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ABSTRACT 
 

 The existence of an optimum injection rate for wormhole propagation, and face 

dissolution at low injection rates during matrix acidizing are well established. However, 

little has been documented that describes how the presence of residual oil affects 

carbonate acidizing. This study demonstrates the impact of oil saturation on wormholing 

characteristics while acidizing field and outcrop cores under reservoir conditions 

(200°F). Knowledge of the effect of different saturation conditions on acid performance 

will contribute towards designing more effective acid treatments. 

Coreflood experiments at flow rates ranging from 0.5 to 20 cm3/min were performed to 

determine the optimum injection rate for wormhole propagation when acidizing 

homogeneous  calcite and dolomite reservoir cores, and low permeability Indiana 

limestone cores of dimensions 3 and 6 in. length and 1.5 in. diameter. Absolute 

permeability of the cores ranged from 1 to 78 md. The study involved acidizing cores 

saturated with water, oil, and waterflood residual oil using 15 wt% HCl. The viscosity of 

the crude oil used was 3.8 cP at 200°F. CAT scans were used to characterize wormholes 

through the cores. The concentrations of the dissolved calcium and magnesium ions were 

measured using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) 

and the effluent samples were titrated to determine the concentration of the acid.  

HCl was effective in creating wormholes with minimal branches for cores with residual 

oil (Sor=0.4-0.5) at injection rates 0.5 to 20 cm3/min. Compared to brine and oil 

saturated cores, waterflood residual oil cores took less acid volume to cause 

breakthrough. Additionally, the wormholing efficiency of regular acid improved with 
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increases in acid injection rates in the presence of residual oil.  A decrease in acid pore 

volumes to breakthrough for oil saturated cores was noted at high acid injection rates, 

which could be attributed to viscous fingering of acid through oil. Unlike brine saturated 

and oil saturated cores, waterflood residual oil cores showed no face dissolution at low 

acid injection rates. Conclusions from this work aid in the designing of better acid jobs 

by highlighting the impact of oil saturation on wormholing characteristics of acid while 

acidizing carbonate rocks. 
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NOMENCLATURE 
 

PVbt Pore volumes required to create wormholes along the core length, 

PV 

Ki Initial permeability, md 

Sor                                          Saturation of residual oil 
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CHAPTER I 

 

INTRODUCTION AND LITERATURE REVIEW 
 

Carbonate Matrix Acidizing and Wormholing  

Matrix acidizing is a well stimulation technique where the acid injected dissolves 

some of the minerals present in the formation and enhances or increases the permeability 

around the wellbore vicinity. The whole process can be summarized as an acid-rock 

interaction with constant alteration to the porous structure of the rock through 

dissolution. Daccord et al. (1993) showed that the dissolution patterns in carbonates can 

be classified as uniform, wormhole, or compact, depending on the relative influence of 

flow rates with respect to the overall reaction rate. Wormholes are larger than the normal 

pores found in non-vugular carbonates and provide highly conductive flow paths near 

wellbore.  

The patterns and geometry of the wormhole channels formed rely heavily on the 

rate of mass transfer and the kinetics of the surface reaction (Schechter et al. 1969; and 

Fredd et al. 1999; Daccord et al. 1989; Wang et al 1993). Compact patterns are formed 

due to the convection-limited regime at low flow rates. Mass-transport limited kinetics 

lead to wormhole patterns at intermediate flow rates. Uniform dissolution patterns can be 

seen at high flow rates where the surface reaction–limited regime dominates.  
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For regular acid, the patterns developed can be classified as one of the following (Robert 

and Crowe 2000):  

 Compact or face dissolution in which most of the acid is spent near the rock 

face;  

 Conical wormholes;  

 Dominant wormholes;  

 Ramified wormholes; and  

 Uniform dissolution  

 

Wormhole Propagation and Termination 

 Buijse (2000) and Huang et al. (1997) suggested two possible mechanisms 

responsible for wormhole termination at the origin. 1) High consumption of acid at the 

wormhole walls, which limit the acid concentration at the wormhole tip from further 

propagation. The wormhole tip sees a transformation from mass transfer limited regime 

to convection limited regime which leads to the extinction of the wormhole. 2) Filtration 

losses through the wormhole at high flow rates where the surface reaction limited regime 

predominates over mass transfer limited kinetics.  

The effect of acid diffusivity on wormholing was studied by Hoefner and Fogler 

(1985 and 1987). Matrix acidizing can make wormholes and stimulate up to 10 ft in 

wells not affected by near-wellbore damage, but if there is damage regular acid cannot 

propagate the wormhole beyond 3 ft. From coreflood results,  microemulsions with low 
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viscosity and limited mobility of dispersed phase (acid) exhibit acid diffusion rates two 

orders of magnitude lower than regular aqueous HCl.  This means that microemulsions 

can propagate wormholes in fewer pore volumes than regular acid even under low 

injection rates where HCl fails. The improved efficiency of acid-in-oil emulsions in 

propagating wormholes was attributed to reduced diffusion rates in bulk acid solution 

but could also be a result of reduced fluid loss from the main wormhole. Although 

Hoefner’s work was critical in understanding the contribution of diffusivity of acid 

through the rock during wormholing, his work ignored an important factor during 

wormholing, that is, fluid loss which left space for improvement. 

Propagation of wormholes depend strongly on fluid losses through the walls of 

major wormholes (Fredd 2000; Huang et al. 2000; Bernadiner et al. 1992). The 

efficiency of wormhole propagation is reduced significantly due to acid leaking out and 

forming highly branched wormholes.   

 

Optimum Injection Rate and Pore Volumes to Breakthrough 

Another significant factor in determining the efficiency of the regular acid treatment 

in creating a single dominant wormhole is the injection rate. Maximum efficiency is 

attained at an optimum injection rate when the length of the wormhole propagated for 

the given amount of acid is at the maximum. Researchers have studied the phenomenon 

of wormhole propagation through different acid-mineral system and established the 

existence of an optimum injection rate for regular acids (Hoefner and Fogler, 1988; 
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Daccord et al., 1993; Frick et al., 1994; Mostofizadeh and Economides, 1993; Bazin et 

al., 1995; Fredd and Fogler, 1998a, 1998b.).  

An optimum injection rate for wormhole propagation was determined by calculating 

the pore volumes to breathrough, PVbt. Fredd and Fogler (1999) studied the dissolution 

of limestone using DTPA (Diethylenetriaminepentaacetic acid), EDTA 

(Ethylenediaminetetraacetic acid), acetic acid, and HCl and the pore volumes to 

breakthrough was determined in each case. Conclusions from their experiments show 

that at an optimum injection rate a dominant wormhole channel was created and the pore 

volume to breakthrough was minimum. The number of pore volumes to breakthrough 

increased for any flow rate less than or greater than the optimum injection rate due to the 

formation of conical and ramified wormholes, respectively.  

The volume of acid required for acidizing can be determined from the wormhole 

density and its distribution during field operations. Gdanski (1999) proposed a model for 

carbonate matrix acidizing based on symmetry of wormholing under radial conditions 

and wormhole density. Wormhole density can be predicted by modeling pressure field 

around a wormhole (Huang et al. 1999). A combination of the wormhole density model 

with the wormhole propagation model helps determine the acid volume required to 

penetrate a given distance.  

A semi empirical model to predict the pore volumes to break through and wormhole 

propagation was developed by Buijse and Glasbergen (2005). The model was based on 

two experimentally derivable parameters, optimum interstitial velocity and the pore 

volume to breakthrough corresponding to the same velocity. Both of these parameters 
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are obtained from coreflood experiments.  Furui et al. (2010) designed an integrated flow 

model by incorporating the tip velocity of acid calculated using the finite element model, 

into the model developed by Buijse and Glasbergen. However, this model also requires 

the parameters defined by Buijse and Glasbergen, that is, the optimum interstitial 

velocity and the corresponding pore volume to breakthrough.  

   

HCl as Acidizing Fluid 

HCl has long been used for matrix acidization of carbonates to create wormholes 

that connect the wellbore to the formation. HCl is inexpensive and there is no 

precipitation limit to the usage of HCl while acidizing carbonates except when sulphate-

rich sea water is used to mix the acid solution, or used in conjunction with acid injection 

as a preflush, postflush, or spacer fluid, in which cases CaSO4 precipitates, leading to 

formation damage (He et al. 2011). Since carbonates have a high surface reaction rate, 

the rate of reaction is mass transfer controlled leading to non-uniform dissolution of 

carbonates (Economides et al. 2000). Huang et al. (2003) confirmed that at high 

temperature, HCl produces unacceptable stimulation results because of the rapid reaction 

near well bore, low penetration and surface dissolution. This means HCl-based fluids 

have a major drawback when used at high temperatures and low injection rates where 

they could cause face dissolution. With an increasing flow rate of acid, a larger diameter 

channel called a conical wormhole is formed (Fredd and Fogler 1998a). Large volumes 

of acid are consumed for relatively short acid penetration through the matrix, making 

this mode of wormholing highly inefficient. As injection rate is further increased, the 
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wormholes become increasingly narrow. The wormhole structure thus formed is most 

desirable because the acid penetrates the farthest into the formation for the given amount 

of acid. Williams et al. (1979) suggested maintaining highest possible acid injection rate 

without fracturing the reservoir rock during the matrix acidization of carbonates but at 

higher acid injection rates, the wormhole structure becomes highly branched and 

consumes increasing volumes of acid as the wormhole propagates through the carbonate 

matrix. Eventually, at sufficiently high acid injection rates, the fracture pressure is 

exceeded and the acid forms a fracture instead of a wormhole.  

 

Effect of Oil Saturation While Acidizing Carbonate Rocks  

Coreflood experiments provide representative data that are scaled up to the reservoir 

size and magnitude. However, these experiments are conducted on clean rock samples 

because it is assumed that the preflush will displace all formation fluid out of the target 

zone, preconditioning it for the main acid stage. Thus, the rocks do not always represent 

the actual formation conditions. During matrix acidization, the saturation conditions of 

the near-wellbore area affected by acid at the beginning of acid injection varies 

significantly for both oil and gas wells. Any saturation condition is possible. Some 

saturation conditions for oil wells are as follows (Shukla et al. 2006)- 

 The near-well vicinity is flushed with drilling and/or completion-fluid filtrate 

upon initial completion during acid treatment.  Upon injection of water-based 

drilling fluids, the near-well vicinity would change saturation conditions to 

water and oil saturated, with oil present at residual oil saturation. However if 
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oil based fluids were used for completion, the near-well vicinity would be oil 

saturated with water present at connate or irreducible saturation.     

 A new phase saturation is created during the pre-flush stage of an acid 

treatment if any fluid other the normal produced fluid is injected into the 

formation ahead of acid. For instance during preflush of brine (as a kill fluid) 

ahead of acid injection, results in the near-well vicinity having high water 

saturation when acid enters the formation.  

 In oil producing wells, after a certain period of oil production, the near-well 

vicinity would be primarily oil saturated with water present at irreducible 

water saturation. Of the many variations possible to this state, one possible 

condition is when the well is producing water. Here, while certain regions 

may have intermediate levels of water and oil saturation, others intervals 

could have high or low water saturations. Oil is likely to be at residual level 

in regions with high water saturation. 

One of the methods of secondary oil recovery is waterflooding, where water from 

the injection well physically sweeps the displaced oil to the producing well. The oil 

present here is likely to be at residual saturation. The wormholing process would involve 

a two-phase fluid system in the presence of hydrocarbon or gas.  Thus, the process gets 

more complicated, especially when the rock is pre-saturated with hydrocarbon.   

However, this system must not be confused with the pumping of a two-phase acid 

system such as emulsified acid or foamed acid. In an emulsified acid system the internal 

phase used is usually HCl and the external phase is a hydrocarbon such as diesel, which 
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acts as a diffusion barrier between acid and rock (Crowe et al. 1974; Bergstrom et al. 

1975; Hoefner et al. 1985; Daccord et al 1989). The diffusion barrier created reduces the 

acid-rock reaction rate, which, in turn, results in deeper penetration of live acid into the 

formation, thus enhancing the effectiveness of emulsified acid in creating wormholes 

(Willams et al. 1972; Guidry et al. 1989; Navarrete et al. 1998a and b). Apart from the 

slow reaction rates, these acid systems have relatively high viscosity. This ensures 

improved sweep efficiency through better distribution of acid in the formation (Buijse 

and Van Domelen 2000).  

Peters et al. (1989) tried introducing a second internal phase in the form of gaseous 

nitrogen which would compete with HCl and retard its release. This ensured lower acid 

reactivity and availability for propagating deeper wormholes.  Foamed acid provides 

better leakoff control during acid fracturing (Foshee and Hurst 1965) and efficient 

wormholing during matrix acidization. (Bernadiner et al. 1992).  

Although emulsified acid is a better stimulating fluid at low injection rates because 

of deeper penetration and the absence of compact or face dissolution, plain HCl gives 

better results at higher flow rates (Bazin and Abdulahad 1999).  

Mahmoud et al. (2011) evaluated the effect of water, oil, and gas while acidizing 

calcite cores using 0.6M concentration of  GLDA, HEDTA, and EDTA at a pH of 4 and 

a temperature of  300°F. Experimental results indicated improved performance of 

chelating agents in the presence of residual oil. The authors also noted the absence of 

face dissolution at low GLDA injection rates and high temperatures.     
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Sayed et al. (2012) studied the effect of the presence of crude oil in the formation on 

the performance of emulsified acid in stimulating carbonate formations. Emulsified 

diesel was mixed with 36.8 wt% HCl, de-ionized water, and corrosion inhibitor to 

prepare the acid solution which was used to treat acidized high permeability Indiana 

limestone cores. Their work indicated enhancement in rock permeability after injecting 

emulsified acid through water saturated cores at high flow rates. Emulsified acid took 

greater pore volumes to cause breakthrough in cores saturated in oil and water as 

compared to cores saturated only in water. However, a clear relationship between 

injection rate and acid volume required to propagate wormhole through crude oil and 

water saturated cores could not be proven.  

Shukla et al. (2006) evaluated the effects of oil on wormholing process by coreflood 

experiments on Texas Cream Chalk cores with dimensions of 6 in. length and 1 in. 

diameter using 15 wt% HCl. The oil in the cores was replaced with brine before acid 

injection. Pore volume for acid breakthrough of these cores was similar to cores 

saturated in brine. However, when gas was injected before the acid, the pore volume to 

breakthrough decreased by an order of 1/2 to 1/3 less than when acid was injected 

without gas. Thus, ensuring high saturation of the immiscible phase when acid enters the 

matrix ensures better stimulation during matrix acidization of carbonates. It is interesting 

to note that these experiments were conducted at room temperature and might not apply 

to reservoir conditions.  

The presence of an immiscible phase can reduce fluid loss from the main wormhole 

and create deeper penetration by reducing the relative permeability to the acid in the 



 

10 

 

matrix surrounding the wormhole. This is accomplished by avoiding an aqueous preflush 

in low-water-cut oil-production wells. In the case of the water producing wells, or in 

injection wells, the wormholes can be better propagated by injecting gas or oil before the 

acid.    

The effect of residual oil on wormhole propagation is rate dependant for gelled and 

in-situ gelled acid (Gomma and Nasr El-Din 2011). Experimental results from 

acidization of Indiana Limestone cores of a length of 6 in. and a diameter of 1.5 in. at 

200°F indicated that Fe(III) cross linkers used in HCl formulations induced sludge which 

in turn lead to formation damage. During the pre-flush stage, the oil left behind in the 

core increased with increasing water injection rate. At any injection rate, HCl required a 

greater pore volume to cause breakthrough in cores with residual oil as compared to 

gelled acid or in-situ gelled acid. At acid injection rate of 2.5 cm3/min, damage due to 

gel was reported to be less in the core that had no oil. However, at an injection rate of 10 

cm3/min the final pressure drop across the core without oil was higher than the core with 

oil. This indicated the damage due to the gel was more severe in clean cores over cores 

with residual oil. The authors claim that an injection rate of 10 cm3/min is the 

transitional point at which damage due to the gel was reduced in cores with residual oil. 

Nevertheless, their conclusions remain questionable because they were drawn from 

experiments run at just two flow rates and do not necessarily indicate a trend or 

transitional behavior. In addition, the authors did not indicate whether the effective pore 

volume (volume of the pore excluding the volume occupied by oil) was considered while 

calculating the pore volume to breakthrough.    
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Al-Mutairi et al. (2012) studied the wormholing effect and characteristics of regular 

acid (20 wt%) and emulsified acid on cores saturated with 5 wt% KCl, crudes of varying 

API° gravities, and tar during matrix acidization of carbonates. Reservoir cores of 1.3 to 

1.7 in. in length and 1.5 in. diameter were used. Experimental results at 200°F indicated 

that formations with tar exhibited no face dissolution, even at low flow rates, because tar 

acted as a barrier to the reactivity of acid with the rock. Both the regular acid and the 

emulsified acid showed comparable wormhole penetration for tar bearing formations. 

The beneficial effects of emulsified acid were reduced significantly when oil saturated 

the rocks.  The reason was attributed to the fact that regular acid droplets diffused faster 

and diluted more, thus providing a similar magnitude of retardation as emulsified acid. 

Lighter oil (°API of 45) allowed better diffusion of acid droplets to the rock surface as 

compared to intermediate oil (°API of 32), reducing the acid pore volume to 

breakthrough. Thus, knowledge of the type of oil saturating the core is crucial when 

selecting the acid for treatment. The authors also noted that clean and tar bearing plugs 

did not show a clear difference in wormholing efficiency when regular acid was used. 

However, their explanation of the phenomenon of the oil coating the pore surfaces 

remaining unavailable for pickup by acid to form emulsions remains unsubstantiated. 

Research in carbonate acidizing has progressed a long way from pore scale to field 

scale. Investigators have studied in detail how pores enlarge and develop into wormholes 

which expand and propagate through cores. Much has been published to date explaining 

the kinetics behind the diffusion and convection combined with mass transport of acid 

propagating the wormhole.  A plethora of theoretical models has been developed to 



 

12 

 

provide quantitative results comparable with the corresponding experimental work while 

identifying the optimum acid flux. While most of these models have established the 

existence of an optimum injection rate and accounted for the factors affecting this rate, 

little has been documented that explains the effects of residual crude oil on wormholing 

characteristics of the acidizing fluid in cores under reservoir conditions.  

Literature survey shows contrasting results as to how residual oil affects pore 

volume to breakthrough. Gomaa et al. (2011) showed that as flow rate increased, higher 

pore volumes of regular acid were required to break through cores with residual oil 

saturation. Shukla et al. (2006) claims that residual oil saturations in carbonate cores had 

little effect on the acidizing process and that these cores have the same wormholing 

effect as cores completely saturated with water. Al-Mutairi et al. (2012) accounted for 

the lower acid pore volume to breakthrough in the presence of lighter oil as a result of 

formation of in-situ acid in oil emulsion, which aided formation of deeper wormholes.  

However, many of these investigations were conducted at room temperature and 

pressure and do not replicate actual reservoir conditions. Many of the conclusions were 

drawn from as few as two experimental runs, which do not necessarily indicate a trend. 

In addition, some of the authors have based their results on theoretical assumptions, 

leaving without substantiating their theories with experimental data.  
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CHAPTER II 

EXPERIMENTAL SET-UP AND PROCEDURE 

 

Materials 

Field cores from carbonate reservoirs in the Middle East and Indiana Limestone 

cores were used in all experiments. Permeability of the cores used for determining 

optimum injection rate of water-saturated cores, oil-saturated cores and waterflood 

residual oil cores varied from 1 to 78 md. The dimensions of the cores and acid injection 

rates chosen for running coreflood experiments have been furnished in Table 1.  

 

Fluid Properties 

The density and viscosity of 5 wt% KCl brine prepared was found to be 1.0315 

g/cm3
 and 1.077 cp at room temperature and pressure.  The naphthenic crude oil used to 

bring the cores to residual oil saturation had a measured density of roughly 28°API at 

77°F and 41°API at 200°F. The viscosity of the same crude oil used was measured to be 

32.2 cP at 77°F and 3.8 cP at 200°F.   

 

Fluid Preparation 

The acid solution was prepared using deionized water obtained from a water 

purification system that has a resistivity of 18.2MΩ.cm at room temperature. The 

concentration of the hydrochloric acid used for this experiment was 36.8 wt%. This acid 

was diluted to 15 wt% using deionized water. 
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TABLE 1-COREFLOOD STUDY 

 

 
Cores Saturated In Deionized Water 

 
Exp No 

# 
Core Diameter 
×Length, in. Ki, Initial Permeability**, md Injection Rate, 

cm3/min 
PVbt 

1 
2 
3 
4 
5 

1.49 * 3.53 
1.49 * 2.94 
1.48 * 3.03 
1.45 * 3.32 
1.49 * 2.60 

5.0 
1.2 
6.1 
6.1 
6.5 

0.5 
2 
5 
10 
20 

9.5 
5 

1.81 
1.14 
1.39 

 
Brine Saturated Cores with Residual Oil 

 

Exp No 
# 

Core Diameter× 
length, in. 

Ki, Initial 
Permeability*, md 

Permeability 
with residual 

oil, md 

Injection Rate, 
cm3/min 

 
PVbt 

6 
7 
8 
9 

10 

1.49*2.97 
1.49*2.57 
1.48*2.68 
1.40*3.04 
1.49*2.45 

77.9 
15.5 
17.7 
24.3 
56.2 

21 
3.9 
4.2 
3.8 
25 

0.5 
1 
5 
10 
20 

1.1 
0.83 
0.68 
0.67 
0.61 

 
Cores Saturated in Crude Oil 

 

Exp No 
# 

Core Diameter× 
length, in. 

 
Ki, Initial Permeability**, md 

 

Injection Rate, 
cm3/min PVbt 

11 
12 
13 
14 

1.5*3 
1.5*3 
1.5*3 
1.5*3 

3.9 
6.7 
6.7 
3.7 

1 
5 
10 
20 

4.41 
3.90 
5.10 
3.91 

 
Cores under various saturation 

 
 

Exp No # 
 

Core 
Diameter × 
Length, in. 

Ki, Initial Permeability*, md 
 

Injection Rate, 
cm3/min PVbt 

15 (brine saturated) 
16(fully saturated in oil) 
17 (residual oil saturated 

1.5*6 
1.5*6 
1.5*6 

4.3 
- 

1.3 

0.5 
0.5 
0.5 

4.46 
1.49 
0.68 

 
* - Initial permeability was measured under vacuum-brine saturation 

** - Initial permeability was measured under vacuum-deionized water saturation 
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The corrosion inhibitor used is a quaternary amino-based compound (CI-25) added 

to the acid solution to prevent corrosion of the accumulators and lines. The formulation 

of the corrosion inhibitor has been patented by BJ services. The acid solution was 

prepared by mixing de-ionized water, corrosion inhibiter, and hydrochloric acid for 30 

minutes.  

 

Preparation of Cores 

The cores used for water-saturated and waterflood-residual-oil experiments were 

received from carbonate reservoirs in the Middle East. A Dean Stark apparatus was used 

to remove any fluid present in these cores before they were saturated in different fluids. 

These cores were split into two categories. One half of the cores were saturated in 

de-ionized water and the other half in 5 wt% KCl. The cores were saturated in water 

using a vacuum saturation pump and were left in deionized-water until acidizing.   

The remaining cores were saturated in KCl using a vacuum saturation pump and 

were flushed with at least 4 pore volumes of crude oil to bring the brine saturation in the 

cores to irreducible levels (Swir).  These cores were then flushed with at least 4 pore 

volumes of 5 wt% KCl brine to reduce the oil in core plugs to residual saturation (Sor). 

Finally, the cores with residual crude oil were preserved in 5 wt% KCl until acidization.  

The third set of coreflood experiments were conducted on Indiana Limestone cores 

fully saturated in oil. These cores were prepared by drying the core in an oven at 450°F 

for at least 24 hours to remove any moisture. The cores were then saturated in 

naphthenic crude oil by pumping atleast 4 pore volumes of oil through the cores at 
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extremely low flow rates over a period of 24 hours. This ensured complete saturation of 

core in crude oil.  

 

Compatibility Test 

Compatibility tests between crude oil and acid were conducted at 200°F. Nothing 

was added to the acid system apart from the corrosion inhibitor used to prepare the acid 

for the coreflood study. Equal volumes of acid and crude oil were mixed followed by 

centrifugation at 3000 rpm for 10mins. This was done to check the extent of 

emulsification of acid or formation of precipitation upon the mixing of acid and oil.  

From Fig. 1, a clear oil-acid contact layer was observed with no emulsion or 

precipitation formed.   

 

 

 

Fig.  1─Compatibility test between Naphthenic crude oil and HCl acid system 
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Coreflood Setup 

The coreflood setup used to simulate the matrix acidizing process has been 

described in Fig. 2. The experimental setup consists of two accumulators, syringe pump, 

core holder, back pressure regulator, hydraulic pump, fraction collector, differential 

pressure transducer, and a data acquisition system. A heating system is used to heat the 

core in the core holder.  

 

Fig.  2─Coreflood setup 

 

Accumulators 

One of the accumulators used in the experiment was used to store brine/deionized-

water and the other stored acid. The accumulator consists of a teflon piston which splits 

the unit into two compartments, one side filled with hydraulic oil and the other 

compartment filled with brine/deionized water/acid.  When the experimental setup is 
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complete, the syringe pump removes hydraulic oil from the reservoir and pushes it up 

into the oil compartment. The hydraulic oil in turn moves the piston up, which pushes 

the brine/acid/de-ionized water out of the accumulator and into the lines connected to the 

core holder. A special Nickel-Chromium-Molybdenum wrought alloy, Hastelloy C-276, 

was used to make the acid accumulator with a capacity of 1,000 ml. The brine/deionized 

water accumulator, made of stainless steel, has a capacity of 2,000 ml.   

 

Core Holder 

The core holder is a metallic cylinder where the core is held under a confining 

pressure called the overburden pressure. Generally, an overburden pressure of 1500 psi 

was maintained throughout all the experiments. The confining pressure is required to be 

at least 400 psi greater than the core inlet pressure. The core holder is made of Hastelloy 

C-276, which contains tungsten in addition to the regular Nickel-Chromium-

Molybdenum alloy for improved corrosion resistance. The core holder is capable of 

withstanding pressures up to 3000 psi and temperature as high as 300°F. A rubber sleeve 

within the core holder prevents direct contact between the core and the metallic-alloy 

cylinder.  

 

Syringe Pump  

A Teledyne ISCO D500 precision syringe pump with a capacity of 507 ml and a 

maximum allowable working pressure of 2,000 psi, was used to inject the hydrochloric 
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acid solution into the core. The pump is used to set a constant flow rate ranging from 0.1 

ml/min to 400 ml/min. The specification of the pump is shown in Table 2.   

 

TABLE 2─SYRINGE PUMP SPECIFICATION (TELEDYNE ISCO, INC., 2013) 

Capacity: 507 ml 

Flow Range (ml/min): 0. 001 - 204 

Flow Accuracy: 0.5% of setpoint 

Displacement Resolution: 31.71 nl 

Motor Stability: ± 0.001% per year 

Pressure Range (psi): 10 - 3,750 

Standard Pressure Accuracy: 0.5% FS 

Optional Pressure Accuracy: 0.1% FS 

Wetted Materials (standard): Nitronic 50, PTFE, Hastelloy C-276 

Plumbing Ports: 1/8" NPT 

Operating Temperature: 5 - 40° C Ambient 

Power required: 100 Vac, 117 Vac, 234 Vac, 50/60 Hz (specify) 

Dimensions (HxWxD, cm): 103 x 27 x 45 

Weight: Pump module - 33 kg; controller - 3 kg 

Standards conformity: EN1010-1, EN61326-1998, UL6101A-1, CSA1010 
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Back Pressure Regulator 

The downstream pressure at the end of the core holder is regulated using a back 

pressure regulator. The pressure is maintained at about 1,100 psi throughout the 

acidizing experiment in order to keep the CO2 produced from the dissolution of 

carbonates in solution without affecting the system hydrodynamics (Lund et al. 1973; 

Fredd and Fogler, 1998c). The back pressure setup helps simulate the actual reservoir 

conditions wherein under static conditions, the pressure inside the core equals reservoir 

pressure.  

 

Hydraulic Pump 

The confining pressure within the core holder is provided using a hydraulic pump 

which can supply pressure up to 10,000 psi. The hydraulic pump is a product of Enerpac 

Co., model P-39 with a usable oil capacity of 770 cm3.  

 

Data Acquisition System  

The data acquisition system consists of a pressure transducer which monitors the 

pressure drop across the core. It relays the pressure drop to a signal processing board 

which in turn delivers the processed signal to the computer where the Labview software 

records the pressure drop at regular intervals. Foxboro model IDP10 I/A series 

differential pressure transmitters were used record the pressure drop across the cores. An 

Inductively Coupled Plasma – Optical Emission Spectrometer (ICP-OES, Optima 

7000DV) was used to determine the calcium ion concentration in the effluent samples. 
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The effluent samples were titrated using a Thermo Scientific Orion 950 Titrator to 

determine the concentration of acid.  

 

Fraction Collector 

The effluent samples during acidization of the core sample were collected at regular 

intervals in 15 ml tubes using a Spectra/Chrom® CF-1 Fraction Collector. It can collect 

upto 174 fractions where each fraction size is pre-set in terms of either time or drop 

collected.  

 

Inductivity Coupled Plasma – Optical Emission Spectrometer (ICP-OES) 

The effluent samples from the core flood experiments were analyzed using ICP-

OES analysis to detect the presence of metal ions – calcium and magnesium.  ICP-OES, 

Optima 7000DV is an emission spectrometer from Perkin Elmer. It works on the 

principle of detecting elements based on electromagnetic radiations from excited atoms 

and ions produced by the inductively coupled plasma (Perkin Elmers Inc.,2013). The 

effluents samples from the coreflood were diluted 1000 times using deionized water of 

18.2-MΩ.cm resistivity at room temperature to bring the concentrations of the samples 

within detectable range of the instrument. Calcium and magnesium concentrations were 

processed and reported by software named WinLab32 based on the calibration curves 

created from standard solutions of known concentrations. Results within an accuracy 

range of ±5% can be obtained depending on the calibration quality of the system.  

 

http://www.lplc.com/tms.html?tm=Spectra/Chrom;
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Acid Titrator 

The effluent samples were titrated using a Thermo Scientific Orion 950 Titrator to 

determine the concentration of acid. 0.1M and 1 M NaOH base solutions were used to 

titrate the acid in the effluent samples. The specifications of the titrator are shown in the 

Table 3.  

 

TABLE 3—THERMO SCIENTIFIC ORION 950 TITRATOR SPECIFICATIONS 

(COLE-PARMER, 2013) 

Product Type Potentiometric titrators 

Temp accuracy ±0.1 

mV range ±1600 

mV resolution 0.01 

Temp range -5 to 105°C 

Display LCD 

Dimensions Meter: 9 in W x 2 in H x 7.5 in D 
Dispenser: 5.5 in W x 16 in H x 18 in D 

Power (VAC) 110/120 

CE Compliance Yes 

Output RS-232 

Power (Hz) 50/60 

Brand Thermo Scientific Orion 

Manufacturer number 095000 

Model 095000 
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Computer Assisted Tomography Scan (CT scan) 

The core plugs used in the experiments were cut from carbonate reservoirs in the 

Middle East and Indiana Limestone cores. The cores were subjected to CT scan in order 

to determine the CT number of the core. CT number served the primary source of 

identifying the extent of dolomitization, presence of anhydrites, and porosity. Porosity of 

a core after treatment can be determined from the CT number (Izeg and Demiral 2005). 

The following equation is used to determine porosity from CT number: 

             

         
                (1)  

Where: 

CTwr = CT number of water saturated rock,       CTar = CT number of air saturated rock,   

CTw  = CT number of water, = 0,                        CTa = CT number of air, = -1000.  

Good porosity or presence of a fracture is indicated by a CT number of 2,200 or less 

(Nevans et al. 1996).  CT number of about 2,350 and 2,250 indicates the presence of 

pure dolomite and pure limestone respectively.  The presence of extensive anhydrite is 

confirmed by a CT number of 2,550 or higher.  The cores were scanned and imaging 

software named ImageJ® was used to analyze and stack the images in a single window. 

The software is designed to compile the images of cores taken over different cuts along 

the length of the core as shown in Fig. 3. 

Based on the images obtained from the CT scan and the CT number, the cores were 

broadly divided under the following descriptions: carbonates with streaks of anhydrite, 

carbonates with vugs and anhydrite, carbonates with traces of anhydrite, and pure 

limestone. The lighter shades in the CT images indicate the presence of high density 
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minerals like anhydrites while darker shades indicate low density caused by the presence 

of vugs or wormholes. Homogeneous cores without vugs were chosen for the coreflood 

experiments.  

   
0.5 cm3/min (water saturated) 2 cm3/min (water saturated) 5 cm3/min (water saturated) 

   
10 cm3/min (water saturated) 20 cm3/min (water saturated) 0.5 cm3/min (residual oil ) 

   
1 cm3/min (residual oil ) 5 cm3/min (residual oil ) 10 cm3/min (residual oil ) 

 

 

20 cm3/min (residual oil ) 
 

Fig.  3─CAT scan images of the field cores before injection of acid. The lighter 

shades in the CT images indicate the presence of anhydrites. 
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Scanning Electron Microscope (SEM) 

 

Scanning electron microscope (SEM) is an electron microscope that produces 

images of the sample by focusing a high-energy beam of electrons on the sample and 

combining the position of the beam with the detected signal to produce the image. A 

raster scan pattern is used to scan the high-energy beam of electrons. The signals 

produced by the interaction of these electrons with the atoms of the sample contain 

information about the sample’s composition, topography, and electrical conductivity. 

SEM analysis was performed for representative samples to determine the composition of 

the core. These results were compared with the results from CAT scan to confirm the 

lithology of the cores. While all the cores show the presence of calcium, carbon, and 

oxygen, only some showed traces of magnesium. Although the CT scan images 

indicated presence of anhydrite, the SEM analysis didn’t detect any sulphur in the 

samples, possibly because of the presence of only trace amounts of anhydrite in the 

cores. Table 4 gives a brief summary of the SEM analysis of selected-representative 

field cores.  

 

TABLE 4─SUMMARY OF SEM ANALYSIS OF CORE SAMPLES 

Exp # 
Element (wt %) 

             O                         Ca     Ca        C                     Mg                 S 

4 48.95 39.78 11.27 - - 

6 51.46 36.64 11.10   - - 

7 55.43 30.45 14.12   - - 

9 54.28 37 8.61   - - 

10 33.18 47.91 10.9   7.51 - 
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CHAPTER III 

COREFLOOD STUDY ON WATER SATURATED CORES 

 

Acidizing experiments with the hydrochloric acid system were run using the 

coreflood setup shown in Fig. 2. Table 1 summarizes all the data from the coreflood 

study of cores saturated in deionized water. The cores saturated in deionized water were 

loaded into the core holder and an overburden and back pressures were applied. 

Coreflood runs were performed using 15 wt% HCl at injection rates of 0.5, 2, 5, 10, 20 

cm3/min.  All the core flood experiments were performed at 200°F. The cores were 

flushed with de-ionized water until the system achieved desired temperature of 200°F. 

The pressure drop across the cores was plotted using the Lab View software. The 

coreflood test was terminated when a constant pressure drop was achieved. The effluent 

samples were collected using the automated fraction collector and the calcium 

concentration in the samples was measured. The pH value and the density of the effluent 

samples were measured. The acid concentration in the effluent samples was also 

measured. Following the coreflood experiments, the propagation of the wormhole 

through the cores were analyzed using CT scan technique.  

 

Coreflood Study 

Pressure drop across the core during the injection of regular acid at an injection rate 

of 0.5cm3/min and 200°F is shown in Fig. 4.  Although the pressure drop across the core 

stabilized at 23 psi during water injection, an initial rise in pressure drop was noticed the 
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 Fig. 4─Pressure drop across the core at an acid injection rate of 0.5 cm
3
/min and 

200°F.  

 

instant acid was injected.  This is because of the sudden rise in viscosity of the fluids 

flowing through the lines when deionized water was switched with the acid. The 

pressure drop increased until acid found a region of least resistance and highest 

permeability within the core and changed its direction of flow within the core. This 

behavior continued as the acid propagated through the core. The cycling trend of the 

pressure drop that follows the injection of acid at 0.5 cm3/min is because of CO2 release.  

Although a back pressure of 1,100 psi was maintained, a portion of the core was 

dissolved in acid, which released CO2 from solution. 9.5 pore volumes of acid were 

injected until the pressure drop fell from 11.45 psi to of 2.11 psi. The drop in pressure 
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indicated acid breakthrough. Upon acid breakthrough acid injection was stopped and de-

ionized water was injected as a post flush.  

 

  

 

Fig.  5─Acid face dissolution of water saturated cores at 0.5 cm
3
/min and 200°F 

 

 

Fig. 5 shows washout across the cross section of the core because of high leakoff 

rate which accounted for higher pore volume for breakthrough. The pore volume to 

break through the core at 0.5 cm3/min was found to be as high as 9.5. As HCl reacted 

with the carbonate plug, the pressure drop decreased gradually because of the wormholes 

formed. This was marked by the rise in calcium and magnesium concentration in the 

effluent fluid. The wormholes penetrated along the length of the core until acid 

breakthrough occurred. The acid concentration in effluent samples at 0.5 cm3/min was 

Inlet Outlet 
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profiled as shown in Fig. 5. The highest effluent acid concentration marks the point of 

acid breakthrough. 

Most of the effluent samples in the beginning of acid injection measured near zero 

acid concentration because all the acid injected was utilized in creating and propagating 

the wormhole. Once the wormhole was formed and acid broke through, the partially 

reacted acid made its way through the core and reached the core outlet. The 

concentration of the acid in the effluent sample at acid breakthrough had reduced from 

15 wt% HCl to 9.16 wt% upon reaction with the calcite rock.   

 

 

 

Fig.  6-Calcium, magnesium, and HCl concentrations in the effluent samples at acid 

injection rate of 0.5 cm
3
/min. 
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The calcium and magnesium concentration in the effluent samples for the same 

experiment is represented in Fig. 6. Calcium and magnesium concentrations were close 

to zero at the start of water injection, then increased gradually after acid was injected, 

and decreased again once injection of water started. The calcium concentration in the 

effluent acid reached as high as 99,600 mg/L. The highest magnesium concentration was 

found to be 17,638 mg/L. The effect of injection rate on wormhole propagation was 

examined by running coreflood experiments at flow rates of 2, 5, 10, and 20 cm3/min.  

 

 

Fig.  7-Pressure drop across the water saturated core at an acid injection rate of 2 

cm
3
/min and 200°F. 
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At an injection rate of 2 cm3/min the pressure drop stabilized at around 122 psi 

during water injection. After reaching a stable pressure drop, acid was injected, leading 

to an initial rise in pressure drop because of a change in viscosity of the fluid flowing 

through flow lines followed by sharp dip in pressure as HCl broke through the core. 5 

pore volumes of acid were required for break through. Pressure drop across the core 

during injection of regular acid at 2 cm3/min and 200°F is shown in Fig. 7. The pressure 

drop across the cores rose as high as 300 psi before breakthrough because the core had 

low initial permeability (1.2 md). 

 

 

Fig.  8-Calcium, magnesium, and HCl concentrations in the effluent samples at acid 

injection rate of 2 cm
3
/min. 
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 It was interesting to note that there was face dissolution observed at 2 cm3/min too, 

however, it was not as prominent as the one observed at 0.5 cm3/min. This also justifies 

the fact that the acid took less pore volume to breakthrough at 2 cm3/min as compared to 

0.5 cm3/min. 

The calcium and magnesium concentration in the effluent samples measured 94,170 

mg/L and 14,270 mg/L respectively at acid breakthrough. Again, face dissolution 

accounts for the high calcium and magnesium concentrations in the effluent samples. 

Fig. 8 shows the HCl concentration profile of the samples collected. The HCl 

concentration at breakthrough was measured to be 10.09 wt%.   

Unlike coreflood experiments run at 0.5 cm3/min and 2 cm3/min, experimental runs 

at higher flow rates of 5, 10, 20 cm3/min did not show face dissolution. In fact the 

regular acid system injected propagated through the core and produced at least one 

dominant wormhole with multiple branches.  

Fig. 9 shows the pressure drop profile for an injection rate of 5 cm3/min. De-ionized 

water was used as a preflush until the system stabilized at 200°F. The pressure drop 

across the core stabilized at around 170 psi before acid was injected, upon which the 

pressure drop increased in steps up to almost 300 psi. The wormhole terminated at the 

core outlet at around 300 psi pressure drop after injecting 1.81 pore volumes acid.  

 Absence of face dissolution at acid injection rate of at 5 cm3/min was evident from 

the lower calcium concentration in the effluent samples. As HCl reacted with the 

carbonate rock, creating dissolution channels along the core, the calcium concentration 

in the effluent samples started to increase. The highest calcium and magnesium 
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concentration (Fig. 10) in the effluent samples recorded were 44,990 mg/L and 11,490 

mg/L at breakthrough. Also, the acid concentration at breakthrough was reduced from 15 

wt% to 11.6 wt% indicating less acid reacted with the calcite as it propagated through 

the core.  

 

Fig.  9-Pressure drop across the water saturated core at an acid injection rate of 5 

cm
3
/min and 200°F. 

 

Fig. 11 and Fig. 12 indicate similar pressure drop across the cores at higher 

injection rates of 10 and 20 cm3/min. After an initial pre-flush of de-ionized water, acid 

was injected. The acid system took 1.14 and 1.39 pore volume to breakthrough at 10 and 

20 cm3/min repectively. It is also evident from the calcium and magnesium profiles at 

0 

50 

100 

150 

200 

250 

300 

350 

0 2 4 6 8 10 

P
re

ss
u

re
 D

ro
p

 A
cr

o
ss

 t
h

e 
C

o
re

, p
si

 

Cumulative Pore Volume Injected, PV 

Acid 
Injection 

Acid 
Breakthrough 

Q = 5 cm3/min 
 T = 200°F 
 K initial = 6.1 md   

Deionized Water Postflush  

Deionized 
Water 

Preflush 



 

34 

 

acid injection rates of 10 and 20 cm3/min (Fig. 13 and Fig. 14) that the lower flow rate 

took  

 
 

Fig.  10-Calcium, magnesium, and HCl concentrations in the effluent samples at 

acid injection rate of 5 cm
3
/min. 

 

 

 
 

Fig.  11-Pressure drop across the water saturated core at an acid injection rate of 

10 cm
3
/min and 200°F. 
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Fig.  12-Pressure drop across the water saturated core at an acid injection rate of 

20 cm
3
/min and 200°F. 

 

 

 

Fig.  13-Calcium, magnesium, and HCl concentrations in the effluent samples at 

acid injection rate of 10 cm
3
/min. 
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Fig.  14─Calcium, magnesium, and HCl concentrations in the effluent samples at 

acid injection rate of 20 cm
3
/min. 

 

fewer pore volumes to breakthrough than the higher flow rate. The highest calcium 

concentration in the effluent samples at 10 cm3/min was measured at breakthrough to be 

44,930 mg/L, while at 20 cm3/min, the concentration rose up to 48,860 mg/L indicating 

greater contact time between acid and the calcite. Although effluent samples from the 

coreflood at 20 cm3/min measured 3614 mg/L, it was interesting to note the absence of 

magnesium ions in the samples from coreflood at 10 cm3/min. This could possibly be 

related to the different lithology of the core used for this coreflood at 10 cm3/min 

compared to cores used for other experiments. The acid concentrations at breakthrough 

for both flow rates were comparable at 12.5 and 11.8 wt % for 10 and 20 cm3/min.   
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Fig.  15-Calcium concentration in the effluent samples from coreflood of water 

saturated cores at different injection rates. 

 

Fig. 15 presents the ICP measured calcium concentration in the coreflood effluent 

samples, collected for the various experiments at different injection rates. In all cases the 

calcium concentration increased initially when de-ionized water preflush was switched 

with acid, reaching a maximum value, then decreased when the injection fluid was 

switched back to water. The calcium concentration is related to the amount of carbonate 

rock dissolved by acid, and this amount is greater for greater acid/rock contact times. 

Injection rates have a significant effect on the calcium concentration in the effluent 

samples, and hence the amount of rock dissolved during acid injection. Subsequently, 

the highest peak for calcium concentration was noticed at an injection rate of 0.5 

cm3/min (the least optimum case, highest contact time), while the lowest peak was 
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observed at an injection rate of 10 cm3/min (the most optimum case, lowest contact 

time). The total calcium concentration in the effluent samples collected is represented in 

Table 5. It is clear from this table that the calcium concentration decreases as acid 

injection rates increase. 

 

TABLE 5-TOTAL CALCIUM AND MAGNESIUM DISSOLVED 

Exp # 
 

Exp. 
Condition 

 

Core 
Diameter * 
Length, in. 

 

Injection 
Rate, 

cm3/min 
 

Calcium 
dissolved, 

mg 
 

Magnesium 
dissolved, 

mg 
 

1 
 

15 wt% 
HCl, 200F 

 

1.49 * 3.53 
 

0.5 
 

8874 
 

1717 
 

2 
 

1.49 * 2.94 
 2 1965 

 
319 

 
3 
 

1.48 * 3.03 
 5 418 

 
89 
 

4 
 

1.49 * 3.32 
 10 733 

 
77 
 

5 
 

1.49 * 2.60 
 20 718 

 0 

 

Acid concentration for all the samples collected was compared as shown in Fig. 16. 

It is used to confirm the pore volume of acid required to breakthrough from the pressure 

drop analysis curve. The maximum acid concentration, which also indicates acid break 

through, was in the case of acid flow rate of 10 cm3/min (12.58 wt%). This was the most 

optimum injection rate. The lowest acid concentration at breakthrough was measured at 

0.5 cm3/min (9.14 wt%). This was the least optimum injection rate of all the conditions 

tested. These results ratify the previous analysis made for calcium concentration. 
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Fig.  16─HCl concentration in the effluent samples from coreflood of water 

saturated cores at different injection rates 

 

Optimum Injection Rate for Water Saturated Cores  

Optimum injection rate is defined as the injection rate which requires the minimum 

volume of acid to achieve breakthrough.  Five coreflood experiments were conducted on 

field cores from the Middle East saturated in deionized water using regular 15 wt% HCl 

at 200°F. The only additive added was corrosion inhibitor. Volume of acid required to 

breakthrough is a function of the rock lithology and acid injection flow rate.  Fig. 17 

shows the volume of acid required to breakthrough varying as a function of acid 

injection rate.  

From this figure, it can be observed that as the injection rate increased, the volume 

of acid to breakthrough decreased, and reached a minimum at a rate at 10 cm3/min.  
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Fig.  17─Acid pore volume required to propagate wormholes through the core 

 

 

Fig.  18-Dissolution patterns identified from photographs of inlet side of core 

samples. 
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At flow rates higher than optimum injection rates, the volume of acid to achieve 

breakthrough increased again. However, the curve is steeper on the left side of the 

optimum injection rate, and relatively flat for rates higher than the optimum. This fact 

indicates that the effect of injection rate is more pronounced at low injection rates, where 

the mass transfer limited regime controls the rate of reaction. Subsequently, the surface-

reaction limited regime is reached at higher injection rates, with the pore volumes to 

breakthrough being only slightly affected by changes in injection rate.  

Photos of the inlet face of core samples taken after the acid injection has been 

profiled as a function of corresponding flow rate as shown in Fig. 18. This was done to 

observe the effect of the acid on the inlet face of the core, and to identify dissolution 

structures created by the acid reaction with the limestone rock. From Fig. 18, it was 

observed that at low injection rates (i.e. 0.5 cm3/min), severe face dissolution washed out 

a portion of the core along the axial length of the sample making the acidizing process 

(i.e. wormhole penetration) significantly inefficient. As injection rate was increased to a 

flow rate of 2 cm3/min, face dissolution and conical wormholing was observed for the 

core sample. When the acid injection rates were increased further to 5 and 10 cm3/min, 

there was no face dissolution observed at the core inlet, and there was a tendency to 

create few dominant wormholes.  Finally, for high injection rates (i.e. above 10 

cm3/min), several dominant wormholes are created, with increased wormhole branching 

as flow rate is increased. The lowest volume of acid to breakthrough was obtained when 

acid was injected at 10 cm3/min, and therefore, for the conditions tested, this is 

considered the optimum injection rate when 15 wt% HCl was injected through limestone 
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cores at a temperature of 200°F. This was substantiated from the calcium and the acid 

concentration profile over all flow rates tested.   

 

CT Scan Images 

2D CAT scan images of the water saturated cores treated with regular acid at 200°F 

is shown in Fig. 19. Analysis of these images helps characterize the wormhole structures 

created at different flow rates.  

  

a - 2 cm3/min (water saturated) b - 5 cm3/min (water saturated) 

 

 

c- 10 cm3/min (water saturated) d- 20 cm3/min (water saturated) 
 

Fig.  19-CAT scan images of water saturated cores after core flood study. 
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Upon injection, acid starts reacting with the rock and creating wormholes. The 

darker spots in the image indicate low CT number and low density.  

Face dissolution was noticed initially at the core inlet face for acid injection rate of 

2cm3/min as mentioned in the previous section. The acid then propagated through the 

core and created a wormhole. The wormhole created at this flow rate is non optimal.  

HCl had achieved breakthrough at flow rates of 2 cm3/min and above. Although the 2D 

images of the cores showed formation of more than more than one wormhole at the core 

inlet, these wormholes combined and formed a single dominant wormhole as the acid 

propagated towards the core outlet.  

At flow rates of 10 and 20 cm3/min, the branching of the wormhole was more 

dominant. This resulted in lower calcium concentration in the effluent samples compared 

with injection rates of 0.5 and 2 cm3/min. At 20 cm3/min, two dominant wormholes 

propagated throughout the length of the core.  At 10 cm3/min, single dominant wormhole 

initiated at the core inlet which increased in size and then split into two wormholes of 

smaller size as the acid progressed through the core. The dissolution pattern created at 

this injection rate resulted in the most efficient stimulation of the core.  
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CHAPTER IV 

COREFLOOD STUDY ON WATERFLOOD RESIDUAL OIL 

CORES 

 

Waterflood residual oil cores were acidized using the hydrochloric acid system 

using the coreflood setup shown in Fig. 2. Table 1 summarizes all the data from the 

coreflood study of cores with residual oil. Coreflood runs were performed using 15 wt% 

HCl at injection rates of 0.5, 1, 5, 10, 20 cm3/min.  

  

Coreflood Study 

Pressure drop across the core during the injection of regular acid at an injection rate 

of 0.5cm3/min and 200°F is shown in Fig. 20. Acid injection initiated after a stable 

pressure drop was achieved during the preflush of 5 wt% KCl brine. Due to the high 

permeability of the core used (77 md), the maximum pressure drop achieved by the core 

during the acid injection was around 7.8 psi. 1.1 pore volumes of acid were injected 

before it broke through and the pressure drop stabilized at around 2.7 psi. A post flush of 

5 wt% brine followed this process. Pressure drop across the core during injection of 

regular acid at 0.5 cm3/min and 200°F is shown in Fig. 20. Unlike pressure drop curves 

seen during acidization of brine saturated cores at low injection rates, the cycling trend 

of the pressure drop curve that follows the injection of acid was not observed here. It 

was interesting to note the absence of face washout after acid injection. The calcium and 
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acid concentration in effluent samples at 0.5 cm3/min are represented as functions of 

cumulative pore volume of fluid injected in Fig. 21.  The calcium concentration in the  

 

Fig.  20─Pressure drop across waterflood residual oil cores at an acid injection rate 

of 0.5 cm
3
/min and 200°F. 

 

 

Fig.  21─Calcium and HCl concentration in the effluent samples from coreflood of 

waterflood residual oil cores at acid injection rate of 0.5 cm
3
/min. 
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samples measured 35,950 mg/L at acid breakthrough. The lower concentration of 

calcium ions in the effluent samples in comparison with samples from the same flow rate 

for water saturated cores results from the absence of face dissolution in waterflood 

residual oil cores. Also, the acid concentration fell from an initial concentration of 15 

wt% to 11.4 wt%.  at breakthrough indicating low acid reactivity with the calcite rock.   

The pressure drop across the core at a flow rate of 1 cm3/min dropped from 23 psi to 

around 2-3 psi upon acid injection consuming just 0.83 pore volumes of acid to 

breakthrough as seen in Fig. 22. The low pore volume to breakthrough indicated that the 

acid was efficient in creating a dominant wormhole with minimal branches. 

 

 

Fig.  22─Pressure drop across waterflood residual oil cores at an acid injection rate 

of 1 cm
3
/min and 200°F. 
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Fig.  23─Calcium and HCl concentration in the effluent samples from coreflood of 

waterflood residual oil cores at acid injection rate of 1 cm
3
/min. 

 

Effluent samples collected at acid injection of 1 cm3/min resulted in a measured 

calcium concentration of 19,430 mg/L at breakthrough (Fig. 23). This was lower than 

the corresponding calcium concentration collected during acid injection of 0.5 cm3/min. 

Also, the acid concentration at breakthrough reduced from 15 wt% to 12.5 wt% (Fig. 23) 

indicating that the residence time and consequently the reactivity of acid with calcite 

rock is lesser as flow rate increases. In order to confirm the same, coreflood experiments 

were conducted at higher flow rates of 5, 10, 20 cm3/min. The pressure drop across the 

cores during acid injection at these flow rates behave similar to each other (Figs. 24 and 

25). After achieving a stable pressure drop during brine preflush, acid was injected. The 

pressure drop across the cores dropped within 1-2 pore volumes pore volumes of acid  
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Fig.  24─Pressure drop across waterflood residual oil cores at an acid injection rate 

of 10 cm
3
/min and 200°F. 

 

 
 

 

 Fig.  25─Pressure drop across waterflood residual oil cores at an acid injection 

rate of 20 cm
3
/min and 200°F. 
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injected indicating wormhole breakthrough. While the acid required similar pore 

volumes to breakthrough for 5 and 10 cm3/min (0.68 and 0.67 respectively), the pore 

volume for breakthrough at 20 cm3/min was calculated close to 0.61. The overall trend 

in pore volume to breakthrough indicated a decrease in acid pore volumes to 

breakthrough from 1.1 at 0.5 cm3/min to 0.61 at 20 cm3/min.  

Figs. 26-28 show the calcium and acid concentration profile for acid injections at 5, 

10, 20 cm3/min as a function of cumulative fluid injected.  Maximum calcium 

concentrations in these samples ranged from 20,720 mg/L to 32,450 mg/L at acid 

breakthrough. Unlike water saturated cores, the maximum acid concentration in the 

effluent samples from all the experiments run on waterflood residual oil cores did not 

reduce significantly from the initial acid concentration of 15 wt%. This is an indicator 

that the presence of residual oil did have an effect on the acidizing process.  

Fig. 29 shows the calcium concentration profile for all the experiments run on 

waterflood residual oil cores. Comparison of Fig. 15 with Fig. 29 shows that the amount 

of calcium dissolved in effluent fluid samples in the case of cores saturated with water 

was higher than calcium measured in effluent samples from cores that contained residual 

oil. This further confirms our argument that oil has an effect on the acidizing process 

because the oil present in residual saturation forms a film on the rock grain  structure and 

retards the acid reaction with the rock.  For the same reason, at higher-injection rates 

acid formed finer emulsions with oil. These finer emulsions sheared and divided into 

smaller droplets, and produced better retardation and longer penetration. Also, at higher  
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Fig.  26─Calcium and HCl concentration in the effluent samples from coreflood of 

waterflood residual oil cores at acid injection rate of 5 cm
3
/min. 

 

 

Fig.  27─Calcium and HCl concentration in the effluent samples from coreflood of 

waterflood residual oil cores at acid injection rate of 10 cm
3
/min. 
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Fig.  28─Calcium and HCl concentration in the effluent samples from coreflood of 

waterflood residual oil cores at acid injection rate of 20 cm
3
/min. 

 

 

 

Fig.  29─Calcium concentration in the effluent samples from coreflood of 

waterflood residual oil cores at different injection rates. 
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injection rates acid is forced to flow through paths generated by brine. This results in 

less branching out of the wormhole.   

 

CT Scan Images of Waterflood Residual Oil Cores – Post Coreflood  

2D CAT scan images of the cores with residual oil treated with regular acid at 

200°F are shown in Fig. 30. Unlike acid injection at low flow rates through water 

saturated cores, no face dissolution was noticed at the core inlet face for any of the 

injection rates studied. Regular acid was able to achieve breakthrough at all flow rates. 

The significant difference in calcium concentration in effluent samples observed for all 

the injection rates can be explained with the aid of the CT scan images of the cores after 

the experiment.  

At 1cm3/min, a single dominant wormhole with minimal branching propagated 

through the core length. At acid injection of 5 cm3/min the wormhole split into three 

smaller channels as the acid made its way through the core, and at 10 cm3/min the 

wormhole formed was not as pronounced as the ones formed at lower flow rates. At 20 

cm3/min, regular acid created wormholes with branches which acted as ideal high spots 

for more acid to react with the rock. This resulted in acid dissolving more sample matrix, 

and thus higher concentration of calcium ions in the effluent sample were observed.  It is 

imperative to consider the factor that the cores used were only 3 in. and even after 

switching to brine after breakthrough, the acid present in the flow lines contribute in 

shaping the wormhole. Thus, CT images cannot be used as the sole criteria to decide on 

the optimum injection rate.  
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a-0.5 cm3/min (residual oil) b -1 cm3/min (residual oil) 

  

c - 5 cm3/min (residual oil) d - 10 cm3/min (residual oil) 

 

 

e - 20 cm3/min (residual oil) 
 

Fig.  30─CAT scan images of waterflood residual oil cores after core flood study. 

 

Optimum Injection Rate for Waterflood Residual Oil Cores  

Five coreflood experiments were also conducted on cores with residual crude oil 

using regular 15 wt% acid at 200°F. KCl-brine preflush and post flush was used. In case 

of cores with residual oil, the actual pore volume of the core is not available for flow 

because a portion of the core volume is occupied by residual oil which cannot be 
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removed. Here, the definition of acid pore volume to breakthrough is slightly different 

from the previous case where the entire pore volume was saturated with water.  In cores 

with residual oil, pore volume to breakthrough was calculated as the volume of acid 

required to propagate a wormhole through the core considering only the effective pore 

space available for flow.  

 

 

Fig.  31─Comparison of acid pore volume to breakthrough through the water 

saturated cores and waterflood residual oil cores (Logarithmic scale). 

 

Fig. 31 shows the relationship between pore volumes of acid to break through for 

water saturated cores and waterflood residual oil cores against acid injection rate. From 

Fig. 31, as the injection rate increases, the volume of acid required for breakthrough 

decreases. The increased efficiency of acid in propagating wormholes at higher flow 

rates is caused of shearing of the acid-oil emulsion, which causes longer penetrations 
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with minimal branching.  Another possible explanation of this phenomenon is that 

residual oil could have formed a screen between acid and rock, preventing acid from 

reacting with calcite, and forcing it to flow through channels created by the brine. Thus, 

acid injections on cores with residual oil require less pore volume to breakthrough 

compared to cores saturated with deionized water. Also, no optimum acid injection rate 

was observed for the core floods run on waterflood residual oil cores.  
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CHAPTER V 

COREFLOOD STUDY ON OIL SATURATED CORES 

 

Table 1 summarizes all the data from the coreflood study of cores saturated in 

naphthenic crude oil. Indiana Limestone cores saturated in oil were loaded into the core 

holder and an overburden and back pressure were applied. Coreflood runs were 

performed using 15 wt% HCl at injection rates of 1, 5, 10, and 20 cm3/min.  All the core 

flood experiments were performed at 200°F. No preflush was used prior to acid injection. 

After the system achieved at temperature of 200°F, acid was injected. The flooding test 

was terminated when a constant pressure drop was determined. 5 wt% KCl-Brine was 

injected as a post flush.  

 

Coreflood on Oil Saturated Cores 

Pressure drop across the core during the injection of regular acid at an injection rate 

of 1 cm3/min and 200°F is shown in Fig. 32.  Since no pre-flush was used, an initial rise 

in pressure drop was noticed the instant acid was injected.  After injection of 3 pore 

volumes of acid, the pressure drop rose sharply to around 47 psi from 17 psi followed by 

acid breakthrough. The rise in pressure drop is because of the acid reaching the core inlet 

and consequent reaction. The pressure drop increased until the acid pushed the oil in the 

flow channels and found a region of least resistance and highest permeability and 

changed its direction of flow within the core. This behavior continued as the acid 

propagated through the core and the wormhole broke through at the core outlet.  
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Fig.  32─Pressure drop across oil saturated core at an acid injection rate of 1 

cm
3
/min and 200°F. 

 

 

Fig.  33-Calcium and HCl concentration in the effluent samples from coreflood of 

oil saturated cores at acid injection rate of 1 cm
3
/min. 
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Unlike water saturated cores, the cycling trend of the pressure drop that follows the 

injection of acid at low injection rates was not observed. This could either mean that the 

back pressure applied kept the CO2 formed from the dissolution of rock in solution or 

that there was not a sufficient reaction between the acid and rock to start with. 

 

 

 

Fig.  34─Acid face dissolution of oil saturated cores at 0.5 cm
3
/min and 200°F. 

 

.  

However, there was some face dissolution observed at the core inlet which 

accounted for as much as 4.51 pore volumes of acid required for acid breakthrough. The 

pressure dropped after injection of 4.51 pore volumes of acid to around 2 psi indicating 

acid breakthrough. Upon acid breakthrough, acid injection was stopped and 5 wt% KCl 

was injected. Also, Fig. 34 indicates formation of multiple wormholes at the core outlet, 

suggesting that injection of acid at this rate was not the most ideal for stimulation of the 

core. 

The acid concentration in effluent samples at 1 cm3/min was profiled as shown in 

Fig. 33. The highest effluent acid concentration of 7.8 wt% marks the point of acid 

Inlet Outlet 
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breakthrough. Once the wormhole was formed and acid broke through, the partially 

reacted acid made its way through the core and reached the core outlet.  

The highest calcium concentration of 65,530 mg/L was recorded at breakthrough.  

This was comparatively lower than the corresponding calcium concentration observed 

for water saturated and residual oil cores. The oil present in the flow channels not only 

provided resistance to the flow of acid but also retarded its reactivity due to the presence 

of oil around the pore grain.  

At an injection rate of 5 cm3/min the pressure drop peaked at 138 psi upon acid 

injection, and then dipped sharply as HCl broke through the core. 3.9 pore volumes of 

acid was required for break through. Pressure drop across the core during injection of 

regular acid at 5 cm3/min and 200°F is shown in Fig. 35.  

It was interesting to note that the degree of face dissolution observed at 5 cm3/min 

was not as prominent as the one observed at 1 cm3/min (Fig. 37). This also justifies the 

fact that the acid took less pore volume to breakthrough at 5 cm3/min as compared to 1 

cm3/min. The calcium and HCl concentration in the effluent samples for an acid 

injection rate of 5 cm3/min has been profiled using Fig. 36. The calcium concentration at 

breakthrough was measured to be 71,430 mg/L.  

Fig. 38 and Fig. 39 indicate similar pressure drop patterns across the cores at higher 

injection rates of 10 and 20 cm3/min. Although the cores used had similar initial 

permeability, the pressure drop peak for 20 cm3/min was higher than that at 10 cm3/min  
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Fig.  35─Pressure drop across oil saturated core at an acid injection rate of 5 

cm
3
/min and 200°F. 

 

 

Fig.  36─Calcium and HCl concentration in the effluent samples from coreflood of 

oil saturated cores at acid injection rate of 5 cm
3
/min. 

 

 

0 

50 

100 

150 

200 

250 

0 0.5 1 1.5 2 2.5 3 3.5 

P
re

ss
u

re
 D

ro
p

 A
cr

o
ss

 t
h

e 
C

o
re

, p
si

 

Cumulative Pore Volume Injected, PV 

Q = 5 cm3/min 
 T = 200°F 
 K initial = 6.7 md   

Acid Breakthrough 

Brine Injection 

Acid Injection 
 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

0 2 4 6 8 10 12 14 16 

H
C

l, 
w

t%
 

C
al

ci
u

m
 C

o
n

ce
n

tr
at

io
n

, m
g/

L 
 

Cimulative Pore Volume Injected, PV 

Ca++ 

HCl, wt% 

Acid 
Breakthrough 

Q = 5 cm3/min 
 T = 200°F 
 K initial = 6.7 md   



 

61 

 

 

 

Fig.  37─Inlet and outlet face oil saturated cores at 5 cm
3
/min and 200°F. 

 

because of a greater resistance from oil saturating the core at higher flow rates.  The acid 

system took 5.12 and 3.91 pore volumes to breakthrough at 10 and 20 cm3/min 

respectively.  

Fig. 40 and Fig. 41 represent the calcium concentration profile for acid injection 

rates of 10 and 20 cm3/min respectively. Calcium concentration for 10 cm3/min peaked 

at breakthrough with a value close to 82,660 mg/L while the maximum calcium 

concentration recorded at acid injection of 20 cm3/min was only 36,530 mg/L. This 

justifies why the former took greater pore volumes to breakthrough. Also, the inlet face 

of the core after acid injection at 10 cm3/min (Fig. 42-a) suggests formation of multiple 

wormholes.  Fig. 42-b shows the inlet and outlet face of core at 20 cm3/min. Acid 

concentration in the effluent samples from core flood at 10 and 20 cm3/min (Fig. 40 and 

Fig. 41) shows that more acid was spent in creating a wormhole in the former case than 

the latter.  

Inlet  Outlet 
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Fig.  38-Pressure drop across oil saturated core at an acid injection rate of 10 

cm
3
/min and 200°F. 

 

 

Fig.  39-Pressure drop across oil saturated core at an acid injection rate of 20 

cm
3
/min and 200°F. 
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Fig.  40-Calcium and HCl concentration in the effluent samples from coreflood of 

oil saturated cores at acid injection rate of 10 cm
3
/min. 

 
 

 
 

Fig.  41-Calcium and HCl concentration in the effluent samples from coreflood of 

oil saturated cores at acid injection rate of 20 cm
3
/min.  
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Inlet Outlet Inlet Outlet 
a-10 cm3/min b-20 cm3/min 

 

Fig.  42─Inlet and outlet face oil saturated cores at 10 and 20 cm
3
/min and 200°F. 

 

Fig. 43 shows the calcium concentration profile for all the experiments run on oil 

saturated cores. Comparison of Fig. 43 with Fig. 15 and Fig. 29 show that the amount of 

calcium dissolved in effluent fluid samples in the case of waterflood residual oil cores 

was the least of the three cases tested. This further confirms our argument that residual 

oil has an effect on the acidizing process.  

 

Optimum Injection Rate for Oil Saturated Cores  

Four coreflood experiments were also conducted on cores saturated in crude oil 

using regular 15 wt% acid at 200°F. KCl-brine post flush was used. There was no clear 

relationship observed between pore volumes to breakthrough and the acid injection rate.  

In fact, the pore volume to breakthrough showed a declining trend with increasing 

flow rate up to 5 cm3/min after which acid took greater pore volumes to breakthrough. 

However, there a decline in PVbt at higher injection rate of 20 cm3/min after peaking at 

10 cm3/min.  
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Fig.  43─Calcium concentration in the effluent samples from coreflood of oil 

saturated cores at different injection rates. 

 

 

 

Fig.  44─Comparison of acid pore volume to breakthrough through the water 

saturated cores, oil saturated cores and waterflood residual oil cores. 
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Fig. 44 shows the relationship between pore volumes of acid to break through for 

water saturated, oil saturated, and waterflood residual oil cores against acid injection 

rate. Oil saturated cores took the highest acid pore volumes to breakthrough among the 

three saturation conditions except at low injection rates where severe face washout  

accounted for greater volumes of acid being consumed during wormhole propagation 

through brine saturated cores.  High pore volumes to breakthrough for oil saturated cores 

could be attributed to a cumulative effect of the retardation of acid reactivity with the 

rock and the resistance to the flow of acid by oil whose viscosity is 3 times that of the 

acid being injected. Thus, the decrease in PVbt for oil saturated cores at high acid 

injection rates could be a result of viscous fingering of acid through the crude oil. 

 

 

 

 

 

 

 

 

 

  



 

67 

 

CHAPTER VI 

COMPARATIVE COREFLOOD STUDY ON CORES UNDER 

VARIOUS SATURATION CONDITIONS 

 

Three coreflood experiments were performed using a regular acid system to confirm 

the absence of face dissolution or washout of the core face at low injection rate on 

Indiana Limestone cores. The cores used were of dimensions 6 in. length and 1.5 in. 

diameter.  The first coreflood was conducted on brine saturated core, second on a core 

fully saturated in oil and the third coreflood on waterflood residual oil core.  All the 

experiments were performed at an acid injection rate of  0.5 cm3/min and at 200°F.   

 

Brine Saturated Cores 

The pressure drop curve for the 6 in. brine saturated core behaved similarly to the 

curve for the 3 in. core at same flow rate. From Fig. 45, the pressure drop across the core 

stabilized at 23.8 psi during water injection, followed by an initial rise in pressure drop, 

the instant acid was injected.  This is because of the sudden rise in viscosity of the fluids 

flowing through the lines when 5 wt% KCl brine was switched with acid. The cycling 

trend of the pressure drop curve was observed because of CO2 release similar to the 3 in. 

core following acid injection at 0.5 cm3/min.  A large portion of the core was dissolved 

in acid, which released CO2 from solution. 4.4 pore volumes of acid were injected until 

the pressure drop fell from 43.5 psi to of 2.11 psi. The sudden drop in pressure indicated  
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Fig.  45─Pressure drop across brine saturated 6 in. core at an acid injection rate of 

0.5 cm
3
/min and 200°F. 

 

Fig.  46─Calcium and HCl concentration in the effluent samples from coreflood of 

brine saturated 6 in. core at acid injection rate of 0.5 cm
3
/min. 
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Fig.  47─Inlet and outlet face of brine saturated 6 in. core at 0.5 cm
3
/min and 

200°F. 

 

acid breakthrough. Upon acid breakthrough acid injection was stopped and brine was 

injected as a post flush.  

Fig. 47 shows washout across the cross section of the core because of high leakoff 

rate which accounted for higher pore volume to break through. Although the pore 

volume to break through across this core was found to be as high as 4.5, the acid took 

lesser pore volume to breakthrough compared to cores of 3 in. in length., wherein almost 

9.5 pore volumes of acid was consumed. This indicated that the length of the core does 

have an effect on the pore volume to breakthrough.  

Fig. 46 shows the calcium and HCl profiles for the same experiment. The highest 

calcium concentration in the effluent samples (101,000 mg/L) measured higher than that 

from coreflood experiment of 3 in. cores in spite of taking lesser pore volume to 

breakthrough. This could be accounted for by the fact that the acid left in the lines after 

breakthrough continued to dissolve the core even after switching from acid to brine. The 

low acid concentration of 0.7 wt% found in the effluent samples at breakthrough justifies 

this explanation.   

  

Inlet Outlet 
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Fig.  48─Pressure drop across oil saturated 6 in. core at an acid injection rate of 0.5 

cm
3
/min and 200°F. 

 

 

Fig.  49─Calcium and HCl concentration in the effluent samples from coreflood of 

oil saturated 6 in. core at acid injection rate of 0.5 cm
3
/min. 
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Fig.  50─Inlet and outlet face of oil saturated 6 in. core at 0.5 cm
3
/min and 200°F. 

 

Fully Saturated in Oil  

Upon injection of acid through the core fully saturated in oil, the pressure drop 

across the core peaked at 185.3 psi, followed by a gradual drop in pressure drop 

indicating wormhole formation in progress (Fig. 48). Once the pressure drop was 

reduced to 2-3 psi, it was confirmed that 1.43 pore volumes of acid were required for 

breakthrough break through to occur.  

The inlet and outlet face of the core shown in Fig. 50 suggests formation of a 

conical wormhole. The calcium profile plotted in Fig. 49 indicates that the relative 

concentration of calcium ions in the effluent samples from coreflood experiments 

conducted on oil saturated cores were less than the concentration recorded for brine 

saturated cores. This is because the degree of dissolution at the core inlet was less for oil 

saturated cores. Also, the acid concentration at breakthrough was 2.5 wt % (Fig. 49), 

which is higher than the corresponding concentration for brine saturated cores. 

 

 

Inlet  Outlet  



 

72 

 

Cores with Waterflood Residual Oil     

Fig. 51 shows the pressure drop curve for the core flood on the waterflood residual 

oil core. A 5 wt% KCl was used as a preflush before injecting acid. Upon injection of 

acid, the pressure drop increased to 130.8 psi, followed by a drop in pressure at 

breakthrough after injection of 0.68 pore volumes of acid. 5 wt% KCl brine was used. 

Calcium and acid concentrations at recorded at breakthrough were close to 66,180 mg/L 

and 4.07 respectively (Fig. 52). It was interesting to note that there was no face 

dissolution observed, which confirmed our findings from experiments conducted on 3 in. 

cores (Fig. 53).   

 

Fig.  51─Pressure drop across waterflood residual oil 6 in. core at an acid injection 

rate of 0.5 cm
3
/min and 200°F. 
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Fig.  52─Calcium and HCl concentration in the effluent samples from coreflood of 

waterflood residual oil 6 in. core at acid injection rate of 0.5 cm
3
/min. 

 

 

 

Fig.  53─Inlet and outlet face of waterflood residual oil saturated 6 in. core at 0.5 

cm
3
/min and 200°F. 
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Comparative Study  

Fig. 54 shows pressure drop across all the 6 in. cores used for the comparative 

study. The highest pressure drop is for oil saturated cores where the acid has the greatest 

flow resistance due the presence of oil in the flow channels across the core. The pressure 

drop across the brine saturated and waterflood residual oil cores are comparable because 

the oil present in residual state does not hinder the flow of acid across the core.  

Another interesting comparison that can be drawn is that brine saturated cores took 

the maximum acid pore volumes to breakthrough, followed by oil saturated cores. 

Waterflood residual oil cores took the least pore volumes to breakthrough. This 

phenomenon can be explained using the comparative calcium concentration plots for all 

the saturation conditions (Fig 55). The oil present in residual state contributes towards 

the fewest pore volumes of acid being used for breakthrough by acting as a buffer zone 

between rock and acid. The acid makes its way through the flow channels created by 

brine and is not spent dissolving the rock matrix. For brine saturated cores, acid mixed 

with brine and the relative permeability of acid through the core was unchanged, 

resulting in greater fluid loss to the regions surrounding the main wormhole. 

Consequentially, higher pore volumes of acid were consumed for creating a wormhole 

Face dissolution was observed across brine saturated cores which explains the high 

calcium concentration in the effluent samples (Fig. 47 & 55). For oil saturated cores, 

formation of a conical wormhole accounted for higher calcium concentration in the 

effluent samples compared to waterflood residual oil cores. However it was not as high 

as brine saturated cores because of the absence of face washout.    
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Fig.  54─Pressure drop across the cores under different saturation condition during 

the coreflood. 

 

 
 

Fig.  55─Calcium concentration in the effluent samples from coreflood of cores 

under different saturation conditions.  
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Fig.  56─HCl concentration in the effluent samples from coreflood of cores under 

different saturation conditions. 

 

Fig. 56 shows that the concentrations of acid in the effluent samples are directly 

related to the calcium concentration profile. The highest acid concentration at 

breathrough was recorded for residual oil cores, indicating the least reactivity with rock 

whereas for brine saturated cores, the acid was consumed during face dissolution and the 

concentration dropped from 15 wt% to less than 1 wt%.   Oil saturated cores had 

intermediate acid concentrations in the effluent samples. 

     

Post Coreflood CAT Scan Images of Cores under Various Saturation Condition  

2D CAT scan images of the brine saturated cores treated with regular acid at 200°F 

are shown in Fig. 57. Face dissolution was noticed initially at the core inlet face, which  
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A-0.5 cm3/min (6 in. fully saturated in brine) 

 
B-0.5 cm3/min (6 in. fully saturated in oil) 

 
C-0.5 cm3/min (6 in. residual oil) 

 

Fig.  57─CAT scan images of cores under various saturation conditions after 

coreflood study. 
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accounted for the high calcium concentration in the effluent samples (Fig. 57-A). The 

diameter of the wormhole reduced as the acid propagated through the core. The 

wormhole created at this flow rate is non optimal.   

Although there was face dissolution noticed initially for oil saturated cores (Fig. 57-

B), the HCl acid system used propagated a wormhole with decreasing diameter as it 

acidized the core.  

For cores with residual oil saturation, the acid system propagated wormholes with 

minimal branches (Fig. 57-C). Since the wormhole formed was more dominant than the 

previous two cases, calcium concentration at breakthrough was found to be the least of 

the three saturation conditions tested. The dissolution pattern created at low injection 

rate for the residual oil saturation condition resulted in the most efficient stimulation of 

the core. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS  

 

Coreflood experiments were conducted to assess the effect of different oil 

saturations on acid propagation during matrix acidization of carbonate rocks. The 

wormhole patterns and characteristics of cores saturated in water, in oil, and with 

residual oil were analyzed and compared. Experimental results indicate that oil 

saturation does impact the wormholing characteristics of HCl while acidizing carbonate 

rocks. The following conclusions were drawn: 

 

Water Saturated Cores  

 At low acid injection rates, acid volume required to propagate a wormhole 

decreases as injection rate increases; while at high acid injection rates, acid 

volume required to propagate a wormhole increases slightly as injection rate 

increases. 

 Coreflood tests for injection rates ranging from 0.5 to 20 cm3/min showed that 

the optimum acid injection rate was around 10 cm3/min, corresponding with the 

minimum acid pore volumes necessary for wormhole propagation across the 

core.  

 Due to inlet face dissolution, a significant amount of calcium was measured in 

the effluent samples at 0.5 and 2 cm3/min.  
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Waterflood Residual oil Cores 

 HCl was effective in creating wormholes with minimal branches for cores with 

residual oil (Sor=0.4-0.5) at injection rates from 0.5 to 20 cm3/min.  

 Cores with residual oil after waterflooding showed no face dissolution at low 

acid injection rates. 

 Compared to brine saturated and oil saturated cores, waterflood residual oil cores 

consumed the least acid volume to breakthrough. 

 The wormholing efficiency of regular acid improved with increasing acid 

injection rates in the presence of residual oil, indicating that the acid should be 

injected at the maximum possible rate while acidizing waterflooded wells.  

 

Oil Saturated Cores 

 The severity of face dissolution for oil saturated cores was lesser at low injection 

rates as compared to brine saturated cores. The inlet face of the core indicates the 

formation of conical wormholes at low injection rates. 

 Oil saturated cores did not show an optimum injection rates for breakthrough. 

The inlet and outlet face of the cores did not suggest the formation of a single 

dominant wormhole for any of the flow rates tested. However, the pore volume 

to breakthrough decreased with an increase in flow rate at higher injection rates.  

 The decrease in acid pore volumes to breakthrough for oil saturated cores at high 

flow rates (20 cm3/min) could be attributed to viscous fingering of acid through 
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the oil. The viscosity of crude oil was as much as 3 times that of the regular acid 

at 200°F.  

 

Recommendations 

Based on the above discussions, it is recommended that the saturation condition of 

the reservoir be studied in detail before acidizing the well. Treating oil-wet waterflood 

reservoir intervals requires the least amount of regular acid in comparison to brine 

saturated or oil saturated regions of the reservoirs. Thus, the knowledge of the saturation 

condition of the near wellbore area being treated helps prevent over/under designing of 

an acid job.   

It should be noted that the current study was conducted on cores of 3 in. in length 

and more research work needs to be done to extend the conclusions to field scale. Some 

of the recommendations are as follows: 

 Investigate the effect of oil saturation on acid propagation during matrix 

acidization of cores of different length.  

 Identify the effect of different acid, the acid concentration, and temperature 

while acidizing oil saturated and waterflood residual oil cores.  

 Comprehensive correlations accommodating all the above factors should be 
developed to determine the optimum acid injection rate under various reservoir 
conditions.  
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