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ABSTRACT 

 

 This research investigated the structural response of satellites and space rated 

payloads. Throughout the work, SolidWorks Simulation was utilized to subject the 

aforementioned systems to both experimental test loads as well as program specific 

flight environments. While the methods presented within this document were exclusively 

employed with the SolidWorks Simulation software, all finite element analysis (FEA) 

techniques and computer aided design (CAD) best practices discussed are valid for a 

variety of commercially available CAD packages. Primarily, the programs under 

investigation were the Low earth Orbiting Navigation Experiment for Spacecraft Testing 

Autonomous Rendezvous and docking (LONESTAR) and Space-based Telescopes for 

Actionable Refinement of Ephemeris (STARE) programs. Both investigations studied 

satellite responses due to free and forced vibrations as well as various thermal 

environments and loading. Additionally, where experimental data was available, 

simulation solutions were validated against CAD generated values and evaluates for 

accuracy.  

 Ultimately, the natural frequency and random vibration responses of four systems 

are presented as part of this research and the sensitivity of these results, due to various 

modeling variables, is discussed. The transient and steady state thermal profiles of two 

satellite flight configurations are also presented in an effort to predict on orbit thermal 

conditions. The CAD tool was evaluated and deemed appropriate for investigative 

studies within the laboratory. 
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SMAD Space Mission Analysis and Design 
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TAMU Texas A&M University 
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1. INTRODUCTION 

 

Current trends in academic, government, and commercial satellite designs are 

moving towards smaller, less expensive integrated systems. This decrease in satellite 

size renders the requirement of large launch vehicles obsolete. Many smaller programs 

are beginning to take advantage of the resulting frequency increase of launch 

opportunities. As the aerospace industry transitions from a once highly 

compartmentalized entity into an era of higher exposure and increased accessibility, 

experimental payloads and student-designed satellites have seen tremendous growth. 

AggieSat Laboratory (AGSL), at Texas A&M University (TAMU), is one such example 

of a student organization thriving in the wake of a changing space industry.  

Like many satellite designs, AGSL programs benefit from the technological 

advancements of computer aided design (CAD) software and integrated finite element 

analysis (FEA) solvers.1 The use of such technology places AGSL at the center of a 

necessary discourse among industry and academia leaders regarding the role such 

computational solutions should play in the design process. Despite great efforts to 

establish clear validation and verification (V&V) standards2 within the field of 

computational solid mechanics, little documentation regarding specific simulation 

packages is available to analysts. For this reason, FEA results are generally presented 

conjointly or supplementary to structural response predictions obtained through more 

conventional methods e.g., experimental testing. 
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1.1 Thesis Organization  

This work utilized CAD generated simulation solutions as well as experimental 

test data to predict the structural responses of three different AGSL supported satellites.  

By examining both historical and current designs from the Low earth Orbiting 

Navigation Experiment for Spacecraft Testing Autonomous Rendezvous and docking 

(LONESTAR) and Space-based Telescopes for Actionable Refinement of Ephemeris 

(STARE) programs, the research presented here can be utilized to improve future design 

iterations.  Additionally, the CAD tool utilized was qualitatively evaluated for AGSL 

simulation needs. As part of this evaluation, the Tool Maturity Level (TML) guide 

created by the United Stated Air Force Research Laboratory (AFRL) helped determine 

how best to utilize simulation data in the future. This assessment, having previously 

never been investigated within AGSL, provided essential internal insight as to the 

limitations of stand-alone CAD packages for satellite design and development. While the 

research presented within this document utilized SolidWorks and SolidWorks 

Simulation, the methods utilized in response prediction and TML evaluation are 

generally applicable to other CAD software as well.  

Section 2 of this thesis briefly outlines the satellite programs through which this 

investigation was made possible as well as provides industry examples for which 

SolidWorks was used as an optimization tool. Section 3 highlights the motivation for 

this study from a V&V perspective and defines clear goals for the research. Next, 

Section 4 presents general governing equations for stress, strain, steady state conductive 

heat transfer, free vibration and forced vibration analyses.3-7 The text highlights how 
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CAD packages implement and solve, either iteratively or directly, the aforementioned 

systems of equations. Sources of uncertainty for both experimental and simulated  

data8-11 were investigated and the corresponding impacts on result integrity weighed.  

In an effort to consider the variability of experimental and simulation results, 

validation metrics12,13 for comparison of the two data types are defined in Section 5. 

Also outlined in Section 5, are the general techniques for utilizing FEA CAD packages 

to predict structural responses and how such steps were employed throughout this 

research. Additionally presented in Section 5 are simulation assumptions, geometric 

simplifications, material selections, mesh details, and boundary conditions for all three 

AGSL supported programs-six total CAD models.  

In Section 6, the simulated and available experimental structural responses of the 

six models are summarized. Such simulated evaluations include: stress, deflection, 

acceleration, factor of safety (FS) and thermal output plots. Accelerometer readings from 

the experimental vibration tests of both AGS2 and the STARE payload are also 

captured.  Within the text concerning simulation results is an overview of noteworthy 

model features, the material library utilized, and simplifying assumptions for each of the 

six models. Mesh convergence plots are shown as well to demonstrate the variability of 

non-converged solutions and the importance of mesh independent simulations.  

As part of the final evaluation of the data, discrepancies between experimental 

and simulation results are discussed in Section 7.14,15 This final section also includes a 

recommendation16 for future uses of the CAD tool, as an independent design evaluation 

tool at AGSL. This suggestion will be based on the simulations’ ability to meet 
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validation metrics and the standards established in the TML guide. Ultimately, this work 

adds to a limited literature archive of both satellite structural response predictions using 

CAD software and the usefulness of the TML guide in assessing application-specific 

software.17  
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2. BACKGROUND 

 

2.1 Trends in the Aerospace Industry and Academia 

 In the past decade, nano-satellites (1-10kg) and micro-satellites (10-100kg) have 

made a drastic emergence in commercial, academic and military arenas. The size and 

cost of these compact spacecraft as well as the ability for many smaller payloads to 

‘piggyback’ on large launch vehicles have contributed to an increase in launch 

frequency.18,19 Consequently, in an industry that was once exclusively controlled by 

government agencies such as the National Aeronautics and Space Administration 

(NASA) and the Department of Defense (DOD), there is now a spike in public launch 

opportunities through the government and private sector. One assessment suggests that 

civil users, classified largely as universities and research groups, are projected to 

increase the number of small satellites launches from a current annual average of 108 to 

almost 200 before 2015.20 The impacts of this trend, while widespread, can easily be 

seen to include an increased rate of design, testing, and production.  

 As the space industry and academic worlds merge, a largely less-experienced 

faction of engineers is tasked with creating budget conscience, space rated systems on 

accelerated timelines. Furthermore, in order for these satellites to be successful in this 

changing market, designs will need to push the envelopes of size, weight, and power 

consumption.  
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2.2 Programmatic Background 

Two examples of student-supported programs benefitting from small, space 

based research platforms are the LONESTAR and STARE campaigns under 

investigation at AGSL. AGSL, a student managed organization sponsored by the 

Aerospace Engineering Department at TAMU, was founded by Dr. Helen Reed in 2005. 

Still the principal investigator at the lab, Dr. Reed invests in programs that foster the 

goals of the lab, “to develop and demonstrate modern technologies by using a small-

satellite platform, while educating students and enriching the undergraduate 

experience.”†  Additionally, the lab fulfills analysis needs for a variety of third party 

programs. The myriad of opportunities at AGSL allows engineering fundamentals to be 

assessed both from a business and research perspective.  

The design process within AGSL highlights the importance of a strict 

configuration management policy, similar to that practiced in industry. This policy 

allows students to track design deviations and test failures through well-documented 

procedures, development plans, and certification logs. Document control and 

configuration management, on this level, have contributed to launch manifests on 

manned vehicles and deployment opportunities from the International Space Station 

(ISS). In order to ensure these international resources are utilized to the fullest potential, 

the lab partners with industry and academic leaders to gain guidance and insight 

regarding the design, testing, manufacturing, integration, and operation of space-rated 

hardware.  

                                                 

† Reed, Helen, Dr. "AggieSat Lab - Home." 15 May 2013. http://aggiesatweb.tamu.edu/. 
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2.2.1 The Low Earth Orbiting Navigation Experiment for Spacecraft Testing 

Autonomous Rendezvous and Docking Campaign 

One such partnership is the LONESTAR campaign, which represents the largest 

student led enterprise at AGSL. Below is the agreed upon LONESTAR campaign 

statement.  

“LONESTAR, Low earth Orbiting Navigation Experiment for Spacecraft 
Testing Autonomous Rendezvous and docking, is a programmatic 
partnership among the University of Texas at Austin (UT), Texas A&M 
University and NASA-JSC aimed at exploring and developing alternative 
Autonomous Rendezvous and Docking (ARD) systems for use on cost 
effective, low power microsatellite infrastructures. Over the course of four 
missions, the University of Texas at Austin and Texas A&M University 
will design and build four pairs of cooperative satellites to test and 
implement systems to ultimately demonstrate ARD on the fourth and final 
mission.”21 

Leading up to the final mission and ultimate campaign goal of ARD, AGSL has 

clearly defined objectives for intermediate flights. These goals are briefly outlined in 

Table 2.1 and include a variety of hardware checkouts and evaluations, attitude control 

demonstrations, and visual confirmation capabilities. The technical objectives are further 

used to develop satellite and system requirements as well as mission success criteria for 

each flight.21   

In addition to the below mission objectives all parties of the LONESTAR 

campaign are held to NASA and contractor safety standards.22-25 These standards dictate 

design constraints ranging from viable material selections to testing requirements. 

Furthermore, each university satellite is subjected to multiple, independent safety board 

reviews. NASA and third party entities oversee such reviews in order to verify structural 

integrity and ensure crew safety. It is therefore the exclusive responsibility of AGSL to 
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ensure satellite subsystems satisfy all mission success criteria. Internally, such assurance 

comes from a combination of simulations of the flight environment and hardware 

testing, on the component, subsystem, and integrated satellite level.   

 

Table 2.1: Mission Specific LONESTAR Campaign Objectives21 

- Mission 2 Objectives 
M2O-1 Evaluate sensors including but not limited to: Global Positioning System 

(GPS) receivers, Inertial Measurement Units (IMUs), rate gyroscope, 
accelerometers.  

M2O-2 Evaluate Reaction Control System (RCS). 
M2O-3 Evaluate Guidance Navigation and Control (GN&C) system including 

guidance algorithms, absolute navigation, and relative navigation. 
M2O-4 Evaluate communications capabilities between two spacecraft and from each 

spacecraft to their ground stations.   
M2O-5 Evaluate the capability to take video. 

 
- Mission 3 Objectives 
M3O-1 Evaluate RCS. 
M3O-2 Demonstrate ability to maintain relative velocity and attitude within TBD 

requirements.  
M3O-3 Evaluate Autonomous Flight Manager (AFM). 
M3O-4 Demonstrate docking system. 

 
- Mission 4 Objectives 
M4O-1 Demonstrate full ARD capability using GN&C, RCS, and AFM. 

 

 

Currently AGSL is working towards the second mission of the LONESTAR 

campaign, AggieSat4 (AGS4). AGS4 has a mass constraint of 50kg and will be limited 

in size by the ISS Japanese Experiment Module (JEM) airlock dimensions. AggieSat2 

(AGS2) was the first AGSL LONESTARE satellite and launched in 2009 on Space 

Shuttle Endeavour, STS-127, for a 230 day mission.26 AGS2 had a mass of 

approximately 2.3kg and was a 5x5x5in cube shaped satellite. The structural responses 
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of both satellites are investigated throughout this research and will be discussed further 

in subsequent sections.   

 

2.2.2 The Space-based Telescopes for Actionable Refinement of Ephemeris Campaign  

Another venture supported by AGSL is the Lawrence Livermore National 

Laboratory (LLNL) STARE Campaign. This project represents a five-program 

partnership among the Navel Postgraduate School (NPS), the National Reconnaissance 

Office, the Boeing Company, LLNL and TAMU. The goal of the campaign is to monitor 

space debris and predict collisions. In a March 2012 survey, conducted by the NASA 

Orbital Debris Program Office, the importance of such technology was clearly 

demonstrated on an international scale. NASA reported that, at the time of the update, 

there were 21,000 items larger than 10cm, 500,000 objects between 1-10cm and over 

100 million objects smaller than 1cm in orbit around Earth.† Considering that these items 

travel with an average speed of 8km/s and that there are currently 560†† functioning 

satellites in space, the risk of collision is not only probable, it could be costly and 

catastrophic. 

In order to develop a network of satellites capable of predicting collisions, the 

STARE campaign utilizes a specific class of satellites, known as CubeSats. Satellites 

classified as “1U” CubeSats generally fit in a 10x10x10cm volume and weigh less than 

                                                 

† NASA Orbital Debris Program Office. http://orbitaldebris.jsc.nasa.gov/index.html 

†† Space Surveillance Network. http://www.au.af.mil/au/awc/awcgate/usspc-fs/space.htm 



 

 10

1kg. The size and weight of CubeSats make them cost effective to build and allow for 

more frequent launch opportunities. These satellites can also be ‘stacked’ to demonstrate 

higher complexity in a modular configuration. One common form factor is the 

30x10x10cm or “3U” CubeSat. The STARE mission employs this 3U configuration, 

with 1U of the satellite dedicated to the payload, attitude control system and power 

system, respectively.  

The STARE payload represents just one of several small satellite payloads which 

contributed to the Operationally Unique Technology Satellite (OUTSat) program. The 

OUTSat program was a collection of eleven CubeSats and eight Poly-Picosatellite 

Orbital Deployers (P-Pods) and included the STARE payload.† All eight P-Pods were 

located at a unique position, and thus launch environment, in an NPS designed launcher, 

the NPSCul. In order to support the needs of the STARE program, AGSL performs 

structural and thermal analyses for improved design and system characterization.  The 

results of these studies are presented as part of this work and will be discussed in greater 

detail in a later section.  

 

2.3 Computer Aided Design Packages  

As is the case in most technical design fields, satellite programs almost 

exclusively utilize CAD to draft and validate proposed solutions. Such software with 

                                                 

† “CubeSat.org”. June 20, 2013. http://www.cubesat.org/index.php/missions/upcoming-launches/122-l36-
launch-aler 



 

 11

built in FEA solvers, i.e. CATIA†, SolidWorks††, and Inventor†††, afford users the 

opportunity to create one-to-one digital models of designs while vetting manufacturing, 

integration, and integrity concerns. These CAD packages also allow designs to be 

virtually tested under operational static, frequency, and thermal loads. The cost benefit 

of virtual testing for realistic environments has proven to be quite impressive for large-

scale projects.27,28 Furthermore, independent analysis of CAD usage in industry shows 

companies using CAD software achieve, “revenue, cost, launch date, and quality targets 

for 86% or more of their products.”29 

Engineers today benefit from countless commercial CAD packages.  Of these 

options, the majority offers integrated FEA solvers for performing complex structural 

analyses. While this arsenal seems abundant, factors such as: supported import/export 

file formats, platform compatibility, technical support, and cost all impact and limit the 

viable options available for any given application. For the purposes of this research, 

SolidWorks 2011 Professional was utilized.  

Many, if not most, CAD packages feature built-in FEA solvers, which aim to 

create seamless transitions between design and design validation. Within CAD 

simulation suites, designers have the option of conducting linear static, frequency, 

buckling, thermal, drop test, fatigue, forced vibration and non-linear dynamic 

                                                 

† "Login to 3DEXPERIENCE Platform." 3DExperience Platform. http://www.3ds.com/products/catia/ 
 
†† "SolidWorks Simulation Premium." 3D CAD Design Software SolidWorks. http://www.solidworks.com 
 
††† "Software for Mechanical Design and Simulation." Inventor and Inventor Professional. 
http://www.autodesk.com/products/autodesk-inventor-family/overview 
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simulations, to name a few. Most commercially available CAD software accept many 

import formats e.g., DXF, DWG, Parasolid, IGES, STEP, ACIS, STL, ProE, and Solid 

Edge, which allow for ease of file sharing as well as data encryption. Likewise, 

information can be exported in a variety of formats ensuring safe and efficient result 

archives. Such features made commercially available CAD software a suitable choice for 

the research presented. 

Additionally, the CAD tool utilized in this research offers a Hardware 

Benchmark to ensure system compatibility. The benchmark measures central processing 

power, graphics card, and input/output performance by averaging the times of five 

performance tests. Each test cycles through a part rebuild, rotate/zoom, render, close, a 

drawing open, pan/zoom, add sheet, close, and an assembly open, rotate/zoom, and 

close. The SolidWorks Hardware Benchmark was run on the machine used in this 

research and provides confidence that variances between simulation run times, discussed 

later, were minimally impacted by hardware performance. Computer specifications and 

benchmark results can be found in the Appendix. 

 

2.3.1 SolidWorks in Other Applications 

The SolidWorks Simulation package has been used for similar research in a 

variety of different applications. The information and research summarized below is not 

meant as an exhaustive literary review. Rather, the examples provided are intended to 

establish merit for the simulation tool and to highlight current uses of SolidWorks in a 

variety of industries.   
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In the automotive industry for example, SoildWorks Simulation was utilized to 

analyze and optimize drums of tire testing machines.30 In such machines, drums are 

utilized to simulate road interfaces for the purposes of endurance, speed, and material 

tests. Bu’s research aimed at optimizing the mass of a 5m drum, for testing large 

engineering grade tires. Specifically, the investigation utilized stress, displacement and 

geometric measurements from SolidWorks as inputs for constraint variables in an 

optimization function. Ultimately, Bu concluded that utilization of SolidWorks in the 

design process contributed to budget, schedule and optimization success.  

Another application where the benefits of SolidWorks can be seen in product 

design is the oil and gas industry.31 Feiyu and Qingyan of the College of Construction at 

Jilin University in China demonstrate SolidWorks’ usefulness as a comparison tool. The 

research investigates two topdrive stems, used to provide rotational force on drilling rigs, 

and compares simplified models of each.  Final assessments of each topdrive stem’s 

stress and fatigue are achieved with Simulation.  

An additional industry that benefitted from SolidWorks Simulation analyses was 

pharmaceutical drug production.32 In the research conducted at Tianjin University of 

Science, solid-state fermentation equipment was optimized using SolidWorks. This body 

of work utilized FEA to make parametric studies of shaft dimensions and material 

selections. Due to the fact that virtual assemblies were used in the optimization process 

rather than prototype testing, production costs were significantly reduced. Furthermore, 

SolidWorks COSMOSMotion plug-in was used to further optimize the drum design and 

verify that fermentation could be achieved for the specified operating conditions.  
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In addition to the structural analyses presented, SolidWorks has proven to be 

extremely useful in conducting thermal investigations. In 2012, research was presented 

showing the benefits of SolidWorks Simulation in modeling the steady-state behavior of 

support equipment, internal to steel working ovens.33 The study considered the steady 

state results of both ANSYS Workbench and SolidWorks Simulation for an infrared 

temperature measurement installation support. While the two simulations’ results 

differed by only 0.5°C, Mr. Ying Peng concluded that ANSYS Workbench was the 

better solution for solving multiphysics simulations, i.e. problems coupling FEA with 

molecular phenomenon.   
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3. MOTIVATION 

 

 Throughout the literary research for this study, a deficiency in the applications 

for which Simulation has been utilized became apparent. Few, if any, examples exist of 

the package being used to evaluate small satellites. Rectifying this gap in the literature is 

one fundamental goal of the research. The analyses of the STARE, AGS2, and AGS4 

systems will serve as three independent examples of how CAD software can be 

employed in predicting the structural responses of small satellites.  

Another area of insufficient data exists surrounding the validity of simulation 

results. To truly understand how this deficit impacts current and future work in the 

aerospace industry, the following sub-section investigates the difference between 

software validation and verification and how a failure to address either can adversely 

impact designs. This discussion serves as additional motivation towards another primary 

objective of this work, to assess the ability of CAD software to produce stand-alone 

structural response predictions. The evaluation of the software’s limitations adds to a 

sparse database currently available for CAD users and product designers.  

In order to complete a review of the simulation tools and to present results in a 

concise and meaningful manner, this work will look at employing proposed verification 

and validation guides. Such standards have been developed by professional 

associations34 as well as government funded research organizations and provide a 

common language with which to discuss results. For this reason, a tertiary objective of 
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this research is the adherence to standard definitions and success metrics in the 

evaluations of both the simulated and experimental results.  

 

3.1 Validation and Verification of Simulation Results 

In order to achieve the last of the above research objectives, an important 

distinction must be made between software validation and verification. While varying 

definitions for each are presented in the literature, the majority differs only in semantics. 

Throughout this research the distinction between the two will be as follows:  

• Validation-Identification of correct mathematical model to physically 

represent the system in questions35 

• Verification- Assurance that computational model and its algorithms 

accurately solve the mathematical model35  

Both validation and verification represent important steps in obtaining accurate 

simulation results. In a paper on simulation governance the author, Barna Szabo, 

suggests that a large majority of the engineering community both recognize the need for 

and would benefit from V&V procedures.  Two key obstacles, which restrict 

implementation of such procurers, Szabo states, are a general frustration among users 

and developers over the veracity of results and a lack of V&V support within existing 

software.  

Furthermore, the question of accountability must be addressed. Using the above 

definitions for V&V one could argue that a natural delineation of responsibility exists 

between vendor and analyst. While this may be the case, unless standards are put into 
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place and upheld with consistency in industry, the burden to validate results and verify 

code will continue to fall on those who rely on CAD accuracy. This long-standing habit 

will only serve to further the notion that CAD results cannot serve, independently, as 

sufficient commentary on design integrity.  

 

3.2 Tool Maturity Level Evaluation 

In an effort to rectify the inconsistencies of software evaluations and elevate 

computational packages beyond the supporting role most currently play in design, the 

United States AFRL sponsored a Technical Interchange Meeting (TIM) in February of 

2011. The results of this meeting, while aimed at V&V within integrated computational 

materials engineering, have numerous crossovers to the processes utilized in 

computational solid mechanics. Perhaps the most beneficial outcome of this TIM was 

the TML assessment guide.36  

“The TML descriptions are intended to be general in nature and broadly 

applicable… [They] convey increasing fidelity, supporting data, documentation, level of 

V&V, and hence confidence in the decisions or results- with increasing tool maturity.”36 

Each of the five levels of the TML guide assess categories of model basis and definition, 

complexity and documentation, supporting data, model verification, rules of 

applicability, uncertainty quantification, and validation. Table 3.1, on the next page, 

highlights the developmental level of each category for a given TML classification.  
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Table 3.1: Tool Maturity Level Assessment Guide Modified from 36 
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 At the conclusion of this work, the table above will be utilized as the primary 

assessment measure for CAD software as analytical tools in small satellite development. 

A TML-1 verdict will be given for an analytical tool with unverified potential. If the 

CAD tool receives a TML-1 rating for the analysis of satellites in the capacity of this 

research, the recommendation for future use will be limited to investigative explorations. 

The results of a TML-1 tool would not be considered adequate to limit or impact 

previously accepted physical qualification tests.  A TML-2 tool is capable of predicting 

performance trends and relative results. As with the prior level, outputs of TML-2 

software should not decrease either the intensity or quantity of physical tests but could 

be used to plan appropriate analytical assessments. TML-3 software would produce 

findings with fidelity appropriate for lessening testing requirements and evaluating 

alternatives to industry standard processes.  Results of a TML-3 package would lack the 

complete validation required for a TML-4 ranking. Software that falls under the TML-4 

heading would be considered fully vetted and validated for the stated application. 

Uncertainty within the model will have been quantified and the impact on results 

characterized. Lastly, a TML-5 score would produce results, which consistently achieved 

higher accuracy than experimental testing. TML-5 tools would be the only software 

capable of stand-alone results and complete V&V confidence. A complete user guide 

comprised of supporting documentation and V&V activities would support the 

recommendation for use of TML-5 results in lieu of physical testing.  

 Ultimately, the TML determined appropriate for the use of CAD at AGSL will 

dictate how an analyst will use this software package in the future. The level determined 
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appropriate for the results presented will allow designers to use the iterative FEA 

processes, integrated within CAD software, to more efficiently turn around designs. 

While the final assessment will not impact NASA safety standards and/or any related 

physical testing practices, it is the goal of this research to define the level of confidence 

appropriate for subsequent projects.   

 

3.3 Objectives  

This work aims to contribute to an admittedly limited body of literature 

concerning structural response predictions of small satellites using CAD packages, 

specifically, SolidWorks Simulation.  Also, efforts will be made so that comparisons of 

future simulations and observed physical behavior might be possible. Specifically, 

validation metrics for the LLNL-STARE program and LONESTAR-AGS2 and AGS4 

missions will be presented as specific examples by which to evaluate simulation 

performance. The end goal of the proposed research will be predictions of all three 

satellites’ structural responses based on simulation and experimental data as well as an 

assessment of predicted responses in both test and launch environments.  
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4. METHODOLOGY  

 

This section investigates the governing systems of equations for the analyses 

utilized throughout this research as well as the available solvers for completing FEA 

problems within CAD packages. Also discussed, are the processes within modeling 

where uncertainties and solution errors can occur. These errors as well as the errors 

associated with experimental testing are outlined later in this section to facilitate the 

discussion of results in Section 7.  

 

4.1 Governing Equations  

 4.1.1 Strain-Stress Relationship 

Consider an infinitesimal material element anchored at one corner to the 

Cartesian coordinate system.  If the material element were subjected to a load or 

temperature distribution, strain or deformation would occur. Strain is defined as the ratio 

between changes in an object’s form, due to externally applied loads, and the object’s 

original dimensions. The resulting element shape could be expressed in a matrix 

equation using Eq. (4.1). 
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Where u, v, and w represent the deformations of the element in the x, y, and z-axes, 

respectively. This matrix is clearly symmetric and therefore only has six, rather than 

nine, independent terms. Furthermore, the off diagonal terms are known as shear strain 

while the diagonal elements are normal strain values.  Hooke’s Law, for linearly elastic 

isotropic material, suggests there is a linear relationship between normal stresses (σ) and 

normal strain (ε) as shown in Eqs. (4.2-4.4).3  

εxx = εx = 1
E (σx −ν(σ y +σ z))    

(4.2) 

ε yy = ε y = 1
E (σ y −ν(σ x +σ z))    

(4.3) 

εzz = εz = 1
E (σ z −ν(σ x +σ y))    

(4.4) 

Likewise, the shear stress (γ) can be related to shear strain by the following three 

equations.  

γ xy =
2σ xy(1+ν)

E
= ε xy

              
(4.5) 

γ yz =
2σ yz(1+ν)

E
= ε yz

              
(4.6) 

γ zx =
2σzx(1+ν)

E
= ε zx

              
(4.7) 

In the above equations, E is Young’s modulus (Pa) and ν is Poisson’s ratio.  

These relationships can be written in a more simplified matrix form as follows. 

ε = Aσ               (4.8) 

Where in Eq. (4.8) ε=[εx εy εz εxy εyz εzx]
T, σ=[σx σy σz σxy σyz σzx]

T, T is the transposed 

matrix and A is a 6 by 6 matrix of the following form, Eq. (4.9). 
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A =
1

E

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1+ν) 0 0

0 0 0 0 2(1+ν) 0

0 0 0 0 0 2(1+ν)
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(4.9) 

Using the above relationships and the principle of virtual work, the finite element 

method can be derived. The principle of virtual work states that if a system in 

equilibrium, while under various external forces, is virtually displaced, the virtual work 

of the external loads is zero. It follows then that the static state equilibrium displacement 

field is that which both satisfies boundary conditions and minimizes the system’s total 

potential energy.5 In order to derive the stress at any point of an FEA model consider the 

following definitions (simplified for purely translational responses): 

u = { u,v,w}      (4.10) 

q = {qi } (i =1,2,...,n)          (4.11) 

qi = {qxi
,qyi

,qzi
}
      

(4.12) 

where u is a vector of generic, non-node, translational displacements (m) in the three 

primary axes of the model. Translational nodal displacements, on the other hand, are 

denoted for each node by qi and the total displacement (m) vector for the system is 

expressed as q. Generic and nodal displacements can be related by Eq. (4.13). Below, the 

rectangular matrix f contains expressions which make u dependent on q and are known 

as displacement shape factors. Displacement shape factors vary based on element 

dimensionality and boundary conditions. 
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u = fq            (4.13) 

Next, consider the following strain-displacement relationship, alluded to in  

Eq. (4.14). 

ε = du            (4.14) 

In Eq. (4.14) d is a matrix of linear differential operators. 
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(4.15) 

Combining Eq. (4.13) and Eq. (4.14) yields Eq. (4.16). Below, the matrix product 

of d and f gives generic strain values. Furthermore, this result can be applied to the 

inverse relationship of Eq. (4.8) to yield the following relationship for model stress.3 

σ = A−1dfq               (4.16) 

The relationships expressed above are then utilized in FEA solvers to calculate 

stress gradients over the entirety of a geometric entity.  

 

4.1.2 Free and Forced Vibration  

 Free vibration analyses are used to describe the natural frequency modes of a 

system. These natural frequencies are the resonating rates at which the structural 

dynamics of a system are most responsive. In satellite design specifically, these 

frequencies play a large role in evaluating hardware. Namely, it is important to stiffen 

structures beyond the known frequency peaks of the launch vehicle in order to avoid 
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dangerous coupling. To investigate such vehicle payload interactions completely, forced 

vibration is utilized to simulate structural responses under known loads.  

 To better understand FEA vibration analyses, consider the following system 

where k is a spring constant, c is a viscous damping coefficient and x(t) is the 

displacement (m) of mass (kg), m, with time. 

 

 

 

 

 

Figure 4.1. Spring/damper system 

When the above system, Fig. 4.1, is allowed to freely vibrate, without damping 

or external forces, the following ordinary differential equation (ODE), Eq. (4.17), 

describes the mass’s motion. By use of the quadratic formula, the roots of this ODE and 

thus the natural frequency of the system are easily obtained.8 

mx
••

+ kx = 0     (4.17) 

The simplification of no damping is unrealistic for physical systems and causes 

natural frequencies computed in this fashion to be slightly too high. Moreover, if the 

system being analyzed is expanded from a single degree of freedom (DOF), presented 

above, to a higher DOF system, the following equation is utilized.  

M x
••

+ C x
•
+ Kx = F         (4.18) 

x(t) 

 

m 
c 

k 
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Above, the x and F are displacement (m) and external force vectors (N), 

respectively. The variables M, C, and K, represent square mass (m), damping (kg/s), and 

stiffness matrices (N/m). Again, free vibration simulations utilized the F=0
v

 and C=0
vv

 

assumptions while forced vibration systems have prescribed loading, F=f(t). 

 

4.1.3 Steady State and Transient Heat Transfer   

 Of the three main forms of heat transfer, only two forms are applicable to space 

applications: conduction and radiation. Between these two types of heat transfer, a 

satellite’s complete thermal profile can be defined. Fourier’s law governs conduction, 

heat transfer through solid objects, and can be expressed in the following form. 

               (4.19) 

 In the above equation, k is the material’s thermal conductivity (W/m*K), ∇ is the 

del operator, T is the scalar temperature field (°K), and q’’  is the heat flux (W/m2). 

Equation (4.19) can be applied along with an energy balance equation for an infinitely 

small control volume to obtain the equation for heat diffusion in the Cartesian coordinate 

system37, Eq. (4.20). Below, q
•

 is the rate of thermal energy generation per unit volume 

(W/m3),α is the thermal diffusivity (m2/s), and t is time (s).  

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ q

•

k
= 1

α
∂T

∂t     
(4.20) 

 The heat diffusion equation can be simplified for a variety of different situations. 

For example, in a powered-off satellite, thermal energy generation is generally 
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negligible. Likewise, orbits where the satellite experiences continually thermal inputs 

from the Sun and our Earth, the system is considered steady state and the right side of 

the equation is neglected. In the research presented here, one-dimensional heat transfer is 

utilized in the design of a thermal strap system. This assumption reduces the diffusion 

equation to the form shown in Eq. (4.21).  

d

dx
k

dT

dx

 
 
 

 
 
 = 0

     
(4.21) 

 Radiation, in contrast to conduction, does not require matter in order to transfer 

heat. Radiation is the direct effect of the oscillatory movement of electrons caused by an 

objects finite, internal temperature. These electron transitions are sustained by 

temperature and are emitted by all mater. Once the radiation reaches another body, three 

processes, absorption, reflection and transmission, play an important role in the resulting 

heat transfer. The following equation, known as the Stefan-Boltzmann Law, describes 

heat transfer from a blackbody, i.e. reflectivity=absorptivity=1.    

q = σT4A               (4.22) 

 Above, σ is the Stefan-Boltzmann constant (5.6703x10-8 W/m2*K 4) and A is the 

area (m2). This equation can be modified to describe heat transfer from a grey body with 

the inclusion of ε, which is the emissivity of a body. Emissivity is discussed further in 

Section 5. When radiation is considered for two or more objects, geometrical constraints 

are utilized to find view, or shape, factors. These shape factors, F, quantify the amount 

of departing energy incident on a secondary body. In such instances, where more than 

two bodies form an enclosure, the net radiation exchange is described by Eq. (4.23).37 
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q12 =
σ(T1

4 − T2
4)

1−ε1

ε1A1

+
1

A1F12

+
1−ε2

ε2A2     

(4.23) 

 

4.2 Mesh Generation 

The fundamental concept behind FEA in engineering applications is the notion 

that complex geometric entities can be subdivided into N finite regions (or elements), 

allowing the system’s governing equations to be expressed as a set of N matrix 

equations. In practice, this subdivision of the space domain is called meshing and it 

plays a vital role in solution accuracy.  

 A mesh is a grid-like network spread over the geometric entity under 

investigation, in three-dimensional space. This grid is comprised of elements with finite 

sizes and points of intersection called nodes. Nodes can also exist on midpoints, or at 

equal spacing along the lengths, of an elemental unit. As shown in Fig. 4.2, elements can 

take a variety of shapes and sizes, resulting in a variety of nodal configurations.  Both 

the sizes of elements and the number of nodes per element impact the accuracy of a 

simulation.  
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Figure 4.2. Elemental mesh types Modified from 38 

 

The relationship between mesh quality and result accuracy arises from the basic 

principles of FEA. At its foundation there exists the notion that, rather than solving 

equilibrium state equations directly, integral forms of these equations can be solved for 

finite elements. To achieve this goal, FEA solvers transform the governing system of 

equations into integral equations and construct a matrix of such equations to be solved 

with boundary conditions at the nodal locations. The solution must then be interpolated 

from node locations over the area of the element. Limiting the area within an element 



 

 30

over which the solution must be interpolated increases the overall accuracy of the 

solution gradient for the domain.  

Furthermore, the precision of an interpolated solution is based on an element’s 

spatial approximation. Such approximations are based on node driven polynomials, 

where the number of elemental nodes can be related to the number of polynomial 

coefficients. Example polynomial interpolation equations are expressed below for two 

elemental types: linear and quadratic.5 These are the two classifications of elemental 

shapes utilized in the CAD tool for this research. Linear elements were used for initial 

investigations and called ‘Draft Mesh’ elements in the CAD software whereas all 

subsequent convergence data and results were obtained with ‘Quality Mesh’ quadratic 

elements. 

T(x) = c1 + c2x              (4.24) 

T(x,y) = c1 + c2x + c3y        (4.25) 

T(x,y,z) = c1 + c2x + c3y + c4z  (4.26) 

T(x) = c1 + c2x + c3x
2         (4.27) 

T(x,y) = c1 + c2x + c3y + c4x2 + c5xy+ c6y
2   (4.28) 

T(x,y,z) = c1 + c2x + c3y + c4z+ c5x
2 + c6xy+ c7y

2 + c8xz+ c9yz+ c10z
2     (4.29) 

 

Above T(x), T(x,y) and T(x,y,z) are values to be interpolated in 1D, 2D, and 3D, 

respectively. The variables x,y, and z are the local element coordinates. Equations (4.24-

4.26) are expressions for the spatial approximation of linear 1D, 2D (3-Node), and 3D 

(4-Node) elements. Conversely, Eqs. (4.27-4.29) are the spatial approximation for 
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quadratic 1D, 2D (6-Node), and 3D (10-Node) elements, respectively. Due to the 

semiautomatic mesh generation interface of the utilized CAD software, this research 

only utilized the following element types: 2D triangular quadratic, 3D tetrahedral linear, 

and 3D tetrahedral quadratic elements. 

Spatial approximations in the form of the above polynomials highlight how 

elemental shapes also impact geometric errors in an FEA model. For example, curved 

surfaces that are approximated by linear elements will have increasingly inaccurate 

solutions as the distance between the nearest node and point of interest is increased. 

Conversely, polynomial interpolation ‘wiggle’ errors can cause inaccuracies in 

interpolated solutions for higher order polynomials. Solution accuracy can be improved 

by raising the nodal dimensionality, but there is a trade-off between simulation run time 

and result resolution. This design exchange should also be considered when 

investigating the benefits of decreased element size, as a similar trend is observed for 

increased mesh density and simulation run times, Fig. 4.3.  

 

 

Figure 4.3. Run time trend for increased node counts  
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The figure above shows sample data for various mesh sizes from an early 

iteration of the AGS4 model. The large increase in simulation time after 300K nodes is 

undoubtedly misleading in illustrating this point. This clear jump was a result of 

achieving solution convergence, rather than the previously discussed relationship 

between mesh size and run time. After 350K nodes however, the solution converged and 

the trend continued to gradually increase over the remainder of the data set. The 

acceptance or rejection of variance between mesh sizes should be clearly defined by a 

program’s validation metrics. Examples of such standards are discussed at length 

throughout this section. For this and all subsequent figures, data points were linearly 

connected with simple, straight lines. No information on point-to-point trend lines 

should be inferred from such representations. 

 

4.3 Finite Element Analysis Solvers 

The following sections highlight the major differences between direct and 

iterative solvers and discuss the options available with the utilized CAD package. As the 

name suggests, iterative solvers make initial guesses for solutions and then calculate the 

error associated with the assumed solution. All subsequent guesses are made in an effort 

to minimize errors and iterations continue until the overall error drops below a user 

specified threshold. Direct solvers on the other hand, solve the system of governing 

equations for each node simultaneously. Each method has relative benefits and pitfalls, 

both of which are discussed below.  
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4.3.1 Direct Methods 

 Perhaps the largest draw to using a direct solver method for moderately sized 

systems is the reduction in computation errors. This increased accuracy is achieved by 

the solver’s use of numerical techniques to solve high order systems of equations. Such 

techniques e.g., Gauss-Jordan elimination, lower triangular and upper triangular (LU) 

decomposition, and general inverse matrix multiplication, require that the system’s 

governing equations be made into a set of matrix equations.  

In general, matrix inversion is frequently utilized to directly solve a system of 

equations. In matrix inversion, the inverse of a system’s governing equation matrix is 

found by employing one, or several, row reduction techniques.  Gauss-Jordan 

elimination, for example, utilizes matrix row manipulations to reduce the left hand side 

of the original set of system equations into the identity matrix, I. Through the use of row 

addition, row multiplication with a scalar, and row placement interchange, the Gauss-

Jordan elimination technique simultaneously forms the solution matrix on the right hand 

side of the equation.  LU decomposition, similarly, is the process through which a square 

matrix is decomposed into the product of a lower triangular and upper triangle matrix. 

Once the inverse matrix is found, multiplication is used to compute the system’s 

solutions. As can be expected, an increase in the size of the system's matrix causes the 

solution times for such methods to grow exponentially. Additionally, the computational 

cost of solving high order FEA problems with direct methods is emphasized in the 

amount of random access memory required to carry out the calculations.  
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Within SolidWorks, the direct method utilized is known as the Direct Sparse 

solver. SolidWorks† suggests that the use of Direct Sparse be limited to problems where 

the number of DOFs is less than 100K due to the computational complexity of inverting 

large stiffness matrices. For this reason, the Direct Sparse solver was only utilized to 

investigate studies where unexpected model behavior was encountered.  

 

4.3.2 Iterative Methods 

 Iterative solvers use guess and check methods in acquiring a system's solution. 

After each solution attempt, the iterative solver computes the solution difference 

between the current and previous step to determine if the solution process is convergent 

or divergent. Convergent solutions are stored and iteration on the solution parameters 

continues until accuracy within a specified tolerance is achieved. Perhaps the most 

notable benefits of iterative solvers, in comparison to the direct methods discussed 

above, is a decrease in computing time and higher accuracy for large systems. In the 

SolidWorks Simulation package, the iterative solver is the FFEPlus solver. In the interest 

of simulation run time and due to the high mesh densities generated for the research, the 

SolidWorks’ FFEPlus solver was utilized exclusively throughout this work.  

 

4.4 Simulated Loading 

 Another important factor to consider when discussing simulation accuracy are 

the loads applied within the CAD software. Depending on the study under investigation, 

                                                 

† SolidWorks Help. http://help.solidworks.com/ 
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loads can vary from static forces, to pressure distributions, sinusoidal or random 

excitations, thermal environments, power sinks/sources, or torques, to name a few. Each 

of these load types plays an important role in creating realistic simulations environments.  

Additionally, because loads can be applied at specified physical interfaces, reaction 

forces can be utilized to simplify modeling.  For example, power sources can replace 

geometrically cumbersome components in thermal simulations while base excitations 

can replace shaker tables, interface plates, and motors.   

For this research, random vibration, uniform base excitations were utilized 

extensively. Base excitations are defined by curves known as power spectral density 

(PSD) or acceleration spectral density (ASD) inputs and are uniformly applied, within 

the CAD software, to all restrained features. Random PSD or ASD curves, as the names 

might suggest, define varying acceleration per frequency profile. Integration of the area 

under these curves yields the root mean squared (RMS) g-loading experienced by the 

integrated system. PSD and ASD profiles can be scaled to emulate a variety of launch 

and/or test scenarios. Many test plans, for example, specify 3dB (or double power) ASD 

curves to capture responses higher than those elicited by launch environments. 

Throughout this research several different test levels were utilized. All test 

environments were considered the ‘worst case’ loading for a given payload. In some 

cases, programmatic diction specified ‘qualification’ test levels while other’s referenced 

‘proto-qualification or proto-qual’ vibrations levels. From a simulation perspective, such 

nomenclature did not impact the FEA processes or how the results were interpreted. 

Rather, the naming discrepancy was solely utilized to indicate a particular payload’s 
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testing and flight history. In general, qualification test levels are more rigorous than 

proto-qual test levels and are utilized earlier in a payloads development to demonstrate 

design robustness. Proto-qual levels, on the other hand, are utilized to show 

manufacturing adherence of design specifications or when test units are expected to be 

repurposed for flight. Both qualification and proto-qual test levels are generally higher 

than acceptance testing levels which are meant only to highlight workmanship defects at 

the system integration level.† 

 

4.5 General Processes for Finite Element Analysis  

In addition to the mesh generation, model loading, and solver options discussed 

above, there are several other steps that must be completed in order to achieve 

reasonable results from CAD-based FEA solvers. Figure 4.4 highlights, in addition to 

meshing, the critical steps utilized for predicting the structural responses of the three 

satellites investigated throughout this research. While the research presented in this 

paper employed SolidWorks Simulation, the steps presented below are considered 

universal practices and can be applied to any FEA software.  

 

 

                                                 

† The Aerospace Corporation. “Test Requirements for Launch, Upper-Stage, and Space Vehicles.” 
https://aeroweb.aero.org/m_dir/maddl.nsf/ 
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Figure 4.4. Progression of steps taken in SolidWorks from component design and 
modeling to analysis Generated from 5 

 

4.5.1 Iterative Simulation Practices  

When used correctly, the steps outlined above should be iterative and save both 

computational and financial resources. For example, performing structural analyses on 

individual parts prior to creating assembly level models can highlight problematic 

geometries, either from a mesh generation or stress concentration perspective. Mesh 

generation failures can almost always be traced to geometric complexities in the model. 

Fillets with tight radii, features with thickness less than the maximum element size and 

threading lined mounting holes are all examples of potential mesh complications. 

Component level analysis can also justify decisions made during the de-featuring 

process, as holes and cutouts in low stress regions can justifiably be removed for 
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assembly integration. In situations where a component’s geometric complexities are 

integral design features and cannot be suppressed, mesh controls become essential. 

Within the CAD software, a mesh control is a standalone grid system which when 

applied to a specific part or subset of parts is evaluated independently from the assembly 

level solution. Components specific controls can yield unrealistic results at grid 

interfaces however due to mesh incompatibilities at boundary nodes.  

Simulations allow for model interference detection and simplified fastener 

selection processes. When considering a program’s budget, virtual testing of assemblies 

can greatly reduce overhead if used to highlight integration limitations. Additionally, 

CAD assemblies can alleviate or eliminate the cost of expensive component and system 

level prototype iterations.  For example, flight and test units can be used interchangeably 

within a program if a combination of proto-qual test levels, adequate simulation and 

analysis data are utilized.  

 

4.6 Sources of Uncertainty  

 In order to effectively utilize the TML evaluation discussed above, detailed 

understanding of error in both experimental test data and simulated model results must 

be established. Error is defined as a discrepancy between the physical truth and a 

prediction. Without the following comprehensive survey of error sources, any 

comparison of predictions would undoubtedly be incomplete and all resulting 

conclusions regarding the data and/or CAD tool irrelevant.  
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4.6.1 Experimental Uncertainty  

 As alluded to in the preceding sections, testing, either experimentally or through 

virtual simulations, can produce nothing more than a structural forecast. Of course, as 

the differences between model and system are minimized, such predictions converge on 

reality. In cases where this is not possible however it is important to understand what 

factors influence the truthfulness of a prediction. In experimental testing, for example, 

the mass and stiffness of support equipment can greatly impact the dynamics of a 

system. Instrument noise and internal errors in measurement devices can muddle test 

data as well. It has also been suggested that base bending of accelerometers and cable 

noise can contribute to errors in experimental readings.12 As analyst, modeling such 

errors or even quantifying the resulting impacts, may not be feasible. It is paramount 

therefore that considerations be made for such factors in validation metrics and tool 

evaluations.  

 

4.6.2 Simulation Uncertainty  

 Similar to the errors that exist in experimental data, simulation models also have 

several sources of uncertainty. Some of these sources are quantifiable, such as numerical 

errors, while others are more difficult to diagnose, i.e. simulation errors. Numerical 

errors occur from the computational processes utilized in solving FEA problems.  Such 

processes include mesh generation and convergence as well as significant figure 

truncation. Simulation errors, on the other hand, can more generally be describe as 
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geometry errors in which the mathematical model fails to accurately describe the 

physical system. 

 Some common simulation errors and the associated FEA stage in which these 

uncertainties occur are shown in Fig. 4.5. The five largest uncertainties arise from 

supports, contacts, load values, linear materials, and failure criteria. The largest of these, 

supports, highlights the importance of a system’s boundary conditions. Due to the fact 

that such conditions drive the solutions of the nodes to which they are applied, it is 

imperative that representative supports be utilized. One example of a frequently 

employed boundary condition is the fixed or fully constrained entity. This boundary 

condition imposes zero values for each of the six displacements elements for a given 

node. Due to the difficulty in obtaining such rigidity in a physical system, such 

constraints generally do not perfectly describe the system under investigation.  

 

FEA Stage Relative Uncertainty

Mesh

Linear Material Assumption

Loading

Supports  

Figure 4.5. Relative uncertainty of FEA processes Modified from 5   
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In order to better understand the importance of boundary condition selection, a 

basic flat plate random vibration simulation was studied. For the study, a simple 

Aluminum 6061-T6 (Al 6061-T6) plate was subjected to both in-plane (X-Axis) and out-

of-plane (Y-Axis) base excitations.  For both simulations the plate was constrained with 

three unique sets of boundary conditions. Initially, the plate’s bottom plane (-Y) was 

constrained with the above mentioned ‘fixed geometry’ boundary condition. Next, the 

simulations were carried out with a ‘roller/slider’ boundary condition on the bottom 

plane and ‘fixed geometry’ constraints applied at the large mounting holes (running 

along the Z-Axis). Lastly, the plate was constrained with ‘roller/slider’ conditions on the 

interior, cylindrical shafts of the mounting holes and ‘fixed geometry’ boundaries on the 

holes’ circular bases. These three configurations and the accompanying boundary 

conditions represented a regression in rigidity due to a decrease in ‘fixed geometry’ 

surface area. The random vibration base excitation load and material assignment, for 

each axis’ three boundary condition investigations, were identical. In other words, the 

simulations were utilized to isolate solution variance due to boundary condition rather 

than any of the aforementioned sources of uncertainty.  

Figure 4.6 shows the results for the in-plane simulations. As was expected, the 

displacement of the plate gradually increased as the rigidity of the plate was decreased. 

For example, in the fully constrained bottom plane simulation, the relative displacement 

was roughly two orders of magnitude lower than that in the simulation where only the 

mounting holes were restrained. Additionally, in the first two boundary condition tests, 

where the bottom plane’s Y-direction motion was restrained, only one peak frequency 
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was observed. The frequency peak occurred around 100Hz and significantly tapers off 

after approximately 200Hz. Conversely, in the final configuration, the plate exhibits two 

peak responses, one at 100Hz and another around 1500Hz.  

 

 

 

 

Figure 4.6. X-Axis results for three configurations: fully constrained bottom plane 
(top), roller/slider bottom plane and fixed holes (center), and fixed holes (bottom)  
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 While the results on the in-plane simulations varied slightly between the three 

different boundary condition configurations, the out-of-plane simulations, Fig. 4.7, 

showed drastic disparities in frequency responses. This variation in results is 

understandable given the fact that the boundary conditions imposed on the bottom plane 

of the plate restrict displacements in the Y-direction. While in the first two plate 

configurations the bottom plane is modeled as a fixed geometry and roller/slider, 

respectively, the third configuration only restrains the plate’s mounting holes.  By 

allowing the plate to move relative to the holes, the results for the least rigid plate 

constraints highlight two distinct peak responses, with the maximum response occurring 

around 1500Hz. In the simulations where the plate’s out-of-plane displacement was 

limited however, the frequency’s maximum response occurred significantly lower, at 

approximately 50Hz.  

 Although the basic plate simulations were far more simplistic than the models 

investigated throughout this research, the general trends observed reveal important 

characteristics of boundary condition selection. Namely, the results of simulation where 

the system’s motion in restrained normal to the axis of vibration are less sensitive to 

boundary condition selection than those in which the axis of vibration and boundary 

condition’s reaction forces are parallel. This observation, while qualitative in nature, 

demonstrates how FEA results can vary depending on model supports.  
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Figure 4.7. Y-Axis results for three configurations: fully constrained bottom plane 
(top), roller/slider bottom plane and fixed holes (center), and fixed holes (bottom) 
 

Another large source of uncertainty arises from the material properties available 

in a CAD package's internal library. As is the case with most reported material 

properties, these values are not discrete points but rather representative averages of 

tested material distributions. Without taking a sample of each of the materials used in 
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manufacturing and performing a complete destructive testing regiment, a model’s 

material properties are never completely known. Instead, analyst and test engineers alike 

must understand that tabulated material property values are averaged values of normal 

distribution bell curves and can vary greatly.  

Irrespective of the uncertainty’s source, it is especially important for CAD 

modelers to understand how errors accumulate, propagate and ultimately impact an FEA 

solution. To do this, sensitivity analyses can be conducted to study how various model 

changes impact the solution magnitudes as well as observed trends in results.  

 

4.7 Validation Metrics and Post Processing  

The above discussion highlights that while the steps summarized in Section 4.2 

can help to ensure grid independent results, the processes outlined do not necessarily 

guarantee ‘correct’, ‘accurate’, or ‘true’ results. As discussed in Section 3, the validation 

of results is more involved than simply verifying the capability of software to accurately 

obtain pre-described benchmark solutions. Rather, validation involves employing the 

correct mathematical model, which is capable of fully and accurately describing a 

physical system of interest. In his paper, Validation in Simulation: Various Positions in 

the Philosophy of Science, George Kleindorfer from The Pennsylvania State University, 

highlights various metrics by which simulation validation is defined. Kleindorfer points 

out that validation approaches differ drastically among the various accepted doctrines. 

Kleindorfer states that measures of success range from professional acceptance 

(Kuhnianism), to proven derivation from empirical foundations (Rationalism), to 
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demonstration of useful predictive capabilities (Instrumentalism), and even include a 

general increase in the collective knowledge through participation or discourse 

(Hermeneutics).13 While there may be arguable worth to each approach, this work aims 

to blend ideas from two apparent extremes, objectivism and realism.  

Objectivism is centered on the notion that a model is either valid or invalid, 

irrespective of the application or model user. This idea is facilitated by a binary, 

seemingly algorithmic, validation process which is based on empirical foundations. 

Objectivism makes no caveats for interpretation as the validation process is meant to 

transcend the user and rely solely on a common validation framework.  Realism, on the 

other hand, suggests there is an undeniable relation between model and user. This 

ideology makes all models equally valid or invalid and the validation task an opinion 

driven process.  Kleindorfer asserts both stances are plagued by a blatant disregard for 

discourse and that “in the former case, meaningful dialogue is stifled by an appeal to the 

foundation; in the latter, it is suppressed by asserting whatever the current opinion 

happens to be.”13 In order to blend these two apparently polar philosophies, the metrics 

utilized throughout this work will aim to evaluate models with objective reviews as well 

as through thoughtful discussions between model users and result stakeholders. 

Furthermore, each model will have program specific metrics with which a comparison of 

simulated and experimental results can be achieved.   
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5. COMPUTER AIDED DESIGN MODELS AND VALIDATION 

METRICS 

 

In this research three independent programs were investigated. As briefly 

discussed earlier, each of these programs had unique goals and therefore required a 

varying range of information regarding the satellites’ structural responses. In the 

subsequent sections, the processes used to generate useful models of each satellite are 

discussed. In some cases, more than one model was created to ensure computational 

resources were maximized. For example, simplified lumped mass models were deemed 

sufficient and thus utilized for vibration analyses while models with mixed materials 

were required for accurate thermal simulations. For each investigation the geometric 

CAD simplifications, material assignments, and mesh convergences for the models are 

presented. Also, the limiting assumptions, applied loads, and boundary conditions for 

each simulation are discussed. All structural response results and validation metric 

evaluations are summarized in Section 6. 

 

5.1 The Space-based Telescopes for Actionable Refinement of Ephemeris 

Structural Payloads and Test Pod Models  

As previously discussed, the STARE 3U CubeSat featured three independent 

modules: an optical payload/image processing segment, a centralized attitude control 

unit and a power storage compartment.  This research looked at two different versions of 

the STARE payload module, Version 2 (V2) and Version 3 (V3). Due to the proprietary 
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nature of the STARE program, images depicting internal components of either payload 

were omitted from this report. These components primarily include optical lenses, 

baffles, mounting hardware (including inserts and screws), various spacers and printed 

circuit boards (PCB). The primary differences between the V2 and the V3 payload 

included simplifications made to a multi-piece optical baffle, utilized in V2, and a size 

increase in the lens assembly for the V3 iteration. 

In order to ensure the design integrity of the optical lenses and PCBs, the V2 and 

V3 imager models were subjected to dynamic analyses. The dynamic analyses of these 

payloads feature an NPS designed test pod39 model, identical to the physical 

experimental interface, in order to predict behavior during testing most accurately.  

While the test pod design was admittedly more rigid than the satellite bus structure, 

experimental and simulated testing aimed to predict payload, rather than system, 

responses.   

 

5.1.1 Version 2 Computer Aided Design Model  

In generating the 3D CAD model for V2, geometric simplifications were made 

exclusively within the lens assemblies. Simplifications included: modeling concave lens 

components as silica cylinders and eliminating thin polyimide parts to reduce mesh 

complexity. Perhaps the largest modification made to the modeled V2 parts was a 

simplification of an internal threaded ring used to connect the imager assembly to the 

lens assembly. The simplification of the ring to support a clearance fit between the two 

components reduced the computational complexity of the model without removing 
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significant inertia participation. As mentioned above, the simulation model also featured 

an aluminum test pod, which supported the optical payload and served as an interface 

with the slip table. The CAD of the test pod with the payload internally modeled and the 

physical test structure mounted to an interface plate are depicted in Fig. 5.1, below.   

 

 

 

 

 

 

 

Figure 5.1. Physical test pod (left)39 and modeled test pod with coordinate system 
(right)  
 

5.1.2 Version 3 Computer Aided Design Model  

In addition to the differences between the V2 and V3 payloads already discussed, 

the V3 imager model exclusively included a Viton® ring and a monolithic optics holder. 

As with the V2 model, in order for the model to consistently mesh without component-

specific controls, some manufacturing features were suppressed. Such features included 

fillets along the base of the optics holder as well as all setscrews and epoxy holes. While 

the V3 lenses were significantly larger than those in the V2 payload, de-featuring was 

unavoidable resulting in the components being modeled as cylinders rather than concave 

X 

Y 

Z 



 

 50

volumes. Similarly, the de-featuring utilized for the V2 internal threaded connector ring 

was maintained in the V3 simulation to minimize complexity. 

 Due to the similarity of the payloads, some component models remained 

unchanged between the initial and secondary design iteration. Table 5.1 shows the 

material properties used in the both the V2 and V3 model. Materials listed towards the 

bottom of the table, under the double line, were utilized in the V3 model only. 

 

Table 5.1: STARE Payload Model Material Properties 

                                                 

*“Eagle Applies Corporation,” June 2013. http://www.eaglealloys.com/c-7-invarsuper-invar.html 
 
† “Fused Silica, SiO2 Material Properties," June 2013. http://accuratus.com/fused.html  
 
‡ “Fused Silica (SiO2) UV Grade,” June 2013. http://www.internationalcrystal.net/optics_09.htm 
 
§ “K-Mac Plastics,” June 2013. http://k-mac-plastics.net/ 
 
¶ “Thermal Interface - Wet Dispensed SE4486 Thermally Conductive Adhesive,” Ref No. 11-1890-0, 
Dow Corning, June 2013 
 
# “Summary of Properties for Kapton Polyimide Films,” DuPont Datasheet, June 2013.  
http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/summaryofprop.pdf  

Material Young’s Modulus 
(MPa) 

Mass Density  
(kg/m3) 

Yield Strength 
(MPa) 

Invar 3640 137000.0 8150.0 206.0* 
Fused Silica† 73000.0 2200.0 50.0‡ 
FR4/G10§ 18600.0 1820.0 241.0 
Al 6061-T6 69000.0 2700.0 275.0 
Viton 41 600.0 1931.0 9.0 
A286 SS 

 

SE4486¶ 
Polyimide# 
Ceramic Porcelain 

201000.0 
 
9.1 
2500.0 
220000.0 

7920.0 
 
2590.0 
1430.0 
2300.0 

275.0 
 
4.1 
69.0 
172.0 
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Unless otherwise noted, the materials listed in the table were utilized directly 

from the SolidWorks material library. Tensile and flexural strengths for G10/FR4 epoxy 

were used in lieu of Young’s Modulus and Yield Strength, respectively. While these 

estimates were higher than the Young’s and Yield values replaced, the modeled 

components were not considered structural and were significantly smaller than the 

majority of parts in the assembly. The material properties listed in Table 5.1, as 

discussed in Section 4, play a large role in the accuracy of the solution obtained by the 

FEA solver. 

 

5.1.3 Version 2 Boundary Conditions and Model Constraints 

The V2 model was restrained along the bottom plate of the test pod. This plane 

was modeled as a ‘fixed geometry’ in the simulation, which imposed a null set for all 

three rotational and three translational degrees of freedom. This constraint was utilized 

to approximate the physical restraints on the test pod.  

A damping ratio of 0.02 was applied to the V2 assembly. This value was a low 

estimate for damping in continuous metals (0.02-0.04) or metal structures with joints 

(0.03-0.07).42 Had a higher value for damping been utilized, the model dynamics would 

have been allowed to more closely approach a critically damped or over damped state. 

The damping ratio applied was therefore conservative in nature and lead to higher 

observed levels of vibration. Due to the fact that the V2 structural model was meant to 

capture trends observed during testing, this set of constraints was thought to closely 

capture the physical boundary conditions of the vibe table and elicit the desired results.  
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5.1.4 Version 2 Simulated Loading   

A natural frequency analysis was performed on the V2 model in order to 

determine the resonant frequencies of the imager assembly. The first five natural 

frequency modes were of principal importance due to potential for overlap with the 

launch vehicle environment. To further investigate possible coupling, a dynamic analysis 

simulation was conducted at representative test loads. Experimental test loads, rather 

than launch loads, were used to emphasize dangerous frequency coupling. 

While early iterations of the V2 analysis utilized representative test levels, the 

data presented in Section 6 of this report corresponds to the OUTSat program’s proto-

qualification levels. The proto-qual vibration profiles shown in Fig. 5.2 match those 

loads experienced in P-Pod slots 7 and 8 of the NPSCul, where the STARE payload was 

manifested for launch. For the purposes of recreating experimental test data with the 

aforesaid simulation model, two of the test profiles (the X-Axis and Y-Axis) were scaled 

to 20gRMS while the third (Z-Axis) was scaled to 19.87gRMS. The slightly lower value in 

the third axis was a result of hardware constraints during physical testing. 39 Results of 

the analyses subjected to the below environmental loads are presented in Section 6 as the 

primary TML evaluation standards.  
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Figure 5.2. OUTSat test level profile as applied in SolidWorks 
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5.1.5 Version 2 Mesh Convergence   

In order to ensure grid independent solutions, a mesh convergence study was 

conducted for the V2 payload prior to running final frequency simulations. The study of 

convergence using the first mode of natural frequency is shown in Fig. 5.3. The figure 

depicts the first modal frequency response of the V2 model at various nodal counts. 

Nodes in the mesh were increased from 200K to just fewer than 1.1M nodes. Despite a 

frequency drop of approximately 15Hz, the result begins to converge between 700K and 

1.1M. Relative to the prior regression, a drop of this magnitude was deemed acceptable 

for this research. Ultimately, a maximum element size of 4mm was utilized for the 

frequency testing of the V2 payload. This element size generated a mesh with 

approximately 700K nodes.   

 

 

Figure 5.3. STARE V2 mesh convergence data  
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5.1.6 Version 2 Validation Metrics   

 As previously mentioned, the validation metrics used throughout this research 

were aimed at impartially reviewing simulation results on the merits of accuracy as well 

as critically evaluating the usefulness of said results for a program’s needs. To do this, 

‘accuracy’ and ‘need’ were defined thoroughly for each program (model) independently. 

“Accuracy is defined as the closeness of agreement between a simulation/experimental 

value and its true value.”43 From an engineering standpoint however, this truth is very 

often difficult to model exactly and can result in a complex validation process. Rather, 

“a statistically meaningful comparison of computational results with experimental 

measurements over the range of intended use may be sufficient”10 for model validation. 

Need, on the other hand will qualitatively define the purpose of the simulation from a 

mission success standpoint.  

For V2, the first iteration of the STARE payload design was being investigated. 

Due to the exploratory nature of the mission and an elementary understanding of the 

solver’s limitations, the ‘need’ for the V2 simulation was investigative, at best. All 

parties involved had a verbalized interest in the capabilities of the software. ‘Accuracy’ 

in the V2 study was therefore defined as the simulation’s ability to capture experimental 

result trends and predict relative responses.  

Strictly for the purposes of this research, the above metric was assigned a 

quantitative success criterion. This value, while seemingly arbitrary, represents 

frequency response variations between simulated and experimental values which would 

be reasonable provided a simplified model and imperfect boundary conditions were 
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implemented. To quantify these metrics, peaks in a component’s simulated random vibe 

response within plus/minus half an order of magnitude of experimental were deemed 

successful. It is important to reiterate that because experimental data is not without error, 

these comparisons were not a validation to absolute truth but rather a metric by which to 

evaluate the simulation’s ability to recreate ‘real world’ responses within certain error 

bounds.  

 

5.1.7 Version 3 Boundary Conditions and Model Constraints  

The V3 model was restrained at the bottom plate of the test pod, along the 

interface plane between the shaker table and structure. This constraint, identical to that 

utilized in the V2 simulation, was meant to mimic the no penetration condition imposed 

by the shaker table on the test pod. As mentioned in Section 4, the fixed geometry 

constraint/boundary condition, particularly when applied to an entire face, is generally 

overly restrictive in modeling the physical case. This is especially true in predicting 

higher frequency responses for axes which run parallel to the boundary conditions’ 

reaction forces. Due to the fact that this structural model was meant to investigate 

payload responses, rather than the physical response of the entire experimental system 

(payload, test pod, vibration table), this constraint was deemed appropriate for the 

application.  In other words, enforcing a fully fixed bottom test pod plate in this 

simulation isolated the response of the payload and allowed for the investigation to focus 

solely on internal interactions, stress concentrations, and relative component motion. 

While programmatically such internal interactions were important to both payload 
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survivability and mission success, boundary condition limitations, as previously 

discussed, coupled with external test sensors imposed model validation difficulties. A 

more in-depth discussion on V3 metrics is presented below.  

 Similar to the V2 payload, the V3 model utilized a damping ration of 0.02. Again 

this value was on the low end of published values for metal structures with joints yet was 

believed to represent the worst case damping scenario. Higher damping ratio values 

could have artificially stiffened the CAD model and masked what might have otherwise 

been high frequency responses.  

 

5.1.8 Version 3 Simulated Loading   

In the dynamic testing of the V3 payload, GEMSat random vibration test levels 

prescribed the base excitations utilized for each of the axes simulated. As with the V2 

model, all three axes were simulated individually over a frequency range of 20-2000Hz. 

As previously discussed, qualification test levels, rather than acceptance or proto-qual 

levels, were used to represent worst-case payload environments. The overall RMS g-

loading values applied to the X, Y and Z-axes, respectively were 30.3gRMS, 31.8gRMS, 

and 21.0gRMS.
 44 The profiles for each major axis, as applied in SolidWorks, are shown 

on the following page, Fig. 5.4.  
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Figure 5.4. GEMSat X-Axis, Y-Axis, and Z-Axis test level profile as applied in 
SolidWorks 
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5.1.9 Version 3 Mesh Convergence 

As with the earlier V2 model, a convergence study was completed for the V3 

payload of the STARE program. Figure 5.5, shows the first mode resonant frequency of 

the V3 structure at various node counts. Only the first mode is shown below because the 

model showed similar convergence curves for all five modes, as was expected. For V3 

convergence simulations, the maximum number of nodes generated was 1.9M. This 

value was generated with a maximum element size of 2.3mm. While higher density 

meshes may have shown a more converged solution, performance limitations as well as 

run times limited the investigation.  

 

 

Figure 5.5. STARE V3 mesh convergence data  
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Due to fact that the last two points simulated (which differed by node counts of 

over 300K) only demonstrated a 2Hz drop in nodal frequency and based on the 

decreasing derivative of the trend line’s slope, the natural frequency results in the 

following section were considered converged to within ±5Hz. This frequency range is 

not to be confused with the accuracy of the results; rather the 5Hz value represents the 

expected solution variance given an infinitely smaller maximum mesh element size. Any 

programmatic need for more precise simulation resolution would have required further 

de-featuring of payload components or more complex mesh controls. 

 

5.1.10 Version 3 Validation Metrics   

Both the aforementioned observations regarding boundary condition selection/ 

result limitation and the lessons learned from the earlier V2 iteration were considered in 

developing V3 validation metrics.  Due to the fact that experimental testing for the V3 is 

ongoing, the following metrics were not evaluated within this body of research. The 

below are presented therefore as suggestions for validation of the impending 

experimental predictions.  

Due to the similarities between the V2 and V3 payloads and the V2/V3 test 

levels, the suggested validation metrics for V3 are comparable to those presented above. 

Slight differences between the two metric sets however, are needed to reflect a more 

mature payload design and higher success criterion for the V3 mission.  The ‘need’ for 

model validity in the V3 simulation therefore represents a heightened expectation to 

meet more demanding standards.  As in the V2 model, ‘accuracy’ in the V3 study should 
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be defined as the simulation’s ability to capture experimental result trends and predict 

relative responses. This definition, while seemingly redundant to the V2 metric, served 

to foster confidence in the TML and V2 metric assessments. Without such metric 

repetition, any comment on simulation validity could have been confounded by specific 

model happenstance. Therefore, to quantify accuracy for the V3 model, peaks in random 

vibe responses are again expected to be within plus/minus half an order of magnitude 

with respect to experimental values. 

 

5.2 The Space-based Telescopes for Actionable Refinement of Ephemeris Thermal 

Models  

As previously discussed, thermal analyses were also performed for the STARE 

program in an effort to characterize on-orbit thermal profiles for two different satellite 

flight configurations. Such profiles were needed to ensure that operational temperature 

ranges could be maintained throughout various stages of the mission. Specifically, the 

initial thermal analysis aimed at presenting feasible options for maintaining aV3 

Complementary Metal-Oxide-Semiconductor (CMOS) digital image sensor within a safe 

temperature range while the latter focused more closely on software capability. 

Stemming from the results of the first analysis, a thermal strap design capable of 

achieving the desired results for either of the flight configurations was suggested. The 

thermal management design included strap sizing, system pricing, and viable strap 

interface locations which were identified by probing simulated components within the 

model. The predicted temperature profiles and the recommended CMOS sensor 
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configuration for the Colony I (CI) and Colony II (CII) satellite flight configurations are 

discussed with further detail in the following sections.  

Internally, the CI and CII models were identical; both featured a V3 payload and 

had comparable power loads applied. Neither simulation model featured components 

below the payload module; rather, representative loads were applied in appropriate 

locations.  This simulation simplification, justified by the goal of payload specific design 

needs, saved computational resources and streamlined the CAD modeling process. 

Perhaps the largest drawback to excluding non-payload components was a notable 

decrease in viable heat transfer avenues. By limiting the possible paths for conduction, 

the results of the simulations may have been slight overestimate yet definitely represent 

the worst possible survivability environment.   

Externally, the CII model featured a "flat" external panel/solar cell configuration 

while the CI solar panels were designed in a more traditional "shuttlecock" style. Figure 

5.6 shows both configurations as modeled in SolidWorks. 

 

 

Figure 5.6. Simplified Colony I (left) and Colony II (right) models  

 

V3 payload 
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5.2.1 Colony I and Colony II Thermal Simulations   

The thermal analysis of the CI STARE configuration investigated two flight beta 

angles, β; while the CII simulation focused on a single β. Beta angles are used in orbital 

mechanics to describe the orientation of an orbit plane with respect to the sun-satellite 

vector. At the time of these analyses, the exact β for the STARE mission was unknown. 

Therefore, representative values were utilized in an effort to bracket the thermal 

responses. In order to capture as many attitude specific heat loads as possible, two orbit 

extremes, β=0° and β=90°, were investigated. The β=0° case, used only for the CI 

investigation, prescribed a transient heat transfer environment allowing the satellite to 

periodically enter into eclipse and then rise locally into sunlight again. Due to the 

satellite’s motion in the β=0° case and the cyclic relief from direct sunlight it created, 

this simulation generated the lower temperature bounding environment. Conversely, the 

β=90° case, used for both the CI and CII configurations, represented a continual solar 

flux exposure orbit and was used as a steady state high temperature bounding simulation. 

For both β cases, the altitude of each satellite was maintained at 700km and the 

temperatures at the points of interest were measured after three orbits. Simulation 

durations of three orbits were chosen to represent quasi-steady states for the spacecraft.  

The temperature profiles generated from these analyses were then used as inputs 

into a thermal resistance model. The thermal resistance draws on an analogous 

relationship between Ohm’s law, Eq. (5.1), and the equation for one-dimensional, 

conductive heat transfer, with no internal energy generation, Eq. (5.2). 
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 Re =
L

Aσ
=

E1 − E2

I
                                                (5.1) 

 

Ri =
x

Ak
=

T1 − T2

qx

                                                  (5.2) 

In Eq. (5.7), Reis the electrical resistance of a component (Ω), L is the length 

traveled (m), A is the surface area (m2), σis electrical conductivity (S*m-1), E is the 

voltage (V), and I is the current (A). Likewise, in Eq. (5.8), Ri is the thermal resistance 

(°K/W) of a given component, x is the length of the segment (m), A is the cross sectional 

area (m2), k is a material property known as thermal conductivity (W/°K*m), T is 

temperature (°K), and q is the heat transfer (W). 45 The thermal resistance model for each 

of the STARE program configurations, briefly discussed in Section 6, featured all 

internal components between a notional thermoelectric cooler and the spacecraft bus. 

Individual components had unique thermal resistances based on material properties and 

part geometries that created a network of resistances capable of being analyzed using 

standard summation rules of resistivity.   

 

5.2.2 Thermal Computer Aided Design Models 

 In the interest of reserving computational power, simplified geometric models 

were utilized for the thermal simulations of both flight configurations. Primarily, such 

simplifications were employed in an effort to ease the computational burden of meshing 

along complex curves and to mitigate model interference errors. Throughout the de-

featuring of the models great care was taken to preserve 'thermally influential' physical 
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properties.  For example, each simplified component model maintained the originally 

specified material assignment (thermal conductivity), interface contact area (cross 

sectional area), and overall volume (thickness of heat transfer path).  By maintaining the 

aforementioned traits, the one dimensional heat transfer through any part or collection of 

parts was preserved, thus justifying the use of Eq. (5.2) and drastically limiting the 

effects of such simplifications on thermal results.  

In addition to the V3 payload materials already summarized in Table 5.1, the 

Colony I and Colony II thermal models also featured gallium arsenide (GaAs) solar 

cells. The material properties of GaAs are shown in Table 5.2.  

 

Table 5.2: Exterior STARE Payload Material Properties 

 

Furthermore, in the context of externally modeled thermal planes, two additional 

material properties were of particular interest for the net heat transfer of the satellite. 

These properties, reported on the following page in Table 5.3, are known as absorptivity 

and emissivity. Absorptivity, α, is defined as the percentage of incident energy on a 

surface, which is absorbed into the body. Emissivity, ε, on the other hand, is a value that 

represents a body’s ability to radiate energy.48 Emissivity is usually measured 

experimentally and reported relative to a black body’s radiation potential, ε=1. 

 

 

Material Young’s Modulus 
(GPa) 

Mass Density  
(kg/m3) 

Yield Strength 
(MPa) 

GaAs 85.546 5320.046 2700.047 
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Table 5.3: STARE Payload Thermal Material Properties 

Description Emissivity*  Absorptivity*  
Deployable Panel (nadir faces)   
-Copper PCB surface† 0.03 0.32 
Deployable Panel (space faces)   
-Copper PCB surface 0.03 0.32 
-GaAs Cells  0.85‡ 0.92 
Body Mounted Panels   
-Clear anodized aluminum frame 0.76 0.27 

    -Copper PCB surface 0.03 0.32 
-GaAs Cells 0.85 0.92 
GPS Antenna Face   
-Clear anodized aluminum frame 0.76 0.27 
-Copper PCB surface 0.03 0.32 
Telescope Aperture   
-Polished silver mirror surface 0.02 0.04 
-Clear anodized aluminum plate 0.76 0.27 
-Black anodized Invar 36 frames 0.87 0.67 
Nadir Panel   
-Copper PCB surface 
-GaAs 

0.03 
0.85 

0.32 
0.92 

Sun Facing Solar Panels and Body Panel 
-Clear anodized aluminum frames 

 
0.76 

 
0.27 

-Silver Teflon Taped Body PCB Surface 0.08 0.07 
-GaAs Cells 0.85 0.92 
Radiator Panels   
-Silver Teflon Taped Body PCB Surface 0.08 0.07 
Space Facing Panels and Body Facing Exterior   
-Clear anodized aluminum frame 0.76 0.27 
-“Black Plastic” coated PCB 0.85 0.96 
-“White Plastic” coated solar panel backing 0.13 0.81 
Telescope Aperture   
-Polished silver mirror surface 0.02 0.04 
-Clear anodized aluminum plate 0.76 0.27 
-Black anodized Invar 36 frames 0.87 0.67 
Nadir Panel   
-Silver Teflon Taped Body PCB Surface 0.08 0.07 

 

                                                 

* Unless otherwise noted, material properties obtained from Spacecraft Thermal Control Handbook49 

 
† The surfaces of the PCBs were approximated as copper. This is thought to be a conservative assumption, 
as on-orbit conditions will include a reflective, tinted surface layer, like Kapton, and should reflect 
additional heat flux. 
 
‡ "28.3% Ultra Triple Junction (UTJ) Solar Cells," Spectrolab Photovoltaic Products, Spectrolab, A 
Boeing Company, 2008. 
 



 

 67

Due to the fact that heat transfer in space is limited to conduction and radiation 

alone, the above values highly impact thermal simulation results. Emissivity and 

absorptivity values for CI are listed at the top of the table while CII data is presented in 

the bottom half of the table, below the double line.  

 

5.2.3 Thermal Inputs and Boundary Conditions  

As previously mentioned, two flight scenarios were investigated as part of the 

Colony I-STARE thermal analysis. For each of these simulations, power data was taken 

wherever possible from published program documentation and LLNL specified 

datasheets, Table 5.4. One exception to this was the power load utilized to represent an 

internal radio unit that had yet to be specified at the time of the simulation. Rather, a 

representative radio unit, capable of meeting mission requirements, was used for this 

power load.50, 51 The model utilized the specified 'idle' power for the transceiver as the 

spacecraft was expected to scan for ground signals long term, but not actively transmit 

during conjunction events.  

 

Table 5.4: Itemized Spacecraft Heat Power Loads 

Imager/PEC  

Maximum Peltier Load 7.6W52 
Imager Load 0.3W53 

GPS Board 1.2W54 
Antenna Power 1.3W55 
ADACS Power 1.5W50, 56 
Main Bus  

Processor Module 0.7W50 
C-II Transceiver (receive mode) 0.5W51 
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Utilizing the total advertised power draw as raw thermal loads was admittedly 

conservative because some portion of these values is utilized in carrying out the desired 

functionality of a component. This overestimate of power input meant that simulation 

solutions would err on the hot side and serve as the worst-case thermal environment. 

Figure 5.7 below shows the internal panel naming convention utilized to discuss the 

external loads applied to both the CI and CII spacecraft.  

 

 

Figure 5.7.Panel nomenclature of Colony I and Colony II configurations 

 

In both the CI and CII β=90° steady-state scenarios, loads were applied to 

simulate an orientation in which surface 8, the GPS antenna panel without solar cells, 

pointed away from the sun. This was achieved by maintaining a zero magnitude solar 

flux condition on surface 8 throughout the totality of the simulation. Conversely, a 
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continual solar flux load with a direct angle of incidence was imposed on surface(s) 5. 

Applied loads also were used to simulate a flight configuration in which the long axis of 

the satellite held a radial alignment on the orbit plane with the payload module pointing 

towards zenith, panel 13. This orientation provided constant Earth albedo and IR loads 

on the bottom panels, surfaces 1-4 and 14. All non-Earth facing surfaces were allowed to 

fully radiate to cold space. The small angular size of the Sun, relative to the rest of the 

sky, justified applying full view factors for cold space radiation on sun facing surfaces as 

well. Figure 5.8 depicts the physical orbits, for both the Colony I and Colony II 

configuration, which were represented by the simulated external loads discussed above.         

 

 

Figure 5.8. β=90º, steady-state scenario and spacecraft orientations 
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In addition to the steady-state model, described above, a transient β=0° case was 

also simulated for the Colony I configuration.  The transient model was used as a means 

of bounding the problem and to analyze how the spacecraft’s thermal environment 

would vary if the orbit featured periods of eclipse. For this simulation, loads were 

utilized to impose the configuration shown in Fig. 5.9.  As depicted, the spacecraft was 

oriented such that surface 8 pointed along the velocity vector of the spacecraft’s orbit. 

Sun inputs were generated individually for each off-velocity, sun-facing surface. These 

time varying curves simulated the hemispherical tracks of the sun physically rising, 

traversing, and setting on each panel. Albedo was also varied on the bottom surfaces but 

discretely, either 0% or 100%, depending on if the spacecraft was in eclipse or sunlight, 

respectively. Both time dependent loads, as applied in SolidWorks, as well as the 

MATLAB script utilized to generate these scaling curves, are given in the Appendix. As 

in the steady-state case, all surfaces were modeled as continually radiating to cold space 

except for those facing Earth, which radiate to the planet’s surface.   

 

Figure 5.9.Colony I β=0º, transient scenario and spacecraft orientation 
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The assumed value for solar flux utilized for all simulations was 1367W/m2.57 

This value was multiplied by the absorptivity of each incident surface as well as the 

cosine curves if applicable. Earth infrared (IR) loads were computed with shape factors 

interpolated from Space Mission Analysis and Design (SMAD).58 The peak IR flux 

value used was 237W/m2.49 The Albedo flux utilized was 629W/m2. This value 

represented the product of solar flux, percent albedo49, and shape factors determined 

from Tables 11-45A, D-7 and D-8 in SMAD.57 The shape factors used for various 

simulated scenarios are summarized below in Table 5.5. Spacecraft to ground radiation 

utilized the appropriate material emissivity and shape factors. Additionally, a 

background Earth temperature of 290ºK59 was utilized. Radiation to space on all other 

faces operated under a 2.7ºK background temperature and used assigned shape factors of 

1 due to the previously discussed assumption that relevant faces had ‘full sky’ views.60 

 

Table 5.5: Simulation Shape Factors Used 
 

Description Shape Factor, F 
IR Factor, nadir facing surface 0.820 
IR Factor, bottom deployable surfaces 0.400 
  
Spacecraft to Earth Factor, bottom 
deployable surfaces 

     0.80059 

Spacecraft to Earth Factor, nadir facing 
surface 

1.000 

  
Albedo Factor, nadir facing surface 1.000 
Albedo Factor, minus Y deployable bottom 
surface 

0.033 

Albedo Factor, plus Y deployable bottom 
surface 

0.001 

Albedo Factor, plus and minus X 
deployable bottom surfaces 

0.013 
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5.2.4 Thermal Validation Metrics   

 Due to the goal oriented nature of the thermal simulation and direct objective to 

devise a system capable of maintaining the V3 CMOS within a safe temperature range, 

the ‘needs’ for the STARE CI thermal model were clearly defined. Explicitly stated, the 

thermal simulation was employed to design a system capable of maintaining an 

approximate temperature of 5°C at the imager interface by generating a ~20°C 

temperature change across a Thermoelectric Cooler (TEC). ‘Accuracy,’ while imperative 

to both imager and mission success, was difficult to define in terms of the STARE 

thermal model.  In contrast to the STARE structural models which investigated payload 

responses at laboratory test levels, the thermal model utilized on-orbit loads and 

environments. Due to the nature of the simulations and an inability to recreate space 

thermal factors in a test facility, thermal outputs were considered exclusively predictive. 

Auxiliary to this research, ‘accuracy’ could be achieved if thermistors located at the 

imager interface indicate on-orbit profiles within the same order of magnitude of those 

reported in Section 6.    

 The CII thermal model was utilized to provide a first impression of 3U CubeSat 

thermal distributions at the extreme β=90°. These overall results were ‘needed’ for 

general estimation of internal loads and distributions of temperatures in bus architectures 

of this form. Again, model ‘accuracy’ could be validated irrespective of the conclusions 

drawn in this work, if integrated payload thermistors are implemented. It is 

recommended that accuracy be awarded if the measured minimum and maximum 
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temperatures for a representative quasi-steady state orbit fall within the predicted 

simulation range.  

 

5.3 The Low Earth Orbiting Navigation Experiment for Spacecraft Testing 

Autonomous Rendezvous and Docking AggieSat4 Structural Model 

The AGS4 structural model was largely used to validate the structural integrity of 

the AGS4 design. The tests performed include static analyses under maximum loading, 

identification of system natural frequencies, and random vibration simulations at both 

flight and test levels.  

 

5.3.1 AggieSat4 Computer Aided Design Model 

 The exterior of the AGS4 structural model was comprised of six machined sheets 

of Al 6061-T6. The overall dimensions of the model were consistent with the physical 

AGS4 measurements of 24x24x11inches in the X, Y, and Z-axes, respectively. The +X, 

-X, +Y, and -Y panels each featured large cutouts to reduce mass in low stress areas. 

Four Al 6061-T6 handles were attached to the +Y and -Y simulation panels. These 

handles were designed for both ground handling as well as on-station ISS 

maneuverability having been analyzed for both configurations. Two Al 6061-T6 I-beam 

supports spanned 12in sections along the X-Axis of the bus to increase the overall 

rigidity of the structure. Both I-beams ran perpendicular to the front (-X) face and were 

equally spaced from the parallel sidewalls (-Y and +Y).  Figure 5.10, below, shows the 

exteriors of both the AGS4 model and AGS4 simulation model.  
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In order to reduce the computational complexity required for an accurate 

solution, several components in the assembly were simplified.  The majority of these 

simplifications alleviated cumbersome component geometries while some simply 

removed superfluous features.  Where simplifications were utilized, components were 

modeled as simple mass representations to preserve the inertia participation of the 

component in the assembly. Precautions were taken to uphold bulk material properties 

throughout the model.  Additionally, in cases where high fidelity modeling was required 

for in-depth studies of troublesome areas, one-to-one models were exported from the as-

built AGS4 CAD. Examples of such components included: the Electrical and Power 

System (EPS) circuit board stack as well as the Computer and Data Handling (CDH) 

boards.   

 

Figure 5.10. Isometric view of AGS4 structure before (left) and after (right) de-
featuring with +Z constraints shown 
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As alluded to above, small non-load bearing components of AGS4 were omitted 

from the analysis model. These components included: brackets, screws, inhibit switches, 

harnessing, etc. In order to ensure internal restraints within the satellite, without 

modeling brackets, SolidWorks mates were applied. Mates imposed a bonded 

relationship with a no penetration condition at each interface. This modeling constraint 

allowed adjacent parts to remain physically attached and share nodal points during the 

meshing process without the additional complexity of bracket geometries.   

 

5.3.2 AggieSat4 Boundary Conditions and Model Constraints  

Throughout the AGS4 satellite design and testing processes, the exact flight 

configuration was still under review by NASA. Still, there was an effort to model AGS4 

with boundary conditions that would serve as representative flight restraints. At 

minimum, the packing configuration was known to include a foam-mold packaging 

insert and a soft stow duffle bag. Due to material property and linear behavior 

limitations, the foam packing mold could not be included in the simulation. The effects 

of the foam were accounted for however with the simulated loading, discussed in the 

following section.  

 Because the exact orientation of AGS4 with respect to a launch vehicle reference 

frame was unknown, an assumption was made that utilized the below AGS4 specific 

reference frame for the totality of frequency simulations. This assumption meant that in 

designing the flight packing mold, AGS4 engineers would have sufficient information to 

orient the spacecraft in the most advantageous, safe, possible configuration. Additional 
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constraints that need to be considered in the packing mold design are the external 

features of the AGS4 structure.  For example, attached to the outside face of the -Z panel 

are four Al 6061-T6 feet. The layout is shown in Fig. 5.11. These feet were designed to 

offset the satellite and its solar cells from the deployment plane of the Cyclops device, a 

NASA developed launch mechanism.61 Located at the center of the four-foot 

configuration is a Cyclops knob offset, to which the Cyclops knob attaches.  

 

 

Figure 5.11. Bottom (-Z) panel showing AGS4 feet and Cyclops (ISS) knob (left) 
and model constraints (right) 
 

 

The AGS4 analysis model was constrained on the four outer corners of the upper 

(Z+) panel as well as Cyclops knob, shown above. After elaborate discussion with the 

AGS4 design team, it was determined that this set of contact locations was the minimum 

set of contact point necessary to accurately model the foam interface, restrain the bus’ 

motion, and allow enough flexibility to accurately understand the dynamic responses of 

internal payload components These portions of the bus were modeled as fixed geometry 

regions in SolidWorks’ simulation package. As previously discussed, for a solid mesh 

X Y 
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model, this fixed geometric constraint sets all three translational and all three rotational 

degrees of freedom to zero.  While the fixed geometry surface area was significantly 

smaller than the anticipated foam/spacecraft interface, these boundary conditions were 

considered sufficient because of the inherent lack of rigidity such materials were 

anticipated to impart on the integrated AGS4 bus. 

 

5.3.3 AggieSat4 Simulated Loading   

Static testing for the AGS4 model was completed at ±11.6g independently in all 

three axes. This value came from NASA document SSP 5083562, which stated that 

payloads capable of meeting ±11.6g loads were deemed safe for flight on the currently 

supported launch vehicles. According to correspondence with NASA structures 

subsystem manager, Dr. James Smith, payloads meeting this requirement would 

additionally be cleared for flight to the ISS.  

Due to the effects of the foam-mold packing insert, the random vibration testing 

environments, prescribed by SpaceX for the Dragon launch vehicle, were attenuated for 

the simulation. As previously stated, the foam could not be included in the model due to 

the nonlinear behavior the insert was expected to exhibit. The attenuated PSD values, 

Fig. 5.12, therefore were meant to capture the damping induced by the foam-mold 

packing. In order to produce these curves, the pressure per surface area for each of 

AGS4’s six sides was calculated. The pressure exerted on the foam by the weight of 

AGS4, measured in pounds per square (PSI), drastically impacted the nonlinear behavior 
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of the foam. In other words, the compression of the foam dictated the packing mold’s 

ability to dampen input PSD values.  

After the surface pressure for each face was calculated, tables of scaling factors, 

based on foam type and compression, were utilized from SSP 50835 to create the 

attenuated loads the satellite would experience As can be seen below, both attenuated 

loads had significantly lower ASD magnitudes at higher frequencies than the Dragon 

unattenuated profile. The two attenuated loads correspond to a 0.7psi and 0.2psi weight 

to area ratios of the satellite. Due to the geometry of the AGS4 satellite, the 0.7psi 

attenuated curve was used for the Z-axis excitations while the 0.2psi curve was used for 

both the X and Y-axes. Additionally, Fig. 5.12 highlights the foam’s physical behavior 

in that the higher-pressure attenuated curve was less efficient at damping lower 

frequency excitations than the lower-pressure profile.   

 

 

Figure 5.12. Dragon PSD test levels and attenuated profiles as applied in 
SolidWorks 

0.7psi 

0.2psi 

Unattenuated 
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5.3.4 AggieSat4 Mesh Convergence 

After de-featuring the AGS4 model and applying the aforementioned constraints, 

a convergence check was completed. In order to determine the proper mesh size for the 

AGS4 structural model, several natural frequency simulations were completed.  As a 

baseline, low mesh densities with fewer nodes were initially run and gradually increased 

until convergence was determined.  Figure 5.13, below, is a plot of the 1st mode natural 

frequency for the AGS4 model at various node-counts in the mesh.  

Figure 5.13. AGS4 mesh convergence data  

 

The almost horizontal line in the graph, between the last two node-counts, 

indicates mesh densities where the solution converged.  As can be seen, this convergence 

began around 500K nodes.  For values above 500K, an increase in the number of nodes 

did not significantly change the results thus a higher mesh density imposed unwarranted 
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computational complexity.  Ultimately, the maximum mesh size chosen was 1.5cm and 

natural frequency results were assumed accurate to within 1-10Hz.  

 

5.3.5 AggieSat4 Validation Metrics 

 As briefly addressed in the introduction, payloads of the LONESTAR campaign 

must adhere to strict manned mission safety standards and have FS. For this reason, the 

‘need’ established for the AGS4 simulation model was twofold. Internally, within 

AGSL, the model was used to predict problematic or unsafe responses of the structure 

which could potentially lead to mission failure. Externally, NASA had strong interest in 

ensuring external components would not endanger crew health or safety. For this reason, 

heightened fidelity simulations were used to evaluate of AGS4 handles and solar cell 

assemblies.   

Due to the fact that, at the time of this research, AGS4 was still in the process of 

being manufactured, simulation performance will be evaluated following the completion 

of this work. As a result of an effort to maintain component-level fidelity throughout the 

AGS4 model, internal simulation results should be held to high ‘accuracy’ standards. 

Unfortunately, due to the fact that the flight and test configurations of AGS4 include 

external foam packing material and a NASA issued M0-1 soft stowage bag, results from 

the simulation may be difficult to correlate with experimental data. Even if 

accelerometer placements can be secured within the M0-1 bag, external to the foam-

packing mold, the simulations’ loads still represent a huge source of uncertainty.  

Ultimately, the ‘accuracy’ of the AGS4 simulation is largely dependent on how accurate 
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attenuated loads can capture the physical behavior of foam packing. Without a clear 

understanding of this uncertainty any proposed validation metric would be arbitrary and 

irresponsible from a safety perspective.  Rather, sensitivity tests with the AGS4 CAD 

model, following experimental testing, might better help understand which factors most 

heavily influenced the simulations’ results. 

 

5.4 The Low Earth Orbiting Navigation Experiment for Spacecraft Testing 

Autonomous Rendezvous and Docking AggieSat2 Model 

 The model and simulation of AGS2 is presented in this research as historical 

data. The design, testing, and flight of AGS2 were completed prior to this research. The 

flight configuration of AGS2 featured a DOD developed deployer, called the Space 

Shuttle Picosat Launcher (SSPL), which was flown in the cargo bay of the Space 

Shuttle. Within the SSPL, AGS2 and Bevo-1, a 5x5x5in satellite designed by UT Austin, 

were secured on an internal rail system between a spring loaded pusher plate and hinged 

deployer door. The model discussed below did not aid in design decisions or material 

selections. Rather, the AGS2 model was utilized to assist in the V&V process of 

laboratory CAD tools.  

The complete simulation included two AGS2 models (one was meant to 

represent the UT spacecraft, Bevo-1) as well as a representative SSPL model. This 

integrated system was known as DragonSat. Results in Section 6 feature both solo AGS2 

structural responses and integrated SSPL responses. The former is presented for research 
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consistency and comparison with system behavior while the latter was used in the final 

evaluation of AGS2 validation metrics.  

 

5.4.1 AggieSat2 Computer Aided Design Model 

The ASG2 satellite was a 5x5x5in structure with modular, PCB oriented, 

functional units. The external structure featured six Al 6061-T6 walls. The walls’ 

internal designs included a system of rails that supported two large steel plates. These 

structural members supported standoffs, ballast blocks, and PCBs from which 

components were mounted. The steel plates spanned the entire satellite and added mass 

as well as structural integrity to the otherwise unsupported satellite shell. Figure 5.14 

shows the AGS2 flight unit, the as-build CAD mock-up, and the basic structural model.   

 

 

Figure 5.14. AGS2 flight unit (left), full detail CAD model (center), and structural 
model, de-featured internally and externally (right) 
 

Due to the relatively small size of the AGS2 satellite and thus the inherent 

decrease in total nodes and computer memory from previously discussed model, de-
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featuring was not as heavily required in the creation of this model. For this reason, the 

flight hardware and simulation model share a remarkable semblance and comparisons 

between the two differ only in harnessing and small board components. Figure 5.15 

shows an interior view of the flight unit along with a screen shot of the simulation 

model. 

 

 
Figure 5.15. Interior of AGS2 flight unit (left) and CAD model (right) 
 

 Unfortunately, due to the amount of time that had elapsed between the 

LONESTAR AGS2 mission and the completion of this research, information on the 

SSPL design was difficult to obtain. Rather than neglect the launcher and attempt to 

recreate structural behavior with constraints, as was done in other simulations, a model 

of the SSPL, albeit crude, was included in the simulation.  Unlike the high fidelity of the 

AGS2 simulation model, the SSPL model was constructed from an Engineering Design 

Unit (EDU) reverse engineered in-house at AGSL. One of the largest driving factors 

motivating the inclusion of this model was the available experimental data from the 2009 

laboratory testing of DragonSat by NASA JSC. PSD responses from the archived results 
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were limited to accelerometers placed externally on the SSPL and were impossible to 

isolate for the AGS2 spacecraft. The SSPL model, which featured five Al 6061-T6 and 

four internal aluminum tracks, was therefore included in order to provide representative 

node locations and accurately evaluate the CAD tool. Figure 5.16 shows the in-house 

SSPL EDU, used to create the simulation CAD, as well as the model itself.  

 

 

Figure 5.16. SSPL EDU (left) and SSPL CAD model (center, right)  

 

5.4.2 AggieSat2 Boundary Conditions and Model Constraints  

 As previously mentioned, two separate natural frequency analyses were 

completed for the AGS2 mission. The first of these analyses was an investigation of the 

satellites’ behavior. For the AGS2 natural frequency simulation, the AGS2 model was 

constrained with roller slider boundary conditions along the –X, +X, -Y and +Y faces. 

These constraints were utilized to allow translational motion of the satellite along the Z-

Axis of the SSPL yet restrict motion in the XY plane. For this reason, the first natural 

frequency mode was purely translational and provided nonsensical values.   
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In the simulation of the SSPL natural frequency, the model was restrained with a 

fixed geometry condition along the bottom planes of each of the four SSPL sidewalls. 

These constraints mimicked the interface of the SSPL model with the shaker table. 

Additionally, a 700lbf load was applied to the +Z face of the pusher plate to simulate the 

system’s rigidity had the physical pre-loaded deployment spring been included.   

  

5.4.3 AggieSat2 Simulated Loading   

The loads utilized in the AGS2 simulation were the exact PSD curves inputted 

into the NASA shaker table in 2009. As can be seen, the X-Axis was subjected to a load 

of 6.775gRMS, the Y-axis a load of 8.560gRMS, and the Z-Axis a 7.752gRMS load. These 

values represent the maximum expected load for the DragonSat payload onboard the 

Space Shuttle Endeavour. The loads as applied in SolidWorks are shown below in Fig. 

5.17.   
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Figure 5.17. DragonSat X-Axis (top), Y-Axis (center), and Z-Axis (bottom) test level 
profile as applied in SolidWorks 
 

5.4.4 AggieSat2 Mesh Convergence  

 As in the previously discussed simulations, convergence for the AGS2 mission 

was completed in order to determine an adequate mesh density for the model.  The 
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results presented in this section highlight the convergence studies of both the integrated 

DragonSat system, Fig. 5.18, as well as the individual AGS2 model, Fig. 5.19. 

 

 

Figure 5.18. DragonSat mesh convergence data  

 

 

Figure 5.19. AGS2 mesh convergence data  
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 When comparing the two models’ convergences it is interesting to note that both 

converge around 400Hz. This suggests that the structural response of the AGS2 model 

strongly influenced the frequencies at which the SSPL model resonated.  Such behavior 

is to be expected especially when the first five modes of each model showed internal 

board displacements.  

 The SSPL model showed convergence around 670K nodes. Simulations utilized 

a 0.5mm maximum element size and had approximately 400K elements. Higher mesh 

densities may have produced slightly more converged results but given the crude nature 

of the SSPL model this would not have contributed to the overall accuracy of the result. 

The independent AGS2 simulation converged to within 1% at approximately 630K 

nodes. This mesh was created using a maximum element size of 2.5mm. As previously 

stated, the first mode natural frequency response demonstrated pure translation. The 

second mode however was found to be around 410Hz. This value is vastly different than 

the 1900Hz natural frequency originally reported for the 2009 AGS2 simulation model. 

The historic model however featured only the two internal steel plates and six exterior 

Al 6061-T6 walls. Moreover, due to both computational and hardware limitations, the 

2009 analysis only featured 140K nodes.   

 

5.4.5 AggieSat2 Validation Metrics   

The decision to use an SSPL model was based off a program-specific simulation 

need: to replicate, with as much accuracy as possible, historical experimental data. Due 

to the fact that the simulation of AGS2 for this research followed the completion of the 
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mission, the work was regarded as completely investigative. For this reason ‘accuracy’ 

standards were made purposefully rigorous to push the limits of the CAD tool. The 

following metrics therefore reflect the expectation that the AGS2 model was easily the 

most complete model investigated. For the DragonSat model, simulation accuracy was 

defined as resonant frequencies within ±100Hz of experimental data.  
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6. RESULTS  

 

 All results presented in this section were achieved through the use of the 

converged mesh sized previously described for each of the respective models. 

Experimental data were included in these results, where available. All experimental 

payload testing was completed externally to this research and results borrowed from 

third party investigators.  In the interest of conciseness, only one of the first five natural 

frequency modes is pictured below. When available, additional mode shapes are 

displayed in the Appendix.  

 

6.1 Version 2 Structural Results 

 These analyses utilized the converged maximum mesh size of 4mm, discussed 

above, to achieve the following results.   

 

6.1.1 Version 2 Natural Frequency 

 Table 6.1 summarizes the results of the LLNL V2 natural frequency 

investigation.  
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Table 6.1: LLNL V2 Natural Frequency of First Five Modes 

Mode No. Frequency (Hz) 

1 1114.1 
2 1141.2 
3 1157.9 
4 1286.6 
5 1376.7 

  

For the LLNL V2 payload, the fourth mode was the one resonance that occurred 

showing both external, as well as internal, deformations. All other mode shapes were 

purely internal. For this reason, and due to the previously discussed proprietary nature of 

the research, only a figure of the fourth mode shape, for the LLNL V2 payload, is 

presented with these finding.  

 

 

Figure 6.1. LLNL V2 4th mode natural frequency 
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The following descriptions attempt to capture the additional four modal 

responses of the LLNL V2 payload in the absence of visual data. The first natural 

frequency mode corresponded to deformation of the primary payload base plate in the Z-

Axis. The second and third natural frequency mode showed rotation of the entire 

payload module about the Y-Axis and X-Axis, respectively. For each of these modes, 

the rotation pivoted about the aforementioned base plate where the payload was 

anchored. The fourth mode, shown in Fig. 6.1, demonstrated payload frame rotation 

about the X-Axis, payload rotation about the Y-Axis and test pod vibration in the X-

Axis. Lastly, the fifth mode of the LLNL V2 natural frequency showed support frame 

rotation about the X-Axis with the highest observed displacements occurring in the 

secondary mirror assembly. 

 

6.1.2 Version 2 Random Vibration (X-Axis) 

 The results from the random vibration simulations and experimental testing for 

the X-Axis of the LLNL V2 payload are shown below.  The PSD curves presented in 

Section 5 were inputted as shown and represented a 0dB case. The below result graphs, 

Fig. 6.4, highlight the frequencies that most contribute to the bus’ peak accelerations. 

Additionally, Figs. 6.2 and 6.3 show accelerometer placements on the V2 payload as 

well as the corresponding simulation probe locations. Table 6.2 below correlates the 

probed response locations from the model to the accelerometer locations of the physical 

test. 
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Table 6.2: LLNL V2 Probed Locations for X-Axis PSD Response 

Node  Accelerometer 
366168 A 
349643 B 
291129 C 
291209 D 

 

 

 

 

Figure 6.2. LLNL V2 -X Face: PSD probe locations (top) and physical test pod 
model with accelerometers (bottom) 
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Figure 6.3. LLNL V2 +X Face: PSD probe locations (top) and physical test pod 
model with accelerometers (bottom) 
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Figure 6.4. LLNL V2 PSD response for X-Axis excitation 
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6.1.3 Version 2 Random Vibration (Y-Axis) 

 The results from the random vibration simulations and experimental testing, with 

probe locations and accelerometer placements shown in Fig. 6.5, for the Y-Axis of the 

LLNL V2 payload are shown below in Fig. 6.6. As in the X-Axis simulation, the PSD 

curves presented in Section 5 were inputted as shown and represented a 0dB case. 

 

 

 

Figure 6.5. LLNL V2 PSD probe locations (top) and physical test pod model with 
accelerometers (bottom) 
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Table 6.3: LLNL V2 Probed Locations for Y-Axis PSD Response 

Node  Accelerometer 
272536 +X Wall 
141124 +Y Wall 

 

 Table 6.3 above correlates the probed response locations from the model to the 

accelerometer locations of the physical test. Results of both are shown below. 

 

 

 

Figure 6.6. LLNL V2 PSD response for Y-Axis excitation 
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6.1.4 Version 2 Random Vibration (Z-Axis) 

 The results from the random vibration simulations and experimental testing for 

the Z-Axis of the LLNL V2 payload are shown below.  As in the previous two 

simulations, the PSD curves presented in Section 5 were inputted as shown and 

represented a 0dB case. Figure 6.7 shows the nodes probed for this analysis.  

 

 

Figure 6.7. LLNL V2 PSD probe locations (top) and +X/-Z faces of the physical test 
pod model with accelerometers (bottom) 



 

 99

Table 6.4: LLNL V2 Probed Locations for Z-Axis PSD Response 

Node  Accelerometer 
234267 +X Wall 
291585 -Z Wall 

 

 Table 6.4 correlates the probed response locations from the model to the 

accelerometer locations of the physical test. Results of both are shown below, see Fig. 

6.8. 

 

 

 

Figure 6.8. LLNL V2 PSD response for Z-Axis excitation 
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6.2 Version 3 Structural Results 

 These LLNL V3 analyses utilized the converged maximum mesh size of 2.3mm. 

As previously discussed, the entire bottom plate of the test pod was restrained, which 

isolated the payload responses.  

 

6.2.1 Version 3 Natural Frequency 

 Below, Table 6.5 highlights the first five frequencies at which the LLNL V3 

payload resonates. Based on the natural frequency results, the imager was predicted to 

experience resonant responses between 1440Hz and 1940Hz. 

 

Table 6.5: LLNL V3 Natural Frequency of First Five Modes 

Mode 
No. 

Frequency 
(Hz) 

1 1454.1 
2 1553.5 
3 1724.3 
4 1791.1 
5 1930.3 

 

 As was the case for the LLNL V2 payload, only one of the five natural frequency 

modes exhibited both external and internal deformations. This mode was the first natural 

frequency resonance and is displayed in Fig. 6.9. By observation, the other five modes 

exhibited the following behaviors: the second and fifth modes showed primary 

displacements in the Z-Axis direction, the third mode in the X-Axis direction, and the 

fourth mode in the Y-Axis direction. More specifically, the third mode showed the 

primary payload plate flexing in the Z-Axis direction. The third mode also demonstrated 
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rotation of the imager board assembly about the Y-Axis, while the fourth mode 

demonstrated rotation about the X-Axis. Lastly, the fifth natural frequency mode shape 

highlighted the response of the about the entire payload in rotation X-Axis. 

 

 

Figure 6.9. LLNL V3 1stmode natural frequency 
 
  

 Dynamic frequency results were conducted with the same mesh density as the 

natural frequency analysis. Dynamic frequency results were all measured at the locations 

shown in Fig. 6.10 to capture representative accelerometer locations. The responses 

reported below are resultant acceleration values, rather than axis specific accelerations, 

as were utilized in the V2 analysis. The decision to probe for total acceleration as well as 

the PSD probe locations chosen were both driven by a lack of information regarding 

accelerometer placement location at the time of the simulation.   
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Figure 6.10. LLNL V3 PSD probe locations 

 

6.2.2 Version 3 Random Vibration (X-Axis) 

 In addition to the PSD curves reported for the V2 analysis, the V3 analysis also 

includes RMS values for probed locations. The RMS values reported are the results of 

SolidWorks' efforts to fit the structural responses of the bus to a uniform bell 

distribution. By default, the software reports the 1σ response. From probability theory, it 

is expected that accelerations for these locations will fall between ±1σ, 66% of the time.  

 The X-axis response, Fig. 6.11, peaks just above 1200Hz over a bandwidth peak 

of 800-1600Hz. This response did not directly correspond to any of the above modes in 

particular, but would encompass Modes 1 and 2. Mode 1, specifically, featured high 

imager plate deformations in the X-Axis direction. The peak RMS value for the above 

Z 

X

Y 
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set of sampled points was 63g. This value was observed on an internal payload baffle 

set. The imager plate and wall reached RMS values of 53g and 45g, respectively.  

 

 

Figure 6.11. LLNL V3 PSD response for X-Axis excitation 

 

 The responses shown above can be related to physical locations within the 

payload on the exterior of the test pod with the information presented in Table 6.6. 

 

Table 6.6: LLNL V3 Probed Locations for X-Axis PSD Response 

Location  Node 
Baffle Center 1644856 
Imager Plate 1648666 

X Wall 1214320 
Base Plate 2671 
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6.2.3 Version 3 Random Vibration (Y-Axis) 

 The random vibration responses for the Y-Axis excitation are overviewed below. 

As can be seen in the Y-Axis random vibration response, Fig. 6.12, there was a PSD 

response peak at roughly 1800Hz. Both the magnitude and payload components which 

exhibit high deformation mirror responses seen in Modes 4 and 5. Peak RMS g-loading 

among the sampled points was 68g at the baffle set location. The imager plate and wall 

reached RMS values of 56g and 5g, respectively. Again, the default RMS value reported 

in SolidWorks corresponds to 1σ values and is therefore a good indicator of average 

payload behavior. 

 

 

Figure 6.12. LLNL V3 PSD response for Y-Axis excitation 
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 The node locations shown in Fig. 6.12 correspond to simulation locations listed 

in Table 6.7. 

 

Table 6.7: LLNL V3 Probed Locations for Y-Axis PSD Response 

Location  Node 
Baffle Center 1614856 
Imager Plate 1648888 

X Wall 1265014 
Base Plate 61335 

  

 

6.2.4 Version 3 Random Vibration (Z-Axis) 

 Finally, the Z axis response shown in Fig. 6.13, peaked near 1500Hz. The largest 

physical response was seen at the imager plate, and corresponded well to the behavior 

observed in Mode 2.  Both the second mode and the Z-Axis random vibration responses 

featured large Z axis movement of the imager plate at ~1500Hz. Peak RMS values for 

the sampled points was 61g at the imager plate. The baffle set and wall locations reached 

RMS values of 13g and 3g, respectively.  

 

Table 6.8: LLNL V3 Probed Locations for Z-Axis PSD Response 

Location  Node 
Baffle Center 1615154 
Imager Plate 1648547 

X Wall 464305 
Base Plate 69868 

 

Table 6.8 lists nodal locations for the following responses.  



 

 106

 

Figure 6.13. LLNL V3 PSD response for Z-Axis excitation 

 

6.3 Colony I Thermal Results 

 This section highlights noteworthy results of the LLNL CI thermal investigation. 

Both the transient and steady state thermal investigations aimed at locating candidate 

thermal strap locations. For each of these simulations the locations considered are shown 

in Fig. 6.14.  

 

 

Figure 6.14. Heat strap potential mounting locations  
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6.3.1 Colony I β=0° Case 

 The results of the transient simulation are shown in Fig. 6.15 and tabulated 

temperature averages are displayed in Table 6.9. As can be seen, the electronics board 

reached approximately 25°C. Also, the gradient on the antenna side PCB had 

magnitudes ranging from 5°C to 220°C. Based on the programmatic design 

specifications, this was deemed an infeasible location for thermal strap interfaces. The 

two side panels (Faces 7 and 9) however have minimums as low as -5°C. These 

temperatures are ideal for sinking heat away from the proposed thermal straps and 

likewise the heat positive side of the PEC.  

 

 

Figure 6.15. LLNL CI Transient thermal results 
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Table 6.9 LLNL CI Transient Average Temperatures 

 

 Below, Fig. 6.16 shows the transient response of interface location possibilities 

over the duration of three orbits. As can be seen, the satellite temperature results begin to 

converge in the last orbit, yet does not actually reach steady states during the time 

allotted for this investigation. Had either the mesh size of the thermal model or the 

length of the time step been increased, additional computation resources may have been 

available for a more refined solution. 

 

 

Figure 6.16. LLNL CI Transient response of primary interface locations 

Location Node Description Average  Temperature 

1 14885 +Y frame corner 25.0°C 

2 16433 +Y electronics mount 25.0°C 

3 14118 +YX frame corner 25.0°C 

4 9644 X wall frame -10.0°C 
5 14365 -YX frame corner 25.0°C 
6 10628 -Y frame corner 25.0°C 
7 16487 -Y electronics mount 25.0°C 
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 It is also important to note that while all the temperatures with the exception of 

location 4, Fig. 6.17, average about 25ºC during this period, only locations 5-7 are 

particularly stable. These locations only oscillate approximately +/-5ºC, while locations 

1-3 oscillate as much as +/-15ºC. In addition to the transient response of location 4,  

Fig. 6.17 also depicts the response of four supplementary X face and frame locations. 

Node 9728 and 9484 are near the corners of the frame/wall, while node 9644 is in the 

center. In this transient analysis, the X walls are perpendicular to the sun for the given 

orientations. The center of the wall, at Node 9644, therefore has the maximum heat 

rejecting capacity of all probed locations.  

 

 

Figure 6.17. LLNL CI Transient response of the X facing frame/wall 

 

6.3.2 Colony I β=90° Case 

 Due to the fact that the orientation of the spacecraft never changed with respect 

to the Earth and/or the Sun the steady state thermal case was not required to propagate 
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over several orbits. Rather, the FEA solver converged on a steady state temperature 

distribution and this solution was determined to be representative of the entire mission.

 As is highlighted in Table 6.10, the lower electronics boards, where the PEC was 

planned to interface, reached about 50°C. The sun facing side, shown on the right of  

Fig. 6.18, reaches a steady state temperature of 54°C. The bottom face reached a 

maximum temperature of 125°C. Steady state temperatures in this range were clearly not 

considered as thermal strap connection locations. The remainder of the bus however 

maintained temperatures around 30°C and could potentially serve as thermal strap 

outlets if radiators were incorporated into the design. 

 

 

Figure 6.18. LLNL CI Steady state thermal results 
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Table 6.10 LLNL CI Steady State Temperatures 

 

  

  

 

 

The table above tabulates the primary spacecraft locations considered as thermal 

strap interfaces. The probed locations range from approximately 38°C to 54°C. 

 

6.3.3 Colony I Comparison of β=0° and β =90° 

 On average, the external temperatures of the 90° beta angle case were on average 

two times as large as the 0° simulation. This undoubtedly occurred as a result of the 

short periods of 'true' eclipse present in the 0° beta case which allowed the satellite to 

cool significantly. If, rather than looking at external gradients, the models are compared 

based on internal temperatures, the 'worst case' thermal model environment is produced 

by 90° beta angle. In this steady state analysis, the payload reaches a temperature of 

24°C whereas the transient temperature of the payload oscillates slightly around 0°C, 

after three orbits. Ultimately, the steady state case was used in the thermal strap design 

process in order to ensure worst-case hot temperatures  

 

 

 

Location Node Description Temperature 
1 16117 +Y frame corner 53.5°C 
2 16273 +Y electronics mount 54.7°C 
3 14048 +YX frame corner 52.6°C 
4 9676 X wall frame 5.7 °C 
5 14288 -YX frame corner 38.4°C 
6 10624 -Y frame corner 38.5°C 
7 16327 -Y electronics mount 41.4°C 
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6.3.4 Proposed Thermal Management System 

 As mentioned above, the X frame/wall was identified as the most advantageous 

heat sink location because of exhibited low temperatures in the steady state case. Figure 

6.19 shows the steady state temperature distribution along an X crossbar running behind 

the optimum X wall location, Node 9676.  

 

 

Figure 6.19. LLNL CI Temperature variation along the X frame/wall cross bar 

 

 The analysis showed that there was a 1.7in segment of the cross bar that 

remained below 10°C in the steady state case. Having identified an interface location 

and using the below resistance model, two thermal management configurations were 

examined, Fig. 6.20.  
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Figure 6.20. Resistance models for Configuration I (top) and Configuration II 
(bottom) 
 
 

 Both designs, Fig. 6.21, featured copper heat straps that connected directly to the 

imager board and bus frame. The first of these configurations, Configuration I, features 

two wide copper straps reaching from the long edges of the pinwheel plate to the frame. 

The second configuration, Configuration II featured four straps mounted directly from 

the pinwheel arms to the X frame/wall. The thermal resistance models for each of the 

proposed thermal strap designs are shown below. The THot-Side temperature was obtained 

from the simulation, as described above, and the total system was evaluated using the 

theory outlined in Section 5. 
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Figure 6.21.Thermal strap configurations 

  

 Ultimately, the Configuration I result featured two copper straps with widths of 

1.7in and thicknesses of 0.005in. The lengths of each strap were specified as 1.4in and 

attached to the cross beams of the bus' (-X) and (+X) frames.  The weight of the design, 

without fasteners, was estimated to be approximately 3.5g and would take minimal time 

to manufacture.  

 Conversely, the Configuration II result featured four copper straps with widths of 

0.5in and thicknesses of 0.0525in. The lengths of each strap were specified as 1.4in and 

attached to the (-Y) and (+Y) regions of the cross beams on the (-X) and (+X) frames. 

The weight of this design, again without fasteners included, was 5.4g. Ultimately, both 

configurations were deemed viable options. The decision to utilize Configuration II was 

motivated dually by the additional space it allowed for through harnesses as well as the 

added maneuverability of smaller straps. 
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6.4 Colony II Thermal Results 

 Presented in this section are the results of the LLNL CII thermal simulation. 

Based on the results of CI, that the β=90° orbit case represented the worst case thermal 

environment, CII was exclusively subjected to steady state loads.  

 

6.4.1 Colony II β=90° Case 

 As was to be expected due to an increase normal surface area to the Sun, the 

overall bus temperature of the Colony II configuration was slightly higher than the 

temperatures observed in the Colony I simulation. These values, which were 

approximately 50˚C on the deployable, sun facing arrays, were on average 10˚C warmer 

than the CI configuration. Figure 6.22, below, shows the exact magnitudes of these CII 

results. 

 

 

Figure 6.22. LLNL CII Steady state thermal results 
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 Furthermore, the above simulated profiles provided a visual basis for several of 

the potential strap locations investigated during the analysis. Areas of consideration are 

highlighted in Table 6.11.  From the table, it is clear that the space facing locations 

proved most efficient for heat removal. As was the case in the CI analysis, the 

temperatures present in Table 6.11 were utilized to re-evaluate the aforementioned 

Configuration II thermal resistance model. 

 The result of this analysis suggested that the originally proposed strap design was 

robust enough to sufficiently remove heat from the imager board in the CII 

configuration. 

 

Table 6.11 LLNL CII Potential Strap Locations 

Location Average Temperature 
Center Solar Panel GaAs Surface 45.0°C 

Center Solar Panel Backing 45.0°C 
Center Sun Side Body Silvered FR4 Panel -5.0°C 
Center Space Side Body Black FR4 Panel -11.0°C 

GPS board 32.0°C 
Primary Mirror Surface 10.0°C 

Center Telescope Space Side Wall -14.0°C 
Center Nadir Body Silvered FR4 Panel Surface 25.0°C 

Center Radiator Surface 5.0°C 
 

6.5 AggieSat4 Structural Results 

  The following section is an overview of the predicted structural behavior of the 

AGS4 satellite. At the time of this research, AGS4 was still in the design phase, so 

experimental testing had not been performed. Testing of AGS4 is slated for late 2014 by 

NASA. 
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6.5.1 AggieSat4 Natural Frequency 

 Using the aforementioned mesh density for a converged solution, 1.5cm, the 

natural frequency of AGS4 was calculated, Table 6.12. Analyzing the PSD curve for the 

Dragon Flight Environment highlighted dangerous vehicle specific frequencies in the 

20-160Hz range.  In the results presented below, the first mode frequency for AGS4 was 

well above 160Hz, Fig. 6.23. This indicates that the structure is less likely to experience 

resonance and fail under the vibration loads experienced on the Dragon launch vehicle. 

  

Table 6.12: AGS4 Natural Frequency of First Five Modes 

Mode 
No. 

Frequency 
(Hz) 

1 194.7 
2 226.0 
3 230.8 
4 256.0 
5 305.9 

 

 Shown in the Appendix, the second and third modes of the AGS4 natural 

frequency analysis were saturated by board movement and reveal little regarding the 

overall bus displacements. Furthermore, the displacements shown in the frequency 

figures are exaggerated and represent relative motion rather than absolute values. For 

this reason, only trends in component motion can be inferred. The figure below, 

exaggerated for viewing purposes, show that the ISIPOD deployer, developed by 

Innovative Solution in Space, experiences the highest response to the first mode 

frequency of 195Hz.   
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Figure 6.23. AGS4 1stmode natural frequency 
 

6.5.2 AggieSat4 Random Vibration (X-Axis) 

 The following three sections present the results of the attenuated foam load 

excitations, presented in Section 5, scaled to 3dB.  Scaling the base excitation curves to a 

3dB values, both doubles the predicted loads and ensure the satellite can withstand a 

maximum test load environment. Table 6.13 shows 1σ RMS acceleration and stress 

values for various locations on the AGS4 satellite.  

The X-direction excitation revealed a maximum acceleration of 28.6g and a max 

stress of 19.3MPa. The maximum acceleration occurred at an internally named 'alpha' 

CDH board while the maximum stress was experiences by the +Z wall of the structure. 

Comparison of this stress with the yield strength of Al 6061-T6 affirms that the structure 

is sound. 
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Table 6.12: AGS4 RMS Values for X-Axis Excitation (3dB) 

Location Acceleration (g) Stress (Pa) 
X- Panel 5.2 1.8E+06 
X+ Panel 6.5 1.1E+06 
Y- Panel 2.5 2.9E+06 
Y+ Panel 3.2 2.3E+06 
Z- Panel 3.6 2.6E+06 
Z+ Panel 3.4 1.9E+07 
EPS Bottom Board 3.4 1.6E+06 
EPS Alpha W 3.5 9.1E+05 
EPS Beta W 4.6 6.4E+05 
EPS Gamma W 5.7 7.3E+05 
EPS Delta W 6.9 7.0E+05 
EPS Alpha I 3.8 4.0E+05 
EPS Beta I 4.5 3.9E+05 
EPS Gamma I 5.0 3.6E+05 
CDH Alpha 28.6 1.4E+06 
CDH Beta 4.3 6.6E+05 
CDH Gamma 4.9 5.0E+05 
CDH Delta 5.2 1.7E+05 
Battery Board (Facing EPS) 4.0 2.6E+04 
Battery Board (Facing ISIPOD) 5.6 1.5E+04 
DRAGON Board EPS 3.6 1.7E+05 
DRAGON Board CDH 10.3 1.2E+06 
I Beam (+y) 4.1 1.4E+07 
I Beam (-y) 3.2 6.2E+06 
Model MAX 28.6 1.9E+07 

 

 Below, Fig. 6.24 shows the locations probed for PSD response investigations. 

These locations captured representative features of the AGS4 bus such as Al 6061-T6 

walls, PCB stacks, and battery box assemblies.  
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Figure 6.24. AGS4 PSD X-Axis probe locations  

 

 Table 6.14 correlates the probed response locations from the model to the nodal 

name indicated in Fig. 6.25. 

 

Table 6.13: AGS4 Probed Locations for X-Axis PSD Response 

Node  Location Color 
CDH Alpha 92074 Red 
DRAGON Board CDH 107687 Blue 
X+ Panel 238374 Black 
EPS Delta W 66816 Green 

 

 Below are the PSD responses for the X-Axis excitation of the AGS4 model. As 

was expected, based on RMS results, the CDH 'alpha' boards demonstrated the largest 

acceleration. This peak of 20g occurs between 40-60Hz.  
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Figure 6.25. AGS4 PSD response for X-Axis excitation 

 

6.5.3 AggieSat4 Random Vibration (Y-Axis) 

 The values probed for RMS responses for the Y-Axis random vibration analysis 

were identical to those probed in the X-Axis simulation.  These values are shown below 

in Table 6.15. The Y-direction excitation revealed a maximum acceleration of 6.5g at the 

location probed on the -Y wall and a max stress of 20.3MPa on the -X panel.  
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Table 6.15: AGS4 RMS Values for Y-Axis Excitation (3dB) 

Location Acceleration (g) Stress (Pa) 
X- Panel 2.1 2.0E+07 
X+ Panel 1.7 2.9E+06 
Y- Panel 6.5 5.4E+06 
Y+ Panel 5.0 5.6E+06 
Z- Panel 2.5 6.4E+06 
Z+ Panel 3.4 1.6E+07 
EPS Bottom Board 2.1 1.0E+06 
EPS Alpha W 2.4 4.9E+05 
EPS Beta W 3.1 2.8E+05 
EPS Gamma W 3.8 3.2E+05 
EPS Delta W 4.6 2.3E+05 
EPS Alpha I 2.5 2.2E+05 
EPS Beta I 2.9 1.6E+05 
EPS Gamma I 3.4 9.5E+04 
CDH Alpha 6.0 1.4E+06 
CDH Beta 3.6 4.6E+05 
CDH Gamma 4.4 5.8E+05 
CDH Delta 5.9 5.2E+05 
Battery Board (Facing EPS) 2.3 3.9E+04 
Battery Board (Facing ISIPOD) 1.7 1.1E+04 
DRAGON Board EPS 2.0 1.8E+05 
DRAGON Board CDH 4.2 4.9E+05 
I Beam (+y) 1.9 1.1E+06 
I Beam (-y) 1.7 1.0E+07 
Model MAX 6.5 2.0E+07 

 

 Figure 6.26 shows the location, along with Table 6.16, probed for PSD response 

curves. Unlike the RMS outputs, the PSD probe locations were not maintained between 

axes. Rather, each axis was probed in locations of interest or concern. For the Y-Axis, 

the ISIPOD was of particular interest due to the observed first mode natural frequency 

behavior. Additionally, the -Y panel was investigated to ensure reasonable and safe 

responses due to the high acceleration observed during the RMS survey. 
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Figure 6.26. AGS4 PSD Y-Axis probe locations 

 

Table 6.16: AGS4 Probed Locations for Y-Axis PSD Response 

Node  Location Color 
Y- Panel 178227 Red 
CDH Alpha 92427 Green 
EPS Delta W 66290 Blue 
ISIPOD 148336 Black 

 

 Figure 6.27 shows the PSD responses for four probed location of the AGS4 

structure. The maximum peak shown corresponds to the -Y panel and is approximately 

1g in magnitude. All four nodes show similar modes shapes with a peak frequency of 

approximately 60Hz.  
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Figure 6.27. AGS4 PSD response for Y-Axis excitation 

 

6.5.4 AggieSat4 Random Vibration (Z-Axis) 

 Lastly, the Z-direction excitation revealed a maximum acceleration of 21.9g and 

a max stress of 68.8MPa. As with the previous two analyses, the alpha CDH board 

experienced the highest accelerations while an internal I-Beam was the component with 

the maximum stress. Again, a comparison of this stress value and the material's yield 

strength, 275MPa, shows that there is almost a FS of four for the I-Beam. NASA 

standards require most flight parts to meet FS of at least two. Additionally, the 

excitations utilized for the above three simulations were completed at test loads, and are 

consequently higher than anticipated flight environments by a factor of two. 
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Table 6.17: AGS4 RMS Values for Z-Axis Excitation (3dB) 

Location Acceleration (g) Stress (Pa) 
X- Panel 2.9 4.3E+06 
X+ Panel 1.7 4.1E+06 
Y- Panel 2.5 9.4E+06 
Y+ Panel 2.9 1.2E+07 
Z- Panel 6.3 5.0E+06 
Z+ Panel 5.7 3.3E+07 
EPS Bottom Board 6.6 8.0E+05 
EPS Alpha W 6.5 4.2E+05 
EPS Beta W 6.6 5.0E+05 
EPS Gamma W 6.7 5.4E+05 
EPS Delta W 6.8 4.1E+05 
EPS Alpha I 6.7 3.3E+05 
EPS Beta I 7.0 3.6E+05 
EPS Gamma I 7.0 2.8E+05 
CDH Alpha 21.9 1.1E+06 
CDH Beta 6.8 5.7E+05 
CDH Gamma 6.9 4.4E+05 
CDH Delta 7.0 3.3E+05 
Battery Board (Facing EPS) 6.1 3.1E+04 
Battery Board (Facing ISIPOD) 6.7 4.8E+04 
DRAGON Board EPS 7.4 1.4E+06 
DRAGON Board CDH 12.9 9.7E+05 
I Beam (+y) 5.6 6.9E+06 
I Beam (-y) 5.5 6.9E+07 
Model MAX 21.9 6.9E+07 

 

 Table 6.17 summarizes the RMS values measured at each of the probed 

locations. Below, Fig. 6.28 showed the PSD locations utilized for the Z-Axis analysis. 

Of particular interest for this analysis was the -Z panel which, as shown above, had the 

highest RMS response of all six structural walls. This was not unexpected as the -Z 

panel houses the majority of AGS4's components and because the excitation acted 

through the panel's center of gravity.   
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Figure 6.28. AGS4 PSD Z-Axis probe locations 

 

 Table 6.18, below, correlates the probed response locations from the model to the 

nodal name indicated in Fig. 6.28. 

 

Table 6.18 AGS4 Probed Locations for Z-Axis PSD Response 

Node  Location Color 
CDH Alpha 91701 Red 
Dragon CDH 107091 Green 
EPS Delta W 66316 Blue 
Z- Panel 339679 Black 

 

 As can be seen in Fig. 6.29, the Z-Axis excitation elicited the highest frequency 

response. This single peak at approximately 100Hz was expected given the geometry of 

the AGS4 satellite. Namely, the Z panel of the satellite was double the size, and thus 

mass, of the side panels.  
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Figure 6.29. AGS4 PSD response for Z-Axis excitation 

 

6.6 AggieSat2 and DragonSat Structural Results 

 The final section summarizes the results of the historical investigation of AGS2. 

Results for an integrated DragonSat system are presented for comparison with 

experimental testing and natural frequency data for the AGS2 independent model. 

 

6.6.1 AggieSat2 and DragonSat Natural Frequency 

 The following natural frequency results were obtained at a converged maximum 

mesh size of 2.5mm. Table 6.19 summarizes the first five natural frequency modes for 

the AGS2 model.  
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Table 6.19: AGS2 Natural Frequency of First Five Modes 

Mode 
No. 

Frequency 
(Hz) 

1 0 
2 411.7 
3 466.0 
4 699.0 
5 701.5 

 

 Due to the constraints on the model, translational motion was unconstrained 

along the axis running parallel to the SSPL deployment vector. For this reason, the first 

reported mode of the AGS2 model did not correspond to a frequency response but rather 

described complete translational motion. The second mode reported for the AGS2 model 

was approximately 410Hz. This value is significantly higher than those reported for 

AGS4 which is to be expected considering the relative size of the two satellites.  

 

 

Figure 6.30. AGS2 2nd mode natural frequency 
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Figure 6.30, shows the second modal shape of the AGS2 satellite. The second 

mode's motion is completely isolated to the vibration of the bottom PCB board.  All 

subsequent modes can be found in the Appendix.  

Table 6.20, below, shows the natural frequency of the integrated DragonSat 

system and SSPL launcher. These solutions were obtained with the mesh characteristics 

described in Section 5. The converged mesh used therefore featured a maximum element 

size of 0.5mm and had approximately 670K nodes.  

 

Table 6.20: DragonSat Natural Frequency of First Five Modes 

Mode 
No. 

Frequency 
(Hz) 

1 483.3 
2 486.4 
3 524.9 
4 525.1 
5 812.5  

 

 Below, Fig. 6.31 shows the first modal shape of the DragonSat and SSPL system. 

Not surprisingly, the first mode features the same PCB's motion, which characterized the 

AGS2 natural frequency response. Moreover, the second mode, shown in the Appendix, 

highlights the second AGS2 model's top +Z PCB deformation.  
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Figure 6.31. DragonSat and SSPL 1st mode natural frequency 
 
 

6.6.2 DragonSat Random Vibration (X-Axis) 

 The results from the random vibration simulations and experimental testing for 

the X-Axis of the AggieSat/DragonSat payload are shown below.  The PSD curves 

presented in Section 5 were inputted as shown and represented a 0dB case. The output 

PSD curves presented below are utilized in Section 7 to evaluate the CAD tool. Figure 

6.32 shows where accelerometers were located on the exterior rear of the SSPL during 

experimental testing as well as a representative probe location for each measurement 

location. Likewise, Fig. 6.33 shows X and Y-Axis accelerometers and representative 

probe locations. While the exact node was not utilized to measure responses in all three 

axes, efforts were made to choose appropriate placement for each of the nine PSD probe 

instances.  
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Figure 6.32. SSPL rear PSD probe locations (left) and physical model with 
accelerometers (right) 
 
 
 

 
 
Figure 6.33. SSPL side PSD probe locations (left) and physical model with 
accelerometers (right) 

 
 

 The responses for the X-Axis random vibration analysis is shown below. Axis 

specific measurements were made in order to accurately compare experimental data 

from unidirectional accelerometers with simulation data. Figure 6.34 feature results from 
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the primary X-Axis, Y-Axis, and Z-Axis accelerometers, from top to bottom, 

respectively.  

 

 

Figure 6.34. DragonSat and SSPL PSD response for X-Axis excitation 
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6.6.3 DragonSat Random Vibration (Y-Axis) 

 Similarly, Fig. 6.35 feature Y-Axis PSD response from the primary X-Axis, Y-

Axis, and Z-Axis accelerometers, from top to bottom, respectively. 

 

 

Figure 6.35. DragonSat and SSPL PSD response for Y-Axis excitation 
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6.6.4 DragonSat Random Vibration (Z-Axis) 

 Lastly, Fig. 6.36 features the Z-Axis PSD response of the primary X-Axis, Y-

Axis, and Z-Axis accelerometers, from top to bottom, respectively. 

 

 

Figure 6.36. DragonSat and SSPL PSD response for Z-Axis excitation 
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 The above random vibration results will be discussed and utilized to evaluate 

SolidWorks in the following section. 
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7. CONCLUSIONS 

 

 As previously stated, this research was meant to provide real world examples of 

small satellite behavior predictions using CAD based FEA solvers. This goal was 

addressed in the characterizations of the four structural models presented above. These 

responses, discussed for individual payloads in further detail below, show the predictive 

and investigative capabilities of CAD based FEA solvers. Clearly peak RMS loading 

lends insights to both overall system behavior and component level areas of concern. 

These structural response results not only highlight how satellite systems benefit from 

complete FEA solutions but also provide a baseline body of work from which future 

space system analyses might consider. Improvements to modeling processes learned 

from this research could then feed forward to drive more accurate reliable solutions for 

otherwise difficult to validate satellite payloads.  

 As a secondary goal, and due to the on-going nature of AGSL’s internal satellite 

design, this research focused on creating useful models for future result comparison. 

This objective was achieved by utilizing result probe locations in representative testing 

configurations wherever possible. In instances where accelerometer locations had not yet 

been established or where the exact measurement location was unknown, external nodes 

reactions were recorded and the corresponding locations proposed for future hardware 

testing. Additionally, the aforementioned model simplifications were maintained 

throughout the ongoing design iterations of AGSL internal designs, even where higher 

fidelity modeling could have been achieved, in an effort to reserve computational power 
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for future model updated. For example, as the AGS4 design matures and an agreement 

regarding the exact packing configuration is achieved, the proposed probe locations may 

not be viable acquisition locations.  Due to an effort to create useful models which feed 

forward to future designs, additional model components, i.e. packing material, can be 

added without limiting simulation performance.  

Perhaps the most obvious objective of this research was to utilize a CAD package 

to predict three satellites’ structural responses based on simulation and experimental 

data. While the below discussion serves to assess the predicted responses in both test and 

launch environments, it is worth noting the following direct benefits of the results 

presented within this report. Namely, the observed ability of the CAD program to 

highlight payload components requiring further attention from a design standpoint. This 

ability to isolate areas of high displacement of extreme temperature gradients leads itself 

to an iterate design process and performance confidence. Due to the complexity of such 

systems, vetting every instance of instability or high stress concentration would be 

nearly impossible without the use of the aforesaid CAD and CAD based FEA practices. 

On this merit alone, SolidWorks and other similar CAD packages prove to be invaluable 

design tools as well as effective structural response predictors.  

The following section is meant to address the TML evaluation process alluded to 

throughout the totality of this research. Great effort has been taken up to this point to 

remain impartial to solution validity as simulation data was compiled. All programmatic 

validation metrics were established before results had been obtained and aside from 

crude solution sanity checks, no processing of the data was completed prior to this 
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section. To maintain this level of ethical reporting and present an accurate assessment of 

SolidWorks for continued use at AGSL, the following format will be utilized for each of 

the six models investigated: summary of validation metrics, determination if comparison 

between experimental and simulation data is possible, post-processing of data, 

evaluation of metric success, discussion of potential error and outline of possible ways to 

increase future accuracy. Based on the results of the aforementioned model 

investigations, a conclusion regarding SolidWorks' tool maturity will be reached and a 

suggestion for future use presented.  

 

7.1 Version 2 Investigation    

A successful V2 payload was identified as one capable of capturing experimental 

result trends and predicting relative responses. Additionally, the requirement that a 

component’s random vibe response be within plus/minus half an order of magnitude of 

experimental values was levied on the simulation model. Due to the fact that NPS 

completed V2 testing in Monterey, California in late 2011 and because the testing 

adhered to strict procedures, a comparison between V2 simulation data and experimental 

data will prove insightful.  

 In order to accurately compare the PSD results for the V2 model, it is important 

to note that the log scale of the experimental results is a factor of two higher that the 

simulated results. Moreover, as a default output, SolidWorks reports PSD results in 

(m/s2)2/Hz. These units of ASD must be scaled in order to meaningfully evaluate the 

above metrics. The conversion between the SolidWorks default and the standard 
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experimental output, g2/Hz, is 96.04. This value, which represent (9.8m/s2)2, is utilized 

to scale down the simulation solution for experimental comparisons.   

 One primary peak was identified in the experimental prediction of the V2 

payload in the X-Axis.  The peak occurred at approximately 700Hz. The simulated 

results showed a peak at 1500Hz. For this axis the validation metric was deemed a 

failure. For the Y-Axis, on the other hand, experimental testing showed a peak at 

1300Hz while simulations produced a peak at 1250Hz. For this axis the validation metric 

was met and the simulation accepted. Lastly, for the final axis, both experimental and 

simulated random vibration results show a double peak spike. In the experimental 

results, the first and more pronounced of these peaks occurred at 1100Hz while the latter 

peak was at 1400Hz. The simulation reading for the Z-Axis, on the other hand, showed 

the lower peak occurring at 1100Hz and the higher frequency peak arising at 1250Hz. 

These values meet the metrics established for V2 and thus for the third and final axis, the 

metric was successful. 

 Perhaps the most obvious source of model error for the V2 payload simulation 

was the use of a fixed geometry restraint for the bottom plate of the test pod. This 

fictitious rigidity could have easily caused artificially higher frequency responses and 

damped or eliminated responses at lower frequencies.  In the simple plate simulation, 

this impact on the results was especially apparent in the out-of-plane simulations and 

could potentially explain why the Y-Axis simulation results were so close to the 

experimental results. Additionally, this research utilized the lowest damping ratio value 

within the presented range of acceptable quantities. Either the damping ratio or boundary 
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condition selection could have adversely affected the validity of the above results. To 

quantify such impacts, the following sensitivity tests were completed.  

 

7.1.1. Version 2 Sensitivity Analysis  

In order to capture both the highest and lowest possible responses given a variety 

of boundary conditions and damping ratios the V2 simulation, as described in Section 5 

was rerun with the following alterations. Originally the mesh utilized had a maximum 

element size of 4mm and 700K nodes. The mesh used to obtain the below results had a 

maximum element size of 2mm, 2M elements and 3M nodes. Another change made to 

the model was that four interior sheet metal walls were included in the payload. The thin 

Al 6061-T6 walls are 0.02in thick and mounted externally to the payload unit and baffle 

set. These walls were not included in the original model because of low relative mass 

and potentially cumbersome meshing thicknesses.  

After the walls were integrated into the model, four additional simulations were 

rerun for each of the three axes. The simulations included the following configurations: a 

0.03 damping ratio model with a fixed geometry bottom plane, a 0.03 damping ratio 

model with a roller slider boundary condition on the bottom plane and fixed mounting 

holes, a 0.07 damping ratio model with a fixed geometry bottom plane, and a 0.07 

damping ratio model with a roller slider boundary condition on the bottom plane and 

fixed mounting holes. For three different probe locations, accelerometer A, B, and D 

from Section 5, the X-Axis results are presented below, Figs. 7.1-7.3.  
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Figure 7.1. LLNL V2 PSD response for X-Axis excitation, Sensor A 

 

 

Figure 7.2. LLNL V2 PSD response for X-Axis excitation, Sensor B 

 



 

 142

 

Figure 7.3. LLNL V2 PSD response for X-Axis excitation, Sensor D 

  

 As can be seen above, for each of the probes locations of the X-Axis simulations, 

the combination roller/slider and fixed geometry mounting holes, with a damping ration 

of 0.03 produced results closest to the experimental data. Whereas in the initial 

simulation’s results featured a single peak at 1500Hz, the results above show a much 

higher agreement between experimental and simulated data. For example, Sensor A’s 

experimental data showed a predominate peak at 700Hz while the simulated data 

showed a frequency response at 790Hz. Likewise, Sensor B’s laboratory data shows a 

primary frequency peak and a smaller response at approximately 700Hz and 1300Hz,  

respectively. The simulated results for this sensor showed peaks at 774Hz and 1052Hz. 

Lastly, the experimental results compiled from Sensor D showed peaks at 700Hz and 

1450Hz. The simulated data for Sensor D showed responses at approximately 775 and 

1050Hz. All three of the sensor used to collect frequency response data for the X-Axis 
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pass the validation metric’s success criterion and could be utilized for structural response 

prediction.  

 The results for the Y-Axis simulations are presented below, Figs. 7.4 and 7.5. 

The results for the +Y and +X face sensors, previously discussed in Section 5, represent 

the out-of-plane response for this payload.  

 

 

Figure 7.4. LLNL V2 PSD response for Y-Axis excitation, +Y face sensor 

 

Figure 7.5. LLNL V2 PSD response for Y-Axis excitation, +X face sensor 
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 Above, the both the +X and +Y face simulation responses featured peaks at 

850Hz while the experimental data had a peak at 1250Hx. These results do not show an 

improvement over the originally simulated model and therefore suggest that the fixed 

plate boundary conditions may have been more suitable for capturing out-of-plane 

responses for this particular payload. The Z-Axis sensitivity simulation results are 

presented below, Figs. 7.6 and 7.7. 

  

Figure 7.6. LLNL V2 PSD response for Z-Axis excitation, -Z face sensor 
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Figure 7.7. LLNL V2 PSD response for Z-Axis excitation, +X face sensor 

 

 The above results for the –Z face location show frequency responses at 830Hz 

and 1052Hz. The simulated response measured on the +X face probed location peaked at 

approximately 1040Hz. Again, these responses were not an obvious improvement over 

the results of the initial simulation despite remaining within the tolerance of the 

validation metric. Ultimately, the sensitivity analysis revealed axis specific 

improvements for the V2 payload. Without a doubt, the lower damping ratio simulations 

were closer to experimental behavior and should continued to be utilized for additional 

models. 

 

7.2 Version 3 Investigation    

 Accuracy for the V3 model was defined as peaks in experimental and simulation 

random vibe responses correlating to within half an order of magnitude. The ongoing 

nature of experimental testing for the V3 payload excludes the following metrics from 

being evaluated with physical test data. The above are suggestions for validation once 
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experimental data becomes available and may be worth reconsidering if the V2 model 

updating was successfully completed. 

 

7.3 Colony I and Colony II Investigations 

 Both thermal simulations were employed to design a system capable of 

maintaining an approximate temperature of 5°C at the imager interface by generating a 

~20°C temperature change across a TEC. Accuracy, while never defined, was loosely 

based on the simulations' predictive capabilities of on-orbit environments. Due to the 

nature of the simulations and an inability to recreate space thermal factors in a test 

facility, thermal outputs were considered exclusively predictive. Future model accuracy 

could be validated with reading from integrated payload thermistors. A recommended 

validation metric for the CII thermal simulation, should this method be employed, is that 

measured minimum and maximum temperatures for a quasi-steady state orbit fall within 

the predicted simulation profile ranges.  

 

7.4 AggieSat4 Investigation 

 In was suggested that the AGS4 model be validated based on future internal 

accelerometer placements within an M0-1 bag, external to the foam-packing mold. 

Accuracy for the AGS4 random vibe was defined as peak responses in agreement to 

within ±25Hz. However, due to the fact that foam packing material was not physically 

modeled and because the flight configuration will include an M0-1 bag, results from the 

simulation may not have an obvious correlation to experimental data. Due to the ongoing 



 

 147

nature the AGS4 design and testing work, the metrics proposed herewith cannot be 

evaluated at this time. As with the STARE campaign, the suggestion stands to reevaluate 

the AGS4 simulation and model once both the flight and testing configurations have 

been solidified. 

 

7.5 AggieSat2 Investigation 

Accuracy standards for the AGS2 model were made purposefully rigorous to 

push the limits of the CAD tool. Namely, for the DragonSat model, simulation accuracy 

was defined as resonant frequencies within ±100Hz of experimental data.  

Due to the fact that AGS2 is a historical study, included in this research primarily 

due to the vast amounts of information available regarding the system's physical 

behavior, a comparison between simulation and experimental results is possible. As was 

the case in the V2 evaluation, SolidWorks PSD resonances must be converted from 

(m/s2)2/Hz to g2/Hz. 

The experimental testing of AGS2 reported X-Axis responses in the three 

primary directions. In the X-direction, the response occurred at 110Hz. In the Y-

direction two peaks are visible, the first at 200Hz and the second at 600Hz. Lastly, in the 

Z-direction three peaks were observed, one at 150Hz, another at 700Hz, and the final at 

1500Hz. Simulation results in the X-, Y-, and Z- directions were as follows: in the X-

direction, 1000Hz, in the Y-direction, 1000Hz and 1600Hz, and in the Z-direction, 

1000Hz and 1600Hz.  
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In the Y-Axis results of the AGS2 experimental testing, the X-direction had a 

single wide peak spanning from 150-250Hz. The Y-direction exhibited a frequency 

spike at 200Hz. And the Z-direction measurement peaked in three unique locations: 

150Hz, 800Hz, and 1400Hz. Simulation results for AGS2 again show excessively high 

frequency responses. The X-direction response showed a peak at 1000Hz. Two peaks 

occurred in the Y-direction, the first at 1000Hz and the second at 1500Hz. Lastly, while 

the tri-peak results of the Z-direction appeared initially promising, simulated results 

showed acceleration rises at 1000Hz, 1100Hz, and 1500Hz.  

Lastly, the Z-Axis experimental data had a peak which occurred in the X-

direction, of about 150Hz. In the Y-Axis, an acceleration surge was seen at 250Hz. The 

Z-direction response of the experimental data revealed two peaks; one at 150Hz and the 

other at 750Hz. Simulation results for the Z-Axis PSD in the X-direction suggested a 

1000Hz response. The Y-direction probe revealed twin peaks at 1000Hz and 1500Hz. 

Finally, the Z-direction results show almost equivalent magnitude spikes at 1000Hz and 

1500Hz. 

All three readings for each of the three primary axes failed to meet validation 

metric standards. As previously discussed, the largest source of error in the AGS2 model 

was the SSPL model. Without mechanical drawings of the launcher, this uncertainty 

may never be rectified. However, higher fidelity from the EDU may help pacify the 

above discrepancy.  
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7.6 Recommendations   

 Based on the results of the aforementioned model investigations, SolidWorks 

Simulation has been evaluated as a TML-1 for use at AGSL. This evaluation does not 

limit the current role the CAD software has in the laboratory and should not be viewed 

in an adverse light. TML-1 tools are classified as sufficient for investigative studies, for 

which SolidWorks is currently being utilized. Additionally, this research highlights 

pitfalls in current modeling processes and how such shortcomings impact the validity of 

results. Moving forward, it is recommended that future results be subjected to sensitivity 

analyses, similar to those presented for the LLNL V2 payload, in order to obtain results 

which most closely describe reality.  
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APPENDIX 

 

 

Figure A-1. Computer Specifications and Benchmark Results 
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Figure A-2. Solar Incidence Cosine Curves for 3 Orbits Generated by MATLAB 
for use with the SolidWorks Simulation 
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Figure A-3. Albedo Cycling Curve for 3 Orbits Generated by MATLAB for use 
with the SolidWorks Simulation 
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Figure A-4. MATLAB Sun Angle Computational M-file 

%% Inputs 
alt=700; %km  orbits=3;  delt=300; %sec 
%Surface unit vectors, f4 and f5 are deployable panel surfaces, others 
%not included assumed to face Earth. 
f1=[-1,0];  f2=[0,1];  f3=[1,0]; 
f4=[cos(20*pi/180),sin(20*pi/180)];   
f5=[-cos(20*pi/180),sin(20*pi/180)]; 
  
%% Orbit and Time Calculations 
%Angle computation for eclipse based on Earth radius and spacecraft radius 
horz=sqrt((6375+alt)^2-6375^2); temp=asin((1/(6375+alt))*horz); 
fie=(pi-2*temp)/2; 
%Orbit period 
period=2*pi*sqrt(((6375+alt)^3)/398600); 
%Circular orbit rate 
rate=2*pi/period;  steps=floor(orbits*period/delt); 
%Sun vector in spacecraft frame 
theta=pi;  sun=[cos(theta),sin(theta)]; 
%% Iterative Calculation 
for i=1:steps 
    test=dot(sun,[0,-1]); 
    %Check if spacecraft is in eclipse 
    if test>=cos(fie) 
        X(i,:)=[0 0 0 0 0]; 
        Y(i,1)=0; 
    else 
        %if not in eclipse, set albedo value and check and compute for faces in sunlight 
        Y(i,1)=1; 
        %face1, Surface 5 
        test=dot(f1,sun); 
        if test>0 
            X(i,1)=test; 
        else 
            X(i,1)=0; 
        end 
         
        %face2, Surface 13 
        test=dot(f2,sun); 
        if test>0 
            X(i,2)=test; 
        else 
            X(i,2)=0; 
        end 
         
        %face3, Surface 8 
        test=dot(f3,sun); 
        if test>0 
            X(i,3)=test; 
        else 
            X(i,3)=0; 
        end 
         
         %face4, Surface 11 
        test=dot(f4,sun); 
        if test>0 
            X(i,4)=test; 
        else 
            X(i,4)=0; 
        end 
        
        %face5, Surface 6 
        test=dot(f5,sun); 
        if test>0 
            X(i,5)=test; 
        else 
            X(i,5)=0; 
        end 
    end 
    %update sun angle and vector 
    theta=theta+rate*delt;  sun=[cos(theta),sin(theta)]; 
    %update time 
    T(i,1)=(i-1)*delt; 
end 
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Figure A-5. AGS4 2nd mode natural frequency 

 

 

Figure A-6. AGS4 3rd mode natural frequency 
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Figure A-7. AGS4 4th mode natural frequency 

 

 

Figure A-8. AGS4 5th mode natural frequency 
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Figure A-9. AGS2 3rd mode natural frequency 
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Figure A-10. AGS2 4th mode natural frequency 
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Figure A-11. AGS2 5th mode natural frequency 
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Figure A-12. DragonSat and SSPL 1st mode natural frequency 

 

 

Figure A-13. DragonSat and SSPL 2nd mode natural frequency 

 



 

 165

 

Figure A-14. DragonSat and SSPL 3rd mode natural frequency 

 

 

Figure A-15. DragonSat and SSPL 4th mode natural frequency 
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Figure A-16. DragonSat and SSPL 5th mode natural frequency 
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TO: Vincent Riot, Lead Systems Developer, Lawrence Livermore National Laboratory  
FROM : Angela McLelland, Master’s Candidate, Texas A&M University 
DATE : February 6, 2012 
SUBJECT: Validation of SolidWorks Professional 2011 for Transient Thermal 
Modeling 
 
This memorandum will serve to summarize the validation test utilized by Texas A&M 
University, TAMU, in ensuring SolidWorks Professional 2011 a viable tool for transient 
heat transfer analyses. Such an investigation was meant to develop confidence in the 
SolidWorks package and to aid in the upcoming thermal strap design requested by 
Lawrence Livermore National Laboratory, LLNL. While not completely representative 
of specific on-orbit conditions, the model employed for this simulation captured general 
features of space missions, such as radiation heat loads and subsequent thermal 
responses. Additionally, the simulation had both a reliable and verifiable analytic 
solutions which allowed for expedited assurance in the tool. 
 
Contextual Background 
As requested, TAMU has started studying potential thermal strap designs for use on the 
Colony II bus.  Nominally, these straps must have the ability to efficiently removing heat 
from the hot side of a Peltier Electric Cooler, PEC. Because heat removal from a PEC is 
the limiting design constraint it is imperative that the straps provide ample avenues for 
heat transfer yet do not unnecessarily increase the overall mass of satellite. To achieve 
such a design, TAMU will use SolidWorks Professional 2011 to generate consistently 
accurate proofs of design.   
 
The Model 
For the purposes of verifying temperature profiles generated by SolidWorks, a one 
dimensional, ceramic ‘wall’ was modeled with a 1000˚C radiation load on the right side 
of the wall and the left side exposed to room air, see Figure 1.  
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1: Nodal System [1] 
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The thickness of the wall was specified as 3cm and the height and length were 160 times 
larger, to neglect boundary conditions.  An initial temperature of 20˚C was applied to the 
entire wall and the simulation was run for a total of 150 sec.  A probe was used to 
measure the temperature at five nodes at the center section of the wall, Figure 2, and the 
following results were obtained.  
 
 

 

 

 

 

 

 

 

 

Figure 2: Probed locations for transient results 
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Transient Results  
The final temperatures at these locations were then plotted to produce a rough 
temperature profile through the wall’s cross section, Figure 3 (Right).  Furthermore, 
temperatures at the outer nodes were measured at 520˚K on the left side of the wall and 
960˚K on the right side of wall. As can be seen, these results identically match the 
expected results of the simulation, Figure 3 (Left), which were obtained through 
numerical methods applied at the each of the five nodes.  

 

 

Figure 3: Published transient response (Left), SolidWorks generated response at 150 sec. 
(Right) 

This test confirmed SolidWorks as a viable tool for solving transient heat transfer 
problems with radiation loads and provided an opportunity to explore the user interface 
with which future analyses will be tested. Ideally, this assessment would lead to 
additional testing of available PEC modules in SolidWorks, using an upgraded flow 
packages. Due to the cost prohibitive nature of this option however, the current test plan 
will involve an iterative process that uses hand calculations, orbit propagations, and 
simplified SolidWorks models to hone in on realistic PEC behavior.  
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Specifically, this process will include 1D numerical calculations, with margin, to 
develop a basic sizing standard. Conjointly, simplified flux boundary conditions will be 
explored as a possible alternative to actual PEC modules in SolidWorks. Both the results 
of this simulation and 1D calculations will then be compared to the results of a 
simplified laboratory test in order to ensure the physical performance of the PEC is 
being accurately represented. If testing proves this approach to be inaccurate, a 
secondary approach could involve utilizing Matlab and SolidWorks to generate orbit 
propagations, accurate emissivity and view factor values, and a steady state/long term 
transient thermal model of the entire 3U system. While this model would not feature the 
imager, representative heat loads would be modeled where appropriate. The steady state 
temperature results, gained from this simulation, would then be used as input boundary 
conditions for a simplified SolidWorks strap model that would approximate the PEC 
interface.   

Further consideration is still needed in order to more directly capture physical PEC 
behavior, as TAMU's current SolidWorks package does not have this functionality.  
TAMU will therefore continue to research cost effective software to achieve this goal 
while maintaining progress on the aforementioned plan.  

If you have any questions or comments, please do not hesitate to contact me at: 
mclelland.angela@gmail.com. 

Reference(s):  Holman, J. P. Heat Transfer. New York: McGraw-Hill, 1981. Print 

 

 


