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ABSTRACT

The objective of this research is to study practical generalization of domination

in graphs and explore the theoretical and computational aspects of models arising

in the design of wireless networks. For the construction of a virtual backbone of a

wireless ad-hoc network, two different models are proposed concerning reliability and

robustness. This dissertation also considers wireless sensor placement problems with

various additional constraints that reflect different real-life scenarios.

In wireless ad-hoc network, a connected dominating set (CDS) can be used to

serve as a virtual backbone, facilitating communication among the members in the

network. Most literature focuses on creating the smallest virtual backbone without

considering the distance that a message has to travel from a source until it reaches

its desired destination. However, recent research shows that the chance of loss of

a message in transmission increases as the distance that the message has to travel

increases. We propose CDS with bounded diameter, called dominating s-club (DsC)

for s ≥ 1, to model a reliable virtual backbone.

An ideal virtual backbone should retain its structure after the failure of a cer-

tain number of vertices. The issue of robustness under vertex failure is considered

by studying k-connected m-dominating set. We describe several structural prop-

erties that hold for m ≥ k, but fail when m < k. Three different formulations

based on vertex-cut inequalities are shown depending on the value of k and m. The

computational results show that the proposed lazy-constraint approach compares fa-

vorably with existing methods for the minimum connected dominating set problem

(for k = m = 1). The experimental results for k = m = 2, 3, 4 are presented as well.

In the wireless sensor placement problem, the objective is often to place a mini-
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mum number of sensors while monitoring all sites of interest, and this can be modeled

by dominating set. In some practical situations, however, there could be a location

where a sensor cannot be placed because of environmental restrictions. Motivated by

these practical scenarios, we introduce varieties of dominating set and the correspond-

ing optimization problems. For these new problems, we consider the computational

complexity, mathematical programming formulation, and analytical bounds on the

size of structures of interest. We solve these problems using a general commercial

solver and compare its performance with that of simulated annealing.
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1. INTRODUCTION

The objective of this research is to study practical generalization of domination

in graphs and explore the theoretical and computational aspects of proposed models

with applications in design of reliable and robust wireless network topology.

In a wired network, there is a network backbone that interconnects various com-

ponents of a network, providing a channel for the exchange of information. However,

in a wireless network, there is no such fixed structure but each node (or vertex) has

its own wireless communication ability. A wireless ad-hoc network can be modeled

using a graph consisting of nodes and edges. A node represents a wireless commu-

nication device and an edge linking two nodes indicates that they can communicate

directly. Figure 1.1 is an illustration of a such graph with 17 nodes.

Figure 1.1: A graph modeling a wireless network.

One of the major disadvantages of a wireless network compared to a wired network

is that each vertex has only limited transmission range and limited power. Two nodes

in a network must be within the transmission range of each other for them to directly

communicate, and greater transmission range requires greater power consumption.
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When direct communication is infeasible for two nodes, a message must be relayed

through intermediate nodes between them. The collection of intermediate nodes

that are in charge of relaying messages is called a virtual backbone of the wireless

network. The construction of a virtual backbone has drawn significant attention in

the computer science and operations research communities and there exist numerous

articles introducing methods of virtual backbone creation. The set of dark vertices

in Figure 1.2 is a virtual backbone of the network. Note that the induced subgraph

of these vertices is connected and every white node is adjacent to at least one dark

node. In a graph with nodes and edges, a dominating set is a set of nodes such

that each node in the graph is either in the dominating set or has a neighboring

node in the dominating set. If a dominating set induces a connected graph, then it

is a connected dominating set. The set of dark nodes in Figure 1.2 is a connected

dominating set in the graph. For formal definitions of varieties of dominating set,

refer to Section 2.2.

Figure 1.2: A virtual backbone of a wireless network with diameter 6.

In terms of virtual backbone construction for wireless network, there are a few de-

sirable properties that need to be considered, such as the size of the virtual backbone
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(small number of nodes in a virtual backbone is preferred), latency (short transmis-

sion time is desired), and robustness (virtual backbone should remain functioning

after node failures). In early stages of study, researchers mainly focused on the con-

struction of virtual backbones with small sizes because of the following reasons. First,

a small virtual backbone reduces the interference between nodes. Second, the smaller

the virtual backbone, the easier it is to maintain. Third, a small virtual backbone

tends to provide more efficient routing and requires less control messages. We can

find the smallest virtual backbone by solving the minimum connected dominating

set problem. However, connected dominating set ensured only the bare-minimum

functional structure. Mohammed et al. [80] shows that the chance of loss of a mes-

sage in transmission increases as the distance that message has to travel increases.

This implies that a virtual backbone of small diameter is more desirable if all other

conditions are the same. Moreover, low latency can be ensured by constructing a

virtual backbone with a small diameter, where the diameter of a graph is defined to

be the length of the longest shortest distance (hop distance) between every pair of

nodes in the graph. In Figure 1.2, for instance, the diameter of the virtual backbone

is 6. We can construct a virtual backbone of the same size as in Figure 1.3, but with

a smaller diameter equal to 4.

Figure 1.3: A virtual backbone of diameter 4.
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As mentioned above, reducing the diameter of a virtual backbone increases the

reliability of data transmission between nodes in the network. From that perspective,

it would be the best if every member of the virtual backbone is adjacent to every other

member of the virtual backbone. Cozzens and Kelleher [27] considered a connected

dominating set of diameter 1, i.e., dominating set which induces a complete graph,

and called it a dominating clique. Dominating cliques have numerous applications,

but the original concept stems from the context of social network analysis [67]. For

a graph which models a social network, a node represents an actor and an edge

between two nodes indicates that the two actors corresponding to the incident nodes

know each other. On the other hand, for a graph modeling a wireless network, a

dominating clique represents a core group of nodes in the network that not only

serves as a virtual backbone, but also has the ability for every member of the core

group to directly communicate with every other member of the core group. However,

clique is overly restrictive, moreover, not every graph has a dominating clique. In

Section 3, we propose a more relaxed but still reliable virtual backbone structure

called dominating s-club by combining two graph theoretic concepts: dominating set

and s-club. Note that s-club is a form of clique relaxation, and more details about

clique relaxations are presented in Section 2.3. We formally define dominating s-club

and minimum dominating s-club problem in Section 3. Brandstadt and Kratsch [17]

shows that it is NP-complete [43] to check whether a graph has a dominating clique

or not by using reduction from MONOTONE 3SAT. We generalize this result and

demonstrate that checking the existence of a dominating s-club in a graph is NP-

complete for any fixed positive integer s using reduction from 3SAT. Kelleher and

Cozzens [67] show that there exists a dominating clique in connected graphs that

are both C5-free and P5-free, where C5 and P5 are a cycle and a path of 5 vertices,

respectively. We show that this can be generalized to dominating s-club and prove
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that there exists a dominating s-club if there is no induced Cs+4 and no induced Ps+4

for any fixed positive integer s.

Another desirable characteristic of a virtual backbone is robustness under node

failure. As mentioned above, connected dominating set ensures the bare-minimum

requirement to serve as a virtual backbone. In Figure 1.2 or 1.3, it is easy to see

that if a dark node in the connected dominating set fails to work, it cannot serve

as a virtual backbone of the network anymore. A straightforward remedy for this

issue is to include redundant nodes to the virtual backbone. In terms of adding

redundancy, there are two conditions that must be considered. One is connectivity

and the other is dominance. After failure of a certain number of nodes, we want the

virtual backbone to remain connected, and the nodes outside of virtual backbone to

remain dominated. A k-connected m-dominating set (k,m ≥ 1), which generalizes

the connected dominating set, perfectly satisfies this requirement. A graph is k-

connected if it remains connected after the failure of k − 1 nodes. A node is m-

dominated if it has m neighboring nodes in the dominating set. As its name implies,

a virtual backbone which is modeled by a k-connected m-dominating set remains

connected after the failure of up to k − 1 nodes.

Figure 1.4: A 2-connected 2-dominating set.
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In Figure 1.4, the set of dark vertices forms a 2-connected 2-dominating set. The

robustness of a k-connected m-dominating set depends on the values of k and m and

it is not hard to see that the existence of a k-connected m-dominating set in a graph

depends on the values k and m. For instance, if there is an articulation vertex in a

graph, then there is no 2-connected m-dominating set for any positive integer m. For

a connected graph, a vertex is an articulation vertex if its removal renders the graph

disconnected. So far, minimum k-connected m-dominating set has been studied only

by computer scientists and several heuristic algorithms for general graphs and ap-

proximation algorithms for unit disk graphs have been introduced. However, to the

best of our knowledge, no exact approach has been published for this problem. In

Section 4, an integer programming approach for this problem is presented. Note that

the robustness is a desirable property but it is not free. In fact, as shown in Section 4,

ensuring robustness requires a strictly more-costly solution. Three different mathe-

matical programming formulations based on vertex-cut inequalities are proposed. A

vertex-cut, which is also refereed to as a separating set, is a set of vertices in a graph

whose removal renders the graph disconnected. Note that an articulation vertex is a

vertex-cut of size one. The separation problem for vertex-cut inequalities is weighted

vertex-connectivity problem and it can be solved in polynomial time. We can gen-

eralize vertex-cut and vertex-cut inequalities by introducing r-robust vertex-cut and

r-robust vertex-cut inequalities. For numerical experiment, lazy-constraint approach

is used and the test results show that the proposed method compares favorably

with existing approaches for minimum 1-connected 1-dominating set (or minimum

connected dominating set) problem. Computational results comparing minimum k-

total dominating set problem and minimum k-connected k-dominating set problem

for k = 2, 3, 4 also reveal that the connectivity requirement is not burdensome.

Resource allocation problems can be modeled using graphs with vertices and
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edges. A vertex represents a location on which a facility can be installed and there

is an edge between two vertices i, j if resource in location i can serve location j, and

vice versa. In many cases, we want to install a minimal number of resources while

satisfying the needs of all sites. For instance, consider a wireless sensor placement

problem, where each vertex of the graph represents a site that must be monitored.

Two vertices are connected by an edge if both of the corresponding sites can be mon-

itored by one sensor installed in one of these two sites. In order to monitor all sites of

interest while minimizing the number of sensors needed, we can solve the minimum

dominating set problem on the graph. The information collected from these sensors

could be used to initiate some other actions such as cuing video cameras, unmanned

aerial vehicles and calling engineers. In Section 5, several varieties of the classical

dominating set are introduced considering some practical scenarios. For instance,

there could be a location where a sensor cannot be placed because of environmental

restrictions such as frequent (or on-going) chemical reaction, extreme humidity, or

temperature. On the other hand, there could be a site which is more important than

others such that if there is no sensor on it, more than one sensor in the neighboring

locations is needed. This redundancy provides the system robustness under node

failure. The difference between the dominating set and the considered variations of

dominating set is the domination requirement assigned to each vertex. In the clas-

sical minimum dominating set problem, all vertices have domination requirement 1,

implying that if a vertex is not in the dominating set, it should be dominated by

one of its neighboring vertices in the dominating set. However, in the variations of

the dominating set proposed in Section 5, domination requirement assigned to each

vertex is not uniform. For every variation of dominating set introduced in Section 5,

we assume that the domination requirement of each vertex in the considered graph

is determined a priori depending on the importance of the sites that each vertex
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represents. Complexity of the decision version of the corresponding optimization

problems is analyzed showing that these variations are hard on their own respect.

We consider integer programming formulation of each problem and also establish

some basic properties of the corresponding polyhedra. We also develop several ana-

lytical bounds on the size of structures of interest. Results of numerical experiments

using CPLEX 12.1 R© are also reported. We compare the performance of simulated

annealing and CPLEX 12.1 R© on random unit disk graphs and also on some standard

test instances.
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2. BACKGROUND

This section provides some background that is required to understand the fol-

lowing sections. Section 2.1 introduces basic notations and definitions used in this

dissertation. Section 2.2 formally defines the classical dominating set and some of

its variations. A brief introduction of clique and clique relaxations are presented in

section 2.3.

2.1 Graph theory

In this section, we briefly introduce the notations and definitions used in this

dissertation. For a comprehensive introduction to graph theory, readers are refereed

to [10] or [101]. Throughout this dissertation, we consider a finite, simple, undirected

graph which is denoted by G = (V,E) where V = {1, 2, . . . , n} and (i, j) ∈ E when

vertices i and j are joined by an edge with |E| = m. Order and size of a graph

is the number of vertices and the number of edges in the graph, respectively. We

use V (G) and E(G) to represent the vertex set and the edge set of a graph G,

respectively. Whenever the graph under consideration is clear from the context, we

suppress G and use V and E to represent the vertex set and the edge set. A graph

G is called a null graph if V = E = ∅ and a trivial graph if E = ∅. Kn denotes

a complete graph on n vertices in which every pair of distinct vertices is connected

by a unique edge. A bipartite graph (or bigraph) is a graph such that the vertices

can be divided into two disjoint subsets U1 and U2 and every edge connects a vertex

in U1 to one in U2. A complete bipartite graph with bipartitions of size p and q is

denoted by Kp,q. Note that the graph K1,n is called a star graph. AG (or A) is used

to represent the adjacency matrix of G. AG is a symmetric 0, 1-matrix of order n×n

with ai,j = 1 if and only if (i, j) ∈ E. For a vertex i ∈ V , the (open) neighbor of i is
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N(i) = {j ∈ V : (i, j) ∈ E}, and the closed neighborhood of i is N [i] = N(i) ∪ {i}.

Clearly, the set of non-neighbors of a vertex i ∈ V is given by V \N [i]. The degree

of i ∈ V is denoted by degG(i) and is given by degG(i) = |N(i)|. For a subset S ⊂ V ,

G[S] indicates the subgraph of G induced by S, i.e. G[S] = (S,E∩S×S). Degree of

a vertex i ∈ S ⊂ V in G[S] is denoted by degG[S](i) and degG[S](i) = |N(i) ∩ S|. We

use ∆(G) and δ(G) to represent the maximum and minimum degree of a vertex in G,

respectively. The distance between two vertices i, j ∈ V in G, denoted by dG(i, j),

is the length of a shortest path between i and j in G (measured in the number of

edges). For i, j ∈ S ⊂ V , the distance between i and j in the induced subgraph

of S is denoted by dG[S](i, j). By convention, if there is no path between i and j,

then the distance between the two vertices is infinite. The diameter of a graph G

is denoted by diam(G) = maxi,j∈V dG(i, j). A sequence of k + 1 distinct vertices

u0, u1, u2, . . . , uk together with edges (u0, u1), (u1, u2), . . . , (uk−1, uk) is called a path

of k + 1 vertices and is denoted as Pk+1. If u0 = uk but u1, u2, . . . , uk are distinct,

then it is called a cycle of k vertices and is denoted as Ck.

Definition 1. (Clique) Given a graph G, a set S ⊂ V is a clique if G[S] is complete.

Definition 2. (Independent set) Given a graph G, a set S ⊂ V is an independent

set if there are no edges in G[S].

The maximum clique problem for a graph G is to find the largest clique of the

graph. The size of the largest clique is clique number and is denoted by w(G). The

maximum independent set problem is to find an independent set of maximum cardi-

nality. The size of the largest independent set of a graph G is called the independence

number and is denoted by α(G). Note that S ⊂ V is a clique in G if and only if S

is an independent set in the complement graph of G.

A subset C ⊂ V of a connected graph G is called a vertex-cut if G[V \ C] is
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disconnected. For a graph G which is not complete, the vertex connectivity (or

simply connectivity) of G is the size of minimal vertex-cut and is denoted by κ(G).

For a positive integer k, a graph G is k-vertex-connected (or simply k-connected) if

its vertex connectivity is at least k. This implies that a graph G is k-connected if

there is no vertex-cut of size k − 1. By convention, the connectivity of a complete

graph with n vertices is n − 1, i.e., κ(Kn) = n − 1. Alternatively, we can say

that a connected graph G is k-vertex-connected if there exist k vertex-disjoint paths

between every pair of distinct vertices. This definition also applies to a complete

graph. Menger’s theorem [79] is a basic result of connectivity in finite undirected

graph. The vertex-connectivity version of Menger’s theorem for a finite undirected

graph G = (V,E) is the following. For two vertices x, y ∈ V that are not adjacent,

the size of the minimum vertex-cut for x and y is equal to the maximum number of

pairwise vertex independent paths from x to y.

2.2 Dominating set

A set S ⊆ V is said to be dominating if each vertex v ∈ V \ S has a neighbor in

S. Minimum dominating set (MDS) problem is to find a dominating set of smallest

cardinality. The size of the smallest dominating set is called the domination number

γ(G). An interesting application of this problem is in social network analysis. One

might be interested in finding a set of key players in a social network for the purpose

of optimal diffusion of information [12, 67, 66, 68, 99]. Another popular application

of dominating set is in wireless sensor placement problem. Each vertex of the graph

G = (V,E) represents a site that must be monitored and two vertices are connected

by an edge when both of the corresponding sites can be monitored by a single sensor

installed in one of the two sites. The goal is to install the minimum number of sensors

while monitoring all sites of interest. This can be achieved by solving the minimum
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dominating set problem. MDS problem is one of the most fundamental combina-

torial optimization problems and two books from Haynes et al. [52, 51] provide a

comprehensive overview of domination in graphs. These two books cover almost all

subjects concerning domination in graphs published before 1997 such as variations

of domination, analytical bounds, computational complexity, and algorithms. It has

been shown that the MDS problem is NP-hard in general graphs [43] and it remains

NP-hard even when restricted to bipartite graphs [45]. Booth and Johnson [11] show

that the problem is also NP-hard in chordal graphs. A graph G = (V,E) is chordal

if each of its cycles of four or more nodes has a chord, that is an edge linking two

nodes that are not adjacent in the cycle.

Bouchakour and Mahjoub [14] consider properties of dominating set polytope

for the first time and introduces a decomposition technique for graphs which are

decomposable by one-node cutsets. Bouchakour et al. [13] studies the dominating

set polytope in the class of graphs that decompose by vertex-cut of size one, where the

pieces are cycles. It shows that one can obtain a complete description of the polytope

by a system of inequalities when the graph is a cycle. A variety of approaches have

been applied to solve MDS problem. Papers [38, 47] develop exact algorithms for

the MDS problem in general graphs and [44] presents exact algorithms to solve MDS

problem on some graph classes. It is not difficult to understand that if a graph

G = (V,E) is disconnected, we can tackle each connected component separately.

Various preprocessing techniques are introduced in [2] to reduce the size of the input

graph and the efficiency of those techniques are empirically shown in [60]. A linear

algorithm for the domination number of a tree is demonstrated in [25]. Farber [35]

presents polynomial time algorithms to find minimum weighted dominating sets and

independent dominating sets in strongly chordal graphs. A chordal graph G = (V,E)

is strongly chordal if every cycle of even length (≥ 6) in G has an odd chord.
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In optimization, the term “heuristic” refers to a technique for finding a good sub-

optimal solution. Even though fast technical advancement in recent years brought us

significant computational power, most of the optimization problems are still hard to

solve optimally. Usually, a heuristic finds an initial solution and iteratively moves to

a better solution using local search procedures if such solution exists. The searching

procedure terminates when the first local optimum is reached. Note that heuristics

do not guarantee finding a global optimum. In an effort to overcome the drawbacks

of heuristics, metaheuristics typically combine some heuristics with a method of

orientation towards solutions which are usually better than the ones provided by

local search. For large and hard optimization problems, well-chosen heuristics and

metaheuristics can provide high quality solutions within a reasonable solution time.

For a comprehensive survey about metaheuristic algorithms, refer to [89, 46].

Sanchis [90] introduces several heuristic algorithms on MDS problem and provides

experimental results on random graphs and also on graphs with known domination

number. In order to generate instances with known domination number, techniques

presented in [91, 92] are used. Papers [56, 63] presents an enhanced ant colony meta-

heuristic based on “tournament” for MDS problem and presents the performance of

the proposed method on some benchmark instances. Hybrid genetic algorithm [53]

and simulated annealing [54] with stochastic local search are applied to tackle MDS

problem. Note that simulated annealing has been successfully applied on numerous

optimization problems [61, 62, 70].

Varieties of domination. Given a minimum dominating set S ⊂ V of a graph G =

(V,E), [37] shows that one can always remove two edges from the graph so that

S is no longer a dominating set for the graph. In order to obtain greater degree of

assurance, we need a greater degree of domination. A vertex v ∈ V \S is k-dominated
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if it is dominated by at least k vertices in S, that is, |N(v) ∩ S| ≥ k. If all vertices

in V \ S are k-dominated by S, then S is called a k-dominating set. The size of

the smallest k-dominating set is called the k-domination number and is denoted by

γk(G). Note that the 1-domination number γ1(G) is the usual domination number

γ(G). Harary and Haynes [50] studies the case for k = 2. Extending analytical results

for domination number, [20, 88] provide several analytical bounds for k-domination

number. Corneil and Perl [26] investigate the complexity of k-Dominating Set on

various subclasses of perfect graphs such as comparability graphs, chordal graphs,

bipartite graphs, split graphs, cographs, and k-trees.

Definition 3. (Total-dominating set) Given a graph G = (V,E), a set S ⊆ V is

said to be total dominating if each vertex v ∈ V has a neighbor in S.

The size of the smallest total dominating set is called the total domination number

and is denoted by γt(G). Note the difference between dominating set and total

dominating set. In total dominating set, every vertex must be dominated by one of

its neighboring vertices.

Definition 4. (k-Total-dominating set) Given a graph G = (V,E) and a positive

integer k, a set S ⊂ V is a k-total-dominating set if every vertex in V is adjacent to

at least k vertices in S.

The k-total-domination number γtk(G) is the size of the smallest k-total-dominating

set of G. Note that in Section 4, we initially solve the minimum k-total-dominating

set problem and add connectivity cuts as needed to solve the minimum k-connected

k-dominating set problem.

Definition 5. (Connected dominating set) Given a graph G = (V,E), a dominating

set S ⊂ V which induces a connected graph is a connected dominating set (CDS).
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It is straightforward to see that only connected graphs have a CDS. The minimum

cardinality of a CDS is called the connected domination number γc(G). Clearly,

γ(G) ≤ γc(G). For a graph G, if there is a universal vertex which is adjacent to

every other vertex in G, then γ(G) = 1 and, obviously, γ(G) = γc(G). The minimum

connected dominating set (MCDS) problem and the closely related maximum leaf

spanning tree problem have been receiving significant attention in literature. Clark et

al. [24] shows that many standard graph theoretic problems remain NP-complete on

unit disk graphs, including Dominating Set and Connected Dominating Set,

where Dominating Set and Connected Dominating Set represent the decision

version of MDS and MCDS problem, respectively. In order to solve MCDS problem,

a wide variety of methods has been applied such as exact approaches [34, 78, 94,

40, 41, 39], approximation algorithms [48, 76], and polynomial-time approximation

schemes for unit disk graphs [58, 23] and unit ball graphs [107]. For a comprehensive

review of CDS construction methods, refer to [32].

Definition 6. (Connected k-total-dominating set) Given a graph G = (V,E) and

a positive integer k, a set S ⊂ V is a connected k-total-dominating set if S is a

k-total-dominating set and G[S] is connected.

Connected k-total-domination number γc,tk (G) is the size of the smallest connected

k-total-dominating set of G.

Creation of virtual backbone. Many routing protocols for wireless ad-hoc networks

based on CDS have been proposed in literature and most of them introduce heuristics

or approximation algorithms [4, 7, 22, 28, 30, 57, 86, 95, 102, 103, 69, 100, 104, 97,

106, 96]. A virtual backbone modeled by CDS could be vulnerable to data loss in

transmission if the diameter of CDS is long [80]. Recently, CDS with bounded diam-

eter is proposed as a reliable virtual backbone and some heuristics are known [69].
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CDS is also inherently vulnerable under vertex failure and recent articles have con-

sidered the construction of fault-tolerant virtual backbone structure by considering

k-connected m-dominating set [29, 97, 104, 100]. Given a graph G and two positive

integers k and m, a set S ⊂ V is a k-connected m-dominating set if the following two

conditions are satisfied. (i) The subgraph induced by S (i.e. G[S]) is k-connected,

(ii) each vertex not in S has at least m neighbors in S. Dai and Wu [29] pro-

poses a k-connected k-dominating set as a robust virtual backbone structure and

introduces several heuristics. Thai [97] studies a general fault-tolerant CDS and pro-

poses approximation algorithms for 1-connected m-dominating set and k-connected

k-dominating set in heterogeneous networks. Wu and Li [104] proposes a distributed

algorithm with low message complexity to construct a k-connected m-dominating

set and shows that the proposed algorithm has a constant factor approximation ra-

tio when the maximum vertex degree is a constant. Wang et al. [100] proposes a

constant factor approximation algorithm of 2-connected virtual backbone and [42]

develops a distributed algorithm for 2-connected m-dominating set.

2.3 Clique relaxation

As defined in Section 2.1, a clique is a subset of vertices inducing a subgraph

which is complete. Thus, clique provides a very robust structure in the sense that

all pairs of vertices are adjacent to each other and the deletion of any vertex does

not destroy this structure. The decision version of the maximum clique problem can

be stated as follows.

Clique: Given a graph G = (V,E) and a positive integer k, does there exist a

clique of size ≥ k in G?

Clique is shown to be NP-complete [43] and extensive research has been performed

introducing algorithms and analytical bounds. For a comprehensive review of the
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maximum clique problem, refer to [9]. In many practical applications, however, clique

is overly restrictive because it may not be possible to find a network with all possi-

ble connections. Thus, several clique relaxations have been introduced by relaxing

certain properties of clique while possessing some clique-like properties. There are

three major types of relaxations: distance based, degree based, and density based

relaxations. Refer to [84] for a comprehensive reference on clique relaxation models.

s-Clique and s-club. In distance based relaxations, we relax the condition of the

distance between each pair of vertices to be 1. s-Clique [77] and s-club [81] belong

to this category. An s-clique is a subset of vertices with pairwise distance at most

s in the graph and s-club is a subset of vertices inducing a subgraph of diameter at

most s. For a fixed positive integer s, the s-clique (s-club) problem is defined as

follows.

s-Clique (s-club): Given a graph G = (V,E) and a positive integer k, does

there exist an s-clique (s-club) of size ≥ k in G?

Both s-Clique and s-Club are known to be NP-complete [6, 16]. Integer program-

ming approaches for maximum s-club problem with O(ns+1) number of entities are

proposed in [6, 16]. As an alternative approach, [98] proposes a new linear binary for-

mulation with O(sn2) number of entities by using the special properties of an s-club.

Bourjolly et al. [15] describes some properties of s-club and propose three heuristics

for maximum s-club problem. Carvalho et al. [21] present valid inequalities for the

2-club polytope and some conditions for these inequalities to be facets. Using these

inequalities, they introduce a strengthened formulation of maximum 2-club problem

and a cutting plane algorithm. Almeida and Carvalho [3] shows two formulations of

maximum 3-club problem: one is compact and the other has non-polynomial number

of constraints. They obtain new upper bound on the size of maximum 3-club improv-
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ing the optimum 3-clique number bound. New families of valid inequalities of 3-club

polytope are introduced and used for computational experiments to strengthen the

LP relaxations.

s-Plex. In a degree based relaxation, we relax the condition that the degree of all

vertices in a clique S of size |S| = z to be z − 1 and s-plex [93] belong to this

category. In other word, a set S ⊂ V is an s-plex if the degree of each vertex in S

from the induced subgraph G[S] is at least |S| − s. Balasundaram et al. [5] show

that s-Plex, the decision version of the maximum s-plex problem, is NP-complete

for any constant positive integer s.

γ-Clique. In a density based relaxation, we relax the requirement that the edge

density of the subgraph induced by a clique to be 1 and γ-clique [1] is in this category.

Pattillo et al. [83] show that for any fixed real γ ∈ (0, 1), the γ-Clique is NP-

complete. Note that for s = γ = 1, an s-clique, s-club, and γ-dense subgraphs are

equivalent to a clique.

Dominating clique. Given a graph G = (V,E), a dominating clique is a set S ⊂ V

such that S is a dominating set and the induced subgraphG[S] is complete. Minimum

dominating clique problem seeks to find the smallest dominating clique and the size

of the smallest dominating clique is called dominating clique number γcl(G). This

problem is first introduced by Cozzens et al. [27] and the decision version of this

problem is shown to be NP-complete. Kratsch et al. [73] show that a chordal graph

has a dominating clique if and only if it has diameter at most 3. Kratsch and

Liedloff [74] introduce anO(1.3387n) time and polynomial space algorithm that either

computes a minimum dominating clique or finds that the graph has no dominating

clique for an input graph on n vertices. We can think of the vertices in the dominating

clique to be a communication core of the network. A dominating clique provides an
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extremely robust and reliable virtual backbone structure in wireless communication

network in the sense that the core members can communicate directly and a message

from any source to any destination can be transmitted within 3-hop. A dominating

clique, however, can be overly restrictive since not all graphs have a dominating

clique.
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3. CONNECTED DOMINATING SET WITH BOUNDED DIAMETER

In a wireless ad-hoc network, a virtual backbone facilitates the communication

among the members in the network. Most articles in literature concerning the cre-

ation of a virtual backbone focus on constructing a small virtual backbone without

considering the distance that a message has to travel until it reaches its desired des-

tination. However, recent research shows that the chance of loss of data in wireless

transmission increases as the transmission distance increases. Thus, constructing a

virtual backbone with small diameter is critical. In terms of reachability, it would

be best if every member of the virtual backbone is adjacent to every other member

of the virtual backbone. Dominating clique perfectly satisfies this requirement. In

Figure 3.1, the set of dark vertices forms a dominating clique for the graph. Domi-

nating clique represents a core group of devices in the network that not only serves

as a virtual backbone, but also has the ability for every member of the core group to

directly communicate with every other member of the core group. However, unfor-

tunately, clique is overly restrictive, and not every graph has a dominating clique. In

this chapter, we consider a more relaxed but still reliable virtual backbone structure

called dominating s-club. Brandstadt and Kratsch [17] shows that it is NP-complete

to check whether a graph has a dominating clique. In Section 3.2, we generalize this

result and demonstrate that checking the existence of a dominating s-club in a graph

is NP-complete for any fixed positive integer s. Moreover, we show that it is NP-hard

to solve minimum dominating s-club problem, even if restricted to graphs which are

known to have a dominating clique. Kelleher and Cozzens [67] show that there ex-

∗Parts of this section are based on the research described in Austin Buchanan, Je Sang Sung,
Vladimir Boginski, Sergiy Butenko: On connected dominating sets of restricted diameter. Submit-
ted to European Journal of Operational Research
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ists a dominating clique in connected graphs that are both C5-free and P5-free. We

show that this can be generalized to dominating s-club and prove that there exists

a dominating s-club if there is no induced Cs+4 and no induced Ps+4 for any fixed

positive integer s. In Section 3.5, a compact mathematical programming formulation

is used to solve the problem. Valid inequalities and variable fixing techniques are

introduced. In terms of the size of the smallest dominating s-club, a comparison with

some variations of dominating set is presented. Computational experiment results

in section 3.7 demonstrate that it is generally most beneficial to apply all of the

proposed valid inequalities and variable fixing techniques.

Figure 3.1: A dominating clique in a graph.

3.1 Related work

In wired network, every member of a network is physically connected through

wires and each member of a network can communicate through this connection, even
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through they are located far apart. This physical connection is typically called a back-

bone. On the contrary, in wireless network, there is no physical connection between

members of the network. Instead, each member has its own wireless transmission

range and a message can be transmitted to other nodes that are within the transmis-

sion range. This is called direct transmission. However, it is impossible to directly

transmit a message from one node to another if they are not within the transmission

range of each other. In this case, a message can be relayed through intermediate

nodes. This collection of nodes that is used to transmit messages throughout the

entire network is called a virtual backbone. The concept of a virtual backbone was

proposed by Ephremides et al. [33]. If we assume that all members of a network

have the same transmission range, then we can model this network using a unit disk

graph. Virtual backbone has many advantages in terms of network management and

routing. A unit disk graph is the intersection graph of a collection of unit disks in

the Euclidean plane. For each disk, we form a vertex and join two vertices by an

edge if the corresponding disks have non-empty intersection.

Many routing protocols based on connected dominating set (CDS) have been

proposed [4, 7, 22, 28, 30, 57, 86, 95, 102, 103, 69, 100, 104, 97, 106, 96]. Since a

message is transmitted through the virtual backbone, which is normally smaller than

the size of the entire network, the routing search space can be reduced significantly.

Small virtual backbone has the following advantages. First, it reduces the interfer-

ence problem. Second, the smaller the CDS, the easier to maintain. Third, a small

virtual backbone tends to provide more efficient routing and requires less control

messages. Simonetti et al. [94] present an integer programming formulation, valid

inequalities, and a branch-and-cut algorithm for minimum CDS problem. A brief

summary of the formulation is shown in Appendix.

Mohammed et al. [80] shows that the chance of loss of data increases if a mes-
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sage is transmitted through a long path, and a CDS with small diameter consumes

less energy compared to one with longer diameter. Diameter became a new critical

factor in terms of the design of an algorithm for the construction of CDS. Numerical

experiments in [80] show that their proposed algorithm generates a CDS with small

diameter, but no theoretical proof is provided. Kim et al. [69] proposes two central-

ized CDS construction algorithms with approximation ratios for both CDS size and

the diameter. The article also provides analysis of the algorithm given in [80].

Clique provides a very robust structure in the sense that all pairs of vertices are

adjacent to each other and the deletion of any vertex does not destroy this structure.

Recall that a dominating clique of a graph G = (V,E) is a set S ⊂ V of vertices such

that S is a dominating set and the induced subgraph G[S] is complete. We can think

of the vertices in the dominating clique to be the communication core of a network.

A dominating clique provides an extremely robust virtual backbone structure in

wireless ad-hoc communication network in the sense that the core members can

communicate directly and a message from any source to any destination can be

transmitted within 3-hop. Minimum dominating clique problem seeks to find the

smallest dominating clique and the size of the smallest dominating clique is called

dominating clique number γcl(G). In Figure 3.2, S = {2, 3, 5} is a dominating clique.

This problem is first introduced by Cozzens et al. [27] and it can be solved in

polynomial time for strongly chordal graphs [72], undirected path graphs [72], and

circle graphs [65]. However, in general, the minimum dominating clique problem is

NP-hard [74]. Also, it is NP-complete to determine whether there exists a dominating

clique in a graph [17, 18] and the problem remains NP-complete even when restricted

to a perfect graph [18].

As mentioned above, a clique is overly restrictive and not all graphs have a

dominating clique. As an alternative, we propose dominating s-club as a reliable
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Figure 3.2: A graph with a dominating clique.

virtual backbone structure.

Definition 7. (Dominating s-club (DsC)). Given a graph G = (V,E) and a positive

integer s ≥ 1, a set S ⊂ V of vertices is a dominating s-club if |N(i) ∩ S| ≥ 1 ∀i ∈

V \ S and diam(G[S]) ≤ s.

Definition 8. (Minimum dominating s-club (MDsC)). Given a graph G = (V,E)

and a positive integer s ≥ 1, minimum dominating s-club problem seeks to find a

DsC with minimum cardinality.

The connected dominating set with bounded diameter has not been considered until

recently. To the best of our knowledge, this is the first exact approach based on in-

teger programming formulation for minimum dominating s-club problem for general

s ≥ 1. Note that if s = 1, then DsC is dominating clique. The size of the small-

est dominating s-club is called dominating s-club number (or DsC number) and is

denoted by γsclub(G).

3.2 Existence of DsC

Not every graph has a dominating s-club. For instance, a cycle or a path of 6

vertices does not have D2C. We show that the problem of checking if a graph G has

a DsC is NP-complete for any fixed s ≥ 1 and also provide sufficient conditions for
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existence of a DsC.

Theorem 1. The problem of checking the existence of a dominating s-club in a graph

is NP-complete for any fixed integer s ≥ 1.

Proof. We first consider the case when s is odd. Let x1, x2, . . . , xn be the set of

variables and C1, . . . , Cm be the set of clauses in an arbitrary instance F = C1∧C2∧

. . . ∧ Cm of 3SAT. We construct a graph Gs
F = (V s

F , E
s
F ) such that F is satisfiable if

and only if Gs
F has a DsC. To construct Gs

F , let

V s
F = V (0) ∪ V (1) ∪ V (2) ∪ V (3) and Es

F = E(0) ∪ E(1) ∪ E(2) ∪ E(3), where

V (0) = {ai, āi|i = 1, 2, . . . , n},

V (1) = {b(r)
i , b̄

(r)
i |i = 1, 2, . . . , n, r = 1, 2, . . . ,

s+ 1

2
},

V (2) = {v(r)
i , v̄

(r)
i |i = 1, 2, . . . , n, r = 1, 2, . . . ,

s− 1

2
},

V (3) = {cj|j = 1, 2, . . . ,m};

E(0) = {(ai, ai′), (ai, āi′), (āi, āi′)|i, i′ = 1, 2, . . . , n, i 6= i′},

E(1) = {(ai, b(1)
i ), (āi, b̄

(1)
i )|i = 1, 2, . . . , n}

∪{(b(r−1)
i , b

(r)
i ), (b̄

(r−1)
i , b̄

(r)
i )|i = 1, 2, . . . , n, r = 2, . . . ,

s+ 1

2
)}

∪{(b( s−1
2

)

i , b̄
( s−1

2
)

i )|i = 1, 2, . . . , n},

E(2) = {(ai, v(1)
i ), (āi, v̄

(1)
i )|i = 1, 2, . . . , n}

∪{(v(r−1)
i , v

(r)
i ), (v̄

(r−1)
i , v̄

(r)
i )|i = 1, 2, . . . , n, r = 2, . . . ,

s− 1

2
},

E(3) = {(v( s−1
2

)

i , cj)|j = 1, 2, . . . ,m, xi is a literal in Cj}

∪{(v̄( s−1
2

)

i , cj)|j = 1, 2, . . . ,m, x̄i is a literal in Cj}.
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For s = 1 the set V (2) is empty, therefore in this case we replace vertices from V (2)

in the definitions of E(2) and E(3) with the corresponding vertices from V (0). Then

E(2) becomes a subset of E(1) and can be ignored. Figure 3.3 illustrates the proposed

construction for s = 5.
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Figure 3.3: Illustration of the construction proposed in the proof of Theorem 1 for
s = 5 and F = (x1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x̄4).

We can check that F is satisfiable if and only if Gs
F has a DsC as follows. If F is

satisfiable with a solution x∗ = (x∗1, x
∗
2, . . . , x

∗
n), thenD = V s

F\(V (3)∪{b( s+1
2

)

i , b̄
( s+1

2
)

i |i =

1, . . . , n} ∪ {v( s−1
2

)

i |i = 1, . . . , n : x∗i = 0} ∪ {v̄( s−1
2

)

i |i = 1, . . . , n : x∗i = 1}) is a

dominating set of diameter s in Gs
F . To establish the other direction, first note that

no vertex from V (3) can be included in any dominating set of diameter at most s,

since for n > 3 there are always vertices that are distance s+2 away from any vertex

in V (3) and thus cannot be dominated by an s-club that contains a vertex from V (3).

Also, recognize that for any i ∈ {1, . . . , n} the distance between v
( s−1

2
)

i and v̄
( s−1

2
)

i is
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s + 1 in Gs
F ; thus, only one of these vertices can belong to a DsC. Other than this,

the distance between any pair of non-leaf vertices that are not in V (3) is at most s in

Gs
F . In order for a DsC D to exist in Gs

F one must be able to pick one of the vertices

v
( s−1

2
)

i , v̄
( s−1

2
)

i for each i ∈ {1, . . . , n} to include in D so that each vertex from V (3) is

dominated by D. But this implies that F is satisfiable using the solution x∗ with

x∗i = 1 if v
( s−1

2
)

i ∈ D and x∗i = 0 otherwise. The reduction is clearly polynomial.

When s is even, we use the construction for s− 1 with the following changes. We

replace each edge in E(0) with a path of length 2 by introducing a new “intermediate”

vertex for each edge. Let V (5) be the set of all such intermediate vertices. We connect

each pair of vertices in V (5) by an edge to make V (5) a clique. Also, to ensure that

all vertices from V (5) belong to any CDS, we introduce a leaf vertex for each vertex

in V (5) and add an edge connecting it to the corresponding vertex in V (5). Then,

similarly to the case of odd s, the constructed graph has a DsC iff F is satisfiable.

The next theorem describes a class of graphs that are guaranteed to have a

DsC. This result is a generalization of a theorem in [27], which proves that there

is a dominating clique in a connected graph that is both C5-free and P5-free. We

consider the case for s = 2 first, then present the result for general s ≥ 2.

Theorem 2. If G is a connected graph with no induced P6 and C6, then G has a

dominating 2-club.

Proof. We use induction on n. This is clearly true for n = 1. We assume that any

connected graph of order n with no induced P6 and C6 has a dominating 2-club. Let

G be a connected graph with n + 1 vertices with no induced P6 and C6. Let v ∈ V

be a non-vertex-cut in G. Note that every connected graph has a vertex that is not

a vertex-cut. Let G′ = G[V \ {v}]. Since G′ is connected and has no P6 and C6, it
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has a dominating 2-club S ′ from the induction hypothesis. If v has a neighbor in S ′,

then S ′ is a dominating set for G.

Suppose that N(v) ∩ S ′ = ∅. Since G is a connected graph, v is adjacent to

a vertex x ∈ (V − S ′). For notational simplicity, let Yh, h = 1, 2, 3, be the set of

vertices in v ∈ S ′ such that dG[{x}∪S′](x, v) = h. Since S ′ is a 2-club, we can see that

S ′ = Y1 ∪ Y2 ∪ Y3. Let S = {x} ∪ (Y1 ∪ Y2). We demonstrate that S is a dominating

2-club of G.

First, we demonstrate that S is a 2-club. Observe that any vertex in Y1 is adjacent

to x, while vertices in Y2∪Y3 are not adjacent to x. Any vertex in Y2 is adjacent to at

least one vertex in Y1. Similarly, any vertex in Y3 is adjacent to at least one vertex in

Y2 and not adjacent to any vertex in Y1. Note that for any pair of vertices i, j ∈ Y1,

dG[S](i, j) ≤ 2 since both i and j are adjacent to x in G[S]. Now we consider the

cases where at least one of i, j is not in Y1. To prove S is a 2-club, we show Y1 ∪ Y2

form a 2-club by demonstrating that for any pair of vertices i, j ∈ Y1 ∪ Y2 there is

a shortest path between i and j with dG[S′](i, j) ≤ 2 not through any vertex in Y3.

Suppose there is a pair of vertices i, j ∈ Y1 ∪ Y2 such that all shortest paths between

them in G[S ′] include a vertex from Y3. We consider the following two possible cases.

Case 1. One of i, j is in Y1 and the other is in Y2. Here, without loss of generality,

assume i ∈ Y1 and j ∈ Y2. Case 2. i, j ∈ Y2.

Case 1. If i ∈ Y1 and j ∈ Y2, pick a shortest path between i and j through a

vertex w ∈ Y3, say {i, a, w, j} where a ∈ Y2. Then {v, x, i, a, w, j} is an induced

P6, a contradiction.

Case 2. If i, j ∈ Y2, then clearly (i, j) /∈ E and no vertex in Y1 is adjacent to

both i and j. Consider a shortest path between x and i, say {x, a, i} where

a ∈ Y1. Then {v, x, a, i, w, j} is an induced P6, a contradiction.
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Thus, for any pair of vertices i, j ∈ Y1∪Y2, there is a shortest path between i and j not

through any vertex in Y3 meaning that Y1 ∪ Y2 is a 2-club. Moreover, dG[S](x, i) ≤ 2

for all i ∈ S−{x} since i was selected to be within 2 hop from x. Thus, S is a 2-club.

Second, we demonstrate that S is a dominating set of G. Suppose that S is not

a dominating set of G. Then there must be a vertex u ∈ (V − S ′)− {v} that is not

adjacent to any vertex in S. Note that any vertex in S ′ is dominated by S since it

is either in S or has at least one neighbor in S. The fact that u was dominated by

S ′ but not dominated by S implies that u was dominated by at least one vertex, say

w, in Y3, but not dominated by any vertex in {x} ∪ Y1 ∪ Y2 (i.e. u is not adjacent to

any vertex in {x} ∪ Y1 ∪ Y2). If (v, u) /∈ E, then {v, x, . . . , w, u} induces a path of 6

vertices, a contradiction. If (v, u) ∈ E, then {v, x, . . . , w, u} is an induced C6 which

is again a contradiction .

Theorem 3. Let s ≥ 2 be an integer. If G is a connected graph with no induced

Ps+4 and no induced Cs+4, then G has a dominating s-club.

Proof. We use induction on n. The proposition is clearly true for n = 1. We assume

that any connected graph of order n with no induced Ps+4 and no induced Cs+4 has

a dominating s-club. Let G be a connected graph on n+ 1 vertices with no induced

Ps+4 and no induced Cs+4. Let v ∈ V be a vertex in G that is not a vertex-cut.

Note that every connected graph has such a vertex. Let G′ = G[V \ {v}]. Since

G′ is connected and has no induced Ps+4 and no induced Cs+4, by the induction

hypothesis, it has a dominating s-club S ′. If v is adjacent to any vertex in S ′, then

S ′ is a dominating s-club for G′.

Suppose that N(v) ∩ S ′ = ∅. Since G is a connected graph, v is adjacent to a

vertex v′ ∈ V \ S ′. For notational simplicity, let Yh, h = 0, 1, . . . , s+ 1, be the set of

vertices in S ′ ∪ {v′} that are h hops away from v′ in G[S ′ ∪ {v′}], i.e., Yh = {v′′ ∈
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S ′ ∪ {v′} : dG[{v′}∪S′](v
′, v′′) = h}. Note that Y0 = {v′} and S ′ = ∪1≤h≤s+1Yh. Let

S = {v′} ∪ (∪1≤h≤sYh). We demonstrate that S is a dominating s-club of G.

First, we show that S is an s-club. Observe that each vertex u ∈ Yp, p ≥ 2,

is adjacent to at least one vertex u′ ∈ Yp−1 and any vertex u ∈ Yq, q ≥ 3, is not

adjacent to any vertex u′ ∈ Yp, p ≤ q−2, in G[S ′], since otherwise u would have been

included in some Yr with r < q. Note that for any u, u′ ∈ S ′ we have dG[S′](u, u
′) ≤ s

since S ′ is an s-club, and for any u ∈ S we have dG[S](v
′, u) ≤ s by the construction

of S. Thus, to prove S is an s-club, it is sufficient to show that for any pair of

vertices u, u′ ∈ ∪1≤h≤sYh there is a path of length at most s between u and u′ in

G[S ′] that does not include a vertex from Ys+1. Suppose there is a pair of vertices

u ∈ Yp, u′ ∈ Yq, where p ≤ q, such that all paths of length at most s, including all

shortest paths, between them in G[S ′] include a vertex from Ys+1. Consider one such

shortest path Puu′ passing through u′′ ∈ Ys+1. Then Puu′ = Puu′′ ∪ Pu′′u′ , where Puu′′

and Pu′′u′ are shortest paths between u, u′′ and u′′, u′, respectively. Obviously, Pu′′u′

consists of at least two vertices, u′′ and u′. Next, consider a shortest path Pvu from

v to u in G[S ∪ {v}]. Since v′ is the only neighbor of v in S and u ∈ Yp implies that

dG[S](v
′, u) = p, the length of Pvu is p + 1. Note that in general, the path Puu′ may

contain vertices from Yr with r ≤ p. Let r∗ be the smallest r such that Yr contains

a vertex from Puu′ , and let u∗ ∈ Yr∗ be the vertex that is the farthest from u among

the vertices in Puu′ that belong to Yr∗ . Denote by Pvu∗ a shortest path between v

and u∗ in G[{v} ∪ S] and by Pu∗u′ a shortest path between u∗ and u′ in G[S]. Then

Pvu∗ ∪Pu∗u′ is a path containing at least s+ 4 vertices and we obtain a contradiction

to the assumption that G′ has no induced Ps+4.

Second, we demonstrate that S is a dominating set of G. Suppose it is not. Then

there must be a vertex u ∈ V \ (S ′ ∪ {v}) that is not adjacent to any vertex in S.

Note that any vertex in S ′ is dominated by S since S ′ \ S = Ys+1 and each vertex
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in Ys+1 has a neighbor in Ys ⊂ S. The fact that u is dominated by S ′ but is not

dominated by S implies that u is dominated by at least one vertex, say w, in Ys+1,

but is not dominated by any vertex in ∪1≤h≤sYh ∪ {v′}. Let Pv′w be a shortest path

between v′ and w in G[{v′} ∪ S ′]. Since w ∈ Ys+1, Pv′w consists of s + 2 vertices.

Then, depending on whether (v, u) ∈ E, {v} ∪ Pv′w ∪ {u} induces Ps+4 or Cs+4, a

contradiction. Thus, S must be a dominating set of G.

We can easily see that the converse of Theorem 3 does not hold. For instance,

consider a graph created by adding a node v to Ps+4, with edges between v and every

other vertex. Clearly v is a DsC; however, the graph has an induced Ps+4. It is easy

easy to see that for any s ≥ diam(G), there is a DsC in G = (V,E) since V is a

DsC.

Theorem 4. For a graph G = (V,E) with diam(G) ≥ 4, there is no DsC in G for

any s < diam(G)− 2.

Proof. Consider two vertices v, v′ ∈ V such that dG(v, v′) = diam(G). A DsC must

include one vertex u ∈ N(v) and one vertex u′ ∈ N(v′), since otherwise it is not

connected. However, for any S ⊆ V , dG[S](u, u
′) ≥ dG(u, u′) ≥ diam(G) − 2 > s,

indicating that u and u′ cannot be in the same s-club.

3.3 Complexity of the MDsC problem

We consider the decision version of the MDsC problem, Dominating s-Club

(DsC) as follows. ‘Given a graph G = (V,E) and a positive integer s, does there

exist a DsC of size ≤ k in G?’ We prove that for each fixed positive integer s, DsC

is NP-complete, even if restricted to graphs for which a DsC is known to exist.

Theorem 5. DsC is NP-complete for any fixed positive integer s, even if restricted

to graphs in which a dominating clique exists.
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Proof. First we observe that the problem is clearly in the class NP, then we reduce

the classical NP-complete Vertex Cover (VC) problem to DsC. Let a graph

G = (V,E) and a positive integer s be an instance of VC, which asks if there exists

a subset of at most s vertices C in G such that each edge has at least one endpoint

in C.

We construct an instance G′ = (V ′, E ′) of DsC as follows. Let V ′ = V ∪ W ,

where W = {wuv : (u, v) ∈ E}. Each vertex wuv in W is joined by an edge to both u

and v. We also add an edge between every pair of vertices in V ′ that represent the

elements of V . Thus, E ′ = {(wuv, u) : (u, v) ∈ E} ∪ {(u, v) : u, v ∈ V }. Obviously,

V is a dominating clique in G′.

We show that G has a vertex cover of size ≤ k if and only if G′ has a DsC of size

≤ k. Let C ⊆ V be a vertex cover in G. Then C is a dominating clique in G′, and

hence a DsC for any s in G′. Now, let D be a DsC in G′. If D ∩W 6= ∅, replacing

each vertex of W in D with one of its two neighbors from V results in a dominating

clique C of size |C| ≤ |D| in G′. Clearly C is a vertex cover in G.

3.4 Bounds on the DsC number

Recall that the DsC number of G is denoted by γsclub(G). Similarly, let γ(G)

be the domination number, γt(G) be the total domination number, γc(G) be the

connected domination number, and γcl(G) be the dominating clique number of G.

Theorem 6. If a graph G has a dominating clique and γ(G) ≥ 2, then for s′ ≥ s ≥ 2

the following inequalities hold:

γ(G) ≤ γt(G) ≤ γc(G) ≤ γs
′

club(G) ≤ γsclub(G) ≤ γcl(G). (3.1)

Proof. Since a dominating clique is a dominating s-club, it follows that for s ≥ 2
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the size of a smallest dominating s-club is at most the size of a smallest dominating

clique. For s′ ≥ s ≥ 2, we can easily see that every dominating s-club is also a

dominating s′-club, but the converse is not true. Similarly, a dominating s′-club

is also a CDS, but the converse is not true. The relations between the size of the

minimum dominating set, minimum total dominating set, and minimum CDS can

be found in [52].

3.5 IP formulation

We use formulation ideas proposed by [98] for the maximum s-club problem. Let

the set of vertices be labeled V = {1, 2, . . . , n}. For D ⊆ V the vector x ∈ {0, 1}n

such that xi = 1 iff i ∈ D is called the characteristic vector of D. Then the MDsC

problem can be formulated as the following IP.

minimize
∑
i∈V

xi (3.2)

subject to
∑

j∈N [i]

xj ≥ 1, i ∈ V ; (3.3)

s∑
r=2

y
(r)
ij ≥ xi + xj − 1, i ∈ V, j ∈ V \N [i]; (3.4)

y
(2)
ij ≤ xi, y

(2)
ij ≤ xj , y

(2)
ij ≤

∑
p∈N(i)∩N(j)

xp, j > i, i, j ∈ V ; (3.5)

y
(2)
ij ≥ C

∑
p∈N(i)∩N(j)

xp + (xi + xj − 2), j > i, i, j ∈ V ; (3.6)

y
(r)
ij ≤ xi, y

(r)
ij ≤

∑
p∈N(i)

y
(r−1)
pj , r = 3, . . . , s; j > i, i, j ∈ V ; (3.7)

y
(r)
ij ≥ C

∑
p∈N(i)

y
(r−1)
pj + (xi − 1), j > i, i, j ∈ V ; (3.8)

xi ∈ {0, 1}, y
(r)
ij ∈ {0, 1}, i, j ∈ V, r ∈ {2, . . . , s}. (3.9)

33



In this formulation, the n-vector x of 0-1 variables is the characteristic vector

of the DsC. The binary decision variable y
(r)
ij takes a value of 1 if and only if there

exists a path of length r from vertex i to vertex j in the DsC. The objective is to

find the dominating s-club with minimum cardinality. Note that C is a constant

and it can be set to C = 1
n
. As proposed in [98], setting C = |N(i) ∩ N(j)|−1

results in a tighter formulation. However, it causes a problem when |N(i)∩N(j)| =

0. Constraint (3.3) is a dominating constraint which ensures that each vertex is

dominated. Proposition 1 describes that this closed neighborhood constraint can

be replaced with open neighborhood inequality
∑

j∈N(i) xj ≥ 1 i ∈ V when there

is no single vertex that dominates V . Constraint (3.4) ensures that the distance

between the dominating vertices i, j ∈ V is at most s. Constraints (3.5) and (3.6)

are for paths of length 2, whereas constraints (3.7) and (3.8) are for paths of length

more than 2. We refer the reader to [98] for more detail on the s-club (diameter)

constraints.

3.6 Valid inequalities and variable fixing

In this section, we consider some valid inequalities and variable fixing techniques

for DsC. As mentioned in Theorem 6, a feasible solution to MDsC problem is also

a feasible solution to MCDS problem. This implies that the convex hull of feasible

solutions of MDsC problem is a subset of that of MCDS problem. We conclude that

an inequality which is valid for CDS polytope is valid for DsC polytope. A subset

C ⊂ V of vertices is called a vertex-cut if G[V \ C] is disconnected.

Proposition 1. The following are valid for any characteristic vector x of a DsC or

a CDS.
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• Vertex-cut inequalities. For any vertex-cut C, we have

∑
i∈C

xi ≥ 1. (3.10)

• Open neighborhood inequalities. Suppose that γ(G) ≥ 2, then

∑
j∈N(i)

xj ≥ 1 i ∈ V. (3.11)

• Vertex-cut fixing. If i ∈ V is a vertex-cut, then xi = 1.

Proof. The vertex-cut inequalities have been established by [105]. Open neighbor-

hood inequalities follow from the vertex-cut inequalities because N(i) is a vertex-cut.

Vertex-cut fixing is given by [78]. It also follows from the vertex-cut inequalities by

letting C = {i}.

Remark 1. Note that the open neighborhood inequalities for DsC and CDS subsume

the classical domination constraints.

Proposition 2. The following statement is valid for DsC and CDS. If there are

J ⊂ V and I ⊆ V \ J such that ∀i ∈ I ∃j ∈ J with N [i] ⊆ N [j] or N(i) ⊆ N(j),

then there is an optimal solution with xi = 0 ∀i ∈ I.

Proof. For closed neighborhood inclusion based variable fixing for MDS and MCDS

problem, refer to [2] and [78], respectively. To prove the statement for the MDsC

problem, consider two subsets of vertices I and J satisfying the closed neighborhood

inclusion. Assume that for some i ∈ I, xi = 1 in some feasible solution. For an

arbitrary j ∈ J with N [i] ⊆ N [j], x can be changed to have a feasible solution with

the same objective value by setting xi = 0 and xj = 1 if xj 6= 1. Now, every vertex

that was dominated by i is dominated by j. It is easy to check that the diameter
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has not changed. The same procedure can be applied to obtain a feasible solution

with xi = 0 ∀i ∈ I. The proof for open neighborhood inclusion is similar, and it is

omitted.

Note that the collection of all minimal vertex-cut inequalities along with binary

constraints give a proper mathematical programming formulation for MCDS prob-

lem [105]. We generalize this approach to develop a formulation for minimum k-

connected m-dominating set in section 4. The valid inequalities established in the

previous proposition work both for CDS and DsC. The next proposition establishes

stronger inequalities that are only valid for DsC.

Proposition 3. Assume G has a DsC, and let x be the characteristic vector of an

arbitrary DsC. Then the following statements hold.

• Diameter-critical set inequalities. If there is a set S ⊆ V with diam(G[V \

S]) ≥ s+ 3, then ∑
i∈S

xi ≥ 1. (3.12)

• Diameter-critical vertex fixing. If there exists a vertex i ∈ V with diam(G[V \

{i}]) ≥ s+ 3, then xi = 1.

Proof. Suppose G has a DsC D′ ⊆ V \ S. Since D′ dominates G, D′ must also

dominate G[V \ S], which means that D′ is a DsC for G[V \ S]. By Theorem 4,

G[V \S] has no DsC for s < diam(G[V \S])− 2. However, s ≤ diam(G[V \S])− 3,

a contradiction. Similar proof holds for diameter-critical vertex fixing.

Remark 2. Note that the diameter-critical set inequalities subsume the vertex-cut

inequalities.
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3.7 Experimental results

All computational experiments were conducted on Dell Precision WorkStation

T7500 R© computers, each with eight 2.40 GHz Intel Xeon R© processors, and 12 GB

RAM. The solver used was ILOG CPLEX 12.1 R©.

In a graph G = (V,E) which models a wireless communication network, a pair of

nodes can communicate directly when they are within the transmission range of each

other. Assuming that every node has the same transmission range, we can model

the network using a unit disk graph. In a unit disk graph, there is an edge between

two nodes if the distance between them is less than unit distance (i.e. the center

of one node is within the unit disk of the other). Consider a 2-dimensional square

box of certain size. Within the box, we create a certain number of points randomly.

For each distinct pair of points, connect them using an edge if the distance between

them is less than a specified distance. The specific values used for size of box, the

number of points, and the distance criteria are the same as used in [19].

Before solving MDsC problem using CPLEX, we check if there is a universal

vertex (a vertex i ∈ V such that N [i] = V ) or a universal edge (an edge (i, j) ∈ E

such that N [i] ∪ N [j] = V ) since if there exist one of these, then the problem is

solved. If neither of these exist, then a heuristic algorithm from [19] is applied to

obtain a CDS S ⊂ V . If diam(G[S]) ≤ s, then S is used as the initial feasible

solution for the MDsC problem.

Variable fixing based on open and closed neighborhood inclusion is applied in the

following way. If the closed (open) neighborhood of a vertex i is a strict subset of the

closed (open) neighborhood of a vertex j, then we set xi = 0. On the other hand,

if the closed (open) neighborhood of i is equal to the closed (open) neighborhood of

j, then we set xmin{i,j} = 0. Note that by proposition 2 there is an optimal solution
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after this procedure.

The preliminary set of experiments are performed to examine whether the valid

inequalities and variable fixing techniques are useful for solving MDsC problem. For

this purpose, several random unit disk graphs are created with 100 vertices, with the

length of the box size at 100 and the unit disk radius ranging between 20 and 50, with

an increment of 5. Table 3.1 shows the characteristics of the created graphs for each

radius such as the edge density ρ(G), diameter (diam(G)), and the size of a minimum

DsC (γsclub(G)) for s = diam(G) − 2. The table also includes the problem solving

time in seconds for these preliminary experiments. The column “Basic” indicates the

results for the basic version of formulation (3.3)–(3.9) and other labels in the table

correspond to the following variations of the IP approach.

• Apply diameter-critical vertex fixing to the basic implementation (“DCF”);

• Apply variable fixing based on neighborhood inclusion to the basic implemen-

tation (“NIF”);

• Replace the standard closed neighborhood based domination constraints (3.4)

with the open neighborhood inequalities (3.11) (“ONI”);

• Replace the standard closed neighborhood based domination constraints (3.4)

with the open neighborhood inequalities (3.11), and apply diameter-critical

vertex fixing, and variable fixing based on neighborhood inclusion to the basic

implementation (“All”).

In Table 3.1, “> 24hrs” indicates that the corresponding instance is not terminated

within 24 hours. As these preliminary test results show, it is typically most beneficial

to include all of the proposed enhancement techniques to the basic implementation.

Therefore, for the remaining experiments we apply all of those methods and the
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results are presented in Tables 3.2–3.4. Three lowest values of s are used: s =

diam(G)− 2, s = diam(G)− 1, and s = diam(G). Time limit is set as 3600 seconds.

For instances that are not solved within the time limit, the size of the best found

DsC is reported. The column labeled “gap” shows the optimality gap reported by

CPLEX for each run.

Table 3.1: Results of the experiments with variations of the IP approach for s =
diam(G)− 2 on a set of 100-vertex random unit disk graphs with the length of the
box side set at 100.

radius ρ(G) diam(G) γsclub(G) CPU time (seconds)
Basic DCF NIF ONI All

20 0.10 9 19 > 24 hrs > 24 hrs 14534.8 > 24 hrs 5344.87
25 0.16 6 12 22929.9 18521.6 335.798 10840 206.437
30 0.24 5 9 11.185 8.471 2.019 9.438 2.808
35 0.26 4 6 3.323 1.997 1.23 3.463 1.872
40 0.33 4 5 4.821 4.836 1.698 4.992 2.512
45 0.46 4 4 4.134 4.072 1.3 4.977 2.324
50 0.48 3 3 2.762 2.761 1.465 2.808 2.683

Tables 3.2 and 3.3 are the results of experiments for 100-vertice and 150-vertice

instances of random unit disk graphs, respectively. A blank entry indicates that

s < 1. The first column of these tables represents the dimensions of the box used

to create the graphs. The remaining column notations have the same meaning as in

Table 3.1. The set of 100 × 100 instances in Table 3.2 is the same as the ones used

in Table 3.1.

Table 3.4 shows the experiment results on a set of MCDS problem instances

from [78] and [94]. Note that the blank entries indicate that s < 1. The symbol †

represents that CPLEX does not solve the linear programming relaxation within the

time limit with its default setting. For these, we apply interior point method to find
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Table 3.2: Results for random unit disk graphs with n = 100.

s = diam(G) s = diam(G)− 1 s = diam(G)− 2
dimensions radius ρ(G) diam(G) γsclub(G) time gap γsclub(G) time gap γsclub(G) time gap
100×100 20 0.10 9 ≤ 20 > 3600 0.34 ≤ 21 > 3600 0.37 19 > 3600 0.13

25 0.16 6 ≤ 11 > 3600 0.27 ≤ 11 > 3600 0.24 12 206.4 0
30 0.24 5 8 2538.0 0 8 406.0 0 9 2.8 0
35 0.26 4 6 102.0 0 6 4.4 0 6 1.9 0
40 0.33 4 5 4.2 0 5 4.1 0 5 2.5 0
45 0.46 4 4 5.6 0 4 3.8 0 4 2.3 0
50 0.48 3 3 3.8 0 3 2.2 0 3 2.7 0

120×120 20 0.08 12 ≤ 25 > 3600 0.29 ≤ 26 > 3600 0.26 ≤ 24 > 3600 0.09
25 0.10 9 ≤ 21 > 3600 0.37 ≤ 22 > 3600 0.36 ≤ 20 > 3600 0.09
30 0.14 7 ≤ 12 > 3600 0.25 ≤ 12 > 3600 0.25 12 230.2 0
35 0.19 5 ≤ 10 > 3600 0.20 9 732.5 0 11 2.4 0
40 0.24 5 ≤ 7 > 3600 0.14 7 979.5 0 7 13.0 0
45 0.35 4 5 107.9 0 5 3.6 0 5 2.6 0
50 0.39 4 4 4.3 0 4 3.7 0 4 2.7 0

140×140 30 0.13 7 ≤ 15 > 3600 0.27 ≤ 15 > 3600 0.24 15 715.5 0
35 0.16 6 ≤ 13 > 3600 0.40 ≤ 11 > 3600 0.24 12 79.7 0
40 0.19 6 ≤ 9 > 3600 0.22 ≤ 10 > 3600 0.30 9 4.1 0
45 0.26 5 7 3452.8 0 7 1097.0 0 7 15.7 0
50 0.32 4 5 418.5 0 5 4.7 0 5 2.3 0
55 0.37 4 5 97.8 0 5 3.8 0 5 2.9 0
60 0.40 3 4 3.1 0 4 2.8 0 4 2.4 0

160×160 30 0.09 11 ≤ 22 > 3600 0.36 ≤ 22 > 3600 0.34 ≤ 21 > 3600 0.22
35 0.11 8 ≤ 20 > 3600 0.44 ≤ 60 > 3600 0.81 ≤ 17 > 3600 0.16
40 0.16 6 ≤ 12 > 3600 0.29 ≤ 11 > 3600 0.17 12 245.6 0
45 0.21 6 ≤ 12 > 3600 0.42 ≤ 66 > 3600 0.89 10 2867.5 0
50 0.22 5 6 184.6 0 6 152.6 0 6 3.1 0
55 0.27 5 6 196.7 0 6 1157.4 0 6 18.0 0
60 0.32 4 5 4.4 0 5 4.1 0 5 2.7 0

an appropriate gap. An asterisk ∗ indicates that no solution was found in the time

limit, and the gap was not reported. The symbol inf indicates that the instance is

infeasible.

Notice that typically the best results in terms of solution time are observed when

s is small and the edge density of a graph is high. For 100-vertex instances, optimal

solution is reached within time limit when the edge density is at least 25%. Similarly,

for 150-vertex instances, optimal solutions are found within time limit when the edge

density is at least 30%. In general, sparse instances are more difficult to solve. This

is consistent to the result reported for MCDS problem [94] and for the maximum

s-club problem [98].
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Table 3.3: Results for random unit disk graphs with n = 150. A blank entry indicates
that s < 1.

s = diam(G) s = diam(G)− 1 s = diam(G)− 2
dimensions radius ρ(G) diam(G) γsclub(G) time gap γsclub(G) time gap γsclub(G) time gap
120×120 50 0.39 4 4 19.1 0 4 15.1 0 4 11.4 0

55 0.44 3 4 14.2 0 4 8.0 0 4 10.7 0
60 0.51 3 3 17.1 0 3 14.9 0 3 12.3 0
65 0.52 3 3 17.0 0 3 9.4 0 3 12.4 0
70 0.61 3 2 0.0 0 2 0.0 0 2 0.0 0
75 0.63 3 2 0.0 0 2 0.0 0 2 0.0 0
80 0.72 2 2 0.0 0 2 0.0 0

140×140 50 0.30 4 ≤ 7 > 3600 0.29 5 16.6 0 6 9.0 0
55 0.34 4 4 17.4 0 4 11.2 0 5 10.9 0
60 0.35 4 4 15.3 0 4 14.0 0 4 10.1 0
65 0.43 4 4 19.1 0 4 13.4 0 4 12.5 0
70 0.47 3 3 14.9 0 3 8.5 0 4 11.3 0
75 0.53 3 2 0.0 0 2 0.0 0 2 0.0 0
80 0.57 3 2 0.0 0 2 0.0 0 2 0.0 0

160×160 50 0.24 5 ≤ 9 > 3600 0.33 ≤ 8 > 3600 0.25 7 1552.9 0
55 0.29 4 ≤ 6 > 3600 0.17 6 241.6 0 6 8.4 0
60 0.29 4 5 196.6 0 5 135.6 0 5 8.9 0
65 0.35 4 4 138.9 0 4 16.5 0 5 12.6 0
70 0.43 4 4 20.8 0 4 18.5 0 4 12.7 0
75 0.42 3 3 12.7 0 3 7.3 0 4 10.4 0
80 0.51 3 3 17.1 0 3 9.4 0 3 12.2 0

180×180 50 0.18 6 ≤ 13 > 3600 0.46 ≤ 13 > 3600 0.46 ≤ 11 > 3600 0.36
55 0.21 5 ≤ 9 > 3600 0.33 ≤ 10 > 3600 0.4 8 8.6 0
60 0.24 5 ≤ 9 > 3600 0.39 ≤ 8 > 3600 0.33 7 296.1 0
65 0.26 4 5 1382.5 0 5 69.6 0 6 8.5 0
70 0.32 4 5 517.7 0 5 60.8 0 6 10.7 0
75 0.34 4 4 13.4 0 4 9.9 0 5 10.3 0
80 0.38 4 4 17.4 0 4 16.2 0 4 11.7 0
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Table 3.4: Test results for instances from [78] and [94].

s = diam(G) s = diam(G)− 1 s = diam(G)− 2
n ρ(G) diam(G) γsclub(G) time gap γsclub(G) time gap γsclub(G) time gap
30 0.10 8 15 1.5 0 15 0.7 0 inf 0.4 0

0.20 5 7 6.2 0 7 0.6 0 8 0.7 0
0.30 3 4 1.0 0 5 0.6 0 inf 0.3 0
0.50 2 3 0.6 0 3 0.3 0
0.70 2 2 0.0 0 2 0.0 0

50 0.05 14 ≤ 31 > 3600 0.05 32 1598.0 0 32 182.7 0
0.10 5 13 487.1 0 14 33.2 0 19 1.3 0
0.20 3 7 30.8 0 7 1.2 0 inf 0.3 0
0.30 3 5 1.8 0 5 2.2 0 inf 0.4 0
0.50 2 3 1.2 0 3 0.4 0
0.70 2 2 0.0 0 2 0.0 0

70 0.05 8 ≤ 32 > 3600 0.25 ≤ 29 > 3600 0.10 32 249.8 0
0.10 4 13 1050.2 0 17 55.5 0 inf 3.4 0
0.20 3 7 162.1 0 8 8.6 0 inf 0.6 0
0.30 3 5 436.4 0 5 6.1 0 inf 0.8 0
0.50 2 3 2.6 0 3 1.0 0
0.70 2 2 0.0 0 2 0.0 0

100 0.05 5 ≤ 34 > 3600 0.39 40 3316.2 0 inf 8.8 0
0.10 4 ≤ 15 > 3600 0.24 ≤ 18 > 3600 0.34 inf 15.7 0
0.20 3 ≤ 10 > 3600 0.42 9 305.6 0 inf 1.5 0
0.30 2 6 48.2 0 inf 2.9 0
0.50 2 4 16.6 0 4 3.2 0
0.70 2 3 26.1 0 3 4.1 0

120 0.05 6 ≤ 30 > 3600 0.25† ≤ 34 > 3600 0.34 ≤ 41 > 3600 0.37
0.10 3 ≤ 20 > 3600 0.43 inf 43.8 0 inf 24.2 0
0.20 3 ≤ 10 > 3600 0.41 ≤ 10 > 3600 0.23 inf 2.7 0
0.30 3 ≤ 8 > 3600 0.50 6 280.0 0 inf 4.8 0
0.50 2 4 49.2 0 4 6.1 0
0.70 2 3 645.2 0 3 7.7 0

150 0.05 5 ≤ 37 > 3600 0.42† ≤ 39 > 3600 0.44 inf 66.0 0
0.10 3 ≤ 22 > 3600 0.47 inf 260.5 0 inf 97.2 0
0.20 3 ≤ 13 > 3600 0.56 ≤ 12 > 3600 0.45 inf 6.0 0
0.30 2 6 841.9 0 inf 12.9 0
0.50 2 4 144.2 0 4 13.2 0
0.70 2 3 2187.2 0 3 17.9 0

200 0.05 4 ≤ 46 > 3600 0.51† ∗ > 3600 ∗ inf 224.6 0
0.10 3 ≤ 25 > 3600 0.58 ∗ > 3600 ∗ inf 399.0 0
0.20 3 ≤ 19 > 3600 0.73 ≤ 13 > 3600 0.57 inf 18.5 0
0.30 2 ≤ 7 > 3600 0.48 inf 72.2 0
0.50 2 4 1635.9 0 4 41.5 0
0.70 2 ≤ 4 > 3600 0.50 3 53.8 0
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4. FAULT-TOLERANT CONNECTED DOMINATING SET

In this chapter, we study the minimum k-connected m-dominating set prob-

lem, which generalizes the well-studied minimum connected dominating set problem.

Despite its popularity, no exact approach has been applied to solve the minimum

k-connected m-dominating set problem. We present some nice structural character-

istics of the problem, especially when m ≥ k. Robustness is a desirable property,

but we show that it is not free. In fact, accomplishing robustness requires a strictly

more-costly solution. Three different mathematical programming formulations based

on vertex-cuts are presented depending on whether m < k, m = k, or m > k. We

present some fundamental study results of the corresponding polytope. The sepa-

ration problem for vertex-cut inequalities is a weighted vertex-connectivity problem

and it can be solved in polynomial time. We generalize vertex-cut and vertex-cut

inequalities by introducing r-robust vertex-cut and r-robust vertex-cut inequalities.

For numerical experiment, we consider a lazy-constraint approach and the test re-

sults show that the proposed method compares favorably with existing approaches

for minimum 1-connected 1-dominating set (or minimum connected dominating set)

problem. Test results for k = m = 2, 3, and 4 are presented as well.

4.1 Definitions and previous work

A vertex-cut C ⊂ V of a connected graph G is a set of vertices such that G[V \C]

is disconnected. The vertex-connectivity κ(G) (or simply, connectivity) for a graph

G, where G is not a complete graph, is the size of a minimal vertex-cut. A graph is

k-vertex-connected (or, simply k-connected) if its vertex connectivity is k or greater.

∗Parts of this section are based on the working paper Austin Buchanan, Je Sang Sung, Sergiy
Butenko, Eduardo L. Pasiliao: An integer programming approach for k-connected d-dominating
sets.
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Note that a graph G is k-connected when there does not exist a subset C ⊂ V of

vertices with |C| = k− 1 such that G[V \C] is disconnected. A complete graph with

n vertices does not have a vertex-cut at all. By convention, the connectivity of a

complete graph of n vertices is n− 1, i.e. κ(Kn) = n− 1. Alternatively, we can say

that a connected graph G is k-vertex-connected if there exist k vertex-disjoint paths

between every pair of distinct vertices. This definition also applies to a complete

graph.

In wireless ad-hoc network, a connected dominating set (CDS) is proposed to

serve as a virtual backbone. When a message from a source node cannot be directly

passed to the destination node, the message can be relayed through the intermedi-

ate nodes. A CDS can serve as these intermediate nodes. Finding the minimum

CDS has drawn significant attention. The advantage of a minimum CDS is that it

requires the smallest number of functioning units to form a virtual backbone. This

simple structure, however, can fail if a node in a virtual backbone fails to work. We

study robust virtual backbone structure by considering k-connected m-dominating

set. Note that a k-connected k-dominating set remains a CDS if fewer than k vertices

fail. The parameter m in m-dominating is usually reserved to represent the number

of edges in a graph, so we use d instead.

Definition 9. (k-connected d-dominating set). Given a connected graph G = (V,E)

with integers k, d ≥ 1, a set S ⊂ V is k-connected d-dominating set (k-d-CDS) if

κ(G[S]) ≥ k and |N(i) ∩ S| ≥ d ∀i ∈ V \ S.

Definition 10. (Minimum k-d-CDS problem). Given a connected graph G = (V,E)

with integers k, d ≥ 1, minimum k-connected d-dominating set (Mk-d-CDS) problem

seeks to find the smallest k-d-CDS, or decide that none exist.

We focus on the minimum k-d-CDS problem in this chapter. It is easy to see that
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a k-d-CDS generalizes connected dominating set (k = d = 1), and the minimum k-d-

CDS problem generalizes the classical MCDS problem. Most of the results presented

here apply to the case d ≥ k. For instance, we show that every superset of a k-d-CDS

is also a k-d-CDS when d ≥ k, while this does not hold for d < k. In Figure 4.1, for

k = 4 and d = 3, {1, 2, 3, 4, 5} is 4-3-CDS, but the entire vertex set is not.

1

2

3

4

5

6

Figure 4.1: When k > d, a superset of k-d-CDS may not necessarily be a k-d-CDS.

A variety of approaches have been applied to solve the MCDS problem and closely

related problem called maximum leaf spanning tree problem, including exact ap-

proaches [39, 78, 94, 82, 34, 40, 41], approximation algorithms [48, 76], and heuristic

algorithms [19, 8]. There exist polynomial-time approximation schemes (PTAS) for

unit-disk graphs [23, 58] and for unit-ball graphs [107]. Dai and Wu [29] propose a

k-k-CDS as a virtual backbone structure and introduce several algorithms. Thai et

al. [97] study a general fault tolerant CDS and propose two approximation algorithms

for 1-d-CDS and k-k-CDS in heterogeneous networks. Wu and Li [104] propose a dis-

tributed algorithm with low message complexity to construct a k-d-CDS for general

k and d. Wu and Li [104] also show that their proposed algorithm has a constant

factor approximation ratio when the maximum node degree is a constant. Wang et

al. [100] propose a constant factor approximation algorithm of 2-connected virtual
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backbone.

4.2 Properties of k-d-CDS for d ≥ k

Property 1. Let G be a k-connected graph for k ≥ 1, then δ(G) ≥ k.

Proof. Suppose not. Then, there is a vertex v ∈ V such that degG(v) = t, t ≤ k− 1.

Let N(v) = {u1, . . . , ut}. Then removal of N(v) isolates vertex v, a contradiction.

1 2

34

5 6

78

Figure 4.2: δ(G) ≥ k does not imply κ(G) ≥ k.

However, it is easy to see that the reverse of Property 1 does not hold. For

instance, in Figure 4.2, δ(G) ≥ 3 but the graph is not 3-connected. Note that if a

graph G is k-connected, then G is a k-core but the reverse is not true. The following

lemma directly follows from the definition of k-d-CDS and will be used extensively

to prove properties of k-d-CDS.

Lemma 1. Consider a connected graph G = (V,E) with two integers d ≥ k ≥ 1 and

a vertex-cut C ⊂ V of G. Then |S ∩ C| ≥ k for every k-d-CDS S ⊂ V of G.

Proof. Suppose there is a k-d-CDS S ⊂ V such that |S∩C| ≤ k−1. Then, obviously

G[S] is not k-connected since removing all vertices in S ∩ C from S would render

G[S] disconnected.
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Theorem 7. Consider a connected graph G = (V,E) with two integers d ≥ k ≥ 1.

A set S ⊂ V is a k-d-CDS of G if and only if

1. |S ∩ C| ≥ k for every vertex-cut C ⊂ V , and

2. |S ∩N(v)| ≥ d ∀v ∈ V \ S.

Proof. The sufficient condition follows directly from the definition of k-d-CDS and

Lemma 1. For necessary condition, if |S ∩ C| ≥ k for every vertex-cut C ⊂ V , at

least k vertices must be removed to make G[S] disconnected, meaning that G[S] is

k-connected. If |S ∩ N(v)| ≥ d for every vertex v ∈ V \ S, then obviously S is

d-dominating. Thus, S is a k-d-CDS for G.

As a special case of Theorem 7, when k = d, a set S ⊂ V is a k-k-CDS for G if

and only if |S ∩ C| ≥ k for every vertex-cut C ⊂ V . It is easy to see that a graph

G has a CDS if and only if G is connected. The following theorem generalizes this

property.

Theorem 8. Given a graph G = (V,E) and two integers d ≥ k ≥ 1, the following

are equivalent.

1. There is a k-d-CDS in G.

2. The vertex set V is a k-d-CDS for G.

3. The graph G is k-connected.

Proof. 2 and 3 are equivalent from Theorem 7. It is easy to see that 2 implies

1. We prove that 1 implies 2. Suppose that there is a k-d-CDS S ⊂ V for G.

From Theorem 7, this implies that |S ∩ C| ≥ k for every vertex-cut C ⊂ V and

|S ∩N(v)| ≥ d for every vertex v ∈ V \ S. Then, obviously, V is also a k-d-CDS for
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G, since |V ∩C| ≥ |S ∩C| ≥ k. Note that V \ V is empty and clearly d-domination

is satisfied for every vertex in V \ V .

For a vertex-cut |C| ≤ n − 2, the following lemma holds and this will be used

extensively to prove several propositions.

Lemma 2. [71] Given a graph G = (V,E), a vertex-cut C ⊂ V is minimal if and

only if every vertex in C has a neighbor in every connected component of G[V \ C].

Lemma 3. For an integer k ≥ 1, suppose a graph G = (V,E) has an (k+1)-(k+1)-

CDS S ⊂ V . Then for any v ∈ S, S \ {v} is an k-k-CDS for G.

Proof. Let S ⊂ V be a minimum (k+ 1)-(k+ 1)-CDS. We show that, for any v ∈ S,

S \ {v} is a k-k-CDS. Since S is (k + 1)-connected, removal of any vertex v ∈ S

implies that S \ {v} is k-connected. Any vertex in V \ S is dominated by at least k

vertices in S\{v} since it was originally dominated by k+1 vertices. Also, the vertex

v is dominated by at least k vertices in S \ {v}. Thus, S \ {v} is a k-k-CDS.

Robustness is a desirable property. However, the following Corollary implies that

the robustness is not free. In fact, enforcing robustness accompanies a strictly more-

costly solution.

Corollary 1. For an integer k ≥ 1, suppose that a graph G has an (k + 1)-(k + 1)-

CDS. Let γk,d(G) and γc(G) be the size of a Mk-d-CDS and the size of a MCDS of

G, respectively. Then,

k + γc(G) ≤ 1 + γk,k(G) ≤ γk+1,k+1(G).

Proof. The rightmost inequality holds directly from Lemma 3. To show the first

inequality, we use induction. For k = 1, we have 1 + γc(G) ≤ 1 + γ1,1(G) since
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γc(G) = γ1,1(G). Suppose k + γc(G) ≤ 1 + γk,k(G) holds for k and show that the

inequality holds for k + 1. For k + 1, we have k + 1 + γc(G) ≤ 1 + γk+1,k+1(G) or

k + γc(G) ≤ 1 + γk,k(G).

Note that each inequality in Corollary 1 is sharp on graphs which is obtained by

deleting a perfect matching from K2k+4. Figure 4.3 illustrates this for k = 2.

Figure 4.3: Illustration of sharpness of inequality in Lemma 1 for k = 2.

From Lemma 2, we can easily see that for a given connected graph G and a minimal

cutset C ⊂ V , (V \C)∪{v} is a 1-1-CDS ∀v ∈ C. This statement holds for any graph

G with connectivity at least 1. However, we cannot generalize this to k-k-CDS for

k ≥ 2. In other words, given a graph G with connectivity at least k and a minimal

vertex-cut C ⊂ V , (V \ C) ∪ C ′ is not necessarily a k-k-CDS, where C ′ ⊂ C with

|C ′| = k. In Figure 4.4, the graph G is triconnected and C = {3, 5, 7, 9} is a minimal

vertex-cut of G. However, the vertex set (V \C)∪{7, 9} is not 2-2-CDS since removal

of either vertex 8 or 10 would render G[(V \ C) ∪ {7, 9}] disconnected.
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Figure 4.4: Fixing two vertices from a minimal vertex-cut does not necessarily give
a 2-2-CDS.

4.3 IP formulation

Depending on the values of k and d, we present three different formulations. In

each formulation, x is the characteristic vector of a k-d-CDS of a graph G = (V,E).

For d = k ≥ 1, we have the following formulation for Mk-d-CDS problem.

γk,k(G) = min
∑
v∈V

xv (4.1)

∑
v∈C

xv ≥ k for every minimal vertex-cut C ⊂ V (4.2)

xv ∈ {0, 1} ∀v ∈ V (4.3)

This is the generalization of the formulation for MCDS problem presented in

[105]. The formulation is still valid when we replace the constraints (4.2) for every

vertex-cut. However, the minimal vertex-cuts subsumes the non-minimal vertex-cut.

Notice that the above formulation could have exponentially many constraints since

there exist k-connected graphs with Ω(2k n2

k2
) minimum vertex-cuts [64], giving a lower

bound for the number of minimal vertex-cuts.
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For d > k ≥ 1, we need to add some other constraints to the above formulation

to guarantee d-domination for vertices not in the k-d-CDS.

γk,d(G) = min
∑
v∈V

xv (4.4)

∑
v∈C

xv ≥ k for every minimal vertex-cut C ⊂ V (4.5)

dxv +
∑

j∈N(v)

xj ≥ d ∀v ∈ V (4.6)

xv ∈ {0, 1} ∀v ∈ V (4.7)

For k > d ≥ 1, the vertex-cut constraints that we used for the previous two

formulations does not work. Instead, we need to modify the constraints as follows.

γk,d(G) = min
∑
v∈V

xv (4.8)

∑
v∈S

xv ≥ kxaxb for every minimal a-b-separator S ⊂ V (4.9)

dxv +
∑

j∈N(v)

xj ≥ d ∀v ∈ V (4.10)

xv ∈ {0, 1} ∀v ∈ V (4.11)

In constraint (4.9), for two vertices a, b ∈ V , an a-b-separator is a subset of vertices

such that the removal renders the graph disconnected; also a and b belong to different

connected components. If needed, the constraints (4.9) can be linearized.

4.4 k-d-CDS polytope

From Lemma 1 we know that if C ⊂ V is a vertex-cut of a graph G, then

|S ∩C| ≥ k for every k-d-CDS S ⊂ V in G. Validity of vertex-cut inequality derives
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directly from this observation. Note that we can generalize vertex-cut inequality in

the following way.

Property 2. (Generalized cutset inequalities). Consider a connected graph G =

(V,E) with two integers d ≥ k ≥ 1 and a subset C ⊂ V . Then the following

inequality is valid for k-d-CDS polytope.

∑
i∈C

xi ≥ k − κ(G[V \ C]).

Proof. We prove this using contradiction. Suppose that there is a k-d-CDS S ⊂ V

such that |S∩C| < k−κ(G[V \C]). Let C ′ = C\S be the set of vertices in C that are

not in S. Then, κ(G[V \C ′]) = κ(G[(V \C)∪ (S ∩C)]) ≤ κ(G[V \C]) + |S ∩C| < k.

Note that S ⊂ V \C ′. From Theorem 8, there does not exist a k-d-CDS in G[V \C ′],

a contradiction.

CDS polytope is known to be full dimensional if and only if the graph is bicon-

nected. We can generalize this result for k-d-CDS polytope. Theorem 9 and 10 are

stated without proof since they are rather straightforward.

Theorem 9. Given a graph G = (V,E) with two integers d ≥ k ≥ 1, k-d-CDS

polytope is full dimensional if and only if G is (k + 1)-connected and δ(G) ≥ d.

Theorem 10. Given a graph G = (V,E) with two integers d ≥ k ≥ 1, if G is

(k + 1)-connected and δ(G) ≥ d, then the following holds:

1. xv ≤ 1 induces a facet.

2. xv ≥ 0 induces a facet if and only if

i. v /∈ C for any vertex-cut C with |C| = k + 1,
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ii. |N(i)| ≥ d+ 1 ∀i ∈ N [v].

In general, for a k-connected graph G = (V,E) with |V | = n and two integers

d ≥ k ≥ 1, k-d-CDS polytope P has dimension n− |Θk,d(G)|, where Θk,d(G) = {v ∈

V | v belongs to a vertex-cut of sizek or deg(v) < d}.

Notice that the separation problem for the constraints (4.2) and (4.5) is a weighted

vertex-connectivity problem [55]. Suppose that we have current solution x̄ = [0, 1]n

for k-d-CDS. We construct an instance of the weighted vertex connectivity problem

by assigning x̄w for each vertex w ∈ V . It is easy to see that the weighted vertex

connectivity of G is at least k if and only if all the vertex-cut inequalities are satisfied.

If the weighted vertex connectivity is less than k, we can find the vertex-cut C

with weights less than k in O(κnm log(n
2

m
)) as shown in [55]. The corresponding

inequality
∑

i∈C xi ≥ k is valid and will separate the current solution x̄ from the

k-d-CDS polytope. Thus, for d ≥ k, we can solve the linear programming relaxation

of Mk-d-CDS problem in polynomial time (e.g. ellipsoid method).

Minimal vertex-cut inequalities are not necessarily facet inducing. For instance,

take the 1-1-CDS polytope of a cycle of 6 vertices (C6) shown in Figure 4.5. The

minimal vertex-cut inequality xv1 +xv3 ≥ 1 is subsumed by the inequality xv1 +xv3 +

xx5 ≥ 2, which induces a facet and is called 2-robust vertex-cut according to the

following definition. Motivated by the fact that minimal vertex-cut may not induce

facet, we define the following generalization of vertex-cut called r-robust vertex-cuts.

Definition 11. A set C ⊂ V is called r-robust vertex-cut if C \ C ′ is vertex-cut for

any C ′ ⊂ C with |C ′| < r, where r is a positive integer.

Proposition 4. Let d ≥ k ≥ 1 be positive integers. Given a r-robust vertex-cut
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v1

v2

v3v4

v5

v6

Figure 4.5: Cycle of 6 vertices.

C ⊂ V , the following inequality is valid for k-d-CDS.

∑
i∈C

xi ≥ k + r − 1

Proof. We prove this by induction on r. When r = 1, this inequality is the vertex-cut

inequality. Suppose that the r-robust inequality holds and we show that the (r+ 1)-

robust inequality holds. Let C ⊂ V be an r-robust vertex-cut. Then C \ {v} is

r-robust vertex-cut for any v ∈ C and we have the inequality
∑

i∈C\{v} xi ≥ k+ r−1

for any vertex v ∈ C. Summing these inequalities gives

∑
i∈C

(|C| − 1)xi ≥ |C|(k + r − 1),

and dividing both sides by |C| − 1 gives the following.

∑
i∈C

xi ≥
⌈
|C|
|C| − 1

(k + r − 1)

⌉
=

⌈
|C| − 1

|C| − 1
(k + r − 1) +

1

|C| − 1
(k + r − 1)

⌉
= k+r.

As we define minimal vertex-cut, we can also define minimal r-robust vertex-cut.

An r-robust vertex-cut C ⊂ V is minimal if no proper subset of C is an r-robust
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vertex-cut. (i.e., an r-robust vertex-cut C is minimal if C \ {v} is not r-robust

vertex-cut for every v ∈ C). From Corollary 2, we know that if C is minimal vertex-

cut for a connected graph G, then (V \ C) ∪ {v} ∀v ∈ C is CDS. From this, one

might expect that if C is a minimal r-robust vertex-cut, then (V \ C) ∪ C ′ would

give a CDS for any C ′ ⊂ C with |C ′| = r. However, this does not necessarily hold.

For instance, in Figure 4.6, C = {4, 5, 6, 7, 8, 9} is a minimal 2-robust vertex-cut.

However, (V \C)∪{u, v} is not a CDS, where two vertices u, v ∈ C are not adjacent.

1

2

3

4

5

6

7

8

9

10

11

12

Figure 4.6: Given a connected graph G and a minimal vertex-cut C ⊂ V , fixing two
vertices from C may not give a CDS.

Proposition 5. Given a biconnected graph G = (V,E) with γ(G) ≥ 2 and a vertex-

cut C ⊂ V , the inequality
∑

i∈C xi ≥ 1 induces a facet for 1-1-CDS polytope of G if

and only if

1. C is minimal, and

2. C ∪ {v} is not a 2-robust vertex-cut for every v ∈ V \ C.
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Proof. From Theorem 9, we know that if G is biconnected, then 1-1-CDS polytope is

full dimensional. Let P be the 1-1-CDS polytope of G and F = {x ∈ P |
∑

i∈C xi =

1}. We provide n affinely independent points in F . We generate |C| points first by

considering Sv = (V \ C) ∪ {v} for each vertex v ∈ C. We claim Sv is 1-1-CDS for

every v ∈ C. Sv is 1-connected since v has a neighbor in every connected component

of G[V \C] by minimality of C and Lemma 2. Sv is dominating since all vertex not

in Sv is in C, and by minimality of C, every vertex in C has a neighbor in every

connected component of G[V \ C].

Next, we generate n−|C| points in F . Condition 2 says that for every vertex v ∈

V \C, C∪{v} is not a 2-robust vertex-cut. This implies that for every v ∈ V \C, there

is w ∈ C such that (C∪{v})\{w} is not a vertex-cut. Let Sv = V \((C∪{v})\{w}).

Then we claim Sv is 1-1-CDS for G. As stated above, we know that (C∪{v})\{w} is

not a vertex-cut and G[Sv] is connected. Now we claim that Sv is dominating. Every

vertex z ∈ C is dominated since it has a neighbor in every connected component of

G[V \C]. Note that there are at least two such components and z remains dominated

even if v is one of its neighbors. Every vertex in V \C is obviously dominated since

it belongs to Sv. Finally, we show that v is dominated by Sv. If v is isolated in

G[V \ C], then v is adjacent to every vertex in C, implying that it is dominated

since G is biconnected. If it is not isolated in G[V \C], then it has a neighbor in its

connected component which belongs to Sv. We can easily show that these n points

are affinely independent by showing that they are linearly independent.

To prove the other direction, we show that if condition 1 or 2 fails, then the vertex-

cut inequality
∑

i∈C xi ≥ 1 cannot induce facet when dim(P ) = n. Suppose that C is

not minimal, meaning that there is a vertex v ∈ C such that C \ {v} is a vertex-cut.

Then the inequality
∑

i∈C\{v} xi ≥ 1 subsumes the inequality
∑

i∈C xi ≥ 1. For the

other case, suppose C is minimal, but there exist v ∈ V \ C such that C ∪ {v} is
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a 2-robust vertex-cut. Then, the 2-robust vertex-cut inequality xv +
∑

i∈C xi ≥ 2

subsumes the inequality
∑

i∈C xi ≥ 1.

4.5 Numerical experiments

In this section, we describe the procedure for solving the Mk-k-CDS problem and

show the computational results for k = 1, 2, 3, and 4. As stated in section 4.3, the

mathematical programming formulation for Mk-k-CDS problem has exponentially

many constraints. Thus, we do not include all of the constraints a priori. Instead,

we start with the k-total-domination constraints and add the constraints ensuring

k-connectivity in a lazy fashion.

• Initial constraints: k-total-domination. For each vertex i ∈ V add the k-

total-domination constraint
∑

j∈N(i) xj ≥ k. This is valid since N(i) is a vertex-

cut for every vertex i ∈ V .

• Lazy constraints: k-connectivity. Whenever a feasible solution (binary solu-

tion), say x̄, which satisfies all the constraints added so far is found, connectivity

is checked. Let S = {i ∈ V |x̄i = 1} and S̄ = V \ S. If G[S] is not connected,

then S̄ is a vertex-cut for G and
∑

i∈S̄ xi ≥ k is valid and can be added. How-

ever, this inequality could be very weak, and we can strengthen it by finding

a minimal subset of S̄ which is a vertex-cut for G. For detailed procedure for

making a vertex-cut minimal, refer to Remark 3. If G[S] is connected, but

not k-connected, then we find a minimal vertex-cut C ⊂ S of G[S]. Note that

C ∪ S̄ is a vertex-cut for G. We can strengthen it as stated in Remark 3.

We illustrate the solution procedure for minimum 3-3-CDS problem in detail for

a triconnected graph G as shown in Figure 4.7. Initially, we solve the following

minimum 3-total dominating set problem.
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min
∑
i∈V

xi (4.12)

∑
j∈N(i)

xj ≥ 3 ∀i ∈ V (4.13)

xi ∈ {0, 1} ∀i ∈ V (4.14)

Suppose an optimal solution for this problem is S = {1, 2, 3, 5, 7, 8, 9}. In Figure 4.8,

vertices in S is shown in bold. We check if G[S] is triconnected. Clearly G[S] is not

triconnected and C = {9} is a vertex-cut of G[S]. Let S̄ = V \ S = {4, 6, 10, 11}.

Then C ∪ S̄ = {4, 6, 9, 10, 11} is a vertex-cut for G. Now we add the following valid

inequality. ∑
i∈S̄

xi ≥ 3

Suppose that an optimal solution that satisfies all constraints added so far is S1 =

{1, 2, 3, 4, 5, 6, 7, 8, 9} as shown in Figure 4.9. Let S̄1 = {10, 11}. Note that G[S1] is

not triconnected and C = {9} is a vertex-cut for G[S1]. Now we have a vertex-cut

C ∪ S̄1 = {9, 10, 11} for G. We add the following vertex-cut inequality.

∑
i∈C∪S̄1

xi ≥ 3

Suppose that an optimal solution that satisfies all constraints added so far is S2 =

{1, 2, 3, 5, 7, 8, 9, 10, 11} as shown in Figure 4.10. Note that this is triconnected and

is an optimal solution to minimum 3-3-CDS problem.

Remark 3. (Making a vertex-cut minimal in O(n2) time.) Given a vertex-cut C ⊂ V

and a graph G = (V,E), let C ′ ⊂ C be the set of vertices which are adjacent to a
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Figure 4.7: A graph G with κ(G) = 3.
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Figure 4.8: S = {1, 2, 3, 5, 7, 8, 9} is a 3-total dominating set of G while G[S] is not
triconnected.

vertex in V \ C. Let S := {S1, . . . , Sp} be the collection of connected components

of G[V \ C ′], where Si ⊂ V \ C ′, i = 1, . . . , p. For each vertex v ∈ C ′, perform

the following. If v has a neighbor in every connected component, then do nothing.

Otherwise, merge v and all components from S that v has a neighbor in and update

C ′ = C ′ \ {v}. The time complexity of this procedure is O(n2). When the procedure

is completed, it is clear that every vertex v ∈ C ′ would have a neighbor in every

connected component of G[V \ C ′]. Obviously, from Lemma 2, C ′ is minimal.
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Figure 4.9: S = {1, 2, 3, 4, 5, 6, 7, 8, 9} is a 3-total dominating set of G while G[S] is
not triconnected.
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Figure 4.10: S = {1, 2, 3, 5, 7, 8, 9, 10, 11} is triconnected and it is an optimal 3-3-
CDS.

Given a vertex-cut S̄ = V \ S = {4, 6, 9, 10, 11} in Figure 4.8, we can use the

procedure in Remark 3 to have a minimal vertex-cut {9, 10, 11}. This would have

allowed us to add a stronger valid inequality and skip the procedure shown in Fig-

ure 4.9.

4.5.1 Computational setup and numerical test results

All numerical experiments are performed on a Dell Precision WorkStation T7500 R©

computer with eight 2.40 GHz Intel Xeon R© processors and 12 GB RAM. Gurobi
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Optimizer R© version 5.5 is used with its lazy-constraint callback [59].

Fand and Watson [34] provide several mathematical programming formulations

for MCDS problem with computational experiment results. The fastest one utilizes

Miller-Tucker-Zemlin constraints to impose the connectivity. Table 4.1 presents the

time comparisons between the fastest formulation from [34] and our approach to

solve MCDS problem with optimal objective function value.

Table 4.1: Running time comparison with Fan and Watson (FW) [34] for solving the
minimum 1-1-CDS problem.

Graph opt FW time Our time
IEEE-14 5 0.02 0.01
IEEE-30 11 0.22 0.01
IEEE-57 31 200.59 1.07
IEEE-118 43 699.83 0.08
IEEE-300 129 5033.97 52.88
RTS-96 32 445.69 0.69

Simonetti, Cunha, and Lucena (SCL) [94] and Lucena, Maculan, and Simonetti

(LMS) [78] studies exact approaches for MCDS problem and present the numerical

experiment results on the same instances. In Table 4.2, we compare the running

time of SCL and LMS to our approach. A dash in Table 4.2 indicates unsolved

in time limit. SCL and LMS have time limit of 3,600 seconds and 18,000 seconds,

respectively. The graph v50 d20 has 50 nodes and 20% density.

In Table 4.3, we present the optimal solution and the running time for both

minimum k-total dominating set problem and the Mk-k-CDS problem for k = 1, 2, 3,

and 4. Note that blank entries denote that the graph has no solution. As we can

see from Table 4.3, for most of the considered instances, the time taken to solve
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Table 4.2: Running time comparison with Simonetti, Cunha, and Lucena (SCL) [94]
and Lucena, Maculan, and Simonetti (LMS) [78] for solving minimum 1-1-CDS prob-
lem.

Graph opt SCL time LMS time Our time
v30 d10 15 0.01 0.01 0.24
v30 d20 7 0.02 0.10 0.01
v30 d30 4 0.05 0.03 0.01
v30 d50 3 0.04 0.08 0.01
v30 d70 2 0.02 0.01 0.01
v50 d5 31 0.02 0.01 0.59
v50 d10 12 0.42 0.36 0.12
v50 d20 7 0.66 1.32 0.08
v50 d30 5 0.25 1.21 0.07
v50 d50 3 0.25 0.51 0.01
v50 d70 2 0.29 0.04 0.02
v70 d5 27 1.42 0.26 1.41
v70 d10 13 34.29 4.73 0.09
v70 d20 7 2.16 16.30 0.15
v70 d30 5 1.00 2.90 0.17
v70 d50 3 0.70 1.33 0.01
v70 d70 2 0.79 1.92 0.07
v100 d5 24 342.25 12.50 0.36
v100 d10 13 32.11 9.36 0.34
v100 d20 8 174.93 86.16 0.40
v100 d30 6 193.65 258.15 0.94
v100 d50 4 35.41 132.55 0.70
v100 d70 3 12.03 154.10 1.27
v120 d5 25 - 2.65 0.31
v120 d10 13 - 65.49 0.34
v120 d20 8 610.89 393.47 1.86
v120 d30 6 475.54 653.70 2.32
v120 d50 4 168.55 815.64 1.64
v120 d70 3 31.67 356.31 2.44
v150 d5 26 - 2954.00 3.46
v150 d10 14 - 3247.89 4.72
v150 d20 9 - - 9.34
v150 d30 6 1954.00 2317.35 6.54
v150 d50 4 481.61 2756.36 2.41
v150 d70 3 43.75 1828.86 4.77
v200 d5 27 - - 32.92
v200 d10 16 - - 496.43
v200 d20 9 - - 243.25
v200 d30 7 - - 172.55
v200 d50 4 2249.43 20155.00 8.16
v200 d70 3 271.90 8154.13 9.45
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minimum k-total dominating set problem and Mk-k-CDS problem are comparable.

This implies that the connectivity constraints may not be burdensome.
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5. SELECTIVE DOMINATING SET

This section introduces several variations of the classical graph-theoretic con-

cept of domination that are motivated by practical considerations. Computational

complexity of the decision versions of the corresponding optimization problems is

analyzed showing that these variations are hard in their own respect. We also es-

tablish some basic properties of the corresponding polyhedra and develop analytical

bounds on the size of structures of interest. Numerical experiment results using

ILOG CPLEX 12.1 R© on random unit disk graphs indicate that some variations are

much more challenging to solve than others. We also compare the performance of

simulated annealing against CPLEX 12.1 R©. For almost all considered instances,

simulated annealing outperforms CPLEX 12.1 R©.

5.1 Variations of dominating set

One of the most popular applications of dominating set arises in wireless sensor

placement problem, where each vertex of a graph G = (V,E) represents a site that

has to be monitored, and two vertices are connected by an edge if both of the

corresponding sites can be monitored by a single sensor placed in one of the two

sites. In order to monitor all sites of interest with a minimum number of sensors, one

needs to find a minimum dominating set in the graph G. In some realistic scenarios,

however, there could be a situation where a sensor cannot be placed because of

numerous reasons. Or, different sites may require a greater number of neighboring

sensors if a sensor is not placed on it. With these cases in mind, we introduce

some varieties of dominating set called selective dominating set, generalized selective

dominating set, mixed selective dominating set, and generalized dominating set.
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Selective dominating set Consider a sensor placement problem with the following

considerations: (a) there may be sites where locating a sensor is physically impossible;

and (b) not all the sites in the network may need to be monitored, while they can

still be used for locating sensors. To address these issues, we define the concept of a

selective dominating set as follows.

Definition 12. For a graph G = (V,E) and a vector r ∈ {−1, 0, 1}n a subset of

vertices D is called a selective dominating set corresponding to r, or an r-SDS, if (a)

i /∈ D whenever ri = −1; and (b) any i ∈ V −D must have a neighbor in D, unless

ri = 0. The minimum selective dominating set (MSDS) problem is to find an r-SDS

of minimum size in G.

We call the vector r the domination requirement. The domination requirement of the

classical minimum domination set problem is vector of 1’s. Note that this definition

implies that a vertex i ∈ V with ri = −1 must be dominated by at least one vertex

from r-SDS, i.e., we do not consider the “useless” vertices that cannot serve as sensor

locations and, at the same time, do not need to be monitored. Given the domination

requirement vector r, we can easily check if the MSDS problem has a feasible solution

or not. Throughout this section, we assume that G a has feasible r-SDS.

Generalized selective dominating set Suppose that some of the monitored sites may

be more important than others and, if not used to place a sensor, may require locating

of sensors in multiple neighboring sites. This motivates a further generalization of

the notion of SDS by defining a generalized selective dominating set as follows.

Definition 13. For a graph G = (V,E) and a vector r ∈ [−∆(G),∆(G)]n ∩ Zn,

a subset of vertices D is called a generalized selective dominating set corresponding

to r, or an r-GSDS, if (a) i /∈ D whenever ri < 0; and (b) any i ∈ V − D must
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have at least ri neighbors in D, unless ri = 0. The minimum generalized selective

dominating set (MGSDS) problem is to find an r-GSDS of minimum size in G.

For a vertex i ∈ V , let d+
r (i) = |{j ∈ N(i) : rj ≥ 0}| denote the number of neighbors

of i that can be included in an r-GSDS of G. Note that if ri < −d+
r (i) then there

is no feasible r-GSDS in G. Also, ri > d+
r (i) implies that i ∈ D for any r-GSDS

D, in which case we can remove i from G and ri from r, reduce the values of all

rj, such that (i, j) ∈ E, by one, and obtain a smaller equivalent problem instance.

Hence, it is reasonable to consider only domination requirement vectors r from the

set RG := {r ∈ Zn : −d+
r (i) ≤ ri ≤ d+

r (i), i = 1, . . . , n}. Throughout this paper, we

assume G has a feasible r-GSDS.

Mixed selective dominating set There could be a site which is extremely important

so that not only must a sensor be placed on it, but also at least one additional sensor

on one of its neighboring sites is needed. This motivates another generalization of

SDS by defining a mixed selective dominating set as follows.

Definition 14. For a graph G = (V,E) and a vector r ∈ {−1, 0, 1,+1}n a subset

of vertices D is called a mixed selective dominating set corresponding to r, or an

r-MSDS, if (a) i /∈ D whenever ri = −1; and (b) i ∈ D and i must have a neighbor

in D whenever ri = +1; and (c) any i ∈ V −D must have a neighbor in D, unless

ri = 0. The minimum mixed selective dominating set (MMSDS) problem is to find

an r-MSDS of minimum size in G.

Here +1 is used to emphasize that if ri = +1, then both i and at least one vertex

from N(i) must be included in r-MSDS. This requirement can be considered as a

greater degree of domination. Given a graph G = (V,E) and r ∈ {−1, 0, 1,+1}n, the

MMSDS problem can be infeasible. For example, for a vertex i with ri = −1 if every

j ∈ N(i) has rj = −1 then the domination requirement of i cannot be satisfied and
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the problem becomes infeasible. Or, for a vertex i with ri = +1 if every j ∈ N(i) has

ri = −1, then the i’s domination requirement cannot be satisfied and the problem

becomes infeasible. Feasibility can be checked easily, and throughout this chapter

we assume G has feasible r-MSDS.

Generalized dominating set We consider a situation where 1 ≤ ri ≤ degG(i) for i ∈

V . This is another way of imposing greater degree of domination and is introduced

by Harant [49] in the following way.

Definition 15. For a graph G = (V,E) and vector [r]ni=1 such that 1 ≤ ri ≤ degG(i),

a subset of vertices D is called the generalized dominating set corresponding to r, or

r-GDS, if for each vertex i, either i ∈ D or at least ri number of neighboring vertices

are in D. The minimum generalized dominating set (MGDS) problem is to find an

r-GDS of minimum size in G.

Roman et al. [87] study the Parametrized algorithm for GDS. HARANT et al [49]

introduce a function fr(P ) and show that γr(G) = min fr(P ) where the minimum is

taken over the n−dimensional cube Cn = {P = (p1, . . . , pn)|pi ∈ <, 0 ≤ pi ≤ 1, i =

1, . . . , n}.

Note that other types of greater domination are imposed on k-dominating set.

A vertex i ∈ V − D is k-dominated if it has at least k neighboring vertices in D.

If all vertices in V − D are k-dominated then D is called k-dominating set. The

minimum k-dominating set (MkDS) problem seeks to find the smallest k-dominating

set. Figure 5.1 shows instances of MDS, MSDS, MGSDS, MMSDS, MGDS, and

M2DS problem in 5.1a, 5.1b, 5.1c, 5.1d, 5.1e and 5.1f respectively. In the figure,

numbers on each vertex represent the domination requirement. For all problems

considered in this chapter, we assume that the domination requirement is given as

input parameter, which is determined considering the relative importance of sites
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that each vertex represents.

This chapter is organized in the following way. In section 5.2, we demonstrate the

computational complexity of decision version of the problems introduced above. In

some variations of the problems, we show that they are hard not only because they

are a generalization of Dominating Set, but they are hard in their own respect.

Section 5.3 presents the mathematical formulations and some basic polyhedral prop-

erties. Section 5.4 shows some analytical bounds on the size of the r-GDS. Section

5.5 displays some numerical experiment results of solving the problems using CPLEX

12.1 R© on random unit disk graphs and also on some benchmark instances. Perfor-

mance of simulated annealing is also presented as against CPLEX 12.1 R©. Throughout

this chapter, we suppose that graphs are connected. For a disconnected graph, we

can tackle each connected component separately.

5.2 Computational complexity

In this section, we establish NP-completeness of the decision versions of the

MSDS, MGSDS, MMSDS, and MGDS problems. Moreover, we also show the di-

rect proof of the NP-completeness of k-Dominating set for any fixed positive

integer k (2 ≤ k ≤ δ(G)). Given a graph G = (V,E) with domination requirement

vector r and a positive integer k, the Selective Dominating Set (Generalized

Selective Dominating Set) is to check whether there exists an r-SDS (r-GSDS)

of size ≤ k in G. An instance of each of the two problems is given by a triple

〈G = (V,E), r, k〉.

Theorem 11. Selective Dominating Set problem is NP-complete.

Proof. The problem is clearly in NP. To complete the proof, we use a reduction

from the classical 3-SAT problem [43]. We use a construction similar to the one

proposed in [85] to establish the NP-completeness of finding degree-constrained sub-
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Figure 5.1: Instances of various dominating set problems.
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graphs. Given an instance of 3-SAT with conjunctive normal form (CNF) F =

C1 ∧ C2 ∧ . . . ∧ Cm with variables x1, x2, . . . , xn and at most three variables in each

clause Ci, i = 1, . . . ,m, we construct an instance 〈GF = (VF , EF ), r, n〉 of Selective

Dominating Set in polynomial time such that F is satisfiable if and only if GF

has a r-SDS of size n. To construct GF , let

VF = ∪n
i=1{x+

i , x
0
i , x
−
i } ∪m

j=1 {cm};

EF = ∪ni=1{(x+
i , x

0
i ), (x

0
i , x
−
i )}∪i,j{(x+

i , cj) : Cj contains xi}∪i,j{(x−i , cj) : Cj contains x̄i}.

For each vertex in VF , we assign the domination requirement values as follows:

rx+
i

= rx−i = 0, rx0
i

= 1 or− 1, i = 1, . . . , n; rcj = 1, j = 1, . . . ,m.

We obtain an instance 〈GF = (VF , EF ), r, n〉 of the Selective Dominating Set

problem. Figure 5.2 shows an illustration of this construction. Note that the con-

struction can be completed in polynomial time. Now we have to show that F is

satisfiable if and only if GF has a r-SDS of size n.

First, suppose that F has satisfiable Truth assignment. We make a set D of

vertices in GF in the following manner. If xi = True, then put the vertex x+
i in D,

and if xi = False, then put the vertex x−i in D. The set D is a r-SDS of GF because

of the following two reasons: (i) each x0
i is dominated by either x+

i or x−i , and (ii)

each clause vertex Cj is dominated by at least one vertex in D since by assumption

each Cj contains at least one variable with Truth assignment and, by the above

construction, the corresponding vertex is in D. Therefore, there is an r-SDS of size

n in GF .

We now establish the other direction stating that if GF has a r-SDS of size n,
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Figure 5.2: Illustration of the construction of a graph GF when F = C1 ∧ C2 ∧ C3,
where C1 = (x1 ∨ x2 ∨ x3), C2 = (x̄1 ∨ x3 ∨ x4), and C3 = (x̄2 ∨ x3 ∨ x̄4). GF has SDS
of size 4 if and only if F is satisfiable.

then F is satisfiable. Let D be a r-SDS in GF of size n = |D|. Note that because

each vertex x0
i must be either in D or be dominated by a vertex in D, at least one

vertex from x+
i , x

0
i , x
−
i must be in D for each i = 1, . . . , n. In fact, exactly one vertex

from x+
i , x

0
i , x
−
i must be in D. Therefore, D contains no clause vertex. Because D

is a r-SDS, however, each clause vertex must be dominated by at least one vertex in

D. The following truth assignment makes F satisfiable : for each variable xi, assign

xi True if xi ∈ D, otherwise assign xi False. It is easy to see that this makes F

satisfiable.

Theorem 12. Generalized Selective Dominating Set problem is NP-complete.

Proof. Obviously, Generalized Selective Dominating Set is NP-complete di-

rectly from Theorem 11, since GSDS generalizes SDS. However, we aim to show

the NP-completeness of the problem for an arbitrarily reasonable choice of the dom-

ination requirement vector. Namely, the proof below demonstrates that, no matter

how we select the domination requirement vector r̂ for a given graph G, G and
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r̂ can be extended to obtain a larger instance of the Generalized Selective

Dominating Set problem, which, if solved, yields a solution to the Selective

Dominating Set problem in G. The problem is clearly in NP. Given an instance

〈G = (V,E), r, k〉 of Selective Dominating Set and an arbitrary domination

requirement vector r̂ ∈ RG such that the sign of ri and r̂i is same ∀i, we construct

an instance 〈G′ = (V ′, E ′), r′, k′〉 of Generalized Selective Dominating Set

in polynomial time such that G has a r-SDS of size k if and only if G′ has a r′-GSDS

of size k′. To construct G′, let

V (i) = {v(i)
j : j = 1, . . . , |r̂i| − 1},

and let Ḡ = (V̄ , Ē) be an arbitrary graph with the set of vertices V̄ ≡ ∪ni=1V
(i). We

construct a graph G′ = (V ′, E ′), where

V ′ = V ∪ V̄ ∪ {a}

and

E ′ = E ∪ Ē ∪ (∪ni=1{(i, v), (a, v) : v ∈ V (i)}).

For an arbitrary non-negative vector r̄ ∈ RḠ, we also define a domination require-

ment vector r′ for G′ as follows:

r′i =


r̂i, if i ∈ V ;

r̄i, if i ∈ V̄ ;

−|V̄ |, if i = a.

Setting k′ = k +
n∑

i=1

(|ri| − 1) completes the reduction and this can be done in
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Figure 5.3: Illustration of reduction for Generalized Selective Dominating
Set.

polynomial time. Figure 5.3 shows the construction for r = {−1, 1, 1, 1, 1} and

r̂ = {−2, 2, 1, 3, 1}.

First, we show that if there exists a r-SDS of size k in G, then G′ has a r′-GSDS

of size k′. Let D ⊂ V be a r-SDS of size k = |D| in G. Since r′a = −|V̄ |, D′ = D∪ V̄

dominates a. In fact, D′ dominates all vertices in V ′ and we have a r′-GSDS of size

k′ = |D′| = k +
n∑

i=1

(|ri| − 1).

We now establish the other direction by saying that if G′ has a r′-GSDS of size

k′, then G has a r-SDS of size k. Let D′ be a r′-GSDS of size k′. Since r′a = −|V̄ |,

a /∈ D′ and V̄ ∈ D′. By construction, it is straightforward to see that D = D′ − V̄

is a r-SDS of size k = k′ −
n∑

i=1

(|ri| − 1).

This complexity result demonstrates that Generalized Selective Dominating

Set is hard not only because it is a generalization of Selective Dominating

Set, but it is hard in its own respect. The next theorem demonstrates the NP-
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completeness of Mixed Selective Dominating Set problem.

Theorem 13. Mixed Selective Dominating Set problem is NP-complete.

Proof. Obviously, this problem belongs to NP since we can verify a “yes” instance

in polynomial time. The reduction is similar to Theorem 11. Given an instance of

3-SAT with conjunctive normal form (CNF) F = C1 ∧ C2 ∧ . . . ∧ Cm with variables

x1, x2, . . . , xn and at most three variables in each clause Ci, i = 1, . . . ,m, we con-

struct an instance 〈GF = (VF , EF ), r, k〉 of Mixed Selective Dominating Set

in polynomial time such that F is satisfiable if and only if GF has a r-MSDS of size

k. The construction is exactly the same as Theorem 11 except in regards to dom-

ination requirement assignment. For each vertex in VF , we assign the domination

requirement values as follows:

rx+
i

= rx−i = 0, rx0
i

= 1 or− 1, i = 1, . . . , n; rcj = +1, j = 1, . . . ,m.

By letting k = n+m, we obtain an instance 〈GF = (VF , EF ), r, k〉 of the Mixed Se-

lective Dominating Set problem. Note that the construction can be completed

in polynomial time. Now we have to show that F has a truth assignment if and only

if GF has a r-MSDS of size k.

First, suppose that F has satisfiable truth assignment. We make a set D of

vertices in GF as follows : put all clause vertices Cj, j = 1, . . . ,m in D and if

xi = True, then put x+
i in D, and if xi = False, then put the vertex x−i in D.

The set D is a r-MSDS of GF because of the following two reasons: (i) each x0
i is

dominated by either x+
i or x−i , and (ii) the domination requirement of each clause

vertex Cj is satisfied because each Cj is in D and, by assumption, each Cj contains

at least one variable with truth assignment and, by construction, the corresponding

vertex is in D. Therefore, GF has a r-MSDS of size k = n+m.
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We now establish the other direction by stating that if GF has a r-MSDS of size

k, then F is satisfiable. Let D be a r-MSDS in GF of size k = n + m. Then, since

rcj = +1 for j = 1 . . . ,m, every clause vertex must be in D. Also, each clause vertex

Cj ∀j and x0
i ∀i must be dominated by at least one vertex in D. This implies that

for each i either x+
i or x−i must be in D. The following truth assignment makes F

satisfiable : for each variable xi, assign xi True if xi ∈ D, otherwise assign xi False.

It is straightforward to see that this makes F satisfiable.

Now we show that Generalized Dominating Set problem is NP-Complete

for arbitrary graphs. Let the vertex where a leaf vertex is connected be a stem vertex.

Lemma 4. Consider a graph G = (V,E) with domination requirement r such that

each stem vertex has only one leaf vertex. If G has a GDS, then G has a GDS

including all stem vertices and excluding all leaf vertices.

Proof. Let D ⊂ V be a GDS in G. Then, for each stem v ∈ V and leaf u ∈ V pair,

we have the following two cases.

1. v ∈ D, u /∈ D.

2. v /∈ D, u ∈ D.

If all stem and leaf vertex pair in G satisfy Case 1, then we are done. If there is a

stem and leaf pair satisfying Case 2, we remove u from D and put v into D.

From Lemma 4, we know that if G has an optimal GDS, then it has an optimal GDS

including all stem vertices and excluding all leaf vertices.

Theorem 14. Generalized Dominating Set problem is NP-Complete.
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Proof. Obviously, the statement follows directly from the fact that Generalized

Dominating Set generalizes Dominating Set, which is a well known NP-complete

problem. However, we present more direct proof for an arbitrarily reasonable choice

of the domination requirement vector with 1 ≤ ri ≤ d(i) ∀i ∈ V . Namely, this

proof demonstrates that no matter how we select the domination requirement vector

r̂ for a given graph G, G and r̂ can be extended to obtain a larger instance of the

Generalized Dominating Set problem, which, if solved, yields a solution to the

Dominating Set problem in G. This clearly belongs to NP. Given an instance

〈G = (V,E), r, k〉, ri = 1 ∀i ∈ V , of DOMINATING SET, we construct an instance

〈G′ = (V ′, E ′), r′, k′〉 in polynomial time such that G has a dominating set of size k

if and only if G′ has a generalized dominating set of size k′. To construct G′, let

V
(i)

1 = {v(i)
j : j = 1, . . . , |r̂i| − 1} , V

(i)
2 = {u(i)

j : j = 1, . . . , |r̂i| − 1}

and

Ē = {(v(i)
j , u

(i)
j ) : i = 1, . . . , n, j = 1, . . . , |r̂i| − 1}.

We construct a graph G′ = (V ′, E ′), where

V ′ = V ∪ (∪n
i=1V

(i)
1 ) ∪ (∪ni=1V

(i)
2 )

and

E ′ = E ∪ Ē ∪ (∪ni=1{(i, v) : v ∈ V (i)
1 }).

We also define a domination requirement vector r′ for G′ as follows:

r′i =

 r̂i, if i ∈ V ;

1, o.w.
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Figure 5.4: Illustration of reduction for Generalized Dominating Set.

Setting k′ = k + | ∪ni=1 V
(i)

1 | completes the reduction. Note that this reduction

can be done in polynomial time. Figure 5.4 shows the construction example for

r = {1, 1, 1, 1, 1} and r̂ = {1, 2, 1, 3, 1}.

We now show that if there exists a dominating set of size k in G, then G′ has a

generalized dominating set of size k′. Let D ⊂ V be a dominating set of size k = |D|

in G. Then it is clear that D′ = D ∪ (∪ni=1V
(i)

1 ) dominates all vertices in G′. For

the other direction, let D′ be a generalized dominating set of size k′ in G′ such that

D′ includes all stem vertices and does not include any leaf vertex. The existence of

such D′ directly follows from Lemma 4. Then it is clear that D = D′ \ (∪ni=1V
(i)

1 ) is

a dominating set of size k = |D| for G.

The complexity result demonstrates that Generalized Dominating Set is hard

not only because it is a generalization of Dominating Set, but also it is a hard

problem in its own respect.

For a graph G with δ(G) ≥ k ≥ 2, if ri = k ∀i ∈ V , then we have a special case

of MGDS problem called Minimum k-dominating set problem. To the best of my

knowledge, there is no known hardness proof for an arbitrary value of k ≥ 2 for this

78



problem. Note that the reduction shown in Theorem 14 does not apply, since there

are leaf vertices with domination requirement 1 in that reduction.

Theorem 15. k-DOMINATING SET problem is NP-complete for any fixed pos-

itive integer k (2 ≤ k ≤ δ(G)).

Proof. Obviously, the statement follows directly from the fact that k-Dominating

Set generalizes Dominating Set. However, we provide more direct proof for any

positive integer k (2 ≤ k ≤ δ(G)). Namely, we demonstrate that no matter how we

select the integer k ≥ 2 for a given graph G, G can be extended to obtain a larger

instance of the k-Dominating Set problem, which, if solved, yields a solution to

the Dominating Set problem. This problem is clearly in NP. Given an instance

〈G = (V,E), c〉 of Dominating Set, we construct an instance 〈G′ = (V ′, E ′), c′〉 of

k-Dominating Set in polynomial time such that G has a dominating set of size c

if and only if G′ has a k-dominating set of size c′. To construct G′, we expand G by

adding (k−1) copies of complete graph of order k+3 for each vertex in G (i.e. we add

n(k-1) complete graphs of order k+3 in total). Denote the rth (r ∈ {1, . . . , k − 1})

such copy added for i ∈ V by Vir , where

Vir = {1ir , 2ir , . . . , (k + 3)ir}

. We construct a graph G′ = (V ′, E ′), where V ′ = V ∪ (∪i∈V,r∈{1,...,k−1}Vir) and

E ′ = E ∪ (∪i∈V,r∈{1,...,k−1}Eir) ∪ Ẽ

where

Eir = {(j, l)|j, l ∈ Vir}
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and

Ẽ = {(1ir , i)|i ∈ V, r ∈ {1, . . . , k − 1}}.

The set Eir represents the edges between each pair of vertices in Vir . The set Ẽ

includes the cross edges between each vertex i ∈ V and one vertex in each k − 1

clique copies. For instance, vertex 1 ∈ V is adjacent to vertices 111 , . . . , 11k−1 and

vertex 2 ∈ V is adjacent to 121 , . . . , 12k−1 and so on. If G is connected, by this

construction we know δ(G′) ≥ k since vertex j ∈ Vir has degG′(j) ≥ k + 2 and i ∈ V

has degG′(i) ≥ k. Putting c′ = c+ nk(k− 1) and assigning r′i = k ∀i ∈ V ′ completes

the reduction. Note that the instance 〈G′ = (V ′, E ′), c′〉 can be constructed in

polynomial time.

It is easy to see that if there exists a dominating set of size c in G, then G′ has

a k-dominating set of size c′ and vice versa.

This complexity result shows that k-Dominating Set is hard not only because it

is a generalization of Dominating Set, but also it is a hard problem in its own

respect.

5.3 IP formulations and polytopes

In this section, we demonstrate basic polyhedral properties of dominating set

polytope, r-SDS polytope, r-GSDS polytope, r-MSDS polytope, and r-GDS poly-

tope. For notational convenience, we use the following.

• V < ⊂ V : the set of vertices with ri < 0

• V = ⊂ V : the set of vertices with ri = 0

• V > ⊂ V : set of vertices with ri > 0
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In each formulation, the n-vector x of 0-1 variables is the characteristic vector of

each variation of dominating set for a graph G = (V,E). Let ei be the unit vector

with ith component 1 and the rest 0;
∑n

i=1 ei = e1 + . . . + en. We denote the n× n

identity matrix by I.

5.3.1 Dominating set

Given a graph G = (V,E) with V = {1, . . . , n} and the adjacency matrix A of G,

the following binary integer programming formulation can be used to solve minimum

dominating set problem:

minimize
n∑

i=1

xi

s.t. (A+ I)x ≥ 1,

xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}.

The dominating set polytope P (G) is given by

P (G) = conv({x ∈ {0, 1}n|(A+ I)x ≥ 1}).

The following theorem establishes the basic properties.

Theorem 16. Let P (G) denote the dominating set polytope of a graph G = (V,E).

Then, (1) dim(P (G)) = n; (2) xi ≥ 0 induces a facet if degG(u) > 1 ∀u ∈ N [i]; (3)

xi ≤ 1 induces facets of P (G) for every i ∈ V

Proof. Since the set of vertices V itself is a dominating set, the point
∑n

i=1 ei is in

P (G). Any vertex u ∈ V can be dominated by its neighboring vertex. Thus, the n

points
∑n

i=1,i 6=j ei for all j ∈ V are in P (G). Clearly these n + 1 points are affinely

independent and we obtain dim(P (G)) = n.
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Let F = {x ∈ P (G)|xi = 0} for which degG(u) > 1 ∀u ∈ N [i]. Obviously∑n
j=1,j 6=i ej is in F since degG(i) > ri. When two vertices i, k ∈ N [i] are not in the

dominating set, the domination requirements ri and rk can be satisfied by V \ {i, k}

since degG(i) > 1 and degG(k) > 1. Thus we have the points
∑n

j=1,j 6=i,j 6=k ej for all

k ∈ V \{i} in F . These n points are clearly affinely independent and dim(F ) = n−1.

Thus, it is a facet.

Let F = {x ∈ P (G)|xi = 1}. We first observe that any vertex set V \ {j}

such that j 6= i is a dominating set (i.e. j can be dominated by at least one of

its neighboring vertices in V \ {j}). Thus we have
∑n

j=1 ej and
∑n

j=1,j 6=k ej for all

k ∈ V \ {i} in F and these are n affinely independent points. Thus dim(F ) = n− 1

and it is a facet.

5.3.2 Selective dominating set

The following binary integer programming formulation can be used to solve MSDS

problem:

minimize
n∑

i=1

xi (5.1)

s.t. (A+ rI)x ≥ |r′|,

xi = 0,∀i ∈ V <

xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}.

where |r′| is a vector of absolute values of each element in r where r′i = 0 ∀i ∈ V =.

The SDS polytope P (G) is given by

P (G) = conv({x ∈ {0, 1}n|(A+ rI)x ≥ |r′|, xi = 0 ∀i ∈ V <}).
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Theorem 17. Let P (G) denote the selective dominating set polytope of G = (V,E)

with given r ∈ {−1, 0, 1}n. If d+
r (i) > 1 for all i ∈ V \ V = then, (1) dim(P (G)) =

n− |V <|; (2) xu ≤ 1 induces facets of P (G) for every u ∈ V \ V <.

Proof. We know that xi = 0 if ri = −1 since the vertex i ∈ V cannot be included in

r-SDS and we have |V <| linearly independent equalities and dim(P (G)) ≤ n− |V <|.

We claim that there exist n − |V <| + 1 affinely independent points in P (G). Since

we assumed that G has a feasible r-SDS,
∑

i∈V \V < ei is in P (G) (i.e. vectors with

xi = 1 ∀i ∈ V \ V < and xi = 0 ∀i ∈ V < are in P (G)). If d+
r (i) > 1 for all i ∈ V \ V =

then any set of vertices V \ (V <∪{k}) for each k ∈ V \V < is a feasible r-SDS. Thus

we have
∑

i∈V \V <,i 6=k ei for each k ∈ V \ V < in P (G). It is clear that these points∑
i∈V \V < ei and

∑
i∈V \V <,i 6=k ei for each k ∈ V \ V < are affinely independent. Thus

we have n−|V <|+1 affinely independent points in P (G) and dim(P (G)) = n−|V <|.

Let F = {x ∈ P (G)|xu = 1}, u ∈ V \ V <. We claim that there are n − |V <|

affinely independent points in F . Clearly,
∑

j∈V \V < ej is in F . Since d+
r (i) > 1 for

all i ∈ V \ V =, the points
∑

j∈V \V <,j 6=k ej + eu for all k ∈ V \ (V < ∪ {u}) are in

F . These n − |V <| points are obviously affinely independent. Therefore, we have

dim(F ) = n− |V <| − 1, and it is a facet.

5.3.3 Generalized selective dominating set

The mathematical programming formulation of GSDS can be stated in the fol-

lowing way:
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minimize
n∑

i=1

xi (5.2)

s.t. (A+ rI)x ≥ |r′|,

xi = 0,∀i ∈ V <

xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}.

where |r′| is a vector of absolute value of each element in r. The GSDS polytope

P (G) is given by

P (G) = conv({x ∈ {0, 1}n|(A+ rI)x ≥ |r′|, xi = 0 ∀i ∈ V <}).

Theorem 18. Let P (G) denote the generalized selective dominating set polytope

of G = (V,E) with given r ∈ RG. If d+
r (i) > |ri| for all i ∈ V \ V =, then (1)

dim(P (G)) = n− |V <|; (2) xu ≤ 1 induces facets of P (G) for every u ∈ V \ V <.

Proof. We know that xi = 0 if ri < 0 since the vertex i ∈ V cannot be included

in r-GSDS and we have |V <| linearly independent equalities. Thus, dim(P (G)) ≤

n − |V <|. We claim that there exist n − |V <| + 1 affinely independent points in

P (G). Since we assumed that G has a feasible r-GSDS,
∑

i∈V \V < ei is in P (G) (i.e.

vectors with xi = 1 ∀i ∈ V \ V < and xi = 0 ∀i ∈ V < are in P (G)). If d+
r (i) > |ri|

for all i ∈ V \ V = then any set of vertices V \ (V < ∪ {k}) for each k ∈ V \ V < is

a feasible r-GSDS. Thus we have
∑

i∈V \V <,i 6=k ei for each k ∈ V \ V < in P (G). It

is clear that these points
∑

i∈V \V < ei and
∑

i∈V \V <,i 6=k ei for each k ∈ V \ V < are

affinely independent. Thus we have n−|V <|+1 affinely independent points in P (G)

and dim(P (G)) = n− |V <|.

Let F = {x ∈ P (G)|xu = 1}, u ∈ V \ V <. We claim that there are n − |V <|
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affinely independent points in F . Clearly,
∑

j∈V \V < ej is in F because we assumed

that G has a feasible solution. Since d+
r (i) > |ri| for all i ∈ V \ V =, the points∑

j∈V \V <,j 6=k ej for all k ∈ V \V < \{u} are in F . These n−|V <| points are obviously

affinely independent. Thus we have dim(F ) = n− |V <| − 1, and it is a facet.

5.3.4 Mixed selective dominating set

Let V +1 = {i ∈ V |ri = +1}. Then the following binary integer programming

formulation can be used to solve MMSDS problem:

minimize
n∑

i=1

xn

s.t. (A+ rI)x ≥ |r′|,

xi = 0,∀i ∈ V <

xi = 1,∀i ∈ V +1

xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}.

where |r′| is a vector of absolute value of each element in r and r′i = 2 ∀i ∈ V +1.

Note that r′i = 2 ∀i ∈ V +1 is to satisfy the domination requirement of i ∈ V +1. The

MSDS polytope P (G) is given by

P (G) = conv({x ∈ {0, 1}n|(A+ rI)x ≥ |r′|, xi = 0 ∀i ∈ V <, xi = 1 ∀i ∈ V +1).

Theorem 19. Let P (G) denote the mixed selective dominating set polytope of G =

(V,E) with given r ∈ {−1, 0, 1,+1}n and d̄+
r (i) = |{j ∈ N(i)|rj ∈ {0, 1}}| for i ∈ V .

If d̄+
r (i) > 1 for all i ∈ V \ V = then, (1) dim(P (G)) = n − |V < ∪ V +1|; (2) xu ≤ 1

induces facets of P (G) for every u ∈ V \ (V < ∪ V +1).

Proof. We know that xi = 0 if ri = −1 since the vertex i ∈ V cannot be included in
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r-MSDS and xi = 1 if ri = +1 since the vertex i ∈ V must be in r-MSDS. We have

|V < ∪ V +1| linearly independent equalities and dim(P (G)) ≤ n − |V < ∪ V +1|. We

claim that there exist n− |V < ∪V +1|+ 1 affinely independent points in P (G). Since

we assumed that G has a feasible r-MSDS,
∑

i∈V−V < ei is in P (G) (i.e. vectors with

xi = 1 ∀i ∈ V \ V < and xi = 0 ∀i ∈ V < are in P (G)). If d̄+
r (i) > 1 for all i ∈ V \ V =

then any set of vertices V \(V <∪{k}) for each k ∈ V \(V <∪V +1) is feasible r-MSDS.

Thus we have
∑

i∈V \V <,i 6=k ei for each k ∈ V \ (V < ∪ V +1) in P (G). It is clear that

these points
∑

i∈V \V < ei and
∑

i∈V \V <,i 6=k ei for each k ∈ V \ (V < ∪ V +1) are affinely

independent. Thus we have n− |V < ∪ V +1|+ 1 affinely independent points in P (G)

and dim(P (G)) = n− |V < ∪ V +1|.

Let F = {x ∈ P (G)|xu = 1}, u ∈ V \ (V < ∪ V +1). We claim that there are

n−|V <∪V +1| affinely independent points in F . Clearly,
∑

j∈V \V < ej is in F because

we assumed that G has feasible r-MSDS. Since d̄+
r (i) > 1 for all i ∈ V \ V =, the

points
∑

j∈V \V <,j 6=k ej for all k ∈ V \(V <∪V +1∪{u}) are in F . These n−|V <∪V +1|

points are obviously affinely independent. Thus we have dim(F ) = n−|V <∪V +1|−1

and it is a facet.

5.3.5 Generalized dominating set ([ri]
n
i=1 1 ≤ ri ≤ d(i))

The following binary integer programming formulation can be used to solve the

MGDS problem:

minimize
n∑

i=1

xi

s.t. (A+ rI)x ≥ r,

xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}.
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where 1 ≤ ri ≤ d(i) ∀i ∈ V . The GDS polytope P (G) is given by

P (G) = conv({x ∈ {0, 1}n|(A+ rI)x ≥ r})

Theorem 20. Let P (G) denote the GDS polytope of a graph G = (V,E) with domi-

nation requirement [ri]
n
i=1 such that 1 ≤ ri ≤ d(i) ∀i ∈ V . Then, (1) dim(P (G)) = n;

(2) xi ≥ 0 induces a facet of P (G) if degG(u) > ru ∀u ∈ N [i]; (3) xi ≤ 1 induces a

facet of P (G) for every i ∈ V .

Proof. Obviously, the point
∑n

i=1 ei is in P (G) since the vertex set V itself is a r-

GDS. Since 1 ≤ ri ≤ degG(i) ∀i ∈ V , V \{i} dominates vertex i (i.e. the vertex i has

degG(i) neighbors in V \ {i} and the domination requirement of i is satisfied). Thus

for any i ∈ V , the vertex set V \ {i} is a r-GDS. Then we have n points
∑n

i=1,i 6=j ei

for each j ∈ V in P (G). Clearly these n + 1 points are affinely independent. Thus

dim(P (G)) = n.

Let F = {x ∈ P (G)|xi = 0} for which degG(u) > ru ∀u ∈ N [i]. Obviously∑n
j=1,j 6=i ej is in F since degG(i) > ri. For vertex i and any vertex k ∈ V \ {i}, the

set of vertices V \{i, k} satisfies the domination requirement of all vertices in G since

by assumption degG(u) > ru ∀u ∈ N [i]. Thus we have the points
∑n

j=1,j 6=i,j 6=k ej for

every k ∈ V \ {i} in P (G). These n points are clearly affinely independent and

dim(F ) = n− 1. Thus it is a facet.

Let F ′ = {x ∈ P (G)|xi = 1}. The vector
∑n

j=1 ej is obviously in F ′ since V itself

is a r-GDS. Since degG(j) > rj ∀j ∈ V , any vertex set V \ {j} such that j 6= i is

a r-GDS (i.e. vertex j can be dominated by at least rj number of its neighbors in

V \ {j}). Thus we have
∑n

j=1,j 6=k ej for every k ∈ V \ {i} in F ′. We found n points

in F ′ and they are affinely independent. Therefore dim(F ′) = n − 1, and it is a

facet.
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5.4 Analytical bounds

Let the size of the smallest k-dominating set be k-domination number, γk(G).

Similarly, let the size of the smallest r-GDS be generalized domination number cor-

responding to r, γr(G). Note that every k-dominating set (k ≥ 1) is a dominating

set in the usual sense; thus for every graph we have γ(G) ≤ γk(G) for each k ≥ 1. A

minimum 1-dominating set is a minimum dominating set and γ(G) = γ1(G). More

generally, if 1 ≤ d ≤ k, then every k-dominating set in G is also an d-dominating

set and thus γd(G) ≤ γk(G). Similarly, every r-GDS is a dominating set in the usual

sense; thus for every graph G, we have γ(G) ≤ γr(G). In particular, if ri = 1,∀i ∈ V ,

a minimum r-dominating set is a minimum dominating set and γ(G) = γr(G). More

generally, if k ≤ min{ri}, then every r-dominating set in G is also a k-dominating

set and thus γk(G) ≤ γr(G). If max{ri} ≤ k, then every k-dominating set is also

r-dominating set and thus γr(G) ≤ γk(G).

We have the following theorem from Fink and Jacobson concerning minimum domi-

nating set problem.

Theorem 21. [36] If D is a minimum dominating set of a graph G, then at least

one vertex in V −D is dominated by no more than two vertices in D.

From this theorem, we get the following result for r-GDS.

Corollary 2. Given a graph G = (V,E) and the domination requirement 1 ≤ ri ≤

degG(i) ∀i ∈ V , if mini∈V {ri} ≥ 3, then γr(G) > γ(G).

Proof. From Theorem 21, if min{ri} ≥ 3, no minimum dominating set in G can be

a r-GDS, since every minimum dominating set will dominate at least one vertex at

most twice.
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The next theorem generalizes the lower bound for k-dominating set shown in [36].

Note that Corollary 2 is also implied by this theorem.

Theorem 22. Given a graph G = (V,E) and the domination requirement 2 ≤ ri ≤

degG(i) ∀i ∈ V , if mini∈V {ri} = c then γr(G) ≥ γ(G) + c− 2.

Proof. Let Dr be a minimum r-GDS in G. Let u ∈ V −Dr and v1, . . . , vru ∈ Dr be

distinct vertices that dominate u. Note that the condition d(i) ≥ ri ∀i ∈ V implies

that V −Dr 6= ∅ since there is always an r-GDS which does not contain a vertex i

such that d(i) = ∆(G). Since Dr is an r-GDS with ri ≥ c ≥ 2 ∀i ∈ V , each vertex

i ∈ V −Dr is dominated by at least c vertex in Dr. In other words, each vertex in

V −Dr is dominated by at least one vertex in Dr − {v2, . . . , vc}. Therefore, since u

dominates each vertex in v2, . . . , vc, we know that D = Dr − {v2, . . . , vc} ∪ {u} is a

dominating set in G. Thus γ(G) ≤ |D| = γr(G)− (c− 1) + 1 = γr(G)− c+ 2.

Although Theorem 22 gives a lower bound on γr(G), it is still difficult to get the lower

bound because γ(G) is difficult to obtain since the minimum dominating set problem

is NP-complete also. In [36], Fink and Jacobson show a lower bound of γk(G) using

the maximum degree ∆(G). By similar argument, we can show the following.

Theorem 23. For any graph G = (V,E), if mini∈V {ri} = c, then γr(G) ≥ cn
∆(G)+c

.

Proof. Let Dr be a minimum r-GDS and s be the number of edges between Dr and

V − Dr. Since the degree of each vertex in Dr is at most ∆(G), s ≤ ∆(G)γr(G).

But since each vertex in V − Dr is adjacent to at least c vertices in Dr, we have

s ≥ c(n−γr(G)). Combining the two inequalities, we know that γr(G) ≥ cn
∆(G)+c

.

The following theorem, which extends the result of γk in [36], gives a lower bound

that can be computed using the number of vertices and edges of a graph.
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Theorem 24. For a graph G = (V,E) with |V | = n and |E| = m, if mini∈V {ri} = c,

then γr(G) ≥ n− m
c

Proof. Let Dr be a minimum r-GDS in G. Since each vertex in V −Dr is dominated

by at least c or more vertices in Dr, it follows that m ≥ c|V − Dr| = c(n − γr(G))

and thus γr(G) ≥ n− m
c

5.5 Numerical experiments

In this section, we present some numerical test results of the considered problems

on two different classes of graphs: random unit disk graphs and DIMACS Implemen-

tation Challenge instances [31]. All computational experiments were conducted on

a Dell Precision WorkStation T7500 R© computer with eight 2.40 GHz Intel Xeon R©

processors, and 12 GB RAM. As a solver, ILOG CPLEX 12.1 R© was used. In section

5.5.1, we use CPLEX 12.1 R© to solve MDS, MSDS, MGSDS, MMSDS and MGDS

problems on random unit disk graphs. In section 5.5.2, we solve MGDS problem

using simulated annealing (SA) and CPLEX 12.1 R© on random unit disk graphs and

DIMACS instances.

5.5.1 Test results on random unit disk graphs

Several random unit disk graphs are generated such that the number of nodes and

the communication thresholds are specified as sets of parameters. Given a square

box of a certain size, we randomly generate points having ‘x’ and ‘y’ coordinates,

where each coordinate is uniformly distributed between 0 and the length of the box.

The parameters used to construct these graphs are the same as used in [19] except

the number of vertices in the graphs. Instead of n = 100 and n = 150, we use

n = 500 and n = 800 to create more challenging instances since the preliminary

experiments with CPLEX 12.1 R© show n = 100 and n = 150 generate easy instances

for all problems.
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Each problem is solved with a time limit of 3, 600 seconds. We report the op-

timum objective function value (if optimal is found), solving time, and optimality

gap (%). This preliminary experiment is conducted to see if different values of dom-

ination requirement impose different relative difficulty of the problem. Domination

requirement for each problem is assigned in the following manner;

• MDS: ri = 1 ∀i ∈ V

• MSDS: randomly set 5%, 5%, and 90% of vertices to have domination require-

ment of −1, 0, and 1, respectively.

• MGSDS: randomly set 3%, 3%, and 94% of vertices to have domination re-

quirement of < 0, 0, and > 0, respectively. If a vertex i ∈ V is selected to have

ri < 0, we set ri = −b0.2d(i)c, and similarly if vertex i ∈ V is selected to have

ri > 0, we set ri = d0.2d(i)e.

• MMSDS: randomly set 3%, 3%, 3%, and 91% of vertices to have domination

requirement of −1, 0,+1, and 1, respectively.

• MGDS: ri = d0.2d(i)e∀i ∈ V .

We only consider instances with a feasible solution. Existence of a feasible solution

can be easily checked by computing the open-neighborhood of each vertex. Table 5.1

and 5.2 show the experiment results on n = 500 and 800, respectively. For these test

instances, we can see that MDS and MSDS problems are relatively easier to solve

than other problems for CPLEX 12.1 R©. For MGSDS, MMSDS and MGDS problems

there is a tendency for an instance with low density to give a larger optimality gap

than a denser one.
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5.5.2 Test results for simulated annealing

Sanchis et al. [90] introduce several heuristic algorithms for MDS problem and

report their performances on random unit disk graphs. [54] applied SA for MDS

problem and performed numerical experiments on random unit disk graphs created

using the same parameters as in [90]. The experimental results in [54] demonstrated

that SA solves MDS very efficiently. We apply SA to solve MGDS problem on random

unit disk graphs with parameters as in [90, 54]. Table 5.3, 5.4, and 5.5 show the test

results. In these Tables, the column GR shows the results of a greedy algorithm. In

each iteration of GR, a vertex which could satisfy the most unsatisfied domination

requirement is added to generalized dominating set. GR and SA are applied 10

times in each instance and the best, average, and standard deviations of the size

of generalized dominating set are reported. In comparison with CPLEX 12.1 R©, the

better solution is highlighted in bold.

In order to help the replication of the test result for future research, we per-

form numerical experiments on DIMACS Implementation Challenge instances. For

instances with n ≤ 4100, both SA and CPLEX 12.1 R© are applied and for instance

with n ≥ 4700 only SA is applied. Table 5.6 through 5.10 show the test results on

instances with n ≤ 4100, and Table 5.11 and 5.12 present the result for n ≥ 4700.
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Table 5.1: Test results on random unit disk graphs with n = 500.

MDS MSDS MGSDS MMSDS MGDS
dimensions radius ρ(G) opt time gap opt time gap opt time gap opt time gap opt time gap
100× 100 20 0.11 11 0 0.00 11 0 0.00 ≤ 100 > 3600 0.13 ≤ 100 > 3600 0.13 ≤ 100 > 3600 0.13

25 0.16 8 0 0.00 8 0 0.00 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12
30 0.22 6 0 0.00 6 0 0.00 ≤ 94 > 3600 0.08 ≤ 94 > 3600 0.08 ≤ 94 > 3600 0.08
35 0.28 4 0 0.00 4 0 0.00 ≤ 98 > 3600 0.12 ≤ 98 > 3600 0.12 ≤ 98 > 3600 0.12
40 0.34 4 0 0.00 4 0 0.00 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09
45 0.41 4 0 0.00 4 0 0.00 ≤ 96 > 3600 0.07 ≤ 96 > 3600 0.07 ≤ 96 > 3600 0.07
50 0.48 3 0 0.00 3 0 0.00 ≤ 94 > 3600 0.05 ≤ 94 > 3600 0.05 ≤ 94 > 3600 0.05

120× 120 20 0.08 16 0 0.00 16 0 0.00 ≤ 102 > 3600 0.14 ≤ 102 > 3600 0.14 ≤ 102 > 3600 0.14
25 0.11 11 0 0.00 11 0 0.00 ≤ 101 > 3600 0.13 ≤ 101 > 3600 0.13 ≤ 101 > 3600 0.13
30 0.16 8 0 0.00 8 0 0.00 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12
35 0.21 6 0 0.00 6 0 0.00 ≤ 93 > 3600 0.07 ≤ 93 > 3600 0.07 ≤ 93 > 3600 0.07
40 0.26 5 0 0.00 5 0 0.00 ≤ 97 > 3600 0.11 ≤ 97 > 3600 0.11 ≤ 97 > 3600 0.11
45 0.31 4 0 0.00 4 0 0.00 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09
50 0.37 4 0 0.00 4 0 0.00 ≤ 96 > 3600 0.07 ≤ 96 > 3600 0.07 ≤ 96 > 3600 0.07

140× 140 30 0.12 11 0 0.00 10 0 0.00 ≤ 99 > 3600 0.12 ≤ 99 > 3600 0.12 ≤ 99 > 3600 0.12
35 0.16 8 0 0.00 8 0 0.00 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12
40 0.20 7 0 0.00 7 0 0.00 ≤ 95 > 3600 0.09 ≤ 95 > 3600 0.09 ≤ 95 > 3600 0.09
45 0.24 5 0 0.00 5 0 0.00 ≤ 95 > 3600 0.09 ≤ 95 > 3600 0.09 ≤ 95 > 3600 0.09
50 0.29 4 0 0.00 4 0 0.00 ≤ 98 > 3600 0.11 ≤ 98 > 3600 0.11 ≤ 98 > 3600 0.11
55 0.33 4 0 0.00 4 0 0.00 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09
60 0.38 4 0 0.00 4 0 0.00 ≤ 97 > 3600 0.08 ≤ 97 > 3600 0.08 ≤ 97 > 3600 0.08

160× 160 30 0.09 13 0 0.00 13 0 0.00 ≤ 102 > 3600 0.14 ≤ 102 > 3600 0.14 ≤ 101 > 3600 0.13
35 0.12 10 0 0.00 10 0 0.00 ≤ 99 > 3600 0.12 ≤ 99 > 3600 0.12 ≤ 99 > 3600 0.12
40 0.16 8 0 0.00 8 0 0.00 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12 ≤ 100 > 3600 0.12
45 0.19 7 0 0.00 7 0 0.00 ≤ 95 > 3600 0.09 ≤ 95 > 3600 0.09 ≤ 95 > 3600 0.09
50 0.23 5 0 0.00 5 0 0.00 ≤ 94 > 3600 0.08 ≤ 94 > 3600 0.08 ≤ 94 > 3600 0.08
55 0.27 5 0 0.00 5 0 0.00 ≤ 98 > 3600 0.11 ≤ 98 > 3600 0.11 ≤ 98 > 3600 0.11
60 0.31 4 0 0.00 4 0 0.00 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09 ≤ 97 > 3600 0.09

Table 5.2: Test results on random unit disk graphs with n = 800.

MDS MSDS MGSDS MMSDS MGDS
dimensions radius ρ(G) opt time gap opt time gap opt time gap opt time gap opt time gap
120× 120 50 0.36 4 0 0.00 4 0 0.00 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07

55 0.42 4 0 0.00 4 0 0.00 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06
60 0.47 3 1 0.00 3 0 0.00 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07
65 0.53 3 0 0.00 3 1 0.00 ≤ 145 > 3600 0.01 ≤ 145 > 3600 0.01 ≤ 145 > 3600 0.01
70 0.59 2 1 0.00 2 0 0.00 152 1 0.00 152 1 0.00 152 1 0.00
75 0.64 2 0 0.00 2 0 0.00 155 1 0.00 155 1 0.00 155 1 0.00
80 0.70 2 0 0.00 2 0 0.00 158 2 0.00 158 2 0.00 158 2 0.00

140× 140 50 0.28 4 0 0.00 4 0 0.00 ≤ 157 > 3600 0.10 ≤ 157 > 3600 0.10 ≤ 157 > 3600 0.10
55 0.33 4 0 0.00 4 0 0.00 ≤ 156 > 3600 0.10 ≤ 156 > 3600 0.10 ≤ 156 > 3600 0.10
60 0.38 4 0 0.00 4 0 0.00 ≤ 152 > 3600 0.06 ≤ 152 > 3600 0.06 ≤ 152 > 3600 0.06
65 0.43 4 0 0.00 4 0 0.00 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06
70 0.47 3 1 0.00 3 0 0.00 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07
75 0.52 3 1 0.00 3 0 0.00 ≤ 146 > 3600 0.02 ≤ 146 > 3600 0.02 ≤ 146 > 3600 0.02
80 0.57 2 1 0.00 2 0 0.00 150 1 0.00 150 1 0.00 150 1 0.00

160× 160 50 0.23 6 0 0.00 6 1 0.00 ≤ 148 > 3600 0.07 ≤ 148 > 3600 0.07 ≤ 148 > 3600 0.07
55 0.27 5 0 0.00 5 1 0.00 ≤ 155 > 3600 0.09 ≤ 155 > 3600 0.09 ≤ 155 > 3600 0.09
60 0.31 4 1 0.00 4 1 0.00 ≤ 157 > 3600 0.10 ≤ 157 > 3600 0.10 ≤ 157 > 3600 0.10
65 0.35 4 0 0.00 4 0 0.00 ≤ 155 > 3600 0.09 ≤ 155 > 3600 0.09 ≤ 155 > 3600 0.09
70 0.39 4 0 0.00 4 0 0.00 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06
75 0.43 4 0 0.00 4 0 0.00 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06 ≤ 153 > 3600 0.06
80 0.47 3 0 0.00 3 0 0.00 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07

180× 180 50 0.19 7 0 0.00 7 1 0.00 ≤ 153 > 3600 0.10 ≤ 153 > 3600 0.10 ≤ 153 > 3600 0.10
55 0.22 6 0 0.00 6 0 0.00 ≤ 147 > 3600 0.06 ≤ 147 > 3600 0.06 ≤ 147 > 3600 0.06
60 0.25 5 1 0.00 5 0 0.00 ≤ 152 > 3600 0.07 ≤ 152 > 3600 0.07 ≤ 152 > 3600 0.07
65 0.29 4 1 0.00 4 0 0.00 ≤ 157 > 3600 0.11 ≤ 157 > 3600 0.11 ≤ 157 > 3600 0.11
70 0.33 4 0 0.00 4 0 0.00 ≤ 155 > 3600 0.09 ≤ 155 > 3600 0.09 ≤ 155 > 3600 0.09
75 0.36 4 0 0.00 4 0 0.00 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07 ≤ 153 > 3600 0.07
80 0.40 4 0 0.00 4 0 0.00 ≤ 152 > 3600 0.05 ≤ 152 > 3600 0.05 ≤ 152 > 3600 0.05
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Table 5.3: Test results of GR, SA and CPLEX 12.1 R© on Sanchis instances with
ri = d0.3d(i)e ∀i ∈ V .

GR SA CPLEX
dimensions range n best avg std time best avg std time opt time gap
400× 400 60 80 27 27.6 0.5 0 26 26 0 0.1 26 0 0

70 80 26 27.8 0.9 0 24 24 0 0.2 24 0.1 0
80 80 25 26.5 0.8 0 23 23 0 0.2 23 0.2 0
90 80 24 25.4 0.8 0 23 23 0 0.2 23 0.6 0

100 80 26 26.4 0.5 0 23 23 0 0.2 23 0.9 0
110 80 27 27.9 0.4 0 24 24 0 0.2 24 8.3 0
120 80 26 26.9 0.8 0 23 23 0 0.3 23 2 0

600× 600 80 100 32 33.5 0.9 0 31 31 0 0.2 31 0 0
90 100 32 33.9 1.1 0 29 29 0 0.2 29 0 0

100 100 31 33 1.4 0 28 28 0 0.2 28 0.1 0
110 100 32 32.8 0.8 0 29 29 0 0.2 29 1.1 0
120 100 31 32.9 0.9 0 28 28 0 0.2 28 0.4 0

700× 700 70 200 66 68.1 1.3 0 60 60.3 0.4 0.5 60 0.8 0
80 200 63 65.8 1.1 0 59 59.9 0.4 0.6 59 14.2 0
90 200 64 67 1.5 0 58 58.8 0.4 0.7 58 314.5 0

100 200 64 65.9 1.4 0 57 57.7 0.5 0.8 57 3165.1 5.1
110 200 63 66.1 1.4 0 57 57 0 0.9 ≤ 57 > 3600 6
120 200 64 65.8 1.2 0 57 57.9 0.3 1 ≤ 57 > 3600 0

1000× 1000 100 200 66 68.1 1.3 0 60 60.3 0.4 0.5 60 0.5 0
110 200 64 67.2 1.4 0 59 59.4 0.5 0.6 59 4.9 0
120 200 64 66.3 1.3 0 58 58 0 0.7 58 301 0
130 200 65 67 1.3 0 58 59 0.2 0.7 ≤ 59 > 3600 0
140 200 63 64.8 1.4 0 57 57.1 0.2 0.8 57 2429.8 0
150 200 64 67.3 1.5 0 58 58 0 0.8 ≤ 58 > 3600 4.1
160 200 62 65.7 1.5 0 57 57.4 0.5 0.9 ≤ 57 > 3600 3.7

1500× 1500 130 250 82 83.9 1.1 0 76 76 0 0.8 76 1.3 0
140 250 79 82 1.7 0 73 73 0 0.8 73 1.7 0
150 250 80 82.3 1.2 0 73 73.8 0.4 0.8 73 69.6 0
160 250 81 83.4 1 0 72 72.4 0.5 0.9 72 123.3 0

2000× 2000 180 300 96 98 1.2 0 86 86 0 1.2 86 21.7 0
190 300 96 98.1 1.1 0 87 87 0 1.1 ≤ 87 > 3600 2.1
200 300 98 100.9 1.6 0 87 87.2 0.4 1.2 ≤ 87 > 3600 3.1
210 300 95 97.3 1.4 0 86 87.2 0.6 1.2 ≤ 87 > 3600 5.3
220 300 99 100.1 0.9 0 87 87.9 0.5 1.3 ≤ 87 > 3600 5.5

2500× 2500 200 350 113 116.4 1.9 0 101 101.9 0.3 1.3 101 64.4 0
210 350 114 116.1 1.5 0 103 103 0 1.3 ≤ 102 > 3600 0
220 350 112 114.8 1.7 0 100 100.9 0.3 1.3 100 2308.7 0
230 350 113 115.7 1.6 0 101 102.2 0.7 1.4 ≤ 101 > 3600 3.3

3000× 3000 210 400 128 131.5 2.4 0 120 120.1 0.2 1.3 120 1.6 0
220 400 132 136.7 2.2 0 121 121 0 1.4 121 7.3 0
230 400 130 133.7 1.5 0 119 119.3 0.5 1.4 ≤ 118 2831.5 0
240 400 129 132.5 1.8 0 116 117 0.3 1.5 ≤ 116 > 3600 2.8
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Table 5.4: Test results of GR, SA and CPLEX 12.1 R© on Sanchis instances with twice
more number of vertices with ri = d0.3d(i)e ∀i ∈ V . Better solution is highlighted
in bold.

GR SA CPLEX
dimensions range n best avg std time best avg std time opt time gap
400× 400 60 160 52 54.4 1.1 0 47 47 0 0.6 47 108 0

70 160 53 54.2 0.7 0 47 47.6 0.5 0.7 47 1497.8 0
80 160 51 53.5 1.2 0 46 46.5 0.5 0.8 ≤ 46 > 3600 4.1
90 160 48 50.7 1.1 0 45 45.7 0.5 1 ≤ 45 > 3600 4.7

100 160 48 51 1.2 0 46 46.6 0.5 1 ≤ 45 > 3600 4.2
110 160 49 50.3 0.8 0 46 46.5 0.5 1.3 ≤ 46 > 3600 6.7
120 160 49 51 1.1 0 46 46.2 0.4 1.5 ≤ 45 > 3600 4.2

600× 600 80 200 64 66.2 1.5 0 58 58.2 0.4 0.8 58 2404.1 0
90 200 64 67.3 1.5 0 57 58 0 0.8 ≤ 57 > 3600 4.1

100 200 64 66 1.1 0 56 56.9 0.4 1 ≤ 56 > 3600 5.2
110 200 64 66 1 0 57 58.4 0.6 1.1 ≤ 58 > 3600 8.8
120 200 64 65.5 1 0 58 58.3 0.4 1.2 ≤ 58 > 3600 9.6

700× 700 70 400 130 132.5 1.7 0 114 115.5 0.7 1.9 ≤ 114 > 3600 7.2
80 400 125 128.1 1.8 0 113 113.8 0.5 2.2 ≤ 114 > 3600 10.1
90 400 128 131.2 1.8 0 116 117.9 0.5 2.5 ≤ 118 > 3600 13.4

100 400 125 128.2 1.8 0 114 116 0.7 2.8 ≤ 115 > 3600 13.6
110 400 124 127.8 1.4 0 116 116.5 0.6 3.1 ≤ 116 > 3600 14.6
120 400 125 128.9 1.5 0 115 117.6 1 3.6 ≤ 117 > 3600 15.5

1000× 1000 100 400 130 132.5 1.7 0 114 115.5 0.7 1.6 ≤ 114 > 3600 7.2
110 400 126 129.3 2.2 0.1 113 115.4 0.6 1.8 ≤ 114 > 3600 9
120 400 127 130.9 1.7 0 115 116.2 0.5 2 ≤ 116 > 3600 12.1
130 400 127 130.7 2.2 0 116 117.3 0.8 2.2 ≤ 116 > 3600 12.4
140 400 125 128.1 1.4 0.1 114 116.4 0.5 2.5 ≤ 116 > 3600 13.9
150 400 129 130.6 1.2 0 115 116.3 0.8 2.6 ≤ 116 > 3600 14.2
160 400 126 128.1 1.4 0 115 116.6 0.9 3 ≤ 116 > 3600 14.4

1500× 1500 130 500 157 162.4 2.3 0 144 144.9 0.7 2.7 ≤ 144 > 3600 8.9
140 500 159 163.7 2.5 0 143 145.1 0.7 2.7 ≤ 146 > 3600 11.6
150 500 162 164.9 1.8 0 145 146.9 0.7 2.9 ≤ 147 > 3600 12.5
160 500 161 163.9 1.6 0 144 146.2 0.9 2.8 ≤ 147 > 3600 13.3

2000× 2000 180 600 193 197.3 2.2 0 172 173.8 0.9 3.4 ≤ 173 > 3600 11.9
190 600 194 197.3 2.1 0 175 176 0.9 3.8 ≤ 176 > 3600 13.2
200 600 195 199 2.6 0 173 176 0.8 3.8 ≤ 176 > 3600 14.2
210 600 193 196.5 2.4 0 174 175.8 0.6 4 ≤ 176 > 3600 14.9
220 600 189 193.4 1.8 0 173 174.7 0.8 4.2 ≤ 172 > 3600 13.7

2500× 2500 200 700 223 227.3 1.9 0 201 202.9 0.9 4.1 ≤ 203 > 3600 12.6
210 700 224 227.6 2.4 0 200 201.6 0.8 4.5 ≤ 202 > 3600 12.8
220 700 225 229 2.3 0 201 204.1 1 4.5 ≤ 206 > 3600 14.2
230 700 224 228.5 1.9 0 203 205 0.7 4.6 ≤ 205 > 3600 14.5

3000× 3000 210 800 259 265.3 2.9 0 229 230.8 0.9 4.6 ≤ 234 > 3600 12.1
220 800 256 263.2 2.8 0.1 229 231.3 0.7 5 ≤ 234 > 3600 13.1
230 800 253 259 2.6 0 228 230.5 0.7 5.1 ≤ 230 > 3600 12.2
240 800 256 259.9 2.3 0 229 231 1 5.3 ≤ 233 > 3600 14.2
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Table 5.5: Test results of GR, SA and CPLEX 12.1 R© on Sanchis instances with
three times more number of vertices with ri = d0.3d(i)e ∀i ∈ V . Better solution is
highlighted in bold.

GR SA CPLEX
dimensions range n best avg std time best avg std time opt time gap
400× 400 60 240 78 79.9 1.3 0 69 69.3 0.4 0.8 ≤ 69 > 3600 7.3

70 240 78 79.1 0.9 0.1 70 70.4 0.5 0.9 ≤ 70 > 3600 11.8
80 240 77 78.2 0.8 0 69 70.1 0.7 1.2 ≤ 69 > 3600 11.1
90 240 76 78.4 1.1 0 69 70.4 0.7 1.6 ≤ 69 > 3600 12.1

100 240 75 78.8 1.6 0 70 71.2 0.6 1.9 ≤ 70 > 3600 13.1
110 240 75 76.8 0.9 0 70 70.7 0.5 2.4 ≤ 69 > 3600 12.2
120 240 75 76.5 1.1 0 69 69.5 0.5 3.2 ≤ 68 > 3600 10.9

600× 600 80 300 96 98.9 1.6 0 85 86.1 0.6 1.1 ≤ 86 > 3600 9.3
90 300 95 96.9 1.2 0 85 86.5 0.7 1.4 ≤ 87 > 3600 12.1

100 300 94 96.8 1.1 0 86 87.2 0.5 1.6 ≤ 88 > 3600 13.5
110 300 94 96.5 1.3 0 88 88.5 0.5 1.7 ≤ 88 > 3600 14.3
120 300 94 96.1 1.1 0 87 88.2 0.6 2.2 ≤ 89 > 3600 15.5

700× 700 70 600 194 198.7 2.4 0 173 175.5 1 3.7 ≤ 177 > 3600 14.8
80 600 188 192.8 2.2 0 174 175.3 0.9 4.2 ≤ 177 > 3600 16.3
90 600 194 196.7 1.5 0.1 176 177.2 0.8 5.3 ≤ 179 > 3600 17.8

100 600 192 194.8 1.4 0 177 179 1.1 6.4 ≤ 178 > 3600 17.7
110 600 193 195.6 1.4 0 177 178.2 0.8 7.7 ≤ 176 > 3600 17
120 600 196 199.9 2 0.1 180 181 0.7 9.4 ≤ 181 > 3600 19.3

1000× 1000 100 600 194 198.7 2.4 0 173 175.5 1 3.7 ≤ 174 > 3600 13.3
110 600 189 192.7 1.9 0 173 174.5 0.7 4.2 ≤ 173 > 3600 14.3
120 600 191 193.7 1.5 0 174 175.6 0.9 5 ≤ 177 > 3600 16.4
130 600 194 196 1.2 0 177 177.9 0.8 5.3 ≤ 180 > 3600 18.2
140 600 192 196.2 1.7 0 177 178.8 0.8 6 ≤ 179 > 3600 18.1
150 600 191 193.6 1.7 0 176 178.7 1 6.6 ≤ 181 > 3600 18.9
160 600 191 194.6 2.2 0.1 176 178.5 0.9 8 ≤ 177 > 3600 17.5

1500× 1500 130 750 240 244.3 2.5 0 218 219.3 0.8 4.9 ≤ 221 > 3600 14.9
140 750 239 242 1.8 0 217 219.7 1.1 5.3 ≤ 219 > 3600 15.3
150 750 243 246.1 2.1 0.1 221 222.2 1 5.8 ≤ 223 > 3600 17
160 750 237 241.8 2.2 0 218 220.4 1.1 6.4 ≤ 223 > 3600 17.6

2000× 2000 180 900 286 290.7 2 0.1 262 263.5 0.9 7.3 ≤ 266 > 3600 16.9
190 900 287 291.4 2.1 0.1 264 266 1.2 7.6 ≤ 272 > 3600 19
200 900 291 295.7 2.9 0 267 268.7 0.9 8.4 ≤ 270 > 3600 18.3
210 900 288 291.4 2 0.1 265 267.8 1.2 9.4 ≤ 268 > 3600 17.8
220 900 286 289.2 2.1 0 267 268.3 0.7 9.6 ≤ 270 > 3600 18.9

2500× 2500 200 1050 333 338.2 2.5 0 305 307 1 8.9 ≤ 313 > 3600 17.9
210 1050 336 340.1 2.7 0 305 306.7 1.2 9.6 ≤ 310 > 3600 17.6
220 1050 336 339.7 2 0 309 311.3 1 10 ≤ 320 > 3600 20
230 1050 335 338.8 2.5 0 308 310.7 1 10.5 ≤ 314 > 3600 18.7

3000× 3000 210 1200 387 392.4 2.6 0 349 352 1.5 12.4 ≤ 356 > 3600 16.3
220 1200 383 389.4 2.8 0 347 350 1.6 12.4 ≤ 353 > 3600 16.6
230 1200 383 387.7 2.6 0 352 353.3 0.9 13 ≤ 357 > 3600 18.1
240 1200 381 385.9 2.6 0.1 352 354.6 1.4 14 ≤ 361 > 3600 19.1
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Table 5.6: Test results of GR, SA and CPLEX 12.1 R© on DIMACS instances with
ri = d0.1d(i)e ∀i ∈ V . Better solution is highlighted in bold.

Graphs GR SA CPLEX
n m best avg std time best avg std time opt time gap

karate 34 78 4 4 0 0 4 4 0 0.1 4 0 0
dolphins 62 159 15 15.7 0.6 0 14 14 0 0.1 14 0 0
polbooks 105 441 13 15 0.9 0 13 13 0 0.3 13 0 0
adjnoun 112 425 18 18.6 0.7 0 18 18 0 0.3 18 0 0
football 115 613 21 21.8 0.7 0 19 19.1 0.2 0.2 19 11.4 0
jazz 198 2742 20 22 1 0 18 18 0 1.7 18 0.1 0
celegans metabolic 453 2025 32 32 0 0 30 30 0 4.9 30 0 0
email 1133 5451 230 232.8 1.6 0.1 213 213.1 0.2 11.5 213 0 0
polblogs 1490 16715 144 146.8 1.5 0.1 131 131 0 95.5 131 0.1 0
netscience 1589 2742 353 355.5 1.2 0 351 351 0 6.6 351 0 0
delaunay n10 1024 3056 181 186.8 3.4 0 157 158 0.6 3.8 156 2028.5 0
delaunay n11 2048 6127 369 375.3 3.7 0.1 317 318.3 0.9 15.2 ≤ 317 > 3600 3.1
delaunay n12 4096 12264 750 757.5 5.2 0.1 629 631.3 0.9 63.7 ≤ 629 > 3600 3.2

Table 5.7: Test results of GR, SA and CPLEX 12.1 R© on DIMACS instances with
ri = d0.3d(i)e ∀i ∈ V . Better solution is highlighted in bold.

Graphs GR SA CPLEX
n m best avg std time best avg std time opt time gap

karate 34 78 7 7 0 0 6 6 0 0 6 0 0
dolphins 62 159 19 20.4 0.7 0 17 17 0 0.1 17 0 0
polbooks 105 441 27 28.5 0.7 0 25 25 0 0.3 25 0.1 0
adjnoun 112 425 27 28.5 0.6 0 25 25.1 0.2 0.2 25 0 0
football 115 613 38 39.7 0.9 0 35 35.9 0.4 0.2 ≤ 35 > 3600 7.8
jazz 198 2742 44 45.3 0.7 0 42 42.3 0.5 1.6 42 5.1 0
celegans metabolic 453 2025 65 66.4 0.7 0 56 56 0 3.6 56 0 0
email 1133 5451 302 306.4 2.4 0 269 270 0.3 11.7 ≤ 269 > 3600 0.7
polblogs 1490 16715 208 212.1 1.7 0.1 175 176 0.2 88.1 175 160.9 0
netscience 1589 2742 438 440.3 1.5 0 433 433 0 6.5 433 0.1 0
delaunay n10 1024 3056 330 338.2 3.8 0 287 288.3 0.8 4 ≤ 287 > 3600 2.7
delaunay n11 2048 6127 661 678.2 6.5 0.1 576 576.9 0.8 15.5 ≤ 577 > 3600 3.3
delaunay n12 4096 12264 1346 1359.1 7.3 0.1 1150 1153.1 1.4 65.1 ≤ 1156 > 3600 3.6
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Table 5.8: Test results of GR, SA and CPLEX 12.1 R© on DIMACS instances with
ri = d0.5d(i)e ∀i ∈ V . Better solution is highlighted in bold.

Graphs GR SA CPLEX
n m best avg std time best avg std time opt time gap

karate 34 78 9 11.3 0.9 0 9 9 0 0 9 0 0
dolphins 62 159 22 23.6 0.8 0 22 22 0 0.1 22 0 0
polbooks 105 441 36 39 1.4 0 34 34 0 0.2 34 0.8 0
adjnoun 112 425 37 37.9 0.7 0 34 34.3 0.4 0.2 34 0.1 0
football 115 613 54 56.3 0.8 0 51 51.1 0.2 0.2 ≤ 51 > 3600 10.2
jazz 198 2742 72 74 1.4 0 67 67.6 0.5 1.2 67 2422.9 0
celegans metabolic 453 2025 89 91.3 1.1 0 85 85 0 3.2 85 0.1 0
email 1133 5451 384 389 2.8 0 345 345.8 0.6 10.5 ≤ 346 > 3600 3.9
polblogs 1490 16715 292 297.7 3 0.2 246 247.2 0.5 68.2 ≤ 246 > 3600 3.8
netscience 1589 2742 540 542 1.2 0 533 533 0 6.4 533 0.6 0
delaunay n10 1024 3056 436 442.8 3.7 0 388 389.4 0.9 3.8 ≤ 388 > 3600 8.2
delaunay n11 2048 6127 868 880 4.1 0.1 762 763.8 0.8 15.4 ≤ 767 > 3600 8.4
delaunay n12 4096 12264 1745 1765.8 8.3 0.2 1546 1549 1.6 64.5 ≤ 1565 > 3600 10.3

Table 5.9: Test results of GR, SA and CPLEX 12.1 R© on DIMACS instances with
ri = d0.7d(i)e ∀i ∈ V . Better solution is highlighted in bold.

Graphs GR SA CPLEX
n m best avg std time best avg std time opt time gap

karate 34 78 13 13.8 0.7 0 13 13 0 0 13 0.1 0
dolphins 62 159 31 31.9 0.9 0 29 29 0 0 29 0.6 0
polbooks 105 441 52 53.9 1.5 0 50 50 0 0.2 50 0 0
adjnoun 112 425 54 56.3 1.1 0 50 50 0 0.2 50 0 0
football 115 613 69 72 1.1 0 66 66.5 0.5 0.2 66 3.7 11.4
jazz 198 2742 106 107.9 0.9 0 101 101.6 0.5 0.8 ≤ 101 > 3600 5.2
celegans metabolic 453 2025 200 203.3 2.1 0 188 188.8 0.4 1.7 188 0.6 0
email 1133 5451 541 544.8 2.3 0 490 490.6 0.6 8 ≤ 490 > 3600 2.6
polblogs 1490 16715 435 443.1 3.8 0.2 378 378.9 0.6 43.6 ≤ 380 > 3600 4.4
netscience 1589 2742 804 806.4 1.3 0.1 803 803 0 6.1 803 0.8 0
delaunay n10 1024 3056 628 633.5 3.1 0.1 572 574.2 0.8 3.6 ≤ 577 > 3600 19.7
delaunay n11 2048 6127 1248 1257 6.5 0.1 1137 1139.5 1.3 14.5 ≤ 1150 > 3600 20.6
delaunay n12 4096 12264 2515 2526 6.7 0.2 2281 2284.3 1.7 63.1 ≤ 2308 > 3600 21.2
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Table 5.10: Test results of GR, SA and CPLEX 12.1 R© on DIMACS instances with
ri = d0.9d(i)e ∀i ∈ V . Better solution is highlighted in bold.

Graphs GR SA CPLEX
n m best avg std time best avg std time opt time gap

karate 34 78 14 14.3 0.4 0 14 14 0 0 14 0 0
dolphins 62 159 34 35.8 0.9 0 34 34 0 0.1 34 0 0
polbooks 105 441 63 65.3 1.6 0 62 62 0 0.2 62 0 0
adjnoun 112 425 62 64.3 1.3 0 58 58.1 0.2 0.2 58 0.1 0
football 115 613 87 88.9 1.4 0 83 83.1 0.3 0.2 ≤ 83 > 3600 10.2
jazz 198 2742 145 147.7 1.4 0.1 140 140 0 0.5 ≤ 140 > 3600 9.4
celegans metabolic 453 2025 263 265.7 1.5 0 248 248 0 1.2 248 0.1 0
email 1133 5451 616 622.7 3.4 0 578 578 0 6.3 578 67.5 0
polblogs 1490 16715 546 554.3 5.4 0.2 505 505 0 28.2 ≤ 504 > 3600 1.3
netscience 1589 2742 898 898.7 0.5 0 898 898 0 5.6 898 0.1 0
delaunay n10 1024 3056 754 759.4 3.1 0 703 703.8 0.7 3.2 703 174.7 0
delaunay n11 2048 6127 1504 1512.7 6.5 0.1 1402 1402.8 0.8 13 ≤ 1402 > 3600 0.3
delaunay n12 4096 12264 3023 3035.9 7.8 0.2 2809 2811.9 1.1 56.5 ≤ 2808 > 3600 0.4
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Table 5.11: Test results of GR and SA on large DIMACS instances with ri =
d0.2d(i)e ∀i ∈ V .

Graphs GR SA
n m best avg std time best avg std time

Clustering
hep-th 8361 15751 1957 1961.3 3.7 0.0 1904 1904.0 0.0 23.7
PGPgiantcompo 10680 24316 2829 2830.3 1.3 0.7 2751 2751.0 0.0 49.7
cond-mat 16726 47594 3346 3347.0 0.8 0.7 3223 3223.0 0.0 74.3
smallworld 100000 499998 24416 24444.7 22.9 35.0 22509 22531.7 17.3 1138.3
G n pin pout 100000 501198 24422 24437.3 11.6 36.3 23236 23258.3 18.0 1537.0

Walshaw
3elt 4720 13722 1400 1404.3 5.4 0.0 1148 1151.0 2.5 15.7
uk 4824 6837 1583 1589.7 4.8 0.0 1379 1382.3 4.0 14.0
add32 4960 9462 1222 1222.0 0.0 0.0 1222 1222.0 0.0 14.0
whitaker3 9800 28989 2989 2991.3 3.3 0.3 2440 2444.3 4.8 35.0
crack 10240 30380 2302 2322.0 15.6 0.0 1952 1957.3 3.8 51.7
wing nodal 10937 75488 2533 2535.3 2.1 0.3 2269 2272.3 4.0 66.7
fe 4elt2 11143 32818 3128 3149.3 20.0 0.3 2596 2598.7 1.9 51.3
4elt 15606 45878 4721 4736.7 12.0 1.3 3882 3883.3 0.9 73.3
fe sphere 16386 49152 5185 5205.0 15.0 1.3 4226 4230.0 3.3 82.0
cti 16840 48232 5157 5169.3 10.7 1.7 4693 4694.0 0.8 109.7
memplus 17758 54196 2520 2520.7 0.5 1.0 2487 2494.7 5.8 121.7
cs4 22499 43858 6179 6190.3 8.4 2.0 5370 5379.7 8.2 117.0
fe pwt 36519 144794 9497 9510.3 10.6 5.0 8170 8173.0 4.2 208.3
fe body 45087 163734 10185 10199.7 11.5 7.0 8864 8868.7 4.6 266.0
t60k 60005 89440 18149 18185.7 45.0 18.0 16109 16147.3 27.6 330.3
wing 62032 121544 16966 16983.0 12.0 17.0 14968 14980.7 11.6 380.0

Delaunay
delaunay n13 8192 24547 2053 2061.3 6.9 1.0 1757 1759.3 2.1 28.0
delaunay n14 16384 49122 4109 4119.3 7.3 1.0 3535 3539.0 3.7 80.7
delaunay n15 32768 98274 8207 8222.0 10.7 4.0 7083 7088.3 5.0 179.0
delaunay n16 65536 196575 16454 16461.7 9.5 15.7 14290 14297.0 6.7 397.7
delaunay n17 131072 393176 32889 32909.3 23.3 67.0 28795 28806.3 8.2 1070.0
delaunay n18 262144 786396 65780 65887.0 82.9 285.0 58116 58137.7 17.2 2093.3

Rand
rgg n 2 15 s0 32768 160240 7986 8004.0 25.5 3.7 7029 7035.0 7.8 175.7
rgg n 2 16 s0 65536 342127 15863 15894.7 22.5 14.7 14195 14197.3 2.6 388.0
rgg n 2 17 s0 131072 728753 31647 31660.3 18.2 64.3 28562 28570.7 7.9 1049.7
rgg n 2 18 s0 262144 1547283 62792 62816.7 20.4 283.7 57546 57571.0 23.3 2201.3
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Table 5.12: Test results of GR and SA on large DIMACS instances with ri =
d0.3d(i)e ∀i ∈ V .

Graphs GR SA
n m best avg std time best avg std time

Clustering
hep-th 8361 15751 2158 2164.3 4.6 0.0 2070 2070.7 0.5 24.7
PGPgiantcompo 10680 24316 2974 2982.7 6.3 0.7 2869 2869.0 0.0 49.0
cond-mat 16726 47594 4000 4003.3 2.9 1.0 3836 3837.0 0.8 73.7
smallworld 100000 499998 32570 32602.7 40.0 48.3 30250 30285.0 34.5 1127.0
G n pin pout 100000 501198 32221 32244.3 25.6 47.3 30459 30492.3 35.8 1473.7

Walshaw
3elt 4720 13722 1556 1562.0 4.6 0.3 1283 1285.3 2.6 15.7
uk 4824 6837 1583 1589.7 4.8 0.3 1379 1382.3 4.0 14.0
add32 4960 9462 1222 1222.7 0.5 0.3 1222 1222.0 0.0 13.7
whitaker3 9800 28989 3159 3168.0 8.3 0.7 2617 2618.0 0.8 34.0
crack 10240 30380 3141 3151.7 8.2 0.3 2707 2711.7 3.4 52.0
wing nodal 10937 75488 3461 3471.0 7.1 1.0 3163 3169.0 4.6 68.3
fe 4elt2 11143 32818 3657 3667.0 11.4 0.7 3047 3048.7 1.7 51.0
4elt 15606 45878 5102 5117.3 12.7 1.3 4229 4233.3 4.8 74.7
fe sphere 16386 49152 5139 5163.7 24.5 1.7 4229 4232.3 3.4 82.3
cti 16840 48232 5857 5868.0 14.9 1.3 5314 5328.0 10.7 108.3
memplus 17758 54196 2571 2571.0 0.0 1.0 2538 2538.0 0.0 131.3
cs4 22499 43858 9573 9579.0 7.8 3.3 8303 8316.0 11.5 117.7
fe pwt 36519 144794 13217 13230.0 9.6 7.3 12106 12108.7 2.5 205.7
fe body 45087 163734 14454 14475.0 24.3 9.0 13001 13006.7 8.0 275.3
t60k 60005 89440 18149 18185.7 45.0 18.0 16109 16147.3 27.6 326.7
wing 62032 121544 26549 26568.0 13.5 26.0 23263 23274.7 9.4 377.7

Delaunay
delaunay n13 8192 24547 2689 2705.3 13.9 0.0 2313 2316.0 2.2 29.3
delaunay n14 16384 49122 5397 5401.0 2.9 1.3 4640 4643.0 2.5 82.0
delaunay n15 32768 98274 10778 10781.3 2.9 5.0 9320 9327.7 6.6 180.0
delaunay n16 65536 196575 21580 21603.0 25.8 20.7 18762 18769.7 6.6 396.7
delaunay n17 131072 393176 43144 43198.3 48.6 88.7 37802 37806.7 5.3 1062.7
delaunay n18 262144 786396 86132 86187.3 44.9 386.7 76148 76162.3 10.1 2078.0

Rand
rgg n 2 15 s0 32768 160240 10803 10811.3 5.9 5.3 9694 9702.7 7.4 183.0
rgg n 2 16 s0 65536 342127 21562 21572.3 8.6 20.7 19542 19549.0 5.4 403.0
rgg n 2 17 s0 131072 728753 42835 42852.0 15.3 90.0 39326 39341.7 16.2 1070.3
rgg n 2 18 s0 262144 1547283 85309 85328.7 17.3 381.3 79441 79453.0 13.0 2208.3
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6. CONCLUSION AND FUTURE WORK

In Chapter 3, we consider the problem of finding the smallest connected dominat-

ing set with bounded diameter (i.e., dominating s-club or DsC). A DsC can be used

as a reliable virtual backbone in wireless ad-hoc network. We prove that the problem

of checking the existence of a DsC is NP-complete for any fixed positive integer s.

A sufficient condition for a graph G = (V,E) to have a DsC is provided. Solving

MDsC problem is shown to be NP-hard even when it is restricted to graphs for which

a dominating clique is known to exist. The first exact approach to solve minimum

DsC problem with O(sn2) entities is proposed with some numerical experiment re-

sults using CPLEX on random unit disk graphs. We investigate the characteristics

of a graph G having a DsC, and develop some valid inequalities and variable fixing

techniques for this problem.

If we generalize MDsC problem such that s depends on some input such as the

number of vertices in the graph G = (V,E), then we can solve MCDS problem by

solving MDsC problem. For a naive approach, simply let s = n− 1, where |V | = n.

More practically, if there is an upper bound U for γc(G), a solution to MDsC problem

with s = (U − 1) will solve MCDS problem. We might use a MCDS heuristic to find

a good upper bound U on γc(G) and solve MDsC problem with s = U − 1 to find an

optimal solution to MCDS problem. We can also easily show that if P ⊂ V solves

the MDsC problem in G and |P | ≤ s+ 2, then P also solves the MCDS problem in

G. Thus, we can solve a series of MDsC problems for different values of s to solve

MCDS problem. Start with s = diam(G) − 2 and solve the MDsC problem. If the

solution also solves MCDS problem, we are done. Otherwise, increase s by 1 and

repeat. The preliminary computational experiment results using the formulation for
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MDsC problem to solve MCDS problem reveal no better performance compared to

other methods for MCDS problem introduced in [78, 34], especially on instances with

large diameter. However, on instances with a small CDS, MDsC formulation was

shown to be competitive. We leave more comprehensive examination of the fitness of

the proposed approach for the MCDS problem for future work. Another interesting

direction of future research could be about creating a DsC which is robust under

edge and vertex failures. A robust structure called R-robust s-club is introduced in

[98]. Not only it remains connected after the failure of R − 1 vertices, but it also

maintains diameter s. For a robust version of DsC, an interesting structure to study

may be an R-robust dominating s-club, a structure that maintains both dominating

nature and diameter s after the failure of R− 1 dominating vertices.

Note that the domination constraints (3.4) of DsC (or CDS) could be replaced

by the following constraints. Let D be a DsC (or CDS). For each vertex i ∈ V , let

yi = |D ∩ N(i)|. Assume there is no vertex dominating the entire graph. Then we

have 1 ≤ yi ≤ |N(i)| for i ∈ V . If we have a lower bound p for DsC (or CDS),

then p vertices must be connected and we have
∑

i∈V yi ≥ 2(p− 1). The domination

constraints (3.4) could be replaced by the following set of constraints:

∑
j∈N(i)

xj ≥ yi ∀i ∈ V ; (6.1)

∑
i∈V

yi ≥ 2(p− 1); (6.2)

1 ≤ yi ≤ |N(i)|. (6.3)

For lower bound p, since the size of the minimum total dominating set provides a

lower bound for the size of minimum connected dominating set (γt ≤ γc), and also
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it is much easier to solve than MCDS problem, we can use the following value:

p = min{
∑
i∈V

xi|
∑

j∈N(i)

xj ≥ 1, i ∈ V, x ∈ {0, 1}n}.

Moreover, since n − p vertices which are not in the minimum total dominating set

must also be adjacent to at least one vertex in D, the constraint (6.2) can be modified

to
∑

i∈V yi ≥ 2(p− 1) + n− p. The preliminary experiments indicate that this mod-

ification could be more effective for sparse instances than the original formulation.

We leave more in-depth investigation of this extension as future work.

In Chapter 4, we generalize the well-studied connected dominating set (CDS) and

study the k-connected d-dominating set (k-d-CDS). To the best of my knowledge, this

is the first study concerning an exact approach for minimum k-d-CDS (Mk-d-CDS)

problem. We demonstrate that several structural properties hold for d ≥ k, but fail

for d < k. Robustness is a desirable characteristic but it is not free. Depending

on the value of k and d, we have three different mathematical programming for-

mulations. Knowing that minimal vertex-cut inequality may not necessarily induce

facets, r-robust vertex-cut and r-robust vertex-cut inequalities are developed. For

minimum 1-1-CDS problem (or MCDS problem), we show that the proposed solu-

tion method using lazy-constraint compares favorably with existing approaches. For

k = d = 2, 3, 4, the comparison between minimum k-total dominating set problem

and Mk-k-CDS problem demonstrates that the connectivity constraints may not be

burdensome. We show the necessary and sufficient conditions for a graph G = (V,E)

to have a k-d-CDS when d ≥ k. The conditions for a graph G = (V,E) to have a

k-d-CDS when d < k is still unknown. The separation problem for the vertex-cut

inequality (or 1-robust vertex-cut inequality) is weighted vertex-connectivity prob-

lem, and it can be solved in polynomial time. However, the complexity of separation
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for r-robust vertex-cut inequalities when r ≥ 2 is still an open question. In terms

of computational experiments, one might be interested in applying the proposed

approach on different types of graphs with low/high connectivity and low/high den-

sity. A few articles, mostly from the computer science community, consider heuristic

algorithms to solve Mk-d-CDS problem [29, 75, 104] and present computational re-

sults. It might be interesting to apply the proposed approach on the same instances

considered in [29, 75, 104] to evaluate the heuristics used.

Chapter 5 introduces several varieties of the classical dominating set motivated

by real life scenarios of wireless sensor placement problem. Computational complex-

ities show that all of the newly introduced problems are hard in their own respect.

Mathematical programming formulations and some basic polyhedral properties are

presented. In particular, for MGDS problem, some analytical bounds on general-

ized domination number compared to domination number are presented. Numerical

experiment results demonstrate that some varieties could be practically much more

challenging to solve than others for some commercial solvers. For MGDS prob-

lem, simulated annealing is also applied and its performance is compared to that of

CPLEX 12.1 R©. For almost all considered instances, simulated annealing compares

favorably with CPLEX 12.1 R©. For future research, we might want to consider other

metaheuristic algorithms such as genetic algorithm and ant colony optimization to

tackle the problems.

We conclude this dissertation by introducing a new interesting dominating set

related problem. We might consider the problem of finding the maximum subgraph

that can be dominated by 1 ≤ k(≤ γ(G)) vertices, where γ(G) is the domination

number. This problem, say maximum k-coverage problem, is at least not easier than

MDS problem, otherwise we could solve MDS problem by increasing the value of k

until the entire graph is dominated in polynomial time. A mathematical program-
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ming formulation for this problem can be presented in the following way.

maximize
n∑

i=1

xi (6.4)

s.t. xi ≥
∑

j∈N [i] yj

k
, i ∈ V (6.5)

xi ≤
∑
j∈N [i]

yj, i ∈ V (6.6)

n∑
i=1

yi = k (6.7)

xi, yi ∈ {0, 1}, i ∈ {1, 2, . . . , n}, (6.8)

where xi = 1 iff vertex i is dominated and yi = 1 iff vertex i is in the dominating set.

Constraint (6.5) makes a vertex i to be dominated if at least one vertex from N [i]

is in the dominating set, while constraint (6.6) guarantees that i is not dominated

if none of N [i] is in the dominating set. Constraint (6.7) restricts the number of

vertices in the dominating set to be k, which is given as an input parameter. We

leave more in-depth investigation about this problem for future research.
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[17] A. Brandstädt and D. Kratsch. On the restriction of some np-complete graph

problems to permutation graphs. In Fundamentals of Computation Theory,

pages 53–62. Springer, 1985.
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[68] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the ninth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 137–146.

ACM, 2003.

[69] D. Kim, Y. Wu, Y. Li, F. Zou, and D.Z. Du. Constructing minimum connected

dominating sets with bounded diameters in wireless networks. Parallel and

Distributed Systems, IEEE Transactions on, 20(2):147–157, 2009.

[70] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[71] T. Kloks and D. Kratsch. Listing all minimal separators of a graph. SIAM

Journal on Computing, 27(3):605–613, 1998.

[72] D. Kratsch. Finding dominating cliques efficiently, in strongly chordal graphs

and undirected path graphs. Discrete Mathematics, 86(1-3):225–238, 1990.

[73] D. Kratsch, P. Damaschke, and A. Lubiw. Dominating cliques in chordal

graphs. Discrete Mathematics, 128(1):269–275, 1994.

114



[74] D. Kratsch and M. Liedloff. An exact algorithm for the minimum dominating

clique problem. Theoretical Computer Science, 385(1-3):226–240, 2007.

[75] Y. Li, Y. Wu, C. Ai, and R. Beyah. On the construction of k-connected m-

dominating sets in wireless networks. Journal of combinatorial optimization,

23(1):118–139, 2012.

[76] H.I. Lu and R. Ravi. Approximating maximum leaf spanning trees in almost

linear time. Journal of Algorithms, 29(1):132–141, 1998.

[77] R.D. Luce. Connectivity and generalized cliques in sociometric group structure.

Psychometrika, 15(2):169–190, 1950.

[78] A. Lucena, N. Maculan, and L. Simonetti. Reformulations and solution algo-

rithms for the maximum leaf spanning tree problem. Computational Manage-

ment Science, 7(3):289–311, 2010.

[79] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,

10(1):96–115, 1927.

[80] K. Mohammed, L. Gewali, and V. Muthukumar. Generating quality domi-

nating sets for sensor network. In Computational Intelligence and Multimedia

Applications, 2005. Sixth International Conference on, pages 204–211. IEEE,

2005.

[81] R.J. Mokken. Cliques, clubs and clans. Quality & Quantity, 13(2):161–173,

1979.

[82] M. Morgan and V. Grout. Finding optimal solutions to backbone minimisa-

tion problems using mixed integer programming. In Proceedings of the 7th

International Network Conference (INC 2008), pages 53–64, 2008.

115



[83] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum

quasi-clique problem. Discrete Applied Mathematics, 2012.

[84] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network

analysis. European Journal of Operational Research, 2012.

[85] J. Plesnik and A. Wawruch. On the complexity of finding degree constrained

subgraphs. Acta Mathematica Universitatis Comenianae, 40:215–218, 1982.

[86] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying for flooding

broadcast messages in mobile wireless networks. In System Sciences, 2002.

HICSS. Proceedings of the 35th Annual Hawaii International Conference on,

pages 3866–3875. IEEE, 2002.

[87] V. Raman, S. Saurabh, and S. Srihari. Parameterized algorithms for general-

ized domination. Combinatorial Optimization and Applications, pages 116–126,

2008.

[88] D. Rautenbach and L. Volkmann. New bounds on the k-domination number

and the k-tuple domination number. Applied mathematics letters, 20(1):98–

102, 2007.

[89] C. Ribeiro. Essays and Surveys in Metaheuristics. Kluwer Academic Publish-

ers, Norwell, MA, USA, 2002.

[90] L. A. Sanchis. Experimental analysis of heuristic algorithms for the dominating

set problem. Algorithmica, 33:3–18, 2002.

[91] L.A. Sanchis. Test case construction for the vertex cover problem. Computa-

tional Support for Discrete Mathematics, pages 315–326, 1994.

[92] L.A. Sanchis. Generating hard and diverse test sets for np-hard graph problems.

Discrete Appl. Math., 58(1):35–66, 1995.

116



[93] S.B. Seidman and B.L. Foster. A graph-theoretic generalization of the clique

concept. Journal of Mathematical sociology, 6(1):139–154, 1978.

[94] L. Simonetti, A. Salles da Cunha, and A. Lucena. The minimum connected

dominating set problem: formulation, valid inequalities and a branch-and-cut

algorithm. Network Optimization, pages 162–169, 2011.

[95] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor

elimination-based broadcasting algorithms in wireless networks. Parallel and

Distributed Systems, IEEE Transactions on, 13(1):14–25, 2002.

[96] M.T. Thai, F. Wang, D. Liu, S. Zhu, and D.Z. Du. Connected dominating sets

in wireless networks with different transmission ranges. Mobile Computing,

IEEE Transactions on, 6(7):721–730, 2007.

[97] M.T. Thai, N. Zhang, R. Tiwari, and X. Xu. On approximation algorithms of

k-connected m-dominating sets in disk graphs. Theoretical Computer Science,

385(1-3):49–59, 2007.

[98] A. Veremyev and V. Boginski. Identifying large robust network clusters via

new compact formulations of maximum k -club problems. European Journal of

Operational Research, 2011.

[99] F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan. On

positive influence dominating sets in social networks. Theoretical Computer

Science, 412(3):265–269, 2011.

[100] F. Wang, M.T. Thai, and D.Z. Du. On the construction of 2-connected virtual

backbone in wireless networks. Wireless Communications, IEEE Transactions

on, 8(3):1230–1237, 2009.

117



[101] D.B. West. Introduction to graph theory, volume 2. Prentice hall Englewood

Cliffs, 2001.

[102] J. Wu and F. Dai. A generic distributed broadcast scheme in ad hoc wireless

networks. Computers, IEEE Transactions on, 53(10):1343–1354, 2004.

[103] J. Wu, M. Gao, and I. Stojmenovic. On calculating power-aware connected

dominating sets for efficient routing in ad hoc wireless networks. In Parallel

Processing, International Conference on, 2001., pages 346–354. IEEE, 2001.

[104] Y. Wu and Y. Li. Construction algorithms for k-connected m-dominating

sets in wireless sensor networks. In Proceedings of the 9th ACM international

symposium on Mobile ad hoc networking and computing, pages 83–90. ACM,

2008.

[105] D. Yuan. Energy-efficient broadcasting in wireless ad hoc networks: perfor-

mance benchmarking and distributed algorithms based on network connectiv-

ity characterization. In Proceedings of the 8th ACM international symposium

on Modeling, analysis and simulation of wireless and mobile systems, pages

28–35. ACM, 2005.

[106] Z. Yuanyuan, X. Jia, and H. Yanxiang. Energy efficient distributed connected

dominating sets construction in wireless sensor networks. In Proceedings of the

2006 international conference on Wireless communications and mobile com-

puting, pages 797–802. ACM, 2006.

[107] Z. Zhang, X. Gao, W. Wu, and D.Z. Du. Ptas for minimum connected domi-

nating set in unit ball graph. Wireless Algorithms, Systems, and Applications,

pages 154–161, 2008.

118



APPENDIX

Dominating s-club and k-connected d-dominating set considered in Chapter 3

and 4 respectively are the extensions of CDS. The integer programming formulations

for minimum dominating s-club and minimum k-connected m-dominating set prob-

lem can be used to solve the minimum CDS problem. Here, we briefly review two

known mathematical programming formulations for minimum connected dominat-

ing set problems. The integer programming formulation for minimum k-connected

m-dominating set problem shown in section 4 is a direct extension of one the two

formulations for MCDS problem.

It is only recently that integer programming formulation of MCDS appeared

in literature. Simonetti et al. [94] present an integer programming formulation and

computational experiment results on some standard benchmark test instances. Given

a set S ⊂ V , let E(S) = {(i, j) ∈ E|i, j ∈ S} be the subset of edges of E with both

endpoints in S. [94] uses the following decision variable: yi ∈ {0, 1}, i ∈ V : to select

which vertices are to be included (yi = 1) or not (yi = 0) in CDS; xe ∈ {0, 1}, e ∈ E:

to choose edges that guarantee that the dominating set is indeed connected. Assume

that B = {0, 1} and R denotes the set of real numbers. Then the IP formulation

from [94] is:

min{
∑
i∈V

yi : (x, y) ∈ P (G) ∩ (Rm
+ ,Bn)}, (6.9)

where polyhedral region P (G) is implied by:

∑
e∈E

xe =
∑
i∈V

yi − 1 (6.10)
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∑
e∈E(S)

xe ≤
∑

i∈S\{j}

yi, S ⊂ V, j ∈ S (6.11)

∑
j∈N [i]

yj ≥ 1, i ∈ V (6.12)

xe ≥ 0, e ∈ E (6.13)

0 ≤ yi ≤ 1, i ∈ V. (6.14)

The idea behind the formulation above is to use variables x to select edges that

guarantee that a spanning tree must be found in the subgraph G[S] for a dominating

set S ⊂ V . Constraint (6.10) guarantees that the number of selected edges is exactly

one unit less than the number of vertices in CDS. Generalized subtour breaking

constraint (GSEC) (6.11) guarantees that the selected edges imply a tree. Constraint

(6.12) guarantees that the set of vertices selected form a dominating set.

Vertex-cut based formulation for MCDS. Yuan [105] present another integer pro-

gramming formulation for minimum CDS problem.

γc(G) = min
∑
v∈V

xv (6.15)

∑
v∈C

xv ≥ 1 for every minimal vertex-cut C ⊂ V (6.16)

xv ∈ {0, 1} ∀v ∈ V (6.17)

The formulation is still valid when we replace the constraints 6.16 for every vertex-

cut. However, the minimal vertex-cuts subsumes the non minimal vertex-cut. Notice

that the above formulation could have exponentially many constraints since there

exist k-connected graphs with Ω(2k n2

k2
) minimum vertex-cuts [64].
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