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ABSTRACT 

 
 

Fiber Optic Strain Gauge Calibration and Dynamic Flexibility Transfer Function 
 

Identification in Magnetic Bearings. (May 2004) 
 

Zachary Scott Zutavern , B.S., Texas A&M University; 
 

B.A., Texas A&M University 
 

Chair of Advisory Committee:  Dr. Dara Childs 
 
 

Historical attempts to measure forces in magnetic bearings have been unsuccessful as a 

result of relatively high uncertainties.  Recent advances in the strain-gauge technology 

have provided a new method for measuring magnetic bearing forces.  Fiber optic strain 

gauges are roughly 100 times more sensitive than conventional strain gauges and are not 

affected by electro-magnetic interference.  At the Texas A&M Turbomachinery 

Laboratory, installing the fiber-optic strain gauges in magnetic bearings has produced 

force measurements with low uncertainties.  Dynamic flexibility transfer functions 

exhibiting noticeable gyroscopic coupling have been identified and compared with 

results of a finite element model.  The comparison has verified the effectiveness of using 

magnetic bearings as calibrated exciters in rotordynamic testing.  Many applications 

including opportunities for testing unexplained rotordynamic phenomena are now 

feasible. 
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NOMENCLATURE 

B Input matrix [] 
b Rotor drop FOSG calibration intercept [b] 
C FOSG calibration matrix [N V-1] or output matrix [] 
C Current-position formula calibration factor [N µm2 A-2] 
E Modulus of elasticity [Pa] 
F Magnetic bearing force matrix [N] 
F Magnetic bearing force [N] 
Funcalibrated Uncalibrated force factor [A2 µm-2] 
F0 Current-position formula tare force [N] 
f Injection frequency [Hz], or rotor reaction force [N] 
G Flexibility matrix [µm N-1] 
G Flexibility [µm N-1] 
g Current-position formula effective gap parameter [µm] 
I Moment of inertia matrix [kg m2] 
IA Area moment of inertia [m4] 
Ibottom Bottom pole current [A] 
Itop Top pole current [A] 
I1 Rotor polar moment of inertia [kg m2] 
I2 Rotor radial moment of inertia [kg m2] 
K Stiffness [N µm-1] 
k FOSG calibration coefficient [N V-1] 
L Shaft length [m] 
l Distance between magnetic bearings [m] 
lcg Distance from drive-end magnetic bearing to CG of rotor [m] 
m Rotor mass [kg] 
rI Inertia ratio [] 
rm Mass ratio [] 
s FOSG calibration slope [N V-1] 
V FOSG SCU voltage matrix [V] 
V FOSG SCU output voltage [V] 
W Rotor weight [N] 
X Position matrix [µm] 
w External weight [N] 
X Horizontal position [m] 
X0 Injection amplitude [µm] 
x Rotor position [µm] 
Y Vertical position [m] 
α Angular acceleration vector [rad s-1] 
β Time scaling factor [s-1] 
∆xactual Actual rotor displacement [µm] 
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∆xdetected Detected rotor displacement [µm] 
φ Euler angle [rad s-1] 
Γ Torque vector [N m] 
γ Angular position scaling factor [] 
η Linear position scaling factor [m-1] 
θ Angle between two specified vectors or axes [rad] 
τ Rotor reaction moment [N m] 
ω Angular velocity vector [rad / s] 
ω Injection frequency [rad s-1] 
ωN Non-dimensional rotor speed [] 
ξ Damping ratio [] 
ψ Euler angle [rad s-1] 
 

Subscripts 

bottom Characteristic of the bottom pole 
N Non-dimensionalized variable 
S1 Characteristic of FOSG S1 
S2  Characteristic of FOSG S2 
S3  Characteristic of FOSG S3 
S4  Characteristic of FOSG S4 
top Characteristic of the top pole 
X In the X direction of the X, Y, Z coordinate system 
x Horizontal direction 
Y  In the Y direction of the X, Y, Z coordinate system 
y Vertical direction 
Z  In the Z direction of the X, Y, Z coordinate system 
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I. INTRODUCTION 

Research in rotordynamics, as in other fields, relies heavily on test measurements to 

characterize dynamic phenomena.  Rotor motions are measured with proximity probes, 

accelerometers, and occasionally velocimeters.  These measurements can typically be 

determined accurately and with relative ease as compared with force measurements.  

Forces are typically measured with strain gauges and calibrated load cells, and they are 

sometimes calculated from inertial properties.  By nature, forces tend to be more difficult 

to measure because the sensors require several features for accurate measurements.  The 

sensors must have physical contact with the forcing mechanism.  The sensors must 

detect, or at least accurately reflect, all relevant forces.  Finally, the sensor cannot 

interfere with the force application, either by adding inertia, or softening the force 

mechanism.  With rotating machinery, these requirements can be difficult to meet.   

 

Magnetic bearings have been recognized for years as having a great potential for force 

measurement.  The non-contact interface provides a method for applying forces directly 

to a rotating component.  The applied force is a function of the air gap, the control 

current, and the magnetic properties of the materials.  There have been attempts to 

determine the applied forces by modeling the magnetic force, by measuring the magnetic 

flux, and by installing load cells within the bearings.  However, the levels of uncertainty 

in such attempts have proved excessive, and test results using these methods would 

likely be inconclusive. 

 

Recent efforts at the Texas A&M University (TAMU) Turbomachinery Laboratory have 

focused on a new method of measuring forces in magnetic bearings.  With the advent of 

a new fiber optic technology, strain measurements accuracy has been improved by a 

factor of 100.  By installing these highly sensitive strain gauges in magnetic bearings, 

accurate force measurements can be produced.  This approach opens the door for new 

test methods, and provides an opportunity for measuring new phenomena. 
 

This thesis follows the style and format of the Journal of Tribology. 
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Technologies 

Two modern technologies are utilized throughout this research:  magnetic bearings and 

fiber optic strain gauges.  Combining these technologies allows for accurate force 

measurements within magnetic bearings.  A general description of these technologies 

follows.  

Magnetic Bearings 

Figure 1 displays the main components of a typical magnetic bearing (MB) [1].  MBs are 

increasingly used in rotating machinery because they offer several advantages over 

conventional bearings.  A MB uses electrical currents to generate magnetic fields that 

levitate the rotor.  As a result, there is no physical contact between the MBs and the 

rotor.  This significantly reduces the power loss associated with the bearing and 

eliminates physical wear.  Magnetic bearings can also support rotors at higher speeds 

than conventional bearings.  Some MB machine tool spindles can rotate at speeds up to 

100,000 rpm.  MBs are also used in high-speed flywheel applications for energy storage.  

Controllability is another advantage.  The bearing settings can be adjusted to produce 

desired characteristics and responses.  In addition to varying standard parameters such as 

stiffness and damping, many bearing controllers have vibration control options that can 

produce rotating forces to counteract imbalance.  

  

 

Position Sensor

Magnetic Pole Stator 

Rotor 

Fig. 1  Typical MB Construction [1] Fig. 2  Fiber Optic Strain Gauges [2]
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Fiber Optic Strain Gauge Technology 

Fiber optic strain gauges (FOSGs), like conventional strain gauges,  

measure strain in materials.  One end of the fiber optic is bonded to the surface of a 

material.  The bonded ends of two fibers are shown in Figure 2  [2].  The fiber has two 

reflective surfaces within the bonded region.  Light is transmitted from the opposite end 

of the fiber to the surfaces and then reflected back, creating an interference pattern.  As 

strain is produced in the material, the interference pattern changes, and a signal 

conditioning unit translates the pattern change into a voltage proportional to material 

strain.  FOSGs have can measure strains 100 times more accurately than conventional 

strain gauges.  The optical signals are not corrupted by electrical and magnetic noise, 

which is very important for the present application.  By bonding the FOSGs to the poles 

of MBs, reaction forces between the rotor and the bearing can be determined.  Other 

approaches toward determining magnetic bearing forces have been undertaken and are 

discussed in the following section. 

Methods of Force Measurement 

Previous attempts at force measurement in magnetic bearings have experienced limited 

success.  Methods using magnetic flux sensors, load cells, and empirical current and 

position formulas have produce results with relatively large uncertainties.  Using Fiber 

Optic Strain Gauge (FOSG) technology, the accuracy of the force measurements is 

substantially improved.  The accuracy is sufficient to allow identification of significant 

system characteristics. 

Piezoelectric Load Cells 

Traxler and Schweitzer [3] mounted piezoelectric load cells between the interface of the 

magnetic bearing housings and the test platform to measure reaction forces.  

Displacements of the bearing housings produced inertial forces that affected the 

reaction-force measurements.  The inertial forces were calculated using accelerometer 

measurements and were then subtracted from the measured total force to calculate the 
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actual force applied to the rotor.  The signal to noise ratio was low and the inertial forces 

were large at higher frequencies. 

 

Lee, Ha, and Kim [4] used a similar approach to perform system identification.  They 

also experienced large uncertainties.  In general, this approach is problematic because 

the load cells must be sized to properly secure the bearings and must have an acceptable 

sensitivity for forces generated at high frequencies.  This causes the low frequency 

results to have a poor signal to noise ratio.  The high frequency results are also suspect 

because the bearing motions increase with frequency and produce inertial forces. 

Empirical Current and Position Formulas 

Matros, Sobotzik, and Nordmann [5] used an empirical formula relating the bearing 

currents and the rotor position to the applied force.  Their formulas neglect eddy current 

loss, hysteresis, and magnetic saturation effects.  Matros et al. modeled hysteresis and 

saturation properties in an effort to improve results.  The force calculations were used to 

determine bearing and seal coefficients.  In a specific case, stiffness was over predicted 

by 8%. 

 

Fittro , Baun , Maslen , and Allaire [6] measured forces on a static test rig, varying 

eccentricity and force amplitude.  They found that eccentricity changes contributed to 

most of the uncertainty in the results.  The mean error distribution and standard deviation 

were 1% and 4% of the bearing load capacity respectively. 

Magnetic Flux Sensors 

Gahler [7] used hall sensors to measure the magnetic flux from the bearing poles.  The 

rotor position and magnetic flux were related to the force with an empirical formula.  A 

correction algorithm was implemented to correct for eddy currents, hysteresis, and 

saturation.  Dynamic forces were applied at frequencies from 20 to 200 Hz with constant 

amplitude, and the force error was ±11% of load capacity.  Dynamic forces were then 
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applied at 120 Hz for various amplitudes, and the force error was reduced to ±2% of load 

capacity. 

 

Knopf and Nordmann [8] used flux measurements to identify dynamic properties of 

hydrodynamic bearings.  Uncertainties were around 1% of load capcity for static 

measurements, but they deteriorated to 5% with increasing eccentricity and rotor speed. 

 

Pottie [9] used several methods to determine forces of magnetic bearings. A current and 

position dependent force model was attempted, and considerable time and effort was 

spent trying to map the model coefficients.  Hall sensors were also attempted.  A third 

method was to support the poles (not the bearing housings) with strain gauges.  However 

the strain gauges that were sensitive enough to make accurate measurements allowed the 

MB poles to move.  Accelerometers were installed to compensate for the pole inertial 

forces.  Unfortunately, this introduced new vibration modes and resonances.  All of these 

methods were unable to significantly improve uncertainties over previous methods. 

Force Measurement in MBs at TAMU Turbomachinery Laboratory 

Raymer and Childs [10] used FOSGs to measure dynamic forces applied by an external 

exciter.  This method resulted in dramatic improvements in uncertainty.  The uncertainty 

was 1 lb (4 N) or .1% of the bearing load capacity.  Pavesi and Childs [11] attempted to 

use an empirical formula based on current and position to calibrate the FOSGs at low 

frequencies.  The formula was believed to be sufficiently accurate at low frequencies 

because of the high repeatability of the results.  This method encountered difficulties 

with a parameter in the formula, and the resulting uncertainties were not as low as in the 

method of Raymer and Childs. 

 

FOSGs have produced the most promising results to date.  An accurate calibration 

method would open the door for new research applications in rotordynamics.  In the 

present work, a new calibration method has been developed and system properties have 

been determined.  The Inertial Calibration Method uses  dynamic calculations based on 
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the mass properties of the rotor to calibrate the FOSGs.  Using the calibrated FOSGs, 

dynamic flexibility transfer functions (DFTFs) have been experimentally determined.  

DFTFs describe the position response of a system due the applied forces.  The details of 

the calibration and the DFTF identification comprise the remainder of this thesis. 

Test Equipment Description and Theory of Operation 

The test rig consists of a rotor supported at either end by a radial magnetic bearing.  The 

rotor is driven by an electric motor, and the system is equipped with pneumatic brakes.  

The FOSGs are installed in the non-drive end bearing.  Data from the MB controller 

output and the FOSG signal conditioning unit (SCU) are acquired using National 

Instruments hardware and Labview software.  The data reduction is performed in MS 

Excel.  A detailed description of the test rig and data acquisition system follows. 

Test Rig 

The MB Test Rig is displayed in Figure 3.  The magnetic bearings (1) have a load 

capacity of 800 lbf (3560 N) and support a steel rotor (2) weighing 400 lbf (1780 N).  

Disks (3) increase the rotational inertia and, accordingly, the gyroscopic coupling.  The 

laminated sleeves (4) are the surface on which the magnetic force is exerted.  Auxiliary 

bearings (5) support the rotor when it is not levitated.  The coupling (6) and the quill 

Fig. 3  Magnetic Bearing Test Rig at TAMU Turbomachinery Laboratory 
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shaft (8) are both shielded for safety.  The brakes (7) can be used to rapidly decelerate 

the system if the rotor delevitates.  A pulley (9) and drive belt transmit power from the 

motor.  The test stand (10) is constructed of .75 in. (19 mm) steel plates with a 3 in. (76 

mm) steel top. 

NI Hardware and Labview Data Acquisition System  

The data acquisition system consists of 2 E-series National Instruments PCI cards.   The 

6035E card has 2, 12 bit, analog output channels and 8, 16 bit, differential type analog 

input channels.  The 6036E has 2, 16 bit, analog outputs channels and 8, 16 bit, 

differential type analog input channels.  Each E-series card is connected to an external 

SC2040 card, which allows the analog inputs for each board to be acquired 

simultaneously.  By connecting the two E-series cards with a RSTI cable, the analog 

input and analog output signals can be routed from one board to another.  This allows for 

the synchronization of the analog inputs and analog outputs of both cards.   

 

The maximum sampling rate per channel, when all channels are in use, is approximately 

10 kHz.  With analog inputs in use, the maximum update rate for the analog output is 

between 5 and 10 kHz depending on the length of time for a test.  The 6036E has 

difficultly consistently updating at 10 kHz (with analog inputs in use) for times of 10 

seconds or longer, probably because the analog outputs are 16 bit.    

 

A test was performed to validate the data acquisition system.  One analog output from 

each card was connected to one of its own analog inputs and one output was connect to 

one of the other card’s inputs.  This test can demonstrate the synchronization of all 

outputs and inputs.  Sinusoids of different DC offsets with frequencies of 200 Hz were 

generated by each analog output.  The update rates and sampling frequencies were all 10 

kHz.  Figure 4 displays 100 000 samples.  Figure 5 shows the first 50 samples (5 ms), 

and Figure 6 shows the last 50 samples. 
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Fig. 4  100 k Samples with Sample Rates and Update Rates All 10 kHz 

 

 

 

Fig. 5  First 50 Samples 
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Fig. 6  Last 50 Samples 

 

The sinusoids all appear to be clearly in phase.  FFT analysis demonstrated a phase error 

of ± 0.02°, which, at 200 Hz, corresponds to 0.28 µs.  It can also be seen from the results 

that the analog input values are the analog output values from the previous update, which 

is to be expected.  In other words, the second sample (sample number 1) it is equal to the 

DC value of the signal.  DC value of the signal is the first analog output update, 

occurring at the same time as sample 0. 

FOSG Signal Conditioning and Theory 

The FOSGs connect to the FOSG Signal Conditioning Unit (SCU).  This device creates 

the laser light that is directed into the fiber optic cables.  The light travels down the 

cables and reached the end where the strain gauge is bonded to the MB.  Figure 7 

demonstrates that the laser light is partially reflected by two surfaces typically spaced 

0.47 in (12 mm) apart.  The reflected light travels back through the fiber to the SCU.  A 

Fabry-Perot interferometer technique is utilized to determine the phase shift resulting 

from the travel length difference of the light.  The phase shift is related to the distance 

between the two surfaces.  As the FOSG is strained, the distance between the surfaces 

changes, the phase of the light changes, and the strain is detected.  The SCU output 
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voltage signals indicate the strain.  The voltages are recorded by the data acquisition 

system.  

 

Fig. 7  Fiber Optic Strain Gauge Operation [2] 

Magnetic Bearing Control Hardware and Software 

The magnetic bearing controller is the MBControl module produced by Revolve 

Magnetic Bearings Inc.  This module uses position measurements from proximity probes 

to determine current response required to levitate the rotor.  The MBControl module 

controls amplifiers that produce the required currents.  In addition, the module interfaces 

with a PC through a serial link and MBScope software that is installed on the PC.  The 

module also creates analog ouputs through the MBResearch panel.  These outputs are 

voltage signal that indicate rotor position and control currents.  The MBResearch panel 

also has analog inputs that the MBControl module can use to adjust either target rotor 

position or the control currents.  The analog input must be activated using the MBScope 

software. 

 

The MBScope software has a variety of programs that adjust control settings and 

options, determine calibration settings, and display measurements of current, rotor 

position, and calculated force.  These programs and their uses are discussed in detail 

later. 

 

The notation used by the software is displayed in Figure 8 as seen from the drive end.  

The V13 and W13 axes coincide at the center of the drive end MB, and the V24 and W24 

axes coincide at the non-drive MB center. 
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Fig. 8  Axis Notation for MBScope Software 

 

The FOSG locations are displayed in Figure 9 as seen from the non-drive end.  Each 

FOSG is bonded to one of the primary MB poles.  These poles do not lie on the axes 

used by the MBs.  However, each pair of primary poles and the adjacent auxiliary poles 

act in unison.  This causes the net force exerted by a given pole to occur along an axis.  

The result is that the FOSG detects the net force exerted by a pole along the poles 

respective axis. 

 

 

Fig. 9  FOSG Locations 

Drive End

W13 V13

W24 V24

S1 
S2 

S3 
S4 

W24V24 
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II. MAGNETIC BEARING CALIBRATION 

The first step in test process is to accurately calibrate the MBs.  Clearly, the proximity 

probe calibration is essential for accurate test results.  Additionally, centering the shaft 

within the bearing is important for improving linearity of different bearing properties, 

and to prevent contact with the auxiliary bearings during operation.  The forces of the 

bearing can also be described by a formula using the control current and the rotor 

position.  The parameters of this formula must be accurately determined because one of 

the FOSG calibration methods that is addressed uses formula. 

Magnetic Bearing Rotor Centering 

The center position of the rotor is determined by carefully bumping the rotor against the 

auxiliary bearings and calculating the point equidistant from the bump locations.  This 

step is performed using the Calibration tool in the MBScope software package.  The 

Calibration tool shown in Figure 10 displays the results from one of the bump tests.  The 

New Offset is the rotor center position given in proximity probe voltage.  

 

 

Fig. 10  MBCalibration Screen for Bump Test 
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Table 1 contains the voltage offsets from the bump tests.  The uncertainty in these 

measurements is ± 0.01 V or less.  This is equivalent to approximately 3 µm, about 1% 

of the radial clearance between the auxiliary bearings, or about 0.5 % of the radial 

clearance between the rotor laminates and the magnetic bearing poles 

 

Table 1  Voltage Offsets from Bump Tests 

Axis Voltage Offset 
V13 -0.14 V 
W13 -0.72 V 
V24 -0.04 V 
W24 -0.77 V 

 

Magnetic Bearing Proximity Probe Calibration 

Proximity Probe Calibration (PPC) was performed by placing a digital indicator with 

accuracy ± .5 µm in contact with the shaft along the axis to be tested (Figure 11).  The 

angle of the indicator was adjusted to 45° to coincide with a coordinate axis for the MBs.   

The perpendicularity of the indicator to the rotary axis was determined by using a 

precision indicator tip with a large planar contact area.   

 

 

Fig. 11  Digital Indicator Setup 
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The error in angle between the magnetic bearing axis and the indicator axis could have 

been in as large as 8° without producing a significant impact on calibration.  Eq. 1 

displays the relationship between the actual motion and the detected motion depending 

on the angle error, θ.   

 

 θcosdetectedactual xx ∆=∆  (1) 

 
A calculation follows which demonstrates the effect of an 8° error.  The maximum actual 

position change was approximately 50 µm.  In the calculation, it can be seen that the 

angle error produces an undetectable error in the indicator reading because the increment 

of the digital indicator reading is 1 µm.  It should be noted that, while the angle error 

was unknown, it was substantially less than 8°. 

 

 
µm   49.50
8cos/50
cos/actualdetected

=
°=

∆=∆ θxx
 (2) 

 

Figures 12 through 15 contain the results of the PPC.  The results appear to be extremely 

linear as correlation coefficients are 0.9998 or higher.  Any irregularities could either be 

a slight non-linearity, or a result of the digital indicator precision.  The results could 

likely be improved by using an indicator with a higher order of precision. 
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Fig. 12  V13 Axis Proximity Probe Calibration 
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Fig. 13  W13 Axis Proximity Probe Calibration 
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Fig. 14  V24 Axis Proximity Probe Calibration 
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Fig. 15  W24 Axis Proximity Probe Calibration 
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The PPC coefficients (position sensitivity for each axis) are given in Table 2.  The 

results are reasonable and very comparable to previous results obtained using a slightly 

different calibration method.  Based on the precision of the digital indicator, the 

uncertainty in the coefficients is ± 1% (2 to 3 µm/V).  Again, it is likely that a digital 

indicator with higher precision could reduce the uncertainties. 

 

Table 2  Position Sensitivities 

Axis Position Sensitivities 
V13 295.6 µm / V 
W13 289.2 µm / V 
V24 224.3 µm / V 
W24 227.5 µm / V 

 

MBScope Current-Position Formula 

An accurate calibration of the current and position dependent magnetic bearing force 

model is required for the Current-Position FOSG Calibration (discussed in the Fiber 

Optic Strain Gauge Calibration section).  One such formula is used in the MBScope 

software to produce theoretical force data.  The MBScope formula can also be modified 

to create a more general form and implemented with data from the analog outputs of the 

MBResearch panel.  The former is considered in this section. 

 

The Controller Settings program in the MBScope software provides a single net force for 

each axis from data received through the serial port from the MBControl unit.  Eq. 3 

displays the Current-Position Formula used by this method. 
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The force F along a given axis is modeled as a function of the top current Itop and bottom 

current Ibottom, and rotor position x.  In addition, two parameters must be determined and 

saved in the Controller Settings program.  The effective gap g is a measure of the 

effective air gap between the rotor laminates and poles.  Accurate calibration of this 

parameter is essential because if, for example, the parameter is set too low, the force 

result will be more sensitive to position changes and produce inaccurate results.  The 

calibration factor C is the overall factor relating the current and position information to 

the force.  Again, the accuracy of the formula depends on the accuracy of this 

coefficient; however, this fact is more intuitive and is not as easily overlooked.  The tare 

force F0 is useful in zeroing the force result for the static result of the current and 

position calculation.  The tare force is not an accurate reflection of the rotor weight 

because the Current-Position Formula is only valid for a limited range.   The tare force 

has no effect on the results that are related to relative changes in force, and as a result, 

the tare force will not be considered further. 

 

The forces calculated using the Current-Position Formula are accessed through the 

Snapshots Tool in the MBScope software.  This can provide a means for observing 

forces with relative ease.  However, this approached had several drawbacks that 

prevented the use of the MBScope software for the calibration of the Current-Position 

Formula.  The first problem is that there are only two parameters, g and C, that can be 

adjusted to calibrate each axis.  Each axis has two poles that are neither identical nor 

operating about the same point (average current), and the force would be better modeled 

if each pole had an effective gap setting and a calibration factor.  It can also be difficult 

and time consuming to synchronize the Labview VIs and the MBScope software.  

Finally, the data transfer rate for the MBScope serial connection only allows a single 

channel (one axis force) to be obtained at a high sampling frequency. 

MBResearch Current-Postion Formula 

The drawbacks of the MBScope formula prompted the uses of a modified Current-

Position Formula with the analog outputs from the MBResearch panel.  The 
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MBResearch panel connects to the MBControl unit and provides access to some of the 

signals that are used by the controller.  Position, top current, and bottom current signals 

are available for each axis.   Eq. 4 is the modified version of the Current-Position 

Formula from Eq. 3. 
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Effective Air Gap 

The effective gap parameters are calibrated first because the calibration factors depend 

on the gap parameters.  A waveform was created in Labview with a frequency of 1Hz 

and an amplitude that corresponded to a rotor motion of 15 um.  The waveform was 

injected into the analog inputs of the MBResearch panel.  The inertial force generated by 

this motion was less than 0.1 N, and was therefore neglected.  The data were analyzed 

using a Matlab FFT calculation.  Eq. 5 is the calculation performed prior to the FFT.  

The position x is either added or subtracted depending on whether the calculation is for a 

top or bottom pole. 
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The effective gap was adjusted for several iterations until a minimum FFT result was 

obtained at the excitation frequency.  This calculation was repeated for larger amplitudes 

of up to 50 µm.  The reasoning behind this method is that the actual oscillating force 

applied to the rotor was negligible, and the appropriate gap parameter would therefore be 

the one that minimized the FFT amplitude of the formula.  Figure 16 displays the 

current, position, and force time traces as well as an FFT plot of the force for a non-

minimizing effective gap value.  These results demonstrate the possibility of producing 



20 

 

Fig. 16  Effective Gap Calibration with Non-Minimizing Value 

 

 

Fig. 17  Effective Gap Calibration with Minimizing Value 



21 

large erroneous force values by miscalibrating this parameter.  Figure 17 displays the 

same information for a minimizing effective gap value.  The time trace of the force does 

not contain noticeable variations at the excitation frequency, and this is also reflected the 

FFT plot.   

 

Table 3 contains the effective gap parameters determined by the above method.  The 

values for the top poles differ significantly from the bottom poles.  This is an indication 

that sensitivity of the force to the position varies with the average current because the top 

poles have much higher average currents than the bottom poles.  This difference is the 

first indication of a problem with the current and position dependent force model that 

will have a negative effect on the feasibility of using this method to calibrate.  The 

uncertainty in the effective gap values is ± 5 µm based on the results from multiple tests.  

The accuracy of this calibration will have only a small effect on the accuracy of the 

Current-Position FOSG Calibration because the shaft motions from the center are very 

small.  

Table 3  Effective Gap Parameters 

Axis g 
V24 Bottom 272 um 

V24 Top 664 um 
W24 Bottom 252 um 

W24 Top 705 um 
 

Calibration Coefficient Ratio 

The top and bottom calibration coefficients for the Modified Current-Position Formula 

cannot simultaneously be determined by applying a load to the rotor.  Eq. 6 is a variation 

of the Modified Current-Position Formula.  The ratio of the calibration coefficients can 

be determined by varying the top and bottom applied forces while maintaining the net 

force between them.  This ratio is obtained by injecting current signals simultaneously 

into the opposing poles.  The top and bottom poles are pulling against each other without 

causing the rotor position to change significantly. 
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The MBControl module does not accept an injection of this nature while operating in the 

radial magnetic bearing mode.  However, by changing the settings to the conical bearing 

mode, current can be injected simultaneous into the top and bottom poles by injecting a 

signal into the z-axis analog input on the MBResearch panel.  Figure 18 is an example of 

a conical magnetic bearing.  

 

 

Fig. 18  Conical Magnetic Bearing 

 

The data is again acquired through the MBResearch panel.  Separate, uncalibrated top 

and bottom forces are calculated as in Eq. 5.  The bottom uncalibrated force is multiplied 

by the calibration coefficient ratio, and the top and bottom uncalibrated forces are 

subtracted, as shown in Eq. 7.  FFT analysis of the net uncalibrated force is performed.  

The calibration coefficient ratio is iterated, and the correct calibration coefficient ratio 

minimizes the amplitude of the net uncalibrated force at the excitation frequency.  This 

approach enforces the assumption that the net oscillatory force between top and bottom 

poles is negligible relative to the magnitude of the top and bottom oscillatory forces.   
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The input signal to each axis was a post-filter current signal with amplitude of 1 A at a 

frequency of 1 Hz.  This means that the MBControl module computes a response current 

and then adds the current indicated by the analog input.  Figure 19 displays the net 

uncalibrated force and the FFT plot of the force amplitude for a non-minimizing ratio.  

Figure 20 displays the same information for the minimizing ratio.   

 

 

Fig. 19  Net Uncalibrate Force with Non-Minimizing Calibration Coefficient Ratio 
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Fig. 20  Net Uncalibrated Force with Minimizing Calibration Coefficient Ratio 

 

Table 4 contains the calibration coefficient ratios for the FOSG equipped axes.  At first 

glance, the results seem unusual because one might expect the value to be closer to 

unity.  However, the calibration coefficients are affected by the effective gap parameters.  

The effective gap parameters for the bottom poles are considerable less than those of the 

top poles; hence, the calibration coefficients are smaller for the bottom than for the top.  

The uncertainty in the ratios is ± 0.001 for the data that were analyzed.  However, it will 

become apparent from following results that the resulting ratio would likely change for a 

different current signal amplitude. 

 

Table 4 Calibration Coefficient Ratios 

 

Axis C Ratio 
V24 .393 
W24 .296 
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Calibration Coefficients 

The final step in calibrating the parameters of the Modified Current-Position Formula is 

to apply an external load to the shaft and calculate the calibration coefficients.  The 

external load was applied by hanging a weight in the center of the shaft.  The uncertainty 

in the load applied to each axis is considered to be low relative to other uncertainties of 

the calibration process.  More importantly, the application of the load is very repeatable.  

Accordingly, an improvement in the accuracy of the load applied to each axis would 

improve uncertainty in the calibration but not the repeatability.  In other words, if the 

load applied to each axis were known with absolute certainty, it would not improve the 

repeatability of the calibration.  The results of this calibration will help to clarify this 

issue. 

 

The weight applied a force of 157 N to each axis.  The post-filter current signals used in 

the previous section were injected. The net uncalibrated force was calculated according 

to Equation 3-5, and an average was taken.  Next, the process was repeated without a 

load.  Five tests, each with and without the load, were performed.  The applied load of 

157 N was divided by the average change in the net uncalibrated force to determine the 

calibration coefficients.  The resulting calibration coefficients are displayed in Table 5.  

The standard deviation of the changes in the net uncalibrated force for the tests was 

approximately ±5% of the change.  This translates into a standard deviation of the 

changes in the Modified Current-Position Model of ±8 N.  Based on correspondence 

with Revolve Magnetic Bearings Inc., the uncertainty of the Current-Position Formula 

forces for a bearing with a load capacity of 3560 N is approximately ±10 N.  

 

Table 5  Calibration Coefficients 

Axis C Values 
V24 5.041 N mm2 / A2 

W24 5.395 N mm2 / A2 
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To revisit the discussion of the accuracy of the applied force values, it is unlikely that 

applying a force in a more precise way would improve the repeatability of this 

calibration process.  Further developments will reinforce the assertion that the applied 

load accuracy was sufficient for the scope of the present research.  With the modified 

Current-Position Formula, the FOSGs can be calibrated based on the force calculation 

from the formula. 
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III. FIBER OPTIC STRAIN GAUGE CALIBRATION 

The calibration of the FOSGs is dictated by several factors that affect the accuracy of the 

calibration.  The FOSGs are affected by temperature changes, which typically occur at or 

below 1 Hz [11].  This requires that the applied calibration force must be dynamic and 

above 1 Hz.  Additionally, the previous experiments [10] have demonstrated the 

accuracy of using a calibrated exciter, and the present research emphasizes the use of 

inertial forces of the rotor to calibrated the FOSGs.  This approach would allow for field 

calibration of MBs in a machine without disassembly and is therefore of interest for 

practical applications. 

 

Three calibration methods have been attempted and are described in this section.  The 

Current-Position FOSG Calibration is accomplished by using the Current-Position 

Formula to calibrate the FOSGs.  The Inertial FOSG Calibration uses a calculated force 

based on the acceleration of the rotor to calibrate the FOSGs.  The Rotor Drop FOSG 

Calibration uses rotor weight or an external weight and the step changes in the FOSG 

readings that occur when the rotor delevitates to calibrate the FOSGs.  The calibration 

results and a characterization of uncertainties are given for each method.  The inertial 

calibration proves to be the most accurate and will be used in succeeding sections. 

Current-Position FOSG Calibration 

With a calibrated Current-Position Formula, the FOSGs can be calibrated by injecting 

the simultaneous post-filter current signal.  This procedure was followed during the final 

steps of the Current-Position Formula calibration.  Simultaneous injection causes the 

bearing poles to pull against one another without moving the rotor.  The FOSGs detect 

the strain and the FOSG signals can be calibrated against the results of the Current-

Position Formula.   

 

Figure 21 is a plot of the data acquired for the Current-Position FOSG Calibration.  The 

FOSG signals (1), the currents in the top poles (2), the currents in the bottom poles (3), 
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and the rotor position signals (4) are labeled.  The signals are shown for both axes and 

two FOSGs.  The figure shows that the FOSG signals and currents are all in phase, and 

the bearing is operating as intended.  In addition, the rotor motion is seen to be at high 

frequencies and irrelevant for the calibration process.  

 

 

Fig. 21  Acquired Signals for Current-Position FOSG Calibration 

 

With the acquired data, the forces in each pole are calculated using the Current-Position 

Formula, and an FFT is performed to obtain the force amplitudes.  An FFT is also 

performed to obtain the amplitudes of the FOSG signals.  The FOSG calibration 

coefficient is calculated by dividing the force amplitudes by their respective FOSG 

voltage signal amplitudes.  Figure 22 displays the force FFT plot and the FOSG FFT 

plot.  The plots suggest that the signal to noise ratios are acceptable.  The FOSG plot 

shows larger noise levels at frequencies below 1 Hz, which agrees with previous 

experimental results [10] 

2

3
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Fig. 22  Force and FOSG Voltage FFT Plots for 1.0 A Current Injection 

 

Post-filter current injection signals had amplitudes from .2 A to 1.0 A with frequencies 

of 3 Hz and durations of 10 seconds.  Figure 23 contains the results of the Current-

Position FOSG Calibration for different current injections.  Despite the excellent signal 

to noise ratios, the results varied considerably between the different current injections. 
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Fig. 23  Current-Position FOSG Calibration 

 

At present, this result is best explained by the possibility that the coefficients for current 

and position dependent force models vary with the amplitude of the force.  This 

suggestion is corroborated by results of other efforts in determining forces of MBs.  

Pottie [9] implemented a current and position dependent force model that involved 

mapping calibration coefficients for different force amplitudes.  This outcome indicates 

that a specific set of parameters for the Current-Position Formula would only be valid 

for a small range of forces.  Pottie experienced little success in using the mapping 

method for accurate measurements.  Based on the results from the Current-Position 

FOSG Calibration, a strong argument cannot be made for the potential accuracy of this 

calibration method. 

 

The Current-Position FOSG Calibration has several complications.  The Current-

Position Formula must be calibrated, which means any uncertainties in this calibration 

are transmitted to the Current-Position FOSG Calibration.  The force values from the 

formula have low repeatability compared with the intended accuracy of the experiment.  

The parameters of the model and, as a result, the model itself depend on additional 
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factors such as the amplitude and frequency of the force.  In its present form, the 

Current-Position FOSG Calibration can probably not produce uncertainties of less than 

10 to 20% in the FOSGs calibration coefficients.  For a typical test with dynamic forces 

on the order of one fourth load capacity, the uncertainties would translate to 2 to 5% of 

the load capacity.  The later FOSG calibration methods will prove more successful. 

Rotor Drop FOSG Calibration 

The rotor drop calibration uses the step change in strain when the rotor delevitates to 

calibrate the FOSGs.  Figure 24 displays the FOSG voltages during a rotor delivitation.  

The x-axis is sample number, and with a sampling rate of 10 kHz per channel, the 

interval shown is 1 second.  In general, the FOSG calibration must be dynamic and at 

high enough frequencies to eliminate the effects of temperature drift.  In this calibration, 

the split-second change in force between two static states can be considered, because the 

transition time between the two states is small enough to ignore temperature drift. 

 

 

Fig. 24  FOSG Voltages during Rotor Delevitation 

The first attempt was to calibrate the top strain gauges using the weight of the rotor.  The 

bias currents in the bearings were set to zero.  This meant that only the top poles were 

suspending the rotor.  Once the top poles were calibrated, the bias currents were 
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increased and the bottom poles could be calibrated from the top poles.  Despite 

acceptable repeatability, this attempt did not produce FOSG calibrations that agreed with 

previous results.  The use of the rotor weight for calibration meant that data for the 

calibration was taken from a wide range of operating conditions.  The calibration could 

also be affected by either a deadband or a nonlinearity at beginning of the force vs. 

FOSG voltage curve.   

 

Figure 25 displays an example of a nonlinear force vs. FOSG voltage curve that would 

be detrimental to the present calibration.  However, modifying the calibration method to 

utilize a smaller linear region allows a successful calibration despite possible initial 

nonlinearities.  The slope of the testing region is represented by s, and the intercept for 

the region is given by b. 

 

 

Fig. 25  Force-FOSG Voltage Model for Rotor Drop Calibration 

 

The equation describing this model in the testing region follows.  The force F is a 

function of FOSG voltage V. 

 

 bsVF +=  (8) 

 

Eq. 8 is a summation of the forces along one of the axes.  The rotor weight W is scaled 

by position of the center of gravity lcg relative to the length of the rotor l.  The weight is 
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then multiplied by the cosine of the angle θ, where θ is the angle of the axis from 

vertical direction. 
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Placing a weight on the rotor w equidistant from each bearing modifies Eq. 9 as follows. 
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Subtracting Eq. 10 from Eq. 9 and rearranging creates the following equation, which can 

be calibrated.  
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The ratio of bottom to top slope is determined by varying the bias current of the MB 

about the normal bias current and plotting the top FOSG voltage change at delivitation 

vs. the bottom FOSG voltage change.  The top slope was determined by hanging a 

weight at the center of the rotor, varying the bias current, and again plotting the top vs. 

bottom FOSG voltage change.  The change in the intercept of the linear fit from the 

unloaded to the load plot ∆b is equal to the constant term of Eq. 11.   Eq. 12 relates the 

top slope to the applied weight w, and the intercept change ∆b. 
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Figure 26 displays the results of the calibration for the S1 and S3 FOSGs, and Figure 27 

displays the results for S2 and S4.  The uncertainties shown are 99.5% confidence 

intervals for the 30 repetitions at each point. 
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Fig. 26  S1 and S3 Calibration Results for Rotor Drop FOSG Calibration 
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Fig. 27  S2 and S4 Calibration Results for Rotor Drop FOSG Calibration 
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The Rotor Drop FOSG Calibration results are given in Table 6.  These results have 

excellent repeatability.  The calibration coefficients are on the same order as the 

previous values, but they are significantly lower.  The source errors in these coefficients 

is unclear; however, previous results with a calibrated exciter suggest that they should be 

higher [10] [11].  The low strain levels and elastic properties of the poles produce the 

expectation that the force vs. FOSG voltage change functions would be more linear, and, 

accordingly, the nonlinearity consideration would be unnecessary.  The mechanism 

causing this apparent nonlinearity has not been identified, making the results somewhat 

suspect.  In addition, the modification to the Rotor Drop FOSG Calibration required the 

use of an external load.  This approach is undesirable for field applications.  

Consequently, the Rotor Drop FOSG Calibration has not been used in later testing. 

 

Table 6  Rotor Drop FOSG Calibration Results 

Axis Cal. Value (N/V) 
S1 515.9 
S2 354.8 
S3 457.7 
S4 455.1 

 

Inertial FOSG Calibration Background 

The Inertial FOSG Calibration seeks to calibrate the FOSGs from the force required to 

accelerate the rotor.  Forces to accelerate the rotor are produced by injecting a sinusoidal 

waveform into the MBResearch panel.  The force produced by the waveform controls 

the rotor position and causes the rotor to oscillate.  The first attempt was to shake only 

rotor end where the MB was equipped with FOSGs and calibrate from a rotational 

equation of motion.  However, it soon became apparent that the motion at the other end 

of the rotor was unpredictable and would create a significant impact on the calibration.  

As a result, the data acquisition system was upgraded to provide 2 additional analog 

outputs and 8 additional simultaneously sampled analog inputs.  This upgrade included 

the 6036E NI data acquisition PCI card and another external SC2040 card.  The rotor 
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could now be translated without rotation by moving the rotor ends in phase along 

parallel radial axes.  An additional benefit of this method is that the mass of the rotor and 

its center of gravity must be known instead of the mass moment of inertia.   

Preliminary Results of the Inertial FOSG Calibration 

This first attempts at the Inertial FOSG Calibration achieved limited success.  However, 

these efforts provide insight that eventually led to the development of an accurate FOSG 

calibration method.  The rotor was translated vertically at various frequencies to generate 

different magnitudes of inertial forces.  Initially, the FOSG calibration was assumed to 

have vertical and horizontal symmetry, and the vertical direction was selected because 

the vertical support structure was stiffer and resulted in smaller MB housing motion.  Eq. 

13 defines the radial rotor position as a function of time.  Equation 13 is the physical 

model initially used for calibration. 

 

 )sin()( 0 tXtx ω=  (13) 

 

 )sin()( 2
0 tX

l
ml

tF cg ωω−=  (14) 

 

F is the magnitude of the net force applied at the FOSG equipped MB.  The rotor mass m 

is multiplied by the distance lcg measured from the bearing without FOSGs to the center 

of gravity and divided by the length l between the bearings.  The position amplitude of 

the shake is X0, and ω is the frequency of excitation.  Eq. 14 is obtained by applying 

Newton’s Law with the acceleration obtained as the second derivative of position. 

 

Accelerometers were used to compensate for the motion of the bearings.  Initially, the 

accelerometers had a large frequency range and low sensitivity.  This characteristic, 

along with the necessity of a detectable force amplitude, required the excitation 

frequency to be a minimum of 30 Hz.  An algorithm was developed that adjusted the 
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injection phases and amplitudes to obtain the desired rotor translation.  For higher 

frequencies, the ends of the rotor would not remain in phase.  Due to the translation 

repeatability decrease, the maximum frequency was limited to 65 Hz. 

 

The excitation frequencies ranged from 30 to 65 Hz in increments of 5 Hz.  The signals 

were injected for 14 seconds.  The first 3 seconds and the last second of data were 

discarded.  The remaining 10 seconds of strain and position data was analyzed using the 

Labview Extract Single Tone Information virtual instrument.  This procedure was 

repeated 10 times at each frequency for uncertainty analysis.  Figure 28 displays the 

strain amplitudes as a function of frequency for FOSGs S1 and S2.  Uncertainty bars are 

included in the figure.  Figure 29 contains the position amplitudes for the axes V13, 

W13, V24, and W24 as a function of frequency. 
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Fig. 28  FOSG Amplitudes for Inertial FOSG Calibration 
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Fig. 29  Position Amplitudes for Inertial FOSG Calibration 
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Fig. 30  Bearing Position Amplitudes for Inertial FOSG Calibration 
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The accelerations were converted to position changes using the excitation frequency.  

Figure 30 displays motion of the bearings as detected by the accelerometers.  The 

accelerometer measurements were not nearly as repeatable as the position and FOSG 

measurements.  These results were added to the measurements of the proximity probes 

to obtain the absolute rotor position amplitudes. 

 

The change in force is assumed to cause a proportional change in the strain detected by 

the FOSGs given by Eq. 15.  By computing the FFT amplitudes of the strain voltage 

signals V and the rotor absolute position 0
~X , Eq. 14 and Eq. 16  can be solved for the 

FOSG calibration coefficient..  This calibration differs from the previous FOSG 

calibrations, because the strain of one pole is assumed to be a repeatable representation 

of the net force acting on the rotor along the axis of that pole.  The calibration 

coefficients for this method can be loosely compared to those of the previous methods 

by dividing the present coefficients by 2.  The controller for the MBs applies a force to 

the rotor by increasing the current in one pole and decreasing the current in the opposite 

pole by the same amount.  The net force is roughly twice the magnitude of the force 

change at either pole.  

 

 VkF =  (15) 

 

 
V

X
l

ml
k cg

2
0

~ ω
=  (16) 

 

Figures 31 and 32 plot the results of the calibration with and without considering the 

movement of the bearings.  These results are clearly problematic because the calibration 

coefficients appear to change with frequency.  The coefficients are expected to be 

constant and the assumptions of the Inertial FOSG Calibration must be more closely 

examined. 
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Fig. 31  S1 Calibration without Position Compensation 
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Fig. 32  S2 Calibration without Position Compensation 
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suggests that the FOSG voltage depends not only on the force applied to the rotor, but 

also on the position of the rotor.  Subsequent testing showed that translating the rotor at 

low frequencies generates substantial amounts of strain despite the fact that inertial 

forces are negligible.  However, this position-dependent FOSG voltage is in phase with 

the forces and independent of frequency, allowing the position-dependent FOSG voltage 

to be subtracted prior to the calibration coefficient determination.  Figures 33 and 34 

display calibration results in which the position-dependent FOSG voltage has been 

subtracted from the test data. 
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Fig. 33  S1 Calibration with Position Compensation 
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Fig. 34  S2 Calibration with Position Compensation 

 

The calibration results are still unconvincing.  However, the linearity of the plots has 

improved suggesting that the position-dependent FOSG voltage has been successfully 

removed.  The assumptions must now be examined further.  Other source of error could 

arise from the rigid rotor assumption or uncertainties in the accelerometer 

measurements.  The results of the Inertial FOSG Calibration appear somewhat 

promising.  However, the models and assumptions should be further evaluated to 

determine sources of error. 

The Modified Inertial FOSG Calibration 

The preliminary attempts at an Inertial FOSG Calibration were unsuccessful because the 

data reduction did not produce a clear consistent calibration.  The inconsistency suggests 

that the model used for calibration was inadequate.  A careful examination of the 

assumptions used in modeling reveals the errors that can be correct to improve the model 

and the calibration method.  The most significant assumption of the model is the rigid 

rotor assumption.  A detailed analysis of this assumption follows. 
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To examine the accuracy of the rigid rotor model, an assumed mode model was 

developed for the rotor.  The rotor shapes were determined at the maximum amplitudes 

occurring during calibration.  Figure 35 shows that the rotor undergoes considerable 

deformation despite the fact that the frequencies are well below the first bending mode 

of the rotor.  The MB locations are marked, and the amplitudes at the MBs are all 20 

µm, which is the calibration shake amplitude. 

 

 

Fig. 35  Assumed Mode Rotor Shapes for 10 to 60 Hz Translation 

 

The assumed mode model was validated by placing an accelerometer at the center of the 

rotor and injecting a calibration waveform.  Figure 36 displays the position amplitude of 

the rotor at either end, obtained from the proximity probe measurements, and at the 

center, from the accelerometer. 
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Fig. 36  Rotor Amplitudes from Experiment and Model 

 

Agreement with the assumed mode model, particularly at high frequencies confirmed the 

need for an improved rotor model.  A finite element model would be preferable to an 

assumed mode model, and the model was developed in XLTRC2.  It is displayed in the 

geoplot (Figure 37).  A flexible rotor is considered with forces acting at the center of 

each of the rotor laminates (stations 9 and 23).  An effective coupling mass is included, 

but stiffness from the coupling is neglected.  The transfer functions of the MBs are not 

considered in the model for the following reason.  Signals are injected into the 

MBControl module and iterated until the desired position response of the rotor is 

obtained.  The location of the applied force is also considered to be the location of the 

proximity probes.  The model uses the absolute position measurements to calculate 

forces.  These forces are then converted into a correction factor used to calibrate the 

FOSGs.  
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Fig. 37  XLTRC2 Model of Rotor 

 

Improvements were also made to the MB housing motion measurements.  PCB seismic 

accelerometers are used to measure the low frequency (200 Hz or less) and low 

amplitude vibrations.  They can detect as little as 1 micro-g and are calibrated for as low 

as .1 Hz.  The data from the accelerometers is combined with the data from the 

proximity probes to determine the motion of the rotor relative to a fixed reference frame.  

These new accelerometers are considerably better than previous accelerometers.  Figure 

38 displays the MB position amplitudes obtained from the accelerometer measurements.  

Note that uncertainties are considerably lower and calibration frequencies as low as 10 to 

15 Hz are possible. 

 

Finally, the assumption of horizontal and vertical FOSG calibration symmetry was 

dropped.  The details of the calibration coefficient determination are included in the 

following section.  The physical mechanism causing the asymmetry is unclear, 

particularly since the precise geometry of the MB prevents effects typically associated 

with misalignment.  However, conventional strain gauges routinely exhibit asymmetry 

and the matter is not considered further. 
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Fig. 38  Magnetic Bearing Motion during FOSG Calibration 

 

These modifications to the Inertial FOSG Calibration considerably improved results.  

The flexible rotor model is by far the most important improvement.  The following 

section shows that this improvement results in calibration coefficients that are 

independent of frequency.  The accelerometer improvements have a smaller effect on the 

calibration, but the dramatic reduction in uncertainty increases the confidence in the 

position measurements of the rotor and the resulting calibration. 

Inertial FOSG Calibration Method (IFCM) 

The IFCM: Testing Phase section outlines the procedures for obtaining accurate 

calibration results using the Inertial FOSG Calibration Method.  An explanation of the 

Labview testing program is also included.  The IFCM: Data Reduction translates the 

data from the test into an accurate calibration for the FOSGs.  Assumed mode and finite 

element rotor models are explained and the calibration matrix is determined.  The IFCM: 

Uncertainty and Discrepancies section contains uncertainty results and a discussion of 

the discrepancy between the vertical and horizontal calibrations. 
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IFCM: Testing Phase 

A Labview program has been designed to generate waveforms, create analog output 

signals, acquire data from analog inputs, and perform Fourier analysis on the data.  The 

recent addition of another internal DAQ board and an external signal conditioning board 

greatly expanded the capabilities of the DAQ system.  It also created some difficulties 

associated with timing the outputs and inputs.  These difficulties will not be discussed in 

detail, but the general approach is to designate one board as a slave and use the same 

trigger signal for the analog inputs and outputs on both boards.   

 

The Labview program loads two sets of parameters from a text file.  The desired signal 

amplitudes and phases are loaded and used as target settings.  It is important to produce 

extremely consistent position amplitudes and phases because of the assumptions used in 

deriving a calibration, which follows.  Initial values for the injection signals are also 

loaded.  The program uses the initial values to generate the waveforms and produce the 

analog output.  The data from the proximity probes, accelerometers, and the FOSG SCU 

are obtained through the analog input channels.  A built-in Labview VI called Extract 

Single Tone Information is used to determine the peak amplitudes and respective phases 

of all the signals within a specified frequency range.  The position data are multiplied by 

the proximity probe calibration coefficients.  Figure 39 demonstrates the process by 

which the initial values are adjusted to produce the desired amplitudes and phases.  The 

measured positions Xmeasured are subtracted from the desired positions Xtarget (complex 

vector subtraction) to obtain a position correction vector Xcorrection.  The injection 

correction vector Vcorrection is produced by rotating and scaling the position correction 

vector.  The injection correction vector is added to the previous injection vector Vprevious 

to obtain the new injection Vnew. 
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Fig. 39  Injection Waveform Iteration Process 

 

This method drives the response to rapidly achieve the desired characteristics.  The 

injection starts at the minimum injection voltage, or lowest rotor position.  By starting at 

a point where the dynamic response has zero velocity, the transient is relatively small, 

and steady state is achieved quickly. 

 

The Labview program continues to iterate the above process until the resulting 

waveform characteristics fall within specified bounds.  The Fourier analysis results from 

the acceptable test are saved, and the iteration continues until 10 acceptable tests are 

produced.  If the specifications for the amplitude error and phase error are reasonable, 

the majority of the subsequent tests are acceptable.  The program then proceeds to the 

next frequency and repeats the process.  The amplitudes can be controlled to less than 

.05 µm or .002 mils, and the phases can be controlled to less than .5°.  This may sound 

unreasonably small, but the standard deviations from the repeated tests are around .02 

µm and .2° for the amplitudes and phases respectively.  This method for injecting 

waveforms provides significantly better control than previous methods.  It is also faster 

because no user input is required during the calibration process. 
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The injected frequencies are 3 Hz and 10 through 65 Hz in increments of 5 Hz.  10 

acceptable tests are taken at each frequency.  The amplitudes are 20 µm and the 

orientation is typically vertical for the first set of frequencies and horizontal for the 

second, although this can be reversed.  The measured frequencies, amplitudes and phases 

are saved to a text file for each accepted test.  The results are then imported to an Excel 

spreadsheet for the data reduction.   

IFCM: Data Reduction 

The data are loaded into a spreadsheet, and the average and standard deviation are 

determined for each frequency.  Next, several modifications are made to the data.  The 

phase of the strain signals is shifted to account for the SCU delay of approximately 1 ms.  

The proximity probe measurements are transformed into vertical and horizontal axes.  

The accelerometer measurements are converted into displacement measurements and 

combined with the proximity probe measurements (complex vector addition) to obtain 

the absolute rotor displacement. 

 

The next step is to modify the FOSGs measurements to account for the position related 

strain.  The FOSG voltages respond to changes in the strain of the magnetic bearing 

cores.  This means that strain is detected not only when the net force applied by the 

bearing (acting on the rotor) changes, but also when force components and distributions 

change.  Each axis of the MBs has two poles that apply forces in opposite directions. If 

both forces increase or decrease simultaneously, the strains will change, but the net force 

acting on the rotor remains constant.  Each pole contains 2 primary poles on the axis and 

2 auxiliary poles (Figure 40).  A change in position could cause a change in the 

distribution of the forces applied by the primary and auxiliary poles, which again would 

cause a change in the strain without necessarily causing a change in the net force.  

Finally, a change in the position of the rotor could change the force distribution within a 

particular pole. Again, this could cause a change in the strain without causing a change 

in the net force acting on the rotor.  The response associate with the first possibility, 

strain increasing simultaneously in opposing poles, has not been observed.  Position 
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related strain responses that could be associated with the other two possibilities have 

been observed, and their effect on test results is substantial.  For the IFCM, the position-

strain response is larger than the inertial, or applied net force, response for frequencies 

below 30 Hz. 

  

Fig. 40  MB Poles and Axes 

 

Fortunately, the position-dependent strain response is linear, in phase with the inertial 

force, and significantly smaller than the strain due to inertial force at the higher 

frequencies.  The plots below display the position strain for various injection amplitudes.  

The frequency of injection is 3 Hz, and the inertial strain at this frequency is roughly 1 

% of the position strain.  Figures 41 and 42 display the FOSG voltages for S1 and S2 for 

motions along the V24 and W24 axes.   

 

The position strain is dealt with in one of two ways.  One method will be presented later 

in this section.  The first method is to produce the calibration waveform at 3 Hz and 

subtract the FOSG voltage amplitudes from the amplitudes at higher frequencies.  This 

method is valid if the position-dependent strain is frequency independent and its phase is 

not altered by the frequency.  These assumptions are supported by a linear regression 

which will be explained later in this section. 
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Fig. 41  V24 Axis Position-Dependent Strain 
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Fig. 42  W24 Axis Position-Dependent Strain 
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Once the position strain has been removed, a correction is applied to account for the 

flexibility of the rotor.  The inertial force of the rotor is initially calculated assuming the 

rotor is rigid, and that the motion at both bearings is of the same amplitude and in phase.  

The assumed mode rotor model was initially used to accommodated rotor flexibility and 

different absolute position amplitudes at the bearings.  The XLTRC2 model replaced the 

assumed mode model because it would include absolute position phase differences.  The 

models are used to determine ratios of the flexible rotor model force to the rigid rotor 

model force.  The ratios are then used to correct the strain measurements before the 

calibration coefficients are determined. 

 

Table 7 displays correction factors for the different models in the vertical and horizontal 

directions.  The assumed mode model agrees well with the more advanced XLTRC2 

model for frequencies below 60 Hz. 

 

Table 7  Comparison of Assumed Mode and FE Models 

Horizontal Vertical Horizontal Vertical Horizontal Vertical
10 1.006 1.021 1.0078 1.0235 0.2% 0.2%
15 1.008 1.017 1.0100 1.0184 0.2% 0.2%
20 1.015 1.022 1.0159 1.0229 0.1% 0.1%
25 1.022 1.031 1.0223 1.0311 0.1% 0.0%
30 1.043 1.044 1.0449 1.0440 0.2% 0.0%
35 1.063 1.063 1.0619 1.0614 -0.1% -0.1%
40 1.080 1.085 1.0772 1.0825 -0.2% -0.3%
45 1.101 1.113 1.0971 1.1085 -0.4% -0.4%
50 1.125 1.148 1.1200 1.1404 -0.4% -0.6%
55 1.160 1.191 1.1603 1.1801 0.0% -0.9%
60 1.296 1.245 1.2931 1.2288 -0.2% -1.3%
65 1.389 1.316 1.3656 1.2924 -1.7% -1.8%

Flexible Rotor Correction Ratios

Freq. (Hz) XLTRC Assumed Modes Deviations (%)

 
 

The table shows that the assumed mode model underestimates forces at higher 

frequencies.  This outcome is expected because the assumed mode model does not 

account for rotations of the mass.  Neglecting the rotation of the disks probably accounts 



53 

for this discrepancy.  The forces are slightly overestimated by the assumed mode model 

at low frequency. 

 

With the corrected strain measurements, the calibration can now be determined.  

Considering the amplitude of Eq. 17 and converting from radians to Hz produces the 

following relation. 
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l
ml

F cg π=  (17) 

 

The FOSG voltage amplitude is proportional to the applied force.  By plotting the FOSG 

voltage amplitude V divided by the position amplitude for different frequencies against 

frequency squared, the slope s can be determined.  Figure 43 displays a sample plot. 
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Fig. 43  Sample Inertial FOSG Calibration Plot 
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Solving Eq. 17 for FOSG voltage divided by position amplitude and frequency squared 

applying Eq. 15 yields the following equations.  
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2
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The slope and the system parameters can now determine the calibration coefficient k. 

 

 m
l

l
s

k cg241 π=  (20) 

 

The removal of the position-dependent strain can also be accomplished in a second way.  

The linear regression of the FOSG voltage vs. frequency squared graph also produces a 

y-axis intercept value.  By subtracting the proper voltage (corresponding to the position 

strain) from the data prior to the flexible rotor correction, the intercept can be controlled.  

Using the Goal Seek feature in Excel, the intercept can be driven to zero.  This method is 

valid if the position strain is frequency independent and its phase is not altered by the 

frequency.  These are the same assumptions that are made for the first method of 

removing the position strain.  The excellent R2 values in the regressions supports these 

assumptions. 

 

The calibration matrix C, relating strain voltage to force (Eq. 21), can be computed in 

the following way. 

 

 VCF =  (21) 
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The force amplitudes from a horizontal and a vertical shake are represented in the matrix 

F.  The FOSG voltage amplitudes from each shake are represented in the columns of the 

matrix V.  Subscripts S1 and S2 indicate the FOSG, and the subscripts x and y 

correspond to horizontal and vertical shakes respectively.  The signs are a result of the 

orientations of the FOSG and shake axes.   

 

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=⎥
⎦

⎤
⎢
⎣

⎡−

ySxS

ySxS

y

x

VV
VV

F
F

22

111

0
0

C  (22) 

 

Post-multiplying the equation by F-1 yields the elements of the C-1 matrix.  These terms 

are simply the reciprocals of the calibration coefficients k.  The subscripts of the 

calibration coefficients are the FOSG number and the shake direction respectively. 
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The matrix C-1 can now be inverted to produce the calibration matrix.   
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The same procedure is followed for FOSGs 3 and 4 with the only modifications being 

sign changes.  This calibration matrix can now be used to compute forces during a test.  

Below are sample calibration matrices.   
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The calibrations for the top and bottom FOSGs are considered separately.  During 

testing, the forces determined by the top and bottom FOSGs are typically averaged to 

reduce the uncertainty of the measurements.  The calibrated FOSGs can now be used to 

measure forces.  First, uncertainties are addressed in the next section. 

IFCM:  Uncertainty and Discrepancies 

The calibrations are not as repeatable as the uncertainties from the FOSG and position 

measurements suggest.  FOSG uncertainties are typically .25% of the maximum 

calibration FOSG voltage, and position uncertainties are typically .2% or less.  However, 

the calibration changes as time passes; if a calibration is repeated 30 minutes later, it will 

be nearer the initial calibration than after several hours.  The cause of this result is 

unknown.  To determine the uncertainty in the measurements, repeated tests were 

performed and standard deviations were considered.  The rotor was excited vertically at 

both ends with frequencies from 10 to 90 Hz in 10 Hz increments.  Ten tests were 

performed at each frequency.  The standard deviations from the sets of 10 tests were 

converted from V to N using an approximate force calculated from a flexible rotor 

model.  The tests were repeated 30 minutes to 1 hour later to determine how the 

calibration would change.  This establishes two uncertainties that are considered: 

uncertainty for a calibration, and uncertainty between calibrations after time/temperature 

change. 

 

These tests were also performed with and without the use of temperature compensation 

in the FOSG SCU.  Temperature compensation uses non-bonded FOSGs to correct the 

temperature drift in the FOSG voltages.  Tests with and without compensation determine 

the effectiveness of the temperature compensation and the feasibility of temperature drift 

causing the calibration uncertainty.  Table 8 contains results from the tests without 

temperature compensation.  The uncertainties from a given test for S1 and S2 are 

typically 2 to 3 N and 1 to 2 N respectively.  The Test Deviation is the difference in the 

results of the two tests.  This means that if a calibration were performed immediately 

prior to Test 1, after 30 minutes to 1 hour passes, the error in the calibration could be 
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characterized by the deviation between the two tests.  In practice, reducing the time 

required for testing after calibrating would improve the uncertainty.  The deviation in the 

test could be determined by calibrating before and after the test.  The last two columns 

are the deviation as a percent of bearing load capacity and a percent of the test (inertial) 

load.  Table 9 displays the results for the tests with temperature compensation. 

 

Table 8  Test Deviations without Temperature Compensation 

Frequecy 
(Hz) 

Test 1 
Uncert. 

(N) 
Test 2 

Uncert. (N)

Test 
Dev. 
(N) 

Dev. % 
of LC 

Dev. % 
of Test 
Load 

10 2.359 0.925 1.878 0.05% 60% 
20 0.892 0.862 3.575 0.09% 28% 
40 2.020 1.793 4.236 0.11% 8% 
50 1.625 2.171 4.232 0.11% 5% 
60 2.431 3.265 5.939 0.15% 4% 
70 2.670 3.314 11.349 0.29% 5% 
80 4.052 3.002 12.780 0.32% 4% 

S1
 

90 3.711 3.870 8.002 0.20% 1% 
              

Frequecy 
(Hz) 

Test 1 
Uncert. 

(N) 
Test 2 

Uncert. (N)

Test 
Dev. 
(N) 

Dev. % 
of LC 

Dev. % 
of Test 
Load 

10 0.763 0.782 0.326 0.01% 10% 
20 0.660 0.511 0.506 0.01% 4% 
40 1.967 0.988 1.611 0.04% 3% 
50 1.448 0.575 3.472 0.09% 4% 
60 1.836 0.760 4.870 0.12% 4% 
70 1.325 0.840 5.438 0.14% 3% 
80 1.318 1.173 9.460 0.24% 3% 

S2
 

90 1.539 1.061 5.647 0.14% 1% 
 

The results from the temperature compensated tests do not exhibit any improvements 

over the uncompensated tests.  This indicates that the temperature compensation is either 

not operating correctly or is not causing the calibration change.  Further investigation 

into the temperature compensation algorithm revealed that the compensation only affects 

measurement that are considered at or below the temperature drift frequencies.  In fact, 

the compensation does not adjust the FOSG sensitivity and therefore has no affect on 
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Table 9  Test Deviations with Temperature Compensation 

Frequecy 
(Hz) 

Test 1 
Uncert. 

(N) 
Test 2 

Uncert. (N)

Test 
Dev. 
(N) 

Dev. % 
of LC 

Dev. % 
of Test 
Load 

10 2.359 0.953 1.935 0.05% 61% 
20 0.892 0.747 3.834 0.10% 30% 
40 2.020 2.046 6.060 0.15% 11% 
50 1.625 1.852 5.704 0.14% 6% 
60 2.431 2.607 8.490 0.21% 6% 
70 2.670 2.430 12.843 0.33% 6% 
80 4.052 3.662 17.885 0.45% 5% 

S1
 

90 3.711 3.604 2.795 0.07% 0% 
        

Frequecy 
(Hz) 

Test 1 
Uncert. 

(N) 
Test 2 

Uncert. (N)

Test 
Dev. 
(N) 

Dev. % 
of LC 

Dev. % 
of Test 
Load 

10 0.763 0.942 0.083 0.00% 3% 
20 0.660 0.597 0.599 0.02% 5% 
40 1.967 0.965 4.126 0.10% 8% 
50 1.448 0.810 5.556 0.14% 6% 
60 1.836 0.721 4.496 0.11% 3% 
70 1.325 0.881 4.789 0.12% 2% 
80 1.318 1.257 9.124 0.23% 3% 

S2
 

90 1.539 0.810 3.624 0.09% 1% 
 

dynamic measurements.  However, other applications of FOSGs have determined that 

the sensor sensitivities change only slightly for temperature changes as large as 360 °F 

(200 °C).  The temperatures for the FOSGs in the MBs have a range of at most 10 to  

15 °F (18 to 27 °C).  As a result, it is unlikely that temperature drift is the cause of the 

calibration change.  The FOSGs are typically used to measure larger strain values than 

are observed in the MBs, and a test program to examine FOSG measurement 

repeatability for small strains is presently being considered. 

 

The other unresolved issue is the discrepancy between the vertical and the horizontal 

calibrations.  The calibration coefficients and the slopes for the linear regressions are 

different depending on the direction of the excitation.  By first determining whether the 

errors are systematic or random, the possible causes of the discrepancy can be reduced.  
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Table 10 shows the regression slopes from 6 different pairs of vertical and horizontal 

tests and the percent deviation between the slopes of each pair. 

 

Table 10  Regression Slopes and Deviations 

Combined Test Results:  Regression Slopes 
  FOSG 1 FOSG 2 FOSG 3 FOSG 4 

H 2.54E-06 3.35E-06 2.93E-06 2.76E-06 Set 
1 V 2.36E-06 3.34E-06 2.73E-06 2.63E-06 

H 2.57E-06 3.40E-06 2.93E-06 2.81E-06 Set 
2 V 2.43E-06 3.37E-06 2.74E-06 2.66E-06 

H 2.58E-06 3.41E-06 2.91E-06 2.81E-06 Set 
3 V 2.43E-06 3.31E-06 2.72E-06 2.67E-06 

H 2.57E-06 3.38E-06 2.89E-06 2.81E-06 Set 
4 V 2.44E-06 3.35E-06 2.75E-06 2.69E-06 

H 2.54E-06 3.38E-06 2.85E-06 2.71E-06 Set 
5 V 2.37E-06 3.29E-06 2.65E-06 2.62E-06 

H 2.58E-06 3.43E-06 2.90E-06 2.79E-06 Set 
6 V 2.44E-06 3.38E-06 2.72E-06 2.67E-06 

Vertical and Horizontal Deviations 
  FOSG 1 FOSG 2 FOSG 3 FOSG 4 

Set 1 -7% 0% -7% -5% 
Set 2 -6% -1% -7% -5% 
Set 3 -6% -3% -7% -5% 
Set 4 -6% -1% -5% -4% 
Set 5 -7% -3% -8% -4% 
Set 6 -6% -2% -7% -4% 

 

The deviations are reasonably systematic.  The negative percentages indicate that the 

horizontal slopes are in all cases larger than the vertical slopes.  One possibility is that 

this is not an error, but that the FOSGs actually respond differently to horizontal and 

vertical forces.  If this is true, one would expect an angle of maximum sensitivity other 

than 45°.  Tests were performed to explore this possibility.  

 

The rotor was excited at various angles from each of the FOSG axes.  Initially, the tests 

were performed at 15 Hz.  However, the inertial forces at this frequency were too low to 

produce conclusive results.  The tests were repeated at 40 Hz.  Figures 44 and 45 display 

FOSG voltage amplitudes as a function of the excitation angle.  The angle is measured 
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from the V24 axis and toward the vertical axis.  An angle of 0° denotes alignment with 

the V24 axis and 90° denotes alignment with the W24 axis.   
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Fig. 44  Force Angle Test Results for S1 
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Fig. 45  Force Angle Test Results for S2 

 

These shake angles are based on the proximity probe position measurements.  By using 

the accelerometer measurements, the absolute positions are determined and Figures 46 
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and 47 are produced.  Strain voltage is divided by the shake amplitude because the 

absolute position amplitudes differ for the various angles. 
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Fig. 46  Force Angle Test Results for S1 with Accelerometer Measurements 
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Fig. 47  Force Angle Test Results for S2 with Accelerometer Measurements 

 

Referring to the graphs based on absolute position, the angle of maximum sensitivity for 

S1 is above 90° which indicates more sensitivity in the horizontal direction.  For S2 the 

angle is less than 0 also suggesting more sensitivity in the horizontal direction.  These 
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results correlate to some degree with the findings from the previous repeated tests.  

Angles of maximum sensitivity can also be determined for the repeated tests.  Table 11 

displays deviation averages of Table10 and the angle of maximum sensitivity in degrees 

measured from the FOSG axis toward the horizontal. 

 

Table 11  Maximum Sensitivity Angles 

  
Avg. 
Dev. 

Angle 
(deg) 

FOSG 1 -6% 1.9
FOSG 2 -1% 0.4
FOSG 3 -7% 2.0
FOSG 4 -5% 1.4

 

The results from the angle excitation tests suggest that the angles of maximum 

sensitivity are around 5° to 10° from the FOSG axes.  While the two tests produce 

similar conclusions, the accuracy of the tests is still unknown.  In addition, the 

suggestion that all the FOSG are more sensitive in the horizontal direction than the 

vertical direction seems suspicious.  The possibility of random error has been eliminated 

as a cause of this discrepancy, but the possibility for systematic error still exists.  An 

error in the calibration model could produce a systematic error.  The horizontal 

calibration relies more heavily on the modeling because the bearing motion, in the 

horizontal calibration, results in different amplitudes and phases for the rotor ends.  If 

there is an angle of maximum sensitivity, it is not clear what this would mean.  The 

geometry of the magnetic bearing prevents FOSG misalignment for creating the same 

effects that might occur with a solid object.  This discrepancy could also indicate a 

misalignment in the proximity probe coordinate systems. 

IFCM Conclusions 

An Inertial FOSG Calibration with acceptable accuracy has been demonstrated and 

rotordynamic testing will now be considered.  The data reduction process resolves many 

issues that confronted the first Inertial FOSG Calibration attempts.  The Labview 
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programs can be used to accurately calibrate and quickly perform tests, reducing the 

effects of the calibration drift.  The calibration drift can also be addressed by calibrating 

before and after a test.  The final unresolved issue of vertical and horizontal calibration 

is clearly systematic.  The discrepancy is caused either by an actual physical phenomena 

affecting the FOSG measurements, by a model error, or by a dynamic response that is 

undetected and unaccounted for.  The overall uncertainties in the FOSG forces range 

from 1 to 2 lbf (4 to 9 N) depending on the FOSG.  This translates to less than .3% of 

load capacity and is acceptable.  The calibrated FOSG forces are now utilized in 

rotordynamic testing. 
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IV. DYNAMIC FLEXIBILITY TRANSFER FUNCTION 

IDENTIFICATION 

 

Explanation and Derivation of DFTFs 

With a successful Inertial FOSG Calibration, a variety of rotordynamic phenomena can 

be tested.  It is now feasible for test programs to utilize MBs as calibrated exciters and 

perform parameter identification of rotor properties, seal coefficients, and even impeller 

coefficients.  However, a rotordynamic test must first be performed to validate the MB 

test methodology.  By identifying dynamic flexibility transfer functions (DFTFs), results 

can such as rotor speed dependent natural frequencies can be compared with predictions 

from XLTRC2 to validate the test method. 

 

Mathematical Derivations of DFTFs 

Stiffness K describes force F as a function of position X, and flexibility G, which 

describes position as a function of force, is the inverse of stiffness. 

 

 1−=⇒
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=
=

KG
FGX
XKF

 (26) 

 

For a spring, the relationship between force and position is constant (frequency 

independent).  So the flexibility transfer function is simply the inverse of the spring 

stiffness coefficient.  For a more complex system, the position response to the force can 

vary significantly in amplitude and phase as a function of excitation frequency. A single 

degree of freedom harmonic oscillator can exhibit responses ranging from resonance 

with large amplitudes as rapid phase shifts to isolation where the response can be 

undetectable.  As in the case of MB test rig, variation in other states of the system can 

affect the transfer functions.  Rotor speed causes gyroscopic coupling of the vertical and 
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horizontal responses.  The rotor speed dependent transfer functions are referred to as 

dynamic flexibility transfer functions.  A two degree of freedom system DFTF can be 

determined as follows.  First terms of the flexibility matrix are assigned.  The first 

subscript indicates the force direction, and the second indicates the position response 

direction.  For example, Gxy is the transfer function from the force in the x-direction to 

the position in the y-direction. 
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Two tests can be performed to determine the components of the flexibility matrix.  

Typically either the force or the position is constrained to be the x-direction for one 

shake and the y-direction for the other.  To preserve generality, none of the force of 

position components will be set to zero.  Subscripts x and y refer to the shake directions 

of the tests.  In the case of the force vector components, the first subscript indicates the 

force direction, and the second indicates the shake direction of the test. 
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Force and position vectors from the two tests can combined as follows to produce a 

matrix equation. 
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By post-multiplying the position matrix with the inverse of the force matrix, the 

flexibility matrix is determined. 
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The flexibility transfer function is determined by repeating the above process for a range 

of forcing frequencies.  For a DFTF, flexibility transfer functions are determined over a 

range of rotor speeds.  The result is a characterization of the system’s position response 

to input forces as a function of forcing frequency and rotor speed. 

System Model 

A better understanding of the MB test rig will assist in the understanding of later results.  

The physical model for the system is displayed in Figure 48.  A flexible rotor with a 

significant polar moment of inertia is constrained at one end by springs and dampers in 

both the vertical and horizontal directions.  The other end of the rotor is affected of by 

the input forces Fx and Fy.  The MB without FOSGs is regarded as springs and dampers 

because the position will not be controlled as an input parameter.  In reality, the force 

applied by the MB without FOSGs is better described by transfer functions, but the 

present model suffices to illustrate its affects.  The MB with FOSGs is represented by 

the force inputs.  This is because the FOSGs provide measurements for the total net 

force of the MB.  The system is expected to exhibit characteristics of high flexibility at 

low frequencies, decreasing flexibility with increasing frequency, and local increases in 

flexibility around rotor and MB natural frequencies.   
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Fig. 48  MB Test Rig System Model for DFTF Testing 

 

Theoretical Example of Gyroscopic Coupling in DFTFs 

Simulating the effects of gyroscopic coupling on a less complex system will illustrate the 

characteristic of interest in experimental results of the MB test rig.  A disc with large 

polar inertia is overhung on a small flexible shaft (Figure 49).  This system is known as 

the Stodola-Green model and is commonly used to illustrate gyroscopic effects in 

rotordynamics. 

 

 

Fig. 49  Stodola-Green Rotor Model for Theoretical Example 
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The equations of motion are derived by first determining the angular velocity vector ω 

and the angular acceleration vector α.  The angles θ, ψ, and φ describe rotations about 

the X, Y and Z axes respectively. 
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Torque Γ due to accelerations and gyroscopic coupling can be computed using the Euler 

equation (Eq. 33).  The inertia matrix I contains moment of inertia I2 for the X and Y 

axes, and I1 for the Z axis.  ω̂ is the angular velocity tensor.   

 

 ωIωαIΓ ˆ+=  (33) 

 

The components of resulting vector are displayed below.  Subscripts X, Y and Z indicate 

the axis about which the torque acts. The change in the rotor speed φ&  due to angular 

velocities ψ&  and θ&  can be neglected for large φ&  and sinusoidal ψ&  and θ&  over small 

angles.  The equation for the rotor acceleration can therefore be omitted from the 

calculation when φ&  is considered constant. 
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The stiffness matrix due to elastic reaction forces and moments exerted by the shaft is 

based on linear elastic theory [12].  Elastic modulus E, area moment of inertia IA, and 

shaft length L are the parameters that determine the stiffness. 
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Considering linear momentum equations and combining Eq. 34 and 35 yields the Eq. 36.  

Rotor mass m, forces Fx and Fy, and moments Mx and My are introduced. 
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External moments are not include in further derivations because the external forces will 

provide an adequate example.  The equations can be non-dimensionalized using the 

following substitutions: 
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Eq. 38 is the non-dimensional equation of motions.  The inertia ratio rI and the mass 

ratio rm are given in Eq. 39. 
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External damping is added to produced finite response responses when transfer functions 

are determined.  The external damping is twice the damping ratio multiplied by the 

square root of the non-dimensionalized direct stiffness. 
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By the converting the system to state-space representation, it can be analyzed in the 

frequency domain.  The transfer functions are computed using the system matrix A and 

assigning B and C matrices.  The B and C matrices below correspond to an input force 

XX FF /  and outputs XN and YN. 
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The damping ratio ξ was selected to be low enough to clearly distinguish natural 

frequency peaks.  The inertia ratio rI is calculated for a disk, and the inertial properties of 

the shaft are is neglected.  The mass ratio rm can reduces to a function of the ratio 

between the shaft length and the disk radius.  The mass ratio is calculated for the shaft 

length equal to the disk radius.  The non-dimensional rotor speed ωN was selected to 

produce noticeable gyroscopic coupling.  Table 12 contains the values of these 

parameters 

 

Table 12  Parameters for Theoretical Example 

Parameter Value 
ξ .03 
rI 2 
rm 4 
ωN 0, .2 
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Figure 50 displays the amplitudes and phases of the XN and YN due to input XX FF /  for 

zero rotor speed.  This results exhibit no coupling between XN and YN.  The two 

resonances are zero-speed natural frequencies that correspond to two different modes.  

Figure 51 displays the same results for ωN equal to .2.  Coupling is evident, and four 

resonances are visible.  The resonances correspond to the forward and backward critical 

speeds associated with the previous zero-speed natural frequencies 
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Fig. 50  Frequency Response- Zero Rotor Speed 
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Fig. 51  Frequency Response- Constant Rotor Speed 

 

DFTF Testing and Results 

The DFTF testing experimental procedure is very similar to that of the IFCM.  

Waveforms are injected through the MBResearch Panel.  As mention in the previous 

section, only the MB with FOSGs is controlled with the injection signal.  Vertical and 

horizontal directions are excited at frequencies ranging from 80 to 180 Hz.  Frequency 
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spacing varies to emphasize results near the first bending mode of the rotor.  The 

amplitudes of the shakes are 10 µm.  As described in the IFCM section, a Labview VI 

iterates to obtain desirable injection characteristics.  The data from the FOSGs, 

proximity probes, and accelerometers are acquired and saved for acceptable injections.  

Data reduction is performed using Excel spreadsheets.  The position-dependent strain is 

removed, and the FOSGs voltages are converted into vertical and horizontal forces using 

the calibration determined by the IFCM.  DFTFs are computed as described in the 

Mathematical Derivation of DFTFs section.  DFTFs are computed for rotor speed of 0 to 

5000 rpm by 1000 rpm intervals.  Uncertainties are determined based on standard 

deviations of 10 repeated tests at 0 rpm. 

 

Figures 52 through 59 display the amplitudes and phases of the DFTF components.  Gxx 

and Gyy are the direct terms for the horizontal and vertical directions respectively.  Gxy 

and Gyx are the cross coupled terms relating horizontal force to vertical response and 

vertical force to horizontal response respectively.  Uncertainties are displayed by the 

standard deviations plotted on the frequency axes. 
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Fig. 52  Gxx Amplitude Plot 
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Fig. 53  Gxx Phase Plot 
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Fig. 54  Gyy Amplitude Plot 
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Fig. 55  Gyy Phase Plot 
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Fig. 56  Gxy Amplitude Plot 
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Fig. 57  Gxy Phase Plot 
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Fig. 58  Gyx Amplitude Plot 
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Fig. 59  Gyx Phase Plot 
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These results display the expected cross-coupling and natural frequency shifts.  The 

cross-coupled DFTFs increase in magnitude with increasing rotor speed, particularly in 

the region near the natural frequencies.  The decrease in the peak amplitudes of the 

direct terms with increasing rotor speed is predicted in the theoretical problem.  The 

natural frequencies have separated by over 10 Hz at 5000 rpm.  Figure 60 displays the 

damped natural frequency map from the XLTRC2 analysis.  The predicted natural 

frequency separation at 5000 rpm is slightly more than 10 Hz.  The XLTRC2 predictions 

correlate with the results of DFTF tests. 
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Fig. 60  Rotordynamic Damped Natural Frequency Map 

Uncertainties tend to be low where flexibility is low and high where flexibility is high.  

This is because the forces are very low in regions of high flexibility.  The small forces 

have an adverse effect on the signal to noise ratios.  In general, the amplitude 

uncertainties are very good, and the DFTF curve uniformity reflects this.  The phase 

uncertainty is somewhat more noticeable.  The curves of the cross-coupled phases are 

not as smooth as might be expected based on the uncertainties.  One possible cause of 

this could the position-dependent strain correction.  In subtracting the strain, an error in 

the phase of the position-dependent strain could have a significant effect on the resulting 

corrected strain value.  Consider two vectors of slightly different magnitude directed in 

roughly the same direction.  Small uncertainties in the direction of either vector could 
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have a noticeable effect on the direction of the difference between the vectors.  It is 

likely that the cross-coupled phases have larger uncertainties than detected by the 

standard deviation analysis.  However uncertainties given for the amplitudes of the direct 

and cross-coupled terms and for the phases of the direct terms are indicative of the actual 

uncertainty. 
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V. SUMMARY, CONCLUSIONS, AND EXTENSIONS 

The results of the DFTF testing are encouraging and offer support for the application of 

FOSG force measurements in MBs to other areas of rotordynamic testing.  A summary 

of the background information, calibration method, and DFTF testing follows.  Unusual 

phenomena encountered during calibration and testing are emphasized, and final 

conclusions are stated. 

 

Summary of Calibration and DFTF Testing 

While, historical attempts to measure forces in magnetic bearings (MBs) have been 

unsuccessful.  FOSGs have provided a new method for measuring MB forces.  They 

more accurate and less susceptible to noise than conventional strain gauges.  FOSGs 

installed in a MB and have produced accurate force measurements resulting in 

successful rotordynamic testing.  The test rig includes two MBs (only one with FOSGs) 

that support a rotor.  The rotor consists of two disks on a flexible shaft.  The disks 

increase the polar inertia and, accordingly, the gyroscopic properties of the system. 

 

The FOSGs are installed in the non-drive end MB.  They are calibrated with the inertial 

force required to translate the rotor in a radial direction.  The rotor is translated with 

sinusoidal excitation signals in the vertical and horizontal directions.  Excitation 

frequencies ranging from 10 Hz to 65 Hz are utilized because they are well below the 

first bending mode of the rotor.  Tests are repeated for uncertainty analysis.  FFTs of the 

FOSG responses and the MB proximity probes data are taken to produce amplitude and 

phase results. The net bearing forces are determined by calculating rotor inertial forces 

from the proximity probe data using a finite element code.  The FOSG responses and the 

bearing forces produce the calibration for the FOSGs.  A calibration typically exhibits an 

uncertainty of less than 3 N or 0.1 % of the bearing load capacity.  The accuracy of the 

calibration decreases with time, and the deviation between two calibrations taken 30 

minutes apart is typically 10 N or .3 % of load capacity.   
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The calibrated FOSGs produce accurate dynamic force measurements in the MBs.  The 

MB forces and the rotor position data allow for the identification of dynamic flexibility 

transfer functions (DFTFs).  The rotor is excited in the vertical and horizontal directions 

by the non-drive end (FOSG equipped) MB.  Single frequency excitation signals ranging 

from 80 to 180 Hz are used.  The rotor speed is varied from 0 rpm to 5000 rpm and 

repeated tests are performed for uncertainty analysis.  FFTs of the MB force results and 

the proximity probe data are taken, and two degree-of-freedom DFTFs are calculated 

from the MB forces to the rotor position at the non-drive end MB.  The DFTFs exhibit 

gyroscopic characteristics including a dramatic increasing in cross coupling and 

noticeable natural frequency shifts corresponding forward and backward critical speeds.  

Predictions from a finite element rotor model correlate with the observed natural 

frequency shifts.  At 5000 rpm, the first bending mode natural frequencies differ by 

approximately 10 Hz.  These results demonstrate that FOSGs in MBs can accurately test 

rotodynamic properties of a system. 

Discussion of Unusual Phenomena 

The position-dependent strain has been compensated for, but not explained.  The 

repeatability of the position measurements and the accuracy of the FOSGs suggest that 

uncertainties could be reduced.  These issues and possible causes are discussed in this 

section. 

Position-Dependent Strain 

Throughout the calibration and testing, the position-dependent strain has been addressed, 

and its effects have been removed, but its cause has not been determined.  Several 

possible causes have surfaced.  The load ratio between the primary and auxiliary poles 

could change with position.  The load ratio change might occur when the rotor travels 

significantly off center.  The distance between a primary pole and the rotor would not 

change at the same rate as the distance between its auxiliary pole and the rotor.  A 

change in pitch could also be the cause a position-dependent strain.  The laminates at 
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one end of the bearing would be nearer the rotor than the laminates at the other end of 

the bearing.  In general any configuration change that affects the magnetic field 

distribution could create a change in the strain. 

 

Figure 61 is a representation of the magnetic field intensity in a magnetic bearing.  At 

first glance, it might appear that a slight change in rotor position would not produce a 

noticeable effect.  However, because the weight of the rotor is large relative to the 

dynamic forces in calibration and testing, a slight change in the magnetic field could 

produce changes in strain on the order of those produced by the dynamic forces. 

 

 

Fig. 61  Magnetic Field Intensity Inside a Magnetic Bearing [1] 

Uncertainty and Repeatability Issues 

The uncertainties in the FOSG calibration and the DFTF testing are acceptable.  

However, considering the excellent repeatability of position measurements and the 

accuracy of the FOSGs, the uncertainties can still be improved.  There are several 

possible causes for uncertainty.  The controller states may differ slightly for different 

tests.  This could mean that intended net force is not always divided in the same way 

between opposing poles.  Additionally, the FOSGs have not been thoroughly tested at 

the strain levels observed during testing and calibration.  The bearing laminates also 
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exhibit signs of age such as delamination and slight corrosion.  These factors may also 

have an impact on uncertainty. 

Conclusions 

Recent advances in strain gauge technology have provided an effective means of 

obtaining MB forces.  After exploring several methods for calibrating the FOSGs, a 

calibration method has been developed that produces force measurements with 

uncertainties of less than .3% of the bearing load capacity.  The calibration was 

successfully used to determine DFTFs.  The experimental DFTF correlated with results 

from an XLTRC2 mode and a theoretical example. 

 

Force measurements from MBs have now been used to successfully detect known 

rotordynamic phenomena.  FOSG force measurements can now be applied in situations 

were the results and their physical causes are not well know or understood.  MBs can be 

used as calibrated exciters to study new areas of rotordynamics.  One such use is in 

determining impeller coefficients for compressors.  MBs already installed in these 

compressors could be equipped with FOSGs, and the impeller force could be measured.  

The applications of FOSGs in magnetic bearings are considerable, and the possibility for 

exploring new phenomena in rotordynamics is promising. 
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