An Index to Evaluate Energy Efficiency of the Entire Building HVAC System

Presented by Dr. Claridge

Date: 09/15/2014

Outline

- •Why we need the Energy/Load Ratio
- How to get the Energy/Load Ratio
- Methodology Adjustment
- Case Study
- Results Showed by tables and Plots

Why we need the Energy/Load Ratio

1. Building

2. HVAC Systems

3. Common Index

- Building sector consumes 40% of total energy usage in US (Residential buildings – 22%, Commercial building – 19%)
- HVAC systems typically consume 30% of the energy usage in a building (heating 5%, cooling 14%, ventilation 12%)

Furnace/boiler: AFUE, HSPF
 Chiller: COP, EER, SEER
 Combined Index: Energy Delivery Efficiency

The energy/load ratio ELR can be expressed in terms of the different sources of energy (E_{BS}) required to meet the corresponding positive or negative loads (Q_{RSL}) of the entire building.

$$ELR = E_{BS}/Q_{BSL}$$

1. Definition

2. Formula

The building systems total load, $Q_{\rm BSL}$, is defined as the sum of the envelope load (Q_{LEnv}) , the load from internal gains (Q_{LGain}) and the ventilation air load on the secondary systems (Q_{LVent})

$$Q_{BSL} = Q_{LEnv} + Q_{LGain} + Q_{LVent}$$

$$Q_{LVent} = (e_{S,V} + e_{L,V}) \times A$$

$$e_{S,V} = 1.08 \times V_{OA} \times (T_{OA} - T_{RA})$$

$$e_{L,V} = 4840 \times V_{OA} \times (w_{OA} - w_{RA})$$

1. Definition

2. Formula

The total energy input (E_{BS}) can be obtained by combining all the heating (E_{BHS}) and cooling (E_{BCS}) energy input costs (C_{BCS}/C_{BHS})

$$C_{BCS}$$
= $C_{B,Fan} + C_{B,CHWPump} + C_{B,HHWPump}$
+ $C_{Chiller} + C_{CTFan} + C_{CTPump}$
+ $C_{CHWPump} + C_{HHWPump} + C_{Boiler}$
 C_{BHS}
= $C_{B,Fan} + C_{B,CHWPump} + C_{B,HHWPump}$
+ $C_{HHWPump} + C_{Boiler}$

$$C_i = E_i \times P_i$$
 $E_{BS} = C_{BS}/P_i$

1. Definition

2. Formula

WinAM

- Create energy performance model
- •Obtain the parameter details to calculate the load and building energy input

Methodology Adjustment

Campus buildings used for the case study in this paper are served by a central plant.

1. Price Input for Cooling

$$C_{Chiller} + C_{CTFan} + C_{CTPump} + C_{CHWPump} = C_{P,BS} = (R_{PC,E/L} \times Q_{BSL}) \times P_{ELE}$$

 $R_{PC,E/L}$ is the entire plant average cooling energy/load ratio, $E_{P,BS}$ is the plant energy input for building system.

2. Price Input for Heating

$$C_{HHWPump} + C_{Boiler} = C_{H}$$

= $E_{HHW} \times P_{HHW}$

Case Study

Plant Data

Main Campus:

CUP&SUP3

West Campus:

SUP1&SUP2

Plant	Chillers	Chilled Water	Cooling Towers
Name	(No.)	Pumps (No.)	(No.)
CUP	10	12	10
SUP1	6	3	7
SUP2	5	4	5
SUP3	4	4	4

 Buildings selected in west campus served by SUP1 and SUP2.

• Case Study

Data Used for Case Study: 9/1/2012 – 8/31/2013 (FY13)

Building No.	Gross Area	AHU Type	Maximum Supply Air Flow	Outside Air Flow	Space Heating	Space Cooling	Minimum Air Flow	
	ft ²		cfm	cfm	° F	° F	%	
A	19,132	SDVAV	32,000	10,484		75	70	
		OAHU	32,000	10,101			70	
		SDVAV	8,000	1,760	70		30	
В	118,648	SDVAV	90,700	23,380			40	

Building A HVAC System Energy/Load Ratios of Each Component (FY13)

Name	Chiller	CHW Pump	CT Fan	CW Pump	B Fan	BCHW Pump	BHH W Pump	Gas
kW/ton	0.81	0.12	0.07	0.21	0.33	0.18	0.09	1.55
Percentage	24%	4%	2%	6%	10%	5%	3%	46%

Average energy/load ratio for FY13: 3.36kW/ton

Building A Plot

•Building B HVAC System Energy/Load Ratios of Each Component (FY13)

Name	Chiller	CHW Pump	CT Fan	CW Pump	B Fan	BCHW Pump	BHH W Pump	Gas
kW/ton	0.59	0.09	0.05	0.16	0.20	0.15	0.12	0.38
Percentage	34%	5%	3%	9%	11%	9%	7%	22%

Average energy/load ratio for FY13: 1.73kW/ton

Building B Plot

Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014

Thank you!

Questions?