
 

 

 

 

CAUSAL MODELING WITH APPLICATIONS TO THE FOREIGN EXCHANGE 

MARKET 

 

A Dissertation 

by 

BRIAN DAVID DEATON  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Chair of Committee,  David A. Bessler 

Committee Members, David J. Leatham 

 James W. Mjelde 

 Willa W. Chen 

Head of Department, C. Parr Rosson, III 

 

December 2013 

 

Major Subject: Agricultural Economics 

 

 

Copyright 2013 Brian David Deaton



 

ii 

 

ABSTRACT 

 

A combination of time series models and causal search algorithms is applied to 

the foreign exchange markets to find causal linkages between the six most widely traded 

currencies (Australian dollar, Canadian dollar, euro, Great Britain pound sterling, 

Japanese yen, and United States dollar). This information is used in portfolio 

management to improve risk management, to visualize the causal connections between 

currencies, and enhance the forecasting ability of time series models. 

In the first section, a method is presented that decomposes portfolio risk so that 

risk contributions sum to the total portfolio’s risk. This decomposition is based upon a 

market’s underlying independent risk factors, which are found empirically using a causal 

search algorithm based on independent component analysis. In an application, 

independent risk contributions are constrained during portfolio optimizations, and the 

internal risk characteristics of the resulting portfolios are shown to be superior to those 

constructed using more traditional constraints. 

In the second section, three causal search algorithms are used to identify causal 

relationships amongst the six most widely traded currencies in the years 2009-2011. The 

intent is to discover causal relationships within each year and to observe how these 

causal relationships change over time. The causal relationships are presented as directed 

acyclic graphs, and these are relatively stable over time. There might be, however, latent 

variables that affect the six most widely traded currencies. 
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In the third section, probability forecasts of the Swiss franc/euro (CHF/EUR) 

exchange rate from three different time series models are generated before, surrounding, 

and after the placement of a floor on the CHF/EUR exchange rate by the Swiss National 

Bank. The goal is to determine whether the exchange rate floor has a positive, negative, 

or insignificant affect on the calibration of the probability forecasts. Forecasts from the 

models are ranked with score metrics, and a graphical d-separation criterion is used in an 

attempt to identify the preferred model based on forecast performance. The study finds 

evidence that the floor on the CHF/EUR has a negative impact on the forecasting 

performance of the three time series models. 
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CHAPTER I 

INTRODUCTION  

 

Three applications of the combination of time series models and causal search 

algorithms to the foreign exchange market are contained in Chapters II-IV of this 

dissertation. The objective of Chapter II is to show that portfolio risk can be decomposed 

so that independent risk contributions sum to the total portfolio’s risk. The internal risk 

characteristics of portfolios can be improved by placing constraints on these independent 

risk contributions during portfolio optimization. In Chapter III, the causal structure of 

the foreign exchange market is found in each of the years 2009, 2010, and 2011. The 

intent of this chapter is to discover the causal relationships between the six most widely 

traded currencies and to observe how these causal relationships change over time. The 

objective of Chapter IV is to determine whether a floor placed on the Swiss franc/euro 

(CHF/EUR) exchange rate has a positive, negative, or insignificant affect on the 

calibration of probability forecasts from three time series models. Probability forecast 

calibration is measured in periods of time before, surrounding, and after the placement of 

the floor on the CHF/EUR exchange rate. Scoring metrics and a method based on 

directed acyclic graphs are used in an attempt to identify the preferred forecasting 

system. 

 A method for decomposing portfolio risk based on a portfolio’s underlying 

independent risk factors is presented in Chapter II. This form of portfolio risk 

decomposition allows a portfolio manager to create a risk budget for independent risk 
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factors because the independent risk contributions sum to the total portfolio’s risk. In 

contrast, risk budgeting is impossible with traditional marginal portfolio risk 

decomposition because marginal risk contributions are relative to an existing portfolio 

and can be negative. 

In a sample application of this technique, a portfolio’s underlying independent 

risk factors are found empirically using methods based on independent component 

analysis. The mean-variance model is used for portfolio optimization and its risk metric, 

the portfolio variance, is decomposed into its independent risk contributions. The 

independent risk contributions are constrained during the optimization process to 

increase portfolio diversification. 

The portfolio constructed with constraints based on risk contributions of the 

independent factors is compared to five other portfolios constructed using the canonical 

mean-variance model with constraints on the following: relative portfolio weights, 

independent factor relative portfolio weights, percentage marginal risk contributions, and 

independent factor percentage marginal risk contributions. An efficient frontier is 

generated for each of the portfolios and a comparison is made of the loss of efficiency 

due to each of the constraint sets. Additionally, the performance and internal 

characteristics of each of these portfolios are analyzed on a small out-of-sample data set.  

 Three different causal search algorithms (PC, FCI, and LiNGAM) in conjunction 

with vector autoregression (VAR) time series models are used in Chapter III to find 

possible causal structures underlying the foreign currency market in the years 2009, 

2010, and 2011. This modeling process results in a directed acyclic graph that illustrates 
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the contemporaneous causal linkages between currencies. The three causal search 

algorithms do not necessarily find the same causal structure when using the same data 

set. 

The causal structure underlying the six most widely traded currencies (Australian 

dollar, Canadian dollar, euro, Great Britain pound sterling, Japanese yen, and United 

States dollar) on a 15 minute time frame is found for each year (2009, 2010, and 2011) 

by each algorithm. The stability over time of the sequence of causal structures from each 

algorithm is assessed, and the three causal structures found by the three algorithms 

within each year are compared to each other.  

Chapter IV assesses the impact of the Swiss National Bank’s floor on the Swiss 

franc/euro (CHF/EUR) exchange rate in 2011-2012 on the probability forecasts of the 

CHF/EUR from three time series models. The goal of the study is to determine the effect 

of the CHF/EUR floor on the calibration of the probability forecasts. A ranking of the 

models based on the accuracy of their forecasts is also considered. 

One-step-ahead forecasts of the CHF/EUR probability distribution are based on a 

series of intraday futures data for the Australian dollar, Canadian dollar, euro, Great 

Britain pound sterling, Japanese yen, and the United States dollar all in terms of the 

Swiss franc. Probability forecasts of the CHF/EUR are generated from a vector 

autoregression model, a VAR model augmented with the LiNGAM causal learning 

algorithm, and a univariate autoregressive model built on the independent components of 

an independent component analysis.  
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The forecasted probability distributions are tested for calibration and ranked with 

the mean-squared error and the probability score metrics in periods of time before, 

surrounding, after, and long after the beginning of the floor on the CHF/EUR exchange 

rate. A method based on directed acyclic graphs is used as a complement to the scoring 

metrics in an attempt to identify whether or not the preferred forecasting system changes 

over time. 
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CHAPTER II 

RISK ATTRIBUTION WITH INDEPENDENT FACTORS 

 

Introduction 

 The risk attribution literature is based on a marginal form of portfolio risk 

decomposition. One disadvantage of a marginal analysis is that a portfolio manager 

cannot use it to create a risk budget that sums to the total portfolio risk. Marginal risk 

contributions are relative to an existing portfolio and can be negative, which makes risk 

budgeting impossible.  

 The primary objective of this chapter is to show how portfolio risk can be 

decomposed so that risk contributions sum to the total portfolio’s risk. In an application, 

it is shown that the internal risk characteristics of portfolios can be improved by placing 

constraints on these risk contributions. The risk decomposition is based upon a market’s 

underlying independent risk factors, which are found empirically using methods based 

on independent component analysis. 

 The analysis is built on the framework of Meucci (2007) for analyzing risk 

contributions from a set of arbitrary risk factors. In this framework, a portfolio’s profit 

and loss   is represented by the product of a vector of risk factors   and a vector of their 

respective exposures   

       (2.1) 
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where the superscript T denotes the transpose of a vector or matrix. The vectors   and   

can be defined in a variety of ways including the case where     is a vector of 

relative portfolio weights and     is a vector of security returns.  

 It is often desirable to analyze a portfolio in terms of a set of new risk factors  ̃ 

that completely span the market. In this case, there is an invertible matrix   that linearly 

transforms the set of original risk factors into the set of new risk factors 

  ̃      (2.2) 

The matrix    can be interpreted as a “pick” matrix containing rows that transform each 

original factor into its respective new factor.  The exposures to the new factors  ̃ can 

then be computed in terms of the exposures to the original factors   as follows 

            ̃  ̃ (2.3) 

so that  

  ̃       (2.4) 

where the superscript -1 denotes the inverse of a matrix. 

 

Portfolio Theory 

 For simplicity, only mean-variance analysis will be considered here. The 

methods presented below can easily be used with expected utility optimization or with 

alternative risk and reward measures. In the mean-variance portfolio theory of 

Markowitz (1952), an investor only cares about the first two moments of the distribution 

of returns. The goal of the investor is to create a portfolio of risky assets that maximizes 
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his expected return for a given level of risk, which is measured by the variance or the 

standard deviation of the portfolio return.  

 The risk factors   of the previous section are defined as the returns   on a set of 

N securities 

   (
  

 
  

)   (2.5) 

where each     is the return on security i. Canonical mean-variance optimization is 

performed for an investment horizon of one period so that a reference to time is 

unnecessary. The expected returns for the investment horizon are 

  ( )    (

  

 
  

) (2.6) 

where each     is the expected return of security i, and the expected returns have 

covariance matrix 

    ( )   . (2.7) 

 The exposures   to the set of returns   are defined as a set of relative portfolio 

weights  . A portfolio is a weighted average of N risk factors with relative weight    

assigned to factor i 

   (

  

 
  

)  (2.8) 

Relative portfolio weights can be either positive for a long position or negative for a 

short position but must sum to one: ∑   
 
     . Most portfolios also include a risk free 



 

8 

 

security with return     and relative portfolio weight    . In this case, the portfolio’s 

expected return is  

                         ∑    

 

   

  (2.9) 

The variance of the portfolio's return is  

   
       ∑∑  

 

   

 

   

       (2.10) 

where      is the covariance between factor   and factor  . 

 The canonical mean-variance model is 

             
  (   )   (2.11) 

                 ∑  

 

   

   (2.12) 

where   is a risk aversion parameter; a risk neutral investor has     while a highly risk 

averse investor has     (Zenios 2007). This model can be used to trace an efficient 

frontier by varying   across the interval [0, 1]; every   in this interval corresponds to an 

efficient portfolio that has minimum variance for a given expected return.  

 Additional constraints can be added to the mean-variance model to achieve 

certain objectives. It is well known that the mean-variance model tends to allocate too 

much relative weight to certain assets (Green 1992; Gerard and Tutuncu 2007). Thus, a 

common addition is to put constraints on the relative portfolio weights so that the 

portfolio wealth is not focused on any one asset 
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                        (2.13) 

This idea can be generalized so that limits are placed on arbitrary factor exposures   

                        (2.14) 

 

Marginal Risk Contributions 

 In the risk attribution literature, statistical measures of risk are decomposed by 

using the fact that they are homogeneous of degree one. For instance, popular risk 

measures such as standard deviation, value at risk (VaR), and expected shortfall (ES) all 

share this property. When the portfolio exposures b are scaled by a factor k, a risk 

measure   that is homogeneous of degree one increases by that same factor 

  (  )     ( )  (2.15) 

Risk measures that behave this way can be decomposed into a summation by taking the 

derivative of each side of the above equation with respect to k 

 ∑  

 

   

  (  )

   
  ( )  (2.16) 

Now set     to obtain 

  ( )  ∑  

 

   

  ( )

   
  (2.17) 

This equation states that the risk of the portfolio, which is a scalar quantity, is a sum of 

the risk contributions from each individual factor. The risk from each individual factor is 

expressed as a product of the factor exposure    and the marginal rate of change in risk 
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per unit change in the factor exposure 
  ( )

   
. Each risk contribution can also be written in 

terms of a percentage contribution to portfolio risk as follows 

 
   

  ( )
   

 ( )
     

(2.18) 

so that the sum of the percentage contributions is 100. 

 As Litterman (1996) notes, this is a marginal analysis and useful only in 

analyzing risk relative to an existing portfolio. For example, eliminating a position that 

accounts for half the risk will not reduce the portfolio’s risk by half. As a position is 

reduced in size, its marginal contribution to risk will also be reduced. Additionally, some 

positions have a negative marginal contribution to risk so that increasing the size of such 

a position will reduce the risk of the portfolio at the margin. 

 It is straightforward to obtain a risk metric decomposition in terms of a new set 

of factors via the risk decomposition computations that use the original set of factors. 

The marginal rates of change in risk per unit change in the new factor exposures are 

linear translations of the originals (Meucci 2007) 

 
  ( ̃)

  ̃
  

  ( )

  
 (2.19) 

so that the risk measure in terms of the new factor exposures is 

  ( ̃)  ∑ ̃ 

 

   

  ( ̃)

  ̃ 

  (2.20) 

 For mean-variance analysis, the portfolio’s standard deviation will be used as the 

measure of risk 
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  ( )  √           (2.21) 

where        is the risk factor covariance matrix. The partial derivatives of the 

portfolio standard deviation are the following 

 
  ( )

  
 

       

√         
  (2.22) 

In the application below,   is the vector of relative weights on the original currencies 

    (with    ), and  ̃ is the vector of relative weights on the independent factors 

 ̃   ̃ (with  ̃   ̃).  

 

Total Risk Contributions 

 Many risk measures, such as the portfolio standard deviation, are functions of 

statistics that can be decomposed into a summation if the factors   are independent 

  ( )  ∑ (  )

 

   

  (2.23) 

This decomposition will be referred to as a “total risk decomposition” to distinguish it 

from the marginal risk decomposition described earlier. In percentage form each total 

risk contribution is 

 
 (  )

 ( )
     (2.24) 

and the sum of the percentage contributions is 100.  

 The total risk decomposition is simpler to compute and easier to interpret than 

the marginal risk decomposition. Each total risk contribution is non-negative and can be 

interpreted as having a potentially adverse effect on the portfolio (as opposed to the 
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negative contributions of the marginal decomposition). Furthermore, the sum of the total 

risk contributions is the risk of the portfolio. This allows portfolio managers to create a 

risk budget for independent factors that sums to 100% of their portfolio’s risk. In this 

analysis, risk contributions are no longer relative to an existing portfolio, and it is no 

longer necessary to resort to interpreting risk contributions as potential loss contributions 

(as in Qian (2006)). 

 For the mean-variance model, a total risk decomposition of the variance is useful. 

Because the variance of a sum of independent variables is the sum of the variances, the 

total risk decomposition of a portfolio’s variance is the following 

  ( ̃)  ∑ ̃ 
       ̃ 

 

   

  (2.25) 

 

Independent Component Analysis 

 One way to operationalize the total risk decomposition is to use independent 

component analysis (ICA). Independent component analysis is based on the premise that 

  observed variables         are linear combinations of underlying, statistically 

mutually independent source variables         

                                             (2.26) 

where the     are mixing coefficients. This basic ICA model is written in vector-matrix 

form as 

     . (2.27) 
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The observed variables   are used to estimate both the unknown mixing coefficient 

matrix   and the unobserved independent components  . The observed variables   and 

the independent components   are both assumed to have zero mean. If this assumption 

does not hold then the original observed variables, denoted by   , can be centered in a 

preprocessing step 

       (  ) (2.28) 

This preprocessing also forces the independent components to have zero mean since 

  ( )      ( ). (2.29) 

 Estimation of the basic ICA model relies on the following assumptions 

(Hyvarinen, Karhunen, and Oja 2001) 

1) The independent components are assumed to be statistically independent, but in 

application this does not need to be exactly true. 

2) The mixing matrix   is assumed to be square and invertible for the sake of 

convenience and simplicity. 

3) The independent components must have non-Gaussian distributions. 

Some ICA models are slightly different from the basic ICA model and have their own 

assumptions; for details see Hyvarinen, Karhunen, and Oja (2001).  

 The independent components   are more than just uncorrelated; they are as 

statistically independent as possible. Achieving this requires more information than what 

is available in a correlation matrix unless all of the variables are normally distributed, in 

which case zero correlation is equivalent to independence. The estimation of 
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independent components uses higher order moments or other information such as the 

autocovariance structure for time series variables in addition to correlation information.  

 It is always possible to linearly transform the observed random variables   into 

uncorrelated variables. It is also often desirable that the transformed variables have 

variances equal to unity. The process called whitening transforms zero mean variables   

into uncorrelated variables   that have unit variances. The result of whitening is a matrix 

  that decorrelates the observed data vector 

     . (2.30) 

The matrix   is computed as 

       ⁄    (2.31) 

where   (     ) is the matrix whose columns are the unit-norm eigenvectors of the 

covariance matrix           and       (     ) is the diagonal matrix of the 

eigenvalues of   . There are an infinite number of matrices   that can create 

decorrelated components. This is the reason that estimation of the basic ICA model 

requires the higher order moments of non-Gaussian distributions (Hyvarinen, Karhunen, 

and Oja 2001). 

 The basic ICA model in equation 2.27 has the following ambiguities 

1) The variances of the independent components cannot be determined. 

2) The order of the independent components cannot be determined. 

The first ambiguity occurs because any scalar multiple of one of the independent 

components    can be cancelled by dividing the corresponding column of the mixing 
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matrix   by that same multiple. The second ambiguity follows from modifying the 

model with any permutation matrix   and its inverse  

         . (2.32) 

Now      is the unknown mixing matrix and    are the independent components in a 

different order. In applications that use ICA, neither of these ambiguities is important; 

for an explanation, see Hyvarinen, Karhunen, and Oja (2001). 

 

ICA Time Series 

 If the independent components are time series, as opposed to independent 

random variables in the basic ICA model, then the ICA model takes the following form 

  ( )    ( )               (2.33) 

where   is the time index (Hyvarinen, Karhunen, and Oja 2001). Since time series 

variables have more structure than independent random variables, the time series 

autocovariances may be used for estimation instead of the higher-order information that 

is required in the basic ICA model.  

 The AMUSE algorithm provides one method to estimate the model above 

(Hyvarinen, Karhunen, and Oja 2001). This algorithm requires the time-lagged 

covariance matrix in place of the higher-order moments used in the basic ICA model. 

The time-lagged covariance matrix is computed as  

   
     ( ) (   )   (2.34) 

where   is a lag constant,          . This matrix contains the autocovariances of each 

time series and the covariances between the time series. 
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 The algorithm is based on the fact that the instantaneous and lagged covariances 

of  ( ) are zero due to independence. Hence, the time-lagged covariance matrix is used 

to find a matrix   so that all of the instantaneous and lagged covariances of  

  ( )    ( ) (2.35) 

are equal to zero. 

 The AMUSE algorithm assumes that all of the independent components have 

autocovariances different from zero and different from each other. This assumption 

replaces the assumption of the basic ICA model that the independent components must 

have non-Gaussian distributions. 

 The AMUSE algorithm uses whitened, zero mean data  ( ) as input and 

generates the separating matrix   as output so that  

   ( )   ( ) (2.36) 

   (   )   (   ). (2.37) 

The time-lagged covariance matrix is modified to be symmetric by the following 

computation 

  ̅ 
  

 

 
   

  (  
 )   (2.38) 

so that an eigenvalue decomposition on this new symmetric matrix is well defined. 

 The steps of the AMUSE algorithm are as follows (Hyvarinen, Karhunen, and 

Oja 2001) 

1) Center and whiten the observed data  ( ) to obtain  ( ). 

2) Compute the eigenvalue decomposition of the symmetric, time-lagged 

covariance matrix (equation 2.38) for some time lag  . 
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3) The rows of the estimated separating matrix  ̂ are given by the eigenvectors. 

4) The estimated separating matrix for the unwhitened data   is  ̂   ̂  where   

is defined in equation 2.31. 

 The separating matrix   can now be used in the risk contribution framework of 

Meucci (2007). Simply define the pick matrix   of equations 2.2 through 2.4 as the 

estimated separating matrix  ̂ to find a portfolio’s exposure to the independent 

components.  

 Forecasting with independent components can be performed in a way similar to 

that described in Popescu (2009). Specifically, 

1) Compute the independent components using the estimated separating matrix: 

  ( )   ̂ ( )               (2.39) 

2) Produce a forecast for each independent component using a time series model 

such as an autoregressive (AR) model. 

3) Transform the forecasts of the independent components into forecasts of the 

original variables: 

  ( )   ̂ ( )              . (2.40) 

 

Dynamic Directed Graph Discovery (VAR-LiNGAM) 

 Another way to find independent risk factors is to use a causal discovery 

algorithm that incorporates ICA internally. The method used here, which will be called 

VAR-LiNGAM, is an enhancement of a vector autoregressive model with the LiNGAM 

causal discovery algorithm (Hyvarinen 2008; Hyvarinen et al. 2010; Shimizu et al. 
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2006). The LiNGAM algorithm uses ICA to find the matrix that transforms a vector of 

returns into its vector of corresponding independent factors. 

 VAR-LiNGAM is well suited for use in economics because it works with time 

series and, importantly, provides parameter estimates. This method is purportedly the 

first to fully identify a structural vector autoregressive model with the assumptions that 

there is acyclicity and that there are no latent variables. It uses the non-Gaussian 

structure of the data whereas other methods use only the covariance information, which 

is not always sufficient for identification.  

 Before the VAR-LiNGAM model is introduced, the two components on which it 

is built are discussed. The first component, a structural equation model (SEM), typically 

assumes that the observed data is independent and identically distributed; an SEM model 

does not consider the time series structure in data. A vector of contemporaneous returns 

  is modeled in SEM form as 

        (2.41) 

where   is a vector of disturbances and   is a matrix of coefficients; the diagonal of   is 

defined to be zero. Equation 2.41 can be easily transformed into an ICA model 

   (   )   . (2.42) 

The VAR-LiNGAM assumptions on the disturbance terms  , enumerated below, allow 

ICA to be used as part of its estimation procedure.  

 The second component of VAR-LiNGAM, an autoregressive model, does 

consider the time series structure in data. The notation of a vector of return observations 

as a time series is  
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  ( )  (
  ( )

 
  ( )

)          (2.43) 

where   ( ) is the return on a particular asset         at time        . An 

autoregressive model of multivariate time series return data  ( ) is written as 

  ( )  ∑   (   )   ( )

 

   

 (2.44) 

where k is the number of time-delays (lags) of the autoregression,    are     matrices 

of coefficients, and  ( ) is the innovation process.  

 The VAR-LiNGAM model is a combination of both the contemporaneous (lag 

zero) structural equation model (equation 2.41) and the autoregressive model with time-

delays (equation 2.44). The notation is similar to the previous notation: k is the number 

of time-delays (lags) of the autoregression and    are the     matrices containing the 

causal effects between returns  (   ) with time lag        . The    matrices for 

    correspond to effects from the past to the present, while    corresponds to 

instantaneous effects. The complete VAR-LiNGAM model is 

  ( )  ∑   (   )   ( )

 

   

 (2.45) 

where  ( ) are random disturbances. This model is based on three assumptions 

1)   ( ) are mutually independent and temporally uncorrelated, both with each other 

and over time.  

2)  ( ) are non-Gaussian. 

3) The matrix    corresponds to an acyclic graph. 
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 The model is estimated in two stages. First estimate the following vector 

autoregressive model using any least squares method 

  ( )  ∑   (   )   ( )

 

   

 (2.46) 

where    is the matrix of autoregressive least-squares estimates. Note that    contains 

no contemporaneous parameter estimates (i.e. where    ).  Next, compute the 

residuals of the model 

  ̂( )   ( )  ∑ ̂  (   ) 

 

   

 (2.47) 

Then perform a LiNGAM analysis on the residuals to obtain an estimate of the matrix 

  , which is the solution to the instantaneous causal model 

  ̂( )     ̂( )   ( )  (2.48) 

Finally, use  ̂  to compute    for     

  ̂  (   ̂ ) ̂    for     , (2.49) 

and substitute the estimates of these causal effect matrices into equation 2.45. 

 The VAR-LiNGAM model generates forecasts in the same way that a traditional 

VAR model generates forecasts. Use historical data and parameter estimates on the right 

hand side of equation 2.45 to estimate one-step-ahead forecasts.  

 

Portfolios of Independent Factors 

 The source of variance in the VAR-LiNGAM model is the vector of disturbances 

 ( ) in the model above; each disturbance term can be interpreted as an independent 
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factor. Any portfolio composed of a set of securities that correspond to the VAR-

LiNGAM model can alternatively be thought of as a portfolio composed of a set of 

independent factors. Identifying and controlling the portfolio’s exposure to the 

independent factors is important because they are the true sources of both risk and return 

in the VAR-LiNGAM model. As shown in the application section, however, controlling 

a portfolio’s exposure to a particular security does not effectively control the portfolio’s 

exposure to that security’s underlying independent factor. 

 The basic VAR-LiNGAM model definition can be written in terms of the returns 

on a set of independent factors (Hyvarinen et al. 2010) 

   ̃( )  (    ) ( )  ∑   (   )   ( )

 

   

  (2.50) 

The independent factor returns  ̃( ) are composed of a component that contains only 

information from the past (   ) and a component  ( ), which is a vector of 

independent disturbance terms at    . When the matrix    is interpreted as a directed 

acyclic graph containing nodes and directed edges, each row of the matrix (    ) 

subtracts the effects of a node’s parents from the effects of the node itself, leaving only 

the independent factor that drives each node. 

 With this equation, the relative weights of the underlying independent factors can 

be identified in a portfolio of correlated securities. This can be done in a similar way that 

the new factor exposures were found in equation 2.3 by allowing the matrix (    ) to 

function as the “pick” matrix 
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   ( )      ( )    (    )
  (    ) ( )   ̃  ̃( )  (2.51) 

Thus the relative weights  ̃ on the independent factors are 

  ̃  (    )
     (2.52) 

These weights can be used in the process of portfolio optimization to control risk as 

shown below. 

 

Application 

 In the remainder of this chapter, the VAR-LiNGAM model is used to generate 

forecasts for the set of the six most widely traded currencies. In addition, estimates from 

the model are used to find the set of currencies’ underlying independent factors. These 

independent factors are used in the risk contribution framework to provide portfolio 

optimization constraints. Six portfolios that are constructed using different optimization 

constraints are compared on a small out of sample data set. The purpose of this brief 

study is not to find the best performing portfolio but to examine the internal properties of 

the portfolios that are a result of using different constraints during optimization. The 

constraints are used to prohibit the allocation of too much wealth to any one risk factor 

in the portfolio, and some constraints do this more effectively than others. A set of plots 

shows how effective each constraint set is at controlling each measure of risk 

contribution. All plots are generated using Gnuplot software (2012). 
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Description of the Data 

 Data was obtained from the Sierra Chart FXCM Forex data service using Sierra 

Chart software (Sierra Chart 2012). This data is based on transactions between the 

FXCM foreign exchange dealer and its clients. The data set consists of direct quotations 

with fifteen minute periodicity for the Australian dollar (AUD), Canadian dollar (CAD), 

euro (EUR), Great Britain pound sterling (GBP), Japanese yen (JPY), and U.S. dollar 

(USD), all in terms of the Swiss franc (CHF). In other words, the exchange rates used in 

the study are the CHF/X exchange rates where X represents one of the six currencies 

listed above. These currencies are chosen because they had the largest market turnover 

rates in 2010 according to the Triennial Central Bank Survey (Bank for International 

Settlements 2010). Data for the entire year of 2009 (24,916 observations) is used for 

model estimation while data on 1/4/2010 from 00:00-12:30 (51 observations) is used for 

a portfolio performance comparison in which forecasts are made and then portfolios are 

rebalanced with portfolio optimizations based on these forecasts. Missing data is 

replaced by the most recent observation in each currency series. Log returns are 

computed by taking the natural logarithm and then first-differencing the exchange rates. 

The expected values and covariance matrix of the 2009 log returns are shown in table A-

1 and table A-2Error! Reference source not found.. 

 

VAR-LiNGAM Estimation Results 

 The two stage estimation technique was used to estimate the VAR-LiNGAM 

model for the 2009 currency returns. The VAR estimation was performed with SAS, 



 

24 

 

Version 9.2 (2012). An order 1 VAR was selected using the Hannan-Quinn information 

criterion and the Schwarz’s Bayesian criterion. Both criterions were negligibly better for 

order 2, but order 1 was chosen for the sake of parsimony. The LiNGAM procedure was 

then performed on the VAR residuals using the MATLAB code provided by Shimizu et 

al. (2006). The same code was used to prune the    matrix at alpha level 0.01 using the 

Bonferroni correction technique (Shaffer 1995). The expected returns for both the VAR 

residuals and the independent factors are presented in table A-1 while their respective 

covariance matrices are shown in table A-3 and table A-4. The pruned    matrix is 

shown in table A-Error! Reference source not found.5; this matrix corresponds to the 

directed acyclic graph shown in figure A-1. The    matrix is shown in table A-6 and the 

autoregressive matrix    is shown in table A-7. This procedure was repeated for the log 

returns in the entire year of 2010, and the resulting directed acyclic graph is shown in 

figure A-2 for comparison. The directed acyclic graphs in figures A-1 and A-2 show the 

instantaneous causal effects between the currencies and were generated using Graphviz 

software (2012). Edges of the graphs are directed to represent causal flow. For instance, 

an edge     indicates that a movement of currency X causes a movement of currency 

Y. 

 As evidence that the VAR-LiNGAM non-Gaussian assumption holds, a 

Kolmogorov-Smirnov test performed on each currency's corresponding independent 

factor confirmed that the null hypothesis of normality was rejected with p-value less than 

0.01 for each factor. 
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Portfolio Optimization with Constraints 

 A variety of different constraint sets can be added to the canonical mean-variance 

model to achieve varying portfolio objectives. The purpose of the constraints described 

here is to increase portfolio diversification so that the portfolio’s risk is not concentrated 

too greatly in any one risk factor. In each case, the metric or attribute being constrained 

characterizes the diversification differently. Constraints on the following attributes are 

added to the canonical mean-variance model (equations 2.11-2.12): relative portfolio 

weights, independent factor relative portfolio weights, percentage marginal risk 

contributions, independent factor percentage marginal risk contributions, and percentage 

total risk contributions. All optimizations are performed using AMPL (2011). 

 The relative portfolio weight constraints and the independent factor relative 

weight constraints are created by normalizing the relative weights with the sum of the 

risky asset weights (excluding the risk free asset). This normalization attempts to make 

the portion of the portfolio invested in risky assets more diversified. The limits on the 

relative weights are chosen to be 0.25 so that no more than 25% of the risky portion of 

the portfolio is invested (long or short) in any one risky asset. This leads to the addition 

of the following constraint set to the canonical mean-variance model 

       
  

∑   
 
   

                       (2.53) 

where   is defined as either   or  ̃. This constraint set is referred to as the relative 

portfolio weight constraint set (WC) when   is defined as   and the independent factor 

relative weight constraint set (WIC) when   is defined as  ̃. 
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 Limits placed on each factor’s percentage marginal risk contribution in a 

portfolio optimization prohibit any one factor’s marginal risk contribution from 

dominating the portfolio. The limits on the percentage marginal risk contributions are 

chosen to be 0.25 to be consistent with the constraints on the relative portfolio weights 

above. The resulting constraint set is  

 
      

   
  ( )
   

 ( )
                       

(2.54) 

where   is defined as either   or  ̃. For this application, the portfolio’s standard 

deviation is chosen as the measure of risk (equation 2.21). This constraint set is referred 

to as the marginal risk contribution constraint set (MRC) when   is defined as   and the 

independent factor marginal risk contribution constraint set (MRIC) when   is defined 

as  ̃. 

 Limits placed on each independent factor’s percentage total risk contribution in a 

portfolio optimization prohibit any one independent factor’s total risk contribution from 

dominating the portfolio. The total risk contributions used here are the components of 

the total risk decomposition of the portfolio variance (equation 2.25). The limits on the 

percentage total risk contributions are chosen to be 0.25 to be consistent with the 

previously defined constraints. The resulting constraint set is 

 
 ( ̃ )

 ( ̃)
                        (2.55) 

This constraint set is referred to as the independent factor total risk contribution 

constraint set (TRC). 
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Efficient Frontiers 

 In this section, an efficient frontier is constructed using the unconstrained 

canonical mean-variance model and using each of the constraints discussed above 

appended to the canonical mean-variance model one at a time. To simplify the 

computation of the efficient frontiers, the risk free rate is set equal to zero and all 

estimates are computed using data from the entire year of 2009. The portfolio’s expected 

return is computed using the expected value of the currency log returns 

          ( )               (2.56) 

and the variance of the portfolio’s return is computed using the covariance matrix of the 

currency log returns 

   
         ( )                (2.57) 

The matrix   , which is required to compute the relative weights on the independent 

factors  ̃ via (    )
  , was also estimated using data from the entire year of 2009. In 

each of the optimizations the efficient frontier is constructed by varying   across the 

interval [0, 1]. The resulting frontiers reflect the year 2009 in general and no particular 

point in time. 

 The set of efficient frontiers is shown in figure 2.1. The frontiers presented here 

are linear because a risk free asset is present in the portfolio. In comparison, when a risk 

free asset is not present, an efficient frontier is the upper edge of a hyperbola shaped 

region that surrounds all possible portfolios. The efficient frontier lines in figure 2.1 start 

at the risk free rate on the y-axis and continue through a tangency portfolio on the upper 

edge of their respective hyperbola shaped regions (not shown) that surround the set of all  
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Figure 2.1. Comparison of efficient frontiers 
Note: The frontiers are generated using constrained mean-variance optimization with 

data from 2009. Each frontier in the plot is labeled according to the constraint set used in 

its creation. The constraint sets and labels are as follows: the relative portfolio weight 

constraint set (WC), the independent factor relative weight constraint set (WIC), the 

marginal risk contribution constraint set (MRC), the independent factor marginal risk 

contribution constraint set (MRIC), and the independent factor total risk contribution 

constraint set (TRC). 

 

 

possible risky portfolios. Unconstrained frontiers are ubiquitous in finance, and frontiers 

created with relative portfolio weight constraints are considered occasionally. Frontiers 

created with marginal risk contribution constraints are rarely used, and the frontiers 

created with independent factor constraints are unique to this study. 
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There is a cost in terms of efficiency of adding constraints to the optimization. 

The unconstrained frontier is the most efficient, i.e. has the greatest portfolio expected 

return per standard deviation of portfolio return, followed by (in order) the frontiers 

generated with the following constraint sets: the independent factor relative weight 

constraint set (WIC), the marginal risk contribution constraint set (MRC), the 

independent factor total risk contribution constraint set (TRC), the marginal risk 

contribution of independent factor constraint set (MRIC), and the relative portfolio 

weight constraint set (WC). Note that the MRC and TRC constrained frontiers overlap.  

 All but the relative portfolio weight constraint set produce frontiers that are near 

to one another and relatively near to the unconstrained frontier. The relative portfolio 

weight constrained frontier’s large distance from the unconstrained frontier indicates that 

the cost of this constraint set is much greater than the cost of the other constraint sets. 

 

Portfolio Performance 

 The performance of each of these portfolios is compared using data that spans 

00:00-12:30 on 1/4/2010; the realized returns for each of the six currencies during this 

time period are shown in figure A-3. It is assumed that the risk free rate is zero and that 

there are no transaction costs. The VAR-LiNGAM estimation results from 2009 of 

   ( ) ,      ( ) , and    are used in the time series model that serves as the base for 

the portfolio optimizations. The 2009 estimate for    is used to compute the relative 

weights on the independent factors  ̃. For each period’s portfolio optimization, the most 
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recently observed return  ( ) is used to compute the next period’s conditional expected 

value    (   )       ( ) . This computation is as follows 

    (   )       ( )       ( )   ( )       ( )  (2.58) 

     ( )     ( )   

The 2009 covariance matrix of the residuals is used for each portfolio optimization and 

is assumed to remain constant throughout 1/4/2010.  

 Each portfolio is created with        in its corresponding optimization model 

for every time period in the simulation; this high degree of risk aversion was chosen so 

that the portfolios do not become too volatile. Each portfolio starts with an initial wealth 

in cash (unallocated to other currencies) of 100 CHF. A comparison of the portfolio 

performance is shown in figure 2.2. The cumulative wealth of each portfolio at any 

particular point in time in figure 2.2 can be explained by comparing the portfolio 

holdings shown in figure A-4 with the realized returns shown in figure A-3. A portfolio 

experiences a large change in value when it has a large position in a currency that has a 

large realized return. For example, in period 30 the unconstrained portfolio had a 

substantial loss in value (see figure 2.2) because it had a large short (i.e. negative) 

position in the euro (see figure A-4) and the euro had a large positive return (see figure 

A-3). The value of the other portfolios did not change much in period 30 because none 

of them had any substantial positions. 
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Figure 2.2. Portfolio performance comparison on 1/4/2010 from 00:00-12:30 
Note: For every point in time in the plot, the VAR-LiNGAM model is used to generate 

forecasts, and then constrained mean-variance optimization is used to rebalance each 

portfolio. Initial portfolio wealth is 100 CHF. Each portfolio in the plot is labeled 

according to the constraint set used in its creation. The constraint sets and labels are as 

follows: the relative portfolio weight constraint set (WC), the independent factor relative 

weight constraint set (WIC), the marginal risk contribution constraint set (MRC), the 

independent factor marginal risk contribution constraint set (MRIC), and the 

independent factor total risk contribution constraint set (TRC). 

 

 

 

In period 31, the unconstrained portfolio made up the lost ground from the 

previous period by having an even larger short position in the euro and a large short 

position in the yen; the yen’s negative return in period 31 was large, while the euro’s 

was modest. The WC, MRC, MRIC, and TRC portfolios also experienced large gains in 

period 31 (see figure 2.2) by having large short positions in the yen and euro. In period 
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50, all portfolios lost value because they had long positions in the pound sterling, which 

had a large negative return. Overall, on this small data set none of the portfolios 

performed exceptionally better than the others, but the portfolio generated with the 

independent factor relative weight constraint set (WIC) did seem to lag behind. 

Each of figures A-4 through A-8 contains six plots, and each plot corresponds to 

a portfolio constructed with one of constraints discussed above. All of the plots within a 

figure display the same attribute (e.g. total risk contribution in figure A-8) for the 

currency positions contained within a portfolio. 

 Plots of portfolio currency allocations are shown in figure A-4; each line in the 

figure represents the total value of a particular currency holding denominated in Swiss 

francs. At some points in time and for all constraints except the weight constraints, the 

allocation to a specific currency is disproportionately large. Only with the relative 

weight constraints are the allocations of all currencies kept within a narrow boundary.  

 Independent factor relative portfolio weights over time are displayed in figure A-

5. The independent factor relative weight constraint set (WIC) and the relative portfolio 

weight constraint set (WC) appear to be the most effective at keeping the independent 

factor relative portfolio weights constrained. The other constraint sets allow some of the 

independent factor relative portfolio weights to become many times larger than the 

others; this concentration of wealth in a small number of independent factors is 

undesirable because it represents a loss of diversification. 

 Percentage marginal risk contribution plots are shown in figure A-6, and 

independent factor percentage marginal risk contribution plots are shown in figure A-7. 
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None of the plots in either of these figures indicate that the marginal risk contributions 

become as divergent as some of the independent factor relative portfolio weights do in 

figure A-5. 

 Independent factor total risk contribution plots are displayed figure A-8. In 

addition to the independent factor total risk contribution constraint set (TRC), the 

independent factor relative weight constraint (WIC) and marginal risk contribution of 

independent factor constraint (MRIC) sets do a moderate  job of controlling total risk 

contributions. The total risk contributions that result from optimizations using other 

constraint sets are at times out of proportion. For example, in the weight constrained 

(WC) portfolio, the euro and U.S. dollar independent factors contribute most to the 

portfolio’s total risk. This is an indication that while weight constraints are one of the 

most popular ways to control portfolio exposures, they can be very ineffective at 

controlling risk contributions. 

 

Conclusions 

 With traditional portfolio analysis, a portfolio manager's life is complicated by 

the fact that risk can only be analyzed relative to an existing portfolio. Once a portfolio 

is somehow constructed, marginal risk analysis is confusing because changing the size of 

one position not only changes its marginal risk contribution but changes the marginal 

risk contributions from the other positions as well. To further complicate matters, some 

positions have negative marginal risk contributions so that increasing such a position's 

size will actually reduce the risk of the portfolio at the margin. 
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Total risk contributions, as introduced in this chapter, are simpler to compute and 

easier to interpret than marginal risk contributions. Each total risk contribution is non-

negative and can be interpreted as having a potentially adverse effect on the portfolio. 

Furthermore, in the total risk contribution framework, each position contributes 

independently to the risk of the total portfolio so that changing the size of one position 

does not affect the risk contributions of the other positions. This allows a portfolio 

manager to know exactly how much risk each position (in an independent factor) will 

contribute to the portfolio. In the example application, percentage total risk contributions 

are constrained to be less than or equal to 25% of the total portfolio’s risk. This is 

equivalent to a portfolio manager deciding that no more than 25% of the portfolio’s risk 

should be allocated to any one independent risk factor. This decision takes place before 

the portfolio is created, and the percentage risk allocations are not relative to an existing 

portfolio as they would be when using the traditional marginal risk contribution 

framework. 

When a set of securities conforms closely to the assumptions of independent 

component analysis, the independent factors can be thought of as the true sources of risk 

and return. In this case, the total risk contribution framework is recommended for use in 

both portfolio construction (e.g. optimization) and portfolio analysis because of its 

simplicity and conceptual clarity. 

In the application section of this chapter, the market structure underlying a set of 

currencies is found, and from this structure the set of independent factors is identified. 

The total risk contributions from the total risk decomposition of a portfolio’s variance 



 

35 

 

are computed using this set of independent factors. Portfolios are constructed on sample 

data sets by constraining the relative portfolio weights of the independent factors and the 

total risk contributions during mean-variance optimizations. The efficient frontiers and 

the properties of these portfolios as they change over time compare favorably to those of 

other portfolios generated by more conventional constraints during mean-variance 

optimization. A comparison of the internal properties of these portfolios shows that, in 

this case, the only way to effectively control independent risk contributions is to put 

constraints on the independent risk contributions themselves. 
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CHAPTER III 

FOREIGN EXCHANGE MARKET STRUCTURE 

 

Introduction 

 The objective of this chapter is to discover the causal relationships between the 

six most widely traded currencies and to observe how these causal relationships change 

over time. The PC, Fast Causal Inference (FCI), and LiNGAM causal search algorithms 

are used to find causal relationships, and the results are presented graphically. A 

secondary goal of the study is to determine whether any latent common causes influence 

the foreign exchange market; this is accomplished with the FCI algorithm. 

Little is known about the foreign exchange market in spite of it being the focus of 

an abundant amount of research. Previous literature finds that exchange rates are 

disconnected from macroeconomic fundamentals, for instance see Meese and Rogoff 

(1983), Frankel and Rose (1994), and Cheung, Chinn, and Pascual (2005). In other 

words, exchange rate models based on macroeconomic fundamentals have no 

explanatory or predictive power. Cheung, Chinn, and Pascual (2005) examines several 

exchange rate models at a variety of forecast horizons and concludes that no model 

consistently outperforms a random walk.  

 Evans (2012) theorizes that the dominant drivers of changes in real exchange 

rates are latent variables, which he names “dark matter”. These latent variables have an 

impact on real exchange rates via expected excess returns or the expected long-run real 

exchange rates. The model used by Evans (2012) reveals that the only observable 
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variables to have even a marginal effect on real exchange rates for major currencies are 

real interest rate differentials.  

 In a different strand of literature, authors use cointegration analysis to find 

relationships between currencies. These studies produce a wide range of results; some 

find cointegration in the foreign exchange market, some do not, and others have mixed 

results. For example, Norrbin (1996) finds that most currencies in the European 

Monetary System are cointegrated during the period 1979-1992. Rapp and Sharma 

(1999) finds that none of the G-7 currencies are cointegrated during the period 1973-

1996, whereas Phengpis (2006) finds mixed and unstable results during the 1992–1993 

European and the 1997–1998 Asian currency crises. For more references to 

cointegration literature that examines the foreign exchange market before introduction of 

the euro, see Kuhl (2010). 

 Kuhl (2010) is the first to search for cointegration in the foreign exchange market 

since the formation of the European Monetary Union. Using data for the Australian 

dollar, euro, Great Britain pound sterling, Japanese yen, and Swiss franc all in terms of 

the United States dollar during the period from January 1999 to June 2007 (after the 

introduction of the euro), the study finds that the euro-US dollar exchange rate is weakly 

exogenous and cointegrates with the Australian dollar-US dollar and with the British 

pound–US dollar. Hence, the study asserts that causality runs from the euro-US dollar to 

the other two exchange rates.  
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Related Literature 

 In contrast to the previous literature on foreign exchange, the analysis contained 

within this paper uses graph-theoretic search algorithms to uncover the relationships 

amongst a set of currencies. These techniques originated in the computer science 

literature and have been developed into a framework for finding causal relationships 

amongst a set of variables using only observational data. A thorough introduction to 

these ideas can be found in Pearl (2000). 

 In most studies that apply causal search methods to economic data, the 

innovations from vector autoregressive (VAR) models or vector error correction (VEC) 

models are used to find directed acyclic graphs (DAGs) that represent the 

contemporaneous causal relationships between selected economic variables. The PC 

algorithm (explained below) is the most popular technique for finding these causal 

relationships.  

 Some examples of this literature are as follows. Akleman, Bessler, and Burton 

(1999) uses the PC algorithm to find DAGs that represent the causal relationships of 

exchange rates on U.S. corn exports. Haigh and Bessler (2004) finds that both the PC 

algorithm and a graph scoring technique agree on the same contemporaneous causal 

structure underlying soybean prices and barge transportation costs. Kim, Leatham, and 

Bessler (2007) looks explicitly for causal structural change across time and finds that the 

contemporaneous causal structure of a model is different before and after a structural 

break. Moneta (2008) modifies the PC algorithm in an attempt to provide more stability 
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to the algorithm's edge orientation procedure and applies this modified algorithm to US 

economic data. 

 The remaining part of this paper is divided into two sections. In the first section, 

directed graphs and their connection to causal modeling is explained. Three causal 

search algorithms are then presented and their usage with time series models is 

discussed. The second section of the paper contains an application of these techniques to 

a set of the six most widely traded currencies. Each of the years 2009, 2010, and 2011 

are modeled separately and the results are compared. 

 

Directed Acyclic Graphs 

 A directed graph is a diagram that depicts a set of vertices (nodes) V connected 

by a set of directed edges (links) E with each edge connecting a pair of vertices, e.g. for 

       ,    . In a directed acyclic graph (DAG), there is no path (sequence of 

directed edges) that leads from a vertex back to itself. In other words, a DAG contains 

no directed cycles, e.g.      . 

 Directed acyclic graphs are often used to represent the causal relationships 

among a set of random variables. In the causal setting, each vertex represents a variable, 

and all directed edges are drawn with arrowheads that indicate the direction of causal 

flow, e.g.     indicates that variable A causes variable B. A set of variables V is 

causally sufficient if every common cause of two variables in V is also in the set V. A 

DAG G on a causally sufficient set of variables V is a causal DAG if and only if there is 
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an edge from A to B in G if and only if A is a direct cause of B relative to V (Spirtes, 

Glymour, and Scheines 2001). 

 Several algorithms have been developed to find the causal structure underlying a 

set of variables. These algorithms use probability distributions (specifically, conditional 

independence information) on a set of variables to construct a graphical model 

illustrating the variables’ causal relationships. Usually the output is one DAG that does 

not uniquely identify the set of causal relationships. The best that can be done using 

observed conditional independence information is to find a set of DAG structures that 

are observationally equivalent. Sometimes an equivalence class of DAGs is represented 

by a partially directed DAG in which some edges are not directed. The directed edges 

are common to all members of the equivalence class while the undirected edges are 

directed one way in some members of the equivalence class and the opposite way in 

other members (Pearl 2000). 

 In the presence of latent variables or selection bias, a partial ancestral graph 

(PAG) may be used to represent partial causal information that is shared by a class of 

DAGs. PAGs contain conditional independence information and partial information 

about ancestor relationships entailed by a class of DAGs. 

 

PC Algorithm 

 There are a number of causal search methods for recovering the graphical 

structure underlying a set of variables. The PC algorithm, named after its authors Peter 

and Clark (Spirtes, Glymour, and Scheines 2001), is a classic search method used in 
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much of the previous literature. The PC algorithm assumes that the true causal graph is 

acyclic and that there are no hidden common causes of any two variables. The Fisher’s z 

test that is commonly used in implementations of the PC algorithm assumes that each 

variable has a Normal distribution and that direct causal influences between variables are 

linear. 

 The PC algorithm is implemented in two stages. In the first stage, the algorithm 

starts with a complete (fully connected) undirected graph. Then, edges are removed with 

a sequence of conditional independence tests. For every pair of variables, the algorithm 

searches for a set of the other variables that renders the pair conditionally independent. If 

such a set is found then the edge between the pair of variables is removed from the 

graph. During this edge removal procedure some undirected edges are directed as a 

precursor to the second stage of the algorithm. Fisher’s z is commonly used instead of a 

test for conditional independence; this tests whether conditional correlations are different 

from zero. Fisher’s z equation is 

 

  

 ( (     )  )  [
 

 
√       ]   {

    (     ) 

   (     )
} (3.1) 

where  (     ) is the population correlation between i and j, n is the number of 

observations, and     is the number of variables in set k.  If i, j, and k are normally 

distributed and  (     ) is the sample conditional correlation of i and j given k then 

 ( (     )  )   ( (     )  ) has a standard normal distribution. 
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 In the second stage of the algorithm, the resulting partially directed graph of the 

first stage is then directed more fully based on a set of rules. This set of rules is 

presented in Meek (1995) and Pearl (2000). 

 The output of the PC algorithm is a graph that may contain three types of edges. 

A directed edge between a pair of variables indicates that one variable is a direct cause 

of the other variable. An undirected edge between a pair of variables indicates that the 

PC algorithm cannot determine which variable causes the other. A doubly directed edge 

between a pair of variables indicates that one of the algorithm’s assumptions has not 

been met or that some statistical decisions are inconsistent because the sample size is not 

large enough. The PC algorithm is implemented in the TETRAD IV software package 

(Glymour et al. 2012). 

 

Fast Causal Inference (FCI) Algorithm 

 The FCI algorithm of Spirtes, Glymour, and Scheines (2001) is similar to the PC 

algorithm; it assumes that the true causal graph is acyclic and that there might be hidden 

(latent) variables or selection bias. A partial ancestral graph (PAG) is produced by the 

algorithm using the causal Markov assumption, the causal faithfulness assumption, and 

the population inference assumption. A PAG represents the ancestor relationships among 

a set of variables that are shared by a set of observationally equivalent DAGs. Variable 

A is an ancestor of variable B when there is a directed path from A to B.   

 An edge in a PAG can have three kinds of endpoints: “ ”, “-“, or “>”. An edge 

between two measured variables indicates that the variables are not independent 
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conditional on any set of measured variables. The following four types of edges can be 

made by combining the different types of endpoints: A     B, A    B, A   B, or A   

B. Assuming that there is no selection bias, the interpretation of edge types may be 

summarized as follows (let “*” stand for any of the three types of endpoints); for more a 

more detailed description, see Spirtes, Glymour, and Scheines (2001) 

1. An edge between A and B is oriented as A   B only if A is an ancestor of B. 

2. An edge between A and B is oriented as A    B only if B is not an ancestor of 

A. 

3. An “ ” on the end of an edge places no restriction on the possible ancestor 

relationships. 

Note that an edge does not necessarily mean that one variable directly causes another 

variable. The existence of an edge implies that the causal pathway may contain latent 

variables. In the absence of selection bias, an edge A   B implies that A and B possibly 

share a common cause. 

 Like the PC algorithm the FCI algorithm is implemented in two stages. In the 

first stage, edges are removed, and in the second stage, edges are directed. The particular 

implementation of the FCI algorithm used here employs Fisher’s z as the test for 

conditional independence. The FCI algorithm is implemented in the TETRAD IV 

software package (Glymour et al. 2012). 
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LiNGAM Algorithm 

 The LiGAM algorithm assumes that the observed variables can be arranged in a 

causal order so that the data generating process can be represented by a DAG, that the 

value assigned to each variable is a linear function of values assigned to variables 

positioned earlier in the causal order, that there are no latent common causes, and that 

the disturbance terms are mutually independent with non-Gaussian distributions and 

non-zero variances (Shimizu et al. 2006). The non-Gaussian assumption is important 

because this allows LiNGAM to estimate the full causal model with no undetermined 

parameters. 

 LiNGAM assumes that the observed variables   are linear functions of the 

disturbance variables  . When the mean is subtracted from each variable, this is 

expressed as 

         (3.2) 

Solving for  , this becomes 

      (3.3) 

where   (   )  . Equation 3.2 in addition to the assumption that the disturbance 

terms are independent and have non-Gaussian distributions is the independent 

component analysis (ICA) model. The ICA model has the following two 

indeterminancies that must be resolved before a graphical model can be constructed: 

neither the order nor the scaling of the independent components is defined. LiNGAM 

resolves both of these issues by permuting and normalizing the ICA mixing matrix to 
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obtain a matrix   containing the DAG connection strengths. The graphical 

representation of this matrix is the causal DAG model.  

 Because LiNGAM uses the non-Gaussian information contained in the 

disturbance terms, its output is just one DAG instead of an equivalence class of DAGs. 

As noted earlier, this output includes parameter estimates for the linear model. The 

LiNGAM procedure is implemented in MATLAB code provided by Shimizu et al. 

(2006). 

 

VAR Models 

 The learning algorithms described above are not designed to be used with time 

series data. The algorithms are commonly used in conjunction with a vector 

autoregression (VAR) model so that the VAR model accounts for the relationships 

between variables across time periods and the learning algorithm finds the 

contemporaneous causal structure within the most recent period of time. The marriage of 

these two methods is carried out in practice by first fitting a VAR model to the data and 

then using its innovations as input into a learning algorithm.  

 An autoregressive time series model is typically built using a time series of return 

observations, which is represented in vector form as 

  ( )  (
  ( )

 
  ( )

)           (3.4) 

where   ( ) is the return on a particular asset         at time        . Using this 

notation, an autoregressive model of multivariate time series return data is written as 
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  ( )  ∑   (   )   ( )

 

   

 (3.5) 

where k is the number of time-delays (lags) of the autoregression,    are     matrices 

of coefficients, and  ( ) is the innovation process.  

 To find an estimate  ̂( ) of the innovation process, estimate the following vector 

autoregressive model using any least squares method 

  ( )  ∑   (   )   ( )

 

   

 (3.6) 

where    is the matrix of autoregressive least-squares estimates. Note that    contains 

no contemporaneous parameter estimates (i.e. where    ). An estimate of the 

innovation process can now be computed as 

  ̂( )   ( )  ∑   (   ) 

 

   

 (3.7) 

This estimate is then used as input to a structural learning algorithm to find the 

contemporaneous structure underlying the original vector of returns.  

 

VAR-LiNGAM 

 LiNGAM can be combined with the VAR model in a specific way to so that the 

VAR model becomes fully identified as described in Hyvarinen et al. (2010); in the 

following text, this combined model is called VAR-LiNGAM. The VAR-LiNGAM 

model is a combination of the autoregressive model with time-delays (equation 3.5) and 
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the following structural equation model, which does not consider the time series 

structure in data 

        (3.8) 

where    is a vector of disturbances and the diagonal of   is defined to be zero. The 

complete VAR-LiNGAM model is 

  ( )  ∑   (   )   ( )

 

   

 (3.9) 

where  ( ) are random disturbances. The notation is similar to the previous notation: k is 

the number of time-delays (lags) of the autoregression and    are the     matrices 

containing the causal effects between returns  (   ) with time lag        . The    

matrices for     correspond to effects from the past to the present, while    

corresponds to instantaneous effects.  

 The VAR-LiNGAM model is based on three assumptions 

1)   ( ) are mutually independent and temporally uncorrelated, both with each other 

and over time.  

2)  ( ) are non-Gaussian. 

3) The matrix    corresponds to an acyclic graph. 

 The model is estimated in two stages. First estimate the vector autoregressive 

model and compute the residuals of the model as described above. Then perform a 

LiNGAM analysis on the estimate of the innovation process to obtain an estimate of the 

matrix   , which is the solution to the instantaneous causal model 
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  ̂( )     ̂( )   ( )  (3.10) 

Finally, use    to compute    for     

  ̂  (   ̂ ) ̂    for       (3.11) 

 

Application 

 In the remainder of the paper, the three learning algorithms are applied to a set of 

foreign exchange futures contract data. The causal structure underlying the futures 

contracts for the six most widely traded currencies is found for each of the years 2009, 

2010, and 2011. The graphical structures found by each algorithm are compared, and the 

structure of the foreign exchange futures market as it changes over time is illustrated.  

 

Description of the Data 

 Data is obtained from the Sierra Chart historical intraday futures data service 

using Sierra Chart software (Sierra Chart Software 2012). The data set consists of 

futures contracts that are traded on the CME Group exchange for the Australian dollar 

(AUD), Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), 

Japanese yen (JPY), and the Swiss franc (CHF). The March, June, September, and 

December futures contracts for the years 2009-2011 in addition to the 2012 March 

contract of each currency are in the dataset. The original data has one minute periodicity 

and is aggregated across time into fifteen minute intervals so that the resulting data used 

in this analysis has fifteen minute periodicity.  
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 Sierra Chart software was used to join each currency’s future contracts into a 

single continuous time series for the corresponding currency; for instance, all futures 

contracts for the AUD (March 2009, June 2009, ..., March 2012) were joined in 

sequence to form a single continuous time series for the AUD. The resulting six time 

series were then all converted to be in terms of the Swiss franc (CHF). Thus, the data set 

used for the analysis consists of observations from 2009-2011 of the Australian dollar 

(AUD), Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), 

Japanese yen (JPY), and the United States dollar (USD) all in terms of the Swiss franc 

(CHF). 

 These currencies are chosen because they had the largest market turnover rates in 

2010 according to the Triennial Central Bank Survey (Bank for International Settlements 

2010). Application of the causal learning algorithms is performed separately on the data 

in each of the years 2009, 2010, and 2011. Missing data is replaced by the most recent 

observation in each currency series. Log returns are then computed by taking the natural 

logarithm and first-differencing the exchange rates (in that order). All log returns in all 

time periods are stationary based on Dickey Fuller tests. The expected values and 

covariance matrix of the log returns for each year are shown in table B-1 and table B-2. 

 

Estimation Results 

 A different VAR model was estimated for each of the years 2009, 2010, and 

2011 using SAS, Version 9.2 (2012). The order of each VAR model was chosen to be 

order 1 by using the Hannan-Quinn information criterion and the Schwarz’s Bayesian 
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criterion. Both criterions were negligibly better for order 2; order 1 VAR models, 

however, are used for the sake of parsimony. 

 Estimates of the innovation processes were then computed as described in 

equation 3.7. The three structural learning algorithms were then applied to each year’s 

estimated innovation process. This results in three postulated graphical structures (one 

for each year) for each structural learning algorithm with a total of nine graphical 

structures altogether. The graphical structures for the years 2009, 2010, and 2011 are 

presented in figure 3.1, figure 3.2 and figure 3.3. In all searches, the PC and FCI 

algorithms were set to use an alpha level of 0.001. 

 As evidence that the VAR-LiNGAM non-Gaussian assumption holds, a 

Kolmogorov-Smirnov test performed on each currency's corresponding independent 

factor confirmed that the null hypothesis of normality was rejected with p-value less than 

0.01 for each factor. It is noteworthy that the PC and FCI algorithms performed well 

without using non-Gaussian information; they found graphical skeleton structures that 

were very similar to those found by LiNGAM as can be seen in figures 3.1-3.3.  

 The expected returns for the VAR residuals are presented in table B-3 and the 

covariance matrices are shown in table B-4. 
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  A 

 
    B               C 

Figure 3.1. FOREX futures market structures, 2009 
Note: The images show the output of (A) the PC algorithm, (B) the FCI algorithm, and 

(C) the LiNGAM algorithm applied to the 2009 estimated vector autoregression 

innovation process  ̂( ). These directed graphs represent the contemporaneous causal 

structure underlying the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,  

 Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  

( USD )                                                                                                                                                                         for the year
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A 

 
       B               C 

Figure 3.2. FOREX futures market structures, 2010 

Note: The images show the output of (A) the PC algorithm, (B) the FCI algorithm, and 

(C) the LiNGAM algorithm applied to the 2010 estimated vector autoregression 

innovation process  ̂( ). These directed graphs represent the contemporaneous causal 

structure underlying the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,  

 Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  

( USD )                                                                                                                                                                         for the year
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A 

 
   B               C 

Figure 3.3. FOREX futures market structures, 2011 
Note: The images show the output of (A) the PC algorithm, (B) the FCI algorithm, and 

(C) the LiNGAM algorithm applied to the 2011 estimated vector autoregression 

innovation process  ̂( ). These directed graphs represent the contemporaneous causal 

structure underlying the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,  

 Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  

( USD )                                                                                                                                                                         for the year

 

 

 

2009 Graphical Structure Comparison 

 The output of the PC algorithm for the year 2009 shows that the graphical 

structure is thoroughly connected, and that there are five edges that cannot be directed. 
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Overall, the results of the PC algorithm indicate that there are three possible causal 

sources (AUD, GBP, and USD) and three possible causal sinks (CAD, EUR, and JPY). 

 The graphical skeleton resulting from the FCI algorithm is almost the same as 

that of the PC algorithm, but the interpretation of the edges is quite different. Now AUD 

cannot be a source because all connected edges are directed into it. Many edges are 

marked with “o”, leaving many undefined ancestor relationships. The FCI algorithm 

identifies three common causes all connected to AUD.  

 LiNGAM identifies EUR as the one source and JPY as the one sink. This 

algorithm identifies edge connection strengths and these are shown in table B-5. The 

largest causal connection is from USD to JPY measured as 0.75. For the most part, the 

edges identified by LiNGAM are the same as the other two algorithms. There are some 

disagreements in terms of edge direction between LiNGAM and the other two 

algorithms. LiNGAM identifies EUR as a source with edges directed as EUR AUD and 

EUR USD whereas these edges are directed into EUR by the other two algorithms.  

LiNGAM finds other edges that contradict the direction of those found by the PC 

algorithm; these are: CAD AUD, EUR AUD, EUR USD, and EUR GBP. 

 

2010 Graphical Structure Comparison 

 USD and CAD are the only possible sources in the graphical structures found by 

the PC and FCI algorithms for the 2010 data. The PC algorithm’s output contains two 

doubly directed edges, which indicates that there is a problem as noted in the algorithm’s 

discussion. This algorithm was also unable to direct any of the edges from CAD. 
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 The FCI algorithm directs four of the five edges away from CAD. It also leaves 

many of the USD and CAD ancestor relationships undefined. The FCI algorithm again 

identifies three common causes, all connected to AUD.  

 LiNGAM once again identifies EUR as the one source, but now CAD is the one 

sink. The causal connection with the greatest strength in 2010 is EUR USD, and 

USD JPY is also identified as being strong (see table B-5). With the exception of 

adding AUD USD and EUR USD, LiNGAM identified the same edges as the other 

two algorithms. The disagreements in terms of edge direction with the other two 

algorithms pertain to LiNGAM identifying EUR as a source node and CAD as a sink.  

 

2011 Graphical Structure Comparison 

 In 2011, the PC algorithm identifies AUD and CAD as possible sources and 

CAD and EUR as possible sinks. The FCI algorithm identifies CAD, JPY, and USD as 

possible sources and AUD and EUR as possible sinks. FCI finds two latent common 

causes, and both are connected to AUD. LiNGAM identifies EUR as the one source for a 

third time with JPY as the one sink. Once again, the main difference between the 

LiNGAM results and the other two algorithms concerns EUR being a source. LiNGAM 

also finds four more edges than the other algorithms. 

 

Stability Over Time 

 The results from the PC algorithm are relatively stable over time. The PC 

algorithm finds three fewer edges in 2010 than it does in 2009, and the 2011graph has 
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the same number of edges as the 2010 graph but contains the edge JPY GBP instead of 

AUD JPY. Over time, only the edges GBP JPY and EUR AUD completely reverse 

their orientation, but many of the edges are not oriented one way or another because of 

the algorithm’s uncertainty. 

 With the exception of the EUR JPY edge in the 2009 PC algorithm graph, the 

FCI and PC algorithms find the same graph skeleton in each year.  The FCI algorithm 

identifies only two ancestor relationships according to its edge interpretation rules, and 

these are CAD EUR and GBP EUR in both the 2010 and 2011 graphs. The FCI 

algorithm identifies four potential common causes, with three at most present in any one 

year. These potential common causes are all common to the Australian dollar: 

AUD CAD, AUD EUR, AUD GBP, and AUD JPY. The possible shared common 

cause AUD EUR is present in the graphs of all three years. The AUD CAD and 

AUD JPY possible common causes are contained in the 2009 and 2010 graphs while 

AUD GBP is shared by the 2010 and 2011 graphs.  

 In contrast to the PC algorithm, the FCI algorithm produces no conflicting edge 

orientations in the three sequential graphs, but this is due to the presence of so many 

unrestricted (“ ”) endpoints. The FCI algorithm finds much uncertainty, i.e. many 

unrestricted endpoints, in the 2009 graph and little of it is resolved in the 2010 or 2011 

graphs. Thirteen unrestricted endpoints are found in the 2009 graph, seven in the 2010 

graph, and ten in the 2011 graph.  

 The LiNGAM algorithm finds exactly the same graph skeleton in each year, and 

EUR remains the one source throughout the time period. The LiNGAM edge 
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orientations are also consistent through time. The only edges that reverse orientation are 

the AUD CAD, AUD GBP, AUD USD, and CAD JPY edges. 

 Overall, the foreign exchange market structure appears to be quite stable over 

time. The FCI algorithm found latent common causes, but these do not appear to have 

any dramatic effect on the foreign exchange market’s graphical skeleton structure. Many 

of the endpoints found by the FCI algorithm were ambiguous in 2009 and 2010, so it is 

difficult to tell whether or not the latent variables had a significant effect on edge 

directions. In contrast, most of the edge directions found by LiNGAM are stable over 

time. 

 

Conclusions 

 This study uses the PC, FCI, and LiNGAM causal search algorithms to find 

possible causal structures underlying the foreign currency market. The six most widely 

traded currencies (Australian dollar, Canadian dollar, euro, Great Britain pound sterling, 

Japanese yen, and United States dollar) are examined on a 15 minute time frame. Vector 

autoregressive (VAR) models are applied yearly to the 2009, 2010, and 2011 data of this 

currency set so that each year is modeled individually. The causal search algorithms use 

the innovation process from the VAR as input and give a possible graphical model 

representing the causal structure as output.  

 The algorithms find that the foreign exchange market’s graphical skeleton is 

relatively stable over time. The most optimistic result, found by the LiNGAM algorithm, 

is that the foreign exchange market’s graphical skeleton is the same in each year.  
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 Edge orientations are also quite consistent through time. In the best case, the FCI 

algorithm produces no conflicting edge orientations in any of the three years. The FCI 

algorithm, however, finds much uncertainty, and it reflects this by producing many 

unrestricted edge endpoints in its graphs. The large number of unrestricted endpoints 

indicates that there might be many latent variables in the foreign exchange market’s 

graphical structure in addition to the four potential common causes identified by the FCI 

algorithm; this result reflects the findings of the dark matter literature (Evans 2012). 

 The possible latent variables and common causes that influence the foreign 

exchange market potentially make forecasting more difficult than it would be otherwise 

because there is no way to know how unknown information influences the market. This 

forecasting difficulty is shown in practice by studies such as Cheung, Chinn, and Pascual 

(2005). If latent variables are identified and the graphical structure of the foreign 

exchange market remains stable over time, as its tendency in figures 3.1-3.3, then the 

inherent stability of the foreign exchange market might make forecasting it easier than 

forecasting less stable markets. 

 The FCI algorithm finds many latent variables, and its graph structures are quite 

different than those of LiNGAM. These findings indicate that it might be potentially 

dangerous to use VAR-LiNGAM for portfolio management, as described in Chapter II, 

without first identifying and incorporating the latent variables into the VAR-LiNGAM 

model. If any of the assumptions of the VAR-LiNGAM model are violated by the 

presence of the latent variables, such as the random disturbance terms being mutually 
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independent and temporally uncorrelated, then it would not be advisable to use the 

model as the basis for portfolio management. 

 It is clear that much more research is needed to identify the latent variables, if 

any, which affect the foreign exchange market. Further experience using causal search 

algorithms to find graphical structures with market data is also needed to determine 

under what conditions each algorithm produces graphs that adequately describe market 

structures. 
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CHAPTER IV 

EFFECTS OF THE SWISS FRANC/EURO EXCHANGE RATE FLOOR ON THE 

CALIBRATION OF PROBABILITY FORECASTS 

 

Introduction 

  On September 6, 2011 the Swiss National Bank (SNB) began intervening in the 

Swiss franc/euro (CHF/EUR) exchange rate market to prohibit the franc from 

appreciating beyond 1.20 francs per euro, and it continued this intervention throughout 

2012 (U.S. Department of the Treasury 2011; U.S. Department of the Treasury 2012). 

The objective of this chapter is to assess the impact of this currency manipulation on the 

probability forecasts of the CHF/EUR from three time series models. One-step-ahead 

forecasts of the CHF/EUR probability distribution are based on a series of intraday data 

for six exchange rates (all versus the Swiss franc). Probability forecasts are generated 

from a vector autoregression (VAR) model, a VAR model augmented with the LiNGAM 

causal learning algorithm, and a univariate autoregressive model built on the 

independent components of an independent component analysis. The forecasted 

probability distributions are tested for calibration and ranked with two different scoring 

techniques in periods of time before, surrounding, after, and long after the beginning of 

the CHF/EUR exchange rate manipulation. A method based on directed acyclic graphs is 

used as a complement to the scoring metrics in an attempt to identify whether or not the 

preferred forecasting system changes over time; both the PC and LiNGAM algorithms 

are used to generate these graphs. 
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In contrast to other literature on exchange rate forecasting that examines point 

forecasts of exchange rates, this study follows the example set by Kling and Bessler 

(1989) and evaluates forecasted probability distributions. A brief summary of the most 

relevant literature concerning the exchange rate forecasting performance of multivariate 

time series models is as follows. Liu, Gerlow, and Irwin (1994) determines that the 

forecasting accuracy of restricted VAR models is better than that of unrestricted VAR 

models for forecasting the US dollar/yen, US dollar/Canadian dollar, and US 

dollar/Deutsche mark monthly exchange rates. Hoque and Latif (1993) uses VAR, 

Bayesian VAR, and vector error correction (VEC) models to forecast the Australian 

Dollar/United States Dollar monthly exchange rate and concludes that the VEC exhibits 

superior forecasting performance. Cuaresma and Hlouskova (2005) uses a VAR, 

restricted VAR, Bayesian VAR, VEC, and Bayesian VEC to forecast five Central and 

Eastern European monthly exchange rates and conclude that none of the models 

outperform the others for three month forecasts and that the Bayesian models tend to 

perform better than the others for five month forecasts. Carriero, Kapetanios, and 

Marcellino (2009) forecasts the monthly exchange rates of 33 exchange rates against the 

US dollar using a large Bayesian VAR model; the results indicate that the Bayesian 

VAR model forecasts better than a random walk model for most of the currencies.  

 

Prequential Analysis 

 Let    (         ) be the observed values of an     vector time series    

at time period t. Suppose that at any time n, the forecaster knows values            
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and must issue a set of probability distributions      for the next observation     .  A 

prequential forecasting system (PFS) is a rule which associates a choice of      with 

each value of n and with any possible set of outcomes            (Dawid 1984). A 

PFS is so named because it is the combination of probability forecasting and sequential 

prediction. 

 Dawid (1984) suggests that the adequacy of a PFS as a probabilistic explanation 

of the data should depend only on the sequence of forecasts that the PFS in fact made; 

this is called the prequential principle. In practice, the prequential principle is 

implemented by using the calibration criterion to judge whether or not a PFS issues 

adequate probabilities. For a PFS to be well calibrated according to the calibration 

criterion, the PFS must assign a probability to each event that matches that event's ex 

post relative frequency.  

 Formal testing of calibration relies on the probability integral transform as shown 

in Dawid (1984) and summarized as follows. For a continuous random variable        

(i.e. the one period forecast for time series i), let               (      ) be the 

continuous distribution function of       . Under        the        are independent 

uniform U[0,1] random variables so that        is considered to be well calibrated if the 

observed sequence of fractiles               (      ) "looks like" a random sample from 

U[0,1]. In other words, the PFS is well calibrated if the observed sequence        

       (      ) has cumulative distribution function  (      )         . 
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 The cumulative distribution function  (      ) for        is estimated by 

arranging the observed sequence               (      )         in order of 

ascending value       ( )         ( ) and calculating 

  ̂[      ( )]    ⁄         . (4.1) 

 Calibration performance can be shown graphically as a plot of the PFS’s 

observed fractiles (      's) on the x-axis against the estimated cumulative distribution 

function  ̂(      ) on the y-axis. This calibration plot will be approximately a 45-degree 

line for a well calibrated PFS.  

 In practice, a chi-squared goodness-of-fit test can be performed to test a PFS for 

calibration. This test uses the sequence of observed fractiles (      's) from the sequence 

of probability forecasts       . Under the null hypothesis that the forecasts are well 

calibrated, the distribution of a sequence of N observed fractiles is a uniform distribution 

on the interval [0,1], whereas the alternative hypothesis is that the distribution of 

observed fractiles is not uniform. If the interval [0,1] is divided into J nonoverlapping 

subintervals of length L (where      ), the goodness-of-fit statistic is calculated as 

    ∑(      )    ⁄

 

   

 (4.2) 

where    is the actual number of observed fractiles in interval j and    is the length of 

interval j (Kling and Bessler 1989). The goodness-of-fit statistic is compared to the chi-

squared distribution with     degrees of freedom. This test and all other chi-squared 

goodness-of-fit tests share a common form which is a sum of terms containing the 
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square of a difference between an observed count and an expected count divided by the 

expected count 

 ∑ (                 )         ⁄ . (4.3) 

For more information on the goodness-of-fit test see DeGroot and Schervish (2002). 

 

Scoring Forecasts 

In addition to calibration plots and calibration tests, prequential forecasting 

systems can be evaluated by metrics such as the mean-squared error (MSE) criterion or 

the probability score (Brier 1950). The MSE criterion is most often used to evaluate 

point forecasts, but it can also be used to evaluate predictive distributions (Kling and 

Bessler 1989). The MSE is calculated for probability forecasts by using the expected 

value of the forecast distribution. Let                be a sequence of probability 

forecasts for the ith element        of the random time series vector      and        be 

the expected value of the distribution       . The MSE of the forecasts for        is 

calculated as follows 

     
 

 
∑(             )

 
 

   

 (4.4) 

where        is the observed value of       . The sequence of forecasts with the smallest 

MSE is preferred; a PFS P is chosen over an alternative PFS Q if the PFS P has the 

smallest MSE. 
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 In contrast to the MSE, the probability score evaluates the entire forecasted 

probability distribution (Brier 1950). On any occasion n+1 suppose that there are R 

possible outcomes for        with probabilities     
 

         so that 

 ∑     
  

             . (4.5) 

The probability score is defined as 

    
 

 
∑ ∑(    

 
     

 
) 

 

   

 

   

 (4.6) 

where     
 

 takes the value 1 if outcome j occurred and 0 otherwise. The usage of the 

probability score is similar to that of the MSE; the sequence of forecasts with the 

smallest probability score is preferred. A PFS P is chosen over an alternative PFS Q if 

the PFS P has the smallest probability score. 

 

Directed Acyclic Graphs 

 A brief overview of graphs is given here because preferred forecasting systems 

can be identified by using a graphical concept called d-separation and because the 

LiNGAM algorithm and the PC algorithm (both discussed below) generate output that 

can be interpreted as a graph representing a set of causal relationships. For a more 

thorough overview of graphs and their representation of causal relationships, see Pearl 

(2000). 

 A directed graph is a diagram that depicts a set of vertices (nodes) V connected 

by a set of directed edges (links) E with each edge connecting a pair of vertices, e.g. for 

       ,    . In a directed acyclic graph (DAG), there is no path (sequence of 
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directed edges) that leads from a vertex back to itself. In other words, a DAG contains 

no directed cycles, e.g.      . 

 Directed acyclic graphs are often used to represent the causal relationships 

among a set of random variables. In the causal setting, each vertex represents a variable, 

and all directed edges are drawn with arrowheads that indicate the direction of causal 

flow, e.g.     indicates that variable X causes variable Y. A set of variables V is 

causally sufficient if every common cause of two variables in V is also in the set V. A 

DAG G on a causally sufficient set of variables V is a causal DAG if and only if there is 

an edge from X to Y in G if and only if X is a direct cause of Y relative to V (Spirtes, 

Glymour, and Scheines 2001). 

 

Using D-Separation to Identify Preferred Forecasting Systems  

 A recent paper, Bessler and Wang (2012), suggests that forecasts of preferred 

economic models d-separate forecasts of less preferred economic models from the actual 

realizations of the forecasted variable. This notion of model preference is used as a 

contrast to the MSE and probability score metrics in the application section of this paper.  

 The notion of d-separation applies to directed acyclic graphs and is fully 

explained in Pearl (2000). The following definition of d-separation is from Bessler and 

Wang (2012). A path p defined on a set of forecasts (          ) and the actual 

realization X is said to be d-separated (blocked) by a set of nodes (forecasts) Z if and 

only if 
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1) p contains a chain    →    → X or a fork    ←    → X, such that the middle 

node (forecasts from model m) is in Z. 

2) p contains an inverted fork (collider)    →    ←    such that the middle node 

(forecast or actual) m is not in Z and no descendent of m is in Z. 

A set Z d-separates    from X if and only if Z blocks every path from node    (forecast i) 

to node X (actual). The forecast    in the d-separation definition blocks the path between 

the other forecasts        and X. 

 

Independent Component Analysis 

 Independent component analysis is based on the premise that   observed 

variables         are linear combinations of underlying, statistically mutually 

independent source variables         

                                            . (4.7) 

This basic ICA model is written in vector-matrix form as 

     . (4.8) 

The observed variables   are used to estimate both the unknown mixing coefficient 

matrix   and the unobserved independent component vector  . The observed variables   

and the independent components   are both assumed to have zero mean. If this 

assumption does not hold then it can be made true by centering the original observed 

variables, denoted by   , in a preprocessing step 

       (  ) (4.9) 

This preprocessing also forces the independent components to have zero mean since 
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  ( )      ( ). (4.10) 

 Estimation of the basic ICA model relies on the following assumptions 

(Hyvarinen, Karhunen, and Oja 2001) 

1) The independent components are assumed to be statistically independent, but in 

application this does not need to be exactly true. 

2) The mixing matrix   is assumed to be square and invertible for the sake of 

convenience and simplicity. 

3) The independent components must have non-Gaussian distributions. 

Some ICA models are slightly different from the basic ICA model and have their own 

assumptions; for details see Hyvarinen, Karhunen, and Oja (2001).  

 The independent components   are more than just uncorrelated; they are as 

statistically independent as possible. Achieving this requires more information than what 

is available in a correlation matrix unless all of the variables are normally distributed, in 

which case zero correlation is equivalent to independence. The estimation of 

independent components uses higher order moments or other information such as the 

autocovariance structure for time series variables in addition to correlation information.  

 It is always possible to linearly transform the observed random variables   into 

uncorrelated variables. It is also often desirable that the transformed variables have 

variances equal to unity. The process called whitening transforms zero mean variables   

into uncorrelated variables   that have unit variances. The result of whitening is a matrix 

  that decorrelates the observed data vector 
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     . (4.11) 

The matrix   is computed as 

       ⁄    (4.12) 

where   (     ) is the matrix whose columns are the unit-norm eigenvectors of the 

covariance matrix           and       (     ) is the diagonal matrix of the 

eigenvalues of   . There are an infinite number of matrices   that can create 

decorrelated components. This is the reason that estimation of the basic ICA model 

requires the higher order moments of non-Gaussian distributions. 

 The basic ICA model in equation 4.8 has the following ambiguities 

1) The variances of the independent components cannot be determined. 

2) The order of the independent components cannot be determined. 

The first ambiguity occurs because any scalar multiple of one of the independent 

components    can be cancelled by dividing the corresponding column of the mixing 

matrix   by that same multiple. The second ambiguity follows from modifying the 

model with any permutation matrix   and its inverse  

         . (4.13) 

Now      is the unknown mixing matrix and    are the independent components in a 

different order. In applications that use ICA, neither of these ambiguities is important. 
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ICA Time Series 

 If the independent components are time series, as opposed to independent 

random variables in the basic ICA model, then the ICA model takes the following form 

(Hyvarinen, Karhunen, and Oja 2001) 

  ( )    ( )               (4.14) 

where   is the time index. Since time series variables have more structure than 

independent random variables, the time series autocovariances may be used for 

estimation instead of the higher-order information that is required in the basic ICA 

model.  

 The AMUSE algorithm provides one method to estimate the model above 

(Hyvarinen, Karhunen, and Oja 2001). This algorithm requires the time-lagged 

covariance matrix in place of the higher-order moments used in the basic ICA model. 

The time-lagged covariance matrix is computed as  

   
     ( ) (   )   (4.15) 

where   is a lag constant,          . This matrix contains the autocovariances of each 

signal and the covariances between signals. 

 The algorithm is based on the fact that the instantaneous and lagged covariances 

of  ( ) are zero due to independence. Hence, the time-lagged covariance matrix is used 

to find a matrix   so that all of the instantaneous and lagged covariances of  

  ( )    ( ) (4.16) 

are equal to zero. 
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 The AMUSE algorithm assumes that all of the ICs have autocovariances 

different from zero and different from each other. This assumption replaces the 

assumption of the basic ICA model that the independent components must have non-

Gaussian distributions. 

 The AMUSE algorithm uses whitened, zero mean data  ( ) as input and 

generates the separating matrix   as output so that  

   ( )   ( ) (4.17) 

   (   )   (   ). (4.18) 

The time-lagged covariance matrix is modified to be symmetric by the following 

computation 

  ̅ 
  

 

 
   

  (  
 )   (4.19) 

so that an eigenvalue decomposition on this new symmetric matrix is well defined. The 

steps of the AMUSE algorithm are as follows (Hyvarinen, Karhunen, and Oja 2001) 

1) Center and whiten the observed data  ( ) to obtain  ( ). 

2) Compute the eigenvalue decomposition of the symmetric, time-lagged 

covariance matrix (equation 4.19) for some time lag  . 

3) The rows of the estimated separating matrix  ̂ are given by the eigenvectors. 

4) The estimated separating matrix for the unwhitened data   is  ̂   ̂  where   

is defined in equation 4.12. 

 Time series models are typically built using observed returns, which are 

represented in vector form by the notation 
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  ( )  (
  ( )

 
  ( )

)          (4.20) 

where   ( ) is the return on a particular asset         at time        . In the 

following discussion, the vector of observed time series variables is the vector of 

observed returns, i.e.  ( )   ( ). A prequential forecasting system can be created with 

the independent components by building on the forecasting method described in Popescu 

(2009). The following procedure is used to create a prequential forecasting system for a 

set of observed returns 

1) Compute the independent components using the estimated separating matrix 

  ( )   ̂ ( )               (4.21) 

2) Model each independent component with an autoregressive (AR) model 

   ( )    ∑    (   )    ( )

 

   

               (4.22) 

 where c is a constant, k is the number of time-delays (lags) of the autoregression, 

   are coefficients, and   ( ) is the innovation process. 

3) Compute the estimates of the innovation process as follows 

   ( )    ( )    ∑    (   )

 

   

               (4.23) 

 and estimate the probability distributions of the innovations with a method such 

as kernel density estimation. For an overview of kernel density estimation see 

Bowman and Azzalini (1997). 
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4) Obtain samples from the estimated probability distributions of the innovations 

with a sampling technique such as Latin hypercube sampling. A stratified 

sampling technique such as Latin hypercube sampling is generally more accurate 

when there are low-probability outcomes, which is likely to be the case in this 

application (Hardaker et al. 2004). 

5) Use the samples of the innovations in conjunction with historical data and 

parameter estimates to compute the estimated probability distribution for the one-

step-ahead independent components using equation 4.22.  

6) Finally, transform the samples of the estimated probability distributions of the 

independent components into estimated probability distributions of the original 

variables 

  ( )   ̂ ( )              . (4.24) 

 

LiNGAM Algorithm 

 The LiGAM algorithm assumes that the observed variables can be arranged in a 

causal order so that the data generating process can be represented by a DAG, that the 

value assigned to each variable is a linear function of values assigned to variables 

positioned earlier in the causal order, that there are no latent common causes, and that 

the disturbance terms are mutually independent with non-Gaussian distributions and 

non-zero variances (Shimizu et al. 2006),. The non-Gaussian assumption is important 

because this allows LiNGAM to estimate the full causal model with no undetermined 

parameters. 
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 LiNGAM assumes that the observed variables are linear functions of the 

disturbance variables. When the mean is subtracted from each variable, this is expressed 

as 

        (4.25) 

Solving for  , this becomes 

      (4.26) 

where   (   )  . Equation 4.25 in addition to the assumption that the disturbance 

terms are independent and have non-Gaussian distributions is the independent 

component analysis (ICA) model. The ICA model has the following two 

indeterminancies that must be resolved before a graphical model can be constructed: 

neither the order nor the scaling of the independent components is defined. LiNGAM 

resolves both of these issues by permuting and normalizing the ICA output (i.e. the 

mixing matrix) to obtain a matrix   containing the DAG connection strengths. The 

graphical representation of this matrix is the causal DAG model.  

 Because LiNGAM uses the non-Gaussian information contained in the 

disturbance terms, its output is just one DAG instead of the class of equivalent DAGs 

found by most causal learning algorithms. As noted earlier, this output includes 

parameter estimates for the linear model. The LiNGAM procedure is implemented both 

in MATLAB code provided by Shimizu et al. (2006) and in the TETRAD IV software 

package provided by Glymour et al. (2012). In the application below, the MATLAB 

code is used to produce coefficient estimates, and TETRAD IV is used to produce DAG 

illustrations. 



 

75 

 

PC Algorithm 

 The PC algorithm, named after its authors Peter and Clark, is used in this study to 

recover the graphical structure underlying a set of forecasts and their associated actual 

realizations (Spirtes, Glymour, and Scheines 2001). The resulting graph is examined to 

identify the preferred forecasting systems that d-separate the less preferred forecasting 

systems from the actual realizations of the forecasted variable as discussed in Bessler 

and Wang (2012). 

 The PC algorithm assumes that the true causal graph is acyclic and that there are 

no hidden common causes of any two variables. The Fisher’s z test that is often used in 

implementations of the PC algorithm assumes that each variable has a Normal 

distribution and that direct causal influences between variables are linear. 

 The PC algorithm is implemented in two stages (Spirtes, Glymour, and Scheines 

2001). In the first stage, the algorithm starts with a complete (fully connected) 

undirected graph. Then, edges are removed with a sequence of conditional independence 

tests. For every pair of variables, the algorithm searches for a set of the other variables 

that renders the pair conditionally independent. If such a set is found then the edge 

between the pair of variables is removed from the graph. During this edge removal 

procedure some undirected edges are directed as a precursor to the second stage of the 

algorithm. Fisher’s z is commonly used instead of a test for conditional independence; 

this tests whether conditional correlations are different from zero. Fisher’s z equation is 

shown below 
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 ( (     )  )  [

 

 
√       ]   {

    (     ) 

   (     )
} (4.27) 

where  (     ) is the population correlation between i and j, n is the number of 

observations, and     is the number of variables in set k.  If i, j, and k are normally 

distributed and  (     ) is the sample conditional correlation of i and j given k then 

 ( (     )  )   ( (     )  ) has a standard normal distribution. 

 In the second stage of the algorithm, the resulting partially directed graph of the 

first stage is then directed more fully based on a set of rules. This set of rules is 

presented in Meek (1995) and Pearl (2000). 

 The output of the PC algorithm is a graph that may contain three types of edges. 

A directed edge between a pair of variables indicates that one variable is a direct cause 

of the other variable. An undirected edge between a pair of variables indicates that the 

PC algorithm cannot determine which variable causes the other. A doubly directed edge 

between a pair of variables indicates that one of the algorithm’s assumptions has not 

been met or that some statistical decisions are inconsistent because the sample size is not 

large enough. The PC algorithm is implemented in the TETRAD IV software package 

(Glymour et al. 2012). 

 

VAR Models 

 A vector autoregression (VAR) built using a time series of return observations 

(equation 4.20) is written as 
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  ( )  ∑   (   )   ( )

 

   

 (4.28) 

where k is the number of time-delays (lags) of the autoregression,    are     matrices 

of coefficients, and  ( ) is the innovation process. 

 To find an estimate  ̂( ) of the innovation process, estimate the vector 

autoregressive model using any least squares method and compute the estimate of the 

innovation process as 

  ̂( )   ( )  ∑ ̂  (   ) 

 

   

 (4.29) 

 In the application below, the VAR model is used as a one-step-ahead prequential 

forecasting system by using a multivariate normal distribution as the distribution of the 

innovations  ̂( ). Estimates of the expected value vector and covariance matrix of   ̂( ) 

are used as parameters of the multivariate normal distribution. The multivariate normal 

distribution of the innovations is used in equation 4.28 with historical data and parameter 

estimates to create a probability distribution for the one-step-ahead return vector  ( ).  

 

VAR-LiNGAM 

 LiNGAM can be combined with the VAR model in a specific way so that the 

VAR model becomes fully identified as described in Hyvarinen et al. (2010); in the 

following text, this combined model is called VAR-LiNGAM. The VAR-LiNGAM 

model is a combination of an autoregressive model with time-delays and a structural 



 

78 

 

equation model, which does not consider the time series structure in data. The 

autoregressive portion of VAR-LiNGAM is as follows 

 

 

 

 ( )  ∑   (   )   ( )

 

   

 (4.30) 

where k is the number of time-delays (lags) of the autoregression,    are     matrices 

of coefficients, and  ( ) is the innovation process. The structural equation portion of 

VAR-LiNGAM is 

        (4.31) 

where    is a vector of disturbances and the diagonal of   is defined to be zero. 

 The complete VAR-LiNGAM model is the combination of equation 4.30 and 

equation 4.31 

  ( )  ∑   (   )   ( )

 

   

 (4.32) 

where k is the number of time-delays (lags) of the autoregression,    are the     

matrices containing the causal effects between returns  (   ) with time lag   

     , and  ( ) are random disturbances. The    matrices for     correspond to 

effects from the past to the present, while    corresponds to instantaneous effects. The 

VAR-LiNGAM model is based on three assumptions 

1)   ( ) are mutually independent and temporally uncorrelated, both with each other 

and over time.  

2)  ( ) are non-Gaussian. 
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3) The matrix    corresponds to an acyclic graph. 

 The model is estimated in two stages. First estimate a traditional vector 

autoregressive model and compute the residuals of the model as described above. Then 

perform a LiNGAM analysis on the estimate of the innovation process to obtain an 

estimate of the matrix   , which is the solution to the instantaneous causal model 

  ̂( )     ̂( )   ( )  (4.33) 

Finally, use    to compute    for     

  ̂  (   ̂ ) ̂    for       (4.34) 

where  ̂  are estimated coefficient matrices of the VAR model in equation 4.28. 

 The VAR-LiNGAM model becomes a prequential forecasting system for the 

one-step-ahead return vector  ( ) with the following procedure. Compute an estimate of 

the independent components  ̂( ) from the estimates of the innovations  ̂( ) 

  ̂( )  (    ) ̂( ). (4.35) 

Because there is essentially no stochastic dependence between the independent 

components, the probability distributions of the individual independent components can 

be estimated with a univariate estimation method such as kernel density estimation. 

 Next, obtain samples from the estimated probability distributions of the 

individual independent components with a sampling technique such as Latin hypercube 

sampling. Transform the samples of the independent components into samples of the 

innovations 

  ̂( )  (    )
   ̂( ). (4.36) 
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Finally, samples of the innovations in conjunction with historical data and parameter 

estimates are used to compute the estimated probability distribution for the one-step-

ahead return vector  ( ) using equation 4.28.  

 

Application 

 In the remainder of the paper, probability forecasts of the CHF/ EUR exchange 

rate are generated from the three time series models. Forecast calibration is evaluated 

with calibration plots and goodness-of-fit calibration tests. The mean-squared error and 

the probability score metrics are then used to compare the forecasting accuracy of the 

models. The code used for forecast generation, calibration, and scoring metrics was 

programmed and executed with MATLAB, Version 7.7 (2012). 

 

Description of the Data 

 Data is obtained from the Sierra Chart historical intraday futures data service 

using Sierra Chart software (Sierra Chart 2012). The data set consists of futures 

contracts that are traded on the CME Group exchange for the Australian dollar (AUD), 

Canadian dollar (CAD), euro (EUR), Great Britain pound sterling (GBP), Japanese yen 

(JPY), and the Swiss franc (CHF). These currencies are chosen because they had the 

largest market turnover rates in 2010 according to the Triennial Central Bank Survey 

(Bank for International Settlements 2010). 

 Sierra Chart software is used to join each currency’s future contracts into a single 

continuous time series for the corresponding currency; for instance, all futures contracts 
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for the AUD (June 2010, ..., July 2012) were joined in sequence to form a single 

continuous time series for the AUD. The original data has one minute periodicity and is 

aggregated across time into fifteen minute intervals so that the resulting data used in this 

analysis has fifteen minute periodicity.  

  The time series for the six currencies are converted to be in terms of the Swiss 

franc (CHF) so that the data used for the analysis consists of observations of the 

Australian dollar (AUD), Canadian dollar (CAD), euro (EUR), Great Britain pound 

sterling (GBP), Japanese yen (JPY), and the United States dollar (USD) all in terms of 

the Swiss franc (CHF).  

   Missing data is replaced by the most recent observation in each currency series. 

Log returns are then computed by taking the natural logarithm and first-differencing the 

exchange rates (in that order). All log returns in all time periods are stationary based on 

Dickey Fuller tests. 

 

Recent History of the Swiss Franc 

 During the second and third quarter of 2011, the SNB became worried that the 

appreciation of the franc against the euro was hurting the Swiss economy and increasing 

the risk of deflation. In August, the SNB drove interest rates to nearly zero and flooded 

the market with liquidity in an attempt to mitigate the fanc's appreciation, but neither of 

these actions were completely effective. Finally, the franc's appreciation was halted in 

September when the SNB placed a floor on the CHF/EUR exchange rate. The sequence 

of SNB actions were as follows (U.S. Department of the Treasury 2011) 
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 August 3, 2011: the SNB lowered the upper limit of its target range for the three-

month Libor to 0-0.25 percent (from 0-0.75 percent). 

 August 10, 2011: the SNB announced additional measures to increase liquidity 

and reduce the appreciation of the franc. These included pumping more liquidity 

into the Swiss money market and conducting foreign exchange swap transactions 

(a policy last used in late 2008). 

 August 11, 2011: an SNB official said that a temporary peg to the euro was 

possible 

 September 6, 2011:  the SNB announced that it was establishing a floor on the 

CHF/EUR exchange rate (ceiling on the EUR/CHF exchange rate). The franc 

would not be allowed to appreciate beyond 1.20 francs per euro. 

 

Model Estimation 

 To analyze forecasts surrounding the establishment of the floor on the CHF/EUR 

exchange rate, the futures contract time series data is segmented into four two month 

data sets. These four forecast data sets have corresponding estimation data sets on which 

estimates of the econometric models are made. The names and descriptions of these four 

forecast datasets are as follows. In the before data set, the CHF/ EUR exchange rate is 

unencumbered. The surrounding data set begins on August 11, 2011 when an SNB 

official announced that a temporary peg was possible; the SNB formally established a 

floor on the CHF/ EUR exchange rate near the middle of this data set on September 6, 

2011. The after data set begins after the floor has been in effect for just more than a 
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month. The long after data set begins six months after the exchange rate floor has been 

in place. The exact dates of the forecast data sets and the dates of their accompanying 

estimation data sets are shown in table 4.1. Expected values of the currency log returns 

in each forecast data set are shown in table C-1, and covariance matrices of the currency 

log returns in the estimation and forecast data sets are shown in tables C-2 and C-3. The 

estimation results for each of the models on all the estimation data sets are reported in 

tables C-4 through C-7.  

 

Table 4.1. Data Set Starting and Ending Dates      

Data Set Starting Date Ending Date 

Estimation Data Sets 

before December 11, 2010 June 10, 2011 

surrounding February 11, 2011 August 10, 2011 

after April 11, 2011 October 10, 2011 

long after September 7, 2011 March 6, 2012 

Forecast Data Sets 

before June 11, 2011 August 10, 2011 

surrounding August 11, 2011 October 10, 2011 

after October 11, 2011 December 10, 2011 

long after March 7, 2012 May 6, 2012 

 

 

 Model estimation is performed using SAS, Version 9.2 (2012). The lag lengths 

for the estimated VAR models are chosen by using the Hannan-Quinn information 

criterion and the Schwarz’s Bayesian criterion (Quinn 1980). For VAR models in all 

estimation data sets, both the Hannan-Quinn information criterion and the Schwarz’s 

Bayesian criterion are best (most negative) for lag 1. The VAR model estimates of the 

autoregressive matrices    for the estimation data sets are shown in table C-4. 
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 Each VAR-LiNGAM model is built on an estimated VAR model by applying the 

LiNGAM structural learning algorithm to the VAR model's estimated innovation 

processes. As evidence that the VAR-LiNGAM non-Gaussian assumption holds on 

every estimation data set, a Kolmogorov-Smirnov test performed on each currency's 

corresponding independent factor confirms that the null hypothesis of normality is 

rejected with p-value less than 0.01 for each factor. The VAR-LiNGAM model estimates 

of the autoregressive matrices    correspond to those of the VAR model and are shown 

in table C-4. The VAR-LiNGAM model estimates of the causal effect matrices    are 

shown in table C-5. 

 Independent component analysis is performed on the currency time series and the 

independent components are modeled with univariate autoregressive processes. The 

separating matrices   found by the AMUSE algorithm are shown in table C-6. 

Independent components are computed using the separating matrices as described in 

equation 4.21. A Kolmogorov-Smirnov test is performed on each independent 

component to verify the ICA model's non-Gaussian assumption; the test's null 

hypothesis of normality is rejected with p-value less than 0.01 for each independent 

component. 

 The lag lengths for the estimated AR models are chosen by using Schwarz’s 

Bayesian criterion. For the AR models in all estimation data sets, Schwarz’s Bayesian 

criterion is best (most negative) for lag 1. Thus, the independent components are 

modeled with AR(1) processes whose parameter estimates are shown in table C-7. 
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Forecast Generation 

 A multivariate normal distribution is used to model the one-step-ahead 

probability distribution of the VAR model innovation process. Latin hypercube samples 

from the multivariate normal distribution in conjunction with the VAR model parameter 

estimates and historical data are used to compute one-step-ahead probability 

distributions for the exchange rate returns. 

 An estimate of the independent factor process of the VAR-LiNGAM model is 

obtained from its estimated innovation process. Kernel density estimation with a normal 

probability window is used to estimate the probability distributions of the VAR-

LiNGAM independent factor processes. Latin hypercube samples from the independent 

factor process distributions are transformed into one-step-ahead distributions of the 

VAR-LiNGAM innovation processes. The innovation process distribution samples plus 

the VAR-LiNGAM model parameter estimates and historical data are used to compute 

one-step-ahead probability distributions for the exchange rate returns. 

 Kernel density estimation with a normal probability window is used to estimate 

the probability distribution of each AR innovation process. Latin hypercube samples 

from the innovation process distributions plus the AR model estimates and historical 

data are used to compute one-step-ahead probability distributions for the independent 

components. The forecasted probability distributions of the independent components are 

transformed into forecasted probability distributions of the exchange rate returns as 

described in equation 4.24.  
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 Sample one-step-ahead cumulative predictive distributions in each of the forecast 

data sets for the VAR- LiNGAM model are shown in figure 4.1. These sample predictive 

cdfs are similar to those generated by the VAR and AR models. 

 

 

 
            A                B 

 
            C                D 

Figure 4.1. Sample cumulative predictive distributions 
Note: Sample one-step-ahead cumulative predictive distributions generated by the VAR-

LiNGAM model in the before (A), surrounding (B), after (C), and long after (D) forecast 

data sets. 

 

 

 

 

 

 



 

87 

 

Forecast Evaluation 

 The only forecasts considered here are those for the CHF/EUR exchange rate; the 

forecasts of other currencies are not are evaluated. For the computation of calibration 

functions, the fractile of each outcome is determined by comparing the outcome to the 

estimated cumulative predictive distribution. These fractiles are used in conjunction with 

the estimated cumulative predictive distributions to compute the calibration functions. 

The calibration functions are both plotted and used to compute goodness-of-fit test 

statistics. 

 Calibration plots of the CHF/EUR for the before, surrounding, after, and long 

after forecast data sets are in figures 4.2 through 4.5. The calibration plots for the AR, 

VAR, and VAR-LiNGAM models in a particular forecast data set in addition to a 45-

degree line for reference are shown in each figure. Underconfidence in probability 

assessments is indicated where the calibration function maps above the 45-degree line, 

while overconfidence in assessments is indicated where the calibration function maps 

below the 45-degree line. 
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  A 

 
                                    B               C 

Figure 4.2. CHF/EUR calibration functions in the before forecast data set 
Note: Calibration functions for the CHF/EUR exchange rate are generated by forecasts 

from the AR (A), VAR (B), and VAR-LiNGAM (C) models in the before forecast data 

set (June 11, 2011 – August 10, 2011). A model is well calibrated if it maps onto the 45-

degree reference line. 
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  A 

 
              B                C 

Figure 4.3. CHF/EUR calibration functions in the surrounding forecast data set 
Note: Calibration functions for the CHF/EUR exchange rate are generated by forecasts 

from the AR (A), VAR (B), and VAR-LiNGAM (C) models in the surrounding  data set 

(August 11, 2011 – October 10, 2011). A model is well calibrated if it maps onto the 45-

degree reference line. 
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  A 

 
              B                C 

Figure 4.4. CHF/EUR calibration functions in the after forecast data set 
Note: Calibration functions for the CHF/EUR exchange rate are generated by forecasts 

from the AR (A), VAR (B), and VAR-LiNGAM (C) models in the after data set 

(October 11, 2011 – December 10, 2011). A model is well calibrated if it maps onto the 

45-degree reference line. 
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  A 

 
              B                C 

Figure 4.5. CHF/EUR calibration functions in the long after forecast data set 
Note: Calibration functions for the CHF/EUR exchange rate are generated by forecasts 

from the AR (A), VAR (B), and VAR-LiNGAM (C) models in the long after data set 

(March 7, 2012 – May 6, 2012). A model is well calibrated if it maps onto the 45-degree 

reference line. 

 

 

 For the before forecast data set, each model exhibits underconfidence on the 

lower end of the calibration function and overconfidence on the upper end. For the 

surrounding forecast data set, the AR and VAR models exhibit overconfidence on the 

lower end of the calibration function and underconfidence on the upper end; the extreme 

ends of both of these calibration functions show the opposite behavior. The calibration 

function for the VAR-LiNGAM model on the surrounding data set displays the opposite 
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behavior of the AR and VAR models with underconfidence on the lower end and 

overconfidence on the upper end. For the after and long after data sets, the calibration 

functions for all models exhibit a large degree of overconfidence on the lower end and a 

large degree of underconfidence on the upper end. 

 Overall, the calibration plots show that all models are better calibrated (i.e. map 

closer to the 45-degree line) in the before and surrounding data sets than in the after and 

long after data sets. Forecasts are less calibrated after the placement of the floor on the 

CHF/ EUR exchange rate; it appears that the Swiss National Bank’s market intervention 

had a negative affect on the calibration of the time series models in the longer run. 

 Chi-squared goodness-of-fit tests are performed to test each time series model for 

calibration during each forecast data set. The null hypothesis that the forecasts are well 

calibrated is rejected with a p-value near zero in every data set for every time series 

model; no time series model forecasts are well calibrated in any of the time periods 

under consideration. Some of the calibration functions appear to map closely to the 45-

degree reference line, such as in figures 4.2 A and B. Nevertheless, none of the 

calibration functions shown in any of figures 4.2 through 4.5 reflect forecasts that are 

well calibrated according to the goodness-of-fit test.  

 In some of figures 4.2 through 4.5, the calibration problems appear to be in the 

tails of the distributions, such as in figures 4.2 A and B. Generating forecasts with 

distributions estimated via kernel density estimation with a normal probability window 

might be the source of this bad tail behavior. In the calibration plots that show bad tail 

behavior, the miscalibration of each tail is in the opposite direction; for example, in 
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figure 4.2 B, the calibration function shows underconfidence on the low end and 

overconfidence on the upper end. If the normal probability widow was to blame for this 

poor tail performance, it would likely produce tails that were too heavy or too light at 

both ends of the distribution. For instance, if kernel density estimation with a normal 

probability window produced a distribution with tails that were too light to reflect the 

distribution of returns then the corresponding calibration function would show 

underconfidence at both ends of the plot. Additionally, since other figures show that the 

problem with calibration is more in the central part of the distribution than in the tails, 

such as figures 4.3 A and B, it is unlikely that the normal probability window is the 

culprit for bad calibration. 

 In addition to the calibration tests, the mean-squared error (MSE) and the 

probability score metrics are used to rank the probability forecasting systems. The mean-

squared errors of each model’s forecasts are reported in table 4.2, and the probability 

scores of each model’s forecasts are reported in table 4.3. The VAR and VAR-LiNGAM 

models both have the same MSE on each data set because they are both driven by the 

innovations of the VAR model (see equation 4.28). 
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Table 4.2. Mean-Squared Errors 

Data Set AR VAR &VAR-LiNGAM 

before 1.614E-06 1.610E-06 

surrounding 2.982E-06 2.983E-06 

after 3.409E-07 3.415E-07 

long after 2.873E-08 2.722E-08 

Note: The table shows the mean-squared errors of the 

CHF/EUR forecasts from the AR, VAR, and VAR-LiNGAM 

models on each forecast data set. 

 

 

 

Table 4.3. Probability Scores 

Data Set AR VAR VAR-LiNGAM 

before 0.99876 0.99860 0.99914 

surrounding 0.99820 0.99803 0.99877 

after 0.99715 0.99713 0.99776 

long after 0.99700 0.99697 0.99696 

Note: The table shows the probability scores of the 

CHF/EUR forecasts from the AR, VAR, and VAR-LiNGAM 

models on each forecast data set. 

 

 

The MSE results indicate that no model consistently outperforms the others. The 

VAR and VAR-LiNGAM models perform the best in the before and long after data sets 

while the AR model performs the best in the surrounding and after data sets. This may 

indicate that all models have roughly the same forecasting performance or that the VAR 

and VAR-LiNGAM models perform better in periods isolated from structural change.  

In contrast, the probability score rankings show that the VAR model outperforms 

the other models in all but the long after data set in which the VAR-LiNGAM’s 

performance is slightly better. Because the simple VAR model outperforms the other 

models that are built using independent components, the probability score results 
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indicate that there is no gain in forecasting performance when using independent 

components. Additionally, the probability score ranks the AR forecasts higher than the 

VAR-LiNGAM forecasts in all periods but the last; this may indicate that in some cases 

the multivariate VAR-LiNGAM model provides no advantage over the univariate AR 

model. 

 Finally, d-separation is used in an attempt to identify the preferred forecasting 

system as described in Bessler and Wang (2012). A graphical structure is found for each 

dataset’s forecasts and actual realizations using both the PC algorithm and the LiNGAM 

algorithm. The Tetrad “Knowledge” component is used for both algorithms to prohibit 

the actual realizations from causing the forecasts (i.e. the future cannot cause the past). 

The expected values of the forecast distributions and the corresponding actual 

realizations are used as inputs to both graphical structure search algorithms.  

 The graphical structures found by the search algorithms are shown in figures 4.6 

through 4.9; the VAR and VAR-LiNGAM models are both represented by the node 

labeled “VA ” in these figures because both models produce identical forecasts of the 

mean exchange rate. The only d-separation that occurs is in the long after dataset’s 

graphical structure recovered by the PC algorithm (figure 4.9) in which VAR and VAR-

LiNGAM forecasts d-separate AR forecasts from the actual realizations. Thus, the VAR 

and VAR-LiNGAM models are preferred to the AR model in the long after dataset 

according to the PC algorithm. This result agrees with the rankings of these models by 

the MSE criterion on the long after dataset. There is no d-separation in any of the other 

graphical structures as shown in figures 4.6 through 4.8. 
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 The VAR and VAR-LiNGAM models generate better forecasts in the long after 

period according to the MSE, probability score, and d-separation. This is some 

indication that the VAR-LiNGAM model performs better than the AR model after 

market intervention has been in effect for some period of time. 

 

 

Figure 4.6. DAG from the PC algorithm on forecasts of the CHF/EUR exchange 

rate and actual outcomes in the before data set 

Note: This is the pattern from the PC algorithm on forecasts of the CHF/EUR exchange 

rate and its Actual outcomes in the before data set (June 11, 2011 - August 10, 2011). 

Forecasts are of the mean CHF/EUR exchange rate from the AR, VAR, and VAR-

LiNGAM models. The VAR and VAR-LiNGAM models are both represented by the 

node labeled “VA ” because both models produce identical forecasts of the mean 

exchange rate. 
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Figure 4.7. DAG showing the independence of forecasts of the CHF/EUR exchange 

rate and actual outcomes in various data sets 

Note: Forecasts of the CHF/EUR exchange rate from all models are independent of the 

Actual outcomes in the before data set (June 11, 2011 - August 10, 2011) according to 

the LiNGAM algorithm. Forecasts and Actuals are also independent in the surrounding 

data set (August 11, 2011 - October 10, 2011) and in the after data set (October 11, 2011 

- December 10, 2011) according to both the PC and LiNGAM algorithms. Forecasts are 

of the mean CHF/EUR exchange rate from the AR, VAR, and VAR-LiNGAM models. 

The VAR and VAR-LiNGAM models are both represented by the node labeled “VA ” 

because both models produce identical forecasts of the mean exchange rate. 

 

 

 
Figure 4.8. DAG from the LiNGAM algorithm on forecasts of the CHF/EUR 

exchange rate and actual outcomes in the long after data set 
Note: This is the directed acyclic graph from the LiNGAM algorithm on forecasts of the 

CHF/EUR exchange rate and its Actual outcomes in the long after data set (March 7, 

2012 - May 6, 2012). Forecasts are of the mean CHF/EUR exchange rate from the AR, 

VAR, and VAR-LiNGAM models. The VAR and VAR-LiNGAM models are both 

represented by the node labeled “VA ” because both models produce identical forecasts 

of the mean exchange rate. 
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Figure 4.9. DAG from the PC algorithm on forecasts of the CHF/EUR exchange 

rate and actual outcomes in the long after data set 

Note: This is the pattern from the PC algorithm on forecasts of the CHF/EUR exchange 

rate and its Actual outcomes in the long after data set (March 7, 2012 - May 6, 2012). 

The graph shows that forecasts from the VAR and VAR-LiNGAM models d-separate 

forecasts from the AR model and actual outcomes. Forecasts are of the mean CHF/EUR 

exchange rate from the AR, VAR, and VAR-LiNGAM models. The VAR and VAR-

LiNGAM models are both represented by the node labeled “VA ” because both models 

produce identical forecasts of the mean exchange rate. 

 

 

 

Conclusions 

  This study assesses the impact of the Swiss National Bank‘s manipulation of the 

CHF/EUR exchange rate on the probability forecasts from a VAR model, a VAR model 

augmented with the LiNGAM causal learning algorithm, and a univariate AR model 

built on the independent components of an independent component analysis. Forecasts 

are divided among data sets that represent periods of time before, surrounding, after, and 

long after the beginning of the CHF/EUR exchange rate manipulation. 

 Calibration plots are shown for the forecasted probability distributions of 

CHF/EUR returns on all data sets. None of the forecasted probability distributions 
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appear to be calibrated based on the calibration plots, and calibration tests confirm this. 

The calibration plots show that all models are better calibrated in the periods before and 

surrounding the beginning of the exchange rate manipulation than in the two periods 

after the floor on the CHF/ U  was established. This implies that the SNB‘s 

intervention in the CHF/EUR market had a negative impact on the forecasting 

performance of the time series models. 

 The mean-squared error (MSE) and the probability score metrics are used to rank 

the probability forecasting systems. When comparing models within each data set, the 

MSE finds that the VAR and VAR-LiNGAM models generate better forecasts in the 

before and long after data sets while the AR model generates better forecasts in the 

surrounding and after data sets. These results may indicate that all models have roughly 

the same forecasting performance or that the VAR and VAR-LiNGAM models perform 

better in periods isolated from structural change. 

The probability score finds that the VAR model outperforms the other models in 

all data sets except the long after dataset in which the VAR-LiNGAM’s performance is 

slightly better. The relatively good performance of the VAR model, which does not take 

independent components into account, may indicate that there is no improvement in 

forecasting performance when independent components are used to generate forecasts. 

Additionally, the probability score ranks the AR forecasts higher than the VAR-

LiNGAM forecasts in all periods but the last; this may indicate that in many cases the 

univariate independent component AR model provides as good or better forecasts than 

the multivariate VAR-LiNGAM model. 
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 Graphical structures underlying each dataset’s forecasts and actual realizations 

are found using the PC and LiNGAM algorithms. D-separation is found only in the 

graphical structure recovered by the PC algorithm for the long after dataset. In this 

structure, the VAR and VAR-LiNGAM forecasts d-separate AR forecasts from the 

actual realizations indicating that the VAR and VAR-LiNGAM models are preferred to 

the AR model. This is some indication that the VAR-LiNGAM model performs better 

than the AR model after market intervention has been in effect for some period of time. 

 The findings of this study raise some interesting questions. In particular, does 

central bank intervention in a currency market always have a negative impact on the 

forecasting performance of time series models? Does the VAR model often generate 

forecasts that are as good as those from models that use independent components? Under 

what circumstances does the univariate independent component AR model generate 

better forecasts than the multivariate VAR-LiNGAM model? These are questions for 

future studies. 
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CHAPTER V 

SUMMARY 

 

This dissertation applies the combination of time series models and causal search 

algorithms to the foreign exchange markets to find causal linkages between the six most 

widely traded currencies (Australian dollar, Canadian dollar, euro, Great Britain pound 

sterling, Japanese yen, and United States dollar). This information is used to visualize 

causal connections, enhance the forecasting ability of time series models, and improve 

portfolio management. 

A method for decomposing portfolio risk based on a portfolio’s underlying 

independent risk factors is presented in Chapter II. The decomposition of a risk measure 

as a summation of the risk contributions from independent factors is introduced and is 

named total risk decomposition. The independent factor risk contributions are named 

total risk contributions because they sum to the total portfolio’s risk. 

Total risk contributions are simpler to compute and easier to interpret than 

marginal risk contributions, which are traditionally used in portfolio analysis. Each total 

risk contribution is non-negative and can be interpreted as having a potentially adverse 

effect on the portfolio. Furthermore, in the total risk contribution framework, each 

position contributes independently to the risk of the total portfolio so that changing the 

size of one position does not affect the risk contributions of the other positions. This 

allows a portfolio manager to know exactly how much risk each position (in an 

independent factor) will contribute to a portfolio.  
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When a set of securities conforms closely to the assumptions of independent 

component analysis, the independent factors can be thought of as the true sources of risk 

and return. In this case, the total risk contribution framework is recommended for use in 

both portfolio construction (e.g. optimization) and portfolio analysis because of its 

simplicity and conceptual clarity. 

In an application of this technique to the six most widely traded currencies, a 

portfolio’s underlying independent risk factors are found empirically using the LiNGAM 

causal search algorithm combined with a VAR time-series model. The mean-variance 

model is used for portfolio optimization, and its risk metric, the portfolio variance, is 

decomposed into its independent risk contributions. 

Six portfolios are constructed using the canonical mean-variance model with 

added constraints. The following are constrained during the mean-variance optimization 

in an attempt to increase portfolio diversification: relative portfolio weights, independent 

factor relative portfolio weights, percentage marginal risk contributions, independent 

factor percentage marginal risk contributions, and independent factor total risk 

contributions.  

An efficient frontier is generated for each of the portfolios and a comparison is 

made of the loss of efficiency due to each of the constraint sets. The relative portfolio 

weight constraint set produces an efficient frontier that is a large distance from the other 

efficient frontiers; this indicates that the cost of the relative portfolio weight constraint 

set is much greater than the cost of the other constraint sets. 
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A comparison of the internal characteristics of the portfolios on a small out-of-

sample data set shows that in addition to the independent factor total risk contribution 

constraint set, the independent factor relative weight constraint and marginal risk 

contribution of independent factor constraint sets do a moderate  job of controlling total 

risk contributions. This analysis also indicates that weight constraints, which are a 

popular way to control portfolio exposures, can be very ineffective at controlling total 

risk contributions. The overall indication is that the only way to effectively control 

independent risk contributions is to put constraints on the independent risk contributions 

themselves. 

This study uses a very small data set and focuses exclusively on the foreign 

exchange market. The methods for controlling independent risk contributions must be 

deployed on more data and on many different markets before the results of this study can 

be generalized. If other applications produce favorable results then perhaps controlling 

independent risk contributions will be useful for constructing actual portfolios.  

Three different causal search algorithms (PC, FCI, and LiNGAM) in conjunction 

with vector autoregression time series models are used in Chapter III to find possible 

causal structures underlying the foreign currency market in the years 2009, 2010, and 

2011. This modeling process results in a directed acyclic graph that illustrates the 

contemporaneous causal linkages between currencies. The three causal search 

algorithms do not necessarily find the same causal structure when given the same data 

set as input. 
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The causal structure underlying the six most widely traded currencies on a 15 

minute time frame is found for each year (2009, 2010, and 2011) by each algorithm. All 

three of the algorithms find that the foreign exchange market’s graphical skeleton is 

relatively stable over time. While all of the algorithms find stability, LiNGAM finds that 

the foreign exchange market’s graphical skeleton is the same in each year. In addition, 

all three algorithms find that edge orientations are also quite consistent through time.  

The FCI algorithm produces many unrestricted edge endpoints in its graphs. This 

large number of unrestricted endpoints indicates that there might be many latent 

variables that affect the six most widely traded currencies in addition to four potential 

common causes identified by the FCI algorithm.  

The presence of latent variables makes it potentially dangerous to use VAR-

LiNGAM for portfolio management, as described in Chapter II, without first identifying 

and incorporating the latent variables into the VAR-LiNGAM model. If any of the 

assumptions of the VAR-LiNGAM model are violated by the presence of the latent 

variables, such as the random disturbance terms being mutually independent and 

temporally uncorrelated, then it would not be advisable to use the model as the basis for 

portfolio management. 

 In future studies of the foreign exchange market’s causal structure, a larger data 

set will be required to more adequately determine the market’s graphical skeleton 

stability characteristics (e.g. the longest and shortest durations of stability). The use of 

higher and lower frequency data sets might also give other insights into the stability of 

the foreign exchange market at different periodicities. 
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More experience with the causal search algorithms is needed to determine under 

what conditions each algorithm gives the most accurate results. Additionally, more 

diverse data is needed to identify the latent variables identified by the FCI algorithm and 

their affects on the foreign exchange market.  

The impact of the Swiss National Bank’s floor on the Swiss franc/euro 

(CHF/EUR) exchange rate in 2011-2012 on the probability forecasts of the CHF/EUR 

from three time series models is assessed in Chapter IV. One-step-ahead forecasts of the 

CHF/EUR probability distribution are based on a series of intraday futures data for the 

six most widely traded currencies all in terms of the Swiss franc. Probability forecasts of 

the CHF/EUR are generated from a vector autoregression model, a VAR model 

augmented with the LiNGAM causal learning algorithm, and a univariate autoregressive 

model built on the independent components of an independent component analysis. 

Forecasts are divided among data sets that represent periods of time before, surrounding, 

after, and long after the beginning of the floor on the CHF/EUR exchange rate. 

 None of the forecasted probability distributions of the CHF/EUR returns appear 

to be calibrated on any data set based on calibration plots, and calibration tests confirm 

this. The calibration plots show that all models are better calibrated in the periods before 

and surrounding the implementation of the exchange rate floor than in the two following 

periods in which the floor is in effect. This implies that the floor on the CHF/EUR 

exchange rate had a negative impact on the forecasting performance of all of the time 

series models. 
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 The mean-squared error (MSE) and the probability score metrics are used to rank 

the probability forecasting systems. The MSE finds that the VAR and VAR-LiNGAM 

models generate better forecasts in the before and long after data sets while the AR 

model generates better forecasts in the surrounding and after data sets. These results may 

indicate that all models have roughly the same forecasting performance or that the VAR 

and VAR-LiNGAM models perform better in periods isolated from structural change. 

The probability score finds that the VAR model outperforms the other models in 

all data sets except the last in which the VAR-LiNGAM’s performance is slightly better. 

The relatively good performance of the VAR model, which does not take independent 

components into account, may indicate that there is no improvement in forecasting 

performance when independent components are used to generate forecasts. Additionally, 

the probability score ranks the AR forecasts higher than the VAR-LiNGAM forecasts in 

all periods but the last; this may indicate that in many cases the univariate independent 

component AR model provides as good or better forecasts than the multivariate VAR-

LiNGAM model. 

 To complement the results of the score metrics, a graphical notion called d-

separation is used in an attempt to identify the preferred forecasting system. Graphical 

structures underlying each dataset’s forecasts and actual realizations are found using the 

PC and LiNGAM algorithms. D-separation is found only in the graphical structure 

recovered by the PC algorithm for the long after dataset. In this structure, the VAR and 

VAR-LiNGAM forecasts d-separate AR forecasts from the actual realizations indicating 
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that the VAR and VAR-LiNGAM models are the preferred to the AR model. This result 

agrees with the rankings of the models in the long after dataset by the MSE criterion. 

 This study found evidence that intervention in a market has a negative impact on 

the forecasting performance of time series models. To determine whether this is an 

isolated result or a general effect of intervention, time-series forecasting performance 

surrounding other interventions should be considered in not only the foreign exchange 

market but other markets as well. Other studies might also attempt to determine whether 

the effects of a short term shock instead of a long term intervention cause a temporary or 

sustained deterioration of time-series forecasting performance. 

 There is no one time series model that generates the best forecasts according to 

all performance metrics in all data sets. Specifically, VAR model forecasts are found to 

be very competitive to those from models that use independent components, and the 

univariate AR model built on independent components sometimes generates better 

forecasts than the multivariate VAR-LiNGAM model. More research is needed to 

determine the circumstances under which each time series model generates the best 

forecasts. 

Finally, future studies could follow the work of Kling and Bessler (1989) and 

recalibrate badly calibrated probability forecasts in an attempt to improve the probability 

forecasting performance in future time periods. 
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APPENDIX A 

CHAPTER II FIGURES AND TABLES 

 

 
Figure A-1. FOREX market structure, 2009 
Note: This DAG shows the instantaneous (lag zero) causal market structure in 2009 of 

the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,  euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  ( USD )                                                                                                                                                                        . The numeric 

labels on the graph’s edges correspond to coefficients in the 2009 instantaneous causal 

effect matrix
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Figure A-2. FOREX market structure, 2010 
Note: This DAG shows the instantaneous (lag zero) causal market structure in 2010 of 

the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,  euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  ( USD )                                                                                                                                                                        . The numeric 

labels on the graph’s edges correspond to coefficients in the 2010 instantaneous causal 

effect matrix   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
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Figure A-3. Realized currency returns on 1/4/2010 from 00:00-12:30 
Note: The plots show the realized returns of the Australian dollar  ( AUD ) ,   Canadian  

 dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and 

the United States dollar  ( USD )                                                                                                                                                                        , all in terms of the Swiss franc on 1/4/2010 from 00:00-

12:30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
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A 

 
B 

Figure A-4. Currency allocation plots on 1/4/2010 from 00:00-12:30 
Note: Each plot shows the currency holdings denominated in Swiss francs of a particular 

portfolio and is labeled according to the constraint set used in its optimization: (A) 

unconstrained, (B) the relative portfolio weight constraint set (WC), (C) the independent 

factor relative weight constraint set (WIC), (D) the marginal risk contribution constraint 

set (MRC), (E) the independent factor marginal risk contribution constraint set (MRIC), 

and (F) the independent factor total risk contribution constraint set (TRC). 
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Figure A-4 Continued. 
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Figure A-4 Continued. 

 

 

 

 
A 

Figure A-5. Independent factor relative portfolio weight plots on 1/4/2010 from 

00:00-12:30 

Note: Each plot shows the components of a particular portfolio and is labeled according 

to the constraint set used in its optimization: (A) unconstrained, (B) the relative portfolio 

weight constraint set (WC), (C) the independent factor relative weight constraint set 

(WIC), (D) the marginal risk contribution constraint set (MRC), (E) the independent 

factor marginal risk contribution constraint set (MRIC), and (F) the independent factor 

total risk contribution constraint set (TRC). 
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Figure A-5 Continued. 
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Figure A-5 Continued. 
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A 

 
B 

Figure A-6. Percentage marginal risk contribution plots on 1/4/2010 from 00:00-

12:30 

Note: Each plot shows the components of a particular portfolio and is labeled according 

to the constraint set used in its optimization: (A) unconstrained, (B) the relative portfolio 

weight constraint set (WC), (C) the independent factor relative weight constraint set 

(WIC), (D) the marginal risk contribution constraint set (MRC), (E) the independent 

factor marginal risk contribution constraint set (MRIC), and (F) the independent factor 

total risk contribution constraint set (TRC). 
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Figure A-6 Continued. 
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Figure A-6 Continued. 

 

 

  

 
A 

Figure A-7. Independent factor percentage marginal risk contribution plots on 

1/4/2010 from 00:00-12:30 
Note: Each plot shows the components of a particular portfolio and is labeled according 

to the constraint set used in its optimization: (A) unconstrained, (B) the relative portfolio 

weight constraint set (WC), (C) the independent factor relative weight constraint set 

(WIC), (D) the marginal risk contribution constraint set (MRC), (E) the independent 

factor marginal risk contribution constraint set (MRIC), and (F) the independent factor 

total risk contribution constraint set (TRC). 
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Figure A-7 Continued. 
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Figure A-7 Continued. 
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Figure A-8. Independent factor total risk contribution plots on 1/4/2010 from 

00:00-12:3 

Note: Each plot shows the components of a particular portfolio and is labeled according 

to the constraint set used in its optimization: (A) unconstrained, (B) the relative portfolio 

weight constraint set (WC), (C) the independent factor relative weight constraint set 

(WIC), (D) the marginal risk contribution constraint set (MRC), (E) the independent 

factor marginal risk contribution constraint set (MRIC), and (F) the independent factor 

total risk contribution constraint set (TRC).  
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Figure A-8 Continued.  
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Figure A-8 Continued. 

 

 

 

Table A-1. Expected Values, 2009 

 E{ ( )} E{ ̂( )} E{ ̂( )} 

AUD 8.614E-06 9.234E-06 7.332E-06 

CAD 5.147E-06 5.334E-06 5.639E-06 

EUR -1.644E-07 -3.009E-07 -3.009E-07 

GBP 2.639E-06 2.463E-06 2.856E-06 

JPY -2.148E-06 -2.082E-06 -1.189E-06 

USD -1.109E-06 -1.086E-06 -6.905E-07 

Note: These are the expected values of the currency log returns  ( ), residuals  ̂( ) of 

the VAR-LiNGAM model, and independent factors  ̂( ) derived using the VAR-

LiNGAM model for the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,  euro  (  U  ) ,  

 Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  

( USD )                                                                                                                                                                         in the year of
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 Table A-2. Covariance Matrix of the Currency Log Returns, 2009 

 AUD CAD EUR GBP JPY USD 

AUD 1.146E-06 4.832E-07 2.693E-07 4.282E-07 -1.604E-07 1.379E-07 

CAD  8.667E-07 2.005E-07 3.476E-07 1.302E-07 3.358E-07 

EUR   2.317E-07 2.228E-07 5.855E-08 1.395E-07 

GBP    8.172E-07 8.975E-08 2.845E-07 

JPY     1.207E-06 5.898E-07 

USD      7.528E-07 

Note: This is the covariance matrix of the currency log returns  ( ) for the Australian 

dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,  

  apanese yen  (  P  ) ,   and the United States dollar  ( USD )                                                                                                                                                                        . in the year

 

 

 

 Table A-3. Covariance Matrix of the Residuals, 2009 

 AUD CAD EUR GBP JPY USD 

AUD 1.139E-06 4.841E-07 2.695E-07 4.295E-07 -1.629E-07 1.373E-07 

CAD  8.589E-07 2.006E-07 3.475E-07 1.298E-07 3.350E-07 

EUR   2.303E-07 2.216E-07 5.716E-08 1.388E-07 

GBP    8.157E-07 8.905E-08 2.840E-07 

JPY     1.203E-06 5.883E-07 

USD      7.520E-07 

Note: This is the covariance matrix of the VAR-LiNGAM model residuals  ̂( ) for the 

Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  ( USD )                                                                                                                                                                         in the year

 

 

 

Table A-4. Covariance Matrix of Independent Factors, 2009 

 AUD CAD EUR GBP JPY USD 

AUD 7.218E-07 7.370E-08 4.870E-08 6.739E-08 -1.029E-07 -2.164E-07 

CAD  6.257E-07 3.093E-08 4.859E-08 -6.907E-08 -1.642E-07 

EUR   2.303E-07 4.544E-08 -1.041E-07 -1.642E-07 

GBP    5.702E-07 -6.386E-08 -6.532E-08 

JPY     7.808E-07 1.245E-07 

USD      7.855E-07 

Note: This is the covariance matrix of the independent factors  ̂( ) derived using the 

VAR-LiNGAM model for the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  

(  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States 

dollar  ( USD )                                                                                                                                                                         in the year of
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Table A-5. Instantaneous Causal Effect Matrix, 2009 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.311 0.460 0.136 -0.136 0.217 

CAD 0.000 0.000 0.310 0.110 -0.059 0.557 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.000 0.000 0.583 0.000 -0.068 0.331 

JPY 0.000 0.000 0.246 0.000 0.000 0.753 

USD 0.000 0.000 1.315 0.000 0.000 0.000 

Note: This is the VAR-LiNGAM instantaneous causal effect matrix    for the 

Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ),   Japanese yen  (  P  ) ,   and the United States dollar  ( USD )                                                                                                                                                                         in the year 



 

 

 

Table A-6. Lag One Causal Effect Matrix, 2009 

 AUD CAD EUR GBP JPY USD 

AUD -0.113 0.053 0.068 0.044 -0.019 0.004 

CAD 0.030 -0.106 0.079 0.028 -0.018 0.015 

EUR 0.011 0.006 -0.080 -0.006 -0.021 0.028 

GBP 0.017 -0.001 -0.001 -0.025 -0.003 0.020 

JPY -0.028 0.018 -0.005 0.009 -0.032 0.006 

USD -0.018 -0.009 0.075 0.008 0.002 -0.024 

Note: This is the VAR-LiNGAM lag one causal effect matrix    for the Australian 

dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,  

  apanese yen  (  P  ) ,   and the United States dollar  ( USD )                                                                                                                                                                         in the year
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Table A-7. Lag One Autoregressive Matrix, 2009 

 AUD CAD EUR GBP JPY USD 

AUD -0.091 0.020 0.034 0.044 -0.040 0.032 

CAD 0.036 -0.106 0.034 0.024 -0.037 0.033 

EUR 0.011 0.006 -0.080 -0.006 -0.021 0.028 

GBP 0.024 0.000 -0.055 -0.029 -0.020 0.038 

JPY -0.028 0.018 -0.049 0.008 -0.056 0.022 

USD -0.003 -0.001 -0.031 0.001 -0.025 0.012 

Note: This is the VAR-LiNGAM lag one matrix of autoregressive least-squares 

estimates    for the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,  

 Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  

( USD )                                                                                                                                                                         in the year
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APPENDIX B 

CHAPTER III TABLES 

 

Table B-1. Expected Values of the Log Returns , 2009-2011                                                         

 2009 2010 2011 

AUD 9.592E-06 1.026E-06 2.060E-07 

CAD 5.043E-06 -2.211E-06 -9.024E-07 

EUR 1.545E-07 -7.262E-06 -1.032E-06 

GBP 3.540E-06 -5.755E-06 1.706E-07 

JPY -1.999E-06 1.403E-06 2.471E-06 

USD -1.096E-06 -4.330E-06 2.143E-07 

Note: These are the expected values of the currency log returns    ( ) in the years   2009-

2011 for the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great 

Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar

 

 

 

Table B-2. Covariance Matrices of the Log Returns,   2009-2011                                                         

A 

 AUD CAD EUR GBP JPY USD 

AUD 1.256E-06 5.408E-07 3.160E-07 4.863E-07 -1.598E-07 1.570E-07 

CAD 5.408E-07 9.250E-07 2.313E-07 3.882E-07 1.319E-07 3.508E-07 

EUR 3.160E-07 2.313E-07 2.752E-07 2.635E-07 7.758E-08 1.663E-07 

GBP 4.863E-07 3.882E-07 2.635E-07 8.979E-07 1.112E-07 3.170E-07 

JPY -1.598E-07 1.319E-07 7.758E-08 1.112E-07 1.286E-06 6.305E-07 

USD 1.570E-07 3.508E-07 1.663E-07 3.170E-07 6.305E-07 7.994E-07 

B 

 AUD CAD EUR GBP JPY USD 

AUD 9.002E-07 5.584E-07 3.692E-07 3.882E-07 7.841E-08 2.767E-07 

CAD 5.584E-07 7.459E-07 3.172E-07 3.733E-07 1.782E-07 3.672E-07 

EUR 3.692E-07 3.172E-07 3.848E-07 2.903E-07 1.328E-07 2.041E-07 

GBP 3.882E-07 3.733E-07 2.903E-07 6.068E-07 2.471E-07 3.375E-07 

JPY 7.841E-08 1.782E-07 1.328E-07 2.471E-07 1.020E-06 5.344E-07 

USD 2.767E-07 3.672E-07 2.041E-07 3.375E-07 5.344E-07 6.085E-07 
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Table B-2 Continued. 

C 

 AUD CAD EUR GBP JPY USD 

AUD 1.516E-06 1.148E-06 1.027E-06 9.714E-07 6.579E-07 8.386E-07 

CAD 1.148E-06 1.267E-06 9.301E-07 9.454E-07 7.144E-07 9.273E-07 

EUR 1.027E-06 9.301E-07 1.048E-06 8.841E-07 6.242E-07 7.573E-07 

GBP 9.714E-07 9.454E-07 8.841E-07 1.083E-06 7.254E-07 8.861E-07 

JPY 6.579E-07 7.144E-07 6.242E-07 7.254E-07 1.102E-06 8.525E-07 

USD 8.386E-07 9.273E-07 7.573E-07 8.861E-07 8.525E-07 1.071E-06 

Note: These are the covariance matrices of the currency log returns    ( ) in the years 

 2009 (A), 2010 (B), and 2011 (C) for the Australian dollar  ( AUD ) ,   Canadian   dollar  

( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the 

United States dollar

 

 

 

Table B-3   Expected Values of the Residuals , 2009-2011                                                         

 2009 2010 2011 

AUD 1.033E-05 1.146E-06 2.872E-07 

CAD 5.268E-06 -2.256E-06 -8.374E-07 

EUR 7.928E-10 -7.575E-06 -9.918E-07 

GBP 3.459E-06 -6.008E-06 2.397E-07 

JPY -1.950E-06 1.330E-06 2.623E-06 

USD -1.155E-06 -4.444E-06 2.858E-07 

Note: These are the expected values of the estimated vector autoregression residuals   
 ̂( ) in the years   2009-2011 for the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,  

 euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United 

States dollar

 

 

 

Table B-4. Covariance Matrix of the Residuals, 2009-2011 

A 

 AUD CAD EUR GBP JPY USD 

AUD 1.245E-06 5.414E-07 3.150E-07 4.871E-07 -1.637E-07 1.555E-07 

CAD 5.414E-07 9.159E-07 2.310E-07 3.879E-07 1.299E-07 3.496E-07 

EUR 3.150E-07 2.310E-07 2.716E-07 2.605E-07 7.333E-08 1.635E-07 

GBP 4.871E-07 3.879E-07 2.605E-07 8.944E-07 1.078E-07 3.147E-07 

JPY -1.637E-07 1.299E-07 7.333E-08 1.078E-07 1.279E-06 6.263E-07 

USD 1.555E-07 3.496E-07 1.635E-07 3.147E-07 6.263E-07 7.968E-07 
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Table B-4 Continued. 

B 

 AUD CAD EUR GBP JPY USD 

AUD 8.971E-07 5.570E-07 3.673E-07 3.863E-07 7.600E-08 2.746E-07 

CAD 5.570E-07 7.433E-07 3.154E-07 3.717E-07 1.756E-07 3.657E-07 

EUR 3.673E-07 3.154E-07 3.828E-07 2.885E-07 1.305E-07 2.024E-07 

GBP 3.863E-07 3.717E-07 2.885E-07 6.046E-07 2.450E-07 3.359E-07 

JPY 7.600E-08 1.756E-07 1.305E-07 2.450E-07 1.017E-06 5.323E-07 

USD 2.746E-07 3.657E-07 2.024E-07 3.359E-07 5.323E-07 6.068E-07 

C 

 AUD CAD EUR GBP JPY USD 

AUD 1.514E-06 1.148E-06 1.026E-06 9.704E-07 6.576E-07 8.379E-07 

CAD 1.148E-06 1.265E-06 9.285E-07 9.440E-07 7.133E-07 9.262E-07 

EUR 1.026E-06 9.285E-07 1.046E-06 8.826E-07 6.230E-07 7.561E-07 

GBP 9.704E-07 9.440E-07 8.826E-07 1.081E-06 7.245E-07 8.851E-07 

JPY 6.576E-07 7.133E-07 6.230E-07 7.245E-07 1.101E-06 8.516E-07 

USD 8.379E-07 9.262E-07 7.561E-07 8.851E-07 8.516E-07 1.070E-06 

Note: These are the covariance matrices of the estimated vector autoregression residuals 

 ̂( ) in the years  2009 (A), 2010 (B), and 2011 (C) for the Australian dollar  ( AUD ) ,  
 Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  

(  P  ) ,   and the United States dollar

 

 

 

Table B-5. Contemporaneous Causal Effect Matrices, 2009-2011 

A 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.284 0.470 0.145 0.000 0.203 

CAD 0.000 0.000 0.289 0.102 0.000 0.527 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.000 0.000 0.579 0.000 0.000 0.332 

JPY -0.146 -0.041 0.297 -0.022 0.000 0.752 

USD 0.000 0.000 1.226 0.000 0.000 0.000 
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Table B-5 Continued. 

B 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.000 0.452 0.000 0.000 0.000 

CAD 0.237 0.000 0.256 0.064 -0.083 0.530 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.086 0.000 0.396 0.000 0.017 0.426 

JPY -0.164 0.000 0.072 0.000 0.000 1.086 

USD -0.297 0.000 1.614 0.000 0.000 0.000 

C 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.000 0.407 0.000 0.000 0.000 

CAD 0.241 0.000 0.198 0.066 0.000 0.530 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.074 0.000 0.376 0.000 0.000 0.495 

JPY -0.001 -0.071 0.054 0.069 0.000 0.863 

USD -0.387 0.000 1.703 0.000 0.000 0.000 

Note: These are the VAR-LiNGAM model estimates of the causal effect matrices    in 

the years  2009 (A), 2010 (B), and 2011 (C) for the Australian dollar  ( AUD ) ,   Canadian  

 dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and 

the United States dollar  ( USD ). A    matrix contains the causal affects within the lag 0 

period. For example in 2009, the effect on the AUD’s log return in the lag 0 period from 

the CAD’s log return in the lag 0 period is 0.28387 times the value of the CAD’s lag 0 

log return.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

 

 

 

Table B-6. Lag One causal Effect Matrices, 2009-2011 

A 

 AUD CAD EUR GBP JPY USD 

AUD -0.132 0.057 0.112 0.051 -0.019 -0.002 

CAD 0.025 -0.118 0.088 0.033 -0.019 0.019 

EUR 0.007 0.011 -0.129 -0.001 -0.023 0.036 

GBP 0.018 -0.004 0.012 -0.037 -0.001 0.024 

JPY -0.036 0.008 -0.008 0.008 -0.048 0.024 

USD -0.011 -0.010 0.075 0.000 -0.003 -0.023 
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Table B-6 Continued. 

B 

 AUD CAD EUR GBP JPY USD 

AUD -0.056 0.031 0.020 -0.001 -0.023 -0.004 

CAD 0.038 -0.044 -0.018 0.013 -0.027 0.043 

EUR -0.005 0.000 -0.047 -0.006 -0.028 0.011 

GBP 0.012 -0.007 0.022 -0.037 0.002 0.002 

JPY -0.002 -0.015 -0.008 0.003 -0.030 0.036 

USD -0.024 0.027 0.053 0.003 0.003 -0.022 

C 

 AUD CAD EUR GBP JPY USD 

AUD -0.038 0.070 -0.015 -0.009 0.012 -0.026 

CAD 0.031 -0.042 0.008 -0.019 -0.016 0.037 

EUR 0.022 0.027 -0.071 0.000 -0.033 0.027 

GBP 0.004 -0.001 0.026 -0.045 -0.005 0.010 

JPY 0.013 -0.009 0.010 0.011 -0.019 0.000 

USD -0.042 0.004 0.073 -0.004 0.021 -0.025 

Note: These are the VAR-LiNGAM model estimates of the causal effect matrices    in 

the years  2009 (A), 2010 (B), and 2011 (C) for the Australian dollar  ( AUD ) ,   Canadian  

 dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and 

the United States dollar  ( USD ). A    matrix contains the causal affects from the lag 1 

period on the lag 0 period. For example in 2009, the effect on the AUD's log return in 

the lag 0 period from the CAD's log return in the lag 1 period is 0.056585 times the 

value of the CAD's lag 1 log return

 

 

 

Table B-7. Autoregressive matrices, 2009-2011 

A 

 AUD CAD EUR GBP JPY USD 

AUD -0.119 0.031 0.021 0.052 -0.052 0.039 

CAD 0.028 -0.113 -0.002 0.028 -0.045 0.046 

EUR 0.007 0.011 -0.129 -0.001 -0.023 0.036 

GBP 0.021 0.003 -0.090 -0.038 -0.025 0.052 

JPY -0.020 0.014 -0.110 -0.001 -0.068 0.041 

USD -0.003 0.004 -0.083 -0.001 -0.031 0.020 
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Table B-7 Continued. 

B 

 AUD CAD EUR GBP JPY USD 

AUD -0.058 0.031 -0.001 -0.004 -0.036 0.001 

CAD 0.016 -0.027 -0.040 0.006 -0.056 0.041 

EUR -0.005 0.000 -0.047 -0.006 -0.028 0.011 

GBP -0.001 0.004 -0.007 -0.041 -0.027 0.005 

JPY -0.009 -0.001 -0.035 -0.002 -0.060 0.033 

USD -0.015 0.018 -0.023 -0.005 -0.031 -0.004 

C 

 AUD CAD EUR GBP JPY USD 

AUD -0.029 0.081 -0.044 -0.009 -0.001 -0.015 

CAD 0.032 -0.005 -0.035 -0.024 -0.043 0.055 

EUR 0.022 0.027 -0.071 0.000 -0.033 0.027 

GBP 0.013 0.024 -0.019 -0.046 -0.034 0.032 

JPY 0.018 0.011 -0.019 0.009 -0.049 0.023 

USD 0.005 0.019 -0.031 -0.001 -0.034 0.026 

Note: These are the VAR-LiNGAM model estimates of the autoregressive matrices    

in the years  2009 (A), 2010 (B), and 2011 (C) for the Australian dollar  ( AUD ) ,   Canadian  

 dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and 

the United States dollar  ( USD ). These matrices contain the autoregressive affects from 

the lag 1 period on the lag 0 period. An    matrix contains the estimates from a standard 

vector autoregressive model. An    matrix is modified by the results of the LiNGAM 

algorithm to produce a    causal effect matrix
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APPENDIX C 

CHAPTER IV TABLES 

 

Table C-1. Expected Values of the Log Returns   in the Estimation and Forecast 

Data Sets                                                         

          A 

 Before Surrounding After Long After 

AUD -7.152E-06 -2.378E-05 -5.459E-06 5.858E-06 

CAD -1.028E-05 -2.471E-05 -6.673E-06 4.508E-06 

EUR -6.023E-06 -2.153E-05 -5.508E-06 -1.065E-07 

GBP -1.068E-05 -2.472E-05 -4.399E-06 4.276E-06 

JPY -9.118E-06 -1.776E-05 8.366E-06 2.120E-06 

USD -1.288E-05 -2.483E-05 -5.025E-07 5.555E-06 

          B 

 Before Surrounding After Long After 

AUD -4.603E-05 5.066E-05 1.343E-05 -9.477E-06 

CAD -4.201E-05 4.705E-05 8.368E-06 2.832E-06 

EUR -4.136E-05 4.640E-05 1.111E-06 -9.271E-07 

GBP -4.005E-05 4.833E-05 6.015E-06 8.458E-06 

JPY -2.687E-05 5.640E-05 2.508E-06 4.670E-06 

USD -3.853E-05 5.600E-05 5.585E-06 2.018E-06 

Note: These are the expected values of the currency log returns    ( ) in the 

estimation data sets (A) and the forecast data sets (B)                     for the Australian 

dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ) ,   Japanese yen  (  P  ) ,   and the United States dollar
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Table C-2. Estimation Data Set Covariance Matrices  

  A 

 AUD CAD EUR GBP JPY USD 

AUD 8.451E-07 5.718E-07 4.437E-07 4.697E-07 2.048E-07 4.125E-07 

CAD 5.718E-07 7.161E-07 3.834E-07 4.532E-07 2.469E-07 4.739E-07 

EUR 4.437E-07 3.834E-07 4.812E-07 3.709E-07 1.626E-07 2.842E-07 

GBP 4.697E-07 4.532E-07 3.709E-07 6.026E-07 2.483E-07 4.116E-07 

JPY 2.048E-07 2.469E-07 1.626E-07 2.483E-07 6.497E-07 3.348E-07 

USD 4.125E-07 4.739E-07 2.842E-07 4.116E-07 3.348E-07 5.612E-07 

  B 

 AUD CAD EUR GBP JPY USD 

AUD 1.363E-06 9.944E-07 8.574E-07 7.918E-07 3.853E-07 6.824E-07 

CAD 9.944E-07 1.090E-06 7.452E-07 7.359E-07 4.216E-07 7.104E-07 

EUR 8.574E-07 7.452E-07 8.543E-07 6.639E-07 3.380E-07 5.260E-07 

GBP 7.918E-07 7.359E-07 6.639E-07 8.203E-07 3.939E-07 6.071E-07 

JPY 3.853E-07 4.216E-07 3.380E-07 3.939E-07 8.074E-07 4.824E-07 

USD 6.824E-07 7.104E-07 5.260E-07 6.071E-07 4.824E-07 7.341E-07 

  C 

 AUD CAD EUR GBP JPY USD 

AUD 2.156E-06 1.742E-06 1.647E-06 1.507E-06 1.108E-06 1.334E-06 

CAD 1.742E-06 1.841E-06 1.511E-06 1.458E-06 1.142E-06 1.401E-06 

EUR 1.647E-06 1.511E-06 1.672E-06 1.422E-06 1.054E-06 1.242E-06 

GBP 1.507E-06 1.458E-06 1.422E-06 1.566E-06 1.141E-06 1.332E-06 

JPY 1.108E-06 1.142E-06 1.054E-06 1.141E-06 1.417E-06 1.255E-06 

USD 1.334E-06 1.401E-06 1.242E-06 1.332E-06 1.255E-06 1.489E-06 

  D 

 AUD CAD EUR GBP JPY USD 

AUD 6.878E-07 4.024E-07 2.445E-07 2.584E-07 1.824E-07 1.782E-07 

CAD 4.024E-07 5.528E-07 2.151E-07 3.146E-07 3.239E-07 3.685E-07 

EUR 2.445E-07 2.151E-07 2.510E-07 1.980E-07 1.549E-07 1.641E-07 

GBP 2.584E-07 3.146E-07 1.980E-07 4.739E-07 3.710E-07 4.106E-07 

JPY 1.824E-07 3.239E-07 1.549E-07 3.710E-07 8.613E-07 6.297E-07 

USD 1.782E-07 3.685E-07 1.641E-07 4.106E-07 6.297E-07 7.180E-07 

Note: These are the covariance matrices of the currency log returns    ( ) in the 

before (A), surrounding (B), after (C), and long after (D) estimation data sets for the 

Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar
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Table C-3. Forecast Data Set Covariance Matrices 
       A 

 AUD CAD EUR GBP JPY USD 

AUD 2.211E-06 1.747E-06 1.621E-06 1.394E-06 9.397E-07 1.205E-06 

CAD 1.747E-06 1.799E-06 1.433E-06 1.292E-06 8.919E-07 1.200E-06 

EUR 1.621E-06 1.433E-06 1.612E-06 1.262E-06 8.046E-07 1.017E-06 

GBP 1.394E-06 1.292E-06 1.262E-06 1.306E-06 8.113E-07 1.026E-06 

JPY 9.397E-07 8.919E-07 8.046E-07 8.113E-07 1.022E-06 8.514E-07 

USD 1.205E-06 1.200E-06 1.017E-06 1.026E-06 8.514E-07 1.127E-06 

       B 

 AUD CAD EUR GBP JPY USD 

AUD 3.475E-06 2.948E-06 2.912E-06 2.745E-06 2.249E-06 2.479E-06 

CAD 2.948E-06 3.039E-06 2.746E-06 2.692E-06 2.338E-06 2.601E-06 

EUR 2.912E-06 2.746E-06 2.979E-06 2.718E-06 2.273E-06 2.493E-06 

GBP 2.745E-06 2.692E-06 2.718E-06 2.901E-06 2.395E-06 2.623E-06 

JPY 2.249E-06 2.338E-06 2.273E-06 2.395E-06 2.576E-06 2.539E-06 

USD 2.479E-06 2.601E-06 2.493E-06 2.623E-06 2.539E-06 2.814E-06 

       C 

 AUD CAD EUR GBP JPY USD 

AUD 8.592E-07 5.108E-07 3.505E-07 3.336E-07 2.057E-07 1.848E-07 

CAD 5.108E-07 6.702E-07 3.019E-07 3.807E-07 3.474E-07 3.996E-07 

EUR 3.505E-07 3.019E-07 3.407E-07 2.759E-07 2.142E-07 2.224E-07 

GBP 3.336E-07 3.807E-07 2.759E-07 5.475E-07 4.203E-07 4.713E-07 

JPY 2.057E-07 3.474E-07 2.142E-07 4.203E-07 1.087E-06 7.074E-07 

USD 1.848E-07 3.996E-07 2.224E-07 4.713E-07 7.074E-07 8.208E-07 

       D 

 AUD CAD EUR GBP JPY USD 

AUD 3.302E-07 1.668E-07 2.657E-08 8.621E-08 4.064E-08 9.381E-08 

CAD 1.668E-07 2.756E-07 2.446E-08 1.152E-07 1.016E-07 1.862E-07 

EUR 2.657E-08 2.446E-08 2.873E-08 2.303E-08 1.260E-08 2.271E-08 

GBP 8.621E-08 1.152E-07 2.303E-08 1.886E-07 1.228E-07 1.492E-07 

JPY 4.064E-08 1.016E-07 1.260E-08 1.228E-07 6.001E-07 2.567E-07 

USD 9.381E-08 1.862E-07 2.271E-08 1.492E-07 2.567E-07 2.977E-07 

Note: These are the covariance matrices of the currency log returns    ( ) in the 

before (A), surrounding (B), after (C), and long after (D) forecast data sets for the 

Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar
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Table C-4. Estimation Data Set Autoregressive Matrices 
A 

 AUD CAD EUR GBP JPY USD 

AUD -0.028 0.060 -0.047 0.023 0.001 -0.050 

CAD 0.021 -0.014 -0.036 0.015 -0.042 0.026 

EUR 0.028 0.009 -0.064 0.026 -0.044 0.001 

GBP 0.009 0.008 -0.025 0.000 -0.032 -0.010 

JPY 0.016 -0.026 -0.026 0.043 -0.072 -0.009 

USD 0.001 0.010 -0.037 0.027 -0.025 -0.018 

B 

 AUD CAD EUR GBP JPY USD 

AUD -0.015 0.111 -0.066 -0.031 -0.012 0.012 

CAD 0.036 0.028 -0.047 -0.038 -0.056 0.069 

EUR 0.030 0.061 -0.084 -0.016 -0.046 0.023 

GBP 0.021 0.052 -0.033 -0.061 -0.040 0.033 

JPY 0.024 0.028 -0.028 0.017 -0.084 0.018 

USD 0.023 0.035 -0.057 0.004 -0.038 0.013 

C 

 AUD CAD EUR GBP JPY USD 

AUD 0.005 0.090 -0.068 -0.028 -0.010 0.002 

CAD 0.045 0.004 -0.041 -0.044 -0.054 0.078 

EUR 0.035 0.036 -0.079 -0.017 -0.023 0.027 

GBP 0.030 0.028 -0.023 -0.075 -0.028 0.051 

JPY 0.021 0.014 -0.003 0.001 -0.058 0.030 

USD 0.024 0.006 -0.030 -0.002 -0.032 0.032 

D 

 AUD CAD EUR GBP JPY USD 

AUD -0.050 0.064 -0.101 -0.008 0.029 -0.047 

CAD 0.037 -0.041 -0.103 -0.033 -0.002 0.025 

EUR 0.004 0.005 -0.149 0.004 0.005 0.000 

GBP 0.002 0.017 -0.116 -0.050 -0.008 0.020 

JPY 0.005 0.017 -0.134 -0.018 0.017 -0.009 

USD -0.005 0.013 -0.112 -0.023 -0.016 0.023 

Note: These are the VAR and VAR-LiNGAM model estimates of the autoregressive 

matrices    in the before (A), surrounding (B), after (C), and long after (D) estimation 

data sets for the Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great 

Britain pound sterling  ( GBP ) ,    apanese yen  (  P  ) ,   and the United States dollar  ( USD ). 

An    matrix contains the estimates from a standard vector autoregressive model and 

reflects the autoregressive affects from the lag 1 period on the lag 0 period
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Table C-5. Estimation Data Set Contemporaneous Causal Effect Matrices 
A 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.218 0.327 0.087 -0.090 0.432 

CAD 0.000 0.000 0.111 0.064 0.000 0.610 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.000 0.000 0.314 0.000 0.000 0.493 

JPY 0.000 -0.101 0.027 0.053 0.000 0.861 

USD 0.000 0.000 -1.397 0.000 0.000 0.000 

B 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.285 0.373 0.096 -0.084 0.381 

CAD 0.000 0.000 0.209 0.090 0.000 0.580 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.000 0.000 0.339 0.000 0.000 0.535 

JPY 0.000 -0.115 0.018 0.050 0.000 0.917 

USD 0.000 0.000 -1.285 0.000 0.000 0.000 

C 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.000 0.390 0.000 0.000 0.000 

CAD 0.243 0.000 0.209 0.082 -0.063 0.535 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.063 0.000 0.370 0.000 0.000 0.522 

JPY -0.024 0.000 0.058 0.064 0.000 0.866 

USD -0.405 0.000 1.604 0.000 0.000 0.000 

D 

 AUD CAD EUR GBP JPY USD 

AUD 0.000 0.000 0.446 0.000 0.000 0.000 

CAD 0.256 0.000 0.220 0.057 -0.020 0.476 

EUR 0.000 0.000 0.000 0.000 0.000 0.000 

GBP 0.081 0.000 0.369 0.000 0.000 0.485 

JPY 0.002 0.000 0.064 0.050 0.000 0.864 

USD -0.422 0.000 1.678 0.000 0.000 0.000 

Note: These are the VAR-LiNGAM model estimates of the causal effect matrices    in 

the before (A), surrounding (B), after (C), and long after (D) estimation data sets for the 

Australian dollar  ( AUD ) ,   Canadian   dollar  ( CAD ) ,   euro  (  U  ) ,   Great Britain pound 

sterling  ( GBP ),   apanese yen  (  P  ) ,   and the United States dollar  ( USD ). A    matrix 

contains the causal affects within the lag 0 period
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Table C-6. Estimation Data Set Separating Matrices 
A 

 AUD CAD EUR GBP JPY USD 

AUD 1041.500 -975.250 -799.850 192.680 -1058.700 763.400 

CAD 835.720 -1312.800 686.570 -517.450 418.740 1065.300 

EUR 305.090 264.360 -1718.700 1449.600 403.100 -359.300 

GBP -748.980 -660.030 931.700 1437.400 -462.980 -53.321 

JPY 813.100 558.800 260.040 216.830 246.000 -1831.200 

USD -338.380 1108.200 238.330 -428.490 -722.210 796.750 

B 

 AUD CAD EUR GBP JPY USD 

AUD -1056.600 866.120 419.950 -105.300 995.360 -540.200 

CAD -261.170 1219.800 -1543.200 1237.900 -114.950 -1134.300 

EUR -0.382 759.010 -36.187 -1803.300 -143.010 498.620 

GBP -1134.700 663.180 1131.100 1.400 -933.740 258.420 

JPY 384.990 464.420 620.990 -178.290 429.420 -1955.600 

USD 431.480 927.850 -388.920 -380.770 8.164 146.330 

C 

 AUD CAD EUR GBP JPY USD 

AUD -841.820 1196.200 -857.140 1270.100 667.790 -1341.300 

CAD 171.540 -575.170 -23.868 1574.200 -821.910 -186.330 

EUR -1066.100 786.610 1535.100 -637.470 -131.120 -202.190 

GBP -206.140 922.530 -551.850 -173.550 -1187.200 666.690 

JPY -377.760 -364.880 -185.320 58.571 -505.290 1772.500 

USD 708.380 741.860 -633.710 -357.350 171.970 -143.690 

D 

 AUD CAD EUR GBP JPY USD 

AUD 160.910 44.985 -2068.500 -138.080 -59.670 60.764 

CAD 1550.900 -1872.500 -104.360 -232.590 -224.620 945.420 

EUR 163.100 -60.696 -1500.400 2116.700 -31.328 -489.860 

GBP -699.070 -1096.900 975.310 843.040 380.600 -703.930 

JPY -222.460 -341.220 -157.180 -550.090 600.320 955.210 

USD 350.780 246.930 -331.350 -40.946 1642.000 -1799.500 

Note: These are the independent component analysis estimates of the separating matrices 

  in the before (A), surrounding (B), after (C), and long after (D) estimation data sets. A 

separating matrix facilitates the computation of the independent components from the 

original series of returns. 
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Table C-7. AR Model Parameter Estimates            

Currency Lag(1) Parameter Constant 

Before Estimation Data Set 

AUD -0.100 0.006 

CAD -0.061 -0.009 

EUR -0.033 -0.009 

GBP -0.014 -0.004 

JPY -0.001 0.006 

USD 0.013 -0.009 

Surrounding Estimation Data Set 

AUD -0.090 -0.008 

CAD -0.066 0.010 

EUR -0.049 0.018 

GBP -0.030 -0.004 

JPY -0.007 0.011 

USD 0.036 -0.018 

After Estimation Data Set 

AUD -0.074 0.002 

CAD -0.062 -0.011 

EUR -0.047 -0.006 

GBP -0.018 -0.012 

JPY 0.007 0.000 

USD 0.023 -0.002 

Long After Estimation Data Set 

AUD -0.136 0.001 

CAD -0.098 0.005 

EUR -0.044 0.007 

GBP -0.012 -0.009 

JPY 0.003 0.001 

USD 0.038 -0.003 

 


