,  R.  E.,  Echternacht,  A.  C.,  &  Wilson,  M.  A.  (1988).  Acclimatization  versus  

acclimation of activity metabolism in a lizard. Physiological Zoology, 322-329. 

Goia, F., Perino, M., Serra, V., & Zanghirella, F. (2010). Towards an active, responsive, 

and solar building envelope. Journal of Green Building, 5(4), 121-136. 

Hertzsch, E. (1998). Double skin façades. Munich, Germany: Peschke Press.  

Hoffman, A., & Henn, R. (2008). Overcoming the social and psychological barriers to 

green building. Organization & Environment, 21(4), 390-419. 

Jarnagin, R.E., Liu, B., Winiarski, D.W., McBride, M.F., Suharli, L., & Walden, D. 

(2006). Technical support document: Development of the advanced energy design 

guide for small office buildings. Richland, WA: PNNL Press. 

http://www.epa.gov/p3/project_websites/2010/2010awardwinners.html
http://www.dynamicarchitecture.net/
http://www.fosterandpartners.com/Projects/1453/Default.aspx


 

209 

 

Jelle, B.P. (2011). Traditional, state-of-the-art and future thermal building insulation 

materials and solutions–Properties, requirements and possibilities. Energy and 

Buildings, 43(10), 2549-2563. 

Jiang, Y. (2010). Annual report on China building energy ef ciency. Beijing, China: 

China Architecture and Building Press.  

Jonsson, A., & Roos, A. (2010). Evaluation of control strategies for different smart 

window combinations using computer simulations. Solar Energy, 84(1), 1-9. 

Karlsson, J. (2001). Control system and energy saving potential for switchable windows. 

Paper presented at the Seventh International IBPSA Conference, Rio de Janeiro, 

Brazil, August 13-15, 2001. 

Kendeigh, S.C. (1961). Animal ecology. Englewood Cliffs, NJ: Prentice-Hall, Inc. 

Knaack, U., Klein, T., Bilow, M., & Auer, T. (2007). Façades: Principles of construction. 

Basel, Switzerland: Birkhäuser Press. 

Kohler, C., Arasteh, D., & Goudey, H. (2008). Highly insulating glazing systems using 

non-structural center glazing layers. Paper presented at the 2008 Annual ASHRAE 

Meeting, Salt Lake City, UT, June 21-25, 2008. 

Kolokotroni, M. (2001). Night ventilation cooling of office buildings: Parametric 

analyses of conceptual energy impacts. ASHRAE Transportation, 107(1), 479-489. 

Koo,  S.Y.,  Yeo,  M.S.,  &  Kim,  K.W.  (2010).  Automated  blind  control  to  maximize  the  

bene ts of daylight in buildings. Building and Environment, 45(6), 1508-1520. 

Laar, M., & Grimme, F.W. (2002). German developments in daylight guidance systems: 

an overview. Building Research and Information, 30(4), 282-301.  



 

210 

 

LBNL Windows and Daylighting. (2012). COMFEN 4.0. Retrieved April 30, 2013, from 

http://windows.lbl.gov 

Lee, C. (2008). The thermal organism and architecture. Paper presented at the 

Conference of ACADIA 2008: Silicon + Skin, Minneapolis, MN, October 16-19, 

2008. 

Lee, E.S., DiBartolomeo, D.L., Vine, E.L., & Selkowitz, S.E. (1998). Thermal 

performance of the exterior envelopes of buildings. Paper presented at the 

ASHRAE/DOE/BTECC Conference, Clearwater Beach, FL, December 3-5, 1998. 

Lee, E.S., DiBartolomeo, D.L., Vine, E.L., & Selkowitz, S.E. (2000). Electrochromic 

window tests in U.S. office show promise. Retrieved April 30, 2013, from 

http://eetd.lbl.gov/newsletter/nl05/ 

Lee, E.S., & Selkowitz, S.E. (1997). Design and performance of an integrated envelope 

/ lighting system, Paper presented at the Fifth ICBEST Conference, Bath, UK, April 

15-17, 1997. 

Lee, E.S., & Selkowitz, S.E. (1998), Integrated envelope and lighting systems for 

commercial buildings: A retrospective. Paper presented at the ACEEE 1998 

Summer Study on Energy Efficiency in Buildings, Asilomar, CA, August 23-28, 

1998. 

Lee, E. S., & Selkowitz, S. E. (2006). The New York Times Headquarters daylighting 

mockup: Monitored performance of the daylighting control system. Energy and 

Buildings, 38(7), 914-929. 

Lee, E.S., Selkowitz, S.E., Clear, R.D., DiBartolomeo, D.L., Klems, J.H., Fernandes, 

http://windows.lbl.gov/
http://eetd.lbl.gov/newsletter/nl05/


 

211 

 

L.L., Ward, G.J., Inkarojrit, V., & Yazdanian. M. (2006). Advancement of 

electrochromic windows. Retrieved September 12, 2013, 

http://windows.lbl.gov/comm_perf/Electrochromic/refs/CEC-500-2006-052_FinalR

eport.pdf 

Lee, E.S., Selkowitz, S.E., Rubinstein, F.M., Klems, J.H., Beltrán, L.O., DiBartolomeo, 

D.L., & Sullivan, R. (1994). Developing integrated envelope and lighting systems 

for new commercial buildings. Paper presented at the Conference of Solar '94, 

Golden Opportunities for Solar, San Jose, CA, June 25-30, 1994.  

Lee, E.S., & Tavil, A. (2007). Energy and visual comfort performance of electrochromic 

windows with overhangs. Building and Environment, 42(6), 2439-2449. 

Lee, G., Sacks, R., & Eastman, C. M. (2006). Specifying parametric building object 

behavior (BOB) for a building information modeling system. Automation in 

construction, 15(6), 758-776. 

Long, N., Torcellini, P., Judkoff, R., Crawley, D., & Ryan, J. (2007). Assessment of the 

technical potential for achieving net zero-energy buildings in the commercial sector. 

Retrieved September 13, 2013, from http://www.nrel.gov/docs/fy08osti/41957.pdf 

Mangkuto, R. A., Aries, M. B. C., Loenen, E. J. v., & Hensen, J. L. M. (2012). Lighting 

performance of virtual natural lighting solutions with a smplified image in a 

reference office space. Paper presented at the Conference of the Experiencing Light 

2012, Eindhoven, Netherlands, November 12-13, 2012. 

Martin, A., & Fletcher, J. (1996). Cooling options: Night time is the right time. Building 

Services Journal, 18(8), 25-26. 

http://windows.lbl.gov/comm_perf/Electrochromic/refs/CEC-500-2006-052_FinalReport.pdf
http://windows.lbl.gov/comm_perf/Electrochromic/refs/CEC-500-2006-052_FinalReport.pdf
http://www.nrel.gov/docs/fy08osti/41957.pdf


 

212 

 

Miao,  Z.,  Li,  J.,  &  Wang,  J.  (2011).  Kinetic  building  envelopes  for  energy  efficiency:  

modeling and products. Applied Mechanics and Materials, 71, 621-625 

Miller, G.A. (1956). The magical number seven, plus or minus two: some limits on our 

capacity for processing information. Psychological Review, 63(2), 81-97. 

Minner, K. (2010). COR / Oppenheim Architecture + Design. Retrieved April 1, 2013, 

from http://www.archdaily.com/87063 

Moloney, J. (2009). A morphology of pattern for kinetic façades (unpublished doctoral 

dissertation). The University of Melbourne, Melbourne, Australia.  

Morphosis. (2011). San Francisco federal building. Retrieved April 1, 2013, from 

http://morphopedia.com 

Nasrollahi,  N.,  Knight,  I.,  &  Jones,  P.  (2008).  Workplace  satisfaction  and  thermal  

comfort in air conditioned office buildings: Findings from a summer survey and 

field experiments in Iran. Indoor and Built Environment, 17(1), 69-79.  

Nazzal A. (2001). A new daylight glare evaluation method: Introduction of the 

monitoring protocol and calculation method. Energy and Buildings, 33(13), 

257-265. 

Ngai, P. & Boyce, P. (2000). The effect of overhead glare on visual discomfort. Journal 

of the Illuminating Engineering Society, 29(2), 29-38. 

Ochoa, C.E., Capeluto, I.G. (2008). Strategic decision-making for intelligent buildings: 

Comparative impact of passive design strategies and active features in a hot climate. 

Building and Environment, 43(11), 1829-1839. 

Oral,  G.  K.,  &  Yilmaz,  Z.  (2003).  Building  form  for  cold  climatic  zones  related  to  

http://www.archdaily.com/87063
http://morphopedia.com/


 

213 

 

building envelope from heating energy conservation point of view. Energy and 

Buildings, 35(4), 383-388.  

Papamichael, K. M. (1991). Design process and knowledge: possibilities and limitations 

of computer-aided design (unpublished doctoral dissertation). University of 

California, Berkeley, CA. 

Parpairi, K. (2004). Daylight perception dans environmental diversity in architecture. 

London, UK: Spon Press. 

Qiu, B., Jiang, Y., Lin, H., Peng, X., Wu, Y., . . . Cui, L. (2007). Annual report on China 

building energy ef ciency. Beijing, China: China Architecture and Building Press. 

Rangi, K., & Osterhaus, W. (1999). Windowless environments: Are they affecting our 

health? Paper presented at the Conference of the LIGHTING’99, Adelaide, 

Australia, October 18-19, 1999. 

Rheault, S., & Bilgen, E. (1990). Experimental study of full-size automated venetian 

blind windows, Solar Energy, 44(3), 157-160. 

Rijal, H. B., Tuohy, P., Humphreys, M. A., Nicol, J. F., Samuel, A., & Clarke, J. (2007). 

Using results from field surveys to predict the effect of open windows on thermal 

comfort and energy use in buildings. Energy and Buildings, 39(7), 823-836.  

Rittel, H.W.J. (1973). Some principles for the design of an educational system for design. 

Design Research and Methods, 7(2), 148-159. 

Ritter, A. (2007). Smart materials in architecture, interior architecture and design. Basel, 

Switzerland: Birkhäuser Press. 

Russell, J. (2000). GSW Headquarters. Architectural Record, 188(6), 156-161. 



 

214 

 

Seeboth, A., & Lötzsch, D. (2008). Thermochromic phenomena in polymers. Shropshire, 

UK: Smithers Rapra. 

Shamsul, B.M.T., Sia, C.C., Ng, Y.G., & Karmegan, K. (2013). Effects of light’s colour 

temperatures on visual comfort level, task performances, and alertness among 

students. American Journal of Public Health Research, 1(7), 159-165 

Shaughnessy, R. J., Haverinen-Shaughnessy, U., Nevalainen, A., & Moschandreas, D. 

(2006). A preliminary study on the association between ventilation rates in 

classrooms and student performance. Indoor Air, 16(6), 465–468. 

SMIT. (2012). University of Utah to install solar ivy. Retrieved September 12, 2013, 

from http://www.s-m-i-t.com/ 

Suk,  J.,  &  Schiler,  M.  (2013).  Investigation  of  Evalglare  software,  daylight  glare  

probability and high dynamic range imaging for daylight glare analysis. Lighting 

Research and Technology, 45(4), 450-463.  

Sullivan, C.C. (2006). Robo buildings: Pursuing the interactive envelope. Architectural 

Record, 194(4), 149-156.  

Tan, C. W., Green, T. C., & Hernandez-Aramburo, C. A. (2007). A current-mode 

controlled maximum power point tracking converter for building integrated 

photovoltaics. Paper presented at the Power Electronics and Applications 2007 

European Conference, Aalborg, Denmark, September 2-5, 2007. 

Tenner, A.D., & Zonneveldt, L. (2002). Switchable façades and visual comfort. Paper 

presented at the Conference of Right Light 5, Nice, France, May 29-31, 2002.  

Thornton, B.A., Wang, W., Huang, Y., Lane, M.D., & Liu, B. (2010). Technical support 

http://www.s-m-i-t.com/


 

215 

 

document: 50% energy savings for small office buildings. Richland, WA: PNNL 

Press. 

Thorton, B.A., Rosenberg, M.I., Richman, E.E., Wang, W., Xie, Y., Zhang J., Cho, H., 

Mendon, V.V., Athalye, R.A., Liu, B. (2011). Achieving the 30% goal: Energy and 

cost savings analysis of ASHRAE standard 90.1-2010. Richland, WA: PNNL Press. 

Ulrich, R.S. (1984). View through a window may influence recovery from surgery. 

Science, 224(4647), 420-421. 

United States Green Building Council. (2012). Introductory presentation. Retrieved 

April 30, 2013, from http://www.usgbc.org 

Van Bussel, G.J.W., & Mertens, S.M. (2005). Small wind turbines for the built 

environment. Paper presented at the 4th European and African Conference on Wind 

Engineering, Prague, Czech Republic, July 11-15, 2005. 

Veitch,  J.A.,  & Newsham, G.R. (1998).  Determinants of lighting quality I:  State of the 

Science. Journal of the Illuminating Engineering Society, 27(1), 92-106. 

Vinnitskaya, I. (2010). Kiefer Technic Showroom / Ernst Giselbrecht + Partner. 

Retrieved May 17, 2013, from http://www.archdaily.com/89270 

Wang, J. (2011). Bio-inspired kinetic envelopes: Integrating BIM into biomimicry for 

sustainable design. Retrieved March 5, 2014, from 

http://www.architects.org/programs-and-events/2011-research-grant-recipients  

Wang, P.C. (2008). Natural ventilation in double-skin façade design for of ce buildings 

in hot and humid climate (unpublished doctoral dissertation). University of New 

South Wales, Kensington NSW, Australia. 

http://www.usgbc.org/
http://www.archdaily.com/89270
http://www.architects.org/programs-and-events/2011-research-grant-recipients


 

216 

 

Wargocki, P., Wyon, D.P., Baik, Y.K., Clausen, G., & Fanger, P.O. (1999). Perceived air 

quality, sick building syndrome (SBS) symptoms and productivity in an of ce with 

two different pollution loads. Indoor Air, 9(3), 165–179. 

Warner, J.L., Reilly, M.S., Selkowitz, S.E., Arasteh, D.K., & Ander, G.D. (1992). Utility 

and economic benefits of electrochromic smart windows. Paper presented at the 

ACEEE 1992 Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, 

August 30-September 5, 1992. 

Welle,  B.,  Haymaker,  J.,  &  Rogers,  Z.  (2011).  ThermalOpt:  A  methodology  for  

automated BIM-based multidisciplinary thermal simulation for use in optimization 

environments. Building Simulation, 4(4), 293-313. 

Wienold, J. (2009). Dynamic daylight glare evaluation. Paper presented at the Building 

Simulation - Eleventh International IBPSA Conference, Glasgow, Scotland, July 

27-30, 2009. 

Wienold, J., & Christoffersen, J. (2006). Evaluation methods and development of a new 

glare prediction model for daylight environments with the use of CCD cameras. 

Energy and Buildings, 38(7), 743-757. 

Winiarski D.W., Halverson, M.A., & Jiang, W. (2007). Analysis of building envelope 

construction in 2003 CBECS. Richland, WA: PNNL Press. 

Wong, L.T., Mui, K.W., & Hui, P.S. (2008). A multivariate-logistic model for acceptance 

of indoor environmental quality (IEQ) in of ces. Building and Environment, 43(1), 

1-6. 

Wong, S.K., Wai-Chung Lai, L., Ho, D.C.W., Chau, K.W., Lo-Kuen Lam, C., & 



 

217 

 

Hung-Fai Ng, C. (2009). Sick building syndrome and perceived indoor 

environmental quality: A survey of apartment buildings in Hong Kong. Habitat 

International, 33(4), 463-471. 

Zagreus, L., Huizenga, C., Arens, E., & Lehrer, D. (2004). Listening to the occupants: A 

web-based indoor environmental quality survey. Indoor Air, 14(8), 65-74. 

Zanghirella,  F.,  Perino,  M.,  &  Serra,  V.  (2011).  A  numerical  model  to  evaluate  the  

thermal behaviour of active transparent facades. Energy and Buildings, 43(5), 

1123-1138.  

Zar, J.H. (1984). Biostatistical analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. 

Zerkin, A. (2006). Mainstreaming high performance building in New York City: A 

comprehensive roadmap for removing the barriers. Technology in Society, 28(1-2), 

137-155. 

Zhang, Y. (2009). “Parallel” EnergyPlus and the development of a parametric analysis 

tool. Paper presented at the Conference of the IBPSA BS2009, Glasgow, UK, July 

27-30, 2009.  

Zuk, W., & Clark, R.H. (1970). Kinetic architecture, New York: Van Nostrand Reinhold. 

Zupan , B., Škrjanc, I., Krainer, A., Kristl, Ž., & Košir, M. (2006). Online adaptation 

to variable conditions with variable envelope structure in future buildings. Paper 

presented at the 20TH EUROPEAN Conference on Modelling and Simulation 

ECMS 2006, Bonn, Germany, May 28-31, 2006. 



 

218 

 

APPENDIX A  

QUESTIONNAIRES 

PART I: BACKGROUND INFORMATION 

I-1 What is your gender?  

a) Male  

b) Female  

I-2 How old are you?  

a) Less than 20  

b) 20 - 29  

c) 30 - 39  

d) 40 - 49  

e) 50 - 59  

f) 60 or over  

I-3 What is your race?  

a) White  

b) Black or African American  

c) American Indian or Alaska Native  

d) Asian 

e) Native Hawaiian or Other Pacific Islander 

f) Some Other Race 

I-4 Do you wear glasses when doing study/office works?  

a) No  

b) Yes  

I-5 Are you color blind?  

a) No  

b) Yes, Red-Green / Blue-Yellow (please choose one). 
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c) I am not sure.  

I-6-1 Where you normally work/study, do you have a view of a window while 

working/studying?  

a) No  

b) Yes  

I-6-2 If yes, do you have a scenic view?  

a) No  

b) Yes  

I-7 What color are your eyes?  

a) Brown 

b) Black 

c) Blue and others  

----------- End of Part I ---------- 

PART II: ATTITUDINAL SURVEY 

II-1 Please assign a rating for the importance of the following items in making a comfortable visual 

environment, with 1 being the least important and 7 being the most important.  

Unimportant          Moderately  Important              Very  Important   

1         2         3          4         5         6         7   

a)  Good  lighting              

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|   

b) Lighting control (adjust lighting levels) 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

c) Windows (glazing type, shapes, and others) 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

d) Windows view  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  
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e) Privacy 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

f) No noise 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

g) Controllable shadings, blinds or sunscreens 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

h) Good room color rendering 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

i) Other (specify) 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

II-2 Please assign a rating for your sensitivity to the following items, with 1 being not sensitive, 4 

being moderately sensitive, and 7 being very sensitive.  

Least Sensitive        Moderately Sensitive          Very Sensitive  

a) Glare   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

b) Gloominess  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

c) Noise  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

d) Visual distraction  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

II-3 When you perform your work / study tasks, what is your preferred light level in your workspace?  

Very  Low                 Moderate                  Very  Bright   

Light level  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

-----------  End of Part II  ---------- 
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RM1 PART III: HUMAN RESPONSES TO THIS MOCK-UP ROOM VISUAL QUALITIES 

III-1 During the last 30 minutes, what percentage of your time was spent on each of the 

following tasks?  

a)  Reading  on  paper                      _____%  

b) Laptop (reading, drawing, typing)        _____% 

c) Writing (by hand)       _____% 

d) Drawing (by hand)         _____% 

e) Other (please specify) ______________  _____% 

III-2 In which desk did you sit? (Use labels on the desk)  

a) No. 1 

b) No. 2 

c) No. 3 

III-3 Please assign a rating for the following visual qualities of your working area.   

a) Overall satisfaction of the visual qualities 

Very  Dissatisfied         Just  Satisfied                   Very  Satisfied   

1         2          3          4         5         6         7   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

b) Light level  

Too  Dark                 Just  Right                     Too  Bright   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

c) Lighting distribution  

Poorly  Distributed                               Nicely  Distributed   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

d) Windows view  

No  views                                   Clear  view  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  
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e) Visual distraction (window systems including glazing, blinds and views; except for rotations) 

Not  affected                               Affected   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

f) Glare sensation  

Not perceptible  Perceptible  Acceptable     Uncomfortable  Intolerable  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

If you perceived glare sensation while in the room, please indicate the source of the glare. 

(Please check all that apply)  

a) Windows 

b) Wall surfaces 

c) Desk surfaces 

d) Reflections on the laptop screen 

e) Reflected glare from blinds 

f) Other (please specify)____________________  

III-4 Please assign a rating or your satisfaction with the following attributes of the window 

blind systems.  

Very  Dissatisfied         Just  Satisfied                   Very  Satisfied   

1         2         3          4         5         6         7   

a) Window (including blinds) appearance  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

b) Glare control 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 

c) Noise control 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 

d) Overall satisfaction of the blinds 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 
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e) Other (please specify) __________________  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 

III-6-1 Did you want to turn on the electrical lights during last 30 minutes?  

a) Yes 

b) No 

III-6-2 If yes, when did you want to turn on the lights?  

a) During the first 10 minutes 

b) During the second 10 minutes 

c) During the third 10 minutes 

III-7-1 Did you want to control the window blinds (adjust the slats angles and / or lift the 

blinds) during last 30 minutes?  

a) Yes 

b) No 

III-7-2 If yes, please choose the reasons why you wanted to adjust window blinds in last 30 

minutes.  

a) To reduce glare from daylight/sunlight 

b) To reduce lighting contrast on the desk 

c) To reduce the overall brightness 

d) To increase visual privacy 

e) To reduce the heat from the sun 

f) To decrease the level of visual stimulus from the outside 

g) Other (please specify) __________________ 

III-8 Please add any additional comments (e.g., window operation, blinds, lighting, visibility, 

comfort, etc.) about this test in the space.  
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RM2 PART III: HUMAN RESPONSES TO THIS MOCK-UP ROOM VISUAL QUALITIES 

III-1 During the last 30 minutes, what percentage of your time was spent on each of the 

following tasks?  

a)  Reading  on  paper                      _____%  

b) Laptop (reading, drawing, typing)        _____% 

c) Writing (by hand)       _____% 

d) Drawing (by hand)         _____% 

e) Other (please specify) ______________  _____% 

III-2 In which desk did you sit? (Use labels on the desk)  

a) No. 1 

b) No. 2 

c) No. 3 

III-3 Please assign a rating for the following visual qualities of your working area.   

a) Overall satisfaction of the visual qualities 

Very  Dissatisfied         Just  Satisfied                   Very  Satisfied   

1         2          3          4         5         6         7   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

b) Light level  

Too  Dark                 Just  Right                     Too  Bright   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

c) Lighting distribution 

Poorly  Distributed                             Nicely  Distributed   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

d) Windows view  

No  views                                   Clear  view  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  
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e) Visual distraction (window systems including glazing, blinds and views; except for rotations) 

Not  affected                               Affected   

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

f) Glare sensation  

Not perceptible  Perceptible  Acceptable     Uncomfortable  Intolerable  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

If you perceived glare sensation while in the room, please indicate the source of the glare. 

(Please check all that apply)  

a) Windows 

b) Wall surfaces 

c) Desk surfaces 

d) Reflections on the laptop screen 

e) Reflected glare from blinds 

f) Other (please specify)____________________  

III-4 Please assign a rating or your satisfaction with the following attributes of the window 

blind systems.  

Very  Dissatisfied         Just  Satisfied                   Very  Satisfied   

1         2         3          4         5         6         7   

a) Window (including blinds) appearance  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|  

b) Glare control 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 

c) Noise control 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 

d) Overall satisfaction of the blinds 

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 
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e) Other (please specify) __________________  

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| 

III-6-1 Did you want to turn on the electrical lights during last 30 minutes?  

a) Yes 

b) No 

III-6-2 If yes, when did you want to turn on the lights?  

a) During the first 10 minutes 

b) During the second 10 minutes 

c) During the third 10 minutes 

III-7-1 Did you control the window blinds during last 30 minutes?  

a) Yes 

b) No 

III-7-2 If yes, please choose the reasons why you adjusted window blinds in last 30 

minutes.  

a) To reduce glare from daylight/sunlight 

b) To reduce lighting contrast on the desk 

c) To reduce the overall brightness 

d) To increase visual privacy 

e) To reduce the heat from the sun 

f) To decrease the level of visual stimulus from the outside 

g) Other (please specify) __________________ 

 

III-8 Please add any additional comments (e.g., window operation, blinds, lighting, visibility, 

comfort, etc.) about this test in the space.  

 

-----------  End of Part III  ---------- 
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APPENDIX B  

DATALOGGER AND CALIBRATIONS 

 

B.1 Datalogger and Devices 

In the mockup test of this study, the data related to indoor lighting environment, 

exterior lighting conditions, wind speed, etc. were collected. So, I utilized the CR1000 

datalogger and a series of sensors to set up our data-acquisition system. The CR1000 is 

manufactured  by  Campbell  Scientific  (CS)  and  is  widely  used  in  a  broad  range  of  of  

fields including the building environment. The CR1000 datalogger consists of a 

measurement and control module and a wiring panel, and it needs an external CPU, 

keyboard, and monitor for controling it. The CS LoggerNet 5.0 software was used for 

editing and collecting data. Table B.1 shows all devices that I used in the mockup tests. 

Table B.1. Devices for calibration 
Devices/programs name Type Purpose Number 

Datalogger CR1000 Data acquisition system 1 

Multiplexer AM16/32B Increase the number of sensor 

channels 

1 

LI-COR Photometric 

Sensor 

LI-210SA Collect illuminance data 27 

Dell Server with monitor Windows 7 

64 bits 

Control the datalogger and data 

storage of the datalogger 

1 

Loggernet 5.0 Programming, communication, and 

data retrieval between dataloggers 

and a PC 

1 

Chroma Meter CL-200 Calibration of LI-COR sensors 1 
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The multiplexer was also made by CS and it was the type of AM16/32, which 

allowed 16 more groups of four lines (a total of 64 lines). With this device it increased 

the number of sensors that we can connect to the CR1000. In our research, we used 28 

LI-COR Photometric Sensor, so that the 14 groups of the multiplexer AM16/32B were 

occupied.  

The LI-COR LI-210 Photometric Sensor was utilized to measure illuminance 

levels in lux. The millivolt adapter connected to the BNC connector of the sensor, and 

the wire leads of the adapter were connected to the datalogger. Therefore, the sensor 

output was millivolts rather than lux, so the converting process was using "Ohms Law" 

(Voltage = Current * Resistance).  Twenty-four sensors were distributed on six desks to 

collect indoor illumination data, and other two sensors were located outdoor to collect 

the exterior global horizontal and vertical illuminance. In addition, we set up two 

movable LI-210 sensors with the cameras for assessing the vertical illuminance at the 

eye level of subjects during the mockup tests.  

 
Figure B.1. Connections of the datalogger, sensors, and a laptop 
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B.2 Calibrations for LI-210 Sensors 

In this study, I used Loggernet 5.0, CR1000 Datalogger, Minolta CL-200 Light 

Meter, and compact fluorescent lamps to calibrate the LI-210 sensors.  

1) Set up the Calibration Environment and Structures  

The  first  step  is  to  set  up  a  stable  and  uniform  lighting  environment  with  

adjustable lighting levels for the calibration. We utilized the photography room of 

TAMU’s College of Architecture and created a lighting scenario including three groups 

of 6-compact fluorescent lamps with softbox and adjustable stands. The light source’s 

color temperature ranged between 5000 - 5500K, and the illuminance on the work plane 

ranged 200~2000lux. By adjusting the height of the stands or turn on / off certain lamps, 

we could achieved different levels of lighting with a stable lighting conditions. 

 

 

  

Figure B.2. The lighting environment setting up for calibration 
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In addition to the lights, in order to give relatively stable and uniform lighting 

conditions to 32 sensors, we designed a structure to hold 32 LI-COR sensors. This way, 

we could calibrate all sensors simultaneously under similar lighting conditions. Then, we 

connected these sensors to the CR1000 datalogger and the datalogger to a laptop via a 

USB port.  

 

 

 

Figure B.3. Specific structure designed for holding up to 32 LI-COR sensors 

 

 

To connect the LI-COR sensors to the CR1000 datalogger, it requires to connect 

properly the millivolt wires. The green or red lead should be connected to the positive 

(or high) terminal on the datalogger, and the blue or red lead should be connected to the 
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negative (or low) terminal on the datalogger. We did not connect the ground terminal and 

the low terminal for each sensor although materialist was suggested this connection to 

minimize noises. All sensors were connected to the multiplexer that was connected to the 

CR1000 datalogger.  

 
 

 
Figure B.4. Set up of datalogger with multiplexer 

 

 

 
Figure B.5. Wiring diagram for connecting AM16/32 to CR1000 
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Figure B.6. Wiring diagram for connecting the LI-COR sensors to AM16/32 

 

To connect a laptop with the CR1000, we conducted the following steps: 

 

 

Figure B.7. Setup-1 for the CR1000 datalogger 
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Figure B.8. Setup-2 for the CR1000 datalogger 

 

 

 

Figure B.9. Setup-3 for the CR1000 datalogger 
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We selected the mode of “Direct Connect” to conduct the connection between the 

datalogger and the laptop by using USB. We need to find out the COM port name that is 

occupied by the USB. 

 
 

 
Figure B.10. Setup-4 for the CR1000 datalogger 

 

 

 
Figure B.11. Setup-5 for the CR1000 datalogger 
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2) Create a Calibration Program by Using the CRBasic Program 

The CRBasic program is one of the functions in the LoggerNet package, and it is 

used  to  create  a  program  to  control  and  operate  the  data  collection  by  using  the  

datalogger. LoggerNet has some built-in programs (called short cut) for different usages 

and the users can create datalogger programs quickly and easily by using a wizard-like 

interface. These built-in programs support the most commonly sensors such as solar 

radiation sensors, temperature and humidity sensors, etc. However, it does not have 

specific programs for lighting sensors. Thus, we used “Differential Voltage” to set up a 

short  cut program and then edited it  in the CRBasic program. In the above options,  we 

chose 0 to 2.5mV for the LI-COR sensors because the voltage values from the LI-COR 

sensors  were  within  this  scale.  We  kept  the  defaults  for  other  settings.  The  following  

figures show the steps of using the CRBasic program. 

 Open LoggerNet and Select Short Cut. 

 

 

 

Figure B.11. Step-1 for creating a calibration program 
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 Set up a New Program. 

 
 

 
Figure B.12. Step-2 for creating a calibration program 

 

 

 Input the scan interval time. Regarding the multiplexer, the minimum scan 

interval is 30 seconds. Also, you could edit these values later in the CRBasic 

program. 
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Figure B.13. Step-3 for creating a calibration program 

 

 

 For the data collection of lighting sensors, you should select “Differential 

Voltage” under the folder of Generic Measurement. Input the numbers of the 

lighting sensors connected to the datalogger.  
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Figure B.14. Step-4 for creating a calibration program 

 

 

 Some detail settings on conducting differential voltage for lighting sensors 

will appear. You can change the variable name and set the voltage range that 

should be lower than 25mv otherwise the datalogger cannot recognize the 

sensors’ volts.  
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Figure B.15. Step-5 for creating a calibration program 

 

 

After the shortcut was created, we opened it in the CRBasic Editor and 

programmed the calibration calculation. The main contents of the calibration program 

are shown as follows: 
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'Declare Variables and Units 

Dim LCount_5 

Public DiffV(32) 

Units DiffV=mV 

Units vtolux=lux 

'Declare calibration variables 

Public CalModel,KnownVar(32) 

Public Mult(32), Off(32) 

Public vtolux(32) 

'Main Program 

BeginProg 

     Mult(1)  =  1  :  Off(1)  =  0   

     Mult(2)  =  1  :  Off(2)  =  0   

     ……  

     Mult(31)  =  1  :  Off(31)  =  0   

     Mult(32)  =  1  :  Off(32)  =  0   

     LoadFieldCal(true)     

Scan(1,Min,1,0) 

 

'Generic Differential Voltage measurements DiffV() on the AM16/32 Multiplexer:

 VoltDiff(DiffV(LCount_5),1,AutoRange,1,True,0,_60Hz,Mult(LCount_5),Off(LCoun

t_5)) 
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   LCount_5=LCount_5+1 

 'assume the initial multiplier is 1.  Thus, 1000000/ (multiplier * 604ohm) is used 

to convert millivolts to lux. 

      vtolux(1)= DiffV(1)*1000000/(1 * 604) 

      vtolux(2)= DiffV(2)*1000000/(1 * 604) 

      ……  

      vtolux(31)= DiffV(31)*1000000/(1 * 604) 

      vtolux(32)= DiffV(32)*1000000/(1 * 604) 

      FieldCal(3,vtolux(),32,Mult(),Off(),CalModel,KnownVar(),1,1) 

 

 

 

Figure B.16. Step-6 for creating a calibration program 
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Figure B.17. Step-7 for creating a calibration program 

 

 

The above figures show the main steps followed to create a calibration program. 

After we completed the program, we sent the program to the datalogger. We open 

LoggerNet and clicked “Connect” to conduct the calibration process. 

Because we have already declared variables of volts generated by the LI-COR 

sensors  as  Public,  we  could  view  these  real  time  data  in  the  screen  below  (see  Figure  

B.18). Also, the programs set the scan intervals at 30 seconds in the datalogger, so the 

data in this table were updated every 30 seconds.  
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Figure B.18. Open Connect in the LoggerNet interface 

 

 

 

 

Figure B.19. Click public to view the real time data 
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Figure B.20. The list of data of volts generated by the LI-COR sensors 

 

The following figures show the illuminance values converted from volts. 

 

Figure B.21. The list of data of illuminance converted by the program 
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3) Conduct the Calibration for All Sensors by Using Light Meters 

The FieldCal instruction of LoggerNet has four types of calibrations: Zeroing 

Calibration, Offset Calibration, Two-point Multiplier/Offset Calibration, and Two-point 

Multiplier Only Calibration. For our calibration process, we utilized the last method: 

Two-point Multiplier Only Calibration. This method accepts a linear fit approach against 

two  different  known  values  measured  by  the  Light  Meter  in  two  different  lighting  

conditions. In our calibration process, all LI-COR sensors were placed into the first 

condition of lighting, and we used the Light Meter to obtain the accurate real values for 

that lighting condition. After this, we set the known values to the datalogger program for 

all the sensors. Once we finished the first point calibration, the LoggerNet calibration 

program informed us to conduct the second point calibration that was the same process 

with the first point but under the different lighting conditions. After completing the 

calibration of the second point condition, a best fit of the two points was calculated and 

generated a slope value (the offset assumed to be zero). For performing this calibration 

mode, we need to use the number three for the calibration type in the FieldCal 

instruction in the CRBasic program.  

We conducted calibration many times and found that the multipliers could be 

different  in  two different  sensors  exposed  to  different  lighting  levels.  Thus,  in  order  to  

maximize the accuracy of the data from these LI-COR sensors, we organized the sensors 

into different lighting ranges. For instance, the sensors closed to the windows might have 

high lighting levels (500~1500 lux) in most daytime conditions, and the sensors placed 

in the perimeter of the room and the rear areas of the room might have low lighting 
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levels (50~800 lux). Also, the exterior sensors usually worked under much higher 

lighting levels than the interior sensors. So, all sensors were calibrated according to their 

own possible illuminance ranges.  

The LoggerNet Calibration Wizard is the function that we used to calculate and 

apply the two different known lighting conditions while the program was running in the 

CR1000 datalogger. It provides an easy to use interface to set the sensors to the known 

illuminance values. The following figures show the steps on how to use this Calibration 

Wizard.  

 Connect to the datalogger and choose the Calibration Wizard from the 

Connect Screen’s Datalogger menu. 

 

 

Figure B.22. Step-1 for calibration the lighting sensors 
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 Review the introduction and the instructions for the calibration and click 

Next. 

 

 

 

Figure B.23. Step-2 for calibration the lighting sensors 
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 Now choose the type of calibration (Multiplier only) then click Next. 

 

 

 

Figure B.24. Step-3 for calibration the lighting sensors 

 

 
 Now  place  the  lighting  sensors  into  the  first  lighting  condition  and  use  a  

calibrated light meter to obtain the known value of illuminance. After this, 

we can enter the value into the First calibrated value box. Once we click 

Set First Value, the datalogger will start a calibration process and the word 

Calibrating will be visible in the Current Value box until that process is 

complete.  
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Figure B.25. Step-4 for calibration the lighting sensors 

 

 

 After completing the first point calibration for all sensors, the second point 

calibration will appear. Place all sensors into the second lighting condition 

and measure the lighting level, and then input this value into the Second 

calibrated value box. Press Set Second Value and you will get the same 

word calibrating. You might get some errors messages because the 

multipliers cannot be calculated by the calibration program of the datalogger. 

You can go ahead to finish the calibration and select these values to conduct 

the calibration process later.  
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Figure B.26. Step-5 for calibration the lighting sensors 

 

 

 The screen of completion will appear once you successfully get the 

multipliers.  

 
Figure B.27. Step-6 for calibration the lighting sensors 



 

251 

 

 These multiplier values are written in the calibration file and also can be 

reviewed in the table of “Public” of Connect Screen. In addition, you can 

edit these multipliers if you need to. 

 

 

 

Figure B.28. Step-7 for calibration the lighting sensors 

 

 

4) Analyze the Errors of All Calibrated Sensors and Document the Multipliers 

We conducted a series of tests to analyze the errors of these sensors after 

calibration. The tests were conducted at different lighting levels ranging from 150 lux to 

1,978 lux and compared them to the measured illuminance values with the Minolta light 
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meter. The following table shows, relative to the real measurements, the errors 

percentages of twenty five calibrated LI-COR sensors connected to the datalogger under 

different lighting conditions. The relative errors ranged from 0.1% to 3.6%, so all errors 

percentages were less than ±5%. 

 

 

Table B.2. Relative errors of 25 LI-COR sensors 

Measurements 150lux 310lux 422lux 811lux 1275lux 1450lux 1978lux 

PH7451B -0.9% 0.5% 0.1% 0.9% 1.3% 0.4% 1.9% 

PH7450 -0.5% -0.1% 0.4% 1.1% 1.2% 0.9% 2.0% 

PH4164 0.4% -1.0% -1.8% -0.7% -0.2% 0.1% 1.0% 

PH7452 -0.5% -0.3% 0.2% 1.0% 1.2% 0.0% 1.7% 

PH7453 0.7% 2.6% 0.3% 0.9% 1.6% 2.3% 2.8% 

PH7454 -0.4% -0.3% -0.9% -0.1% 0.5% 0.0% 1.1% 

PH4158 1.9% -0.7% -1.8% -0.3% -0.1% 1.5% 1.8% 

PH4159 1.1% 0.7% -1.1% -0.4% -0.5% -0.7% -0.5% 

PH7455 -0.6% 1.5% 0.8% 1.4% 1.9% 1.4% 2.1% 

PH7457 1.1% 2.1% 0.9% 1.5% 1.9% 1.6% 2.8% 

PH7458 0.7% 0.7% 0.7% 1.4% 1.9% 1.4% 2.9% 

PH4160 1.5% 0.5% -1.3% 0.2% 0.7% 1.2% 2.0% 

PH4161 1.0% -2.9% 0.9% 1.9% 2.1% 1.9% 3.6% 

PH4162 -0.3% -1.5% -1.0% -0.3% 0.3% 0.0% 1.5% 

PH7459 0.6% 1.6% -0.8% 0.0% 0.5% 1.2% 1.8% 

PH7460 -0.3% 0.8% 0.4% 1.2% 1.6% 1.0% 2.3% 

PH7461 -0.7% 0.9% 0.9% 1.3% 1.8% 0.4% 2.0% 

PH4163 1.9% 0.4% -2.2% -0.7% -0.1% 0.8% 1.4% 
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Table B.2. Continued 

Measurements 150lux 310lux 422lux 811lux 1275lux 1450lux 1978lux 

PH7462 -2.0% -1.1% -1.5% -0.8% -0.3% -1.1% -0.1% 

PH7463 -0.3% 1.8% 0.5% 1.2% 1.6% 0.5% 1.2% 

PH7464 0.2% 2.3% -0.6% 0.1% 0.6% 0.6% 1.5% 

PH7465 -3.5% 0.6% 0.4% 0.7% 1.3% 0.1% 0.1% 

PH7451A -2.1% -3.5% -2.6% -1.7% -1.3% -2.1% -0.4% 

PH7466 1.0% 1.7% 0.0% 0.9% 1.4% 1.9% 2.4% 

PH7467 -0.5% -1.2% -0.5% 0.4% 0.7% -0.3%  1.4% 

 

 

Table B.3. Sensor information list for this project 

Serial Number Multiplier Cable Length Calibration Range Layout numbers 

Indoor sensors 

PH4157 5.441 9'6" 500~1500lux   

PH4158 5.774 9'6" 500~1500lux 15 

PH4159 5.766 9'6" 500~1500lux 16 

PH4160 5.615 9'6" 500~1500lux 17 

PH4161 5.316 9'6" 500~1500lux 19 

PH4162 6.01 9'6" 500~1500lux 14 

PH4163 5.215 9'6" 500~1500lux 18 

PH4164 5.614 9'6" 50~800lux 13 

PH7451A 3.258 10'6" 50~800lux 20 

PH7450 3.115 15'6" 50~800lux 2 

PH7451B 3.002 20'6" 50~800lux 1 

PH7452 2.53 20'6" 50~800lux 4 

PH7453 3.199 20'6" 50~800lux 5 
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Table B.3. Continued 

Serial Number Multiplier Cable Length Calibration Range Layout numbers 

PH7455 3.046 20'6" 50~800lux 6 

PH7454 4.188 20'6" 50~800lux 9 

PH7457 3.149 20'6" 50~800lux 10 

PH7458 3.329 20'6" 50~800lux 11 

PH7459 2.933 20'6" 50~800lux 3 

PH7460 3.198 20'6" 50~800lux 7 

PH7461 3.285 20'6" 50~800lux 8 

PH7462 3.001 20'6" 50~800lux   

PH7463 3.208 20'6" 50~800lux 12 

PH7464 3.732 20'6" 50~800lux 21 

Ph7465 3.492 20'6" 50~800lux 22 

PH7466 3.998 20'6" 50~800lux 24 

PH7467 3.065 20'6" 50~800lux 23 

Movable sensors 

PH7468 3.219 30'6" 500~2000lux   

PH7469 3.211 30'6" 500~2000lux   

Outdoor sensors 

PH8291 2.85 50'6" 6000~18000lux   

PH8292 3.012 50'6" 6000~18000lux   

PH8293 2.952 50'6" 6000~18000lux   

PH8294 2.916 50'6" 6000~18000lux   
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APPENDIX C 

A LIST OF DESIGN OR IMPLEMENTATION EXAMPLES OF AKE  
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